WO2005075396A1 - Herstellung von bisphenol a mit verringerter isomerenbildung - Google Patents

Herstellung von bisphenol a mit verringerter isomerenbildung Download PDF

Info

Publication number
WO2005075396A1
WO2005075396A1 PCT/EP2005/000615 EP2005000615W WO2005075396A1 WO 2005075396 A1 WO2005075396 A1 WO 2005075396A1 EP 2005000615 W EP2005000615 W EP 2005000615W WO 2005075396 A1 WO2005075396 A1 WO 2005075396A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
bisphenol
acetone
reaction
bpa
Prior art date
Application number
PCT/EP2005/000615
Other languages
English (en)
French (fr)
Inventor
Rainer Neumann
Ulrich Blaschke
Stefan Westernacher
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to JP2006551754A priority Critical patent/JP4874125B2/ja
Priority to EP05706966A priority patent/EP1713752A1/de
Publication of WO2005075396A1 publication Critical patent/WO2005075396A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/26General preparatory processes using halocarbonates
    • C08G64/28General preparatory processes using halocarbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols

Definitions

  • the present application relates to a process for the preparation of bisphenol A, in which the mixture comprising phenol and acetone is brought to a temperature of 48 to 54 ° C.
  • Bisphenols as condensation products of phenols and carbonyl compounds are starting materials or intermediates for the production of a large number of commercial products.
  • the condensation product from the reaction between phenol and acetone, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A, BPA) is of particular technical importance.
  • BPA serves as a starting material for the production of various types of polymeric materials such as polyarylates, polyether imides, polysulfones and modified phenol-formaldehyde resins. Preferred areas of application are in the production of epoxy resins and polycarbonates.
  • Divinylbenzene is normally used as the crosslinker, but others such as divinylbiphenyl can also be used.
  • a cocatalyst can be used. These are usually thiols that have at least one SH function.
  • the cocatalyst can either be dissolved homogeneously in the reaction solution or, in the case of the acidic ion exchangers, can be fixed on the catalyst itself.
  • Homogeneous cocatalysts are, for example, mercaptopropionic acid, hydrogen sulfide, alkyl sulfides such as ethyl sulfide and similar compounds.
  • cocatalysts are ammoalkylthiols and pyridylalkylthiols, which are ionically bound to the catalyst, whereby the SH function can be protected and is only released to the catalyst during or after fixation.
  • the cocatalyst can be covalently bound to the catalyst as alkyl or aryl thiol.
  • a product mixture is formed which, in addition to unreacted phenol and optionally acetone, contains primarily BPA and water.
  • typical by-products of the condensation reaction occur in small amounts, for example 2- (4-hydroxyphenyl) -2- (2-hydroxyphenyl) propane (o, p-BPA), substituted indanes, hydroxyphenyl indanols, hydroxyphenyl chromanes, spirobisin dane, substituted rndenols, substituted xanthenes and higher condensed compounds with three or more phenyl rings in the molecular backbone.
  • self-condensation of the acetone and reaction with impurities in the raw materials can result in the formation of further secondary components such as anisole, mesityl oxide, mesitylene and diacetone alcohol.
  • reaction is usually carried out in such a way that 100% conversion of the acetone is not achieved and 0.1 to 0.6% by weight of acetone are still present in the reactor outlet.
  • a processing and purification method of BPA is carried out by separating BPA from the reaction mixture in the form of an approximately equimolar crystalline adduct with phenol by cooling the reaction mixture with crystallization of the BPA-phenol adduct in a suspension crystallization.
  • the BPA-phenol adduct crystals are then separated from the liquid phase by a suitable apparatus for solid-liquid separation, such as rotary filters or centrifuges, and sent for further purification.
  • Adduct crystals obtained in this way typically have a purity of> 99% by weight of BPA, based on the sum of BPA and the secondary components, with a phenol content of approximately 40% by weight.
  • suitable solutions which typically contain one or more components from the group consisting of acetone, water, phenol, BPA and secondary components, the adduct crystals can be freed from impurities adhering to the surface.
  • the liquid stream (mother liquor) obtained in the solid-liquid separation contains phenol, BPA, water formed in the reaction, unreacted acetone and is enriched in the secondary components typically obtained in the production of BPA.
  • This mother liquor stream is usually returned to the reaction unit.
  • water previously formed is removed by distillation, wherein any acetone still present is also removed from the mother liquor.
  • the dewatered reaction stream thus obtained is supplemented by phenol, acetone and optionally cocatalyst and returned to the reaction unit.
  • the phenol can also be added in whole or in part before dewatering.
  • water and acetone can also be removed by distillation before the suspension crystallization of the BPA-phenol adduct is carried out.
  • a portion of the phenol present in the reaction solution can also be separated off by distillation.
  • the problem with such a recycle mode is that by-products from BPA production are enriched in the recycle stream and lead to the deactivation of the catalyst system and to poorer product qualities.
  • a partial amount of the circulating stream is removed from the process chain as so-called BPA resin - if necessary after partial or complete distillative recovery of phenol.
  • part or all of the circulating stream after the solid-liquid separation and before or after the separation of water and residual acetone can be passed through a rearrangement unit filled with an acidic ion exchanger.
  • This unit is generally operated at higher temperatures than the reaction unit.
  • this rearrangement unit under the prevailing conditions, some of the secondary components of the BPA production present in the recycle stream are isomerized to BPA, so that the overall yield of BPA can be increased.
  • the resin can also be subjected to a thermal, acidic or basic catalyzed cleavage.
  • the phenol released and, if appropriate, also isopropenylphenol can be separated off by distillation and returned to the reaction.
  • the BPA-phenol adduct crystals obtained after the above-described suspension crystallization of the reaction solution and solid-liquid separation are passed on to further purification steps, with the separation of phenol and possibly a reduction in the concentration of secondary components being achieved.
  • the BPA-phenol adduct crystals can be recrystallized for further purification from phenol, organic solvents, water or mixtures of the solvents mentioned, which may also contain BPA and its isomers, according to a suspension crystallization.
  • the phenol present in the adduct crystals can also be removed in whole or in part by the choice of suitable solvents. Any phenol remaining in the BPA after recrystallization is then completely separated off by suitable distillative, desorptive or extractive methods.
  • the phenol can also be removed from the BPA-phenol adduct crystals by means of a melting process.
  • a bisphenol A melt is obtained which can be used without prior solidification for the production of polycarbonate by the transesterification process (melt polycarbonate).
  • the bisphenol A melt can also by known Processes, such as, for example, after the test procedure or by desquamation, are solidified for sale or recycling. Furthermore, the melt can be dissolved in sodium hydroxide solution and used for the production of polycarbonate by the phase interface process. If appropriate, the phenol-free bisphenol A can be subjected to a purification step such as melt crystallization, distillation and / or recrystallization from phenol, water or an organic solvent such as toluene or mixtures of these substances before further processing.
  • the content of secondary components plays a decisive role in the quality of the bisphenol.
  • These so-called isomers influence the crystallization of bisphenol A from the reaction solution. Their influence increases with increasing content in the reaction solution.
  • the so-called BPA resin In order to nevertheless achieve a sufficient quality in the crystallization, parts of the circuit stream, the so-called BPA resin, must be removed from the circuit, as already described above. It is of economic interest to keep the amount discharged as small as possible, since phenol and acetone as bisphenol A and isomers are lost here.
  • the processes known to the person skilled in the art such as rearrangement and resin splitting, enable part of the raw materials to be recovered, but this is associated with energy expenditure and additional investment costs.
  • the object of the present invention was therefore to provide a process for the preparation of bisphenol A, in which the formation of isomers during the reaction is reduced, and a high purity of bisphenol A is achieved after the crystallization and filtration in the end product and thus the discharged amount from the cycle stream, the so-called BPA resin, can be kept low.
  • the invention relates to a process for the preparation of bisphenol A, in which
  • An essential feature of the process according to the invention is that the mixture comprising phenol and acetone in step b) is heated to a temperature of 48 to 54 ° C., preferably 50-53 ° C., particularly preferably 51.5 to 52.5 ° C. before the reaction becomes.
  • the acidic ion exchanger is preferably used in step c) in combination with a cocatalyst.
  • cocatalyst usually thiols that have at least one SH function.
  • the cocatalyst can either be dissolved homogeneously in the reaction solution or, in the case of the acidic ion exchangers, can be fixed on the catalyst itself.
  • Homogeneous cocatalysts are, for example, mercaptopropionic acid, hydrogen sulfide, alkyl sulfides such as ethyl sulfide and similar compounds.
  • cocatalysts are aminoalkylthiols and pyridylalkylthiols which are ionically bound to the catalyst, where the SH function can be protected and is only released to the catalyst during or after fixation.
  • the cocatalyst can be covalently bound to the catalyst as alkyl or aryl thiol.
  • the mixture containing phenol and acetone may also contain other substances.
  • the so-called isomers can also be contained, which are contained in the recycled partial stream of the mother liquor, which originates from the crystallization and filtration of the BPA-phenol adduct.
  • the starting temperature of the reaction is ultimately lowered to a temperature in the range from 48 to 54 ° C.
  • the amount of BPA resin to be discharged in order to keep the content of by-products, the so-called isomers, in the reactor constant on one for performing the crystallization and maintain the purity of the final product at an acceptable level. Due to the lower discharge, less bisphenol resin is obtained as a residue. Thus the amount of BPA resin is a direct indication of the isomer formation in the reaction. By reducing the reactor inlet temperature, the amount of resin can be reduced by up to 50%, which represents great economic savings with the same product quality.
  • the reaction is preferably carried out in such a way that a reactor temperature of 77 ° C. is not exceeded.
  • Adiabatic reaction control is preferred. In practice, this usually leads to the highest temperature occurring at the outlet of the reactor. The reactor outlet temperature is then the highest temperature that occurs in the reactor.
  • Adiabatic reaction control also includes a reaction control in which the reactor jacket is slightly heated from the outside in order to avoid crystallization in wall areas.
  • the low temperature at the start of the reaction at which a high concentration of acetone is still present, in particular reduces the acetone's own condensation and the formation of chromanes, indanes and other by-products of bisphenol A production known to the person skilled in the art.
  • the content of the so-called isomers of 100 g / l in the reaction mixture after the reaction should not be exceeded if possible.
  • a content of the so-called isomers of 60 to 100 g / l is preferably set in the reaction mixture at the reactor outlet.
  • the discharge of the substream from the recycled mother liquor, which originates from the crystallization and filtration of the BPA-phenol adduct crystals, can be reduced in quantity by the process according to the invention without exceeding the limit of 100 g / l of the so-called isomers in the product mixture at the reactor outlet ,
  • a process is therefore preferred in which a product mixture is obtained in step d), from which a bisphenol A-phenol adduct is then crystallized out and filtered off and bisphenol A is produced therefrom, and in which the mother liquor formed during the crystallization and filtration is partially is recycled into the mixture of phenol and acetone in step a), a partial stream being discharged from the recycled mother liquor and this partial stream in quantitative terms, taking into account the phenol present, less than 6% by weight, based on the amount of bisphenol A produced accounts.
  • the amount of the diverted mother liquor is therefore less than 6% by weight, based on the amount of bisphenol A produced, if all components contained in the substream except phenol are taken into account Partial stream to be discharged from the mother liquor can easily be determined by the expert using standard analysis methods.
  • the amount of BPA resin ultimately obtained can be further reduced by measures known to the person skilled in the art, such as, for example, rearrangement and resin cleavage.
  • a BPA in a purity of greater than 99.5% by weight of p, p-bisphenol A can be obtained by the process according to the invention can be produced without additional purification by primary crystallization being necessary.
  • the bisphenol A produced by the process according to the invention can be reacted with phosgene by the phase interface process or with diaryl carbonates, preferably diphenyl carbonate, to polycarbonate by the melt process.
  • a reactor loaded with 100 m 3 of phenol-moist acidic ion exchanger Lewatit SC104 is reacted from top to bottom with a reaction solution consisting of 4% by weight acetone, 6% by weight isomers, 7% by weight bisphenol A, 0.05% by weight.
  • a reaction solution consisting of 4% by weight acetone, 6% by weight isomers, 7% by weight bisphenol A, 0.05% by weight.
  • the reactor inlet temperature is adjusted to 52 ° C.
  • the reactor outlet temperature is 75 ° C.
  • the amount of the diverted partial stream of the mother liquor is 5.1% by weight, based on the amount of bisphenol A produced, if all components contained in the partial stream except phenol are taken into account.
  • the content of indanes, spirobisindanes and indenols is about this Operating mode in total at 12 g / 1 in the reactor outlet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Die vorliegende Anmeldung betrifft ein Verfahren zur Herstellung von Bisphenol A, bei dem Phenol und Aceton vor der Reaktion auf Temperaturen von 48 bis 54°C gebracht werden.

Description

Herstellung von Bisphenol A mit verringerter Isomerenbildung
Die vorliegende Anmeldung betrifft ein Verfahren zur Herstellung von Bisphenol A, bei dem das Gemisch enthaltend Phenol und Aceton auf eine Temperatur von 48 bis 54°C gebracht werden.
Bisphenole als Kondensationsprodukte von Phenolen und Carbonylverbindungen sind Ausgangs- Stoffe oder Zwischenprodukte zur Herstellung einer Vielzahl kommerzieller Produkte. Von besonderer technischer Bedeutung ist das Kondensationsprodukt aus der Reaktion zwischen Phenol und Aceton, 2,2-Bis(4-hydroxyphenyl)propan (Bisphenol A, BPA). BPA dient als Ausgangstoff zur Herstellung verschiedenartiger polymerer Werkstoffe wie beispielsweise Polyarylate, Polyether- imide, Polysulfone und modifizierter Phenol-Formaldehydharze. Bevorzugte Anwendungsgebiete liegen in der Herstellung von Epoxyharzen und Polycarbonaten.
Technisch relevante Herstellmethoden für BPA sind bekannt und beruhen auf der säurekatalysierten Umsetzung von Phenol mit Aceton, wobei bevorzugt ein Phenol-Aceton-Verhältnis von größer 5 : 1 in der Reaktion eingestellt wird. Die Reaktion erfolgt dabei üblicherweise im Dauerbetrieb und im allgemeinen bei Temperaturen von 45 bis 110°C, bevorzugt bei 50 bis 80°C, wie in DE -A-l 99 57 602 beschrieben. Als saure Katalysatoren können homogene wie auch heterogene Brönsted- oder Lewissäuren genutzt werden, so beispielsweise starke Mineralsäuren wie Salzoder Schwefelsäure. Bevorzugt kommen gelförmige oder makroporöse sulfonierte vernetzte Polystyrolharze (saure Ionentauscher) zum Einsatz. Als Vernetzer wird normalerweise Divinylbenzol eingesetzt, aber auch andere wie Divinylbiphenyl können Verwendung finden. Neben dem Katalysator kann ein Cokatalysator zum Einsatz kommen. Hierbei handelt es sich üblicherweise um Thiole, die mindestens eine SH-Funktion tragen. Der Cokatalysator kann sowohl homogen in der Reaktionslösung gelöst als auch, bei den sauren Ionentauschern, auf dem Katalysator selber fixiert sein. Homogene Cokatalysatoren sind beispielsweise Mercaptopropionsäure, Schwefelwasserstoff, Alkylsulfide wie beispielsweise Ethylsulfid und ähnliche Verbindungen. Fixierte Co- katalysatoren sind Ammoalkylthiole und Pyridylalkylthiole, die ionisch an den Katalysator gebunden sind, wobei die SH-Funktion geschützt sein kann und erst während oder nach Fixierung auf den Katalysator freigesetzt wird. Ebenso kann der Cokatalysator kovalent als Alkyl- oder Aryl- thiol an den Katalysator gebunden sein.
Bei der Umsetzung von Phenol mit Aceton in Gegenwart saurer Katalysatoren entsteht eine Produktmischung, die neben nicht umgesetztem Phenol und gegebenenfalls Aceton in erster Linie BPA und Wasser enthält. Daneben treten in geringen Mengen typische Nebenprodukte der Kondensationsreaktion auf, so beispielsweise 2-(4-Hydroxyphenyl)-2-(2-hydroxyphenyl)propan (o,p-BPA), substituierte Indane, Hydroxyphenyl-indanole, Hydroxyphenyl-chromane, Spirobisin- dane, substituierte rndenole, substituierte Xanthene und höher kondensierte Verbindungen mit drei oder mehr Phenylringen im Molekülgerüst. Außerdem können sich durch Eigenkondensation des Acetons und Reaktion mit Verunreinigungen in den Rohstoffen weitere Nebenkomponenten wie Anisol, Mesityloxid, Mesitylen und Diacetonalkohol bilden.
Die Reaktion wird aus wirtschaftlichen und technischen Gründen meist so gefahren, dass kein hundertprozentiger Umsatz des Acetons erreicht wird und im Reaktorablauf noch 0,1 bis 0,6 Gew.-% Aceton enthalten sind.
Die genannten Nebenprodukte wie Wasser, aber auch die nicht umgesetzten Einsatzstoffe wie Phenol und Aceton beeinträchtigen die Eignung von BPA zur Herstellung von Polymeren und müssen durch geeignete Verfahren abgetrennt werden. Insbesondere zur Herstellung von Poly- carbonat werden hohe Reinheitsanforderungen an den Rohstoff BPA gestellt.
Eine Aufarbeitungs- und Reinigungsmethode von BPA erfolgt durch Abtrennung von BPA aus der Reaktionsmischung in Form eines etwa äquimolaren kristallinen Addukts mit Phenol durch Abkühlen der Reaktionsmischung unter Auskristallisieren des BPA-Phenol-Addukts in einer Suspensionskristallisation. Die BPA-Phenol-Adduktkristalle werden anschließend durch eine geeignete Apparatur zur Fest-Flüssigtrennung wie Drehfilter oder Zentrifugen von der Flüssigphase abgetrennt und der weiteren Reinigung zugeführt.
So erhaltene Adduktkristalle weisen typischerweise ein Reinheit von > 99 Gew.-% BPA bezogen auf die Summe aus BPA und den Nebenkomponenten bei einem Phenolanteil von ca. 40 Gew.-% auf. Durch Waschen mit geeigneten Lösungen, die typischerweise eine oder mehrere Kompo- nenten aus der Gruppe Aceton, Wasser, Phenol, BPA und Nebenkomponenten enthalten, können die Adduktkristalle von oberflächlich anhaftenden Verunreinigungen befreit werden.
Der bei der Fest-Flüssigtrennung anfallende Flüssigstrom (Mutterlauge) enthält Phenol, BPA, bei der Reaktion entstandenes Wasser, nicht umgesetztes Aceton und ist angereichert an den bei der BPA-Herstellung typischerweise anfallenden Nebenkomponenten. Dieser Mutterlaugenstrom wird üblicherweise in die Reaktionseinheit zurückgeführt. Um die katalytische Aktivität der sauren Ionentauscher aufrecht zu erhalten, wird zuvor entstandenes Wasser durch Destillation entfernt, wobei auch gegebenenfalls noch vorhandenes Aceton aus der Mutterlauge entfernt wird. Der so erhaltene entwässerte Reaktionsstrom wird um Phenol, Aceton und gegebenenfalls Cokatalysator ergänzt und in die Reaktionseinheit zurückgeführt. Die Ergänzung des Phenols kann aber auch ganz oder teilweise vor der Entwässerung erfolgen. Alternativ können auch vor Durchführung der Suspensionskristallisation des BPA-Phenol-Addukts Wasser und Aceton destillativ entfernt werden. Bei den genannten Destillationsschritten kann gleichzeitig auch eine Teilmenge des in der Reaktionslösung vorhandenen Phenols destillativ abgetrennt werden. Bei einer derartigen Kreislauffahrweise tritt als Problem auf, dass Nebenprodukte der BPA- Herstellung im Kreislaufstrom angereichert werden und zur Desaktivierung des Katalysatorsystems sowie zu schlechteren Produktqualitäten führen. Um eine übermäßige Anreicherung von Nebenkomponenten im Kreislaufstrom zu vermeiden, wird eine Teilmenge des Kreislaufstroms - gegebenenfalls nach teilweiser oder vollständiger destillativer Rückgewinnung von Phenol - aus der Prozesskette als sogenanntes BPA-Harz ausgeschleust.
Außerdem kann ein Teil oder die Gesamtmenge des Kreislaufstroms nach der Fest-Flüssigtrennung und vor oder nach der Abtrennung von Wasser und Restaceton über eine mit saurem Ionentauscher befüllte Umlagerungseinheit geführt werden. Diese Einheit wird im allgemeinen bei höheren Temperaturen betrieben als die Reaktionseinheit. In dieser Umlagerungseinheit werden unter den vorherrschenden Bedingungen einige der im Kreislaufstrom vorhandenen Nebenkomponenten der BPA-Herstellung zu BPA isomerisiert, so dass die Gesamtausbeute an BPA erhöht werden kann.
Zur weiteren Rückgewinnung von Nebenkomponenten kann das Harz noch einer thermischen, sauer oder basisch katalysierten Spaltung unterworfen werden. Das dabei freigesetzte Phenol und gegebenenfalls auch Isopropenylphenol kann destillativ abgetrennt und in die Reaktion zurückgefahren werden.
Die im Anschluss an die oben beschriebene Suspensionskristallisation der Reaktionslösung und Fest-Flüssigtrennung erhaltenen BPA-Phenol-Adduktkristalle werden weitergehenden Reinigungsschritten zugeführt, wobei die Abtrennung von Phenol und gegebenenfalls die Verringerung der Konzentration an Nebenkomponenten erzielt wird.
So können die BPA-Phenol-Adduktkristalle zur weiteren Aufreinigung aus Phenol, organische Lösungsmitteln, Wasser oder Mischungen der genannten Lösungsmittel, die gegebenenfalls auch BPA und seine Isomere enthalten können, gemäß einer Suspensionskristallisation umkristallisiert werden. Hierbei kann durch die Wahl geeigneter Lösungsmittel auch das in den Adduktkristallen vorhandene Phenol ganz oder teilweise abgetrennt werden. Das gegebenenfalls nach der Umkristallisation im BPA verbleibende Phenol wird anschließend durch geeignete destillative, desorptive oder extraktive Methoden gänzlich abgetrennt.
Alternativ kann das Phenol auch durch Ausschmelzverfahren aus den BPA-Phenol-Addukt- kristallen entfernt werden.
Nach der Phenolabtrennung erhält man eine Bisphenol A-Schmelze, welche ohne vorherige Verfestigung für die Herstellung von Polycarbonat nach dem Umesterungsverfahren (Schmelze- polycarbonat) verwendet werden kann. Die Bisphenol A-Schmelze kann aber auch durch bekannte Verfahren, wie z.B. nach dem Prüfverfahren oder durch Abschuppung, für den Verkauf oder die Weiterverwertung verfestigt werden. Ferner kann die Schmelze in Natronlauge gelöst werden und für die Herstellung von Polycarbonat nach dem Phasengrenzflächeverfahren eingesetzt werden. Gegebenenfalls kann das von Phenol befreite Bisphenol A vor der weiteren Verarbeitung noch einem Aufreinigungsschritt wie beispielsweise einer Schmelzekristallisation, einer Destillation und/oder einer Umkristallisation aus Phenol, Wasser oder einem organischen Lösungsmittel wie beispielsweise Toluol oder Mischungen dieser Stoffe unterzogen werden.
Im Rahmen des beschriebenen Verfahrens spielt der Gehalt an Nebenkomponenten, den sogenannten Isomeren, eine entscheidende Rolle für die Qualität des Bisphenols. Diese soge- nannten Isomeren (Indane, Chromane, Trisphenole, o,p-BPA etc.) beeinflussen die Kristallisation des Bisphenol A aus der Reaktionslösung. Dabei steigt ihr Einfluss mit steigendem Gehalt in der Reaktionslösung. Um trotzdem eine ausreichende Qualität bei der Kristallisation zu erreichen, müssen - wie schon weiter oben beschrieben - Teile des Kreislaufstroms, das sogenannten BPA- Harz, aus dem Kreislauf ausgeschleust werden. Es ist aus wirtschaftlichem Interesse notwendig, die ausgeschleuste Menge so gering wie möglich zu halten, da hier Phenol und Aceton als Bisphenol A und Isomere verloren gehen. Die dem Fachmann bekannten Verfahren wie Umlage- rung und Harzspaltung ermöglichen zwar die Rückgewinnung eines Teils der Rohstoffe, dies ist aber mit Energieaufwand und zusätzlichen Investitionskosten verbunden.
Die Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung von Bisphenol A zur Verfügung zu stellen, bei dem die Isomerenbildung während der Reaktion verringert ist, und eine hohe Reinheit an Bisphenol A nach der Kristallisation und Filtration im Endprodukt erreicht wird und somit die ausgeschleuste Menge aus dem Kreislaufstrom, dem sogenannten BPA-Harz, gering gehalten werden kann.
Es wurde nun gefunden, dass diese Aufgabe durch eine spezielle Reaktionsführung gelöst werden kann.
Die Erfindung betrifft ein Verfahren zur Herstellung von Bisphenol A, bei dem
a) Phenol und Aceton miteinander vermischt werden, und
b) das Gemisch enthaltend Phenol und Aceton auf eine Temperatur im Bereich von 48 bis 54°C temperiert wird und anschließend
c) das Gemisch enthaltend Phenol und Aceton bei dieser Temperatur mit einem sauren Ionenaustauscher als Katalysator in Kontakt gebracht wird, und d) das Gemisch enthaltend Phenol und Aceton zu Bisphenol A umgesetzt wird.
Wesentliches Merkmal des erfmdungsgemäßen Verfahrens ist, dass das Gemisch enthaltend Phenol und Aceton in Schritt b) vor der Reaktion auf eine Temperatur von 48 bis 54°C, bevorzugt 50-53°C, besonders bevorzugt 51,5 bis 52,5°C temperiert wird.
Bevorzugt wird der saure Ionenaustauscher in Schritt c) in Kombination mit einem Cokatalysator eingesetzt. Hierbei handelt es sich üblicherweise um Thiole, die mindestens eine SH-Funktion tragen. Der Cokatalysator kann sowohl homogen in der Reaktionslösung gelöst als auch, bei den sauren Ionentauschern, auf dem Katalysator selber fixiert sein. Homogene Cokatalysatoren sind beispielsweise Mercaptopropionsäure, Schwefelwasserstoff, Alkylsulfide wie beispielsweise Ethylsulfid und ähnliche Verbindungen. Fixierte Cokatalysatoren sind Aminoalkylthiole und Pyridylalkylthiole, die ionisch an den Katalysator gebunden sind, wobei die SH-Funktion geschützt sein kann und erst während oder nach Fixierung auf den Katalysator freigesetzt wird. Ebenso kann der Cokatalysator kovalent als Alkyl- oder Arylthiol an den Katalysator gebunden sein.
Pn dem Gemisch enthaltend Phenol und Aceton können zusätzlich noch weitere Stoffe enthalten sein. Beispielsweise können darin neben p,p-Bisphenol A selbst zusätzlich die sogenannten Isomere enthalten sein, die in dem rückgeführten Teilstrom der Mutterlauge, die aus der Kristallisation und Filtration des BPA-Phenol-Addukts stammt, enthalten sind. Dies sind die dem Fachmann bekannten Verbindungen wie beispielsweise o,p-Bisphenol A, o,o-Bisphenol A, Tris- phenole, (Hydroxyphenyl-)Chromane, (Hydroxyphenyl-)Indane, (substituierte) Indane, (substituierte) Indenole, (substituierte) Spirobisindane, Isopropenlyphenol und seine Di- und Oligomere, (substituierte) Xanthene, sowie andere höher kondensierte Verbindungen mit drei oder mehr Phenylringen im Molekülgerüst. Außerdem können im rückgeführten Teilstrom auch noch weitere substituierte Phenole, Anisole, Methanol, Mesityloxid, Mesitylen, Diacetonalalkohol und Wasser, Abbauprodukte des Katalysators und des Cokatalysators sowie Verunreinigugen aus den Rohstoffen enthalten sein.
Durch das Abkühlen des Gemisches enthaltend Phenol und Aceton von den sonst üblichen 55 bis 60°C auf 48 bis 54°C wird letztlich die Starttemperatur der Reaktion auf eine Temperatur im Bereich von 48 bis 54°C abgesenkt. Dadurch wird die Isomerenbildung während der Reaktion am sauren Ionenaustauscher selektiver hinsichtlich p,p-Bisphenol A, dem gewünschten Hauptprodukt. Gleichzeitig verringert sich die auszuschleusende Menge aus dem zurückgeführten Teilstrom der Muttlerlauge, die aus der Kristallisation und Filtration der BPA-Phenol-Adduktkristalle stammt, also letztendlich die auszuschleusende Menge an BPA-Harz, um den Gehalt an Nebenprodukten, den sogenannten Isomeren, im Reaktor konstant auf einem für die Durchführung der Kristallisation und die Reinheit des Endproduktes akzeptablen Niveau zu halten. Aufgrund der geringeren Ausschleusung fällt weniger Bisphenol Harz als Reststoff an. Somit ist die Menge an BPA-Harz ein direktes Anzeichen für die Isomerenbildung in der Reaktion. Durch die Reduzierung der Reaktoreingangstemperatur kann der Harzanfall um bis zu 50 % reduziert werden, was eine große wirtschaftliche Ersparnis bei gleichbleibender Produktqualität darstellt.
Die Reaktion wird bevorzugt so gefahren, dass eine Reaktortemperatur von 77°C nicht überschritten wird. Bevorzugt ist dabei eine adiabatische Reaktionsführung. Dies führt in der Praxis in der Regel dazu, dass die höchste Temperatur am Ausgang des Reaktors auftritt. Die Reaktorausgangstemperatur ist dann also die höchste auftretende Temperatur im Reaktor. Adiabatisch Reaktionsfuhrung umfasst hierbei auch eine Reaktionsführung, bei der der Reaktormantel von außen leicht beheizt wird, um eine Kristallisation in Wandbereichen zu vermeiden.
Durch die niedrige Temperatur zu Beginn der Reaktion, bei der noch eine hohe Konzentration an Aceton vorliegt, wird insbesondere die Acetoneigenkondensation sowie die Bildung von Chromanen, Indanen und weiteren dem Fachmann bekannten Nebenprodukten der Bisphenol A- Herstellung reduziert.
Um ein Bisphenol ausreichender Qualität zu erhalten und um die Kristallisation und Filtration der Bisphenol A-Phenol-Adduktkristalle problemlos durchführen zu können, sollte der Gehalt an den sogenannten Isomeren von 100 g/1 im Reaktionsgemisch nach der Reaktion möglichst nicht über- schritten werden. Bevorzugt wird ein Gehalt an den sogenannten Isomeren von 60 bis 100 g/1 in dem Reaktionsgemisch am Reaktoraustritt eingestellt. Durch das erfindungsgemäße Verfahren kann die Ausschleusung des Teilstroms aus der zurückgeführten Mutterlauge, die aus der Kristallisation und Filtration der BPA-Phenol-Adduktkristalle stammt, mengenmäßig reduziert werden, ohne die Grenze von 100 g/1 an den sogenannten Isomeren im Produktgemisch am Reaktoraustritt zu überschreiten. Bevorzugt ist daher ein Verfahren, bei dem in Schritt d) ein Produktgemisch erhalten wird, aus dem anschließend ein Bisphenol A-Phenol-Addukt auskristallisiert und abfiltriert wird und daraus Bisphenol A hergestellt wird, und bei dem die bei der Kristallisation und Filtration entstehende Mutterlauge teilweise in die Vermischung von Phenol und Aceton in Schritt a) zurückgeführt wird, wobei aus der zurückgeführten Mutterlauge ein Teil- ström ausgeschleust wird und wobei dieser Teilstrom mengenmäßig unter Nichtberücksichtigung von vorhandenem Phenol weniger als 6 Gew.-% bezogen auf die Menge an hergestelltem Bisphenol A ausmacht. Der ausgeschleuste Teilstrom der Mutterlauge beträgt also mengenmäßig, wenn man alle in dem Teilstrom enthaltenden Komponenten außer Phenol berücksichtigt, weniger als 6 Gew.-% bezogen auf die Menge an hergestelltem Bisphenol A. Der Gehalt an Phenol in dem auszuschleusenden Teilstrom aus der Mutterlauge ist dabei mit gängigen Analysenmethoden für den Fachmann leicht zu bestimmen.
Auch bei dem erfindungsgemäßen Verfahren kann die letztendlich anfallende Menge an BPA-Harz durch dem Fachmann bekannte Maßnahmen wie beispielsweise Umlagerung und Harzspaltung weiter reduziert werden.
Insbesondere die Bildung von h danen, Indenolen und Spirobisindanen wird durch hohe Temperaturen begünstigt. Formel (I) und (H) zeigen beispielhaft Indane, Formel (IS) beispielhaft ein Indenol und Formel (IV) beispielhaft ein Spirobisindan.
Figure imgf000008_0001
(l) (II)
Figure imgf000008_0002
Es ist bekannt, dass Isomere wie o,p-BPA während der Reaktion noch umgelagert werden können, Indane, Spirobisindane und lhdenole dagegen nicht. Ihre Bildung in der Reaktion muss daher ganz besonders und soweit wie möglich vermieden werden und ihre Konzentration im Reaktionsgemisch niedrig gehalten werden.
Es hat sich gezeigt, dass der Gehalt an solchen Indanen, Spirobisindanen und Indenolen in dem Produktgemisch am Reaktoraustritt durch das erfindungsgemäße Verfahren auf unter 15 g/1 gesenkt werden kann.
Durch das erfindungsgemäße Verfahren kann nach Kristallisation und Filtration des BPA-Phenol- Addukts, anschließende Wäsche mit Phenol sowie destillativer und/oder desorptiver Abtrennung des Phenols ein BPA in einer Reinheit von größer 99,5 Gew.-% an p,p-Bisphenol A hergestellt werden, ohne dass eine zusätzliche Aufreinigung durch Urnkristallisation notwendig ist. Das nach dem erfϊndungsgemäßen Verfahren hergestellte Bisphenol A kann mit Phosgen nach dem Phasengrenzflächenverfahren oder mit Diarylcarbonaten, bevorzugt Diphenylcarbonat, nach dem Schmelzeverfahren zu Polycarbonat umgesetzt werden.
Beispiel 1 (erfindungsgemäß)
Ein mit 100m3 phenolfeuchtem saurem Ionenaustauscher Lewatit SC104 beladener Reaktor wird von oben nach unten mit einer Reaktionslösung bestehend aus 4 Gew.-% Aceton, 6 Gew.-% Isomere, 7 Gew.-% Bisphenol A, 0,05 Gew.-% Wasser, 300 ppm Mercaptopropionsäure und im übrigen Phenol (ca. 83 Gew.-%) mit einem Durchsatz von 30t/h durchfahren. Dies entspricht einer Bisphenol A Produktion von 4,2 t/h. Die Reaktoreingangstemperatur wird auf 52°C eingeregelt. Die Reaktorausgangstemperatur liegt bei 75°C. Bei dieser Einstellung beträgt der ausgeschleuste Teilstrom der Mutterlauge mengenmäßig, wenn man alle in dem Teilstrom enthaltenden Komponenten außer Phenol berücksichtigt, 5,1 Gew.-% bezogen auf die Menge an hergestelltem Bisphenol A. Der Gehalt an Indanen, Spirobisindanen und Indenolen liegt bei dieser Fahrweise in Summe bei 12 g/1 im Reaktorablauf.
Beispiel 2 (Nergleichsbeispiel)
Versuchsdurchführung wie in Beispiel 1, aber die Reaktoreingangtemperatur liegt jetzt bei 56°C und die Reaktorausgangstemperatur bei 79°C. Bei dieser Einstellung beträgt der ausgeschleuste Teilstrom der Mutterlauge mengenmäßig, wenn man alle in dem Teilstrom enthaltenden Komponenten außer Phenol berücksichtigt, 8 Gew.-% bezogen auf die Menge an hergestelltem Bisphenol A. Der Gehalt an Indanen, Spirobisindanen und Indenolen liegt bei dieser Fahrweise in Summe bei 19 g/1 im Reaktorablauf.

Claims

Patentansprflche
1. Verfahren zur Herstellung von Bisphenol A, bei dem a) Phenol und Aceton miteinander vermischt werden, und b) das Gemisch enthaltend Phenol und Aceton auf eine Temperatur im Bereich von 48 bis 54°C temperiert wird, und anschließend c) das Gemisch enthaltend Phenol und Aceton bei dieser Temperatur mit einem sauren Ionenaustauscher als Katalysator in Kontakt gebracht wird, und d) das Gemisch enthaltend Phenol und Aceton zu Bisphenol A umgesetzt wird.
2. Verfahren nach Anspruch 1, bei dem der saure Ionenaustauscher in Schritt c) in Kombination mit einem Cokatalysator eingesetzt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem die Temperatur der Reaktion in Schritt d) 77°C nicht übersteigt.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Reaktion in Schritt d) adiabatisch durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem in Schritt d) ein Produktgemisch erhalten wird, aus dem anschließend ein Bisphenol A-Phenol-Addukt auskristallisiert und abfiltriert wird und daraus Bisphenol A hergestellt wird, und bei dem die bei der Kristallisation und Filtration entstehende Mutterlauge teilweise in die Vermischung von Phenol und Aceton in Schritt a) zurückgeführt wird, wobei aus der zurückgeführten Mutterlauge ein Teilstrom ausgeschleust wird und wobei dieser Teilstrom mengenmäßig unter Nichtberücksichtigung von vorhandenem Phenol weniger als 6 Gew.-% bezogen auf die Menge an hergestelltem Bisphenol A ausmacht.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem der Gehalt an Indanen, Spirobisindanen und Indenolen in dem in Schritt d) erhaltenen Produktgemisch kleiner als 15 g/1 bezogen auf das Produktgemisch ist.
7. Verfahren zur Herstellung von Polycarbonat, bei dem Bisphenol A nach einem der Ansprüche 1 bis 6 hergestellt wird und danach mit Phosgen nach dem Phasengrenzflächenverfahren oder mit Diphenylcarbonat nach dem Schmelzeverfahren zu Polycarbonat umgesetzt wird.
PCT/EP2005/000615 2004-02-05 2005-01-22 Herstellung von bisphenol a mit verringerter isomerenbildung WO2005075396A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006551754A JP4874125B2 (ja) 2004-02-05 2005-01-22 異性体形成の低減されたビスフェノールaの製造
EP05706966A EP1713752A1 (de) 2004-02-05 2005-01-22 Herstellung von bisphenol a mit verringerter isomerenbildung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005724.9 2004-02-05
DE102004005724A DE102004005724A1 (de) 2004-02-05 2004-02-05 Herstellung von Bisphenol A mit verringerter Isomerenbildung

Publications (1)

Publication Number Publication Date
WO2005075396A1 true WO2005075396A1 (de) 2005-08-18

Family

ID=34801628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000615 WO2005075396A1 (de) 2004-02-05 2005-01-22 Herstellung von bisphenol a mit verringerter isomerenbildung

Country Status (10)

Country Link
US (1) US20050176918A1 (de)
EP (1) EP1713752A1 (de)
JP (1) JP4874125B2 (de)
KR (1) KR20060130169A (de)
CN (1) CN100516011C (de)
DE (1) DE102004005724A1 (de)
RU (1) RU2402521C2 (de)
SG (1) SG152282A1 (de)
TW (1) TW200536876A (de)
WO (1) WO2005075396A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214248A (ja) * 2007-03-02 2008-09-18 Api Corporation ビスフェノール化合物の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101796097A (zh) * 2007-07-18 2010-08-04 国际壳牌研究有限公司 贮存和/或运输双酚a的方法和制备芳族聚碳酸酯的方法
JP5247184B2 (ja) * 2008-02-21 2013-07-24 三井化学株式会社 ビスフェノールaの製造方法
EP2692766B8 (de) * 2012-07-30 2016-03-16 SABIC Global Technologies B.V. Kontinuierliches verfahren zur herstellung von schmelzpolycarbonat
KR101812837B1 (ko) * 2013-07-11 2017-12-27 주식회사 엘지화학 비스페놀a 제조 장치 및 제조 방법
JP6201481B2 (ja) * 2013-07-24 2017-09-27 三菱ケミカル株式会社 ポリカーボネート樹脂の製造方法及びポリカーボネート樹脂
CN106029734A (zh) 2014-02-28 2016-10-12 出光兴产株式会社 聚碳酸酯树脂及聚碳酸酯树脂组合物
WO2018011700A1 (en) * 2016-07-12 2018-01-18 Sabic Global Technologies B.V. Manufacture of bisphenol a
EP3487833B1 (de) * 2016-07-22 2020-08-26 SABIC Global Technologies B.V. Herstellung von bisphenol a
EP3647001A1 (de) 2018-11-05 2020-05-06 Koninklijke Philips N.V. Rasierapparat mit verbesserter kappenfunktionalität
CN109880074B (zh) * 2019-02-25 2020-08-11 浙江欧威家具股份有限公司 聚碳酸酯的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049569A (en) * 1958-10-20 1962-08-14 Union Carbide Corp Production of 2, 2-bis(4-hydroxyphenyl) propane
GB1183564A (en) * 1968-05-29 1970-03-11 Dow Chemical Co An Ion Catalyst for the Manufacture of Bisphenols
US5395857A (en) * 1993-04-13 1995-03-07 Bayer Aktiengesellschaft Optimized ion exchanger beds for the synthesis of bisphenol A
DE19957602A1 (de) * 1999-11-30 2001-05-31 Bayer Ag Verfahren zur Inbetriebnahme eines Herstellungsverfahrens von 2,2-bis (4-hydroxyphenyl) propan
US6486222B2 (en) * 1999-02-26 2002-11-26 General Electric Company Combination ion exchange resin bed for the synthesis of bisphenol A
WO2004054949A1 (en) * 2002-12-12 2004-07-01 General Electric Company Process for the synthesis of bisphenol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19701278A1 (de) * 1997-01-16 1998-07-23 Bayer Ag Verfahren zur Herstellung von Bis-(4-hydroxyaryl)-alkanen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049569A (en) * 1958-10-20 1962-08-14 Union Carbide Corp Production of 2, 2-bis(4-hydroxyphenyl) propane
GB1183564A (en) * 1968-05-29 1970-03-11 Dow Chemical Co An Ion Catalyst for the Manufacture of Bisphenols
US5395857A (en) * 1993-04-13 1995-03-07 Bayer Aktiengesellschaft Optimized ion exchanger beds for the synthesis of bisphenol A
US6486222B2 (en) * 1999-02-26 2002-11-26 General Electric Company Combination ion exchange resin bed for the synthesis of bisphenol A
DE19957602A1 (de) * 1999-11-30 2001-05-31 Bayer Ag Verfahren zur Inbetriebnahme eines Herstellungsverfahrens von 2,2-bis (4-hydroxyphenyl) propan
WO2004054949A1 (en) * 2002-12-12 2004-07-01 General Electric Company Process for the synthesis of bisphenol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214248A (ja) * 2007-03-02 2008-09-18 Api Corporation ビスフェノール化合物の製造方法

Also Published As

Publication number Publication date
CN100516011C (zh) 2009-07-22
US20050176918A1 (en) 2005-08-11
TW200536876A (en) 2005-11-16
JP4874125B2 (ja) 2012-02-15
KR20060130169A (ko) 2006-12-18
SG152282A1 (en) 2009-05-29
DE102004005724A1 (de) 2005-08-25
CN1918097A (zh) 2007-02-21
EP1713752A1 (de) 2006-10-25
RU2006131515A (ru) 2008-03-10
RU2402521C2 (ru) 2010-10-27
JP2007520502A (ja) 2007-07-26

Similar Documents

Publication Publication Date Title
WO2005075397A1 (de) Entwässerung von kreislaufströmen bei der herstellung von bisphenol a
EP1713752A1 (de) Herstellung von bisphenol a mit verringerter isomerenbildung
EP1728777B1 (de) Verfahren zur Herstellung von 2,2-bis(4-hydroxyphenyl)Propan (Bisphenol A)
EP1713751A1 (de) Herstellung von bisphenol a mit verringertem schwefelgehalt
US5198591A (en) Method to manufacture bisphenol a
EP1944284B1 (de) Kristallisationsverfahren zur Herstellung von Bisphenol A
EP1268379B1 (de) Verfahren zur herstellung von bisphenolen
KR20010012573A (ko) 디히드록시디아릴알칸의 연속적인 제조 방법
EP0981508B1 (de) Verfahren zur aufarbeitung von mutterlaugen aus der bisphenolherstellung
EP1765752B1 (de) Verfahren zur abtrennung von phenol aus phenolhaltigen strömen aus der herstellung von bisphenol a
US5512700A (en) Process for purifying a bisphenol
EP1272449B1 (de) Stoffgemisch enthaltend bisphenol a
EP1567469B1 (de) Verfahren zur reinigung von bisphenol-a
WO2001040155A1 (de) Inbetriebnahmeverfahren eines herstellungsverfahrens von 2,2-bis (4-hydroxyphenyl)propan
DE69416147T3 (de) Verfahren zur Herstellung eines Addukts aus einem Bisphenol mit einer Phenol-Verbindung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005706966

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3830/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580003589.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067015809

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006551754

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006131515

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005706966

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067015809

Country of ref document: KR