WO2005075079A1 - Mikrofluidische chips mit immanenten hydrophilen oberflächen - Google Patents

Mikrofluidische chips mit immanenten hydrophilen oberflächen Download PDF

Info

Publication number
WO2005075079A1
WO2005075079A1 PCT/DE2005/000187 DE2005000187W WO2005075079A1 WO 2005075079 A1 WO2005075079 A1 WO 2005075079A1 DE 2005000187 W DE2005000187 W DE 2005000187W WO 2005075079 A1 WO2005075079 A1 WO 2005075079A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic
polymer
chip
microfluidic chips
polyvinyl
Prior art date
Application number
PCT/DE2005/000187
Other languages
English (en)
French (fr)
Inventor
Detlev Belder
Martin Ludwig
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Publication of WO2005075079A1 publication Critical patent/WO2005075079A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44752Controlling the zeta potential, e.g. by wall coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0092Other properties hydrophilic

Definitions

  • the present invention relates to a method for producing microfluidic chips from polymeric materials with intrinsic hydrophilic channel surfaces.
  • Microfluidic chips with hydrophilic channel surfaces are required in microfluidics and in particular in microchip electrophoresis in order to enable efficient analysis of adsorptive compounds such as proteins without disruptive analyte / wall interactions.
  • microfluidic structures are created in structurable polymers, which can be converted into highly hydrophilic materials after surface treatment.
  • the miniaturization of chemical analysis systems has been known for a long time.
  • the aim is to develop an integrated miniaturized analysis system in which different work processes such as sample preparation, chemical reaction / derivatization, separation and detection are integrated on a microchip.
  • the keyword “lab-on-a-chip” is often used in this context.
  • the miniaturization of electrophoresis on a microchip has proven particularly promising. Microfluidic chips are regarded as particularly promising systems for the electrophoretic separation of complex protein mixtures for proteome research, but so far this has been made more difficult by the adsorptive properties of the chip materials.
  • the initially preferred material for the production of microfluidic systems was silicon because of the wide range of uses of established structuring methods from microelectronics.
  • silicon is less suitable for microchip electrophoresis (MCE) because of its poor optical transparency and semiconductor properties.
  • MCE microchip electrophoresis
  • Some established manufacturing techniques for silicon can also be transferred to glass or quartz, which is currently the preferred material for the MCE. This is due to the favorable physico-chemical properties, such as optical transparency, mechanical stability, chemical resistance, electrical dielectric strength and high optical transparency, of glass and in particular high-purity synthetic quartz (fused silica).
  • a disadvantage of the glass chips is their relatively complex manufacturing process under clean room conditions, in which a structure is first transferred photolithographically, which is then developed by wet-chemical etching with hydrofluoric acid.
  • a property of glass and quartz that is particularly disruptive for protein analysis is the adsorptivity of the surfaces.
  • methods for surface coating have been developed in classic capillary electrophoresis (CE).
  • Hydrophilic polymers and in particular polyvinyl alcohol have proven to be particularly suitable coating materials.
  • Surface coatings for microfluidic chips are also known to improve their surface properties.
  • plastics are increasingly being investigated and used. Compared to glass chips, plastic chips can be applied using different replication techniques, e.g. Hot stamping, micro-injection molding or soft lithography are significantly cheaper, even in large numbers.
  • polymer chips made of materials such as polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polycarbonate or Zeonex are often subjected to extensive post-treatment / coating.
  • PDMS polydimethylsiloxane
  • PMMA polymethyl methacrylate
  • Zeonex Zeonex
  • hydrophilic polymers should be particularly suitable materials for the production of microfluidic systems. So far, however, relatively hydrophobic materials have been used almost exclusively.
  • the present invention was therefore based on the object to provide a method with which it is possible to provide support materials with a surface structure that shows a low adsorption to proteins and z. B. can be used in microchip electrophoresis.
  • the present invention accordingly relates to a method for producing microfluidic chips from polymer material as a carrier, in which a polymer material is processed into a chip or a carrier material is coated with it, characterized in that the polymer material is selected from a hydrophilic polymer or a derivative thereof or a contains hydrophilic polymer or a derivative.
  • polymeric microfluidic chips with hydrophilic surfaces can be obtained, which have a better resolution z. B. enable in electrophoresis.
  • the microfluidic chips can be made directly from the polymer material.
  • coatings are also possible, and the hydrophilic surface can be obtained in a simple manner.
  • microfluidic chips can be produced in various ways. If the polymer materials themselves are used as carriers, they can be obtained from their solutions by pouring the solution of the polymer in the form and then removing the solvent. It is also possible to cast the mold from the polymer melt or to melt a polymer granulate in a suitable mold. Microstructuring can be carried out directly during manufacture, e.g. B. during the injection molding process, or by hot stamping or soft lithography.
  • hydrophilic polymer In cases where substrates with higher strength are required, such as. B. glass, it is also possible to coat them with the hydrophilic polymer or a derivative thereof.
  • derivatives of a hydrophilic polymer are used as polymer materials. These are converted into a hydrophilic polymer by a subsequent reaction on the surface.
  • Suitable hydrophilic polymers in the context of the present invention are those which have water-insoluble derivatives and which are as simple as possible from these derivatives to their hydrophilic, i.e. water-soluble form, can be transferred.
  • a particularly suitable hydrophilic polymer is polyvinyl alcohol, the derivatives of which, such as polyvinyl esters, polyvinyl acetals, such as polyvinyl butyral, and polyvinyl acetates, are used with particular preference.
  • Polyvinyl alcohol which is an excellent material for coating quartz capillaries for protein analysis in classic capillary electrophoresis, appears to be particularly suitable. However, because of its water solubility, polyvinyl alcohol itself is unsuitable as a starting material.
  • the derivative of the hydrophilic polymer on the surface of the chip is converted into a hydrophilic polymer by reaction, preferably by hydrolysis.
  • a microstructured chip with a hydrophilic surface is obtained.
  • the degree of conversion and thus the hydrophilicity on the surface can be adjusted, for example, by the amount and exposure time of the hydrolysis reagent.
  • the surface of the derivative can, for example, be rinsed or sprayed with a suitable reagent solution.
  • An aqueous solution of an alkali metal hydroxide, NaOH, OH or LiOH, or alkali metal alcoholate, such as Na, K or Li methanolate, ethanolate, propanolate or butanolate, has proven to be suitable as the reagent solution for the hydrolysis.
  • polyvinyl esters and in particular polyvinyl acetate (PVAc) are selected as the material for microstructuring, which can be converted into hydrophilic polyvinyl alcohol (PVAI) by simple hydrolysis according to reaction equation 1.
  • PVAI polyvinyl alcohol
  • Polyvinyl acetate is an important raw material for the paint and adhesive industries. However, little is known about the use of polyvinyl acetate as a material and in particular for microstructuring.
  • the Saechtling Kunststoff paperback reads "PVAc stricture”, “Saechtling Kunststoff Taschenbuch”, 28th edition, Carl Hanser Verlag, Kunststoff, Vienna, 2001, p.460].
  • the microstructuring of the derivative for example of polyvinyl acetate, is carried out from the solution.
  • covers are produced to solve this problem by not starting from a solution, but instead pressing the PVAC material on a hot press. These lids have sufficient strength to make the access holes by drilling. It is easy to do using this procedure to produce microfluidic chips from polyvinyl acetate. These chips consist of a flexible microstructured PVAC layer with a rigid lid pressed from PVAC. A photo of such a 2-component PVAc chip is shown in Fig. 2. A microscopic picture of the crossing area with the 50 ⁇ m wide channels is shown in Fig. 3
  • the present invention further provides microfluidic chips with a hydrophilic surface, in particular those which can be obtained by the process according to the invention.
  • a further subject is systems with microfluidic structures in which the chips described above are used.
  • chips according to the invention are suitable for. B. in electromigrative separation processes and other techniques using microfluidic systems and for dosing liquid samples e.g. for chemical analysis or for microsynthetic processes in chemistry.
  • FIG. 4 Three individual images of a successful injection are shown in FIG. 4.
  • the starting material is structured by hot stamping instead of from solution.
  • a polymer granulate e.g. Polyvinyl acetate granules, embossed in a hot press with an Si mold insert.
  • the resulting structured chip could be removed from the mold insert after cooling.
  • An excellently structured material with surprisingly good optical and mechanical properties is obtained.
  • the photo of a microstructured PVAC wafer is shown in Fig. 5. The material shows a high transmission from 400 nm with very low intrinsic fluorescence.
  • the surfaces of the PVAC chips are hydrophilized by two different processes. 1.
  • the channels of capped PVAc chips which were produced by one of the methods mentioned above, are rinsed with a reagent solution which converts the polyvinyl acetate surface into polyvinyl alcohol, this is shown schematically in FIG. 6.
  • the aqueous or alcoholic solution of a strong base such as NAOH or sodium methoxide is used for this.
  • the channels are cleaned and the base removed. This is preferably done by rinsing with water or alcohol.
  • the microfluidic chips then have hydrophilic surfaces consisting of PVAI and are ready for use.
  • the surfaces of the polyvinyl acetate chips are hydrophilized before the structure is capped and sealed. This is accomplished by exposing the structured chips and the lids to a solution that converts PVAc to PVAI, preferably using a strong base solution. This can be done, for example, by an immersion bath or by spraying. This hydrophilization step makes it easier to connect the structure to the lid because of the good adhesion of the hydrophilized surfaces to one another.
  • Example 1 Production of a microstructured PVAc chip
  • PVAc powder was pressed on a hot press. A temperature of 80 ° C and a force of 10 kN were used for this.
  • the lid was connected to the structured substrate in order to produce a functional closed microfluidic chip.
  • the photo of a microfluidic PVAc chip produced in this way is shown in Fig. 2.
  • the microscopic magnification of the crossing area of the 50 ⁇ m wide channels is shown in Fig. 3.
  • Example 2 Injection of a fluorescent dye using a microstructured PVAc chip.
  • a PVAc chip produced according to Example 1 was used in microchip electrophoresis.
  • the fluidic structure of the chip was filled with an electrolyte consisting of a 40 mM phosphate buffer pH: 6.
  • the holes in the chip serve as samples and buffer vessels as shown in Fig. 6.
  • the sample inlet vessel (SI) was filled with solution (0.1 mg / ml) of the fluorescent dye Alexafluor 647.
  • the following voltages were applied to the vessels to carry out the injection: A: -0.81 / -1, 767-1, 16/0 (BI / BO / SI / SO), B: -2 / 0 / -0.32 / - 0.33.
  • On- Single images of a video microscopic follow-up of the successful injection process are shown in Fig. 4.
  • Example 3 Production of a microstructured PVAc chip by means of hot stamping.
  • a polyvinyl acetate material such as the Vinapas UW10 from Wacker
  • microstructuring can also be achieved by hot stamping alone. This means that the lid and microstructured part can be manufactured very economically in an automated process in a hot press.
  • polyvinyl butyral is also suitable as a starting material.
  • Vinapas UW10 granulate was embossed in a hot press with a 4 "Si mold insert with a cross structure, resulting in a transparent workpiece with embossed channels 50 ⁇ m wide and 30 ⁇ m deep.
  • the Vinapas granulate was pressed analogously on a hot press to produce the lid A temperature of 80 ° C and a force of 10 kN were used for this.
  • the lid was connected to the structured substrate to produce a functional, closed microfluidic chip.
  • the photo of a microfluidic PVAc chip produced in this way is shown in Fig. 7.
  • a PVAc chip produced according to Example 3 was used in microchip electrophoresis.
  • the detection was carried out by means of fluorescence at an excitation wavelength of 450-488 and an emission wavelength> 515.
  • the compounds can be separated in a native polyvinyl acetate chip.
  • the resolution can be significantly increased by hydrophilizing the surfaces.

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung mikrofluidischer Chips aus polymeren Materialien mit hydrophilen Kanaloberflächen aus z.B. Polyvinylalkohol, sowie die so hergestellten Mikrokanalsysteme und deren Anwendung in der Elektrophorese und für andere Techniken unter Verwendung mikrofluidischer Systeme.

Description

Mikrofluidische Chips mit immanenten hydrophilen Oberflächen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung mikrofluidischer Chips aus polymeren Materialien mit immanenten hydrophilen Kanaloberflächen.
Mikrofluidische Chips mit hydrophilen Kanaloberflächen werden in der Mikroflui- dik und insbesondere in der Mikrochip-Elektrophorese benötigt, um effiziente Analysen adsorptiver Verbindungen wie Proteine, ohne störende Analyt/Wand- Wechselwirkungen zu ermöglichen. Hierzu werden mikrofluidische Strukturen in strukturierbare Polymere erzeugt, welche sich nach Oberflächenbehandlung zu stark hydrophilen Materialien umsetzen lassen.
Die Miniaturisierung chemischer Analysensysteme ist seit langem bekannt. Sie hat zum Ziel ein integriertes miniaturisiertes Analysensystem zu entwickeln, bei dem unterschiedliche Arbeitsvorgänge wie Probenvorbereitung, chemische Re- aktion/Derivatisierung, Auftrennung und Detektion auf einem Mikrochip integriert sind. In diesem Zusammenhang wird auch oft das Schlagwort „lab-on-a-chip „benutzt. Als besonders Erfolg versprechend hat sich die Miniaturisierung der Elektrophorese auf einem Mikrochip erwiesen. Mikrofluidische Chips werden als besonders aussichtsreiche Systeme zur elektrophoretischen Auftrennung komplexer Proteingemische für die Proteomforschung angesehen, bisher wird dies jedoch durch die adsorptiver Eigenschaften der Chipmaterialen erschwert.
Das zunächst bevorzugte Material zur Herstellung mikrofluidischer Systeme war Silizium wegen der vielfältigen Anwendbarkeit etablierter Strukturierungsmetho- den aus der Mikroelektronik. Für die Mikrochip-Elektrophorese (MCE) ist Silizium, wegen seiner mangelhaften optischen Transparenz und der Halbleiter- Eigenschaften, jedoch weniger gut geeignet. Einige etablierte Fabrikationstechniken für Silizium lassen sich auch auf Glas oder Quarz übertragen, welches derzeit das bevorzugte Material für die MCE ist. Dies ist in den günstigen physikalisch-chemischen Eigenschaften, wie optische Transparenz, mechanische Stabilität, chemische Resistenz, elektrische Durchschlagfestigkeit und hohe optische Transparenz, von Glas und insbesondere hochreinem synthetischem Quarz (fused silica) begründet. Ein Nachteil der Glaschips ist jedoch ihr relativ aufwendiger Fertigungsprozess unter Reinraumbedingungen, bei dem zunächst photolithographisch eine Struktur übertragen wird, welche dann durch nasschemisches Ätzen mit Flusssäure entwickelt wird.
Eine insbesondere für die Proteinanalytik störende Eigenschaft von Glas und Quarz ist die Adsorptivität der Oberflächen. Zur Unterdrückung störender Ana- lyt/Wandwechselwirkungen sind in der klassischen Kapillarelektrophorese (CE) Methoden zur Oberflächenbeschichtung entwickelt worden. Als besonders geeignete Beschichtungsmaterialien haben sich hier hydrophile Polymere und insbesondere Polyvinylalkohol erwiesen. Es sind auch Oberflächenbeschichtungen für mikrofluidische Chips bekannt, um deren Oberflächeneigenschaften zu verbessern.
Eine Alternative zu Glass als Material zur Herstellung mikrofluidischer Chips werden auch zunehmend Kunststoffe untersucht und eingesetzt. Gegenüber Glaschips können Kunststoffchips durch Anwendung von unterschiedlichen Replikationstechniken, wie z.B. Heißprägen, Mikro-Spritzguß oder Soft- lithographie deutlich günstiger, auch in großer Stückzahl hergestellt werden.
Wie bei Glas werden jedoch auch an vielen Kunststoffoberflächen störende Adsorptions-Effekte beobachtet. Zum Einsatz in der MCE werden daher auch Polymerchips aus Materialien wie Polydimethylsiloxan (PDMS), Polymethylmetacry- lat (PMMA), Polycarbonat oder Zeonex oft einer aufwendigen Nachbehandlung/Beschichtung unterzogen werden.
Da die Adsorption von Proteinen an hydrophilen Polymeroberflächen minimiert ist, sollten hydrophile Polymere besonders geeignete Materialien zur Herstellung mikrofluidischer Systeme sein. Bisher werden jedoch fast ausschließlich relativ hydrophobe Materialien eingesetzt. Der vorliegenden Erfindung lag demgemäß die Aufgabe zugrunde ein Verfahren zur Verfügung zu stellen, mit welchem es möglich ist, Trägermaterialien mit einer Oberflächenstruktur zur Verfügung zu stellen, die eine geringe Adsorption gegenüber Proteinen zeigt und z. B. in der Mikrochip-Elektrophorese eingesetzt werden kann.
Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung mikrofluidischer Chips aus Polymermaterial als Träger, worin ein Polymermaterial zu einem Chip verarbeitet wird oder ein Trägermaterial damit beschichtet wird, dadurch gekennzeichnet, dass das Polymermaterial ausgewählt ist einem ein hydrophilen Polymer oder einem Derivat davon oder ein hydrophiles Polymer oder einem Derivat enthält.
Mit dem erfindungsgemäßen Verfahren können polymere mikrofluidische Chips mit hydrophilen Oberflächen erhalten werden, die eine bessere Auflösung z. B. in der Elektrophorese ermöglichen. In vielen Fällen können die mikrofluiden Chips unmittelbar aus dem Polymermaterial hergestellt werden. Aber auch Beschichtungen sind möglich, wobei die hydrophile Oberfläche auf einfache Weise erhalten werden kann.
Die Herstellung der mikrofluidischen Chips kann auf verschiedene Weise erfolgen. Werden die Polymermaterialien selbst als Träger eingesetzt, so können diese aus deren Lösungen erhalten werden, indem die Lösung des Polymers in Form gegossen und das Lösungsmittel anschließend entfernt wird. Es ist auch möglich, die Form aus der Polymerschmelze zu gießen oder ein Polymergranulat in einer geeigneten Form auf zu schmelzen. Eine Mikrostrukturierung kann direkt während der Herstellung, z. B. während des Spritzgussverfahrens, erfolgen, oder durch Heißprägen oder Softlithographie.
In Fällen, in denen Trägermaterialien mit höherer Festigkeit benötigt werden, wie z. B. Glas, ist es auch möglich, diese mit dem hydrophilen Polymer oder einem Derivat davon zu beschichten. In einer bevorzugten Ausführungsform werden als Polymermaterialien Derivate eines hydrophilen Polymers eingesetzt. Diese werden durch eine nachfolgende Reaktion an der Oberfläche in ein hydrophiles Polymer überführt.
Als hydrophile Polymere eignen sich im Rahmen der vorliegenden Erfindung solche, die über wasserunlösliche Derivate verfügen und aus diesen Derivaten auf möglichst einfache Weise in ihre hydrophile, d.h. wasserlösliche Form, überführt werden können. Ein besonders geeignetes hydrophiles Polymer ist Polyvinylalkohol, dessen Derivate, wie Polyvinylester, Polyvinylacetale, wie Polyvinylbutyral, und Polyvinylacetate besonders bevorzugt eingesetzt werden.
Als besonders geeignet erscheint hier Polyvinylalkohol, welches ein ausgezeichnetes Material zur Beschichtung von Quarzkapillaren für die Proteinanalytik in der klassischen Kapillarelektrophorese darstellt. Wegen seiner Wasserlöslichkeit ist Polyvinylalkohol selbst jedoch als Ausgangsmaterial ungeeignet.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird durch Umsetzung, vorzugsweise durch Hydrolyse, des Derivats des hydrophilen Polymers an der Oberfläche des Chips in ein hydrophiles Polymer überführt. In dieser Ausführungsform wird ein mikrostrukturierter Chip mit hydrophiler Oberfläche erhalten. Der Grad der Umwandlung und somit die Hydrophilie an der Oberfläche kann z B. durch Menge und Einwirkungszeit des Hydrolysereagenz eingestellt werden. Zur Umwandlung des Derivats in das hydrophile Polymer kann die Oberfläche des Derivats zum Beispiel mit einer geeigneten Reagenzlösung gespült oder besprüht werden. Als Reagenzlösung für die Hydrolyse hat sich eine wässerige Lösung eines Alkalimetallhydroxyids, NaOH, OH oder LiOH, oder Alka- limetallalkoholats, wie Na-, K- oder Li-Methanolat, -Ethanolat, -Propanolat oder - Butanolat, als geeignet erwiesen.
Gemäß einer besonders bevorzugten Form des Verfahrens werden Polyvinylester und insbesondere Polyvinylacetat (PVAc) als Material zur Mikrostrukturierung ausgewählt, welches sich durch einfache Hydrolyse entsprechend Reaktionsgleichung 1 in hydrophiles Polyvinylalkohol (PVAI) überführen lässt.
Figure imgf000006_0001
Ac
Gleichung 1
Polyvinylacetat ist ein wichtiger Grundstoff für die Farben und Klebstoffindustrie. Zur Verwendung von Polyvinylacetat als Werkstoff und insbesondere zur Mikrostrukturierung ist jedoch wenig bekannt. So ist im Saechtling Kunststoff Taschenbuch zu lesen "PVAc (...) sind glasklare, weiche bis harte Harze, die mangels ausreichender Temperaturbeständigkeit für Formmassen nicht geeignet sind, aber in den meisten Lösungsmitteln (...) gut löslich sind [Karl Oberbach: "Saechtling Kunststoff Taschenbuch", 28.Ausgabe, Carl Hanser Verlag, München, Wien, 2001 , S.460].
In einer möglichen Ausführungsform wird die Mikrostrukturierung des Derivats, beispielsweise von Polyvinylazetat aus der Lösung durchgeführt.
Zur Verarbeitung beispielsweise von Polyvinylacetat (PVAc) als Ausgangsmaterials aus der Lösung werden Lösungen von PVAc in Ethylacetat auf einen 4" Si- Formeinsatz gegossen. Nach Trocknen wird ein lederartig, zäher Film abgezogen, welcher die gewünschten Strukturen aufweist. Zur Herstellung einer funktionsfähigen geschlossenen mikrofluidischen Struktur wird ein Deckel mit Zugangslöchern entsprechend Abb.1 benötigt. Das Deckeln der Struktur mit analog aus Lösung prozessierten Substraten gelingt leicht da sich die Schichten spontan miteinander durch Kontakt verbinden. Allerdings ist die fluidische Kontaktie- rung schwierig, da die flexible und weiche Konsistenz des Materials ein mechanisches Bohren erschwert.
In einer bevorzugten Variante dieser Ausführungsform der Erfindung werden zur Lösung dieses Problems Deckel hergestellt, indem nicht von einer Lösung ausgegangen wird, sondern das PVAC Material auf einer Heißpresse gepresst wurde. Diese Deckel weisen eine ausreichende Festigkeit auf, um die Zugangslöcher durch Bohren herzustellen. Nach diesem Verfahren gelingt es leicht mikrofluidische Chips aus Polyvinylazetat herzustellen. Diese Chips bestehen aus einer flexiblen mikrostrukturierten PVAC Schicht mit einem starren aus PVAC gepressten Deckel. Ein Photo eines solchen 2-Komponenten PVAc-Chips ist in Abb. 2 gezeigt. Eine mikroskopische Aufnahme des Kreuzungsbereiches mit den 50 μm breiten Kanälen ist in Abb. 3 dargestellt
Ein weiterer Gegenstand der vorliegenden Erfindung sind mikrofluidische Chips mit hydrophiler Oberfläche, insbesondere solche, die durch das erfindungsgemäße Verfahren erhalten werden können.
Noch ein weiterer Gegenstand sind Systeme mit mikrofluidischen Strukturen, in denen die oben beschriebenen Chips eingesetzt werden.
Diese erfindungsgemäßen Chips eignen sich z. B. in elektromigrativen Trennverfahren und anderen Techniken unter Verwendung mikrofluidischer Systeme sowie zur Dosierung flüssiger Proben z.B. für die chemische Analyse oder für mikrosynthetische Verfahren in der Chemie.
Als Beispiel wurde eine sog. „Pinched Injection" eines Fluoreszenzfarbstoffes durchgeführt und videomikroskopisch verfolgt. Drei Einzelbilder einer erfolgreichen Injektion sind in Abb. 4 gezeigt.
In einer weiteren möglichen Ausführungsform der Erfindung wird das Ausgangsmaterial statt aus Lösung durch Heißprägen strukturiert. Hierzu wird ein Polymergranulat, z.B. Polyvinylacetat-Granulat, in einer Heißpresse mit einem Si-Formeinsatz geprägt. Der entstehende strukturierte Chip konnte nach Abkühlen aus dem Formeinsatz entfernt werden. Es wird ein ausgezeichnet strukturiertes Material mit überraschend guten optischen und mechanischen Eigenschaften erhalten. Das Photo eines so mikrostrukturierten PVAC-Wafers ist in Abb. 5. gezeigt. Das Material zeigt eine hohe Transmission ab 400 nm auf mit sehr geringer Eigenfluoreszenz.
Die Hydrophilisierung der Oberflächen der PVAC Chips gelingt durch zwei unterschiedliche Verfahren. 1. Die Kanäle gedeckelter PVAc-Chips, die nach einem der oben genanten Verfahren hergestellt wurden, werden mit einer Reagenzlösung gespült welche die Polyvinylacetat-Oberfläche in Polyvinylalkohol umsetzt, dies ist schematisch in Abbildung 6 gezeigt. In einer bevorzugten Ausführungsform wird hierfür die wässerige oder alkoholische Lösung einer starken Base wie NAOH oder Natriummethanolat eingesetzt. Nach diesem Spülschritt werden die Kanäle gereinigt und die Base entfernt. Dies gelingt bevorzugt durch Spülen mit Wasser oder Alkohol. Danach weisen die mikrofluidischen Chips hydrophile Oberflächen bestehend aus PVAI auf und sind gebrauchsfertig.
2. Nach einer zweiten Ausführungsform der Erfindung werden die Oberflächen der Polyvinylazetat-Chips noch vor dem Deckeln und Verschließen der Struktur hydrophilisiert. Dies gelingt in dem die strukturierten Chips, sowie die Deckel einer Lösung ausgesetzt werden welche PVAc in PVAI umwandelt, bevorzugt wird hierzu die Lösung einer starken Base eingesetzt. Dies gelingt z.B. durch ein Tauchbad oder durch Besprühen. Durch diesen Hydrophilisierungs-Schritt wird wegen der guten Haftung der hydrophilisierten Oberflächen aufeinander das Verbinden der Struktur mit dem Deckel erleichtert.
Beispiele
Beispiel 1 : Herstellung eines mikrostrukturierten PVAc-Chips
Zur Herstellung des mikrostrukturierten Teils eines mikrofuidischen PVAc-Chips wurde 50 g PVAc (Mw= 50.000) in 250 ml Ethylazetat gelöst. Ca. 35 g der Lösung wurde in ein Gefäß mit einem 4" Si- Formeinsatz gegossen. Nach Trocknen über 19 h wurde das Substrat weitere 2,5 Stunden bei 80 °C auf einer Heizplatte getrocknet. Jetzt lässt sich ein lederartig zäher Film abziehen indem die Struktur enthalten ist. Ein Überstrecken des Filmes muss vermieden werden, leichte Dehnungen der Struktur bilden sich jedoch vollständig.
Zur Herstellung des Deckels wurde PVAc-Pulver auf einer Heißpresse gepresst. Hierfür wurde eine Temperatur von 80°C und eine Kraft von 10 kN verwendet. Zur Herstellung einer funktionsfähigen geschlossenen mikrofluidischen Chips wurde der Deckel mit dem strukturierten Substrat verbunden. Das Photo eines so hergestellten mikrofluidischen PVAc-Chips ist in Abb. 2 gezeigt. Die Mikroskopische Vergrößerung des Kreuzungsbereiches der 50 μm breiten Kanäle ist in Abb. 3 dargestellt.
Beispiel 2: Injektion eines Fluoreszenzfarbstoffes unter Verwendung eines mikrostrukturierten PVAc-Chips Ein nach Beispiel 1 hergestellter PVAc-Chip wurde in der Mikrochip Elektrophorese eingesetzt. Es wurde eine so genannte „pinched injection", bei der kleinste Probevolumina über ein Spannungsprogramm injiziert werden, durchgeführt und videomikroskopisch verfolgt.
Zunächst wurde die fluidische Struktur des Chips mit einem Elektrolyten bestehend aus einem 40 mM Phosphat-Puffer pH: 6 gefüllt. Die Bohrungen des Chips dienen als Proben und Puffergefäße entsprechend Abb. 6. Das Probeneinlaß- Gefäß (SI) wurde mit Lösung (0,1 mg/ml) des Fluoreszenzfarbstoffes Alexafluor 647 gefüllt. Zur Durchführung der Injektion wurden folgende Spannungen an die Gefäße angelegt: A: -0.81/-1 ,767-1 ,16/0 (BI/BO/SI/SO), B: -2/0/-0,32/-0,33. Ein- zelbilder einer videomikroskopischen Verfolgung des erfolgreichen Injektionsprozesses sind in Abb. 4. gezeigt.
Beispiel 3 Herstellung eines mikrostrukturierten PVAc-Chips mittels Heißprägen. Durch Verwendung eines Polyvinylacetat Materials wie das Vinapas UW10 von Wacker gelingt auch die Mikrostrukturierung allein durch Heißprägen. Damit ist sowohl die Fertigung von Deckel und mikrostrukturiertem Teil sehr ökonomisch in einem automatisierten Prozess in einer Heißpresse möglich. Neben Polyvinylacetat ist auch Polyvinylbutyral als Ausgangstoff geeignet.
Zur Herstellung eines Polyvinylacetatchips wurde Vinapas UW10 Granulat in einer Heißpresse mit einen 4" Si- Formeinsatz mit Kreuzstruktur geprägt, wodurch ein durchsichtiges Werkstück mit geprägten Kanälen von 50μm breite und 30μm Tiefe entsteht. Zur Herstellung des Deckels wurde das Vinapas Granulat analog auf einer Heißpresse gepresst. Hierfür wurde eine Temperatur von 80°C und eine Kraft von 10 kN verwendet.
Zur Herstellung eines funktionsfähigen geschlossenen mikrofluidischen Chips wurde der Deckel mit dem strukturierten Substrat verbunden. Das Photo eines so hergestellten mikrofluidischen PVAc-Chips ist in Abb. 7 gezeigt.
Beispiel 4.
Ein nach Beispiel 3 hergestellter PVAc-Chip wurde in der Mikrochip Elektrophorese eingesetzt. Es wurde eine so genannte „pinched injection", eines Testgemisches bestehend aus Fluoresceinisothiocyanat markierten Aminen durchgeführt. Die Detektion erfolgte mittels Fluoreszenz bei einer Anregungswellenlänge von 450-488, und einer Emissionswellenlänge >515.
Wie in Abbildung 8 gezeigt, gelingt in einem nativen Polyvinylacetatchip eine Antrennung der Verbindungen. Durch Hydrophilisieren der Oberflächen kann die Auflösung deutlich gesteigert werden.

Claims

Patentansprüche
1. Verfahren zur Herstellung mikrofluidischer Chips aus Polymermaterial als Träger, worin ein Polymermaterial zu einem Chip verarbeitet wird oder ein Trägermaterial damit beschichtet wird, dadurch gekennzeichnet, dass das Polymermaterial ausgewählt ist einem ein hydrophilen Polymer oder einem Derivat davon oder ein hydrophilies Polymer oder einem Derivat enthält.
2. Verfahren nach Anspruch 1 , worin die Herstellung nach Art einer Mikrostrukturierung, insbesondere durch Heißprägen, Spritzguss oder Softlithographie erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Polymer ausgewählt ist aus wasserunlöslichen chemischen Derivaten des Poly- vinylalkohols.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Derivate des Polyvinylalkohols ausgewählt sind aus Polyvinylester, Polyvinylacetale und Polyvinylazetat.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein mikrostrukturiertes chemisches Derivat eines hydrophilen Polymers durch eine nachfolgende Reaktion an der Oberfläche in ein hydrophiles Polymer überführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zur Umwandlung der Oberfläche diese mit einer geeigneten Reagenzlösung gespült oder besprüht wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Reagenzlösung eine Base, insbesondere ein Alkalimetallhydroxid oder Alkalimetallalko- holat ist.
8. Mikrofluidische Chips erhältlich nach eine der Ansprüche 1 bis 7.
9. Verwendung der mikrofluidischen Chips gemäß Anspruch 8 in elektromigrati- ven Trennverfahren und anderen Techniken unter Verwendung mikrofluidischer Systeme sowie zur Dosierung flüssiger Proben z.B. für die chemische Analyse oder für mikrosynthetische Verfahren in der Chemie.
10. System mit mikrofluidischen Strukturen, dadurch gekennzeichnet, dass ein mikrostrukturierter Chip erhältlich gemäß Anspruch 8 verwendet wird.
PCT/DE2005/000187 2004-02-04 2005-02-04 Mikrofluidische chips mit immanenten hydrophilen oberflächen WO2005075079A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410005337 DE102004005337A1 (de) 2004-02-04 2004-02-04 Mikrofluidische Chips mit immanenten hydrophilen Oberflächen
DE102004005337.5 2004-02-04

Publications (1)

Publication Number Publication Date
WO2005075079A1 true WO2005075079A1 (de) 2005-08-18

Family

ID=34801509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000187 WO2005075079A1 (de) 2004-02-04 2005-02-04 Mikrofluidische chips mit immanenten hydrophilen oberflächen

Country Status (2)

Country Link
DE (1) DE102004005337A1 (de)
WO (1) WO2005075079A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073088A (zh) * 2014-06-23 2014-10-01 苏州靖羽新材料有限公司 一种水性建筑涂料
CN108922854A (zh) * 2018-06-14 2018-11-30 中国电子科技集团公司第二十四研究所 一种用于封装硅基芯片的瞬态电路封装结构实现方法
EP3536402A1 (de) * 2018-03-09 2019-09-11 Ibidi Gmbh Probenkammer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3032132A1 (fr) * 2015-02-03 2016-08-05 Commissariat Energie Atomique Dispositif microfluidique et procede de realisation d'un dispositif microfluidique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023221A1 (en) * 1995-01-27 1996-08-01 Beckman Instruments, Inc. Polyvinylalcohol coated capillary electrophoresis columns
US5840388A (en) * 1995-01-27 1998-11-24 Northeastern University Polyvinyl alcohol (PVA) based covalently bonded stable hydrophilic coating for capillary electrophoresis
EP1076239A2 (de) * 1999-08-11 2001-02-14 Studiengesellschaft Kohle mbH Beschichtung mit quervernetzten hydrophilen Polymeren
WO2001047637A1 (en) * 1999-12-23 2001-07-05 Gyros Ab Microfluidic surfaces
WO2002029397A2 (en) * 2000-10-05 2002-04-11 E.I. Du Pont De Nemours And Company Polymeric microfabricated fluidic device suitable for ultraviolet detection
WO2004005922A2 (en) * 2002-07-09 2004-01-15 Cambridge University Technical Services Ltd Monitoring of cells

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE470347B (sv) * 1990-05-10 1994-01-31 Pharmacia Lkb Biotech Mikrostruktur för vätskeflödessystem och förfarande för tillverkning av ett sådant system
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
GB9715101D0 (en) * 1997-07-18 1997-09-24 Environmental Sensors Ltd The production of microstructures for analysis of fluids
DE19914007A1 (de) * 1999-03-29 2000-10-05 Creavis Tech & Innovation Gmbh Strukturierte flüssigkeitsabweisende Oberflächen mit ortsdefinierten flüssigkeitsbenetzenden Teilbereichen
MXPA02000144A (es) * 1999-07-07 2002-07-02 3M Innovative Properties Co Articulo de deteccion que tiene una pelicul a de control de fluidos.
DE10207393A1 (de) * 2002-02-21 2003-09-04 Ruehe Juergen Rapid Prototyping durch Drucken von organischen Substanzen und deren Verfestigung
US20030224531A1 (en) * 2002-05-29 2003-12-04 Brennen Reid A. Microplate with an integrated microfluidic system for parallel processing minute volumes of fluids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023221A1 (en) * 1995-01-27 1996-08-01 Beckman Instruments, Inc. Polyvinylalcohol coated capillary electrophoresis columns
US5840388A (en) * 1995-01-27 1998-11-24 Northeastern University Polyvinyl alcohol (PVA) based covalently bonded stable hydrophilic coating for capillary electrophoresis
EP1076239A2 (de) * 1999-08-11 2001-02-14 Studiengesellschaft Kohle mbH Beschichtung mit quervernetzten hydrophilen Polymeren
WO2001047637A1 (en) * 1999-12-23 2001-07-05 Gyros Ab Microfluidic surfaces
WO2002029397A2 (en) * 2000-10-05 2002-04-11 E.I. Du Pont De Nemours And Company Polymeric microfabricated fluidic device suitable for ultraviolet detection
WO2004005922A2 (en) * 2002-07-09 2004-01-15 Cambridge University Technical Services Ltd Monitoring of cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073088A (zh) * 2014-06-23 2014-10-01 苏州靖羽新材料有限公司 一种水性建筑涂料
EP3536402A1 (de) * 2018-03-09 2019-09-11 Ibidi Gmbh Probenkammer
CN108922854A (zh) * 2018-06-14 2018-11-30 中国电子科技集团公司第二十四研究所 一种用于封装硅基芯片的瞬态电路封装结构实现方法

Also Published As

Publication number Publication date
DE102004005337A1 (de) 2005-08-25

Similar Documents

Publication Publication Date Title
DE60036420T2 (de) Mikrofluidischer Artikel
EP1718409B1 (de) Vorrichtung für mikrofluiduntersuchungen
DE69917779T2 (de) Zytologische und histologische fixier-zusammensetzung und verfahren zur verwendung
EP1076239B1 (de) Verfahren zur Beschichtung von Kapillaren mit quervernetzten hydrophilen Polymeren
EP1369380B1 (de) Mikrofluidisches Bauelement und Analysevorrichtung
DE19948087B4 (de) Verfahren zur Herstellung eines Reaktionssubstrats
EP2252410B1 (de) Oberflächenmodifikation
DE60225593T2 (de) Immobilisierung von bindungsstoffen
WO2005075079A1 (de) Mikrofluidische chips mit immanenten hydrophilen oberflächen
EP1225216A1 (de) Vorrichtung zur Untersuchung von Ionenkanälen in Membranen
DE102015101425B4 (de) Verfahren zur Herstellung eines Bauelements auf Basis eines strukturierbaren Substrats mit dreidimensionaler, Poren im nm-Bereich aufweisender Membranstruktur
DE102004003595A1 (de) Substrat zur Immobilisierung von physiologischem Material und Verfahren zu dessen Herstellung
WO2006048306A1 (de) Strukturierte copolymere träger für die massenspektrometrie
DE102015015535A1 (de) Mikrostrukturierter Polymerkörper, Mikrobioreaktor und Verfahren zu ihrer Herstellung
EP2349567B1 (de) Vorrichtung und verfahren zur analyse von zellen
WO2011113628A1 (de) Mikroarray mit immobilisierungspartikeln
EP1360492B1 (de) Probenträger für chemische und biologische proben
CN102395884A (zh) 流体检测试片及其制造方法
DE60223899T2 (de) Oberflächenpassivierung von organischen kunststoffen
WO2002018634A2 (de) Arrays immobilisierter biomoleküle, deren herstellung und verwendung
DE10200287C1 (de) Verfahren zur Beschichtung von Oberflächen
CN1598575A (zh) 一种生物芯片的制作方法
DE102020202767B3 (de) Herstellung eines Verbunds aus Polymersubstraten und gesiegelte mikrofluidische Kartusche
DE10237280A1 (de) Verfahren zum Verbinden von Oberflächen, Halbleiter mit verbundenen Oberflächen sowie Bio-Chip und Bio-Sensor
DE102006020131A1 (de) Nano- und mikrostrukturierter Biosensor und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase