WO2005071342A1 - Wärmetauscher, insbesondere öl-/kühlmittel-kühler - Google Patents

Wärmetauscher, insbesondere öl-/kühlmittel-kühler Download PDF

Info

Publication number
WO2005071342A1
WO2005071342A1 PCT/EP2004/013828 EP2004013828W WO2005071342A1 WO 2005071342 A1 WO2005071342 A1 WO 2005071342A1 EP 2004013828 W EP2004013828 W EP 2004013828W WO 2005071342 A1 WO2005071342 A1 WO 2005071342A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
plate
base plate
outermost
recess
Prior art date
Application number
PCT/EP2004/013828
Other languages
English (en)
French (fr)
Inventor
Rüdiger KÖBLIN
Jens Richter
Original Assignee
Behr Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. Kg filed Critical Behr Gmbh & Co. Kg
Priority to BRPI0418440-8A priority Critical patent/BRPI0418440A/pt
Priority to EP04803538A priority patent/EP1711768A1/de
Priority to JP2006549901A priority patent/JP2007518958A/ja
Priority to US10/585,971 priority patent/US20080257536A1/en
Priority to MXPA06008292A priority patent/MXPA06008292A/es
Publication of WO2005071342A1 publication Critical patent/WO2005071342A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers

Definitions

  • Heat exchangers especially oil / coolant coolers
  • the invention relates to a heat exchanger, in particular a stacked disc oil cooler, in disc construction according to the preamble of claim 1.
  • EP 0 623 798 A2 discloses a plate heat exchanger with trough-shaped heat exchanger plates stacked one on top of the other, the circumferential edges of which lie against one another and are soldered tightly to one another, all heat exchanger plates having the same shape.
  • the bottom heat exchanger plate is closed by means of an end plate, the end plate lying flat on the bottom of the heat exchanger plate and openings for connections being provided in the end plate.
  • the end plate is completely flat.
  • a known stacked-plate oil cooler with an appropriately designed end plate is shown in FIGS. 9 and 10.
  • a heat exchanger in particular a stacked-plate oil cooler, is provided in a disc design, in which the base plate has a recessed surface corresponding to the adjacent heat exchanger plate.
  • the flanks of the outermost heat exchanger shear plate lie at least in their lower region on the flanks of the recessed contour of the base plate. Due to the form-fitting system, there is a large contact and thus connection area between the outermost heat exchanger plate and the base plate, so that with a corresponding connection by means of solder or the like. there is a good connection and thus an op-5 temporal power transfer, so that the base plate leads to a significantly increased stability of the heat exchanger.
  • An edge of the outermost heat exchanger plate preferably projects beyond the base plate, at least in its edge region in which it is connected to the adjacent heat exchanger plate.
  • the depression in the base plate is greater than the material thickness of the outermost heat exchanger plate of the heat exchanger, preferably at least as deep as the material thickness of the heat exchanger plate of heat exchanger 5 plus half the clear height between the outermost heat exchanger plate resting on the base plate and the second outermost heat exchanger plate.
  • the optimum is a depth of the depression which is at least as deep as the material thickness of the heat exchanger plate of the heat exchanger plus the clear height between the outermost heat exchanger plate lying on the base plate and the second outermost heat exchanger plate.
  • the contour in the base plate is preferably produced by means of embossing or machining. Other manufacturing processes are possible, for example the base plate can be cast.
  • Heat exchangers according to the invention can serve on the one hand as an oil cooler but also as an evaporator or condenser, or for example as a charge air / coolant cooler.
  • the cooling circuit of such a device can not only serve to air-condition a (vehicle) interior, but also to cool heat sources such as electrical consumers, energy stores and voltage sources or charge air of a turbocharger.
  • the heat exchanger is a condenser when, for example, condensation of the refrigerant in an air conditioning system takes place in a compact heat exchanger that is subjected to coolant and the coolant releases the heat in a heat exchanger to air as a further medium.
  • the evaporation or condensation of another medium in a heat exchanger designed in accordance with the invention can also take place, for example, in applications in fuel cell systems.
  • a method according to the invention for producing a heat exchanger, in particular a heat exchanger according to the invention provides that the base plate is produced by embossing the same, then a correspondingly aligned stacking of the heat exchanger plates and the base plate and then a connection by brazing.
  • the plates are joined by brazing in such a way that the plates are sealed together at their edges and, in particular, adjacent plates are connected at the points of contact of profiles.
  • a stable and torsionally rigid element is produced.
  • FIG. 1b shows a section through a stacked disc oil cooler along the line A-A of FIG. 3 according to a variant of the first embodiment
  • FIG. 2 is a perspective view of the stacked disc oil cooler of FIG. 1a
  • FIG. 3 shows a top view of the stacked disc oil cooler from FIG.
  • FIG. 4b shows a section through a stacked disc oil cooler according to a variant of the second exemplary embodiment
  • FIG. 5 shows a section through a stacked-plate oil cooler according to the third exemplary embodiment
  • FIG. 6 shows a section through a stacked-plate oil cooler according to the fourth exemplary embodiment
  • FIG. 7 is a detailed view of FIG. 6,
  • Fig. 8 shows a heat exchanger plate according to the third and fourth exemplary embodiment
  • Fig. 9 shows a section through a stacked disc oil cooler according to the prior art
  • FIG. 10 is a detailed view of detail B of FIG. 9.
  • a disk stack oil cooler 1 serving as a heat exchanger as disclosed for example in EP 0 623 798 A2, the disclosure of which is expressly included, has a plurality of stacked stamped and deep-drawn heat exchanger plates 2, between which coolant and oil flow in an alternating order , The direction of flow at the coolant connections is illustrated in FIG. 2 by arrows. The oil is fed in and out from below.
  • a base plate 3 is attached to the lowermost heat exchanger plate 2 on the underside thereof for attaching the oil connections and for mounting the disc stack oil cooler 1.
  • this base plate 3 has a depression 5, in the present case a recess, on its upper side 6, which is provided with a contour corresponding to the underside of the lowermost heat exchanger plate 2, at least in its lower, level plane Areas and in the area of the flanks.
  • the recess 5 was milled out of the rectangular base plate 3 by milling, the shape of the underside of the base plate 3 being unchanged.
  • the recess 5 has a depth which corresponds approximately to the material thickness of the lowermost heat exchanger plate 2 plus the clear height between the two lower heat exchanger plates 2.
  • the recess 5 is formed somewhat deeper than the recess 5 of the first exemplary embodiment, in the present case approximately twice the material thickness of the heat exchanger plates 2 plus the clear height between the two lowest heat exchanger plates 2.
  • the base plate 3 has a protruding area 8 on its underside to avoid excessive material displacements in the course of non-cutting machining, for example in an area continued from FIG Heat exchanger plates 2.
  • the projecting area 8 has a flat bottom. The protruding area 8 allows a greater depth of the recess 6 with the least possible deformation and material displacement of the base plate 3.
  • the depth of the recess 5 corresponds approximately to the depth of the recess 5 according to the variant of the first exemplary embodiment.
  • FIG. 5 shows, as a third exemplary embodiment, a section through a stacked-plate oil cooler 1 which is formed from interconnected heat exchanger plates 2 and a base plate 3. Cavities closed off from the outside are formed between the heat exchanger plates 2. The cavities are alternately supplied with at least one inflow and outflow lines with the first and second medium and are also flowed through by the corresponding medium.
  • the plates are profiled in such a way that 2 contact points occur between the respective profiles of the heat exchanger plates. In the area of these contact points, the heat exchanger plates 2 are integrally connected to each other, usually soldered.
  • the heat exchanger plates 2 are designed such that the flow of the first or second medium that forms between the heat exchanger plates 2 differs from the corresponding one Inflow pipe to the corresponding drain pipe is not straight.
  • An example of such a heat exchanger plate 2 is shown in FIG. 8.
  • the heat exchanger plates 2 can have a repeating wave profile which then runs at least in a direction transverse to the flow direction, which is the straight connection from the entry points of the medium to the exit points.
  • the wave profile is zigzag around this direction.
  • Such a wave profile forms flow guide areas in a simple manner, which are suitable for guiding the flow of the medium flowing through the corresponding cavity.
  • the course of the flow is thereby advantageously deflected or flows through several times in regions in which the distance between the heat exchanger plates 2 is designed to be different in size from one another.
  • the flow velocity therefore varies in these areas.
  • it is advantageously achieved that the medium as a whole is distributed over the entire area of the heat exchanger plates 2 and thus the most optimal use of the entire heat exchange area takes place.
  • the corrugated profile can have limbs extending in a straight line between flow regions, the course of the corrugated profile being characterized by the limb length of the limbs, the limb angle given between the limbs and the profile depth of the corrugated profile.
  • the cross section of the profile of a corrugated profile is determined by the course in the region of the legs and in the region of curvature. drafted configurations can provide a deviation of the cross-sectional shape in these areas.
  • the zigzag wave profile of the heat exchanger plates 2 is characterized in particular by the leg length, the leg angle between adjacent legs and the profile depth.
  • the leg length is in the range from 8 to 15 millimeters, preferably in the range from 9 to 12 millimeters.
  • Typical values of the profile depth - which is measured, for example, from the distance between a wave crest and the plate center plane - are in the range from 0.3 to 1.5 mm.
  • a profile depth between 0.5 and 1 mm can be advantageous for many applications, values of approximately 0.75 mm being preferred.
  • the leg angle between two legs of the wave profile is preferably between 45 ° and 135 °.
  • the heat exchanger plates 2 are connected in the area of the contact points by brazing, for which purpose the heat exchanger plates 2 are coated at least on one side with a soldering aid, such as solder.
  • the leg length and leg angle are preferably selected as a function of the medium flowing through and its viscosity. Leg length and leg angle have a great influence on the the flow velocities and the associated heat exchange, so that they are adapted to the respective purpose.
  • the values mentioned above relate in particular to the use of heat exchangers as an oil cooler in vehicles, where the heat exchange takes place between engine oil and cooling water. In addition, they are of course also dependent on the dimensions of the heat exchanger plates 2 and the space resulting from the distance between the heat exchanger plates 2.
  • the shape of the wave profile is essentially determined by the shape of the
  • Preferred configurations provide a constant division, that is to say a fixed distance between any two adjacent wave profiles.
  • the shape of the wave profile is particularly advantageous if it has a flat area on the outside of the wave back.
  • the flat area in particular has a width of 0.1 to 0.4 mm.
  • the flat area enables good, flat contact of adjacent heat exchanger plates 2 to one another and thus an easy and stable production of the support or connection - as by brazing - adjacent heat exchanger plates 2 to one another.
  • the heat exchanger plates 2 can be identical to one another, corresponding to one another or similar or different. Heat exchanger plates 2 which are identical to one another have the same properties with regard to the characteristic properties of the wave profile and the shape of the wave profile. Corresponding heat exchanger plates 2 are identical to one another in construction, but it is possible for the heat exchanger plates 2 to be different from one another, for example Have leg angles. Corresponding heat exchanger plates 2 preferably have a mutually different shape of the wave profile and / or values characterizing values different from one another, but are mutually corresponding with regard to the formation of the edge and the formation of the front and rear sides of the heat exchanger plates 2.
  • the alternating use of, for example, two mutually corresponding heat exchanger plates 2, which differ in the characteristic sizes only by different leg angles, has the advantage that the position and relative position of contact points of the heat exchanger plates 2 with one another in the profiled region with regard to the required rigidity and the required flow can be easily optimized.
  • the material of the heat exchanger plates 2 and the base plate 3 is aluminum in the present case.
  • This material has the advantage of having a low density and at the same time making it possible to generate the wave profile in a simple manner, for example by embossing.
  • soldering aids such as hard solder.
  • coating on both sides with soldering aid can also be provided.
  • the coating with soldering aids is intended, in particular in the area of the edges and the inflow and outflow lines in the block, to reliably establish a fluid-tight connection of two plates to one another in a joining process using a joining tool (brazing furnace) without using any further aids or auxiliary materials.
  • connection between the heat exchanger plates 2 and between the lowermost heat exchanger plate 2 and the base plate 3 is made in particular by brazing.
  • the heat exchanger plates 2 have a bent edge, the height of which is selected such that at least two adjacent heat exchanger plates 2 abut each other in this edge area and overlap.
  • the number of heat exchanger plates 2 overlapping in the edge area can be up to five.
  • Preferred further developments provide that the wave profile extends into the edge and in particular over its entire width.
  • Figures 6 and 7 show one corresponding to the third embodiment
  • the projecting area 8 also has a flat bottom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher, insbesondere einen Stapelscheiben-Ölkühler (1), in Scheibenbauweise, wobei zwei benachbarte Wärmetauscherplatten (2) einen Zwischenraum definieren, der von einem Wärmetauschermedium oder einem zu kühlenden oder zu erwärmenden zweiten Medium durchströmt ist, und an einem Ende eine Grundplatte (3) vorgesehen ist, die in zumindest im Wesentlichen flächiger Anlage an die Benachbarte äusserste Wärmetauscherplatte (2) des Wärmetauschers ist. Dabei weist die Grundplatte (3) eine Vertiefung (3) mit einer der Wärmetauscherplatte (2) entsprechend verlaufenden Kontur auf.

Description

BEHR GmbH & Co. KG Mauserstraße 3, 70469 Stuttgart
Wärmetauscher, insbesondere Öl-/Kühlmittel-Kühler
Die Erfindung betrifft einen Wärmetauscher, insbesondere einen Stapelscheiben-Ölkühler, in Scheibenbauweise gemäß dem Oberbegriff des An- spruchs 1.
Aus der EP 0 623 798 A2 ist ein Plattenwärmetauscher mit aufeinanderge- stapelten wannenförmigen Wärmetauscherplatten, deren umlaufende Ränder aneinander anliegen und dicht miteinander verlötet sind, wobei alle Wärmetauscherplatten die gleiche Form aufweisen, bekannt. Hierbei ist die unterste Wärmetauscherplatte mittels einer Abschlussplatte verschlossen, wobei die Abschlussplatte plan am Boden der Wärmetauscherplatte anliegt und in der Abschlussplatte Öffnungen für Anschlüsse vorgesehen sind. Die Abschlussplatte ist vollständig eben ausgebildet. Ein bekannter Stapelschei- ben-Ölkühler mit einer entsprechend ausgebildeten Abschlussplatte ist in den Figuren 9 und 10 dargestellt.
Ein derartiger Wärmetauscher lässt noch Wünsche offen, insbesondere in Hinblick auf die Stabilität desselben.
Es ist Aufgabe der Erfindung, einen verbesserten Wärmetauscher zur Verfügung zu stellen.
BESTÄT1GUNGSKOWE Diese Aufgabe wird gelöst durch einen Wärmetauscher mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
5 Erfindungsgemäß ist ein Wärmetauscher, insbesondere Stapelscheiben- Ölkühler, in Scheibenbauweise vorgesehen, bei dem die Grundplatte eine der benachbarten Wärmetauscherplatte entsprechende, vertiefte Fläche aufweist. Dabei liegen insbesondere die Flanken der äußersten Wärmetau-0 scherplatte zumindest in ihrem unteren Bereich an den Flanken der vertieft verlaufenden Kontur der Grundplatte an. Durch die formschlüssige Anlage ergibt sich eine große Kontakt- und somit Verbindungsfläche zwischen der äußersten Wärmetauscherplatte und der Grundplatte, so dass bei entsprechender Verbindung mittels Lot o.a. eine gute Anbindung und somit ein op-5 timaler Kraftübergang besteht, so dass die Grundplatte für eine deutlich erhöhte Stabilität des Wärmetauschers führt.
Bevorzugt steht ein Rand der äußersten Wärmetauscherplatte über die Grundplatte über, zumindest in ihrem Randbereich, in dem sie mit der be- o nachbarten Wärmetauscherplatte verbunden ist.
Die Vertiefung in der Grundplatte ist größer als die Materialstärke der äußersten Wärmetauscherplatte des Wärmetauschers, bevorzugt mindestens so tief wie die Materialstärke der Wärmetauscherplatte des Wärmetauschers 5 zuzüglich der Hälfte der lichten Höhe zwischen der an der Grundplatte anliegenden äußersten Wärmetauscherplatte und der zweitäußersten Wärmetauscherplatte. Optimal ist eine Tiefe der Vertiefung, die mindestens so tief wie die Materialstärke der Wärmetauscherplatte des Wärmetauschers zuzüglich der lichten Höhe zwischen der an der Grundplatte anliegenden äußersten o Wärmetauscherplatte und der zweitäußersten Wärmetauscherplatte ist. Die Kontur in der Grundplatte wird vorzugsweise mittels Prägen oder spanender Bearbeitung hergestellt. Andere Herstellungsverfahren sind möglich, so kann die Grundplatte beispielsweise gegossen werden.
Wärmetauscher gemäß der Erfindung können einerseits als Ölkühler aber auch als Verdampfer oder Kondensatoren, oder auch beispielsweise als Ladeluft-/Kühlmittel-Kühler, dienen. Dabei kann der Kältekreislauf einer solchen Einrichtung nicht nur zum Klimatisieren eines (Fahrzeug-)lnnenraumes dienen sondern auch zum Kühlen von Wärmequellen, wie elektrischen Ver- brauchern, Energiespeichern und Spannungsquellen oder von Ladeluft eines Turboladers. Der Wärmetauscher ist ein Kondensator, wenn beispielsweise durch Kondensation des Kältemittels einer Klimaanlage in einem kühlmittelbeaufschlagten kompakten Wärmeüberträger erfolgt und das Kühlmittel die Wärme in einem Wärmetauscher an Luft als weiteres Medium abgibt. Das Verdampfen bzw. Kondensieren eines anderen Mediums in einem entsprechende der Erfindung ausgebildeten Wärmetauscher kann beispielsweise auch in Anwendungen bei Brennstoffzellensystemen erfolgen.
Ein erfindungsgemäßes Verfahren zum Herstellung eines Wärmetauschers, insbesondere eines erfindungsgemäßen Wärmetauschers sieht vor, dass die Grundplatte durch Prägen derselben erzeugt wird, anschließend ein entsprechend ausgerichtetes Stapeln der Wärmetauscherplatten und der Grundplatte und danach ein Verbinden durch Hartlöten erfolgt. Das Verbinden der Platten durch Hartlöten erfolgt dabei insbesondere so, dass die Platten an ihrem Rand dichtend miteinander verbunden sind und insbesondere gleichzeitig ein Verbinden benachbarter Platten an den Berührungsstellen von Profilen erfolgt. Hierdurch wird in besonders vorteilhafter Ausgestaltung ein stabiles und verwindungssteifes Element hergestellt. Im Folgenden wird die Erfindung anhand von vier Ausführungsbeispielen mit Varianten unter Bezugnahme auf die Zeichnung im Einzelnen erläutert. In der Zeichnung zeigen: Fig. 1a einen Schnitt durch einen Stapelscheiben-Ölkühler entlang der Linie A-A von Fig. 3 gemäß dem ersten Ausführungsbeispiel,
Fig. 1 b einen Schnitt durch einen Stapelscheiben-Ölkühler entlang der Linie A-A von Fig. 3 gemäß einer Variante des ersten Ausführungsbeispiels,
Fig. 2 eine perspektivische Darstellung des Stapelscheiben- Ölkühlers von Fig. 1a,
Fig. 3 eine Draufsicht auf den Stapelscheiben-Ölkühler von Fig. f a,
Fig. 4b einen Schnitt durch einen Stapelscheiben-Ölkühler gemäß einer Variante des zweiten Ausführungsbeispiels,
Fig. 5 einen Schnitt durch einen Stapelscheiben-Ölkühler gemäß dem dritten Ausführungsbeispiel,
Fig. 6 einen Schnitt durch einen Stapelscheiben-Ölkühler gemäß dem vierten Ausführungsbeispiel,
Fig. 7 eine Detailansicht von Fig. 6,
Fig. 8 eine Wärmetauscherplatte gemäß dem dritten und vierten Ausführungsbeispiel, Fig. 9 einen Schnitt durch einen Stapelscheiben-Ölkühler gemäß dem Stand der Technik, und
Fig. 10 eine Detailansicht des Details B von Fig. 9.
Ein als Wärmetauscher dienender Scheibenstapel-Ölkühler 1 , wie beispielsweise in der EP 0 623 798 A2 offenbart, deren Offenbarungsgehalt ausdrücklich mit einbezogen wird, weist eine Mehrzahl von aufeinandergesta- pelten gestanzten und tiefgezogenen Wärmetauscherplatten 2 auf, zwischen denen in abwechselnder Reihenfolge Kühlmittel und Öl strömt. Die Strömungsrichtung an den Kühlmittel-Anschlüssen ist in Fig. 2 durch Pfeile verdeutlicht. Das Öl wird von unten zu- und abgeführt.
Zur Anbringung der Öl-Anschlüsse sowie zur Montage des Scheibenstapel- Olkühlers 1 ist an der untersten Wärmetauscherplatte 2 an deren Unterseite eine Grundplatte 3 angebracht. Diese Grundplatte 3 weist, wie in Fig. 1a dargestellt, eine Vertiefung 5, vorliegend gemäß dem ersten Ausführungsbeispiel eine Ausnehmung, an ihrer Oberseite 6 auf, welche mit einer der Unterseite der untersten Wärmetauscherplatte 2 entsprechenden Kontur versehen ist, zumindest in deren unteren, ebenen Bereichen und im Bereich der Flanken. Die Vertiefung 5 wurde mittels Fräsens aus der rechteckförmi- gen Grundplatte 3 ausgefräst, wobei die Unterseite der Grundplatte 3 in ihrer Form unverändert ist.
Die Vertiefung 5 weist eine Tiefe auf, welche etwa annähernd der Materialstärke der untersten Wärmetauscherplatte 2 zuzüglich der lichten Höhe zwischen den beiden unteren Wärmetauscherplatten 2 entspricht.
Gemäß einer Variante des ersten Ausführungsbeispiels ist die Vertiefung 5 etwas tiefer als die Vertiefung 5 des ersten Ausführungsbeispiels ausgebildet, vorliegend etwa zweimal die Materialstärke der Wärmetauscherplatten 2 zuzüglich der lichten Höhe zwischen den beiden untersten Wärmetauscherplatten 2.
Gemäß dem zweiten Ausführungsbeispiel, das in Fig. 4a dargestellt ist und im Wesentlichen dem ersten Ausführungsbeispiel entspricht, weist die Grundplatte 3 zur Vermeidung übermäßiger Materialverdrängungen im Rahmen einer spanlosen Bearbeitung, auf ihrer Unterseite einen überstehenden Bereich 8 auf, etwa in einem Bereich in Fortsetzung der Wärmetauscherplatten 2. Hierbei hat der überstehende Bereich 8 einen ebenen Boden. Durch den überstehenden Bereich 8 kann eine größere Tiefe der Vertiefung 6 bei möglichst geringer Verformung und Materialverdrängung der Grundplatte 3 ermöglicht werden.
Gemäß einer in Fig. 4b dargestellten Variante entspricht die Tiefe der Ver- tiefung 5 etwa der Tiefe der Vertiefung 5 gemäß der Variante des ersten Ausführungsbeispiels.
In Fig. 5 ist als drittes Ausführungsbeispiel ein Schnitt durch einen Stapelscheiben-Ölkühler 1 dargestellt, der aus miteinander verbundenen Wärme- tauscherplatten 2 und einer Grundplatte 3 gebildet ist. Zwischen den Wärmetauscherplatten 2 sind nach außen hin abgeschlossene Hohlräume ausgebildet. Die Hohlräume sind dabei alternierend über jeweils zumindest eine Zu- und Abflussleitungen mit erstem bzw. zweitem Medium versorgt und werden auch von dem entsprechenden Medium durchströmt. Dabei sind die Platten derart profiliert, dass zwischen den jeweiligen Profilen der Wärmetauscherplatten 2 Berührungsstellen auftreten. Im Bereich dieser Berührungsstellen sind die Wärmetauscherplatten 2 miteinander stoffschlüssig verbunden, in der Regel verlötet. Dabei sind die Wärmetauscherplatten 2 so ausgestaltet, dass sich die zwischen den Wärmetauscherplatten 2 ausbil- dende Strömung von erstem bzw. zweitem Medium von der entsprechenden Zufluss Leitung zur entsprechenden Abflussleitung nicht geradlinig verläuft. Ein Beispiel einer derartigen Wärmetauscherplatte 2 ist in Fig. 8 dargestellt.
Dabei können die Wärmetauscherplatten 2 ein sich wiederholendes Wellen- profil aufweisen, das dann zumindest in einer Richtung quer zur Durchflussrichtung, welche die gerade Verbindung von den Eintrittsstellen des Mediums zu den Austrittsstellen ist, verläuft. Um diese Richtung herum verläuft das Wellenprofil zickzackförmig. Ein solches Wellenprofil bildet in einfacher Weise Strömungsleitbereiche, die geeignet sind die Strömung des den ent- sprechenden Hohlraum durchströmenden Mediums zu leiten. Die Strömung wird in ihrem Verlauf dadurch in vorteilhafter Weise mehrfach umgelenkt beziehungsweise durchströmt Bereiche, in denen der Abstand der Wärmetauscherplatten 2 zueinander unterschiedlich groß gestaltet ist. Daher variiert in diesen Bereichen die Strömungsgeschwindigkeit. Gleichzeitig wird in vorteil- harter Weise erreicht, dass das Medium insgesamt über die gesamte Fläche der Wärmetauscherplatten 2 verteilt wird und so ein möglichst optimiertes Ausnutzen der gesamten Wärmeaustauschfläche erfolgt. In Abhängigkeit von dem Strömungsverhalten (Viskosität) des durchströmenden Mediums treten auch turbulente Strömungen auf. Die sich immer wieder einstellenden Richtungsänderungen des Fluids im Kanal und sich im Bereich des sich öffnenden Wellenkanals unter Umständen ausbildende Wirbel reißen die sich bildende Grenzschicht immer wieder auf. Dies führt zu einem verbesserten Wärmeübergang.
Alternativ kann das Wellenprofil zwischen Strömungsbereichen geradlinig verlaufende Schenkel aufweisen, wobei der Verlauf des Wellenprofils durch die Schenkellänge der Schenkel, den zwischen den Schenkeln gegebenen Schenkelwinkel und die Profiltiefe des Wellenprofils charakterisiert ist. Das Profil eines Wellenprofils wird in seinem Querschnitt durch den Verlauf im Bereich der Schenkel sowie im Krümmungsbereich festgelegt, wobei bevor- zugte Ausgestaltungen eine Abweichung der Querschnittsform in diesen Bereichen vorsehen können.
Das zickzackförmig verlaufende Wellenprofil der Wärmetauscherplatten 2 wird dabei insbesondere durch die Schenkellänge, den Schenkelwinkel zwischen benachbarten Schenkeln sowie die Profiltiefe charakterisiert. Bevorzugte Ausgestaltungen der Erfindung sehen vor, dass die Schenkellänge im Bereich von 8 bis 15 Millimetern, vorzugsweise im Bereich von 9 bis 12 Millimetern liegt. Typische Werte der Profiltiefe - die sich beispielsweise aus dem Abstand zwischen einem Wellenkamm und der Plattenmittelebene be- misst - liegen im Bereich von 0,3 bis 1 ,5 mm. Für viele Anwendungen kann eine Profiltiefe zwischen 0,5 und 1 mm vorteilhaft sein, wobei Werte von ungefähr 0,75 mm bevorzugt sein können. Der Schenkelwinkel zwischen zwei Schenkeln des Wellenprofils beträgt vorzugsweise zwischen 45° und 135°. Insbesondere Werte um 90° stellen einen guten Kompromiss hinsichtlich Verteilung des Fluids, Durchströmgeschwindigkeit und Durchflussleistung des Wärmetauschers dar. Schenkellänge der Schenkelwinkel definieren zum einen die Strömungsleitfunktion des Wellenprofils zum anderen aber auch Berührungsstellen benachbarter Wärmetauscherplatten 2 aneinander, wel- ehe für die Stabilität des Wärmetauschers erforderlich ist. Die Eigensteifig- keit der Wärmetauscherplatten 2 gegenüber einer Druckbeaufschlagung durch die Medien, kann ohne die gegenseitige Abstützung nicht gewährleistet sein, wenn die Materialstärke der Wärmetauscherplatte 2 gering gewählt wird, wie dies bei vielen Anwendungen aus Gründen der Gewichtsersparnis sowie des Wärmeaustausches erwünscht ist. Dabei erfolgt in bevorzugter Ausgestaltung ein Verbinden der Wärmetauscherplatten 2 im Bereich der Berührungsstellen durch Hartlöten, wozu die Wärmetauscherplatten 2 zumindest einseitig mit einem Löthilfsmittel, wie Lötmittel, beschichtet sind. Die Auswahl von Schenkellänge und Schenkelwinkel erfolgt vorzugsweise in Ab- hängigkeit des durchströmenden Mediums und dessen Viskosität. Schenkellänge und Schenkelwinkel haben einen großen Einfluss auf die auftreten- den Strömungsgeschwindigkeiten und den damit verbundenen Wärmeaustausch, sodass diese an den jeweiligen Verwendungszweck angepasst werden. Die vorstehend genannten Werte beziehen sich dabei insbesondere auf die Verwendung von Wärmetauschern als Ölkühler bei Fahrzeugen, wo der Wärmeaustausch zwischen Motoröl und Kühlwasser erfolgt. Darüber hinaus sind sie natürlich auch von der Dimensionierung der Wärmetauscherplatten 2 und des sich aus dem Abstand der Wärmetauscherplatten 2 ergebenden Zwischenraum abhängig.
Die Gestalt des Wellenprofils wird im Wesentlichen durch die Form des
Querschnitts senkrecht zur Außenkante des Profils in diesem Bereich sowie die durch die Teilung festgelegte Abfolge der Profile aufeinander im Verlauf quer zur Erstreckungsrichtung eines Wellenprofils über die Wärmetauscherplatte 2 hinweg festgelegt. Bevorzugte Ausgestaltungen sehen eine kon- stante Teilung, also einen festen Abstand zweier beliebiger zueinander benachbarter Wellenprofile vor. Die Gestalt des Wellenprofils ist insbesondere dann vorteilhaft, wenn sie auf der Außenseite des Wellenrückens einen Flachbereich aufweist. Der Flachbereich weist dabei insbesondere eine Breite von 0,1 bis 0,4 mm auf. Der Flachbereich ermöglicht eine gute, flächi- ge Anlage zueinander benachbarter Wärmetauscherplatten 2 aneinander und damit eine leichte und stabile Herstellung der Abstützung bzw. Verbindung - wie durch Hartlöten - benachbarter Wärmetauscherplatten 2 miteinander.
Die Wärmetauscherplatten 2 können dabei sowohl untereinander identisch, einander entsprechend oder ähnlich oder unterschiedlich gestaltet sein. Untereinander identische Wärmetauscherplatten 2 weisen das hinsichtlich der charakteristischen Eigenschaften des Wellenprofils sowie der Gestalt des Wellenprofils identische Eigenschaften auf. Einander entsprechende Wär- metauscherplatten 2 sind im Aufbau einander gleich, jedoch ist es möglich, dass die Wärmetauscherplatten 2 beispielsweise voneinander verschiedene Schenkelwinkel aufweisen. Einander entsprechende Wärmetauscherplatten 2 weisen vorzugsweise eine voneinander unterschiedliche Gestalt des Wellenprofils und/oder voneinander verschiedene Werte charakterisierender Größen auf, sind jedoch hinsichtlich der Ausbildung des Randes sowie von Ausbildung von Vorder- und Rückseite der Wärmetauscherplatten 2 einander entsprechend. Die alternierende Verwendung beispielsweise zweier einander entsprechender Wärmetauscherplatten 2, die sich lediglich durch unterschiedliche Schenkelwinkel in den charakteristischen Größen unterscheiden, hat den Vorteil, dass die Position und relative Lage von Berührungs- stellen der Wärmetauscherplatten 2 aneinander im profilierten Bereich im Hinblick auf die erforderliche Steifigkeit und die erforderliche Durchströmung in einfacher Weise optimierbar sind.
Bei dem Material der Wärmetauscherplatten 2 und der Grundplatte 3 handelt es sich vorliegend um Aluminium. Dieses Material hat den Vorteil, eine niedere Dichte aufzuweisen und gleichzeitig das Erzeugen des Wellenprofils beispielsweise durch Prägen in einfacher Weise zu ermöglichen. Es kann zur Herstellung der Verbindung zweier benachbarter Platten im Bereich der Berührungsstellen sowie im Bereich der Ränder auf zumindest einer Seite vollflächig mit Löthilfsmittel wie Hartlot beschichtet sein. Je nach Auswahl des Löthilfsmittels sowie der Schichtdicke des Auftrags des Löthilfsmittels kann auch eine beidseitige Beschichtung mit Löthilfsmittel gegeben sein. Die Beschichtung mit Löthilfsmittel soll insbesondere im Bereich der Ränder und der Zu- und Abflussleitungen im Block dem zuverlässigen Herstellen einer fluiddichten Verbindung zweier Platten miteinander in einem Fügevorgang mit einem Fügewerkzeug (Hartlötofen) ohne Benutzen weiterer Hilfsmittel bzw. Hilfsstoffe dienen.
Die Verbindung zwischen den Wärmetauscherplatten 2 und zwischen der untersten Wärmetauscherplatte 2 und der Grundplatte 3 ist insbesondere durch Hartlöten hergestellt. Um im Bereich des Randes der Wärmetauscher- platten 2 eine gute Dichtwirkung und gleichzeitig einen stabilen Aufbau des Wärmetauschers zu erreichen, kann es vorgesehen sein, dass die Wärmetauscherplatten 2 einen abgekröpften Rand aufweisen, dessen Höhe so gewählt ist, dass wenigstens zwei zueinander benachbarte Wärmetauscher- platten 2 in diesem Randbereich aneinander anliegen und sich überlappen.
Die Anzahl der sich im Randbereich überlappenden Wärmetauscherplatten 2 kann dabei bis zu fünf betragen. Je größer die Anzahl der sich überlappenden Wärmetauscherplatten 2 ist, desto steifer ist die hierdurch gebildete und nach außen hin den Wärmetauscher abschließende Wandung. Dies unter- stützt gleichzeitig die Herstellung eines dauerhaft stabilen, widerstandsfähigen, fluiddichten Abschlusses der Wärmetauscherplatten 2 nach außen hin. Bevorzugte weiterführende Ausgestaltungen sehen dabei vor, dass das Wellenprofil sich bis in den Rand hinein und insbesondere über dessen gesamte Breite hinweg erstreckt. Dabei ist bei der Gestaltung des Wellenprofils darauf zu achten, dass die Wärmetauscherplatten 2 dennoch stapelbar bleiben, was dadurch geschieht, dass der Verlauf des Wellenprofils im Randbereich auf die Montagelage zweier benachbarter Wärmetauscherplatten 2 zueinander abgestimmt wird.
Figuren 6 und 7 zeigen eine dem dritten Ausführungsbeispiel entsprechende
Abwandlung mit einer Grundplatte 3, die auf ihrer Unterseite einen überstehenden Bereich 8 etwa in Fortsetzung der Wärmetauscherplatten 2 aufweist. Auch gemäß diesem Ausführungsbeispiel hat der überstehende Bereich 8 einen ebenen Boden.
Bezugszeichenliste
Scheibenstapel-Ölkühler Wärmetauscherplatte Grundplatte Vertiefung Oberseite überstehender Bereich

Claims

P a t e n t a n s p r ü c h e
Wärmetauscher, insbesondere Stapelscheiben-Ölkühler (1), in Scheibenbauweise, wobei zwei benachbarte Wärmetauscherplatten (2) einen Zwischenraum definieren, der von einem Wärmetauschermedium oder einem zu kühlenden oder zu erwärmenden zweiten Medium durchströmt ist, und an einem Ende eine Grundplatte (3) vorgesehen ist, die in zumindest im Wesentlichen flächiger Anlage an die benachbarte äußerste Wärmetauscherplatte (2) des Wärmetauschers ist, dadurch gekennzeichnet, dass die Grundplatte (3) eine Vertiefung (5) mit einer der Wärmetauscherplatte (2) entsprechend verlaufenden Kontur aufweist.
Wärmetauscher nach Anspruch 1 , dadurch gekennzeichnet, dass die Flanken der äußersten Wärmetauscherplatte zumindest in ihrem unteren Bereich an den Flanken der vertieft verlaufenden Kontur der Grundplatte (3) anliegen.
Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Rand der äußersten Wärmetauscherplatte
(2) über die Grundplatte
(3) übersteht.
4. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vertiefung (5) in der Grundplatte (3) größer als die Materialstärke der Wärmetauscherplatte (2) des Wärmetauschers ist.
5. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vertiefung (5) in der Grundplatte (3) mindestens so tief wie die Materialstärke der Wärmetauscherplatte (2) des Wärmetauschers zuzüglich der Hälfte der lichten Höhe zwischen der an der Grundplatte (3) anliegenden äußersten Wärmetauscherplatte (2) und der zweitäußersten Wärmetauscherplatte (2) ist.
6. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vertiefung (5) in der Grundplatte (3) minde- stens so tief wie die Materialstärke der Warmetauscherplatte (2) des Wärmetauschers zuzüglich der lichten Höhe zwischen der an der Grundplatte (3) anliegenden äußersten Wärmetauscherplatte (2) und der zweitäußersten Wärmetauscherplatte (2) ist.
7. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kontur in der Grundplatte mittels Prägen, Gießen oder spanender Bearbeitung hergestellt ist.
8. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Grundplatte (3) mindestens eine Versorgungsöffnung für eines der Medien aufweist.
9. Verwendung eines Wärmetauschers gemäß einem der Ansprüche 1 bis 8 als Ladeluft-/Kühlmittel-Kühler, Abgaskühler, Verdampfer oder Öl- kühler (1 ).
PCT/EP2004/013828 2004-01-23 2004-12-06 Wärmetauscher, insbesondere öl-/kühlmittel-kühler WO2005071342A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0418440-8A BRPI0418440A (pt) 2004-01-23 2004-12-06 trocador de calor, em particular, resfriador de meio de resfriamento e de óleo
EP04803538A EP1711768A1 (de) 2004-01-23 2004-12-06 Wärmetauscher, insbesondere öl-/kühlmittel-kühler
JP2006549901A JP2007518958A (ja) 2004-01-23 2004-12-06 熱交換器、特に油・冷却材冷却器
US10/585,971 US20080257536A1 (en) 2004-01-23 2004-12-06 Heat Exchanger, Especially Oil/Coolant Cooler
MXPA06008292A MXPA06008292A (es) 2004-01-23 2004-12-06 Cambiador de calor, especialmente enfriador de aceite/refrigerante.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003790A DE102004003790A1 (de) 2004-01-23 2004-01-23 Wärmetauscher, insbesondere Öl-/Kühlmittel-Kühler
DE102004003790.6 2004-01-23

Publications (1)

Publication Number Publication Date
WO2005071342A1 true WO2005071342A1 (de) 2005-08-04

Family

ID=34745107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/013828 WO2005071342A1 (de) 2004-01-23 2004-12-06 Wärmetauscher, insbesondere öl-/kühlmittel-kühler

Country Status (7)

Country Link
US (1) US20080257536A1 (de)
EP (1) EP1711768A1 (de)
JP (1) JP2007518958A (de)
BR (1) BRPI0418440A (de)
DE (1) DE102004003790A1 (de)
MX (1) MXPA06008292A (de)
WO (1) WO2005071342A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144977A (ja) * 2006-12-06 2008-06-26 Mahle Filter Systems Japan Corp オイルクーラ
DE102007030563A1 (de) 2007-06-30 2009-01-02 Modine Manufacturing Co., Racine Plattenwärmetauscher und Montageverfahren
US20090107661A1 (en) * 2005-08-26 2009-04-30 Swep International Ab End plate for plate heat exchanger
JP2009521659A (ja) * 2005-12-22 2009-06-04 アルファ ラヴァル コーポレイト アクチボラゲット プレート熱交換器用の手段
US20100006275A1 (en) * 2007-02-26 2010-01-14 Alfa Laval Corporate Ab Plate heat exchanger
WO2010044726A1 (en) * 2008-10-16 2010-04-22 Alfa Laval Corporate Ab Heat exchanger
WO2011032893A2 (de) 2009-09-15 2011-03-24 Mahle International Gmbh Plattenwärmetauscher
WO2011006825A3 (de) * 2009-07-16 2011-06-23 Mahle International Gmbh Plattenwärmetauscher mit mehreren übereinander gestapelten platten
JP2013213666A (ja) * 2013-07-11 2013-10-17 Alfa Laval Corporate Ab プレート熱交換器
CN103423873A (zh) * 2013-07-29 2013-12-04 无锡方盛换热器制造有限公司 大型油冷却器用加热装置
EP2557383A3 (de) * 2011-08-11 2014-03-05 MAHLE International GmbH Plattenwärmetauscher
US9103597B2 (en) 2008-04-04 2015-08-11 Alfa Laval Corporate Ab Plate heat exchanger
FR3080444A1 (fr) * 2018-04-19 2019-10-25 Valeo Systemes Thermiques Echangeur thermique comprenant des tubulures de raccordement pour l'alimentation et l'evacuation d'un fluide caloporteur
US11592238B2 (en) 2017-11-23 2023-02-28 Watergen Ltd. Plate heat exchanger with overlapping fins and tubes heat exchanger

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846397B1 (fr) * 2002-10-29 2007-04-13 Air Liquide Structure de raccordement pour la connexion d'un troncon de circuit de fluide a une chambre, et cellule de pile a combustible en comportant
DE102005034305A1 (de) * 2005-07-22 2007-01-25 Behr Gmbh & Co. Kg Plattenelement für einen Plattenkühler
WO2007038871A1 (en) 2005-10-05 2007-04-12 Dana Canada Corporation Reinforcement for dish plate heat exchangers
DE102006022445A1 (de) * 2006-05-13 2007-11-15 Modine Manufacturing Co., Racine Wärmetauscher, insbesondere Ölkühler
JP4740064B2 (ja) * 2006-08-15 2011-08-03 株式会社マーレ フィルターシステムズ オイルクーラ
DE102007011762B4 (de) * 2007-03-10 2015-12-10 Modine Manufacturing Co. Wärmetauscher, insbesondere Ölkühler für Kraftfahrzeuge
CN102245992B (zh) 2008-12-17 2014-06-25 舒瑞普国际股份公司 加强的热交换器
WO2010069871A1 (en) * 2008-12-17 2010-06-24 Swep International Ab High pressure port on peninsula
DE102009030095A1 (de) * 2009-06-22 2010-12-23 Behr Gmbh & Co. Kg Stapelscheibenkühler
DE102009035239A1 (de) * 2009-07-29 2011-04-14 Behr Gmbh & Co. Kg Stapelscheiben-Kühler, Verwendung des Stapelscheiben-Kühlers und Brennkraftmaschine mit einem Stapelscheiben-Kühler
US20110024095A1 (en) * 2009-07-30 2011-02-03 Mark Kozdras Heat Exchanger with End Plate Providing Mounting Flange
WO2011117988A1 (ja) * 2010-03-25 2011-09-29 三菱電機株式会社 プレート熱交換器及びプレート熱交換器の製造方法及びヒートポンプ装置
SE534918C2 (sv) 2010-06-24 2012-02-14 Alfa Laval Corp Ab Värmeväxlarplatta och plattvärmeväxlare
JP5298100B2 (ja) 2010-11-15 2013-09-25 トヨタ自動車株式会社 車両用熱交換器
DE102010063141A1 (de) 2010-12-15 2012-06-21 Mahle International Gmbh Wärmetauscher
FR2978538B1 (fr) * 2011-07-25 2015-06-19 Valeo Systemes Thermiques Plaque d'echangeur de chaleur.
DE102011080828A1 (de) * 2011-08-11 2013-02-14 Mahle International Gmbh Plattenwärmetauscher
WO2013159172A1 (en) * 2012-04-26 2013-10-31 Dana Canada Corporation Heat exchanger with adapter module
US20140196870A1 (en) * 2013-01-17 2014-07-17 Hamilton Sundstrand Corporation Plate heat exchanger
JP6376836B2 (ja) * 2013-08-22 2018-08-22 株式会社マーレ フィルターシステムズ 熱交換器
DE102013220212A1 (de) 2013-10-07 2015-04-09 Behr Gmbh & Co. Kg Wärmeübertrager
DE102013220313B4 (de) * 2013-10-08 2023-02-09 Mahle International Gmbh Stapelscheiben-Wärmetauscher
JP6192564B2 (ja) * 2014-02-18 2017-09-06 日新製鋼株式会社 プレート式熱交換器およびその製造方法
DE102014212942A1 (de) * 2014-07-03 2016-01-07 Mahle International Gmbh Stapelscheibenkühler
DE102014110459A1 (de) * 2014-07-24 2016-01-28 Mahle International Gmbh Wärmeübertrager
DE102015200657A1 (de) * 2015-01-16 2016-08-04 Mahle International Gmbh Brennkraftmaschine
DE102016201712A1 (de) * 2016-02-04 2017-08-10 Mahle International Gmbh Stapelscheibenwärmetauscher, insbesondere für ein Kraftfahrzeug
DE102016203951A1 (de) * 2016-03-10 2017-09-14 Mahle International Gmbh Wärmeübertrager
SE541284C2 (en) * 2016-05-30 2019-06-11 Alfa Laval Corp Ab A plate heat exchanger
DE102017216819B4 (de) * 2017-09-22 2021-03-11 Hanon Systems Abgaskühler und Abgasrückführsystem mit einem Abgaskühler
US11274884B2 (en) 2019-03-29 2022-03-15 Dana Canada Corporation Heat exchanger module with an adapter module for direct mounting to a vehicle component
DE102020201131A1 (de) * 2020-01-30 2021-08-05 Mahle International Gmbh Wärmeübertrager-Platte für einen Wärmeübertrager, insbesondere für einen Stapelscheiben-Wärmeübertrager oder für einen Platten-Wärmeübertrager

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD286857A5 (de) * 1989-07-31 1991-02-07 Veb Messgeraetewerk,De Plattenwaermeaustauscher
US5165468A (en) * 1990-08-06 1992-11-24 Calsonic Co., Ltd. Oil cooler for automatic transmission
DE19711258A1 (de) * 1997-03-18 1998-09-24 Behr Gmbh & Co Stapelscheiben-Ölkühler
WO2002057699A1 (en) * 2001-01-17 2002-07-25 Samsung Climate Control Co., Ltd. Water cooling heat exchanger
EP1491837A2 (de) * 2003-06-26 2004-12-29 Modine Manufacturing Company Wärmetauscher in gehäuseloser Plattenbauweise

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064224Y2 (ja) * 1987-01-30 1994-02-02 株式会社土屋製作所 プレート型熱交換器
US4872578A (en) * 1988-06-20 1989-10-10 Itt Standard Of Itt Corporation Plate type heat exchanger
JPH0326231U (de) * 1989-07-24 1991-03-18
JPH0674672A (ja) * 1992-08-25 1994-03-18 Hisaka Works Ltd プレート式熱交換器
JPH08159685A (ja) * 1994-12-08 1996-06-21 Toyo Radiator Co Ltd 積層型熱交換器コア
DE19511991C2 (de) * 1995-03-31 2002-06-13 Behr Gmbh & Co Plattenwärmetauscher
DE19519740B4 (de) * 1995-06-02 2005-04-21 Mann + Hummel Gmbh Wärmetauscher
JP3341075B2 (ja) * 1996-09-20 2002-11-05 本田技研工業株式会社 自動車用オイルクーラ
DE19722074A1 (de) * 1997-05-27 1998-12-03 Knecht Filterwerke Gmbh Plattenwärmetauscher, insbesondere Öl/Kühlmittel-Kühler für Kraftfahrzeuge
FR2795165B1 (fr) * 1999-06-21 2001-09-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, en particulier refroidisseur d'huile pour vehicule automobile
FR2795167B1 (fr) * 1999-06-21 2001-09-14 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, notamment pour refroidir une huile d'un vehicule automobile
DE10021481A1 (de) * 2000-05-03 2001-11-08 Modine Mfg Co Plattenwärmetauscher
JP3766016B2 (ja) * 2001-02-07 2006-04-12 カルソニックカンセイ株式会社 燃料電池用熱交換器
JP4077610B2 (ja) * 2001-03-16 2008-04-16 カルソニックカンセイ株式会社 ハウジングレス式オイルクーラ
EP1411311A1 (de) * 2002-10-17 2004-04-21 Jean Luc Deloy Aufwärmevorrichtung mit Wärmetauschersystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD286857A5 (de) * 1989-07-31 1991-02-07 Veb Messgeraetewerk,De Plattenwaermeaustauscher
US5165468A (en) * 1990-08-06 1992-11-24 Calsonic Co., Ltd. Oil cooler for automatic transmission
DE19711258A1 (de) * 1997-03-18 1998-09-24 Behr Gmbh & Co Stapelscheiben-Ölkühler
WO2002057699A1 (en) * 2001-01-17 2002-07-25 Samsung Climate Control Co., Ltd. Water cooling heat exchanger
EP1491837A2 (de) * 2003-06-26 2004-12-29 Modine Manufacturing Company Wärmetauscher in gehäuseloser Plattenbauweise

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1711768A1 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107661A1 (en) * 2005-08-26 2009-04-30 Swep International Ab End plate for plate heat exchanger
US8684071B2 (en) * 2005-08-26 2014-04-01 Swep International Ab End plate for plate heat exchanger
JP2009521659A (ja) * 2005-12-22 2009-06-04 アルファ ラヴァル コーポレイト アクチボラゲット プレート熱交換器用の手段
JP2008144977A (ja) * 2006-12-06 2008-06-26 Mahle Filter Systems Japan Corp オイルクーラ
US20100006275A1 (en) * 2007-02-26 2010-01-14 Alfa Laval Corporate Ab Plate heat exchanger
US8662152B2 (en) * 2007-02-26 2014-03-04 Alfa Laval Corporate Ab Plate heat exchanger
DE102007030563A1 (de) 2007-06-30 2009-01-02 Modine Manufacturing Co., Racine Plattenwärmetauscher und Montageverfahren
US9103597B2 (en) 2008-04-04 2015-08-11 Alfa Laval Corporate Ab Plate heat exchanger
TWI427258B (zh) * 2008-10-16 2014-02-21 Alfa Laval Corp Ab 熱交換器
WO2010044726A1 (en) * 2008-10-16 2010-04-22 Alfa Laval Corporate Ab Heat exchanger
CN102216718A (zh) * 2008-10-16 2011-10-12 阿尔法拉瓦尔股份有限公司 换热器
CN102483310A (zh) * 2009-07-16 2012-05-30 马勒国际有限公司 具有多个彼此堆叠的板的板式热交换器
WO2011006825A3 (de) * 2009-07-16 2011-06-23 Mahle International Gmbh Plattenwärmetauscher mit mehreren übereinander gestapelten platten
US9528773B2 (en) 2009-07-16 2016-12-27 Mahle International Gmbh Plate heat exchanger having a plurality of plates stacked one upon the other
DE102009041524A1 (de) 2009-09-15 2011-03-24 Mahle International Gmbh Plattenwärmetauscher
WO2011032893A2 (de) 2009-09-15 2011-03-24 Mahle International Gmbh Plattenwärmetauscher
US9353656B2 (en) 2009-09-15 2016-05-31 Mahle International Gmbh Plate heat exchanger
EP2557383A3 (de) * 2011-08-11 2014-03-05 MAHLE International GmbH Plattenwärmetauscher
JP2013213666A (ja) * 2013-07-11 2013-10-17 Alfa Laval Corporate Ab プレート熱交換器
CN103423873A (zh) * 2013-07-29 2013-12-04 无锡方盛换热器制造有限公司 大型油冷却器用加热装置
US11592238B2 (en) 2017-11-23 2023-02-28 Watergen Ltd. Plate heat exchanger with overlapping fins and tubes heat exchanger
FR3080444A1 (fr) * 2018-04-19 2019-10-25 Valeo Systemes Thermiques Echangeur thermique comprenant des tubulures de raccordement pour l'alimentation et l'evacuation d'un fluide caloporteur
WO2019202261A3 (fr) * 2018-04-19 2019-12-12 Valeo Systemes Thermiques Echangeur thermique comprenant des tubulures de raccordement pour l'alimentation et l'evacuation d'un fluide caloporteur

Also Published As

Publication number Publication date
BRPI0418440A (pt) 2007-05-22
JP2007518958A (ja) 2007-07-12
MXPA06008292A (es) 2007-01-26
US20080257536A1 (en) 2008-10-23
DE102004003790A1 (de) 2005-08-11
EP1711768A1 (de) 2006-10-18

Similar Documents

Publication Publication Date Title
WO2005071342A1 (de) Wärmetauscher, insbesondere öl-/kühlmittel-kühler
EP1654508B2 (de) Wärmeübertrager sowie verfahren zu dessen herstellung
EP1707911B1 (de) Wärmetauscher, beispielsweise Ladeluftkühler und Herstellungsverfahren
EP1725824B1 (de) Stapelscheiben-wärmetauscher
EP1910764B2 (de) Plattenelement für einen plattenkühler
EP1856734B1 (de) Mikrowärmeübertrager
EP1739378A1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE10347181B4 (de) Wärmetauscher, insbesondere Ölkühler
DE19961826A1 (de) Verdampfer, Heiz- und/oder Klimaanlage und Fahrzeug mit einem solchen Verdampfer
EP2962056B1 (de) Wärmeübertrager
EP1256772A2 (de) Wärmetauscher
EP1842020B1 (de) Stapelscheiben-wärmetauscher
EP2575418A1 (de) Elektronikkühler und Verfahren zum Herstellen eines Elektronikkühlers
DE202008013351U1 (de) Wärmeaustauschernetz und damit ausgerüsteter Wärmeaustauscher
DE202017102436U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
EP3491323B1 (de) Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur
DE112004000481T5 (de) Wärmetauscher mit Seitenplatten-Oberflächenkühlung
EP1861877B1 (de) Vorrichtung zur Kühlung von elektronischen Bauteilen
DE102010050519A1 (de) Wärmetauscher
DE102022103720A1 (de) Wärmeübertrager mit optimiertem Druckverlust
EP1788336A2 (de) Stapelscheibenwärmeübertrager, insbesondere Ölkühler für Kraftfahrzeuge
EP2789962A1 (de) Stapelscheiben-Wärmetauscher
DE102020213172A1 (de) Stapelscheibe für einen Stapelscheibenwärmeübertrager und zugehöriger Stapelscheibenwärmeübertrager
DE112004002278T5 (de) Hartgelötete Bögen mit ausgerichteten Öffnungen und daraus ausgebildeter Wärmetauscher
EP2189747A2 (de) Wärmeübertrager mit zweiteiligem Sammelkasten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004803538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006549901

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10585971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/008292

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2004803538

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0418440

Country of ref document: BR