US20140196870A1 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
US20140196870A1
US20140196870A1 US13/743,986 US201313743986A US2014196870A1 US 20140196870 A1 US20140196870 A1 US 20140196870A1 US 201313743986 A US201313743986 A US 201313743986A US 2014196870 A1 US2014196870 A1 US 2014196870A1
Authority
US
United States
Prior art keywords
plate
main
end plate
heat exchanger
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/743,986
Inventor
Richard Rusich
Michael R. Barone
Matthew William Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Priority to US13/743,986 priority Critical patent/US20140196870A1/en
Assigned to HAMILTON SUNDSTRAND CORPORATION reassignment HAMILTON SUNDSTRAND CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILLER, MATTHEW WILLIAM, BARONE, MICHAEL R., Rusich, Richard
Priority to EP14151384.6A priority patent/EP2757337B1/en
Publication of US20140196870A1 publication Critical patent/US20140196870A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/005Arrangements for preventing direct contact between different heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/16Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage

Definitions

  • Embodiments of the invention relate to a plate heat exchanger, and in particular to end plates of plate heat exchanger.
  • Plate heat exchangers are widely used in the commercial industry as a means of exchanging energy between two liquids.
  • the construction consists of a series of main plates having ribbed patterns on their surfaces and stacked one on top of the other. This arrangement forms channels between the plates through which the two liquids pass.
  • the main plates incorporate local depressions in the port areas which alternately block off the flow passage from the port to the fin channels. In this way each port is hydraulically connected to every other fin channel.
  • Each plate is coated with a braze filler metal. The entire heat exchanger assembly is placed in a furnace where the filler metal is melted creating a metallurgical bonds between the plates and forming a fluid seal.
  • Plate heat exchangers include top and bottom seal plates and top and bottom outer plates on outward-facing surfaces of the top and bottom seal plates, respectively.
  • the top seal plate has a smooth surface and the bottom seal plate has a ribbed inward-facing surface (toward a center of the plate heat exchanger) and a smooth outward-facing surface (away from the center of the plate heat exchanger).
  • the top and bottom seal plates form the outer pressure vessel of the heat exchanger.
  • individual seals or seal slugs must be installed to block off the flow passage from an inlet port to a flow channel in the plate heat exchanger.
  • the seal slugs are positioned around the inlets between the top seal plate and an adjacent main plate. However, the position of the individual seal slugs can shift during assembly and therefore are prone to cause fluid leakage of the heat exchanger.
  • ambient air can migrate into the space between the top seal plate and top outer plate. While the fluids passing through the heat exchanger may exhibit low freezing points that allow their temperatures to fall below 0° F. ( ⁇ 17.78° C.) without affecting the liquid states of the fluids, moisture within the ambient air freezes at 32° F.(0° C.). Consequently, the moisture in trapped between the top seal plate and the top outer plate may expand and crack the heat exchanger plates resulting in fluid leakage.
  • the draft angle of flanges of the main plates are chosen to ensure a proper braze seal between each main plate.
  • the raised ribbed areas (herringbones) control the distance of separation between adjacent plates.
  • a top seal plate having a flange with a same draft angle as an adjacent main plate may result in a poor fit, since the top seal plate does not include ridges. The poor fit may result in poor braze adhesion and fluid leakage.
  • the heat exchanger is subjected to stresses from the internal fluid pressures.
  • the top plate and bottom plate provided support and stiffness to resist the internal pressure.
  • the load emanating from the fluid pressure in the vicinity of the ports is commonly called a plug load.
  • the area immediately surrounding the port areas is inherently subjected to high stresses due to the reduction of material (port holes) which must exist to allow fluid flow. Insufficient material around the port holes results in the inability of the heat exchanger to withstand low cycle fatigue resulting from pressure cycles of the liquids, ultimately leading to cracks and fluid leakage.
  • the addition of excess material to compensate for the local high stresses would result in large weight penalties which cannot be tolerated in some applications, such as aerospace applications.
  • a position tolerance of the ports is subject to the ability to maintain a repeatable and consistent stack height of the main plates. Small variations in material thickness of the main plates (in the order of thousandths of an inch) will multiply by the number of main plates.
  • An eighty-plate heat exchanger for example can differ in stack height from unit to unit by 20 millimeters (mm) if each main plate had a variation of just 0.25 mm.
  • the resultant position tolerance of the ports can be 2.5 mm for example. This large variation from unit to unit is unacceptable for installations where precision is critical.
  • Mounting studs are conventionally welded to the thin top plate and bottom plate prior to furnace braze of the heat exchanger assembly. This requires time consuming welding and flush grinding of the underlying surfaces of the top and bottom plates adjacent to the studs to ensure a smooth uninterrupted surface against the adjacent main plates. The resultant strength of the stud retention is dramatically reduced. Also, the relatively thin top and bottom plates prevent sufficient thread engagement yielding a large variation in position tolerance of the studs. Additionally, the fluid fittings are historically welded to the weld stubs after furnace brazing. This requires time consuming welding and greater position tolerance of the final location of the fittings. The large variation from unit to unit is unacceptable for installations where precision is critical.
  • Embodiments of the present invention include a plate heat exchanger that includes a plurality of main plates having ridges and troughs to direct first and second flows of fluids across the main plates to exchange heat between the fluids while maintaining the first and second flows of fluids separate from each other.
  • the heat exchanger also includes a first end plate including first and second inlets to provide the first and second flows to the plurality of main plates and first and second outlets to output the first and second flows from the plurality of main plates.
  • the first end plate includes a substantially flat inside surface configured to contact the ridges of a first main plate among the plurality of main plates and at least one slot formed in the substantially flat surface to provide a fluid communication of the first fluid flow between the inlet and a cavity formed by the first end plate and the first main plate.
  • Embodiments of the invention further include a plate heat exchanger including a plurality of main plates having a ridged region including ridges and troughs to direct first and second flows of fluids across the main plates to exchange heat between the fluids while maintaining the first and second flows of fluids separate from each other.
  • Each of the plurality of main plates further includes a flange extending from the ridged region at an oblique angle.
  • the plate heat exchanger further includes a first end plate including first and second inlets to provide the first and second flows to the plurality of main plates and first and second outlets to output the first and second flows from the plurality of main plates.
  • the first end plate includes a substantially flat main surface configured to contact the ridged region of a first main plate among the plurality of main plates and a flange surrounding the main surface and extending at an oblique angle with respect to the main surface.
  • the flange of the first end plate has a draft angle less than a draft angle of the flange of the first main plate.
  • FIG. 1 is an exploded view of a plate heat exchanger according to one embodiment
  • FIG. 2A is a perspective view of a bottom end plate according to an embodiment
  • FIG. 2B is a cut-away view of a portion of a bottom end plate according to an embodiment
  • FIG. 3A is a top view of a top end plate according to one embodiment
  • FIG. 3B is a cut-away view of the top end plate according to an embodiment
  • FIG. 3C is a top view of a top end plate according to another embodiment
  • FIG. 3D is a cut-away view of the top end plate according to an embodiment
  • FIG. 3E is a cut-away view of the top end plate and a main plate according to an embodiment
  • FIG. 4A illustrates a flange of a top end plate according to one embodiment
  • FIG. 4B illustrates the flange of the top end plate in contact with a main plate according to one embodiment
  • FIG. 4C illustrates a bottom end plate in contact with a main plate according to one embodiment
  • FIG. 5A illustrates a perspective view of an outward-facing side of a top end plate according to one embodiment
  • FIG. 5B illustrates a perspective view of an outward-facing side of a bottom end plate according to one embodiment
  • FIG. 6 illustrates the mounting of a stud according to a conventional configuration
  • FIG. 7 illustrates a stud-mounting portion of an end plate according to one embodiment of the invention.
  • FIG. 8 illustrates a cut-away view of a portion of a top end plate and a fluid fitting according to one embodiment.
  • Embodiments of the invention relate to a plate heat exchanger having end plates configured to improve the structural integrity of the plate heat exchanger, reducing cracking and leaks.
  • FIG. 1 is an exploded view of a plate heat exchanger 100 according to one embodiment.
  • the plate heat exchanger 100 includes main plates 110 having ridged regions 111 and openings 112 corresponding to inlets and outlets of a fluid.
  • the ridged regions 111 may have a herringbone or chevron pattern to increase a surface area of the main plate 110 contacted by the fluid and to generate turbulence in the fluid.
  • the openings 112 of the main plates may be provided, alternatingly, with protrusions or recesses surrounding the openings 112 to alternate a fluid that enters a cavity between the main plates. For example, a first fluid may enter first, third and fifth cavities between the main plates, and a second fluid may enter second, fourth and sixth cavities. The fluids are maintained separate and exchange heat as they flow through the cavities.
  • the plate heat exchanger 100 includes a first end plate 120 , also referred to herein as a top end plate 120 for purposes of description.
  • the plate heat exchanger 100 also includes a second end plate 130 , also referred to herein as a bottom end plate 130 for purposes of description.
  • the top end plate 120 and bottom end plate 130 are positioned at opposite sides of the plurality of main plates 110 . It is understood that although the terms “top” and “bottom” may be used for purposes of description, embodiments of the invention encompass a plate heat exchanger 110 having the first and second end plates 120 and 130 arranged with any spatial alignment relative to an earth plane.
  • the illustrated top end plate 120 includes openings 122 to receive fluid fittings 151 , 152 , 153 and 154 .
  • a first fluid may be input to the plate heat exchanger 100 via a fluid fitting 150 and output from the heat exchanger via a fluid fitting 152 .
  • Another fluid may be input to the plate heat exchanger 100 via the fluid fitting 153 and output from the plate heat exchanger 100 via the fluid fitting 154 .
  • Weld stubs 155 , 156 , 157 and 158 may also be provided between a wide portion of the fluid fittings 151 , 152 , 153 and 154 and the top end plate 120 .
  • FIG. 1 While particular shapes are used in FIG. 1 to represent the main plates 110 , end plates 120 and 230 , fittings 151 , 152 , 153 and 154 , it is understood that these and other elements may have any desired shape.
  • the main plates 110 may have substantially rectangular, square, oval or any polygonal shape.
  • the openings 112 and 122 may have a round shape, oval shape, square shape, or any other desired shape.
  • Embodiments of the invention are not limited to the shapes illustrated, but include plate heat exchangers having any desired shape.
  • FIGS. 2A and 2B illustrate an integrated seal feature of a bottom end plate 230 according to one embodiment.
  • the bottom end plate 230 may correspond to the bottom end plate 130 of FIG. 1 .
  • the bottom end plate 230 includes an inward-facing surface 231 , inlet regions 232 a and 232 b and outlet regions 232 c and 232 d .
  • the inlet region 232 b and the outlet region 232 d each include a raised portion 233 , which may also be referred to as a protrusion 233 , surrounding an area corresponding to an opening in an adjacent main plate to prevent a first flow fluid from flowing across the surface 230 from the inlet region 232 b and from flowing out from the surface 230 via the outlet region 232 d .
  • inlet region 232 a and outlet region 232 c include no such raised portion 233 or protrusion. Consequently, fluid from the inlet region 232 a flows over the inward-facing surface 231 and out through an opening in an adjacent main plate at the outlet region 232 c.
  • the top end plate includes similar raised portions.
  • the inlet regions and outlet regions of the top plate are open to permit the flow of fluid through the top plate, such as by inserting fluid fittings or ports into the top plate.
  • the raised portions on an inward-facing surface surrounding one inlet and one outlet of the top plate prevent fluid from flowing in a cavity between the top plate and an adjacent main plate.
  • the absence of the raised portions around another of the inlets and outlets permits fluid flow into and out from the cavity between the top plate and an adjacent main plate.
  • FIGS. 3A to 3E illustrate a top end plate 320 including flow-permitting slots according to one embodiment.
  • the top end plate 320 may correspond to the top end plate 120 of FIG. 1 .
  • a view of the figures is of a top side 329 or outward-facing side 329 of the top end plate 320 .
  • Dashed lines represent features on an underside 330 of the top end plate 320 relative to the viewpoint of the figure (or in other words, features located on an inward-facing side 330 ).
  • Dashed and dotted lines represent features on a main plate 370 (of FIG. 3E , for example) adjacent to the inward-facing side which are illustrated for purposes of description.
  • the top end plate 320 includes openings 322 a , 322 b , 322 c and 322 d corresponding to fluid inlets and outlets.
  • opening 322 c will be described as a fluid inlet 322 c
  • opening 322 d will be described as a fluid outlet 322 d .
  • Depressions or slots 323 , 324 , 325 and 326 are formed in the inward-facing surface 330 of the top end plate 320 . Slots 323 and 325 connect to, and extend radially from the inlet 322 c and the outlet 322 d , respectively.
  • Slots 324 and 326 may be connected to the slots 323 and 325 , and may partially surround the inlet 322 c and the outlet 322 d , respectively, along an outer edge of the inward-facing surface 330 of the top end plate 320 .
  • a slot 327 may extend lengthwise along a center of the top end plate 320 .
  • the slot 327 may be off-center.
  • the location of the slot 327 is positioned to correspond to an apex of the herringbones or chevrons 311 of an adjacent main plate 370 (in FIG. 3E , for example). While only a few ridges 311 are illustrated in FIGS. 3A and 3C for purposes of description, it is understood that ridges 311 of the adjacent main plate extend over an entire surface of the adjacent main plate.
  • fluid F When fluid F is input to the opening 322 c from an external source and input to the opening 322 d from a channel within the plate heat exchanger, fluid F from the openings 322 c and 322 d enters the slots 323 and 325 , and from the slots 323 and 325 , the fluid is transmitted to the slots 324 and 326 .
  • the slots 324 and 326 are in fluid communication with troughs located between the ridges 311 of the adjacent main plate. Accordingly, fluid F from the slots 324 and 326 flows through the troughs between the ridges 311 to the slot 327 . From the slot 327 , the fluid F may flow into any trough between ridges 311 of the main plate. Consequently, the fluid F may fill every cavity between the top end plate 320 and the adjacent main plate.
  • the space between the top end plate 320 and the adjacent main plate is hermetically sealed, such as via a braze joint, from the ambient environment.
  • This may be accomplished in one embodiment by incorporating a flange 334 to the top end plate 320 with the proper draft angle to ensure that the faying surface 335 between the top end plate flange 334 and the adjacent main plate flange 336 is brazed and entirely sealed from the ambient environment. This may reduce ambient moisture from entering this space and subsequently freeze and rupture the plates.
  • the space between the plates which may also be referred to as a dead zone 371 , is pressurized with one of the fluids F entering the heat exchanger. Any voids in the braze will be immediately detected as an external leak during final test of the heat exchanger. A hermetically sealed joint may be detected by detecting no evidence of leakage.
  • the port area, or the openings 322 c and 322 d and the dead zone may be hydraulically connected.
  • the slots 323 , 324 , 325 , 326 and 327 are strategically located to allow fluid pressure to enter each and every herringbone space between the top end plate 320 and the adjacent main plate 370 .
  • top end plate 320 is illustrated in FIGS. 3A to 3E , similar slots may be formed in the bottom end plate, such as the bottom end plate 130 of FIG. 1 , to similarly pressurize the dead zone 371 between the bottom end plate and an adjacent main plate.
  • a raised portion 328 or protrusion 328 surrounds the opening 322 a to prevent fluid from the opening 322 a from entering the dead zone 371 between the top end plate 320 and an adjacent main plate 370 .
  • the raised portion 328 is illustrated with dashed lines in FIGS. 3A and 3C .
  • FIGS. 3A and 3B illustrate slots 323 , 324 , 325 and 326
  • any configuration of slots may be used that allow for the fluid F from at least one of the openings 322 a , 322 b , 322 c and 322 d to fill the dead zone between the top end plate 320 and an adjacent main plate 370 .
  • FIGS. 3C and 3D illustrate an embodiment in which a slot 332 or depression 332 is formed to entirely or substantially surround the openings 322 c and 322 d .
  • the slot 322 may be in fluid communication with the troughs between ridges 311 of the adjacent main plate 370 (of FIG.
  • FIGS. 4A to 4C illustrate faying surfaces of end plates according to embodiments of the present invention.
  • the top end plate 420 may correspond to the top end plate 120 of FIG. 1
  • the bottom end plate 430 may correspond to the bottom end plate 130 of FIG. 1 .
  • FIG. 4A illustrates a top end plate 420 including a body 421 and a flange 422 extending downward and away from the body 421 .
  • a first axis X which may also be referred to for purposes of description as horizontal axis X
  • a second axis Y also referred to as a vertical axis Y
  • the flange 422 may extend outward from the body at an acute angle A relative to the vertical axis Y.
  • the inside surface 424 of the flange 422 which is also referred to as the faying surface 424 may be at an obtuse angle A 1 relative to the inward-facing surface 425 .
  • the flange 422 may also include a protrusion 423 at its end that bends outward toward the horizontal axis X.
  • FIG. 4A also illustrates a main plate 410 , which may correspond to one of the main plates 110 of FIG. 1 .
  • the main plate 410 is adjacent to the top end plate 420 and is configured to be bonded to the top end plate 420 on an outside flange surface 413 and ridge peaks 414 , such as by brazing.
  • the main plate 410 includes ridges 411 having peaks 414 and a flange 412 extending downward from the ridges 414 .
  • a line passing through a substantially center portion of each of the ridges 411 defines the horizontal axis X.
  • the flange 412 extends downward from the ridges 411 to be at an acute angle B relative to the vertical axis Y, and at an obtuse angle B 1 relative to the horizontal axis X, as measured along an inside arc from an inside surface 414 of the flange 412 to a portion of the axis X along the ridges 411 .
  • the angles A and B are also referred to as draft angles A and B.
  • the draft angle A is different than the draft angle B.
  • the draft angle A may be less than the draft angle B, and the angle A 1 may be less than the angle B 1 .
  • the top end plate 420 is configured to be mounted onto the main plate 410 , such that the inward-facing surface 425 contacts the peaks 414 of the ridges 411 of the main plate 410 , while at the same time the inward-facing surface 424 of the flange 422 contacts the outer surface 413 of the flange 412 .
  • the flange 422 does not contact the flange 412 along an entire length of the flange 412 , but only along a narrow region that defines the line contact around an entire circumference of the flange 412 .
  • the bottom end plate 430 includes an upper surface 432 , or an inward-facing surface 432 , which defines the horizontal axis X.
  • the vertical axis Y is perpendicular to the horizontal axis X.
  • An outer side or surface 431 of the bottom end plate 430 has a draft angle C.
  • a main plate 415 adjacent to the bottom end plate 430 has ridges 416 with peaks 419 contacting the inside-facing surface 432 of the bottom end plate 430 .
  • the main plate 415 includes a flange 418 extending over the outer surface 431 of the bottom end plate 430 and having a draft angle D.
  • the draft angle C is greater than the draft angle D.
  • a “line contact” is formed around the periphery of the outer surface 431 and the inner surface 417 of the flange 418 .
  • FIGS. 5A and 5B illustrate strengthening structures of a top end plate 510 and a bottom end plate 530 according to embodiments of the invention.
  • the top end plate 510 and bottom end plate 530 may correspond to the top end plate 120 and bottom end plate 130 , respectively, of FIG. 1 , for example.
  • the top end plate 520 includes an outward-facing surface 511 and an inward-facing surface 512 opposite the outward-facing surface 511 .
  • the top end plate 520 is made up of a thin layer 519 , resulting in a top end plate 520 having a lighter weight.
  • the top end plate 520 also includes thick regions 517 a and 517 b around the openings 513 , 514 , 515 and 516 .
  • the thick regions 517 a and 517 b are situated in areas that have been predetermined to be subject to higher levels of stress during operation of the plate heat exchanger.
  • the top end plate 520 also includes ribs 518 extending width-wise across the outward-facing surface 511 to provide additional strength. Bosses 520 may be formed along the ribs 518 for receiving mounting studs.
  • the bottom end plate 530 includes an outward-facing surface 531 and an inward-facing surface 532 opposite the outward-facing surface 531 .
  • the bottom end plate 530 is made up of a thin layer 539 , resulting in a bottom end plate 530 having a lighter weight.
  • the bottom end plate 530 also includes thick regions 537 a and 537 b around the port regions 533 , 534 , 535 and 536 .
  • the thick regions 537 a and 537 b are situated in areas that have been predetermined to be subject to higher levels of stress during operation of the plate heat exchanger.
  • the bottom end plate 530 also includes ribs 538 extending width-wise across the outward-facing surface 511 to provide additional strength. Bosses 540 may be formed along the ribs 538 for receiving mounting studs.
  • FIG. 6 illustrates the mounting of a stud 601 according to a conventional configuration
  • FIG. 7 illustrates a stud-mounting portion of an end plate 700 according to one embodiment of the invention.
  • the end plate 700 may correspond to the top end plate 120 or bottom end plate 130 of FIG. 1 , for example.
  • a stud 601 was inserted into a hole in an outer plate 601 and was brazed or welded to a seal plate 603 .
  • shifting of one of the plates 602 or 603 prior to brazing, during brazing or after brazing may result in a bending or tilting of the stud 601 .
  • FIG. 6 illustrates the mounting of a stud 601 according to a conventional configuration
  • FIG. 7 illustrates a stud-mounting portion of an end plate 700 according to one embodiment of the invention.
  • the end plate 700 may correspond to the top end plate 120 or bottom end plate 130 of FIG. 1 , for example.
  • a boss 704 or protrusion 704 is configured to protrude from a base 703 of an end plate 700 .
  • the protrusion 704 has a shape configured to receive the stud 701 , such as a round inner shape of a same size as a round outer shape of the stud 701 .
  • the base 703 of the end plate 700 is the base of the receptacle defined by the protrusion 704 . Since the protrusion 704 extends outward from the base 703 of the end plate 700 , the stud 701 does not shift, bend or tilt in the event that the end plate 700 shifts.
  • FIG. 8 illustrates a cut-away view of a portion of a top end plate 820 and a fluid fitting 854 according to one embodiment.
  • the top end plate 820 may correspond to the top end plate 120 of FIG. 1
  • the fluid fitting 854 may correspond to one of the fluid fittings 151 , 152 , 153 or 154 of FIG. 1 , for example.
  • the top end plate 820 includes a port defined by an inner diameter surface made up of a lower portion 821 , also referred to as a pilot region 821 and an upper portion 822 , also referred to as a braze region 822 .
  • the top end plate 820 may be configured to be attached to the main plate 810 , and the main plate 810 may be configured to be attached to the main plate 811 .
  • the inner diameter surface of the top end plate 820 may be configured to receive the fluid fitting 854 having an outer diameter surface 857 .
  • a recess 856 is formed in the outer diameter surface 857 of the fluid fitting 854 , the recess 856 defined by recess walls 855 .
  • the fluid fitting 854 may also include a fluid channel 858 .
  • the recess 856 is formed to have a pre-defined size such that a predetermined amount of braze material may be provided in the recess 856 .
  • the pilot region 821 has a diameter smaller than the braze region 822 , such that the pilot region 821 tightly or closely contacts the outer diameter surface 857 while the braze region 822 defines a gap between a surface of the braze region 822 and the outer diameter surface 857 .
  • the thickness of the braze material between the outer diameter surface 857 and the braze region 822 may be pre-determined and controlled based on controlling the diameter of the braze region 822 , thereby maintaining the strength of a braze joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A plate heat exchanger includes a plurality of main plates having ridges and troughs to direct first and second flows of fluids across the main plates to exchange heat between the fluids while maintaining the first and second flows of fluids separate from each other. The heat exchanger also includes a first end plate including first and second inlets and first and second outlets. The first end plate includes a substantially flat inside surface configured to contact the ridges of a first main plate among the plurality of main plates and at least one slot formed in the substantially flat surface to provide a fluid communication of the first fluid flow between the inlet and a cavity formed by the first end plate and the first main plate.

Description

    BACKGROUND OF THE INVENTION
  • Embodiments of the invention relate to a plate heat exchanger, and in particular to end plates of plate heat exchanger.
  • Plate heat exchangers are widely used in the commercial industry as a means of exchanging energy between two liquids. The construction consists of a series of main plates having ribbed patterns on their surfaces and stacked one on top of the other. This arrangement forms channels between the plates through which the two liquids pass. As the two liquids enter their respective inlet ports they are independently directed to flow into alternating fin channels which permits heat to transfer from one liquid to the other. In order to maintain separation of the two liquids within the ports, the main plates incorporate local depressions in the port areas which alternately block off the flow passage from the port to the fin channels. In this way each port is hydraulically connected to every other fin channel. Each plate is coated with a braze filler metal. The entire heat exchanger assembly is placed in a furnace where the filler metal is melted creating a metallurgical bonds between the plates and forming a fluid seal.
  • Plate heat exchangers include top and bottom seal plates and top and bottom outer plates on outward-facing surfaces of the top and bottom seal plates, respectively. The top seal plate has a smooth surface and the bottom seal plate has a ribbed inward-facing surface (toward a center of the plate heat exchanger) and a smooth outward-facing surface (away from the center of the plate heat exchanger). The top and bottom seal plates form the outer pressure vessel of the heat exchanger. Typically, individual seals or seal slugs must be installed to block off the flow passage from an inlet port to a flow channel in the plate heat exchanger. The seal slugs are positioned around the inlets between the top seal plate and an adjacent main plate. However, the position of the individual seal slugs can shift during assembly and therefore are prone to cause fluid leakage of the heat exchanger.
  • In addition, ambient air can migrate into the space between the top seal plate and top outer plate. While the fluids passing through the heat exchanger may exhibit low freezing points that allow their temperatures to fall below 0° F. (−17.78° C.) without affecting the liquid states of the fluids, moisture within the ambient air freezes at 32° F.(0° C.). Consequently, the moisture in trapped between the top seal plate and the top outer plate may expand and crack the heat exchanger plates resulting in fluid leakage.
  • In addition, the draft angle of flanges of the main plates are chosen to ensure a proper braze seal between each main plate. The raised ribbed areas (herringbones) control the distance of separation between adjacent plates. A top seal plate having a flange with a same draft angle as an adjacent main plate may result in a poor fit, since the top seal plate does not include ridges. The poor fit may result in poor braze adhesion and fluid leakage.
  • The heat exchanger is subjected to stresses from the internal fluid pressures. The top plate and bottom plate provided support and stiffness to resist the internal pressure. The load emanating from the fluid pressure in the vicinity of the ports is commonly called a plug load. The area immediately surrounding the port areas is inherently subjected to high stresses due to the reduction of material (port holes) which must exist to allow fluid flow. Insufficient material around the port holes results in the inability of the heat exchanger to withstand low cycle fatigue resulting from pressure cycles of the liquids, ultimately leading to cracks and fluid leakage. However, the addition of excess material to compensate for the local high stresses would result in large weight penalties which cannot be tolerated in some applications, such as aerospace applications.
  • In addition, a position tolerance of the ports is subject to the ability to maintain a repeatable and consistent stack height of the main plates. Small variations in material thickness of the main plates (in the order of thousandths of an inch) will multiply by the number of main plates. An eighty-plate heat exchanger, for example can differ in stack height from unit to unit by 20 millimeters (mm) if each main plate had a variation of just 0.25 mm. When considering the additional position tolerances associated with other components of the heat exchanger, the resultant position tolerance of the ports can be 2.5 mm for example. This large variation from unit to unit is unacceptable for installations where precision is critical.
  • Mounting studs are conventionally welded to the thin top plate and bottom plate prior to furnace braze of the heat exchanger assembly. This requires time consuming welding and flush grinding of the underlying surfaces of the top and bottom plates adjacent to the studs to ensure a smooth uninterrupted surface against the adjacent main plates. The resultant strength of the stud retention is dramatically reduced. Also, the relatively thin top and bottom plates prevent sufficient thread engagement yielding a large variation in position tolerance of the studs. Additionally, the fluid fittings are historically welded to the weld stubs after furnace brazing. This requires time consuming welding and greater position tolerance of the final location of the fittings. The large variation from unit to unit is unacceptable for installations where precision is critical.
  • BRIEF DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention include a plate heat exchanger that includes a plurality of main plates having ridges and troughs to direct first and second flows of fluids across the main plates to exchange heat between the fluids while maintaining the first and second flows of fluids separate from each other. The heat exchanger also includes a first end plate including first and second inlets to provide the first and second flows to the plurality of main plates and first and second outlets to output the first and second flows from the plurality of main plates. The first end plate includes a substantially flat inside surface configured to contact the ridges of a first main plate among the plurality of main plates and at least one slot formed in the substantially flat surface to provide a fluid communication of the first fluid flow between the inlet and a cavity formed by the first end plate and the first main plate.
  • Embodiments of the invention further include a plate heat exchanger including a plurality of main plates having a ridged region including ridges and troughs to direct first and second flows of fluids across the main plates to exchange heat between the fluids while maintaining the first and second flows of fluids separate from each other. Each of the plurality of main plates further includes a flange extending from the ridged region at an oblique angle. The plate heat exchanger further includes a first end plate including first and second inlets to provide the first and second flows to the plurality of main plates and first and second outlets to output the first and second flows from the plurality of main plates. The first end plate includes a substantially flat main surface configured to contact the ridged region of a first main plate among the plurality of main plates and a flange surrounding the main surface and extending at an oblique angle with respect to the main surface. The flange of the first end plate has a draft angle less than a draft angle of the flange of the first main plate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
  • FIG. 1 is an exploded view of a plate heat exchanger according to one embodiment;
  • FIG. 2A is a perspective view of a bottom end plate according to an embodiment;
  • FIG. 2B is a cut-away view of a portion of a bottom end plate according to an embodiment;
  • FIG. 3A is a top view of a top end plate according to one embodiment;
  • FIG. 3B is a cut-away view of the top end plate according to an embodiment;
  • FIG. 3C is a top view of a top end plate according to another embodiment;
  • FIG. 3D is a cut-away view of the top end plate according to an embodiment;
  • FIG. 3E is a cut-away view of the top end plate and a main plate according to an embodiment;
  • FIG. 4A illustrates a flange of a top end plate according to one embodiment;
  • FIG. 4B illustrates the flange of the top end plate in contact with a main plate according to one embodiment;
  • FIG. 4C illustrates a bottom end plate in contact with a main plate according to one embodiment;
  • FIG. 5A illustrates a perspective view of an outward-facing side of a top end plate according to one embodiment;
  • FIG. 5B illustrates a perspective view of an outward-facing side of a bottom end plate according to one embodiment;
  • FIG. 6 illustrates the mounting of a stud according to a conventional configuration;
  • FIG. 7 illustrates a stud-mounting portion of an end plate according to one embodiment of the invention; and
  • FIG. 8 illustrates a cut-away view of a portion of a top end plate and a fluid fitting according to one embodiment.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Conventional plate heat exchangers have structures that result in cracking in leaking due to misalignments of parts of the plate heat exchangers. Embodiments of the invention relate to a plate heat exchanger having end plates configured to improve the structural integrity of the plate heat exchanger, reducing cracking and leaks.
  • FIG. 1 is an exploded view of a plate heat exchanger 100 according to one embodiment. The plate heat exchanger 100 includes main plates 110 having ridged regions 111 and openings 112 corresponding to inlets and outlets of a fluid. The ridged regions 111 may have a herringbone or chevron pattern to increase a surface area of the main plate 110 contacted by the fluid and to generate turbulence in the fluid. The openings 112 of the main plates may be provided, alternatingly, with protrusions or recesses surrounding the openings 112 to alternate a fluid that enters a cavity between the main plates. For example, a first fluid may enter first, third and fifth cavities between the main plates, and a second fluid may enter second, fourth and sixth cavities. The fluids are maintained separate and exchange heat as they flow through the cavities.
  • The plate heat exchanger 100 includes a first end plate 120, also referred to herein as a top end plate 120 for purposes of description. The plate heat exchanger 100 also includes a second end plate 130, also referred to herein as a bottom end plate 130 for purposes of description. The top end plate 120 and bottom end plate 130 are positioned at opposite sides of the plurality of main plates 110. It is understood that although the terms “top” and “bottom” may be used for purposes of description, embodiments of the invention encompass a plate heat exchanger 110 having the first and second end plates 120 and 130 arranged with any spatial alignment relative to an earth plane.
  • The illustrated top end plate 120 includes openings 122 to receive fluid fittings 151, 152, 153 and 154. A first fluid may be input to the plate heat exchanger 100 via a fluid fitting 150 and output from the heat exchanger via a fluid fitting 152. Another fluid may be input to the plate heat exchanger 100 via the fluid fitting 153 and output from the plate heat exchanger 100 via the fluid fitting 154. Weld stubs 155, 156, 157 and 158 may also be provided between a wide portion of the fluid fittings 151, 152, 153 and 154 and the top end plate 120.
  • While particular shapes are used in FIG. 1 to represent the main plates 110, end plates 120 and 230, fittings 151, 152, 153 and 154, it is understood that these and other elements may have any desired shape. For example, the main plates 110 may have substantially rectangular, square, oval or any polygonal shape. In addition, the openings 112 and 122 may have a round shape, oval shape, square shape, or any other desired shape. Embodiments of the invention are not limited to the shapes illustrated, but include plate heat exchangers having any desired shape.
  • FIGS. 2A and 2B illustrate an integrated seal feature of a bottom end plate 230 according to one embodiment. The bottom end plate 230 may correspond to the bottom end plate 130 of FIG. 1. The bottom end plate 230 includes an inward-facing surface 231, inlet regions 232 a and 232 b and outlet regions 232 c and 232 d. The inlet region 232 b and the outlet region 232 d each include a raised portion 233, which may also be referred to as a protrusion 233, surrounding an area corresponding to an opening in an adjacent main plate to prevent a first flow fluid from flowing across the surface 230 from the inlet region 232 b and from flowing out from the surface 230 via the outlet region 232 d. In contrast, the inlet region 232 a and outlet region 232 c include no such raised portion 233 or protrusion. Consequently, fluid from the inlet region 232 a flows over the inward-facing surface 231 and out through an opening in an adjacent main plate at the outlet region 232 c.
  • While the raised portions 233 of the bottom end plate 230 are illustrated in FIGS. 2A and 2B, the top end plate includes similar raised portions. However, where the bottom plate 230 is closed-off or solid in each of the inlet regions 232 a and 232 b and outlet regions 232 c and 232 d, the inlet regions and outlet regions of the top plate are open to permit the flow of fluid through the top plate, such as by inserting fluid fittings or ports into the top plate. Accordingly, the raised portions on an inward-facing surface surrounding one inlet and one outlet of the top plate prevent fluid from flowing in a cavity between the top plate and an adjacent main plate. Conversely, the absence of the raised portions around another of the inlets and outlets permits fluid flow into and out from the cavity between the top plate and an adjacent main plate.
  • FIGS. 3A to 3E illustrate a top end plate 320 including flow-permitting slots according to one embodiment. The top end plate 320 may correspond to the top end plate 120 of FIG. 1. In FIGS. 3A and 3C, a view of the figures is of a top side 329 or outward-facing side 329 of the top end plate 320. Dashed lines represent features on an underside 330 of the top end plate 320 relative to the viewpoint of the figure (or in other words, features located on an inward-facing side 330). Dashed and dotted lines represent features on a main plate 370 (of FIG. 3E, for example) adjacent to the inward-facing side which are illustrated for purposes of description.
  • The top end plate 320 includes openings 322 a, 322 b, 322 c and 322 d corresponding to fluid inlets and outlets. For purposes of description, opening 322 c will be described as a fluid inlet 322 c and opening 322 d will be described as a fluid outlet 322 d. Depressions or slots 323, 324, 325 and 326 are formed in the inward-facing surface 330 of the top end plate 320. Slots 323 and 325 connect to, and extend radially from the inlet 322 c and the outlet 322 d, respectively. Slots 324 and 326 may be connected to the slots 323 and 325, and may partially surround the inlet 322 c and the outlet 322 d, respectively, along an outer edge of the inward-facing surface 330 of the top end plate 320.
  • A slot 327 may extend lengthwise along a center of the top end plate 320. In another embodiment, the slot 327 may be off-center. In FIG. 3, the location of the slot 327 is positioned to correspond to an apex of the herringbones or chevrons 311 of an adjacent main plate 370 (in FIG. 3E, for example). While only a few ridges 311 are illustrated in FIGS. 3A and 3C for purposes of description, it is understood that ridges 311 of the adjacent main plate extend over an entire surface of the adjacent main plate. When fluid F is input to the opening 322 c from an external source and input to the opening 322 d from a channel within the plate heat exchanger, fluid F from the openings 322 c and 322 d enters the slots 323 and 325, and from the slots 323 and 325, the fluid is transmitted to the slots 324 and 326. The slots 324 and 326 are in fluid communication with troughs located between the ridges 311 of the adjacent main plate. Accordingly, fluid F from the slots 324 and 326 flows through the troughs between the ridges 311 to the slot 327. From the slot 327, the fluid F may flow into any trough between ridges 311 of the main plate. Consequently, the fluid F may fill every cavity between the top end plate 320 and the adjacent main plate.
  • Referring to FIGS. 3B, 3D and 3E, in embodiments of the invention, the space between the top end plate 320 and the adjacent main plate is hermetically sealed, such as via a braze joint, from the ambient environment. This may be accomplished in one embodiment by incorporating a flange 334 to the top end plate 320 with the proper draft angle to ensure that the faying surface 335 between the top end plate flange 334 and the adjacent main plate flange 336 is brazed and entirely sealed from the ambient environment. This may reduce ambient moisture from entering this space and subsequently freeze and rupture the plates.
  • To ensure that the faying surfaces 335 have been properly brazed, the space between the plates, which may also be referred to as a dead zone 371, is pressurized with one of the fluids F entering the heat exchanger. Any voids in the braze will be immediately detected as an external leak during final test of the heat exchanger. A hermetically sealed joint may be detected by detecting no evidence of leakage. To achieve the pressurized dead zone 371, the port area, or the openings 322 c and 322 d and the dead zone may be hydraulically connected. The slots 323, 324, 325, 326 and 327 are strategically located to allow fluid pressure to enter each and every herringbone space between the top end plate 320 and the adjacent main plate 370. While only the top end plate 320 is illustrated in FIGS. 3A to 3E, similar slots may be formed in the bottom end plate, such as the bottom end plate 130 of FIG. 1, to similarly pressurize the dead zone 371 between the bottom end plate and an adjacent main plate.
  • A raised portion 328 or protrusion 328 surrounds the opening 322 a to prevent fluid from the opening 322 a from entering the dead zone 371 between the top end plate 320 and an adjacent main plate 370. The raised portion 328 is illustrated with dashed lines in FIGS. 3A and 3C.
  • While FIGS. 3A and 3B illustrate slots 323, 324, 325 and 326, any configuration of slots may be used that allow for the fluid F from at least one of the openings 322 a, 322 b, 322 c and 322 d to fill the dead zone between the top end plate 320 and an adjacent main plate 370. For example, FIGS. 3C and 3D illustrate an embodiment in which a slot 332 or depression 332 is formed to entirely or substantially surround the openings 322 c and 322 d. The slot 322 may be in fluid communication with the troughs between ridges 311 of the adjacent main plate 370 (of FIG. 3E), such that fluid flows from the openings 322 c and 322 d to the slots 332, to the troughs between the ridges 311, to the slot 327, and from the slot 327 to every trough to fill every space within the dead zone 371.
  • FIGS. 4A to 4C illustrate faying surfaces of end plates according to embodiments of the present invention. The top end plate 420 may correspond to the top end plate 120 of FIG. 1, and the bottom end plate 430 may correspond to the bottom end plate 130 of FIG. 1.
  • FIG. 4A illustrates a top end plate 420 including a body 421 and a flange 422 extending downward and away from the body 421. When an inward-facing surface 425 of the top end plate 420 defines a first axis X, which may also be referred to for purposes of description as horizontal axis X, a second axis Y, also referred to as a vertical axis Y, is perpendicular to the horizontal axis X. The flange 422 may extend outward from the body at an acute angle A relative to the vertical axis Y. The inside surface 424 of the flange 422, which is also referred to as the faying surface 424 may be at an obtuse angle A1 relative to the inward-facing surface 425. The flange 422 may also include a protrusion 423 at its end that bends outward toward the horizontal axis X.
  • FIG. 4A also illustrates a main plate 410, which may correspond to one of the main plates 110 of FIG. 1. As illustrated in FIG. 4B, the main plate 410 is adjacent to the top end plate 420 and is configured to be bonded to the top end plate 420 on an outside flange surface 413 and ridge peaks 414, such as by brazing. The main plate 410 includes ridges 411 having peaks 414 and a flange 412 extending downward from the ridges 414. A line passing through a substantially center portion of each of the ridges 411 defines the horizontal axis X. The flange 412 extends downward from the ridges 411 to be at an acute angle B relative to the vertical axis Y, and at an obtuse angle B1 relative to the horizontal axis X, as measured along an inside arc from an inside surface 414 of the flange 412 to a portion of the axis X along the ridges 411. In the present specification and claims, the angles A and B are also referred to as draft angles A and B.
  • In one embodiment, the draft angle A is different than the draft angle B. In particular, the draft angle A may be less than the draft angle B, and the angle A1 may be less than the angle B1. As illustrated in FIG. 4B, the top end plate 420 is configured to be mounted onto the main plate 410, such that the inward-facing surface 425 contacts the peaks 414 of the ridges 411 of the main plate 410, while at the same time the inward-facing surface 424 of the flange 422 contacts the outer surface 413 of the flange 412. Since the draft angles A and B of the top end plate 420 and the main plate 410 are dissimilar, a “line contact” is formed around the periphery of the two flanges 422 and 412. When a braze melts during a brazing operation, capillary action forces the braze to “wick up” along the entire flange faying surfaces 413 and 424, thus providing a highly reliable braze joint and hermetic seal. In other words, since the draft angles A and B of the top end plate 420 and the main plate 410 are dissimilar, the flange 422 does not contact the flange 412 along an entire length of the flange 412, but only along a narrow region that defines the line contact around an entire circumference of the flange 412.
  • A similar feature is provided for the bottom end plate 430, as illustrated in FIG. 4C. The bottom end plate 430 includes an upper surface 432, or an inward-facing surface 432, which defines the horizontal axis X. The vertical axis Y is perpendicular to the horizontal axis X. An outer side or surface 431 of the bottom end plate 430 has a draft angle C. A main plate 415 adjacent to the bottom end plate 430 has ridges 416 with peaks 419 contacting the inside-facing surface 432 of the bottom end plate 430. The main plate 415 includes a flange 418 extending over the outer surface 431 of the bottom end plate 430 and having a draft angle D. In embodiments of the present invention, the draft angle C is greater than the draft angle D. As discussed above, since the draft angles C and D of the bottom end plate 430 and the main plate 415 are dissimilar, a “line contact” is formed around the periphery of the outer surface 431 and the inner surface 417 of the flange 418. When a braze melts during a brazing operation, capillary action forces the braze to “wick up” along the entire flange faying surfaces 431 and 417, thus providing a highly reliable braze joint and hermetic seal.
  • FIGS. 5A and 5B illustrate strengthening structures of a top end plate 510 and a bottom end plate 530 according to embodiments of the invention. The top end plate 510 and bottom end plate 530 may correspond to the top end plate 120 and bottom end plate 130, respectively, of FIG. 1, for example.
  • Referring to FIG. 5A, the top end plate 520 includes an outward-facing surface 511 and an inward-facing surface 512 opposite the outward-facing surface 511. The top end plate 520 is made up of a thin layer 519, resulting in a top end plate 520 having a lighter weight. The top end plate 520 also includes thick regions 517 a and 517 b around the openings 513, 514, 515 and 516. The thick regions 517 a and 517 b are situated in areas that have been predetermined to be subject to higher levels of stress during operation of the plate heat exchanger. The top end plate 520 also includes ribs 518 extending width-wise across the outward-facing surface 511 to provide additional strength. Bosses 520 may be formed along the ribs 518 for receiving mounting studs.
  • Referring to FIG. 5B the bottom end plate 530 includes an outward-facing surface 531 and an inward-facing surface 532 opposite the outward-facing surface 531. The bottom end plate 530 is made up of a thin layer 539, resulting in a bottom end plate 530 having a lighter weight. The bottom end plate 530 also includes thick regions 537 a and 537 b around the port regions 533, 534, 535 and 536. The thick regions 537 a and 537 b are situated in areas that have been predetermined to be subject to higher levels of stress during operation of the plate heat exchanger. The bottom end plate 530 also includes ribs 538 extending width-wise across the outward-facing surface 511 to provide additional strength. Bosses 540 may be formed along the ribs 538 for receiving mounting studs.
  • FIG. 6 illustrates the mounting of a stud 601 according to a conventional configuration, and FIG. 7 illustrates a stud-mounting portion of an end plate 700 according to one embodiment of the invention. The end plate 700 may correspond to the top end plate 120 or bottom end plate 130 of FIG. 1, for example. Referring to FIG. 6, in conventional plate heat exchangers, a stud 601 was inserted into a hole in an outer plate 601 and was brazed or welded to a seal plate 603. However, in conventional plate heat exchangers, shifting of one of the plates 602 or 603 prior to brazing, during brazing or after brazing may result in a bending or tilting of the stud 601. Referring to FIG. 7, in embodiments of the invention, a boss 704 or protrusion 704 is configured to protrude from a base 703 of an end plate 700. The protrusion 704 has a shape configured to receive the stud 701, such as a round inner shape of a same size as a round outer shape of the stud 701. The base 703 of the end plate 700 is the base of the receptacle defined by the protrusion 704. Since the protrusion 704 extends outward from the base 703 of the end plate 700, the stud 701 does not shift, bend or tilt in the event that the end plate 700 shifts.
  • FIG. 8 illustrates a cut-away view of a portion of a top end plate 820 and a fluid fitting 854 according to one embodiment. The top end plate 820 may correspond to the top end plate 120 of FIG. 1, and the fluid fitting 854 may correspond to one of the fluid fittings 151, 152, 153 or 154 of FIG. 1, for example.
  • The top end plate 820 includes a port defined by an inner diameter surface made up of a lower portion 821, also referred to as a pilot region 821 and an upper portion 822, also referred to as a braze region 822. The top end plate 820 may be configured to be attached to the main plate 810, and the main plate 810 may be configured to be attached to the main plate 811. The inner diameter surface of the top end plate 820 may be configured to receive the fluid fitting 854 having an outer diameter surface 857. A recess 856 is formed in the outer diameter surface 857 of the fluid fitting 854, the recess 856 defined by recess walls 855. The fluid fitting 854 may also include a fluid channel 858.
  • In embodiments of the invention, the recess 856 is formed to have a pre-defined size such that a predetermined amount of braze material may be provided in the recess 856. The pilot region 821 has a diameter smaller than the braze region 822, such that the pilot region 821 tightly or closely contacts the outer diameter surface 857 while the braze region 822 defines a gap between a surface of the braze region 822 and the outer diameter surface 857. The thickness of the braze material between the outer diameter surface 857 and the braze region 822 may be pre-determined and controlled based on controlling the diameter of the braze region 822, thereby maintaining the strength of a braze joint.
  • While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims (19)

1. A plate heat exchanger, comprising:
a plurality of main plates having ridges and troughs to direct first and second flows of fluids across the main plates to exchange heat between the fluids while maintaining the first and second flows of fluids separate from each other; and
a first end plate including first and second inlets to provide the first and second flows to the plurality of main plates and first and second outlets to output the first and second flows from the plurality of main plates, the first end plate including a substantially flat inside surface configured to contact the ridges of a first main plate among the plurality of main plates and at least one slot formed in the substantially flat surface to provide a fluid communication of the first fluid flow between the inlet and a cavity formed by the first end plate and the first main plate.
2. The plate heat exchanger of claim 1, wherein the at least one slot includes a first slot extending radially from the first inlet, a second slot having a substantially circumferential shape around a portion of the first inlet and connected to the first slot, and a third slot extending lengthwise along a center of the first end plate.
3. The plate heat exchanger of claim 1, wherein the at least one slot includes a first slot extending circumferentially around an entire circumference of the first inlet, and a second slot extending lengthwise along a center of the first end plate.
4. The plate heat exchanger of claim 1, wherein the first fluid is pressurized in the cavity formed by the first end plate and the first main plate.
5. The plate heat exchanger of claim 1, wherein the first main plate includes a plurality of ridges separated by a plurality of troughs, the plurality of troughs and ridges forming a chevron pattern,
the at least one slot includes a first slot adjacent to the first inlet and a second slot extending lengthwise along a center of the first end plate at an apex of the chevron pattern, and
the first slot is in fluid communication with at least one trough between adjacent ridges of the first main plate, the at least one trough is in fluid communication with the second slot, and the second slot is in fluid communication with each other trough of the plurality of troughs.
6. The plate heat exchanger of claim 1, further comprising a protrusion surrounding the first inlet on an inside surface of the first end plate, the protrusion configured to contact the first main plate to form a fluid-tight seal with the first main plate.
7. The plate heat exchanger of claim 1, wherein the first main plain includes a ridged portion and a flange surrounding the ridged portion and extending outward from the ridged portion to have a draft angle that is an acute angle, and
the first end plate comprises a body having an inside surface configured to contact the ridges of the ridged portion of the first main plate and a flange surrounding the main body, an inside surface of the flange of the first end plate configured to contact an outer surface of the flange of the first main plate, and a draft angle of the first end plate being less than the draft angle of the first main plate
8. The plate heat exchanger of claim 7, further comprising:
a second main plate among the plurality of plates, the second main plate including a ridged portion and a flange surrounding the ridged portion and extending outward from the ridged portion to have a draft angle that is an acute angle; and
a second end plate having a first outer side configured to contact the ridged portion of the second main plate and a second outer side surrounding the first outer side and having a draft angle that is an acute angle, the second outer side configured to contact an inner side of the flange of the second main plate, the draft angle of the second outer side being greater than the draft angle of the second main plate.
9. The plate heat exchanger of claim 1, wherein the first end plate includes at least one thin region and at least one thick region, the at least one thick region located in a region identified as being subject to a greater stress than the at least one thin region when the plate heat exchanger is in operation.
10. The plate heat exchanger of claim 9, wherein the at least one thick region includes regions surrounding the first and second inlets and first and second outlets at ends of the first end plate, and ribs extending width-wise across the first end plate.
11. The plate heat exchanger of claim 1, wherein the first end plate includes at least one receptacle on an outward-facing surface opposite the inside surface, the at least one receptacle comprising a base and a protrusion having a shape configured to receive and surround a mounting stud, such that sides of the mounting stud contact sides of the protrusion while an end of the mounting stud contacts the base of the receptacle.
12. The plate heat exchanger of claim 1, further comprising a fluid fitting configured to fit into at least one of the first inlet and the first outlet to provide a flow of fluid through the fluid fitting into or out from the plurality of main plates, the fluid fitting including a recess in a surface adjacent to an inner diameter surface of the at least one of the first inlet and the first outlet.
13. The plate heat exchanger of claim 12, wherein the recess surrounds the fitting.
14. The plate heat exchanger of claim 12, wherein the inside diameter surface of the first inlet or the second inlet includes a pilot located linearly between the recess and an end of the inside diameter surface corresponding to the inside surface of the first end plate and a braze region located between the recess and an end of the inside diameter surface corresponding to an outer surface of the first end plate, the braze region having a diameter greater than the pilot.
15. The plate heat exchanger of claim 1, further comprising:
a second end plate on an opposite side of the plurality of main plates from the first end plate.
16. The plate heat exchanger of claim 15, wherein the second end plate includes a substantially flat inside surface configured to contact the ridges of a second main plate among the plurality of main plates and at least one slot formed in the substantially flat surface to fill with fluid from one of the first fluid flow and the second fluid flow a cavity formed by the second end plate and the second main plate.
17. The plate heat exchanger of claim 15, wherein each of the first end plate and the plurality of main plates includes a flange surrounding a ridged portion, the flanges of the first end plate and the plurality of main plates extending toward the second end plate and being in contact with a flange of an adjacent main plate to inhibit movement of the first end plate and the plurality of main plates, and
the second end plate includes an upper surface and an outer side surface surrounding the upper surface and having a draft angle that is an acute angle, the second side surface configured to contact a flange of a second main plate among the plurality of main plates and the draft angle of the second side surface being greater than a draft angle of the flange of the second main plate.
18. The plate heat exchanger of claim 17, wherein the outer side surface of the second end plate has a draft angle greater than a draft angle of the flange of the first end plate.
19. A plate heat exchanger, comprising:
a plurality of main plates having a ridged region including ridges and troughs to direct first and second flows of fluids across the main plates to exchange heat between the fluids while maintaining the first and second flows of fluids separate from each other, each of the plurality of main plates further including a flange extending from the ridged region at an oblique angle; and
a first end plate including first and second inlets to provide the first and second flows to the plurality of main plates and first and second outlets to output the first and second flows from the plurality of main plates, the first end plate including a substantially flat main surface configured to contact the ridged region of a first main plate among the plurality of main plates and a flange surrounding the main surface and extending at an oblique angle with respect to the main surface, the flange of the first end plate having a draft angle less than a draft angle of the flange of the first main plate.
US13/743,986 2013-01-17 2013-01-17 Plate heat exchanger Abandoned US20140196870A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/743,986 US20140196870A1 (en) 2013-01-17 2013-01-17 Plate heat exchanger
EP14151384.6A EP2757337B1 (en) 2013-01-17 2014-01-16 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/743,986 US20140196870A1 (en) 2013-01-17 2013-01-17 Plate heat exchanger

Publications (1)

Publication Number Publication Date
US20140196870A1 true US20140196870A1 (en) 2014-07-17

Family

ID=49920277

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/743,986 Abandoned US20140196870A1 (en) 2013-01-17 2013-01-17 Plate heat exchanger

Country Status (2)

Country Link
US (1) US20140196870A1 (en)
EP (1) EP2757337B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150240722A1 (en) * 2014-02-21 2015-08-27 Rolls-Royce Corporation Single phase micro/mini channel heat exchangers for gas turbine intercooling
US20160313066A1 (en) * 2013-12-05 2016-10-27 Swep International Ab Heat exchanging plate with varying pitch
CN113154911A (en) * 2020-01-22 2021-07-23 丹佛斯有限公司 Cover plate for plate heat exchanger and plate heat exchanger
US11208954B2 (en) * 2014-02-21 2021-12-28 Rolls-Royce Corporation Microchannel heat exchangers for gas turbine intercooling and condensing
EP4095470A1 (en) * 2021-05-28 2022-11-30 Alfa Laval Corporate AB Heat exchanger port insert
WO2025126863A1 (en) * 2023-12-15 2025-06-19 マレリ株式会社 Heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007453A1 (en) * 2018-07-24 2020-01-24 PLATE HEAT EXCHANGER WITH REINFORCED HEADS AND METHOD FOR THE PRODUCTION OF SAID REINFORCED HEADS AND THEIR ASSEMBLY

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423708A (en) * 1981-12-31 1984-01-03 Cummins Engine Company, Inc. Liquid cooling unit for an internal combustion engine
US4848451A (en) * 1986-01-13 1989-07-18 Alfa-Laval Thermal Ab Plate heat exchanger
US5896835A (en) * 1996-01-10 1999-04-27 Sanshin Kogyo Kabushiki Kaisha Induction system for outboard motor
US5988269A (en) * 1995-10-23 1999-11-23 Swep International Ab Plate heat exchanger
US6182746B1 (en) * 1997-11-14 2001-02-06 Behr Gmbh & Co. Plate-type heat exchanger
US20010030043A1 (en) * 1999-05-11 2001-10-18 William T. Gleisle Brazed plate heat exchanger utilizing metal gaskets and method for making same
US20040069837A1 (en) * 2000-07-27 2004-04-15 Akira Fujiyama Method of manufacturing plate type titanium heat exchanger
US20070089871A1 (en) * 2003-12-10 2007-04-26 Swep International Ab Plate heat exchanger
US20080257536A1 (en) * 2004-01-23 2008-10-23 Behr Gmbh & Co. Kg Heat Exchanger, Especially Oil/Coolant Cooler
US20090107661A1 (en) * 2005-08-26 2009-04-30 Swep International Ab End plate for plate heat exchanger
US20100032148A1 (en) * 2006-11-20 2010-02-11 Alfa Laval Corporate Ab Plate Heat Exchanger
US20100258288A1 (en) * 2007-12-21 2010-10-14 Alfa Laval Corporate Ab Heat Exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872578A (en) * 1988-06-20 1989-10-10 Itt Standard Of Itt Corporation Plate type heat exchanger
SE9700614D0 (en) * 1997-02-21 1997-02-21 Alfa Laval Ab Flat heat exchanger for three heat exchanging fluids
CA2260890A1 (en) * 1999-02-05 2000-08-05 Long Manufacturing Ltd. Self-enclosing heat exchangers
SE529769E (en) * 2006-04-04 2014-04-22 Alfa Laval Corp Ab Plate heat exchanger comprising at least one reinforcing plate disposed outside one of the outer heat exchanger plates
US9109840B2 (en) * 2011-02-17 2015-08-18 Delphi Technologies, Inc. Unitary heat pump air conditioner having a heat exchanger with an integral accumulator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423708A (en) * 1981-12-31 1984-01-03 Cummins Engine Company, Inc. Liquid cooling unit for an internal combustion engine
US4848451A (en) * 1986-01-13 1989-07-18 Alfa-Laval Thermal Ab Plate heat exchanger
US5988269A (en) * 1995-10-23 1999-11-23 Swep International Ab Plate heat exchanger
US5896835A (en) * 1996-01-10 1999-04-27 Sanshin Kogyo Kabushiki Kaisha Induction system for outboard motor
US6182746B1 (en) * 1997-11-14 2001-02-06 Behr Gmbh & Co. Plate-type heat exchanger
US20010030043A1 (en) * 1999-05-11 2001-10-18 William T. Gleisle Brazed plate heat exchanger utilizing metal gaskets and method for making same
US20040069837A1 (en) * 2000-07-27 2004-04-15 Akira Fujiyama Method of manufacturing plate type titanium heat exchanger
US20070089871A1 (en) * 2003-12-10 2007-04-26 Swep International Ab Plate heat exchanger
US20080257536A1 (en) * 2004-01-23 2008-10-23 Behr Gmbh & Co. Kg Heat Exchanger, Especially Oil/Coolant Cooler
US20090107661A1 (en) * 2005-08-26 2009-04-30 Swep International Ab End plate for plate heat exchanger
US20100032148A1 (en) * 2006-11-20 2010-02-11 Alfa Laval Corporate Ab Plate Heat Exchanger
US20100258288A1 (en) * 2007-12-21 2010-10-14 Alfa Laval Corporate Ab Heat Exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160313066A1 (en) * 2013-12-05 2016-10-27 Swep International Ab Heat exchanging plate with varying pitch
US10775108B2 (en) * 2013-12-05 2020-09-15 Swep International Ab Heat exchanging plate with varying pitch
US11566850B2 (en) 2013-12-05 2023-01-31 Swep International Ab Heat exchanging plate with varying pitch
US20150240722A1 (en) * 2014-02-21 2015-08-27 Rolls-Royce Corporation Single phase micro/mini channel heat exchangers for gas turbine intercooling
US10316750B2 (en) * 2014-02-21 2019-06-11 Rolls-Royce North American Technologies, Inc. Single phase micro/mini channel heat exchangers for gas turbine intercooling
US11208954B2 (en) * 2014-02-21 2021-12-28 Rolls-Royce Corporation Microchannel heat exchangers for gas turbine intercooling and condensing
CN113154911A (en) * 2020-01-22 2021-07-23 丹佛斯有限公司 Cover plate for plate heat exchanger and plate heat exchanger
EP4095470A1 (en) * 2021-05-28 2022-11-30 Alfa Laval Corporate AB Heat exchanger port insert
WO2022248251A1 (en) * 2021-05-28 2022-12-01 Alfa Laval Corporate Ab Heat exchanger port insert
WO2025126863A1 (en) * 2023-12-15 2025-06-19 マレリ株式会社 Heat exchanger

Also Published As

Publication number Publication date
EP2757337B1 (en) 2016-12-28
EP2757337A3 (en) 2014-12-17
EP2757337A2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US20140352934A1 (en) Plate heat exchanger
EP2757337B1 (en) Plate heat exchanger
KR100215129B1 (en) Multilayer Plate for Plate Heat Exchanger
US20090126911A1 (en) Heat exchanger with manifold strengthening protrusion
US4529034A (en) Heat exchanger having a header plate
JP2007192534A (en) Double wall and release type heat exchanger
US11353268B2 (en) Plate type heat exchanger
JP2017500532A (en) Flat plate heat exchanger with mounting flange
WO2010103190A2 (en) Plate heat exchanger and method for improving pressure resistance of a plate heat exchanger
US11150027B2 (en) Heat exchanger and method of making a heat exchanger
US8714564B2 (en) Cylinder head gasket
KR101359778B1 (en) Welding method for shell and tube
CN105556231A (en) A plate heat exchanger having reinforcing means
JP7046767B2 (en) Heat exchanger
EP3510334A1 (en) Plate heat exchanger having through hole for fastening of hydro block
US20150267972A1 (en) Heat exchanger
US11841196B2 (en) Heat exchanger with a frame plate having a lining
EP1087851B1 (en) A method of producing a plate heat exchanger; and a plate heat exchanger
CN114608361A (en) Heat exchanger with two-part through fitting
TWI539134B (en) Plate heat exchanger with mounting flange
JP6862773B2 (en) Heat exchanger
JP2010156501A (en) Refrigerant piping unit and connecting structure
US20240384939A1 (en) Heat exchanger
US20140196869A1 (en) Plate heat exchanger with tension ties
TWI539135B (en) Plate heat exchanger with mounting flange

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAMILTON SUNDSTRAND CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUSICH, RICHARD;BARONE, MICHAEL R.;MILLER, MATTHEW WILLIAM;SIGNING DATES FROM 20130111 TO 20130112;REEL/FRAME:029651/0192

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION