WO2005069467A1 - コアレスリニアモータおよびキャンド・リニアモータ - Google Patents

コアレスリニアモータおよびキャンド・リニアモータ Download PDF

Info

Publication number
WO2005069467A1
WO2005069467A1 PCT/JP2005/000177 JP2005000177W WO2005069467A1 WO 2005069467 A1 WO2005069467 A1 WO 2005069467A1 JP 2005000177 W JP2005000177 W JP 2005000177W WO 2005069467 A1 WO2005069467 A1 WO 2005069467A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
rows
coil
linear motor
field
Prior art date
Application number
PCT/JP2005/000177
Other languages
English (en)
French (fr)
Inventor
Toru Shikayama
Kenichi Sadakane
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to DE112005000180T priority Critical patent/DE112005000180T5/de
Priority to US10/586,239 priority patent/US7576452B2/en
Priority to KR1020067011119A priority patent/KR100757709B1/ko
Publication of WO2005069467A1 publication Critical patent/WO2005069467A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Definitions

  • the present invention relates to a coreless linear motor and a canned linear motor that are used for table feed of a semiconductor manufacturing apparatus or a machine tool and require a low temperature rise of a linear motor body.
  • FIGS. 5 and 6 Conventionally, coreless linear motors used for table feeding of semiconductor manufacturing apparatuses and machine tools are as shown in FIGS. 5 and 6 (for example, described in Patent Documents 1 and 2).
  • FIG. 5 is an overall perspective view of a coreless linear motor showing a conventional technique
  • FIG. 6 is a front sectional view taken along line AA in FIG.
  • the coreless linear motor described in Patent Document 1 will be mainly described.
  • lb is a coreless linear motor
  • 100b is a mover
  • 101b is an armature
  • 102b and 103b are armature coils
  • 104b is a board
  • 105 is a mold resin
  • 106 is an armature mounting plate
  • 107 is a cable
  • 200b Is a stator
  • 201b is a permanent magnet
  • 202 is a field yoke.
  • the stator 200b includes a substantially U-shaped field yoke 202 and a plurality of permanent magnets 201b linearly arranged on the field yoke 202 at regular intervals so as to have different polarities.
  • the field consists of two magnet rows facing each other.
  • the permanent magnets 201b are arranged so that the polarities of the left and right permanent magnets 201b facing each other are also different from each other.
  • the mover 100b includes an armature 101b, an armature mounting plate 106 for fixing the armature 101b, and a cable 107.
  • the armature 101b is disposed inside two magnet rows of the permanent magnet 201b in parallel with a magnetic gap therebetween.
  • the armature 101b has a substrate 104b disposed in the center, armature coils 102b and 103b disposed on both left and right sides with the substrate 104b interposed therebetween, and the substrate 104b and the armature coils 102b and 103b are molded. It is integrally molded with fat 105. Further, the armature 101b is also fixed to the armature mounting plate 106 by a mold resin 105.
  • the armature coils 102b and 103b are composed of, for example, a plurality of coil groups that are concentratedly wound.
  • the substrate 104b For example, a glass foil-filled epoxy resin (GFRP) plate is provided with a copper foil pattern, and is used to connect a plurality of coil groups of the armature coils 102b and 103b.
  • the mover 100b is supported by a linear guide (not shown).
  • Patent Document 1 JP 2001-197718 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-27730
  • the conventional technology has the following problems since the substrate 104b is disposed on the entire surface between the left and right armature coils 102b and 103b.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a coreless linear motor capable of greatly reducing the temperature rise on the surface of an armature of a linear motor.
  • the present invention has the following configuration.
  • the armature is configured to relatively move the armature and the armature, the field is configured such that two rows of the permanent magnets are opposed to each other, and the armature is arranged in the two rows.
  • the armature coils are arranged in two rows between fields composed of at least one end in a direction orthogonal to the direction of the magnetic gap between the magnet rows. And a board for connecting the coil is inserted into a gap between the forked coil rows, and the armature coil and the board are molded with resin. Is fixed by The surface shape of the magnet is formed so as to conform to the surface shape of the armature.
  • the substrate is formed of an aluminum substrate in which an insulating film and a copper foil pattern are provided on an aluminum flat plate.
  • the invention of claim 3 is directed to a field in which a plurality of permanent magnets are arranged in a straight line so as to alternately have different polarities, and a field opposed to the magnet row of the permanent magnets in parallel via a magnetic gap.
  • a coreless armature coil that is placed and formed by arranging a plurality of coil groups, a can for sealing the armature coil, and a coolant for flowing a coolant between the armature coil and the can.
  • the field is configured to oppose two rows of magnets of the permanent magnet, and the armature is provided with two rows of the armature coils between the two rows of field.
  • the two rows of armature cores At least one end in a direction perpendicular to the direction of the magnetic gap between the magnet rows is bifurcated, and the coil is connected to the gap between the bifurcated coil rows.
  • the armature coil and the substrate are fixed with a mold resin, and the surface shape of the permanent magnet is formed so as to conform to the surface shape of the armature.
  • the invention according to claim 4 is the canned linear motor according to claim 3, wherein It is characterized in that the substrate is constituted by an aluminum substrate provided with an insulating film and a copper foil pattern on a flat aluminum plate.
  • the armature coil having two rows constituting the armature at least one end in a direction orthogonal to the direction of the magnetic gap between the magnet rows is bifurcated.
  • a board for wire connection processing was inserted into the gap between the two rows of armature coils branched in a bifurcated manner, and the surface shape of the permanent magnet was formed so as to conform to the surface shape of the armature. Therefore, the gap magnetic flux density can be improved and the thrust Z current ratio can be increased by removing the insertion portion of the board in most of the magnetic gap formed between the conventional two rows of armature coils. Since the Joule loss can be reduced, the temperature rise on the surface of the linear motor armature can be reduced.
  • the substrate is an aluminum substrate having good thermal conductivity, heat due to the Joule loss of the armature coil array can be efficiently released to the armature mounting plate via the aluminum substrate. Therefore, the temperature rise can be further reduced as compared with the configuration of the first aspect.
  • at least one end of the armature coil having a two-row force in a direction orthogonal to the direction of the magnetic gap between the magnet rows is bifurcated.
  • the board for connecting the coil was inserted into the gap between the two rows of armature coils that were branched and bifurcated, and the surface shape of the permanent magnet was formed so as to conform to the surface shape of the armature.
  • the gap magnetic flux density is improved, and consequently the temperature rise on the surface of the linear motor armature. Can be reduced. Further, since the armature provided with the refrigerant passage is configured, the temperature rise can be made smaller than in the configuration of the linear motor of the first aspect.
  • the substrate is an aluminum substrate having good thermal conductivity, heat due to the Joule loss of the armature coil array can be efficiently released to the armature mounting plate via the aluminum substrate. Therefore, the temperature rise can be further reduced as compared with the configuration of the third aspect.
  • FIG. 1 is an overall perspective view of a coreless linear motor showing a first embodiment of the present invention.
  • FIG.2 Front view of coreless linear motor along line A—A in Fig. 1.
  • FIG. 3 is an overall perspective view of a cand'linear motor showing a second embodiment of the present invention.
  • FIG.4 Front view of canned linear motor along line A—A in Fig.3
  • FIG. 5 is an overall perspective view of a coreless linear motor showing a conventional technique.
  • FIG.6 Cross-sectional front view of coreless linear motor along line A—A in Fig.5
  • FIG. 1 is a perspective view of a coreless linear motor showing a first embodiment of the present invention
  • la is a coreless linear motor
  • 100a is a mover
  • 101a is an armature
  • 102a and 103a are armature coils
  • 104a is a board
  • 200a is a stator
  • 201a is a permanent magnet.
  • la indicates an example in which the armature 101a is the mover 100a and the field is the stator 200a, and the armature and the field are relatively driven.
  • the field of the coreless linear motor la has two magnet rows of the permanent magnets 201a opposed to each other on the field yoke 202, and the armature 101a has a plurality of coils that are concentratedly wound between the fields having a two-row force.
  • Armature coils 102a and 103a composed of two coil groups are arranged in two rows, and the two rows of armature coils 102a and 103a are arranged in the direction of the magnetic gap between the magnet rows.
  • One end in the direction perpendicular to the fork is bifurcated, the other part is arranged back to back, and the coil is connected to the gap between the bifurcated coil arrays 102a and 103a.
  • the surface shape of the permanent magnet 201a is the same as that of the armature 101a. It is formed to conform to the surface shape, and the thickness of the permanent magnet 201a Is thinner on the opening side of the field yoke 202 and thicker on the bottom side.
  • the substrate 104a is formed by applying a copper foil pattern to a GFRP plate, and is narrower than the conventional substrate 104b.
  • the first embodiment at least one end of a two-row armature coil constituting an armature in a direction orthogonal to a magnetic gap direction between magnet rows is bifurcated. At the same time, the coil was connected to the gap between the two rows of armature coils that were bifurcated.
  • the permanent magnet is formed so that the surface shape of the permanent magnet follows the surface shape of the armature.Therefore, the board is inserted in most of the magnetic gap formed between the conventional two rows of armature coils. By removing the portion, the gap magnetic flux density can be improved and the thrust Z current ratio can be increased. Therefore, Joule loss can be reduced, and the temperature rise on the surface of the linear motor can be reduced.
  • FIG. 3 is a perspective view of a cand'linear motor showing a second embodiment of the present invention.
  • FIG. 1 is a front sectional view of a cand'linear motor according to the present invention, taken along line A.
  • 2 is a cand 'linear motor
  • 300 is a mover
  • 301 is a permanent magnet
  • 302 is a field yoke
  • 303 is a field yoke support member
  • 400 is a stator
  • 401 is an armature
  • 402 is a cap.
  • the cand'linear motor 2 has a field 300 as a movable element 300, an armature 401 as a stator 400, and a relative field and armature. This is an example of a typical driving.
  • the field of the canned linear motor 2 is formed by opposing two rows of permanent magnets 301 composed of a plurality of permanent magnets 301 which are alternately provided with different polarities on the inner surface of a field yoke 302 arranged vertically.
  • Coreless armature coils 408 and 409 which are arranged in parallel and opposed to each other and are composed of a plurality of coil groups wound in a concentrated manner, are arranged in two rows.
  • Numerals 408 and 409 denote a coil array having a bifurcated bifurcated coil arrangement in which the central portions in the direction perpendicular to the direction of the magnetic gap between the magnet arrays are arranged back to back, and both ends are bifurcated.
  • the plate 410 is inserted, the armature coils 408, 409 and the substrate 410 are integrally molded and fixed by a mold resin 411, and the surface shape of the permanent magnet 301 is the same as that of the armature 401.
  • the thickness of the permanent magnet 301 is The point is that the permanent magnet that is thin on the 303 side becomes thick at the center.
  • the stator 400 constituting the armature 401 has a mouth-shaped (frame-shaped) metal housing 414 having a hollow inside, and seals the armature coils 408 and 409 to cover the hollow of the housing 414.
  • a plate-like can 402 having an external shape is provided, and an armature having a refrigerant passage for flowing a refrigerant between the armature coil and the can is provided, and a fixing button for fixing the can 402 to the housing 414 is provided.
  • a holding plate 404 that has through holes for fixing bolts 403 and holds the can with an even load, and an armature 401, a housing 414, and a can 402 arranged in the hollow of the housing 414.
  • the material of the can 402 is a resin, and here, for example, a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyphenylene sulfide (PPS) is used.
  • a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyphenylene sulfide (PPS) is used.
  • PPS polyphenylene sulfide
  • the shape of the hollow portion of the housing 414 is drawn so as to surround the outer periphery of the armature 401.
  • the substrate 410 is a GFRP substrate with a copper foil pattern, and a plurality of armature coils 408 and 409 are formed. Used to connect coils.
  • Power is supplied to the armature coils 408 and 409 from a terminal block 405 that is electrically connected to the substrate 410 and a lead wire (not shown) and is attached to the housing 414.
  • the refrigerant is supplied from a refrigerant supply port 406 and discharged from a refrigerant discharge port 407. In the meantime, the refrigerant flows through the refrigerant passage 412 between the armature 401 and the can 402 to cool the armature 401 that generates heat.
  • the canned linear motor 2 configured as described above allows the armature coils 408 and 409 to pass a predetermined current corresponding to the electrical relative position of the mover 300 and the stator 400 to the magnetic field generated by the permanent magnet 301. Acting on the mover 300 generates thrust. At this time, the armature coils 408 and 409 that have generated heat due to Joule loss are cooled by the refrigerant flowing through the refrigerant passage 412, so that a rise in the surface temperature of the can 402 can be suppressed.
  • the substrate 104a in the first embodiment and the substrate 410 in the second embodiment are each configured by a GF RP substrate, and an aluminum plate is provided with an insulating film and a copper foil pattern. This is a point constituted by a lumi substrate.
  • the coreless linear motor and the cand'linear motor of the present invention are capable of increasing the thrust by improving the gap magnetic flux density and reducing the thermal resistance by the aluminum substrate, thereby performing extremely frequent acceleration / deceleration driving while preventing thermal expansion due to temperature rise. It can be applied to a positioning mechanism of a disliked semiconductor manufacturing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

 リニアモータ電機子表面の温度上昇を大幅に低減できるコアレスリニアモータおよびキャンド・リニアモータを提供する。  コアレスリニアモータ1aの界磁は、界磁ヨーク(202)上に永久磁石(201a)の磁石列を2列対向させると共に、電機子(101a)は、2列からなる界磁の間に集中巻された複数個のコイル群より構成される電機子コイル(102a)、(103a)を2列並べるように配置してある点、また、該2列の電機子コイル(102a)、(103a)は、磁石列間の磁気的空隙方向と直交する方向における一方の端部を二又状に分岐し、その他の部分を背中合わせに配置させると共に、この二又状に分岐したコイル列(102a)、(103a)間の空隙にコイルを結線処理するための基板(104a)を挿入してあり、電機子コイル(102a)、(103a)と基板(104a)をモールド樹脂(105)により一体成型して固着してある。

Description

コアレスリニアモータおよびキャンド.リニアモータ 技術分野
[0001] 本発明は、半導体製造装置や工作機のテーブル送りに使われると共に、リニアモ ータ本体の低温度上昇が要求されるコアレスリニアモータおよびキャンド.リニアモー タに関する。
背景技術
[0002] 従来、半導体製造装置や工作機のテーブル送りに用いられるコアレスリニアモータ は、図 5、図 6に示すようになつている(例えば、特許文献 1、特許文献 2に記載)。 図 5は従来技術を示すコアレスリニアモータの全体斜視図、図 6は図 5における A— A線に沿う正断面図である。ここでは、特許文献 1記載のコアレスリニアモータを中心 に説明する。
図 5において、 lbはコアレスリニアモータ、 100bは可動子、 101bは電機子、 102b 、 103bは電機子コイル、 104bは基板、 105はモールド榭脂、 106は電機子取付板 、 107はケーブル、 200bは固定子、 201bは永久磁石、 202は界磁ヨークである。 固定子 200bは略コ字状の界磁ヨーク 202と、界磁ヨーク 202上に交互に極性が異 なるように一定ピッチごとに直線状に配置してなる複数の永久磁石 201bからなり、該 永久磁石の磁石列を 2列対向させた界磁を構成している。また、永久磁石 201bは対 向する左右の永久磁石 201bの極性とも異極になるように配置されて 、る。
可動子 100bは電機子 101b、該電機子 101bを固定する電機子取付板 106および ケーブル 107から構成されている。この電機子 101bは、永久磁石 201bの 2列の磁 石列の内側に磁気的空隙を介して平行に配置されている。また、電機子 101bは中 央に基板 104bが配置されると共に、基板 104bを間に挟んで左右両側に電機子コィ ル 102b、 103bが配置され、基板 104bと電機子コイル 102b、 103bがモールド榭脂 105により一体成型されている。さらに、電機子 101bはモールド榭脂 105によって電 機子取付板 106にも固着されている。ここで、電機子コイル 102b、 103bは、例えば 集中卷された複数個のコイル群により構成されている。それから、基板 104bは例え ばガラス繊維を充填したエポキシ榭脂(GFRP)の板に銅箔のパターンを施したもの であり、電機子コイル 102b、 103bの複数個のコイル群を結線するために用いる。な お、可動子 100bは図示しないリニアガイド等によって支持されている。
このような構成のリニアモータにケーブル 107を介して電機子コイル 102b、 103bに 所定の電流を流すと、永久磁石 201bの作る磁界との作用により可動子 100bに推力 が発生し、可動子 100bは矢印で示す進行方向に移動するようになって 、る。
特許文献 1 :特開 2001— 197718号公報
特許文献 2:特開 2002 - 27730号公報
発明の開示
発明が解決しょうとする課題
[0003] ところが、従来技術は左右の電機子コイル 102b、 103bの間全面に基板 104bが配 置されることから、以下のような問題があった。
(1) 2列カゝらなる左右の電機子コイルの磁気的空隙の間に GFRP基板が挿入される ため、磁気的空隙長が長くなり、ギャップ磁束密度の低下にともなう推力低下が起き た。その結果、所定の推力を発生させようとすると電機子コイルに流す電流が大きく なり、ジュール損失が増力!]してリニアモータ電機子表面の温度上昇が大きくなつた。
(2) GFRP基板の熱伝導率が悪いため、電機子の熱抵抗が大きくなり、ジュール損 失による電機子コイルの温度上昇が大きくなつた。その結果、リニアモータ電機子表 面の温度上昇も大きくなつた。
以上のような問題は、同様に電機子が構成される特許文献 2に記載のキャンド 'リニ ァモータについても同じであった。
本発明は、このような問題点を鑑みてなされたものであり、リニアモータ電機子表面 の温度上昇を大幅に低減することが可能なコアレスリニアモータを提供することを目 的とする。
課題を解決するための手段
[0004] 上記問題を解決するため、本発明は次のような構成にしたものである。
請求項 1の発明は、交互に極性が異なるように複数の永久磁石を直線状に並べて 配置した界磁と、前記永久磁石の磁石列と磁気的空隙を介して平行に対向配置され ると共に複数個のコイル群を並べて成形したコアレス型の電機子コイルを有する電機 子とを備え、前記界磁と前記電機子の何れか一方を固定子に、他方を可動子として 、前記界磁と前記電機子を相対的に走行するようにしたコアレスリニアモータにおい て、前記界磁は、前記永久磁石の磁石列を 2列対向させるように構成してあり、前記 電機子は、前記 2列からなる界磁の間に前記電機子コイルを 2列並べるように配置し てあり、前記 2列の電機子コイルは、前記磁石列間の磁気的空隙方向と直交する方 向における少なくとも一方の端部を二又状に分岐させると共に、この二又状に分岐し たコイル列間の空隙に前記コイルを結線処理するための基板を挿入してあり、前記 電機子コイルと前記基板をモールド榭脂により固着してあり、前記永久磁石の表面形 状は、前記電機子の表面形状に沿うように形成してあることを特徴として 、る。
また、請求項 2の発明は、請求項 1に記載のコアレスリニアモータにおいて、前記基 板を、アルミの平板に絶縁膜と銅箔パターンを設けたアルミ基板によって構成したこ とを特徴としている。
また、請求項 3の発明は、交互に極性が異なるように複数の永久磁石を直線状に並 ベて配置した界磁と、前記永久磁石の磁石列と磁気的空隙を介して平行に対向配 置されると共に複数個のコイル群を並べて成形したコアレス型の電機子コイルと、前 記電機子コイルを密封するためのキャンと、前記電機子コイルと前記キャンとの間に 冷媒を流すための冷媒通路を有する電機子とを備え、前記界磁と前記電機子の何 れか一方を固定子に、他方を可動子として、前記界磁と前記電機子を相対的に走行 するようにしたキャンド 'リニアモータ において、前記界磁は、前記永久磁石の磁石 列を 2列対向させるように構成してあり、前記電機子は、前記 2列からなる界磁の間に 前記電機子コイルを 2列並べるように配置してあり、前記 2列の電機子コイルは、前記 磁石列間の磁気的空隙方向と直交する方向における少なくとも一方の端部を二又状 に分岐させると共に、この二又状に分岐したコイル列間の空隙に前記コイルを結線 処理するための基板を挿入してあり、前記電機子コイルと前記基板をモールド榭脂 により固着してあり、前記永久磁石の表面形状は、前記電機子の表面形状に沿うよう に形成してあることを特徴として 、る。
また、請求項 4の発明は、請求項 3に記載のキャンド 'リニアモータにおいて、前記 基板を、アルミの平板に絶縁膜と銅箔パターンを設けたアルミ基板によって構成した ことを特徴としている。
発明の効果
[0005] 請求項 1の発明によると、電機子を構成する 2列からなる電機子コイルに関し、磁石 列間の磁気的空隙方向と直交する方向における少なくとも一方の端部を二又状に分 岐させると共に、二又状に分岐させた 2列の電機子コイル間の空隙にコイルを結線処 理するための基板を挿入し、永久磁石の表面形状を電機子の表面形状に沿うように 形成したので、従来の 2列の電機子コイル間に形成された磁気的空隙の大部分で基 板の挿入部分を取り除くことにより、ギャップ磁束密度を向上させ、推力 Z電流比を 大きくすることができる。ジュール損失を低減することができるので、リニアモータ電機 子表面の温度上昇を低減することができる。
また、請求項 2の発明によると、基板を熱伝導率の良いアルミ基板としたので、電機 子コイル列のジュール損失による熱を、アルミ基板を介して電機子取付板へ効率良く 逃がすことができ、請求項 1の構成よりもさらに温度上昇を低減することができる。 また、請求項 3の発明によると、請求項 1記載同様、 2列力 なる電機子コイルに関 し、磁石列間の磁気的空隙方向と直交する方向における少なくとも一方の端部を二 又状に分岐させ、二又状に分岐させた 2列の電機子コイル間の空隙にコイルを結線 処理するための基板を挿入し、永久磁石の表面形状を電機子の表面形状に沿うよう に形成したので、従来の 2列の電機子コイル間に形成された磁気的空隙の大部分で 基板の挿入部分を取り除くことで、ギャップ磁束密度を向上させ、結果的にリニアモ ータ電機子表面の温度上昇を低減することができる。さらに、冷媒通路を設けた電機 子を構成するため、請求項 1のリニアモータの構成よりも温度上昇を小さくすることが できる。
また、請求項 4の発明によると、基板を熱伝導率の良いアルミ基板としたので、電機 子コイル列のジュール損失による熱を、アルミ基板を介して電機子取付板へ効率良く 逃がすことができ、請求項 3の構成よりもさらに温度上昇を低減することができる。 図面の簡単な説明
[0006] [図 1]本発明の第 1実施例を示すコアレスリニアモータの全体斜視図 [図 2]図 1の A— A線に沿うコアレスリニアモータの正断面図
[図 3]本発明の第 2実施例を示すキャンド'リニアモータの全体斜視図
[図 4]図 3の A— A線に沿うキャンド 'リニアモータの正断面図
[図 5]従来技術を示すコアレスリニアモータの全体斜視図
[図 6]図 5の A— A線に沿うコアレスリニアモータの正断面図
符号の説明
[0007] la、 lb コアレスリニアモータ 303 界磁ヨーク支持部材
2 キャンド 'リニアモータ 400 固定子
100a, 100b 固定子 401 電機子
101a, 101b 電機子 402 キャン
102a, 102b 電機子コイル 403 固定用ボルト
103a, 103b 電機子コイル 404 押え板
104a, 104b 基板 405 端子台
105 モールド榭脂 406 冷媒供給口
106 電機子取付板 407 冷媒排出口
107 ケーブル 408、 409 電機子コイル
200a, 200b 可動子 410 基板
201a, 201b 永久磁石 411 モールド榭脂
202 界磁ヨーク 412 冷媒通路
300 可動子 413 Oリング
301 永久磁石 414 筐体
302 界磁ヨーク
発明を実施するための最良の形態
[0008] 以下、本発明の実施の形態について図を参照して説明する。
実施例 1
[0009] 図 1は、本発明の第 1実施例を示すコアレスリニアモータの斜視図、図 2は図 1の A
A線に沿う本発明におけるコアレスリニアモータの正断面図である。以下、本発明 の構成要素が従来技術と同じものについては同一符号を付してその説明を省略し、 異なる点のみ説明する。
[0010] 図において、 laがコアレスリニアモータ、 100aは可動子、 101aは電機子、 102a、 103aは電機子コイル、 104aは基板、 200aは固定子、 201aは永久磁石であり、コア レスリニアモータ laは電機子 101aを可動子 100aとし、界磁を固定子 200aとして、 電機子と界磁を相対的に走行する事例を示したものとなっている。
本発明の特徴は以下のとおりである。
すなわち、コアレスリニアモータ laの界磁は、界磁ヨーク 202上に永久磁石 201aの 磁石列を 2列対向させると共に、電機子 101aは、 2列力もなる界磁の間に集中卷さ れた複数個のコイル群より構成される電機子コイル 102a、 103aを 2列並べるように 配置してある点、また、該 2列の電機子コイル 102a、 103aは、磁石列間の磁気的空 隙方向と直交する方向における一方の端部を二又状に分岐し、その他の部分を背 中合わせに配置させると共に、この二又状に分岐したコイル列 102a、 103a間の空 隙にコイルを結線処理するための基板 104aを挿入してあり、電機子コイル 102a、 10 3aと基板 104aをモールド榭脂 105により一体成型して固着してある点、さらに、永久 磁石 201aの表面形状は、電機子 101aの表面形状に沿うように形成してあり、永久 磁石 201aの厚みが界磁ヨーク 202の開口部側で薄ぐ底部側で厚くなつている点で ある。
また、基板 104aは GFRPの板に銅箔のパターンを施したものであり、従来技術の 基板 104bよりも幅が狭くなつている。
以上のように構成されたコアレスリニアモータ laも従来技術同様に、ケーブル 107 を介して電機子コイル 102a、 103aに所定の電流を流すと、永久磁石 201aの作る磁 界との作用により可動子 100aに推力が発生し、可動子 100aは矢印で示す進行方 向に移動することとなる。
[0011] このような構成により、従来技術で問題となっていた、 2列の電機子コイル間の大き な磁気的空隙長に配置される GFRP基板の大部分を取り除くことができる。第 1の実 施例によれば、電機子を構成する 2列カゝらなる電機子コイルに関し、磁石列間の磁気 的空隙方向と直交する方向における少なくとも一方の端部を二又状に分岐させると 共に、二又状に分岐させた 2列の電機子コイル間の空隙にコイルを結線処理するた めの基板を挿入し、永久磁石の表面形状を電機子の表面形状に沿うように形成した ので、従来の 2列の電機子コイル間に形成された磁気的空隙の大部分で基板の挿 入部分を取り除くことにより、ギャップ磁束密度を向上させ、推力 Z電流比を大きくす ることができる。よって、ジュール損失を低減することができるので、リニアモータ表面 の温度上昇を低減することができる。
実施例 2
[0012] 図 3は、本発明の第 2実施例を示すキャンド'リニアモータの斜視図、図 4は図 3の A
A線に沿う本発明におけるキャンド 'リニアモータの正断面図である。
[0013] 図において、 2はキャンド'リニアモータ、 300は可動子、 301は永久磁石、 302は 界磁ヨーク、 303は界磁ヨーク支持部材、 400は固定子、 401は電機子、 402はキヤ ン、 403ίま固定用ボノレ卜、 404ίま押免板、 405ίま端子台、 406ίま冷媒供給口、 407ίま 冷媒 出口、 408、 409ίま電機子コィノレ、 、 410ίま基板、 411 ίまモーノレド榭月旨、 412 は冷媒通路、 413は Οリング、 414は筐体であり、キャンド'リニアモータ 2は界磁を可 動子 300とし、電機子 401を固定子 400として、界磁と電機子を相対的に走行する事 例を示したものとなって 、る。
本発明の特徴は以下のとおりである。
すなわち、キャンド 'リニアモータ 2の界磁は、上下に配置された界磁ヨーク 302の 内側面に交互に極性が異なるように設けた複数の永久磁石 301よりなる磁石列を 2 列対向させると共に、対向させた 2つの界磁ヨーク 302の間の四隅に界磁ヨーク支持 部材 303を配置した点、また、電機子 401は、 2列からなる永久磁石 301の磁石列の 間に磁気的空隙を介して平行に対向配置され、集中巻された複数個のコイル群より 構成されるコアレス型の電機子コイル 408、 409を 2列並べるように配置してある点、 また、該 2列の電機子コイル 408、 409は、磁石列間の磁気的空隙方向と直交する 方向における中央部を背中合わせに配置し、両方の端部を二又状に分岐させると共 に、この二又状に分岐したコイル列 408、 409間の空隙にコイルを結線処理するため の基板 410を挿入してあり、電機子コイル 408、 409と基板 410をモールド榭脂 411 により一体成型して固着してある点、さらに、永久磁石 301の表面形状は、電機子 40 1の表面形状に沿うように形成してあり、永久磁石 301の厚みが界磁ヨーク支持部材 303側で薄ぐ永久磁石の中央部で厚くなつて ヽる点である。
なお、電機子 401を構成する固定子 400は、内部を中空とする口の字形 (額縁状) の金属製筐体 414と、電機子コイル 408、 409を密封し、筐体 414の中空を覆うため 外形を象った板状のキャン 402と、電機子コイルとキャンとの間に冷媒を流すための 冷媒通路を有する電機子を備え、キャン 402を筐体 414に固定するための固定用ボ ルト 403と、固定用ボルト 403の通し穴を持ちキャンを均等な荷重でもって押えるため の押え板 404と、筐体 414の中空内に配置された電機子 401、筐体 414とキャン 40 2の縁より少し大き目に象られた Oリング 413、筐体 414に取り付けられた端子台 405 、筐体 414の前後方に各々設けられた冷媒供給口 406と冷媒排出口 407により構成 されている。キャン 402の材質は榭脂製であり、ここでは熱硬化性榭脂である例えば エポキシ榭脂ゃ熱可塑性榭脂である例えばポリフエ-レンサルファイド (PPS)を使用 している。筐体 414の空洞部の形状は、電機子 401の外周を囲うように象られている また、基板 410は銅箔パターンを施した GFRP基板であり、電機子コイル 408、 40 9の複数個のコイルを結線するために用いられる。電機子コイル 408、 409への電力 供給は、基板 410とリード線(図示しない)で各々電気的に接続され筐体 414に取り 付けられた端子台 405から行われる。また、冷媒は冷媒供給口 406より供給され、冷 媒排出口 407より排出される。その間に、冷媒は電機子 401とキャン 402の間にある 冷媒通路 412を流れ、発熱する電機子 401を冷却する。
このように構成されたキャンド 'リニアモータ 2は、可動子 300と固定子 400の電気的 相対位置に応じた所定の電流を電機子コイル 408、 409に流すことにより、永久磁石 301の作る磁界と作用して可動子 300に推力が発生する。この際、ジュール損失に よって発熱した電機子コイル 408、 409は冷媒通路 412を流れる冷媒により冷却され るので、キャン 402の表面温度上昇を抑えることができる。
このような構成により、第 1実施例と同様に、従来技術で問題となっていた、 2列の 電機子コイル間の大きな磁気的空隙長に配置される GFRP基板の大部分を取り除く ことにより、磁気的空隙長を小さくすることができる。磁気的空隙を小さくしギャップ磁 束密度を向上させることで、推力 Z電流比を小さくすることができる。よって、ジユー ル損失を低減することができるので、キャン表面の温度上昇を低減することができる。 実施例 3
[0015] 第 3実施例は、第 1実施例における基板 104a、第 2実施例における基板 410を GF RP基板で構成したものに替えて、アルミの平板に絶縁膜と銅箔パターンを設けたァ ルミ基板によって構成した点である。
[0016] このような構成により、電機子コイルに発生したジュール損失による熱を、第 1実施 例のコアレスリニアモータにおいては電機子取付板 106へ逃がすことができ、第 2実 施例のキャンド 'リニアモータにおいては筐体 414へ熱伝導の良いアルミ基板を通り 効率良く外側へ逃がすことができ、さらに温度上昇を低減することができる。
産業上の利用可能性
[0017] 本発明のコアレスリニアモータおよびキャンド'リニアモータは、ギャップ磁束密度の 向上による推力増加とアルミ基板による熱抵抗低減により、極めて高頻度な加減速 駆動を行いながらも温度上昇による熱膨張を嫌う半導体製造装置の位置決め機構 に適用することができる。

Claims

請求の範囲
[1] 交互に極性が異なるように複数の永久磁石を直線状に並べて配置した界磁と、 前記永久磁石の磁石列と磁気的空隙を介して平行に対向配置されると共に複数 個のコイル群を並べて成形したコアレス型の電機子コイルを有する電機子とを備え、 前記界磁と前記電機子の何れか一方を固定子に、他方を可動子として、前記界磁 と前記電機子を相対的に走行するようにしたコアレスリニアモータにおいて、
前記界磁は、前記永久磁石の磁石列を 2列対向させるように構成してあり、 前記電機子は、前記 2列からなる界磁の間に前記電機子コイルを 2列並べるよう〖こ 配置してあり、
前記 2列の電機子コイルは、前記磁石列間の磁気的空隙方向と直交する方向にお ける少なくとも一方の端部を二又状に分岐させると共に、この二又状に分岐したコィ ル列間の空隙に前記コイルを結線処理するための基板を挿入してあり、
前記電機子コイルと前記基板をモールド榭脂により固着してあり、
前記永久磁石の表面形状は、前記電機子の表面形状に沿うように形成してあること を特徴とするコアレスリニアモータ。
[2] 前記基板を、アルミの平板に絶縁膜と銅箔パターンを設けたアルミ基板によって構 成したことを特徴とする請求項 1記載のコアレスリニアモータ。
[3] 交互に極性が異なるように複数の永久磁石を直線状に並べて配置した界磁と、 前記永久磁石の磁石列と磁気的空隙を介して平行に対向配置されると共に複数 個のコイル群を並べて成形したコアレス型の電機子コイルと、前記電機子コイルを密 封するためのキャンと、前記電機子コイルと前記キャンとの間に冷媒を流すための冷 媒通路を有する電機子とを備え、
前記界磁と前記電機子の何れか一方を固定子に、他方を可動子として、前記界磁 と前記電機子を相対的に走行するようにしたキャンド ·リニアモータ にお 、て、 前記界磁は、前記永久磁石の磁石列を 2列対向させるように構成してあり、 前記電機子は、前記 2列からなる界磁の間に前記電機子コイルを 2列並べるよう〖こ 配置してあり、
前記 2列の電機子コイルは、前記磁石列間の磁気的空隙方向と直交する方向にお ける少なくとも一方の端部を二又状に分岐させると共に、この二又状に分岐したコィ ル列間の空隙に前記コイルを結線処理するための基板を挿入してあり、
前記電機子コイルと前記基板をモールド榭脂により固着してあり、
前記永久磁石の表面形状は、前記電機子の表面形状に沿うように形成してあること を特徴とするキャンド'リニアモータ。
前記基板を、アルミの平板に絶縁膜と銅箔パターンを設けたアルミ基板によって構成 したことを特徴とする請求項 3記載のキャンド ·リニアモータ。
PCT/JP2005/000177 2004-01-20 2005-01-11 コアレスリニアモータおよびキャンド・リニアモータ WO2005069467A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112005000180T DE112005000180T5 (de) 2004-01-20 2005-01-11 Kernloser Linearmotor und Spaltrohr-Linearmotor
US10/586,239 US7576452B2 (en) 2004-01-20 2005-01-11 Coreless linear motor and canned linear motor
KR1020067011119A KR100757709B1 (ko) 2004-01-20 2005-01-11 코어리스 리니어 모터 및 캔드 리니어 모터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004011942A JP4517278B2 (ja) 2004-01-20 2004-01-20 コアレスリニアモータおよびキャンド・リニアモータ
JP2004-011942 2004-01-20

Publications (1)

Publication Number Publication Date
WO2005069467A1 true WO2005069467A1 (ja) 2005-07-28

Family

ID=34792355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000177 WO2005069467A1 (ja) 2004-01-20 2005-01-11 コアレスリニアモータおよびキャンド・リニアモータ

Country Status (6)

Country Link
US (1) US7576452B2 (ja)
JP (1) JP4517278B2 (ja)
KR (1) KR100757709B1 (ja)
DE (1) DE112005000180T5 (ja)
TW (1) TW200533035A (ja)
WO (1) WO2005069467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789661B (zh) * 2009-01-23 2012-05-23 中国科学院理化技术研究所 多磁路单元片式永磁直线振荡电动机

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870413B2 (ja) * 2002-08-20 2007-01-17 株式会社安川電機 コアレスリニアモータ
GB0605298D0 (en) * 2006-03-16 2006-04-26 Univ Edinburgh Generator and magnetic flux conducting unit
JP5549062B2 (ja) * 2008-08-07 2014-07-16 シンフォニアテクノロジー株式会社 搬送装置
JP2010166704A (ja) * 2009-01-15 2010-07-29 Yaskawa Electric Corp コアレスリニアモータ電機子およびコアレスリニアモータ
JP2010213425A (ja) * 2009-03-09 2010-09-24 Yaskawa Electric Corp コアレスリニアモータ
TWI408873B (zh) * 2010-01-25 2013-09-11 Chieftek Prec Co Ltd 線性馬達線圈組合件構造
JP5397279B2 (ja) * 2010-03-11 2014-01-22 株式会社安川電機 コアレスリニアモータ
TWI514725B (zh) * 2013-12-19 2015-12-21 Delta Electronics Inc 線性馬達及其適用之馬達組
US10560011B2 (en) * 2015-05-07 2020-02-11 Sikorsky Aircraft Corporation Linear electromechanical actuators
WO2019010698A1 (zh) * 2017-07-14 2019-01-17 墨尚电子技术(上海)有限公司 电抗器磁芯及其电抗器
EP3667878B1 (de) * 2018-12-12 2023-09-13 Etel S.A. Linearmotor sowie sekundärteil für einen linearmotor
EP3719962A1 (en) * 2019-04-01 2020-10-07 LIM-Tech Limited Electromotive machine
TWI715966B (zh) * 2019-04-12 2021-01-11 直得科技股份有限公司 線性馬達構造
US11309783B2 (en) * 2019-09-26 2022-04-19 Honeywell Federal Manufacturing & Technologies, Llc Electromagnetic propulsion system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11127569A (ja) * 1997-10-23 1999-05-11 Hitachi Metals Ltd リニアモータ
JP2001197718A (ja) * 2000-01-14 2001-07-19 Yaskawa Electric Corp コアレスリニアモータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087844A (en) * 1989-11-07 1992-02-11 Hitachi Metals, Ltd. Linear motor
US6140734A (en) * 1998-04-03 2000-10-31 Nikon Corporation Of Japan Armature with regular windings and having a high conductor density
JP3832556B2 (ja) * 2000-02-25 2006-10-11 株式会社安川電機 キャンド・リニアモータ
JP3539493B2 (ja) 2001-04-09 2004-07-07 株式会社安川電機 キャンド・リニアモータ電機子およびキャンド・リニアモータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11127569A (ja) * 1997-10-23 1999-05-11 Hitachi Metals Ltd リニアモータ
JP2001197718A (ja) * 2000-01-14 2001-07-19 Yaskawa Electric Corp コアレスリニアモータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789661B (zh) * 2009-01-23 2012-05-23 中国科学院理化技术研究所 多磁路单元片式永磁直线振荡电动机

Also Published As

Publication number Publication date
JP4517278B2 (ja) 2010-08-04
US7576452B2 (en) 2009-08-18
KR20060096095A (ko) 2006-09-05
DE112005000180T5 (de) 2006-12-28
KR100757709B1 (ko) 2007-09-13
US20070152513A1 (en) 2007-07-05
TW200533035A (en) 2005-10-01
JP2005210775A (ja) 2005-08-04
TWI342097B (ja) 2011-05-11

Similar Documents

Publication Publication Date Title
WO2005069467A1 (ja) コアレスリニアモータおよびキャンド・リニアモータ
KR100785192B1 (ko) 코어리스 리니어 모터
JP5197595B2 (ja) 力脈動補償を備えたリニアモータ
JPH10271797A (ja) リニアモーター用アーマチュア
US7701103B2 (en) Electric motor
EP3769400B1 (en) A stator of an electric machine and an electric machine
US8664808B2 (en) Linear motor coil assembly with cooling device
JP3478084B2 (ja) リニアモータ
JP2002165434A (ja) コアレスリニアモータ
JP2007159286A (ja) リニアモータ
JP2007159286A5 (ja)
JP2010220396A (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
WO2017169908A1 (ja) リニアモータ、ボイスコイルモータ、ステージ装置
JP5347596B2 (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
JP2004312877A (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
JP2007336765A (ja) 冷媒冷却リニアモータ電機子および冷媒冷却リニアモータ
JP2000004572A (ja) リニアモ―タ
JP2004350419A (ja) リニアモータ
JP5369573B2 (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータおよびそれを用いたテーブル送り装置
JP2010166704A (ja) コアレスリニアモータ電機子およびコアレスリニアモータ
JP2004236475A (ja) コイルジャケット及びそれを用いたリニアモータ
JP2005137105A (ja) キャンド・リニアモータ電機子およびキャンド・リニアモータ
JP2010213425A (ja) コアレスリニアモータ
WO2010053444A1 (en) Dual coil linear motor with compensated cogging and attraction force
JP2001095226A (ja) コアレスリニアモータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067011119

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120050001806

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 10586239

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067011119

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112005000180

Country of ref document: DE

Date of ref document: 20061228

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005000180

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10586239

Country of ref document: US