WO2005068835A1 - 舶用直線翼垂直軸型風力発電装置 - Google Patents

舶用直線翼垂直軸型風力発電装置 Download PDF

Info

Publication number
WO2005068835A1
WO2005068835A1 PCT/JP2005/000232 JP2005000232W WO2005068835A1 WO 2005068835 A1 WO2005068835 A1 WO 2005068835A1 JP 2005000232 W JP2005000232 W JP 2005000232W WO 2005068835 A1 WO2005068835 A1 WO 2005068835A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
wind
windmill
rotation
set value
Prior art date
Application number
PCT/JP2005/000232
Other languages
English (en)
French (fr)
Inventor
Masaki Hanyu
Hiroyuki Murai
Kimitatsu Uchida
Kunihiro Asaji
Takashi Chiba
Original Assignee
Nippon Yusen Kabushiki Kaisha
Nippi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusen Kabushiki Kaisha, Nippi Corporation filed Critical Nippon Yusen Kabushiki Kaisha
Publication of WO2005068835A1 publication Critical patent/WO2005068835A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a marine straight wing vertical axis wind power generator, and more particularly to a marine straight wing vertical axis wind power generator capable of preventing damage to a wind turbine when a ship shakes.
  • Patent Document 1 Japanese Patent No. 3368537
  • the conventional straight-wing vertical axis wind power generator is designed on the premise that the wind turbine is installed on the ground. Therefore, when this is applied to a ship, an excessive force is applied to the wind turbine. In addition, the windmill may be damaged.
  • the rotor arm has to withstand the centrifugal force during rotation of the blade and to reduce the torque.
  • a thin airfoil is used for the cross-sectional shape, which can be designed by considering only the transmission to the rotating shaft, in order to reduce the air resistance during rotation.
  • the present invention has been made in view of the current situation, and is directed to a marine straight blade vertical axis wind power generator capable of preventing damage to the wind turbine while minimizing deterioration of the function of the wind turbine.
  • the purpose is to provide.
  • Another object of the present invention is to provide a marine straight blade vertical axis wind power generator that can prevent damage to a wind turbine even when a gust of wind blows.
  • Another object of the present invention is to provide a marine straight-wing vertical axis wind power generator capable of efficiently rotating a wind turbine even in a weak wind to improve power generation efficiency.
  • Another object of the present invention is to provide a marine straight-wing vertical axis type wind power generator that can be easily applied to an existing ship by simplifying the device configuration and reducing the weight.
  • Still another object of the present invention is to improve the rigidity of the rotor arm to suppress an increase in the number of rotor arms, to reduce the weight of the wind turbine, and to improve the power generation efficiency. To provide a wind turbine generator.
  • the present invention provides a wind turbine of a straight blade vertical axis type installed on a ship; power generating means driven by rotation of the wind turbine; brake means for stopping rotation of the wind turbine; Starting means for driving the wind turbine to a set rotation speed; a sensor for detecting the angular velocity of the inclination of the rotation axis of the wind turbine; an anemometer for detecting the wind speed; and control means; When the sensor detects an angular velocity exceeding a set value, the wind turbine is stopped.
  • the present invention is also characterized in that the control means stops the windmill when the anemometer detects a wind speed exceeding a set value.
  • the present invention is also characterized in that the control means drives the windmill when the anemometer detects a wind speed exceeding a set value while the windmill is stopped.
  • the present invention is also characterized in that the power generation means and the activation means are constituted by a single device having a function switching mechanism.
  • the present invention further comprises a windmill, a rotating shaft, a rotating arm force, a rotor arm extending in a radial direction, and a blade attached to a distal end of the rotor arm, wherein the rotor arm has a rectangular cross-section main body. And a front end integrally formed on the rotating front end of the main body and having an arc shape in cross section, and a rear end integrally formed on the rear end of rotation of the main body and formed in the shape of a cross section. It is characterized by having done.
  • the present invention provides a wind turbine of a straight blade vertical axis type installed on a ship; a power generating means driven by rotation of the wind turbine; a brake means for stopping the rotation of the wind turbine; Starting means for driving up to the rotation speed; a sensor for detecting the angular velocity of the inclination of the rotation axis of the wind turbine; an anemometer for detecting the wind speed; and a control means; and the control means causes the sensor to exceed a set value. Since the wind turbine is stopped when the angular velocity is detected, it is possible to prevent the wind turbine from being damaged while minimizing the deterioration of the function of the wind turbine.
  • the control means stops the wind turbine when the anemometer detects a wind speed exceeding a set value. Therefore, even when a gust of wind is blown, the wind turbine is stopped. Damage can be prevented before it occurs.
  • the wind turbine is driven by the control means when the anemometer detects a wind speed exceeding a set value while the wind turbine is stopped. Even so, the wind turbine can be efficiently rotated to improve the power generation efficiency.
  • the power generation means and the starting means are configured as a single device having a function switching mechanism, the device configuration is simplified to reduce the weight, and the present invention can be applied to an existing ship. It can be easily applied.
  • the present invention further comprises a windmill, a rotating shaft, a rotating arm force, a rotor arm extending in a radial direction, and a blade attached to a distal end of the rotor arm, wherein the rotor arm has a rectangular cross-section main body. And a front end portion integrally formed on the rotating front end portion of the main body portion and having an arc-shaped cross section, and a rear end portion integrally formed on the rear end portion of the main body portion and having a cross-sectional weight shape. Therefore, the rigidity of the rotor arm can be improved to suppress an increase in the number of rotor arms, and the power generation efficiency can be improved by reducing the weight of the windmill.
  • FIG. 1 shows a marine straight blade vertical axis type wind power generator according to an embodiment of the present invention.
  • the wind power generator 1 includes a straight wing vertical axis wind turbine 2 installed on a ship (not shown). And a generator 3 driven by the rotation of the wind turbine 2.
  • the generator 3 can be used as a motor for starting the stopped wind turbine 2 by switching an internal mechanism. It has become. That is, the generator 3 serves as two means, a power generation unit driven by the rotation of the wind turbine 2 and a starting unit for driving the stopped wind turbine 2 to the set rotation speed.
  • the windmill 2 includes a pair of left and right columns 5a erected on the hull 4, a top member 5b connecting the upper ends of both columns 5a, and both columns 5a.
  • a support frame 5 having a bottom member 5c for connecting between positions near the lower end of the frame and a support member 5d for supporting the column 5a is provided.
  • a wind turbine body 6 is rotatably supported in the support frame 5.
  • a device section 7 is provided on the bottom member 5c.
  • a tachometer 9 for measuring the number of revolutions of the generator 3, the braking means 8, and the wind turbine body 6 is incorporated in the equipment section 7, and the tachometer 9 measures the number of revolutions. The measured value is sent to the control means 10 as control data.
  • each measurement value from the wind direction / anemometer 11 and the gyro sensor 12 is also input to the control means 10 as control data.
  • the means 10 controls the brake means 8 and the servo controller 13 based on the control data to perform power generation control. This will be described in detail later.
  • reference numeral 14 denotes a three-phase 200 VAC marine power supply, for example.
  • the wind turbine main body 6 is attached to a rotating shaft 15 located at the center of rotation, a rotor arm 16 extending radially from the rotating shaft 15, and a tip of the rotor arm 16.
  • the wind turbine body 6 always rotates in a fixed direction regardless of the direction of the wind, depending on the direction of the blade 17.
  • the principle of rotation is a well-known technique in this type of wind turbine, and a detailed description thereof will be omitted.
  • the rotor arm 16 has a box-shaped main body 16a having a rectangular cross section, a tip 16b provided integrally with a rotating tip of the main body 16a and having an arc-shaped cross section,
  • the main body 16a is formed integrally with the rear end of the rotation of the main body 16a and has a rear end 16c having a weight-proof cross-section.
  • the brake means 8 is attached to the lower end of the rotating shaft 15, as shown in Figs.
  • the brake means 8 includes a disc 8a attached thereto and, for example, pneumatically actuated brake pads 8b arranged at four locations in the circumferential direction around the disc 8a. Activates when the shaft 15 tilts at an angular velocity exceeding the preset value, or when the wind direction / anemometer 11 measures the wind speed exceeding the preset value, forcing the rotating shaft 15 The wind turbine body 6 is stopped temporarily to prevent damage to the wind turbine body 6.
  • a large pulley 18 is attached to the rotary shaft 15 immediately above the disk 8a, and the large pulley is connected to the input / output shaft 3a of the generator 3.
  • the large pulley 18 transmits the rotation of the rotating shaft 15 to the input / output shaft 3a of the generator 3 to generate power, and uses the generator 3 as a starting means. In use, the rotation of the input / output shaft 3a is transmitted to the rotation shaft 15 so that the rotation shaft 15 can be driven.
  • FIG. 7 and FIG. 8 are flow charts showing the operation at the time of starting and stopping the automatic operation, respectively.
  • an upper limit set value for example, 25 mZsec.
  • the measurement values from the control means 10 force wind direction / anemometer 11 shown in FIG. 1 are taken in as control data, and this control data is compared with the upper limit set value. If the wind speed is lower than the upper limit set value, the next step S2 is executed.
  • step S2 it is determined whether or not the force is such that the angular velocity of the inclination of the rotating shaft 15 is lower than a set value (for example, 5 ° Zsec).
  • the control means 10 shown in FIG. 1 takes in the measured value from the gyro sensor 12 as control data, and compares the control data with a set value. Then, when the angular velocity force set value of the inclination of the rotating shaft 15 is smaller than the set value, the next step S3 is executed.
  • step S3 it is determined whether or not the wind speed is equal to or higher than a lower limit set value (for example, 5 mZsec). Specifically, the control means 10 shown in FIG. 1 fetches a measurement value from the wind direction / anemometer 11 as control data, and compares the control data with the lower limit set value. And If the wind speed is equal to or higher than the lower limit, the brake means 8 is turned OFF in step S4.
  • a lower limit set value for example, 5 mZsec
  • the wind turbine body 6 starts rotating at a speed sufficient for power generation only by turning off the brake means 8 or close to the lower limit set value.
  • the wind turbine body 6 does not rotate, or rotates only at a very slow speed even if it rotates.
  • the force in which the wind turbine body 6 is rotating at or above the set rotation speed (eg, 53 rpm) in step S5 Determine whether or not.
  • the control means 10 shown in FIG. 1 takes in the measured value from the tachometer 9 as control data, and compares this control data with the set rotation speed. If the rotation speed of the rotation shaft 15 is lower than the set rotation speed, the rotation shaft 15 is forcibly rotated in step S6. Specifically, after switching the function of the generator 3 shown in FIG. 1 to the motor side, the rotating shaft 15 is forcibly rotated using the generator 3.
  • step S7 When the rotation speed of the rotating shaft 15 becomes equal to or more than the set rotation speed due to the forced rotation, in step S7, the forced rotation of the rotating shaft 15 is released. Specifically, the function of the generator 3 shown in FIG. 1 is switched to the generator side to perform wind power generation.
  • step S11 of FIG. 8 it is determined whether or not the wind speed is equal to or higher than the upper limit set value. Specifically, the control means 10 shown in FIG. 1 takes in the measurement values from the wind direction / anemometer 11 as control data, and compares this control data with the upper limit set value. When the wind speed is lower than the upper limit, the next step S12 is executed.
  • step S12 it is determined whether or not the inclination of the rotating shaft 15 is equal to or greater than a set value of the angular velocity force.
  • the control means 10 shown in FIG. 1 fetches a measurement value from the gyro sensor 12 as control data, and compares the control data with a set value. If the angular velocity force set value of the inclination of the rotating shaft 15 is lower than the set value, the next step S13 is executed.
  • step S13 it is determined whether the wind turbine 2 is stopped or not. Then, even if the rotation speed is less than the provisional command setting rotation speed, if the wind turbine body 6 is rotating, the process returns to step S11. And the above-described determination is repeated.
  • step SI1 if the wind speed is equal to or higher than the upper limit set value in the determination in step SI1, there is a case when the angular velocity of the inclination of the rotating shaft 15 is equal to or higher than the set value in the determination in step S12. If it is determined in step S13 that the windmill 2 is stopped, in step S14, the brake means 8 is turned on to forcibly stop the windmill 2.
  • one of the conditions for stopping the wind turbine 2 is that the angular velocity of the inclination of the rotating shaft 15 must be equal to or greater than a set value for the following reason.
  • the marine straight-wing vertical axis type wind power generator according to the present invention is useful as a wind power generator mounted on a ship, and in particular, prevents damage to a wind turbine when the ship shakes. Suitable as a wind turbine that can be stopped.
  • FIG. 1 is an overall configuration diagram showing a marine straight-wing vertical axis wind turbine generator according to an embodiment of the present invention.
  • FIG. 2 is a detailed view of the windmill shown in FIG.
  • FIG. 3 is a right side view of FIG. 2.
  • FIG. 4 is an enlarged sectional view of the rotor arm shown in FIG. 2.
  • FIG. 5 is a detailed view showing the internal structure of the device section of FIG. 2.
  • FIG. 6 is a plan view of FIG.
  • FIG. 7 is a flowchart showing an operation at the start of automatic operation.
  • FIG. 8 is a flowchart showing an operation when the automatic operation is stopped. Explanation of symbols

Abstract

 船舶が動揺した場合であっても、風車が損壊するのを未然に防止できるようにする。  船舶に、直線翼垂直軸型の風車2と、風車2により駆動される発電機3と、風車2を強制停止させるブレーキ手段8と、風向・風速計11と、風車2の回転軸15における傾きの角速度を計測するためのジャイロセンサ12と、ブレーキ手段8およびサーボコントローラ13を制御する制御手段10とを設ける。風速が上限設定値(例えば25m/sec)以上となった場合、および回転軸15の傾きの角速度が設定値(例えば5°/sec)以上となった場合に、ブレーキ手段8を作動させて風車2を強制的に停止させる。

Description

明 細 書
舶用直線翼垂直軸型風力発電装置
技術分野
[0001] 本発明は、舶用直線翼垂直軸型風力発電装置に係り、特に船舶が動揺した際の 風車の損壊を未然に防止することができる舶用直線翼垂直軸型風力発電装置に関 する。
背景技術
[0002] 従来から、直線翼垂直軸型の風車を用いた風力発電装置は、一般に知られて!/、る 特許文献 1:特許第 3368537号公報
発明の開示
発明が解決しょうとする課題
[0003] 前記従来の直線翼垂直軸型風力発電装置においては、風車が地上に設置される ことを前提として設計しているため、これを船舶に適用した場合には、風車に無理な 力が加わって風車が損壊するおそれがある。
[0004] すなわち、従来の風力発電装置における風車は、回転軸が垂直であることを前提と して設計がなされているため、ロータアームは、ブレードの回転時の遠心力に耐える ことおよびトルクを回転軸に伝えることのみを考慮して設計すればよぐその断面形状 は、回転時の空気抵抗を減らすために、薄い翼型が採用されている。
[0005] ところが船舶に搭載される風力発電装置の場合には、船舶の動揺によって風車に ジャイロモーメントが作用することになるため、ロータアームに曲げモーメントが作用し て風車が損壊するおそれがある。
[0006] これを防止する方法としては、風車の径を小さくしてロータアームの本数を増やすこ とが考えられる力 これらの防止策は、いずれも風車の機能低下に繋がるため一定の 制限がある。
[0007] 本発明は力かる現況に鑑みなされたもので、風車の機能低下を最少限に抑えつつ 、風車の損壊を未然に防止することができる舶用直線翼垂直軸型風力発電装置を 提供することを目的とする。
[0008] 本発明の他の目的は、突風が吹いたような場合であっても、風車の損壊を未然に 防止することができる舶用直線翼垂直軸型風力発電装置を提供するにある。
[0009] 本発明の他の目的は、弱い風であっても風車を効率よく回転させて発電効率を向 上させることができる舶用直線翼垂直軸型風力発電装置を提供するにある。
[0010] 本発明の他の目的は、装置構成を簡素化して軽量ィ匕を図り、既存の船舶にも容易 に適用できる舶用直線翼垂直軸型風力発電装置を提供するにある。
[0011] 本発明のさらに他の目的は、ロータアームの剛性を向上させてロータアームの本数 の増加を抑制し、風車を軽量ィ匕して発電効率を向上させることができる舶用直線翼 垂直軸型風力発電装置を提供するにある。
課題を解決するための手段
[0012] 前記目的を達成するため本発明は、船舶に設置された直線翼垂直軸型の風車と; 風車の回転により駆動される発電手段と;風車の回転を停止させるブレーキ手段と; 停止している風車を設定回転数まで駆動する起動手段と;風車の回転軸の傾きの角 速度を検出するセンサと;風速を検出する風速計と;制御手段と;を設け、前記制御 手段により、前記センサが設定値を超える角速度を検出した際に風車を停止させるよ うにしたことを特徴とする。
[0013] 本発明はまた、制御手段により、風速計が設定値を超える風速を検出した際に風 車を停止させるようにしたことを特徴とする。
[0014] 本発明はまた、制御手段により、風車が停止している状態で風速計が設定値を超 える風速を検出した際に風車を駆動させるようにしたことを特徴とする。
[0015] 本発明はまた、発電手段と起動手段とを、機能切換機構を有する単一装置で構成 するようにしたことを特徴とする。
[0016] 本発明はさらに、風車を、回転軸と、回転軸力 径方向に延びるロータアームと、口 ータアームの先端部に取付けられたブレードとを備え、ロータアームは、断面方形状 をなす本体部と、本体部の回転先端部に一体に設けられ断面円弧状をなす先端部 と、本体部の回転後端部に一体に設けられ断面紛錘状をなす後端部とで構成するよ うにしたことを特徴とする。 発明の効果
[0017] 本発明は、船舶に設置された直線翼垂直軸型の風車と;風車の回転により駆動さ れる発電手段と;風車の回転を停止させるブレーキ手段と;停止して 、る風車を設定 回転数まで駆動する起動手段と;風車の回転軸の傾きの角速度を検出するセンサと ;風速を検出する風速計と;制御手段と;を設け、前記制御手段により、前記センサが 設定値を超える角速度を検出した際に風車を停止させるようにしているので、風車の 機能低下を最少限に抑えつつ、風車の損壊を未然に防止することができる。
[0018] 本発明はまた、制御手段により、風速計が設定値を超える風速を検出した際に風 車を停止させるようにしているので、突風が吹いたような場合であっても、風車の損壊 を未然に防止することができる。
[0019] 本発明はまた、制御手段により、風車が停止している状態で風速計が設定値を超 える風速を検出した際に風車を駆動させるようにして ヽて 、るので、弱 、風であって も風車を効率よく回転させて発電効率を向上させることができる。
[0020] 本発明はまた、発電手段と起動手段とを、機能切換機構を有する単一装置で構成 するようにしているので、装置構成を簡素化して軽量ィ匕を図り、既存の船舶にも容易 に適用できるようにすることができる。
[0021] 本発明はさらに、風車を、回転軸と、回転軸力 径方向に延びるロータアームと、口 ータアームの先端部に取付けられたブレードとを備え、ロータアームは、断面方形状 をなす本体部と、本体部の回転先端部に一体に設けられ断面円弧状をなす先端部 と、本体部の回転後端部に一体に設けられ断面紛錘状をなす後端部とで構成するよ うにして 、るので、ロータアームの剛性を向上させてロータアームの本数の増加を抑 制し、風車を軽量ィ匕して発電効率を向上させることができる。
発明を実施するための最良の形態
[0022] 以下、本発明を図面を参照して説明する。
図 1は、本発明の実施の一形態に係る舶用直線翼垂直軸型風力発電装置を示す もので、この風力発電装置 1は、図示しない船舶に設置された直線翼垂直軸型の風 車 2と、この風車 2の回転により駆動される発電機 3とを備えており、この発電機 3は、 内部機構の切換えにより、停止中の風車 2を起動するモータとしても使用できるように なっている。すなわち、発電機 3は、風車 2の回転により駆動される発電手段と、停止 中の風車 2を設定回転数まで駆動する起動手段との 2つの手段を兼ねている。
[0023] 前記風車 2は、図 2および図 3に示すように、船体 4に立設された左右一対の支柱 5 aと、両支柱 5aの上端間を連結する天材 5bと、両支柱 5aの下端近傍位置間を連結 する底材 5cと、支柱 5aを支持する支持材 5dとを有する支持枠 5を備えており、この支 持枠 5内には、風車本体 6が回転自在に支持されているとともに、前記底材 5c上には 機器部 7が設置されている。そして、この機器部 7内には、図 1に示すように、前記発 電機 3,ブレーキ手段 8および風車本体 6の回転数を計測する回転計 9が組込まれて おり、前記回転計 9で計測された計測値は、制御用データとして制御手段 10に送ら れるようになっている。
[0024] この制御手段 10にはまた、図 1に示すように、風向 ·風速計 11およびジャイロセン サ 12からの各計測値も、制御用データとしてそれぞれ入力されるようになっており、 制御手段 10は、これら各制御用データに基づき、前記ブレーキ手段 8およびサーボ コントローラ 13を制御し発電制御を行なうようになっている。これについては、後に詳 述する。
なお、図 1において、符号 14は、例えば三相 AC200Vの舶用電源である。
[0025] 前期風車本体 6は、図 2および図 3に示すように、回転中心に位置する回転軸 15と 、回転軸 15から径方向に延びるロータアーム 16と、ロータアーム 16の先端部に取付 けられたブレード 17とを備えており、この風車本体 6は、ブレード 17の向きにより、ど の方向力もの風に対しても常に一定方向に回転するようになっている。なお、その回 転原理は、この種の風車における周知技術であるので、その詳細説明は省略する。
[0026] 前記ロータアーム 16は、図 4に示すように、断面方形の箱型をなす本体部 16aと、 本体部 16aの回転先端部に一体に設けられ断面円弧状をなす先端部 16bと、本体 部 16aの回転後端部に一体に設けられ断面防錘状をなす後端部 16cとで構成され ており、断面が薄い翼型でなぐ前記本体部 16aが断面方形の箱型をなしていること により、ロータアーム 16に負荷される曲げ方向の外力に対する耐カを、大幅に向上 させることができるようになって!/、る。
[0027] 前記ブレーキ手段 8は、図 5および図 6に示すように、前記回転軸 15の下端部に取 付けられたディスク 8aと、このディスク 8a周りの周方向 4箇所に配された例えば空気 圧作動のブレーキパッド 8bとで構成されており、このブレーキ手段 8は、後に詳述す るように、回転軸 15が、予め設定された設定値を超える角速度で傾いた場合や、風 向 ·風速計 11が、予め設定された設定値を超える風速を計測した場合に作動し、回 転軸 15を強制的に停止させて風車本体 6の損壊を未然に防止できるようになつてい る。
[0028] 前記回転軸 15のディスク 8aの直近上方位置には、図 5および図 6に示すように、大 プーリ 18が取付けられており、この大プーリは、前記発電機 3の入出力軸 3aに取付 けられた小プーリ 19と、無端ベルト 20を介して連動連結されている。そして、この大 プーリ 18は、発電機 3を発電手段として使用する際には、回転軸 15の回転を発電機 3の入出力軸 3aに伝えて発電を行なうとともに、発電機 3を起動手段として使用する 際には、前記入出力軸 3aの回転を回転軸 15に伝えて回転軸 15を駆動できるように なっている。
[0029] 図 7および図 8は、自動運転開始時および停止時における動作をそれぞれ示す流 れ図であり、以下これら両流れ図を参照して、本実施の形態の作用を説明する。 風車 2の運転開始に際しては、まず図 7のステップ S1において、風速が上限設定 値 (例えば 25mZsec)を下廻っているか否かを判別する。具体的には、図 1に示す 制御手段 10力 風向 ·風速計 11からの計測値を制御用データとして取込み、この制 御用データと上限設定値とを比較する。そして、風速が上限設定値を下廻っている 場合には、次のステップ S2を実行する。
[0030] ステップ S2においては、回転軸 15の傾きの角速度が設定値 (例えば 5° Zsec)を 下廻っている力否かを判別する。具体的には、図 1に示す制御手段 10が、ジャイロセ ンサ 12からの計測値を制御用データとして取込み、この制御用データと設定値とを 比較する。そして、回転軸 15の傾きの角速度力 設定値を下廻っている場合には、 次のステップ S3を実行する。
[0031] ステップ S3においては、風速が下限設定値(例えば 5mZsec)以上であるか否か を判別する。具体的には、図 1に示す制御手段 10が、風向'風速計 11からの計測値 を制御用データとして取込み、この制御用データと下限設定値とを比較する。そして 、風速が下限設定値以上である場合には、ステップ S4において、ブレーキ手段 8を O FFにする。
[0032] ところでこの際、充分な風速がある場合には、風車本体 6はブレーキ手段 8を OFF にしただけで、発電に充分な速度で回転し始めることになる力 下限設定値あるいは これに近い風速の場合には、風車本体 6は回転しないか、あるいは回転しても極めて 緩慢な速度でしか回転しな 、ことになる。
[0033] そこで、本実施の形態にぉ 、ては、ステップ S4でブレーキ手段 8を OFFにしたなら ば、ステップ S5において、風車本体 6が設定回転数 (例えば 53rpm)以上で回転し ている力否かを判別する。具体的には、図 1に示す制御手段 10が、回転計 9からの 計測値を制御用データとして取込み、この制御用データと設定回転数とを比較する。 そして、回転軸 15の回転数が設定回転数を下廻っている場合には、ステップ S6に おいて、回転軸 15を強制的に回転させる。具体的には、図 1に示す発電機 3の機能 をモータ側に切換えた後、この発電機 3を用いて、回転軸 15を強制的に回転させる。
[0034] この強制回転により、回転軸 15の回転数が設定回転数以上となったならば、ステツ プ S7において、回転軸 15の強制回転を解除する。具体的には、図 1に示す発電機 3の機能を、発電機側に切換て風力発電を行なう。
[0035] 一方、回転している風車 2を停止させる際には、まず図 8のステップ S 11において、 風速が上限設定値以上力否かを判別する。具体的には、図 1に示す制御手段 10が 、風向 ·風速計 11からの計測値を制御データとして取込み、この制御用データと上限 設定値とを比較する。そして、風速が上限値を下廻っている場合には、次のステップ S 12を実行する。
[0036] ステップ S12においては、回転軸 15の傾きの角速度力 設定値以上であるか否か を判別する。具体的には、図 1に示す制御手段 10が、ジャイロセンサ 12からの計測 値を制御用データとして取込み、この制御用データと設定値とを比較する。そして、 回転軸 15の傾きの角速度力 設定値を下廻っている場合には、次のステップ S13を 実行する。
[0037] ステップ S 13においては、風車 2が停止している力否力判別する。そして、仮令設 定回転数未満であっても、風車本体 6が回転している場合には、ステップ S11に戻つ て前述の判別を繰返す。
[0038] 一方、ステップ SI 1における判別で、風速が上限設定値以上となった場合、ある!/ヽ はステップ S12における判別で、回転軸 15の傾きの角速度が設定値以上となった場 合、さらにはステップ S 13における判別で、風車 2が停止していることが判った場合に は、ステップ S14において、ブレーキ手段 8を ONにし、風車 2を強制的に停止させる
[0039] ところで、風車 2を停止させる条件の 1つとして、回転軸 15の傾きの角速度が設定 値以上か否かを要件としているのは、以下の理由による。
すなわち、風車本体 6が回転している状態において、回転軸 15がゆっくり傾いた場 合には、風車本体 6全体が無理なく傾くことになるため特に問題はないが、回転軸 15 が急激な速度で傾いた場合には、ブレード 17は慣性の法則により、回転軸 15が傾く 方向とは別の方向に傾こうとするので、ロータアーム 16に大きな曲げ応力が作用し、 ロータアーム 16が破損したり変形するおそれがある力もである。
[0040] しかして、風速が上限設定値以上となった場合はもとより、回転軸 15の傾きの角速 度力 設定値以上となった場合にも、風車 2を強制的に停止させるようにしているの で、風車 2の損壊を未然に防止することができる。
産業上の利用可能性
[0041] 以上のように、本発明に係る舶用直線翼垂直軸型風力発電装置は、船舶に搭載す る風力発電装置として有用であり、特に船舶が動揺した際の風車の損壊を未然に防 止することができる風力発電装置として適して 、る。
図面の簡単な説明
[0042] [図 1]本発明の実施の一形態に係る舶用直線翼垂直軸型風力発電装置を示す全体 構成図である。
[図 2]図 1に示す風車の詳細図である。
[図 3]図 2の右側面図である。
[図 4]図 2に示すロータアームの拡大断面図である。
[図 5]図 2の機器部の内部構造を示す詳細図である。
[図 6]図 5の平面図である。 [図 7]自動運転開始時の動作を示す流れ図である。
[図 8]自動運転停止時の動作を示す流れ図である。 符号の説明
1 風力発電装置
2 風車
3 発電機
3a 入出力軸
4 船体
5 支持枠
6 風車本体
7 機器部
8 ブレーキ手段
9 回転計
10 制御手段
11 風向,風速計
12 ジャイロセンサ
13 サーボコントローラ
14 舶用電源
15 回転軸
16 ロータアーム
16a 本体部
16b 先端部
16c 後端部
17 ブレード
18 大プーリ
19 小プーリ
20 無端ベルト

Claims

請求の範囲
[1] 船舶に設置された直線翼垂直軸型の風車と;風車の回転により駆動される発電手 段と;風車の回転を停止させるブレーキ手段と;停止している風車を設定回転数まで 駆動する起動手段と;風車の回転軸の傾きの角速度を検出するセンサと;風速を検 出する風速計と;制御手段と;を備え、前記制御手段は、前記センサが設定値を超え る角速度を検出した際に風車を停止させることを特徴とする舶用直線翼垂直軸型風 力発電装置。
[2] 制御手段は、風速計が設定値を超える風速を検出した際に風車を停止させること を特徴とする請求項 1記載の舶用直線翼垂直型風力発電装置。
[3] 制御手段は、風車が停止して!/、る状態で風速計が設定値を超える風速を検出した 際に風車を駆動させることを特徴とする請求項 1または 2記載の舶用直線翼垂直軸 型風力発電装置。
[4] 発電手段と起動手段とは、機能切換機構を有する単一装置で構成されて!ヽること を特徴とする請求項 1または 2記載の舶用直線翼垂直軸型風力発電装置。
[5] 風車は、回転軸と、回転軸力 径方向に延びるロータアームと、ロータアームの先 端部に取付けられたブレードとを備え、ロータアームは、断面方形状をなす本体部と 、本体部の回転先端部に一体に設けられ断面円弧状をなす先端部と、本体部の回 転後端部に一体に設けられ断面紡錘状をなす後端部とを備えていることを特徴とす る請求項 1または 2記載の舶用直線翼垂直軸型風力発電装置。
PCT/JP2005/000232 2004-01-13 2005-01-12 舶用直線翼垂直軸型風力発電装置 WO2005068835A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-005525 2004-01-13
JP2004005525A JP4516321B2 (ja) 2004-01-13 2004-01-13 舶用直線翼垂直軸型風力発電装置

Publications (1)

Publication Number Publication Date
WO2005068835A1 true WO2005068835A1 (ja) 2005-07-28

Family

ID=34792103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000232 WO2005068835A1 (ja) 2004-01-13 2005-01-12 舶用直線翼垂直軸型風力発電装置

Country Status (2)

Country Link
JP (1) JP4516321B2 (ja)
WO (1) WO2005068835A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20091473L (no) * 2009-04-16 2010-10-18 Univ I Stavanger Anordning ved flytende vindkraftverk
CN102192084A (zh) * 2011-06-22 2011-09-21 成都阜特科技有限公司 风力发电机组变桨用伺服驱动控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702652B2 (ja) * 2009-12-18 2011-06-15 正治 加藤 潮流発電装置を兼ねた風力発電装置
JP2015199413A (ja) * 2014-04-07 2015-11-12 新潟原動機株式会社 船舶用発電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57995A (en) * 1980-06-05 1982-01-06 Haruo Tanaka Wind-driven craft
JPS5857083A (ja) * 1981-09-29 1983-04-05 Showa Alum Corp 風車の制動装置
JPS5862382A (ja) * 1981-10-07 1983-04-13 Nippon Telegr & Teleph Corp <Ntt> 風車発電機の制動方式
JPS61263892A (ja) * 1985-05-16 1986-11-21 Mitsubishi Heavy Ind Ltd 風力利用船
JP2000145611A (ja) * 1998-11-11 2000-05-26 Takahiko Yoshino 各羽根に風向尾翼を備えた自転羽根式垂直軸風車に関する技術
JP2003252288A (ja) * 2002-02-27 2003-09-10 Hitachi Zosen Corp 洋上風力発電の浮体式基礎構造物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57995A (en) * 1980-06-05 1982-01-06 Haruo Tanaka Wind-driven craft
JPS5857083A (ja) * 1981-09-29 1983-04-05 Showa Alum Corp 風車の制動装置
JPS5862382A (ja) * 1981-10-07 1983-04-13 Nippon Telegr & Teleph Corp <Ntt> 風車発電機の制動方式
JPS61263892A (ja) * 1985-05-16 1986-11-21 Mitsubishi Heavy Ind Ltd 風力利用船
JP2000145611A (ja) * 1998-11-11 2000-05-26 Takahiko Yoshino 各羽根に風向尾翼を備えた自転羽根式垂直軸風車に関する技術
JP2003252288A (ja) * 2002-02-27 2003-09-10 Hitachi Zosen Corp 洋上風力発電の浮体式基礎構造物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20091473L (no) * 2009-04-16 2010-10-18 Univ I Stavanger Anordning ved flytende vindkraftverk
WO2010120182A1 (en) * 2009-04-16 2010-10-21 Universitetet I Stavanger Buoyant wind power station
CN102192084A (zh) * 2011-06-22 2011-09-21 成都阜特科技有限公司 风力发电机组变桨用伺服驱动控制系统

Also Published As

Publication number Publication date
JP2005201071A (ja) 2005-07-28
JP4516321B2 (ja) 2010-08-04

Similar Documents

Publication Publication Date Title
US4105363A (en) Overspeed control arrangement for vertical axis wind turbines
JP3638745B2 (ja) ロータリスポイラ付ロータブレード
EP2159415B1 (en) Method and apparatus for controlling the yaw angle of a wind turbine
JP2004520531A (ja) 風力装置
EP2450567A2 (en) Horizontal axis wind turbine
JP2004337851A (ja) 遠心分離機ロータの故障発生可能性を低減させるためのモータトルク制御
JP2006522711A (ja) 船をコントロ−ルする方法及び装置
JP2007530856A (ja) 風力発電所の軸方向の動力変化を減少させる方法
JP2004536247A5 (ja)
WO2005068835A1 (ja) 舶用直線翼垂直軸型風力発電装置
ES2358711A1 (es) Método para parar un aerogenerador en dos etapas.
US10759525B2 (en) Drive system for a vehicle
TW200949069A (en) Windmill pitch angle controller and method for controlling windmill pitch angle
ES2928626T3 (es) Sistema y procedimiento para reducir cargas de turbina eólica orientando la góndola a una posición predeterminada en base al desequilibrio del rotor
JP2007138753A (ja) 風車の構造
WO2009093491A1 (ja) ヘリコプタ、そのロータ、及びその制御方法
JP2004011543A (ja) 水平軸型風車
CN105317627B (zh) 用于根据风向跟踪调整风能设备的转子的方法和控制设备
JP4690800B2 (ja) 水平軸風車
JP2003139041A (ja) クロスフロー型風力発電装置
JP6649727B2 (ja) 風力発電装置
JP5627301B2 (ja) 風力発電装置
KR20220093994A (ko) 플레트너 로터 동력 감소를 위한 가변 피치형 회전 날개 장치
KR20150038888A (ko) 풍력발전기의 기동 및 제동 제어 방법
GB2040363A (en) Vertical axis wind turbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase