WO2005068379A1 - 廃水浄化システム - Google Patents

廃水浄化システム Download PDF

Info

Publication number
WO2005068379A1
WO2005068379A1 PCT/JP2004/005023 JP2004005023W WO2005068379A1 WO 2005068379 A1 WO2005068379 A1 WO 2005068379A1 JP 2004005023 W JP2004005023 W JP 2004005023W WO 2005068379 A1 WO2005068379 A1 WO 2005068379A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
purification system
wastewater purification
data waveform
control
Prior art date
Application number
PCT/JP2004/005023
Other languages
English (en)
French (fr)
Inventor
Sakujiro Nakamura
Seiji Yokoi
Yasuo Kodera
Original Assignee
Itochu Forestry Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itochu Forestry Corp. filed Critical Itochu Forestry Corp.
Priority to JP2005516959A priority Critical patent/JPWO2005068379A1/ja
Priority to US10/585,908 priority patent/US7494588B2/en
Publication of WO2005068379A1 publication Critical patent/WO2005068379A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for controlling a wastewater purification system by a batch activated sludge method.
  • livestock waste is treated in a combined lagoon-type septic tank, as described in Japanese Patent Application Laid-Open No. 2001-212558.
  • the site manager judges the meaning of these waveforms and changes the operation program, or automatically when the numerical value reaches a certain value by using a meter relay corresponding to the DO or ORP value.
  • An automatic control method was used in which aeration was stopped.
  • the appearing waveforms can be categorized according to the conditions described above. It is possible, but considerable experience and training are required for the site manager to make a proper decision.If this decision is made incorrectly, there will be problems such as insufficient aeration, excessive aeration, and the inability to maintain the required functions. Was. If the function cannot be maintained, a specialist must be dispatched to the site, but if the specialist is in a remote place, it is often impossible to respond immediately. In addition, since there is no means for automatically judging the appropriate level of aeration control, unnecessary power is consumed, and a sufficient function cannot be achieved. Disclosure of the invention
  • the present invention provides a control method for a wastewater purification system that accurately grasps the state of a wastewater purification system using a batch activated sludge method by analyzing data waveforms of DO, ORP, and pH. The purpose is to do so.
  • the present invention provides a wastewater purification system capable of issuing an alarm by automatic data analysis, transmitting data, remotely monitoring, and changing an operation program from a remote place so that correct operation management can be easily performed without delay.
  • the purpose is to provide a control method.
  • a control method of a wastewater purification system controls an aeration apparatus by a programmable sequencer, and a control unit controls each data by a first sensor, a second sensor, and a third sensor.
  • the control unit acquires the waveform and the control status data of the programmable sequencer, and the control unit performs the dissolved oxygen concentration data waveform from the first sensor, the oxidation-reduction potential data waveform from the second sensor, and the hydrogen ion concentration data waveform from the third sensor.
  • the control unit performs a warning process when the control unit finds a deviation from a predetermined normal state as a result of the analysis.
  • the control unit compares the dissolved oxygen concentration data waveform, the oxidation-reduction potential data waveform, and the hydrogen ion concentration data waveform with reference conditions that are previously provided. In this way, it is preferable to detect a deviation from the normal state. Further, in the control method of the wastewater purification system according to the present invention, the control unit preferably records a dissolved oxygen concentration data waveform, an oxidation-reduction potential data waveform, and a hydrogen ion concentration data waveform.
  • the warning process is to automatically transmit the occurrence of the abnormality to a remote place via a telephone line.
  • the program of the programmable sequencer can be changed.
  • the program of the programmable sequencer can be changed from a remote place.
  • the wastewater purification system includes a solid matter removing device, a raw water tank, a raw water storage tank, a device for removing treated water, and a device for extracting and dehydrating excess activated sludge. It is preferred to have.
  • the wastewater purification system may include a treatment water and an activated sludge provided in a reaction tank or separately provided by a microfiltration membrane, an ultrafiltration membrane, or a reverse osmosis membrane. It is preferable to have a separate separation device.
  • the reaction tank has a circular or elliptical planar shape, a mortar-shaped cross-sectional shape, and a concrete or asphalt sea.
  • the slope that was impervious to It is preferred to have.
  • Et al is a control method for waste water purification system according to the present invention
  • BOD volume load of the reactor is 0. 1 ⁇ 0. 4 kg Z m 3 ' date and this is preferably.
  • the facility managers and specialists can change the operation program even from a remote location, thereby adjusting the machine operating conditions such as the aeration output and the aeration time, and performing the purification function while achieving appropriate aeration and minimum power consumption. Can be maintained stably. Therefore, even if the on-site manager is not technically proficient or is not present at the purification equipment site, a real-time alert is sent to the on-site manager and specialist engineer, and the optimal operation program is immediately available even from a remote location.
  • the normal operation function of the purification facility can be easily maintained at all times.
  • Figure 1 is a schematic diagram showing an example of a wastewater purification system using the batch activated sludge method.
  • FIG. 2 is a diagram showing details of the control device 100 shown in FIG.
  • FIG. 3 is a diagram showing an example of data.
  • FIG. 4 is a diagram for explaining waveform analysis regarding DO.
  • FIG. 5 is a diagram for explaining waveform analysis related to ORP.
  • FIG. 6 is a diagram for explaining waveform analysis regarding pH. BEST MODE FOR CARRYING OUT THE INVENTION
  • the batch activated sludge method used in the present application is a method of treating wastewater generated in a pig farm or the like using a single reaction tank having activated sludge containing microorganisms.
  • the batch activated sludge method has four steps separated by time: (1) inflow step, (2) aeration step (aerobic), (3) sedimentation step (anaerobic), and (4) discharge step. ing.
  • (1) inflow step (2) aeration step (aerobic), (3) sedimentation step (anaerobic), and (4) discharge step.
  • the BOD concentration of the wastewater raw water
  • OOOmg ZL even if the BOD concentration of the wastewater (raw water) is as high as 100, 000 to 50, OOOmg ZL, it can be purified without dilution and not only BOD and COD, but also denitrification and denitrification.
  • 4 steps are repeated 1 to 3 times a day. If the process is performed once a day, the aeration and precipitation steps are about 12 hours, respectively, about 2 hours, about 6 hours each, and 3 times, about 4 hours each.
  • the inflow process and the discharge process vary depending on the amount of raw water, but each takes about 15 to 30 minutes.
  • the inflow step is a step in which wastewater generated in a pig farm or the like flows into the reaction tank.
  • the aeration step is a step in which an appropriate amount of air (oxygen) is constantly fed into the reaction tank (aeration), and the mixture is stirred appropriately to culture oxygen-loving microorganisms, thereby oxidizing organic substances.
  • the sedimentation step is a step in which the flow of oxygen into the reaction tank is cut off and the activated sludge is sedimented while denitrifying under anaerobic conditions.
  • the discharge step is a step in which the supernatant of the reaction tank is collected and discharged as treated water.
  • Control of the amount and quality of activated sludge and the amount of aeration, oxidation of BOD and COD, oxidation of ammonia (nitrification), and reduction (denitrification) of nitric acid and nitrite generated as a function of inflow load Rolls are used for these controls, which are crucial for maintaining the purification function in the reactor. If the rules are not appropriate, the purification function of BOD, COD, SS, and TN will be disturbed, and the treated water quality will not be maintained.
  • Activated sludge control is adjusted by taking excess sludge out of the system, but it cannot maintain a constant concentration.
  • a necessary volume of raw water storage tank is installed in front of the reaction tank to adjust the amount of inflow to the reaction tank, but the quantity and quality cannot be exactly equalized. .
  • BOD and COD can be controlled by controlling the appropriate aeration intensity and time for the fluctuating raw water conditions and activated sludge amount without removing the timing. Controlling the oxidation of ammonia, the oxidation of ammonia (nitrification), and the reduction (nitrification) of nitric acid and nitrite generated as a result is the central means of septic tank operation management.
  • Figure 1 shows a schematic diagram of a wastewater purification system using the batch activated sludge method.
  • the wastewater purification equipment consists of a raw water tank 1, a flow control tank 2, a batch reaction tank 3, a treated water tank 4, a solid-liquid separator 5, a sludge storage tank 6, a dewatering machine 7, etc. Have been.
  • the raw water tank 1 is a facility for once receiving waste water from a waste water source and transferring the waste water to the solid-liquid separator 5 by the raw water pump 11. It is desirable to install a stirrer 10 depending on the quality of wastewater.
  • the flow control tank 2 temporarily stores the waste liquid that has passed through the solid-liquid separator 5 and transfers the waste liquid to the batch reaction tank 3 using the flow control pump 14 during the time period specified by the operation program. If the waste liquid that has passed through the solid-liquid separator 5 contains a lot of fine solids, the slurry from the raw water collected at the bottom of the flow control tank 2 is transferred to the sludge storage tank 6 by the slurry pump 13.
  • the batch-type reaction vessel 3 may have a rectangular parallelepiped shape, but preferably has a mortar-shaped cross-sectional shape and a circular or elliptical planar shape. ⁇
  • the bowl-shaped cross section is preferable in terms of complete mixing in the batch reactor 3, promoting sludge sedimentation and consolidation, and eliminating blind spots in aeration.
  • the inclined portion of the batch type reaction tank 3 can be shielded from water by a sheet such as asphalt in addition to the concrete structure.
  • the reaction tank 3 is composed of an underwater mixer 15, a defoaming pump 16, a pressurized blower 17 for aeration and agitation, an underwater air generator 18 installed at the bottom of the batch reaction tank 3, and sludge. It has a pump 19, a horizontal aerator 20, a water collecting device 21, a DO sensor 22, an ORP sensor 23, and a pH sensor 24.
  • the underwater mixer 15 is a device for promoting horizontal flow or anaerobic stirring, and is installed near a straight wall of the reaction tank 3 or at the bottom of the tank.
  • the defoaming pump 16 is a device for pumping up activated sludge, injecting it from a nozzle, and hitting foam on the water surface. If fresh water or treated water is used for the defoaming pump 16, the water level in the reaction tank will be raised, and if fresh water is used, a water fee will be incurred.
  • the pressurized blower 17 feeds air to the underwater aerator 18 through the connected pipe, and mainly creates upstream and downstream in the reaction tank 3 to aerate and agitate the activated sludge liquid.
  • the aeration and stirring capacity and number of pressurized blowers 17 and underwater aerators 18 depend on the size of reactor 3 and the amount of oxygen required. Is determined.
  • the pressure blower 17 is controlled by the control device 100 as described later. There are various methods for aerating and agitating the reaction tank. When the water depth of the reaction tank is 4 to 8 m, a combination of the pressurized blower 17 and the submersible aerator 18 is effective. In particular, when the water depth is 4 to 8 m, the amount of oxygen introduced per lkwh of electric power is improved by 60 to 70% compared to when the water depth is less than 4 m.
  • the sludge pump 19 is a submersible pump for transferring excess sludge to the sludge storage tank 6, and is installed at the bottom of the reaction tank 3.
  • the horizontal aerator 20 floats on the water surface of the reaction tank 3 and gives a horizontal flow of water to the activated sludge liquid, and in combination with the upstream and downstream of the pressurized blower 17 and the underwater air radiator, the reaction tank 3 It has the effect of improving the aeration efficiency by completely mixing the activated sludge liquid with the inflow wastewater.
  • a float-type water turbine, a float-type screw ejector, a edge constructor, or the like can be used as the horizontal aerator 20.
  • the water collecting device 21 is a device for extracting supernatant water (processed water) that appears after the activated sludge has settled, and can use a submersible pump, a siphon, a movable weir, and the like.
  • the water collecting device 21 transfers the sludge solution to the sludge solution in the reaction tank 3 or a separately provided tank, and uses a microfiltration membrane or an ultrafiltration membrane to separate the activated sludge from the treated water. It may be a dispensing device.
  • the extracted treated water is transferred to the treated water tank 4.
  • the sensors 23 and 11 are installed in the water in the reaction tank 3 and transmit detected values to a control device 100 described later.
  • the treated water tank 4 is a tank for storing treated water.
  • Batch activated sludge method In the case of treatment by the sludge method, treated water is taken out at a certain time, so equipment required especially when the discharge channel cannot receive the necessary and sufficient flow rate It is. Also BOD, COD, SS If TP and TP release levels are high, advanced treatment such as reverse osmosis membrane, coagulation treatment, activated carbon treatment, and ozone oxidation may be required after activated sludge treatment. In these advanced treatments, continuous treatment rather than batch treatment is advantageous. Therefore, the treated water tank 4 is an adjustment tank for the advanced treatment in this case.
  • the treated water tank 4 discharges treated water by a treated water pump 25.
  • the treated water pump 25 can be a siphon or a drain pipe from the bottom of the tank.
  • the solid-liquid separator 5 has a screen for removing impurities 30 contained in the wastewater from the raw water tank 1. Screens are selected according to the characteristics of the wastewater and of appropriate model and width. The wastewater that has passed through the solid-liquid separator 5 is transferred to the flow control tank 2. The contaminants 30 can be reused as compost.
  • the sludge storage tank 6 is a facility for storing the raw water slurry pumped from the flow rate control tank 2 and the excess sludge pumped from the reaction layer 3, and supplies sludge to the dehydrator 7 by a sludge supply pump 28. . It is preferable to install a sludge stirrer 26 to supply homogeneous sludge to the dehydrator 7.
  • the dewatering machine 7 is a facility for dewatering the sludge supplied from the sludge storage tank 6 and separating the dewatered water and the dewatered cake 31.
  • the dehydrator 7 has a screw press, a belt press, a multiple disk, a centrifuge, a filter press, etc., and uses a flocculant.These are the properties of sludge and the desired water content of the dewatered cake. Is selected by The desorbed liquid is returned to the flow control tank 2 or the reaction tank 3, but if only the excess sludge is to be dehydrated, the desorbed liquid is guided to a settling tank (not shown) to separate solids and then the filtrate is discharged. You can also.
  • Each of the raw water tank 1, flow control tank 2, batch type reaction tank 3, treatment water tank 4, and sludge storage tank 6 has a water level relay to detect the water level in each tank. It is desirable to provide it. Also, if the treated water quality requires advanced treatment such as BOD, SS, COD, TP and chromaticity, and the elimination of bacteria and protozoa, etc., the wastewater purification equipment shown in Fig. 1 uses the coagulation sedimentation method, sand filtration, It is preferable to provide additional equipment such as activated carbon treatment, ozone oxidation method, microfiltration membrane, ultrafiltration membrane, or reverse osmosis membrane, or additional equipment combining these.
  • FIG. 2 shows details of the control device 100 shown in FIG.
  • the control device 100 converts the detection signals from the CPU 101, the DO sensor 22, the ORP sensor 23, and the pH sensor 24 into digital data by AZD conversion.
  • the programmable sequencer 105 sets the first and second inverters 107 and 108 (power board) and the driving devices shown in FIG. 1 at a predetermined timing based on a preset command. And repeat the four steps of the batch activated sludge method described above in an endless manner.
  • the first inverter 107 controls the pressure blower 17, and the second inverter 108 controls the underwater airator 18.
  • the programmable sequencer 105 may be a commercially available general-purpose product or a dedicated product for this system. Therefore, the progress of the process at that time can be determined from the control status data of the programmable sequencer 105.
  • the CPU 101 constantly receives the control status of the programmable sequencer 105, the detected data waveforms from the DO sensor 22, ORP sensor 23, and pH sensor 24, and outputs them to the recording unit 107 for recording. Do the work At the same time, the detected data waveform is analyzed, and if a problem occurs, an alarm is issued and the other system 200 is notified via the transmission / reception unit 108.
  • SGS-THOM SON's W.A.R.P. Weight 'Association' NORELL. Processor
  • other suitable processors may be used. Details of the waveform analysis will be described later.
  • the other system 200 is usually located in a remote place where a manager or a professional technician resides, and the transmitter / receiver unit 108 is designed to take appropriate measures when an alarm is generated by waveform analysis.
  • the CPU 101 and the programmable sequencer 105 For example, if it is determined by waveform analysis that the batch activated sludge method does not function properly, the program of the programmable sequencer 105 is changed via the transmission / reception unit 108 and the CPU 101. The control of the wastewater purification plant shown in Fig. 1 is changed so that more appropriate treatment can be performed. It should be noted that an administrator or a specialist can directly adjust the programmable sequencer 105 on site.
  • the waveform analysis is performed by the CPU 101 and the like according to a program stored in a predetermined memory in advance and using a predetermined ROM and a RAM.
  • FIG. 3 is an example of data created based on the control status received from the programmable sequencer 105 and the data waveforms from the various sensors 22 to 24.
  • the horizontal axis represents time
  • the vertical axis represents DO (PPM), ORP (mV), and pH, respectively.
  • A indicates the time when raw water (waste water) was transferred to the reaction tank 3 from the flow control tank 2 and the aeration process using the pressurized blower 17 and the underwater air heater 18 was started.
  • C in the figure is a predetermined aeration Point E, which indicates the time when the precipitation process was completed and the precipitation process was started, indicates the time when the precipitation process was completed and the discharge of the treated water was started.
  • B in the figure indicates the time when 70% of the aeration step has elapsed since the start of the aeration step
  • D in the figure indicates the time when 105% of the aeration step has elapsed since the start of the aeration step. I have.
  • F indicates the DO value sensed by the DO sensor 22
  • G indicates the ORP value sensed by the ORP sensor 23
  • H indicates the pH value sensed by the pH sensor 24.
  • the CPU 101 is programmed to match a predetermined data waveform condition from such a data waveform and to issue an alarm when an undesirable waveform appears.
  • FIG. 4 illustrates a waveform analysis relating to the DO value detected by the DO sensor 22.
  • the DO value rises after 70% of the aeration process from the start of aeration (see P in the figure), and the DO value rises by 105% of the aeration process after the start of aeration. If it returns to “0” again (see Q in the figure), it is determined that the DO value is normal.
  • the reason is that the DO value starts to rise near the end of the aeration process (after 70% of the aeration process has elapsed since the start of the aeration process), and immediately after the end of the aeration process (from the start of the aeration process to the start of the aeration process. This is because the best purification function is exhibited when the DO value sharply returns to zero.
  • the DO value is zero because 100% of the injected oxygen (oxygen sent by the pressurized blower 17 etc.) is consumed. Therefore, the DO values that appear indicate excess oxygen. However, if the DO value does not rise, it means that sufficient oxidation has not been completed. Also When the aeration is stopped, the residual oxygen is consumed by the respiration of the activated sludge, and the DO value becomes zero. In other words, we want to confirm that the DO value rises once for sufficient oxidation, but it is uneconomical to feed too much oxygen. Therefore, the best purification function is exhibited when the DO value starts rising near the end of the aeration process and the DO value sharply returns to zero immediately after the end of the aeration process.
  • the CPU 101 determines that any of the DO, ORP, and pH sensor data waveforms deviate from normal according to the conditions shown in FIGS. It is programmed to perform warning processing such as alarms and various signal outputs when the number of times performed is three or more times a week. Note that the number of deviations from normal (3 times / week) is an example, and an appropriate value can be selected according to the scale type of the system or wastewater purification equipment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、DO、ORP及びpHのデータ波形を解析することによって、回分式活性汚法泥法による廃水浄化システムの状態を正確に把握する廃水浄化システムの制御方法を提供することを目的とする。廃水浄化システムの制御方法は、プログラマブルシーケンサによって曝気装置を制御し、制御部は第1センサ、第2センサ及び第3センサよりそれぞれのデータ波形及びプログラマブルシーケンサの制御状況データを取得し、制御部は第1センサからの溶存酸素濃度データ波形、第2センサからの酸化還元電位データ波形及び第3センサからの水素イオン濃度データ波形を解析し、制御部は解析の結果予め定められた正常状態からの逸脱を発見した場合に警告処理を行う。

Description

廃水浄化システム
技術分野
本発明は、 回分式活性汚法泥法による廃水浄化システムの制御方 法に関する。
明 背景技術
例えば、 特開 2 0 0 1 - 2 1 2 5 8書 3号公報に記載されるよ う に 、 畜産廃棄物を複合ラグ一ン式浄化槽内で処理するこ とが知られて いる。
また、 回分式活性汚法泥法によって、 畜産廃棄物を含む廃水を浄 化する廃水浄化システムにおいて、 D O (水中溶存酸素) 、 O R P
(酸化還元電位) 及び P H (水素イオン濃度) のセンサを常設して
、 連続的にデータを記録して行く と、 活性汚泥の量と質、 流入負荷
、 曝気出力と曝気時間、 及び反応槽内でのアンモニア、 亜硝酸及び 硝酸の蓄積具合等の条件の違いによって、 一定のパターンを持つ各 センサデータの波形が現れる。 従来から、 現場管理者がこれらの波 形の意味すると ころを判断して運転プログラムを変更したり、 ある いは D O又は O R Pの数値に対応したメ一ターリ レーによって一定 の数値に達する と 自動的に曝気が停止する 自動制御方式が採用され たり していた。
しかし、 D O、 O R P及び p Hの数値だけで曝気制御するメータ ーリ レー方式では充分に良行な制御を行う こ とができないという不 具合があった。
また、 出現する波形を前述した諸条件によって類型化するこ とも できるが、 現場管理者が適切に判断するには相当の経験と訓練が必 要であって、 この判断を誤る と曝気不足、 曝気過剰などに陥り所定 の機能を維持出来なく なる という不具合があった。 なお、 機能が維 持できなく なった場合には、 専門技術者の現場出動が求められるが 、 専門技術者が遠隔地にいる場合には即応できないこ と も多い。 ま た、 曝気制御について適性水準を自動的に判断する手段がないため 、 不必要な電力を消費し、 さ らに充分な機能を果たせていないとい う状況も生じていた。 発明の開示
そこで、 本発明は、 D O、 O R P及び p Hのデータ波形を解析す るこ とによって、 回分式活性汚法泥法による廃水浄化システムの状 態を正確に把握する廃水浄化システムの制御方法を提供するこ とを 目的とする。
また、 本発明は、 正しい運転管理を時期を逸せず容易にできるよ うに自動データ解析による警報発信、 データ送信、 遠隔監視、 遠隔 地からの運転プロ ダラム変更するこ とができる廃水浄化システムの 制御方法を提供するこ とを目的とする。
上記課題を解決するために、 本願発明に係る廃水浄化システムの 制御方法は、 プロ グラマブルシーケンサによって曝気装置を制御し 、 制御部は第 1センサ、 第 2センサ及び第 3センサよ りそれぞれの データ波形及びプロ グラマブルシーケンサの制御状況データを取得 し、 制御部は第 1 センサからの溶存酸素濃度データ波形、 第 2セン サからの酸化還元電位データ波形及び第 3センサからの水素イオン 濃度データ波形を解析し、 制御部は解析の結果予め定められた正常 状態からの逸脱を発見した場合に警告処理を行う こ とを特徴とする さ らに、 本願発明に係る廃水浄化システムの制御方法において、 制御部は、 溶存酸素濃度データ波形、 酸化還元電位データ波形及び 水素イ オン濃度データ波形を、 予め有している基準条件と比較する こ とによって、 正常状態からの逸脱を発見するこ とが好ましい。 さ らに、 本願発明に係る廃水浄化システムの制御方法において、 制御部は、 溶存酸素濃度データ波形、 酸化還元電位データ波形及び 水素ィオン濃度データ波形を記録するこ とが好ましい。
さ らに、 本願発明に係る廃水浄化システムの制御方法において、 警告処理は、 異常が発生したこ とを電話回線によ り遠隔地に自動送 信するこ とが好ま しい。
さ らに、 本願発明に係る廃水浄化システムの制御方法において、 プログラマブルシーケンサのプログラムは変更可能であるこ とが好 ましい。
さ らに、 本願発明に係る廃水浄化システムの制御方法において、 プログラマブルシーケンサのプログラムは、 遠隔地よ り変更可能で あるこ とが好ま しい。
さ らに、 本願発明に係る廃水浄化システムの制御方法において、 廃水浄化システムは、 固形物の除去装置、 原水槽、 原水貯留槽、 処 理水の取り 出し装置、 余剰活性汚泥の抜取脱水装置を有するこ とが 好ましい。
さ らに、 本願発明に係る廃水浄化システムの制御方法において、 廃水浄化システムは、 精密濾過膜、 限外濾過膜又は逆浸透膜による 、 反応槽の中又は別に設けられた、 処理水と活性汚泥の分離装置を 有するこ とが好ま しい。
さ らに、 本願発明に係る廃水浄化システムの制御方法において、 反応槽は、 円形又は楕円形の平面形状を有し、 擂鉢型の断面形状を 有し、 コ ンク リ ー ト又はアスフ ァル トシー トで遮水された傾斜部を 有することが好ましい。
さ らに、 本願発明に係る廃水浄化システムの制御方法において、 反応槽の B O D容積負荷は 0 . 1 〜 0 . 4 k g Z m 3 ' 日であるこ とが好ましい。
本願発明によれば、 データ波形情報を自動解析し、 好ましい波形 から外れている場合には自動的に警報を発し当該施設管理者あるい は専門技術者に自動的に通報することができる。 さ らに、 当該施設 管理者や専門技術者は遠隔地からでも運転プログラムを変更出来、 それによ り曝気出力及び曝気時間など機械作動条件を調整し、 適正 曝気、 最小電力消費を果たしつつ浄化機能を安定的に維持すること が可能となる。 したがって、 現場管理者の技術習熟度が未熟な場合 、 浄化設備現場に不在の場合などでも、 現場管理者および専門技術 者にリ アルタイムの警報が通報され、 遠隔地からでも直ちに最適運 転プログラムによる運転変更を行う ことができるため、 常に浄化施 設の正常な運転機能を容易に維持してゆく ことが出来る。
このよ う に、 従来の浄化施設管理と比較して格段に技術バックァ ップ体制が強化され即応態勢が強化されるため安心、 安定の度合い を高めることが出来、 維持管理費のコス トダウンにもつながる。 図面の簡単な説明
図 1 は、 回分式活性汚法泥法による廃水浄化設備の一例を示す概 略構成図である。
図 2は、 図 1 に示す制御装置 1 0 0の詳細を示す図である。
図 3は、 データ例を示す図である。
図 4は、 D Oに関する波形解析を説明するための図である。
図 5は、 O R Pに関する波形解析を説明するための図である。 図 6は、 p Hに関する波形解析を説明するための図である。 発明を実施するための最良の形態
以下、 本発明を図 1〜 6に基づいて詳細に説明する。
最初に、 回分式活性汚法泥法について説明する。 本願で用いられ る回分式活性汚泥法は、 養豚場等で発生する廃水を、 微生物を含ん だ活性汚泥を有する 1つの反応槽を用いて処理する方法である。 又 回分式活性汚泥法は、 時間で区切られた、 ( 1 ) 流入工程、 ( 2 ) 曝気工程 (好気) 、 ( 3 ) 沈殿工程 (嫌気) 及び ( 4 ) 放流工程の 4工程を有している。 ここでは、 廃水 (原水) の B O D濃度が 1 0 , 0 0 0〜 5 0, O O O m g ZLの高濃度であっても、 無希釈で浄 化でき且つ B O D及び C O Dのみならず、 脱窒及び脱燐機能を有す るよ う、 B O D容積負荷を 0. :!〜 0. 4 k g Zm3 ' 日 と した反 応槽容積で、 上記 4つの工程を順次繰り返す。 通常 1 日に 4工程を 1〜 3回繰り返す。 工程を 1 日に 1回行う場合、 曝気工程及び沈殿 工程がそれぞれ約 1 2時間、 2回の場合それぞれ約 6時間、 3回の 場合それぞれ約 4時間である。 流入工程及び放流工程は、 原水の水 量に応じて変化するが、 それぞれ約 1 5〜 3 0分程度である。
ここで、 流入工程は、 養豚場等で発生する廃水を、 反応槽へ流入 する工程である。 曝気工程は、 反応槽に常時適切な量の空気 (酸素 ) を送り込み (曝気) 、 適宜攪拌して、 酸素を好む微生物を培養し 、 これによつて有機物を酸化していく工程である。 沈殿工程は、 反 応槽への酸素の流入を遮断し、 嫌気状態において脱窒しつつ活性汚 泥を沈殿させる工程である。 放流工程は、 反応槽の上澄みを収集し て処理水と して放流する工程である。
流入負荷に対する、 活性汚泥の量と質及び曝気量のコン ト ロール 、 B O D、 C O Dの酸化、 アンモニアの酸化 (硝化) とその結果生 成される硝酸 · 亜硝酸の還元 (脱窒) のコン ト ロールは、 反応槽に おける浄化機能維持のうえできわめて重要であるこれらのコン ト口 ールが不適切な場合、 B O D、 C O D、 S S、 T Nの浄化機能が乱 されて、 所定の処理水質をたもてなく なる。 活性汚泥のコン ト 口一 ルは、 余剰汚泥を系外への取り 出し処理によって調整するが、 一定 の濃度を常に保つこ とは出来ない。 流入負荷のコン ト ロールは、 反 応槽の前に必要な容量の原水貯留槽を設置し反応槽への流入量を調 整するが、 量と質を厳密に均等化するこ とは出来ない。
したがって流入工程、 曝気工程、 沈殿工程及び流出工程において 、 変動する原水条件、 活性汚泥量に対して適切な曝気強度と時間を タイ ミ ングをはずすこ となく コン ト ロールするこ とによって B O D 、 C O Dの酸化、 アンモニアの酸化 (硝化) とその結果生成される 硝酸 ' 亜硝酸の還元 (脱窒) をコン ト ロールするこ とが浄化槽運転 管理の中心手段である。
この場合センサデータの波形情報が意味するこ とを速やかに正し く判断するこ と と運転プログラムへのフィ一 ドバックが必要となる が、 判断とプログラム作成 · 変更は熟練を要し、 また管理者が不在 の場合対応できず、 メーターリ レーによる 自動制御では不満足ある いは不安定性が残る。 このため浄化機能の安定的維持は、 しばしば 困難がと もなう。 また、 不必要な電力を消費するこ となく最低限必 要な電力で所定の浄化機能を維持するこ とが求められる。
図 1 に、 回分式活性汚法泥法による廃水浄化設備の概略構成図を 示す。
図 1 に示すよ う に、 廃水浄化設備は、 原水槽 1 、 流量調整槽 2、 回分式反応槽 3、 処理水槽 4、 固液分離機 5、 汚泥貯蔵槽 6及び脱 水機 7等から構成されている。
原水槽 1 は、 廃水発生源からの廃水を一旦受け止め、 原水ポンプ 1 1 によって廃水を固液分離機 5へ移送するための設備である。 廃 水の質によって、 攪拌機 1 0 を設置するこ とが望ましい。 流量調整槽 2は、 固液分離機 5 を通過した廃液を一時的に貯留し 、 運転プログラムで指定される時間帯に、 流調ポンプ 1 4を利用し て回分式反応槽 3 へ移送する。 固液分離機 5 を通過した廃液に微細 な固形物が多く含まれる場合には、 スラ リ ーポンプ 1 3によって流 量調整槽 2の底に溜まった原水ス ラ リ 一を汚泥貯蔵槽 6に移送する 回分式反応槽 3は直方体の形状でも良いが、 擂鉢型の断面形状を 有し、 円形又は楕円形の平面形状を有しているこ とが好ま しい。 擋 鉢型の断面形状は、 回分式反応槽 3内の完全混和、 汚泥の沈降圧密 促進、 曝気の死角消滅の上で好ま しい。 回分式反応槽 3の傾斜部は 、 コンク リ ー ト構造の他アス フ ァル トなどのシ一 卜で遮水するこ と もできる。
また、 反応槽 3は、 水中ミ キサー 1 5、 消泡ポンプ 1 6、 曝気 ' 攪拌のための加圧ブロア 1 7及び回分式反応槽 3の底部に設置され た水中エアレ一タ 1 8、 汚泥ポンプ 1 9、 水平エアレータ 2 0、 集 水装置 2 1 、 D Oセンサ 2 2 、 O R Pセンサ 2 3及び p Hセンサ 2 4 を有している。
水中 ミキサー 1 5は、 水平流の推進又は嫌気攪拌を促すための設 備であって、 反応槽 3の直壁付近又は槽底部に設置される。
消泡ポンプ 1 6は、 活性汚泥液をくみ上げてノズルから噴射し水 面の泡を叩く ための装置である。 消泡ポンプ 1 6に、 真水又は処理 水を利用する と反応槽の水位を押し上げてしまい、 真水を利用する と水料金が発生するこ とから、 活性汚泥液を循環利用している。 加圧ブロア 1 7は、 結合されている配管を通じて、 水中エアレー タ 1 8 へ空気を送り込み、 反応槽 3内に主に上下流を作って、 活性 汚泥液を曝気 · 攪拌する。 加圧ブロ ア 1 7及び水中エアレータ 1 8 の曝気 · 攪拌能力及び台数等は、 反応槽 3の大きさや必要酸素量に よって決定される。 加圧ブロア 1 7は、 後述するよ うに制御装置 1 0 0によって制御される。 なお、 反応槽を曝気 · 攪拌する方法は様 々であるが、 反応槽の水深が 4〜 8 mの場合、 加圧ブロア 1 7及び 水中エアレータ 1 8 の組み合わせが有効である。 特に、 水深が 4 m 未満の場合と比較して、 水深が 4 〜 8 mの場合、 電力 l k w h当 り の酸素導入量は 6 0 〜 7 0 %改善される。
汚泥ポンプ 1 9は、 余剰汚泥を汚泥貯蔵槽 6に移送するための水 中ポンプであって、 反応槽 3の底部に設置されている。
水平エアレータ 2 0は、 反応槽 3 の水面に浮かべられており、 活 性汚泥液に水平方向の水流を与え、 加圧ブロア 1 7及び水中エアレ ータによる上下流と相俟って反応槽 3内の活性汚泥液と流入廃水と の完全混和と曝気効率の向上に効果を有している。 水平エアレータ 2 0には、 フロー ト式水車、 フロー ト式スク リ ュウェジェクタ、 ェ ジ工クタ等を用いるこ とができる。
集水装置 2 1 は、 活性汚泥が沈殿した後現れる上澄み水 (処理水 ) を取り出すための装置であり、 水中ポンプ、 サイ フォ ン、 可動堰 などを用いるこ とができる。 また、 集水装置 2 1 は、 反応槽 3の汚 泥液または別に設けた槽に汚泥液を移送し、 精密濾過膜、 限外濾過 膜を用いて活性汚泥と処理水を分離する処理水取り 出し装置であつ ても良い。 取り 出された処理水は処理水槽 4へ移送される。
D Oセンサ 2 2 、 0尺?センサ 2 3及び 11センサ 2 4は、 反応 槽 3内の水中に設置され、 検出した値を後述する制御装置 1 0 0に 送信する。
処理水槽 4は、 処理水を貯留する為の槽である。 回分式活性汚法 泥法による処理の場合、 処理水はある時間にまとめて取り出すこ と になるので、 放流先の水路が必要十分な流量を受け入れるこ とが出 来ない場合に特に必要な設備である。 また、 B O D、 C O D , S S 及び T Pの放流規制値の水準が高い場合、 活性汚泥処理の後段に逆 浸透膜、 凝集処理、 活性炭処理、 オゾン酸化などによる高度処理が 必要となる可能性がある。 これらの高度処理は、 回分処理ではなく 連続処理が有利となるので、 処理水槽 4はこの場合には高度処理の ための調整槽となる。 また、 処理水槽 4は、 処理水ポンプ 2 5 によ つて処理水を放流する。 処理水ポンプ 2 5は、 サイ フォ ン又は槽底 部からの ドレイ ンパイプとするこ と もできる。
固液分離機 5 は、 原水槽 1 からの廃水中に含まれる夾雑物 3 0 を 除去するためのスク リ ーンを有している。 スク リ ーンは、 廃水の性 質に応じて、 適切な機種及び目幅のものが選択される。 固液分離機 5 を通過した廃水は、 流量調整槽 2へ移送される。 夾雑物 3 0 は、 堆肥と して再利用するこ ともできる。
汚泥貯留槽 6は、 流量調整槽 2から汲み上げられた原水スラ リ ー 及び反応層 3から汲み上げられた余剰汚泥を貯蔵する設備であり、 汚泥供給ポンプ 2 8 よつて脱水機 7 に汚泥を供給する。 脱水機 7に 均質な汚泥を供給する為に汚泥攪拌機 2 6 を設置することが好ま し レ、。
脱水機 7 は、 汚泥貯留槽 6から供給された汚泥を脱水し、 脱離水 と脱水ケーキ 3 1 に分離する設備である。 脱水機 7は、 スク リ ュウ プレス、 ベル ト プレス、 多重円盤、 遠心分離、 フィルタープレスな どを有し、 凝集剤を利用するが、 それらは汚泥の性状や望ま しい脱 水ケーキの含水率などによって選択される。 脱離液は流量調整槽 2 又は反応槽 3に返送するが、 脱水対象が余剰汚泥のみの場合、 脱離 液を沈澱槽 (不図示) に導き固形物を分離の上、 濾液を放流するこ と もできる。
原水槽 1 、 流量調整槽 2、 回分式反応槽 3、 処理水槽 4及び汚泥 貯蔵槽 6には、 各槽の水位を検出するために、 水位継電器をそれぞ れ設けるこ とが望ま しい。 また、 処理水質について、 B O D、 S S 、 C O D、 T P及び色度等の高度処理、 細菌や原虫なのどの駆除が 必要な場合には、 図 1 に示す廃水浄化設備は、 凝集沈殿法、 砂濾過 、 活性炭処理、 オゾン酸化法、 精密濾過膜、 限外濾過膜、 又は逆浸 透膜等の付加設備、 又はこれらを組合せた付加設備を具えるこ とが 好ましい。
図 2に、 図 1 に示す制御装置 1 0 0の詳細を示す。
図 2に示すよ うに、 制御装置 1 0 0は、 C P U 1 0 1、 D Oセン サ 2 2、 O R Pセンサ 2 3及び p Hセンサ 2 4からの検出信号をデ ジタルデータに変換するための AZD変換器 1 0 2、 1 0 3及び 1 0 4、 プログラマブルシーケンサ 1 0 5、 各種センサ出力を記録紙 に記録及びノ又はディスプレイに表示するための記録部 1 0 6、 第 1イ ンバ一タ 1 0 7、 第 2イ ンバータ 1 0 8及び他のシステム 2 0 0 との間でデータの交換を行うための送受信部 1 0 9等を有してい る。
プログラマブルシーケンサ 1 0 5は、 予め設定された指令に基づ き、 第 1及び第 2イ ンバータ 1 0 7、 1 0 8 (電力盤) や、 図 1 に 示す各駆動機器を所定のタイ ミ ングで動作させ、 前述した回分式活 性汚泥法の 4つの工程をエン ドレスで繰り返す。 なお、 第 1イ ンバ ータ 1 0 7は加圧ブロア 1 7を第 2イ ンパータ 1 0 8は水中エアレ ータ 1 8をそれぞれ制御する。 プロ グラマブルシーケンサ 1 0 5は 、 市販の汎用品でも本システムのための専用品でもかまわない。 し たがってプログラマブルシーケンサ 1 0 5の制御状況データによ り その時点の工程の経過を判断するこ とができる。
C P U 1 0 1 は、 プログラマブルシーケンサ 1 0 5の制御状況、 D Oセンサ 2 2、 O R Pセンサ 2 3及び p Hセンサ 2 4からの検出 データ波形を常時受信し、 記録部 1 0 7に出力して記録作業を行う と共に、 検出データ波形を解析し、 問題が発生している場合には、 警報を発し、 送受信部 1 0 8を介して他システム 2 0 0に通知する 。 ここでは、 波形解析のため、 C P U 1 0 1 と しては、 S G S— T HOM S ON社の W. A . R . P (ウェイ ト ' ァソシァテイ ス ' ノレ ール . プロセッサ) が用いられているが、 他の適切なプロセッサを 用いるこ と も可能である。 波形解析の詳細については後述する。 他システム 2 0 0は、 通常、 管理者又は専門技術者が常駐する遠 隔地に配置されており、 波形解析による警報が発生された場合に、 適切な処置を施せるよ うに、 送受信部 1 0 8を介して C P U 1 0 1 及びプログラマブルシーケンサ 1 0 5 と接続されている。 例えば、 波形解析によって、 回分式活性汚泥法が適切に機能しないこ とが判 明した場合には、 送受信部 1 0 8及び C P U 1 0 1 を介して、 プロ グラマブルシーケンサ 1 0 5のプログラム変更を行い、 よ り適切な 処理が行えるよ う に、 図 1 に示す廃水浄化設備処の制御を変更する 。 なお、 管理者又は専門技術者が現地において、 直接プログラマブ ルシーケンサ 1 0 5を調整するこ ともできる。
以下、 C P U 1 0 1で行われる波形解析について説明する。
波形解析は、 予め所定のメモリ に記憶されたプロ グラムに従い、 所定の R OM及び R AM等を利用しながら、 C P U 1 0 1等によつ て行われる。
図 3は、 プロ グラマブルシーケンサ 1 0 5から受信した制御状況 と各種センサ 2 2〜 2 4からのデータ波形によつて作成されたデー タ例である。 図 3において、 横軸は時間を示しており、 縦軸は、 D O (P PM) 、 O R P (m V ) 及び p Hをそれぞれ示している。 図中 Aは原水 (廃水) が反応槽 3に流量調整槽 2から移送を開始 され、 且つ加圧ブロア 1 7及び水中エアレ一タ 1 8等による曝気ェ 程が開始された時点を示している。 図中 Cは、 予め定められた曝気 工程が終了し、 沈殿工程が開始された時点を示し点 Eは沈殿工程終 了し、 処理水の放流が開始された時点を示している。 また図中 Bは 曝気工程が開始されてから曝気工程の 7 0 %が経過した時を示し、 図中 Dは曝気工程が開始されてから曝気工程の 1 0 5 %が経過した 時を示している。
さ らに、 図中 Fは、 DOセンサ 2 2が感知した D O値を示し、 G は O R Pセンサ 2 3が感知した O R P値を示し、 Hは p Hセンサ 2 4が感知した p H値を示している。
C P U 1 0 1 はこのよ うなデータ波形から、 予め定められている データ波形条件とを照合し、 好ま しく ない波形が出現した場合に、 警報を発するよ う プロ グラムされている。
図 4に、 D Oセンサ 2 2が感知した D O値に関する波形解析につ いて説明する。 D O値のデータ波形 Fに関して、 曝気開始から曝気 工程の 7 0 %を経過した後に D O値が立ち上がり (図中 P参照) 、 曝気開始から曝気工程の 1 0 5 %を経過するまでに D O値が再度 「 0」 に戻っている場合 (図中 Q参照) 、 D O値は正常である と判断 する。
その理由は、 曝気工程の終わり に近い時点 (曝気開始から曝気ェ 程の 7 0 %が経過した時点以後) から D O値が立ち上がり始め、 曝 気工程の終了後直ぐに (曝気開始から曝気工程の 1 0 5 %が経過し た時点以前) D O値が鋭くゼロに戻るよ うな場合に、 最も良い浄化 機能が発揮されているからである。
B O DZNH4— Nが十分に酸化するまでは、 投入された酸素 ( 加圧ブロア 1 7等によって送り込まれた酸素) が 1 0 0 %消費され るこ とから、 D O値はゼロである。 したがって、 現れた D O値は余 剰の酸素を示している。 しかしながら、 D O値が立ち上がらないと いう こ とは、 十分な酸化が終了していないという こ と となる。 また 、 曝気停止する と、 活性汚泥の呼吸によって残存酸素が消費される ので、 D O値はゼロ となる。 即ち、 十分な酸化のために一旦は D O 値が立ち上がるこ とを確認したいが、 あま り余剰の酸素を送り込む のは不経済である。 したがって、 曝気工程の終わり に近い時点から D O値が立ち上がり始め、 曝気工程の終了後直ぐに D O値が鋭くゼ 口に戻るよ うな場合に、 最も良い浄化機能が発揮されているこ と と なる。
図 5に、 0尺?センサ 2 3が感知した O R P値に関する波形解析 について説明する。 O R P値のデータ波形 Gに関して、 曝気開始か ら曝気停止までの間において、 最初にプラス側が + 5 0 m V以上の 部分があり 、 その後マイナス側が一 1 O O m v以下の部分がある場 合に、 O R Pセンサのデータ波形は正常である と判断する。
その理由は、 O R P値が + 5 0 m v以上の場合は、 B ODZNH 4 _Nの酸化が十分になされているこ とを示している。 また、 O R P値が— 1 0 0 m V以下の場合は、 NO2、 N03— Nの還元が十分 になされており 、 脱窒が行われているこ とを示しているからである 図 6に、 p Hセンサ 2 4が感知した p H値に関する波形解析につ いて説明する。 p H値の波形データ Hに関して、 全ての工程におい て、 p H値が 6. 5〜 7. 8以内である場合に、 p Hセンサのデー タ波形は正常である と判断する。
その理由は、 p Hが 7. 8よ り大きい場合は、 NH4— Nの酸化 が不十分であるこ とを示しており、 p Hが 6. 5 よ り小さい場合は 、 NO2、 N O3— Nの還元が十分なされていないこ とを示している からである。
C P U 1 0 1 は、 前述した図 4〜 6に示した条件にしたがって、 DO、 O R P及び p Hセンサのデータ波形の何れかが正常から逸脱 した回数が、 週 3回以上あった場合に、 警報や各種信号出力等の警 告処理を行う よ うにプログラムされている。 なお、 正常から逸脱し た回数 ( 3回/週) は一例であって、 システムや廃水浄化設備の規 模ゃ種別に応じて適切な値を選択することができる。

Claims

請 求 の 範 囲
1 . 曝気装置を含む反応槽、 曝気手段を制御するためのプロダラ マブルシーケンサ、 前記反応槽中に設置された溶存酸素濃度を検出 する第 1センサ、 前記反応槽中に設置された酸化還元電位を検出す る第 2センサ、 前記反応槽中に設置された水素イオン濃度を検出す る第 3センサ及び制御部を有し、 回分式活性汚泥法によって廃水の 浄化を行うための廃水浄化システムの制御方法において、
前記プロ グラマブルシーケンサによって、 前記曝気装置を制御し 前記制御部は、 前記第 1 センサ、 前記第 2センサ及び前記第 3セ ンサよ りそれぞれのデータ波形、 及び前記プログラマブルシーケン サの制御状況データを取得し、
前記制御部は、 前記第 1 センサからの前記溶存酸素濃度データ波 形、 前記第 2センサからの前記酸化還元電位データ波形及び前記第 3センサからの水素イオン濃度データ波形を解析し、
前記制御部は、 前記解析の結果、 予め定められた正常状態からの 逸脱を発見した場合に、 警告処理を行う こ とを特徴とする廃水浄化 システムの制御方法。
2 . 前記制御部は、 前記溶存酸素濃度データ波形、 前記酸化還元 電位データ波形及び水素イオン濃度データ波形を、 予め有している 基準条件と比較するこ とによって、 正常状態からの逸脱を発見する 請求項 1 に記載の廃水浄化システムの制御方法。
3 . 前記制御部は、 前記溶存酸素濃度データ波形、 前記酸化還元 電位データ波形及び水素ィオン濃度データ波形を記録するこ とを特 徴とする請求項 1 に記載の廃水浄化システムの制御方法。
4 . 前記警告処理は、 異常が発生したこ とを電話回線によ り遠隔 地に自動送信するこ とである請求項 1に記載の廃水浄化システムの 制御方法。
5. 前記プロ グラマブルシーケンサのプログラムは変更可能であ る請求項 1 に記載の廃水浄化システムの制御方法。
6. 前記プログラマブルシーケンサのプログラムは、 遠隔地よ り 変更可能である請求項 1 に記載の廃水浄化システムの制御方法。
7. 前記廃水浄化システムは、 さ らに、 固形物の除去装置、 原水 槽、 原水貯留槽、 処理水の取り出し装置、 余剰活性汚泥の抜取脱水 装置を有する請求項 1記載の廃水浄化システムの制御方法。
8. 前記廃水浄化システムは、 さ らに、 精密濾過膜、 限外濾過膜 又は逆浸透膜による、 前記反応槽の中又は別に設けられた、 処理水 と活性汚泥の分離装置を有する請求項 1に記載の廃水浄化システム の制御方法。
9. 前記反応槽は、 円形又は楕円形の平面形状を有し、 擂鉢型の 断面形状を有し、 コ ンク リー ト又はアスフ ァル ト シー 卜で遮水され た傾斜部を有するこ とを特徴とする請求項 1に記載の廃水浄化シス テムの制御方法。
1 0. 前記反応槽の B O D容積負荷は 0 · 1〜 0. 4 k g Zm3 • 日である請求項 1 に記載の廃水浄化システムの制御方法。
PCT/JP2004/005023 2004-01-13 2004-04-07 廃水浄化システム WO2005068379A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005516959A JPWO2005068379A1 (ja) 2004-01-13 2004-04-07 廃水浄化システム
US10/585,908 US7494588B2 (en) 2004-01-13 2004-04-07 Wastewater purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004005303 2004-01-13
JP2004-005303 2004-01-13

Publications (1)

Publication Number Publication Date
WO2005068379A1 true WO2005068379A1 (ja) 2005-07-28

Family

ID=34792094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005023 WO2005068379A1 (ja) 2004-01-13 2004-04-07 廃水浄化システム

Country Status (3)

Country Link
US (1) US7494588B2 (ja)
JP (1) JPWO2005068379A1 (ja)
WO (1) WO2005068379A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195887A (ja) * 2008-02-25 2009-09-03 Sharp Corp 水処理装置および水処理方法
JP2009195888A (ja) * 2008-02-25 2009-09-03 Sharp Corp 水処理装置および水処理方法
JP2009226378A (ja) * 2008-03-25 2009-10-08 Sharp Corp 水処理装置
JP2009233549A (ja) * 2008-03-26 2009-10-15 Sharp Corp 水処理装置および水処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502391B1 (de) * 2005-09-20 2007-03-15 Univ Innsbruck Inst Fuer Umwel Verfahren zur behandlung von ammoniumhaltigem abwasser
GB0610384D0 (en) * 2006-05-25 2006-07-05 Boc Group Plc Treatment of aqueous liquid
CN111392868B (zh) * 2020-04-02 2020-12-22 乐清市泰博恒电子科技有限公司 一种人工湿地防堵塞预警系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126980A (ja) * 1991-11-05 1993-05-25 Babcock Hitachi Kk 異常診断支援装置
JPH09122681A (ja) * 1995-11-07 1997-05-13 Nishihara Environ Sanit Res Corp 水質制御装置
JPH10512077A (ja) * 1995-06-23 1998-11-17 リミトルク コーポレイション ディジタル制御システムの確認
JP2000288574A (ja) * 1999-04-01 2000-10-17 Hitachi Plant Eng & Constr Co Ltd 生物処理装置
JP2001353493A (ja) * 2000-06-12 2001-12-25 Toshiba Eng Co Ltd 下水処理場の水質管理システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181772A (ja) * 1986-02-05 1987-08-10 Kurita Water Ind Ltd 生物反応装置
JP3015426B2 (ja) * 1990-08-24 2000-03-06 ユニチカ株式会社 排水の管理処理方法
JP3115339B2 (ja) * 1991-01-12 2000-12-04 株式会社アールエコ 浄化槽の遠隔管理方法
JPH05208193A (ja) * 1992-01-31 1993-08-20 Nishi Nippon Jiyoukasou Kanri Center:Kk 浄化槽の遠隔管理方法
JPH0688373A (ja) * 1992-09-09 1994-03-29 Hitachi Ltd 下水処理施設群管理システム
US5608171A (en) * 1993-11-16 1997-03-04 Hunter; Robert M. Distributed, unattended wastewater monitoring system
JPH0975964A (ja) * 1995-09-12 1997-03-25 Nishihara Neo Kogyo Kk 小規模浄化槽の異常検知自動通報システムおよび方法
US6609070B1 (en) * 1998-06-19 2003-08-19 Rodi Systems Corp Fluid treatment apparatus
US6954701B2 (en) * 1998-12-17 2005-10-11 Watereye, Inc. Method for remote monitoring of water treatment systems
FR2793484B1 (fr) * 1999-05-12 2001-07-06 Degremont Procede, dispositif et utilisation du procede pour l'elimination par voie biologique d'elements metalliques presents a l'etat ionise dans les eaux
JP3388405B2 (ja) * 2000-06-15 2003-03-24 独立行政法人農業工学研究所 汚水処理装置およびその方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126980A (ja) * 1991-11-05 1993-05-25 Babcock Hitachi Kk 異常診断支援装置
JPH10512077A (ja) * 1995-06-23 1998-11-17 リミトルク コーポレイション ディジタル制御システムの確認
JPH09122681A (ja) * 1995-11-07 1997-05-13 Nishihara Environ Sanit Res Corp 水質制御装置
JP2000288574A (ja) * 1999-04-01 2000-10-17 Hitachi Plant Eng & Constr Co Ltd 生物処理装置
JP2001353493A (ja) * 2000-06-12 2001-12-25 Toshiba Eng Co Ltd 下水処理場の水質管理システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195887A (ja) * 2008-02-25 2009-09-03 Sharp Corp 水処理装置および水処理方法
JP2009195888A (ja) * 2008-02-25 2009-09-03 Sharp Corp 水処理装置および水処理方法
JP2009226378A (ja) * 2008-03-25 2009-10-08 Sharp Corp 水処理装置
JP2009233549A (ja) * 2008-03-26 2009-10-15 Sharp Corp 水処理装置および水処理方法

Also Published As

Publication number Publication date
JPWO2005068379A1 (ja) 2007-08-23
US20080230472A1 (en) 2008-09-25
US7494588B2 (en) 2009-02-24

Similar Documents

Publication Publication Date Title
US7314563B2 (en) Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
CA2597756C (en) Water treatment system
WO2005068379A1 (ja) 廃水浄化システム
GB2400369A (en) Apparatus for and method of treating sewage sludge
JP2008114215A (ja) 汚泥処理方法および処理装置
JP3771870B2 (ja) オキシデーションディッチ法による汚水処理システム
KR101278475B1 (ko) 선회류식 무기슬러지 분리배출장치와 생물반응조를 결합한 슬러지처리장치
JP4622958B2 (ja) 窒素含有廃液の処理方法
US8715502B1 (en) Hoss' 4-stage biological nutrient removal (BNR) activated sludge process for removal of total phosphate and total nitrogen to a level below 1.0 mg/l without any chemical coagulation process such as alum or ferric chloride used for phosphorous removal
CN219136573U (zh) 一种养殖尾水处理系统
CN201581016U (zh) 一种乙二醇生产废水的处理装置
JP3456022B2 (ja) 汚水処理設備
KR101817471B1 (ko) 하폐수 고도처리시스템
JP6243804B2 (ja) 膜分離活性汚泥処理装置及び膜分離活性汚泥処理方法
JP6829585B2 (ja) 汚水処理システムおよび汚水処理方法
Kayser Activated sludge process
JP2006305555A (ja) 排水処理装置および排水処理方法
JP6548937B2 (ja) 排水処理方法及び排水処理装置
US20240294411A1 (en) Aerobic granule forming method and aerobic granule forming device
KR102085280B1 (ko) 연속 배치식 액상부식법에 의한 고농도 유기오수 처리 방법 및 처리 시스템
CN209161656U (zh) 一种小型乳化含油废水处理设备
JP6716664B2 (ja) 回分式担体水処理方法
US20240182343A1 (en) Method and system for pre-treating high strength wastewater
JP3359851B2 (ja) 廃水処理方法
JPH0720599B2 (ja) 間欠曝気式活性汚泥処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516959

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10585908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase