WO2005067981A1 - 免疫刺激性サイトカインをコードするマイナス鎖rnaウイルスベクターを用いる腫瘍の遺伝子治療 - Google Patents

免疫刺激性サイトカインをコードするマイナス鎖rnaウイルスベクターを用いる腫瘍の遺伝子治療 Download PDF

Info

Publication number
WO2005067981A1
WO2005067981A1 PCT/JP2005/000238 JP2005000238W WO2005067981A1 WO 2005067981 A1 WO2005067981 A1 WO 2005067981A1 JP 2005000238 W JP2005000238 W JP 2005000238W WO 2005067981 A1 WO2005067981 A1 WO 2005067981A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
vector
gene
tumor
cells
Prior art date
Application number
PCT/JP2005/000238
Other languages
English (en)
French (fr)
Inventor
Yasuo Iwadate
Akira Yamaura
Makoto Inoue
Mamoru Hasegawa
Original Assignee
Dnavec Research Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dnavec Research Inc. filed Critical Dnavec Research Inc.
Priority to JP2005517037A priority Critical patent/JPWO2005067981A1/ja
Priority to CA002553377A priority patent/CA2553377A1/en
Priority to EP05703477A priority patent/EP1712243A4/en
Priority to AU2005205441A priority patent/AU2005205441A1/en
Priority to US10/585,884 priority patent/US7521043B2/en
Publication of WO2005067981A1 publication Critical patent/WO2005067981A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • A61K2039/55527Interleukins
    • A61K2039/55533IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18832Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18811Sendai virus
    • C12N2760/18841Use of virus, viral particle or viral elements as a vector
    • C12N2760/18843Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • the present invention relates to gene therapy for tumors using a minus-strand RNA virus vector encoding an immunostimulatory site force-in.
  • GBM Glioblastoma multiforme
  • Non-Patent Document 1 Shapiro, W.R., Arch.Neurol, 56: 429-432, 1999
  • Non-Patent Document 2 Ram, Z. et al., Cancer Res., 53: 83-88, 1993
  • Non-Patent Document 3 Sampson, J.H. et al., Proc. Natl. Acad. Sci. USA, 93: 10399-10404, 1996.
  • Non-patent document 4 Herrlinger, U. et al., Cancer Gene Ther., 4: 345-352, 1997
  • Non-patent document 5 Seleh, M. et al, J. Natl. Cancer Inst., 91: 438-445, 1999
  • Non-patent document 6 Giezeman-Smits, KM et al., Cancer Res., 60: 2449-2457 , 2000
  • Non-Patent Document 7 Ram, Z. et al., Nat.Med., 3: 1354-1361, 1997
  • a minus-strand RNA virus is an envelope virus having a minus-strand RNA (also referred to as a negative-strand RNA) in its genome, has high infectivity, and has a capability of highly expressing a gene carrying the virus in the cytoplasm.
  • a negative-strand RNA virus has high infectivity, and has a capability of highly expressing a gene carrying the virus in the cytoplasm.
  • advances in genomic manipulation of negative-strand RNA viruses have made it possible to additionally insert non-viral genes, which has enabled the development of a new class of viral vectors for gene transfer approaches (Bitzer, M. et al., J. Gene Med ,. 5: 543-553, 2003).
  • Negative-strand RNA viruses have the following risks: (0) the replication virus occurs exclusively in the cytoplasm, so there is no risk of integration into genomic DNA; (ii) the transduction efficiency does not depend on the cell cycle of the target cell; (iii) different viral genomes.
  • the present inventors have studied the introduction of cytoforce in gene using a minus-strand RNA virus vector.
  • SeV vector carrying the immunostimulatory cytokine gene into tumors and examined its antitumor effects.
  • IL-2 interleukin-2
  • IC intracerebrally
  • the present invention provides a method for treating a tumor using a minus-strand RNA virus vector encoding an immunostimulatory cytopathin, and a method for treating a tumor containing a minus-strand RNA virus vector encoding an immunostimulatory site. More specifically, the present invention relates to the invention described in each claim. It should be noted that the present invention is also an invention having one or more (or all) of the inventions described in the respective claims as well as a desired combination power, particularly, the same independent claim (not included in the invention described in other claims! , An invention relating to one or more (or all) of the inventions described in the paragraph (dependent claim) citing the invention. The invention described in each independent claim also contemplates an invention which has any combination of the dependent claims. That is, the present invention includes the following inventions.
  • an antitumor treatment method which comprises the step of administering a minus-strand RNA virus vector encoding an immunostimulatory site force-in or a cell into which the vector has been introduced to a tumor site; [2] a tumor antigen or the antigen Further comprising a step of immunizing with a vector that expresses, the method according to (1),
  • an antitumor composition comprising, as an active ingredient, a minus-strand RNA virus vector encoding an immunostimulatory site force-in or a cell into which the vector has been introduced;
  • composition of (7) which is an immunostimulatory site force inca interleukin-2;
  • a kit for antitumor treatment comprising: (b) a tumor antigen or a vector expressing the antigen
  • a minus-strand RNA virus vector efficiently introduces an immunostimulatory cytotoxic gene into a brain tumor
  • a minus-strand RNA virus vector encoding an immunostimulatory cytokine is Administration has been shown to be able to exert a significant anti-glioma effect, and in particular to completely eliminate established brain tumors in combination with immunization with tumor antigens.
  • sc administration of irradiated whole tumor cell vaccines has shown that secretion of appropriate amounts of immunostimulatory cytokins in glioma tissue can recruit enough cytotoxic T cells to kill established brain tumors.
  • the minus-strand RNA virus vector causes substantial expression of the IL-2 protein in glioma tissue, and the local concentration of the IL-2 protein significantly induces immunocompetent cells, resulting in brain tumors. Reached the level required to suppress the growth of spores.
  • the method of the present invention is particularly effective against tumors in the brain in the immunoprivileged state. It is an effective treatment.
  • FIG. 1 is a diagram showing a schematic genome structure of a Sendai virus vector. Wild-type SeV carrying the lacZ or human IL-2 gene, and both M and F gene deleted SeV vectors are shown. The open reading frame of the lacZ or human IL-2 gene was inserted between the leader (W) and NP genes along with the SeV-specific transcriptional regulatory signal sequence end and start signals.
  • FIG. 2 shows X-Gal staining of rat brain tissue (upper panel) and 9L brain tumor (lower panel) grown in the brain for 7 days, to which lacZ-SeV / AMAF was administered in situ.
  • X-Gal staining was performed 4, 7, and 14 days after vector administration ( ⁇ 200).
  • maximal expression or accumulation of beta-galactosidase was observed 7 days after vector injection, and expression levels persisted up to 14 days.
  • FIG. 3 MRI images of all 9L brain tumors treated with i. Administration and irradiation of 9L cells for s. Immunization of hIL2-SeV / ⁇ M ⁇ F (T1-weighted image of frontal surface after Gd-DTPA injection). Tumors highlighted by Gd-DTPA are visualized as white areas. With the combination treatment, in 3 out of 10 rats tested, established brain tumors observed at 3 weeks after tumor cell inoculation were completely eliminated at 4 weeks (Rat # 3, Rat # 5 , Rat # 10).
  • FIG. 5 is a diagram showing a Kaplan-Meier survival curve of a rat in which 9 L cells were inoculated with L at day 0 and immunized with vector administration and / or irradiated tumor cells at day 3.
  • Untreated control (open circle), treatment with sc immunization only (solid circle), ie administration of lacZ-SeV / AMAF and sc immunization (solid triangle), ie administration of hIL2-SeV / ⁇ F only ( (Open triangles), combination of ie administration of hIL2-SeV / ⁇ F and s. Immunity (solid squares).
  • hIL2-SeV / Rats treated with i. AM and s. Immunization of AMAF were shown to survive significantly longer than the other treatment groups (p ⁇ 0.05).
  • FIG. 6 is a diagram showing immunohistological analysis of IL-2 expression in 9L brain tumor.
  • IL-2 protein is diffusely expressed.
  • FIG. 10 is a diagram showing an immunohistochemistry analysis of CD4, CD8, and NK cell antigen expression in rats treated with the combination (C). (200x magnification). Infiltration of CD4 + and CD8 + T cells was more significantly observed in tumors treated with i.e. administration and s.c. immunization of SeV / IL-2 vector than in tumors treated with other treatments.
  • the present invention relates to a method for antitumor treatment, which comprises a step of administering a minus-strand RNA virus vector encoding an immunostimulatory site or a cell into which the vector has been introduced to a tumor site.
  • a minus-strand RNA virus vector carrying an immunostimulatory site-in gene can induce an immune response against a target (tumor) into which the vector has been introduced, and can significantly suppress tumor growth.
  • anti-tumor treatment means suppression of tumor development and / or growth.
  • a minus-strand RNA virus vector encoding an immunostimulatory site force-in or a cell into which the vector has been introduced into a tumor tissue, a site where the occurrence of a tumor is concerned, or a tumor site such as a site from which the tumor has been removed.
  • an antitumor immune response can be induced at the site of administration, and tumor development (including recurrence) or growth (including metastasis) can be suppressed.
  • the introduction of the vector can be performed in vivo or ex vivo.In vivo, the vector is directly injected into the tumor site, and in ex vivo, the vector is introduced into cells outside the body, and the cells are transferred to the tumor site. Injected.
  • the tumor site refers to the tumor itself, the site from which the tumor was removed, or its vicinity.
  • the vicinity is an area where the immunostimulatory cytokine secreted from the cell into which the vector has been introduced reaches the tumor or its removal site. It is preferably within 5 mm, for example, within 3 mm, within 2 mm, or within 1 mm from the tumor or its removal site.
  • Vector One or the vector-transduced cells are dissolved or suspended in a desired carrier (eg, a desired physiological aqueous solution such as culture solution, physiological saline, blood, plasma, serum, body fluid, etc.) and injected directly into or near a tumor. What is necessary is just to implement it.
  • a desired carrier eg, a desired physiological aqueous solution such as culture solution, physiological saline, blood, plasma, serum, body fluid, etc.
  • ex vivo administration may require a step of selecting a cell into which a gene has been introduced after infection of the cell, whereas a minus-strand RNA virus vector is a special procedure. Better gene delivery can be achieved simply by contacting cells without the need for various drugs, and the efficiency of infection is very high.
  • gene delivery via negative-strand RNA viral vectors requires very short exposure to cells (less than 30 minutes). In the clinical setting, these characteristics can simplify the administration operation ex vivo and in vivo, and minimize the adverse effects such as cell damage depending on the operation. It is.
  • the MOI multiplicity of infection; the number of infectious viruses per cell
  • the MOI is preferably between 1 and 500, more preferably 2 to 300, More preferably, it is 3 to 200, more preferably 5 to 100, and still more preferably 7 to 70.
  • a short time is sufficient for contacting the vector with the target cell, for example, 1 minute or more, preferably 3 minutes or more, 5 minutes or more, 10 minutes or more, or 20 minutes or more. It may be about 5 minutes to 30 minutes. Of course, the contact may be carried out for a longer time, for example, for several days or more.
  • Cells derived from the patient to be administered Can be used. For example, primary cultured cells of fibroblasts derived from a patient can be suitably used.
  • xenogeneic and allogeneic cells can be used (Iwadate, Y. et al., Cancer Res., 61: 8769-8774, 2001). These xenogeneic or allogeneic cells are expected to be eliminated by the host immune response after ex vivo injection. Before or after the introduction of the vector, the cells may be made to lose their division ability by irradiation with UV, X-rays, or gamma rays, and then administered ex vivo to a tumor.
  • the immunostimulatory cytoforce that is carried on the vector is a cytoforce that induces the division and / or proliferation of immune cells, and may be a cytoforce that has an antitumor effect.
  • cytodynamics include cytokins that also produce T cells, NK cells, monocytes, macrophages, etc., and include cytokins that induce T cell differentiation and / or proliferation. It is.
  • the immunostimulatory site force in gene can be isolated by, for example, PCR amplification of T cell-derived cDNA or the like based on primers designed based on the gene sequence. Site force-in which exhibits an antitumor effect is well known to those skilled in the art, and those site force-in genes can be suitably used in the present invention.
  • the immunostimulatory site force-in particularly preferably used in the present invention specifically includes Interleukin-2 (IL-2), which has been shown to induce migration and adhesion of immune system cells. , Interleukin-4 (IL-4),
  • Interleukin-12 IL-12
  • granulocyte-macrophage colony-stimulating factor IL-12
  • granulocyte-macrophage colony-stimulating factor IL-12
  • IL-2 cDNA is, for example, Accession number NM.000586 (protein ID NP-000577)
  • IL-4 cDNA is, for example, Accession number M13982 (protein ID
  • IL-12 (p35 + p40) are, for example, AF180562 (protein ID AAD56385) (p35) and AF180563 (protein ID AAD56386) (p40), GM-CSF is, for example, M11220 ( protein ID AAA52578), and A14305 (protein ID CAA01150) and IL-23 (pl9 + p40) are, for example, AF301620 (protein ID AAG37232) (pl9) and AF180563 (p40: same as p40 of IL-12), Fas-L Are described, for example, in D38122 (protein ID BAA07320). Therefore, the desired nucleic acid encoding the amino acid sequence of the immunostimulatory site forcein shown above is incorporated into a vector and used in the present invention. be able to.
  • IL-2 Iwadate, Y. et al, Cancer Res., 61: 8769-8774 (2001);
  • IL-2, IL-4, GM—CSF Sampson, JH et al., Proc. Natl. Acad. Sci. USA 93, 10399-10404 (1996);
  • GM— CSF Herrlinger, U. et al., Cancer Gene Ther. 4, 345—352 (1997);
  • IL-4 Seleh, M. et. al., J. Natl. Cancer Inst. 91, 438-445, (1999);
  • IL-23 has been shown to be strongly involved in the migration of immune system cells in autoimmune diseases of the brain (Becher B. et al., J Clin Invest. 112 (8), 1186-91 (2000) )). Also, it has been shown that Fas-L has an effect as a chemoattractant (Silvestris F et al., Br J Haematol. 122 (1) 39-52. (2003)).
  • Fas-L has an effect as a chemoattractant.
  • the cytodynamic gene used in the present invention may be derived from humans or other mammals, for example, primates such as mice, rats, rabbits, pigs, and monkeys.
  • the cytoforce includes a natural cytoforce as long as the biological activity is maintained.
  • the biological activity of cytodynamic activity can be measured by a known cytodynamic activity assay. Alternatively, it can be measured by the tumor inhibition Atssey method described herein.
  • Genes encoding these noriants that have a biological activity equivalent to that of natural cytokins can be administered to tumors via a minus-strand RNA virus vector in accordance with the method of the present invention, to reduce tumor growth. It is expected to show the same anti-tumor effect as natural site force-in.
  • a natural site power in Fragments analogs, derivatives, and fusion proteins with other polypeptides (for example, cytoforce having a heterologous signal peptide, or a polypeptide fused with an antibody fragment) are also included.
  • the fragment is a polypeptide containing a part of a natural cytoplasmic in polypeptide, and includes, for example, an N-terminal deletion or a C-terminal deletion.
  • Biologically active fragments of cytokins usually comprise more than 70%, preferably more than 80%, more preferably more than 90% of the contiguous region of the native polypeptide (mature form after secretion). Including.
  • Amino acid sequence variants can be prepared, for example, by introducing a mutation into DNA encoding a natural polypeptide (Walker and Gaastra, eds. (1983)
  • the number of amino acids to be modified is not particularly limited! /, For example, within 30%, preferably within 25%, more preferably within 20%, more preferably within 15% of all amino acids of the naturally occurring mature polypeptide. It is within 10%, more preferably within 10%, for example, within 15 amino acids, preferably within 10 amino acids, more preferably within 8 amino acids, more preferably within 5 amino acids, and more preferably within 3 amino acids.
  • amino acids When amino acids are substituted, it is expected that the activity of the protein will be maintained by substituting amino acids with similar side chains. Such substitutions are referred to as conservative substitutions in the present invention.
  • Conservative substitutions include, for example, basic amino acids (eg, lysine, arginine, histidine), acidic amino acids (eg, aspartic acid, glutamic acid), uncharged polar amino acids.
  • Amino acids eg, glycine, asparagine, glutamine, serine, threonine, tyrosine, cystine
  • non-polar amino acids eg, alanine, parin, leucine, isoleucine, proline, ferulanine, methionine, tryptophan
  • ⁇ -branched amino acids eg, Substitutions between amino acids in each group, such as threonine, valin, isoleucine
  • aromatic amino acids eg, tyrosine, phenylalanine, tryptophan, histidine
  • Examples of the cytoforce invariant include polypeptides containing an amino acid sequence exhibiting high homology with the amino acid sequence of a native polypeptide.
  • a high homology for example, 70% or more, more preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 93% or more, more preferably
  • An amino acid sequence having an identity of 95% or more, more preferably 96% or more may be mentioned.
  • Amino acid sequence identity can be determined, for example, using the BLASTP program (Altschul, SF et al., 1990, J. Mol. Biol. 215: 403-410).
  • Gaps are treated in the same way as mismatches, for example, calculating the identity value of the native cytosolic force (mature form after secretion) to the entire amino acid sequence. Specifically, the ratio of the number of identical amino acids to the total number of amino acids in the natural site force-in (mature form) is calculated.
  • a preferred noriant is a polypeptide encoded by a nucleic acid that hybridizes under stringent conditions with a part or the whole of the coding region of the natural cytokin gene.
  • a polypeptide having a biological activity equivalent to that of the natural type cytokin is included.
  • a probe is prepared from either a nucleic acid containing the sequence of the coding region of the natural cytodynamic gene or its complementary sequence, or a nucleic acid to be hybridized, and Can be identified by detecting whether the nucleic acid hybridizes to the other nucleic acid.
  • Stringent hybridization conditions include, for example, 5xSSC, 7% (W / V) SDS, 100 micro-g / ml denatured salmon sperm DNA, 5x Denhardt's solution (lx Denhardt's solution is 0.2% polyvinylpyrrolidone, In a solution containing 0.2% bovine serum albumin and 0.2% ficoll) at 60 ° C, preferably 65 ° C, more preferably 68 ° C, followed by hybridization.
  • the conditions are such that washing is performed at a temperature in 2xSSC, preferably in lxSSC, more preferably in 0.5xSSC, more preferably in O.lxSSC for 2 hours while shaking.
  • the site force in used most preferably is interleukin (IL) -2.
  • IL-2 functions as a ligand for the IL-2 receptor (IL-2 receptor alpha, beta, and gamma) and is a site force regulator that regulates T cell proliferation and sorting (Kuziel, WA and Gree, W. Shi. (1991), Interleukm-2, in The Cytokine Handbook, A. Thompson (Ed.), San Diego, Calif., Academic Press, pages 83-102; Waldmann, TA, 1993, Immunol. Today, 14 : 264).
  • IL-2 is produced primarily by CD4 + T cells and functions as an autocrine growth factor.
  • IL-2 also acts on other T lymphocytes, including both CD4 + and CD8 + cells.
  • IL-2 also induces a local inflammatory response that leads to activation of both helper and cytotoxic subsets of T cells.
  • IL-2 also stimulates natural killer (NK) cell proliferation and activity.
  • Tumor cells modified to express IL-2 stimulate an immune response to the tumor and suppress tumor growth.
  • SEQ ID NO: 1 shows the nucleotide sequence of the HL-2 (mature) cDNA
  • SEQ ID NO: 2 shows the amino acid sequence of IL-2.
  • a gene encoding the amino acid sequence of SEQ ID NO: 2 can be suitably used.
  • Noriants of IL-2 are known to those skilled in the art.
  • Noriants of IL-2 that can be used in the present invention include, for example, European Patent Applications 136,489, 91,539, 88,195, 109,748, U.S. Patents 4,518,584, 4,588,584, 4,752,585, 4,931,543, 5,206,344, International Patent Application WO 99/60128, JP-A-61-78799, and Wang, et al. Science (1984) 224: 1431-1433.
  • an IL-2 fragment deficient in the N-terminal Ala a fragment deficient in 4 amino acids (Japanese Patent Application Laid-Open No.
  • a desired noriant that retains the biological activity of IL_2 may be used.
  • the biological activity of IL-2 can be known, for example, by testing the ability to stimulate the proliferation of IL-2-dependent cytotoxic T cells or helper T cells by a known method (Gillis et al., J. Immunol. (1978) 120: 2027-2032; Watson, J “J. exp. Med. (1979) 1570: 1510-1519).
  • the minus-strand RNA virus is a virus containing a minus-strand (antisense strand to a sense strand encoding a Vinoles protein) RNA as a genome.
  • Negative strand RNA is also referred to as negative strand RNA.
  • the minus-strand RNA virus used in particular includes a single-strand minus-strand RNA virus (also referred to as a non-segmented minus-strand RNA virus).
  • Single-stranded negative-strand RNA virus refers to a virus that has single-stranded negative-strand [ie, negative-strand] RNA in its genome.
  • viruses include Paramyxovindae (including Paramyxovindae; Paramyxovirus, Morbillivirus, Rubulavirus, and Pneumovirus panyu), and Rhubadvirinoe (Rhabdoviridae; Vesiculovirus, Lyssavirus, and
  • Ephemerovirus etc. filovirus
  • filovirus Filoviridae
  • orthomyxovirus Orthomyxoviridae; Iniuluenza virus A, B, and Thogoto—like viruses etc.
  • bunyavirus Bunyavindae; Bunyavirus, Hantavirus, Nairo virus, and
  • Phlebovirus genus and viruses belonging to families such as arenavirus (Arenaviridae).
  • a minus-strand RNA virus vector is based on a minus-strand RNA virus.
  • a carrier for introducing a gene into cells As used herein, the term “infectivity” refers to the ability of a minus-strand RNA virus vector to maintain the ability to adhere to cells and to introduce a gene contained in the vector into the adhered cells.
  • the minus-strand RNA virus vector of the present invention may be a transmissible or non-transmissible defective vector. "Transmissible" means that when a viral vector infects a host cell, the virus replicates in the cell and produces infectious viral particles.
  • the recombinant virus refers to a virus produced through a recombinant polynucleotide, or an amplification product of the virus.
  • a recombinant polynucleotide is a polynucleotide that is not linked at both or one end in the same manner as in its natural state.
  • the recombinant polynucleotide is a polynucleotide in which the binding of a polynucleotide chain is artificially modified (cut and / or bound).
  • the recombinant polynucleotide can be produced by a known gene recombination method by combining polynucleotide synthesis, nuclease treatment, ligase treatment and the like.
  • Recombinant viruses can be produced by expressing a polynucleotide encoding a viral genome constructed by genetic engineering and reconstructing the virus. For example, a method for reconstituting a virus from cDNA encoding a viral genome is known (Y. Nagai, A. Kato, Microbiol. Immunol, 43, 613-624 (1999)).
  • a gene refers to genetic material and refers to a nucleic acid encoding a transcription unit.
  • the gene may be RNA or DNA!
  • a nucleic acid encoding a protein is referred to as a gene of the protein.
  • the gene may not encode a protein.
  • the gene may encode a functional RNA such as ribozyme or antisense RNA.
  • a gene may be a naturally occurring or artificially designed sequence.
  • “DNA” includes single-stranded DNA and double-stranded DNA.
  • encoding a protein means that the polynucleotide contains an ORF encoding the amino acid sequence of the protein in sense or antisense so that the polynucleotide can express the protein under appropriate conditions.
  • the minus-strand RNA virus preferably used in the present invention! Sendai virus of Paramyxoviridae virus (Sendai virus), New katsusunore f heinoiresu (Newcastle disease virus entering 7 kofuku; ⁇ ze 1 / Innores (Mumps virus) ⁇ goninoinoin (Measles virus) ⁇ RS Winnores (Respiratory syncytial virus) ⁇ Cattle cast, Innores (rinderpest virus) ⁇ Distenno-Winenores (distemper virus) ⁇ Sanoreno ⁇ Rhein fenoreenvirils (SV5), Human parainfluenza virus 1,2,3, Orthomyxoviridae
  • Phocine distemper virus (PDV) canine distemper virus (CDV), dolphin molbillivirus (DMV), peste—des—petits— ruminants virus (PDPR), measles virus (MV), rinderpest virus (RPV), Hendra virus (Hendra) , Nipah virus (Nipah), human parainfluenza virus-2 (HPIV-2), simian parainfluenza virus 5 (SV5), human parainfluenza virus-4a (HPIV-4a), human parainfluenza virus-4b (HPIV-4b), mumps virus (Mumps), and Newcastle disease virus (NDV).
  • Sendai virus SeV
  • HPIV-1 human parainfluenza virus-1
  • HPIV-3 human parainfluenza virus-3
  • PDV Ph
  • Sendai virus SeV
  • human parainfluenza virus-1 HPIV-1
  • human parainfluenza virus-3 HPIV-3
  • phocine distemper virus PDV
  • canine distemper virus CDV
  • dolphin molbillivirus DMV
  • Peste-des-petits- ruminants virus PDPR
  • measles virus MV
  • rinderpest virus RSV
  • Hendra virus Hendra
  • Nipah virus Nipah virus
  • viruses belonging to the paramyxovirus subfamily including the genus Respirovirus, Rubravirus, and Morbillivirus
  • Respirovirus also called Paramyxovirus
  • Derivatives include viruses in which the virus gene has been modified so as not to impair the gene transfer ability by the virus, and viruses in which the gene has been chemically modified.
  • examples of the respirovirus belonging to the genus of the present invention include human parainfluenza virus type 1 (HPIV-1) and human parainfluenza virus.
  • Virus type 3 HPIV-3
  • BPIV-3 ⁇ parainfluenza virus type 3
  • Sendai virus Sendai virus; also called mouse parainfluenza virus type 1
  • SPIV- 10 salparainfluenza virus type 10
  • paramyxovirus is most preferably a Sendai virus. These viruses may be derived from natural strains, wild strains, mutant strains, laboratory passages, artificially constructed strains, and the like.
  • the minus-strand RNA virus vector encodes a gene carried on the viral genomic RNA in an antisense manner.
  • Virus genomic RNA is a protein that forms ribonucleoprotein (RNP) together with the viral protein of minus-strand RNA virus, which expresses a gene in the genome and replicates this RNA to form a daughter RNP.
  • RNP ribonucleoprotein
  • RNA RNA.
  • the genome of a negative-strand RNA virus has a structure in which a viral gene is arranged as an antisense sequence between a 3 'leader region and a 5' trailer region.
  • the genomic RNA contained in the virus of the present invention includes N (nucleocapsid) and P (phospho), which are viral proteins required for the expression of a group of genes encoded by the RNA and the autonomous replication of the RNA itself. , And L (Large) encode antisense.
  • the genomic RNA may or may not encode an M (matrix) protein required for virus particle formation. Further, the RNA may or may not encode an envelope protein required for viral particle infection.
  • the envelope protein of the minus-strand RNA virus examples include F (fusion) protein, which is a protein that causes cell membrane fusion, and HN (hemadaltune-neuraminidase) protein, which is required for adhesion to cells.
  • F fusion
  • HN hemadaltune-neuraminidase
  • HN protein is not required for infection (Markwell, MA et al., Proc. Natil. Acad. Sci. USA 82 (4): 978-982 (1985)), and infection is possible only with F protein.
  • it may encode a viral envelope protein other than the F protein and the Z or HN protein. In this way, the genomic RNA may be appropriately modified from the natural viral genome! / ⁇ (WO00 / 70055, WO00 / 70070).
  • the minus-strand RNA virus of the present invention may be, for example, a complex consisting of genomic RNA of minus-strand RNA virus and a viral protein, ie, ribonucleoprotein (RNP).
  • RNPs can be introduced into cells, for example, in combination with the desired transfection reagent.
  • Such RNP is specifically a complex containing, for example, genomic RNA of a minus-strand RNA virus, N protein, P protein, and L protein.
  • the viral proteins act to transcribe cystrons encoding the viral proteins from genomic RNA, and at the same time, replicate the genome itself to form daughter RNPs. Replication of genomic RNA can be confirmed by detecting an increase in the copy number of the RNA by RT-PCR, Northern hybridization, or the like.
  • the minus-strand RNA virus of the present invention is preferably an infectious virus particle of the minus-strand RNA virus.
  • Virus particles are microparticles containing nucleic acids that release cellular power through the action of viral proteins. Infectivity refers to the ability of a minus-strand RNA virus to transfer nucleic acid from the virus into the adhered cells due to its ability to adhere to cells and fuse membranes.
  • the negative-strand RNA virus has a structure in which the above RNPs containing genomic RNA and viral proteins are contained in a lipid membrane derived from the cell membrane (called “envelope”).
  • the minus-strand RNA virus of the present invention may be a transmissible or non-transmissible defective virus. The phrase “having transmissibility” means that when a virus infects a host cell, the virus replicates in the cell to produce infectious virus particles.
  • each gene in each virus belonging to the subfamily Paramyxovirinae is generally represented as follows.
  • the NP gene is also denoted as ⁇ N ⁇ .
  • accession number of the database of the nucleotide sequence of each gene of Sendai virus is as follows: M29343, M30202, M30203, M30204, M51331, M55565, M69046, X17218 for the NP gene, and M30202, M30203, for the P gene.
  • viruses See D00053, M30202, M30203, M30204, M69040, X00587, X58886.
  • viral genes encoded by other viruses include the N gene! CDV, AF014953; DMV, X75961; HPIV-1, D01070; HPIV-2, M55320; HPIV-3, D10025 ; Mapuera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091;
  • PDPR X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442; and for the Tupaia, AF079780, P gene, CDV, X51869; DMV, Z47758; HPIV-1, M74081; HPIV—3, X04721; HPIV— 4a, M55975; HPIV— 4b, M55976; Mumps,
  • the ORFs encoding these viral proteins and the ORF of the foreign gene are placed in genomic RNA in an antisense manner via the EIS sequence described above.
  • the ORF closest to the 3 'to the genomic RNA requires only the S sequence between the 3' leader region and the ORF. No I and I sequences are required.
  • the ORF closest to 5 ′ requires only the E sequence between the 5 ′ trailer region and the ORF, and does not require the I and S sequences.
  • the two ORFs can also be transcribed as the same cistron using a sequence such as IRES. In such cases, there is no need for an E-to-S sequence between these two ORFs.
  • RNA genome has a 3 'leader region followed by six ORFs encoding N, P, M, F, HN, and L proteins in antisense order.
  • ORFs encoding the N, P, M, F, HN, and L proteins in antisense order.
  • the arrangement of the viral genes is not limited to this, but it is preferable that the N, P, M, F, HN , And the ORFs encoding the L proteins are preferably arranged in order, followed by a 5 ′ trailer region.
  • the power of different viral genes Even in such a case, it is preferable to arrange the respective viral genes in the same manner as in the wild type as described above.
  • vectors carrying the N, P, and L genes autonomously express genes from the RNA genome in cells, and genomic RNA is replicated.
  • the functions of the genes encoding the envelope proteins such as the F and HN genes and the M gene form infectious virus particles that are released outside the cells. Therefore, such a vector is a virus vector having a transmitting ability.
  • the site-in gene to be carried on the vector may be inserted into a non-coding region of the protein in the genome as described later.
  • the minus-strand RNA virus of the present invention may be one deficient in any of the genes of the wild-type virus.
  • a viral vector in which the M, F, or HN gene, or a combination thereof, is inactivated or deleted can also be suitably used in the present invention.
  • virus reconstitution can be performed, for example, by externally supplying a defective gene product.
  • the virus produced in this manner has the same ability to adhere to host cells and cause cell fusion as the wild-type virus. No powerful daughter virus particles are formed. For this reason, it is useful as a safe virus vector having a one-time gene transfer capability.
  • Genes that also disrupt genomic power include, for example, the F gene, the HN gene, the M gene, or any combination thereof.
  • Example transfection of a plasmid expressing the recombinant minus-strand RNA virus genome lacking the F gene into host cells together with an expression vector for the F protein and expression vectors for the NP, P, and L proteins allows the recombinant virus to be expressed. Reconstitution can be performed (WO00 / 70055, WO00 / 70070, WO03 / 025570; Li, H.-0. Et al., J. Virol. 74 (14) 6564-6569 (2000)). Also, for example, a virus can be produced using a host cell in which the F gene has been integrated into a chromosome.
  • a group of these proteins expressed in virus-producing cells may have mutations, if their amino acid sequence is not the same as the sequence derived from the virus, if the activity in introducing the nucleic acid is equal to or higher than that of the natural type.
  • a homologous gene from another virus may be used instead.
  • a recombinant virus containing a protein different from the envelope protein of the virus from which the virus genome is derived can be produced.
  • a recombinant virus having a desired envelope protein can be produced by expressing in a cell an envelope protein other than the envelope protein originally encoded by the genome of the base virus.
  • envelope proteins of other viruses for example, G protein (VSV-G) of vesicular stomatitis virus (VSV) can be mentioned.
  • the VSV-G protein may be from any VSV strain.
  • VSV-G protein derived from Indiana serotype strain (J. Virology 39: 519-528 (1981)) can be used, but is not limited thereto.
  • the vector of the present invention can contain any combination of envelope proteins derived from other viruses.
  • an envelope protein derived from a virus that infects human cells is suitable as such a protein.
  • Such a protein is not particularly limited, and examples thereof include a retrovirus amphoteric picken envelope protein.
  • the retrovirus amphiphotic pick envelope protein for example, an envelope protein derived from mouse leukemia virus (MuLV) 4070A strain can be used.
  • an envelope protein derived from MuMLV 10A1 can also be used (for example, pCL-10Al (Imgenex) (Naviaux, RK et al, J. Virol. 70: 5701-5705 (1996))).
  • proteins include simple virus gB, gD, gH, gp85 protein, EB virus gp350, gp220 protein and the like.
  • Hepadnavirus family proteins include the S protein of hepatitis B virus. These proteins may be used as fusion proteins in which the extracellular domain is linked to the intracellular domain of the F protein or HN protein.
  • the virus vector used in the present invention includes pseudotyped virus vectors containing an envelope protein derived from a virus other than the virus from which the genome is derived, such as the VSV-G protein. If the viral genomic RNA is designed so that these envelope proteins are not encoded in the genome, the viral vector will not be expressed after viral particles infect cells.
  • the viral vector used in the present invention may be, for example, a protein such as an adhesion factor, a ligand, a receptor or the like capable of adhering to a specific cell on the envelope surface, an antibody or a fragment thereof, or a cell comprising such a cell. It may contain a chimeric protein or the like having a polypeptide derived from a virus envelope in an intracellular region, which is contained in an outer region. This can control the specificity of the viral vector's infection. These may be encoded in the viral genome, or may be supplied by expression of a gene other than the viral genome (eg, another expression vector or a gene on the host chromosome) at the time of virus reconstitution.
  • a protein such as an adhesion factor, a ligand, a receptor or the like capable of adhering to a specific cell on the envelope surface, an antibody or a fragment thereof, or a cell comprising such a cell. It may contain a chimeric protein or the like having a polypeptide
  • a viral vector may be obtained by modifying any viral gene contained in a virus, for example, to reduce the immunogenicity of a viral protein or to increase the efficiency of transcription or replication of RNA. May have been. Specifically, for example, it is conceivable to modify at least one of the N, P, and L genes that are replication factors to enhance the function of transcription or replication. HN protein, one of the envelope proteins, has both hemagglutinin activity and neuraminidase activity, which are hemagglutinins. For example, if the former activity can be reduced, blood It will be possible to improve the stability of the virus in it, and it is also possible to modulate infectivity, for example by modifying the activity of the latter.
  • the membrane fusion ability can be regulated by modifying the F protein.
  • analysis of antigen-presenting epitopes of F protein and / or HN protein that can be antigen molecules on the cell surface, etc. This can be used to produce a recombinant virus vector with reduced antigen-presenting ability for these proteins.
  • the minus-strand RNA virus vector may have an accessory gene deficient. For example, knocking out the V gene, one of the accessory genes for SeV, significantly reduces the virulence of SeV to hosts such as mice without impairing gene expression and replication in cultured cells (Kato, A. et al., 1997, J. Virol.
  • Attenuated vectors are particularly useful as viral vectors for low-toxic gene transfer in vivo or ex vivo.
  • Negative-strand RNA viruses are excellent gene transfer vectors, transcribe and replicate only in the cytoplasm of the host cell, and have no DNA phase, so they do not integrate into the chromosome.
  • RNA viral vectors represent a new class of high efficiency vectors for human anti-tumor gene therapy.
  • a transmissible SeV vector can introduce a foreign gene up to at least 4 kb, and can simultaneously express two or more genes by adding a transcription unit.
  • Sendai virus is not pathogenic to rodents, which are pathogenic to rodents and known to cause pneumonia. This is also due to previous reports that nasal administration of wild-type Sendai virus did not show serious adverse effects in non-human primates. Thus, it is supported (Hurwitz, JL et al., Vaccine 15: 533-540, 1997; Bitzer, M. et al., J. Gene Med, .5: 543-553, 2003). These characteristics of Sendai virus suggest that Sendai virus vector is applicable to human therapy and conclude that Sendai virus vector is one of the promising options for gene therapy for human cancer. is there.
  • a viral vector encodes a cytodynamic gene in genomic RNA.
  • the recombinant virus vector containing the cytodynamic gene can be obtained by inserting the cytodynamic gene into the genome of the virus vector.
  • the insertion site of the site-in gene can be selected, for example, at a desired site in the protein noncoding region of the viral genome, for example, between the 3 'leader region of the genomic RNA and the viral protein ORF closest to the 3' end. Between the viral protein ORF and / or between the viral protein ORF closest to the 5 'end and the 5' trailer region.
  • a nucleic acid encoding a cytodynamic gene can be inserted into the deleted region.
  • the polynucleotide be inserted into the genome so that the length of the polynucleotide is a multiple of 6 (Journal of Virology, Vol. 67, No. 8). , 4822-4830, 1993).
  • An EIS sequence is constructed between the inserted cytoin gene and the viral ORF. Two or more foreign genes can be inserted in tandem via the E-I-S sequence.
  • the expression level of a foreign gene carried on a vector can be regulated by the type of transcription initiation sequence added upstream of the gene (3 'side of the negative strand (negative strand)) (WO01 / 18223) o
  • the expression level can be controlled by the insertion position of the foreign gene on the genome, and the expression level increases as the insertion position is closer to the 3 ′ of the minus strand, and the expression level decreases as the insertion position is closer to the 5 ′.
  • the insertion position of the foreign gene can be appropriately adjusted in order to obtain a desired expression level of the gene and to optimize the combination with the gene encoding the preceding and succeeding viral proteins. In general, it is considered advantageous to obtain high expression of a foreign gene.
  • the foreign gene be linked to a highly efficient transcription initiation sequence and inserted near the 3 ′ end of the minus strand genome. Specifically, it is inserted between the 3 'leader region and the viral protein ORF closest to 3'. Or the ui closest to 3 ' It may be inserted between the ORF of the virus protein gene and the second viral protein gene or between the 3 'to the second and third viral protein genes.
  • the viral protein gene closest to the 3 'of the genome is the N gene
  • the second gene is the P gene
  • the third gene is the M gene.
  • the insertion position of the foreign gene should be set as close to the 5 ′ side of the minus-strand genome as possible, or the transcription initiation sequence should be less efficient, for example. It is also possible to obtain an appropriate effect by keeping the expression level of the vector force low.
  • sequences are represented by the DNA sequences encoding the plus strand, 5 -AGGGTCAAAG-3 '(SEQ ID NO: 7), 5'-AGGGTGAATG-3' (SEQ ID NO: 8), and 5'-AGGGTGAAAG, respectively. -3 '(SEQ ID NO: 9).
  • E sequence of the Sendai virus vector for example, 3′-AUUCUUUU-5 ′ (SEQ ID NO: 10) (5′-TAAGAAAAA-3 ′ (SEQ ID NO: 11) for DNA encoding a plus strand) is preferable.
  • the I sequence may be, for example, any three bases, and specifically, 3′-GAA-5 ′ (5′-CTT-3, for plus-strand DNA) may be used.
  • RNA of minus-strand RNA virus ie, N, P, and L proteins.
  • the virus can reconstitute the viral RNP. it can.
  • the plus strand is preferably generated.
  • RNA ends should reflect the ends of the 3 'leader sequence and the 5' trailer sequence as accurately as the natural viral genome. Is preferred.
  • a T7 RNA polymerase recognition sequence may be used as a transcription initiation site, and the RNA polymerase may be expressed in cells.
  • a self-cleaving ribozyme can be encoded at the 3 ′ end of the transcript so that the ribozyme can cut out the 3 ′ end accurately (Hasan , MK et al., J. Gen. Virol. 78: 2813-2820, 1997, Kato, A.
  • ribozyme a self-cleaving ribozyme derived from the antigenomic strand of hepatitis delta virus can be used.
  • DNA samples should preferably be electrophoretically identified as a single plasmid at concentrations of 25 ng / micro-l or higher.
  • a case where a foreign gene is inserted into DNA encoding viral genomic RNA using a Notl site will be described as an example.
  • the base sequence is modified by using a site-directed mutagenesis method so that the encoded amino acid sequence is not changed, and the Notl site is changed. It is preferable to remove them in advance. From this sample, the target gene fragment is amplified by PCR and collected.
  • both ends of the amplified fragment are made Notl sites.
  • the length of the synthetic DNA is designed so that the length of the final insert fragment containing the added E-to-S sequence is a multiple of 6 (the so-called “rule of six”). Kolakofski, D. et al., J. Virol. 72: 891-899, 1998; Calain, P. and Roux, L., J. Virol. 67: 4822-4830, 1993; Calain, P.
  • the E-to S sequence is, for example, the S sequence, the I sequence, and the E sequence of the Sendai virus minus strand, for example, 5'-CTTTCACCCT-3 '(SEQ ID NO: 12), 5'-AAG-3 ', and 5'-TTTTTCTCTACTACGG-3' (SEQ ID NO: 13) are used
  • PCR For PCR, an ordinary method using Taq polymerase or another DNA polymerase can be used.
  • the amplified target fragment is digested with Notl and inserted into the Notl site of a plasmid vector such as pBluescript. Confirm the nucleotide sequence of the obtained PCR product with a sequencer and select a plasmid with the correct sequence.
  • the insert is excised from this plasmid with Notl and cloned into the Notl site of the plasmid containing the genomic cDNA. It is also possible to obtain a recombinant Sendai virus cDNA by inserting it directly into the Notl site of the genomic cDNA without using a plasmid vector.
  • a recombinant Sendai virus genomic cDNA can be constructed according to the method described in the literature (Yu, D. et al "Genes Cells 2: 457-466, 1997; Hasan, MK et al”). J. Gen. Virol. 78: 2813-2820, 1997).
  • a double-stranded DNA in which an EIS sequence is linked to the 3 ′ side of the sense strand of a foreign gene is synthesized. This is inserted just 3 'to the desired S sequence of the cDNA encoding the positive strand of the genome.
  • a restriction enzyme site for example, a Notl site
  • Encoding DNA can be inserted using a restriction enzyme site (Tokusumi, T. et al. (2002) Virus Res 86 (1-2), 33-8).
  • the DNA encoding the viral genomic RNA prepared in this manner is transcribed in a cell in the presence of the above-mentioned viral proteins (L, P, and N) to reconstitute the viral vector.
  • Reconstitution of the recombinant virus can be performed using a known method (W097 / 16539; W097 / 16538; WO03 / 025570; Durbin, AP et al., 1997, Virology 235: 323-332; Whelan, SP et Natl. Acad. Sci. USA 92: 8388-8392; Schnell. MJ et al "1994, EMBO J. 13: 4195-4203; Radecke, F.
  • RNA viruses including parainfluenza, vesicular stomatitis virus, rabies virus, measles virus, Linda plague virus, and Sendai virus, from DNA. .
  • the virus of the present invention can be reconstituted according to these methods. Deletion of the F gene, HN gene, and / or M gene in the DNA encoding the viral genome does not result in the formation of infectious virions until then, but these deficiencies are present in host cells. Infectious virus particles can be formed by introducing and expressing the lost gene and / or the gene encoding the envelope protein of another virus into cells separately (Hirata, T. et al.). ., 2002, J.
  • the present invention relates to immunostimulation in the production of antitumor agents.
  • the invention relates to the use of negative-strand RNA viral vectors encoding sex-in.
  • the present invention relates to the use of a DNA encoding a viral genomic RNA of a minus-strand RNA virus virus encoding an immunostimulatory site force virus or its complementary RNA in the production of an antitumor agent.
  • the antitumor agent of the present invention is used as a medicament for preventing and / or treating tumors.
  • the specific procedure is as follows: (a) Transcription of DNA encoding negative-strand RNA viral genomic RNA (minus-strand RNA) or its complementary strand (plus-strand) in cells expressing N, P, and L proteins (B) recovering a complex containing the genomic RNA from the cells or a culture supernatant thereof.
  • DNA encoding genomic RNA is ligated downstream of a suitable promoter. Transcribed genomic RNA is replicated in the presence of the N, L, and P proteins to form an RNP complex containing these proteins. In the presence of the M, HN, and F proteins, enveloped virions are formed.
  • DNA encoding genomic RNA is ligated, for example, downstream of the T7 promoter, and is transcribed into RNA by T7 RNA polymerase.
  • T7 RNA polymerase any desired promoter can be used other than one containing a recognition sequence for T7 polymerase.
  • RNA transcribed in vitro may be transfused into cells.
  • Enzymes such as T7 RNA polymerase required for the initial transcription of genomic RNA from DNA can be supplied by introducing a plasmid or viral vector expressing this.
  • the gene can be integrated into a chromosome of a cell so as to induce expression, and supplied by inducing expression at the time of virus reconstitution.
  • Genomic RNA and viral proteins required for virus reconstitution are supplied, for example, by introducing a plasmid that expresses them.
  • DNA that expresses genomic RNA can be introduced into cells by, for example, the calcium phosphate method (Graham, F. Shi and Van Der Eb, J., 1973, Virology 52: 456; Wigler, M. and
  • transfection reagent use DEAE-dextran (Sigma # D-9885 MW 5 x 10 5 ), DOTMA (Roche) Superfect TM (QIAGEN # 301305), DOTAP, DOPE, DOSPER (Roche # 1811169), etc. Power S can.
  • the closin can be removed (Calos, MP, 1983, Proc. Natl. Acad. Sci. USA 80: 3015).
  • electroporation is highly versatile in that it has no cell selectivity.
  • a method using a transfusion reagent is suitable for introducing DNA into cells for vector reconstitution because the procedure is simple and a large number of cells can be used to examine a large number of samples.
  • a force using Superfect TM Transfection Reagent (QIAGEN, Cat No. 301305) or DOSPER Liposomal Transfection Reagent (Roche, Cat No. 1811169) is not limited thereto.
  • Reconstitution of a virus from cDNA can be specifically performed, for example, as follows.
  • FCS fetal calf serum
  • antibiotics 100 units / ml penicillin G and 100 micro-g / ml streptomycin
  • a monkey kidney-derived cell line LLC-MK2 ATCC CCL-7) was cultured until almost 100% confluent, and expressed T7 RNA polymerase, for example, in the presence of 1 micro-g / ml psoralen (psoralen), inactivated by ultraviolet (UV) irradiation for 20 minutes.
  • UV ultraviolet
  • the ratio of expression vectors encoding N, P, and L is preferably, for example, 2: 1: 2.
  • the amount of plasmid is preferably, for example, 114 micro-g pGEM-N, 0.5-12 micron. — Adjust appropriately with pGEM-P of 1 g and 4 micro-g of pGEM-L.
  • the cells subjected to the transfection are, if desired, 100 micro-g / ml of rifampicin (Sigma) and cytosine arabinoside (AraC), more preferably 40 micro-g / ml of cytosine ara pinoside (AraC) (Sigma).
  • rifampicin Sigma
  • AraC cytosine arabinoside
  • Transfection can be introduced into cells by forming a complex with, for example, ribofectamine or polycationic ribosome.
  • various transmission reagents can be used. For example, DOTMA (Roche), Superfect TM (QIAGEN # 301305), DOTAP, DOPE, DOSPER (Roche # 1811169) and the like can be mentioned.
  • cloquins can be added (Calos, MP, 1983, Proc. Natl. Acad. Sci. USA 80: 3015).
  • the process of the expression of the RUS gene and the replication of the RNP proceeds, and the virus is amplified.
  • vaccinia virus VTF7-3 can be completely removed. Re-amplification is repeated, for example, three times or more.
  • the resulting vector can be stored at -80 ° C.
  • envelope gene-deficient viruses can also be amplified by overlaying and culturing LLC-MK2 cells that express the envelope protein on cells that have undergone transfection (International Publication Nos. WO00 / 70055 and WO00 / 70070). reference).
  • the titer of the recovered virus can be determined, for example, by measuring CIU (Cell-Infected Unit) or measuring hemagglutination activity (HA) (WOOO / 70070; Kato, A. et al. , 199, Genes Cells 1: 569-579; Yonemitsu, Y. & Kaneda, Y., Hemaggulutinating virus of Japan— liposome— mediated gene delivery to vascular cells. Ed. By Baker AH. Molecular Biology of Vascular Diseases. Molecular Medicine: Humana Press: pp. 295-306, 1999).
  • CIU Cell-Infected Unit
  • HA hemagglutination activity
  • the titer can be quantified by directly counting infected cells using the marker as an index (for example, as GFP-CIU).
  • the titer measured in this way can be treated as equivalent to CIU (WOOO / 70070).
  • the host cell used for reconstitution is not particularly limited.
  • cultured cells such as monkey kidney-derived LLC-MK2 cells and CV-1 cells, hamster kidney-derived BHK cells, and human-derived cells can be used.
  • an infectious virus particle containing the protein in the envelope can also be obtained.
  • the virus vector obtained from the above-mentioned host ability can be infected into embryonated chicken eggs to amplify the vector.
  • Virus vector using chicken eggs One production method has already been developed (Nakanishi et al., Eds.
  • Separation and purification of the Sendai virus vector of urinary pulp can be performed according to a conventional method (Masato Tashiro, "Virus Experiment Protocol", Nagai and Ishihama, Medical View, pp.68-73, (1995)) .
  • construction and preparation of a Sendai virus vector from which the F gene has been deleted can be performed as follows (see WO00 / 70055 and WO00 / 70070).
  • An atypical SeV genomic cDNA (pSeV18 + / AF) is constructed. PCR is performed at the upstream of F [this i [forward: 5— gttgagtactgcaagagc / roster system [J ⁇ : 15, reverse:
  • the PCR product using the primer pair of 5'-tgggtgaatgagagaatcagcZ SEQ ID NO: 18] is ligated with EcoT22I.
  • the thus obtained plasmid is digested with Sad and Sail, and a fragment (493 lbp) containing the F gene deletion site is recovered and cloned into pUC18 to obtain pUC18 / dFSS.
  • This pUC18 / dFSS is digested with Dralll, the fragment is recovered, replaced with the Dralll fragment in the region containing the F gene of pSeV18 +, and ligated to obtain plasmid pSeV18 + / AF.
  • the foreign gene is inserted into, for example, the restriction enzymes Nsil and NgoMIV at the F gene deletion site of pUC18 / dFSS.
  • a foreign gene fragment may be amplified with Nsil-tailed and NgoMIV-tailed primers! ⁇ .
  • ⁇ 2> Preparation of helper cells that induce and express SeV-F protein
  • a Cre / loxP-inducible expression plasmid that expresses the Sendai virus F gene (SeV-F)
  • a helper cell line expressing SeV-F protein is established.
  • the cells for example, monkey kidney-derived cell line LLC-MK2 cells, which are often used for the growth of SeV, can be used. LLC-MK2 cells were incubated at 37 ° C in MEM supplemented with 10% heat-treated immobilized fetal serum (FBS), penicillin G sodium 50 units / ml, and streptomycin 50 micro-g / ml. Incubate with 5% CO. SeV-F remains
  • the above plasmid pCALNdLw / F designed to induce the expression of the F gene product by Cre DNA recombinase was used for the calcium phosphate method (.mammalian transfection kit (btratagene)). Gene transfer to LLC-MK2 cells.
  • the plasmid into which the foreign gene of pSeV18 + / AF has been inserted is transfected into LLC-MK2 cells as follows. Seed LLC-MK2 cells at 5 ⁇ 10 6 cells / dish in a 100 mm Petri dish. When genomic RNA is transcribed by T7 RNA polymerase, recombinant vaccinia virus expressing T7 RNA polymerase treated with psoralen and long-wave ultraviolet light (365 nm) for 20 minutes after cell culture for 24 hours (
  • PLWUV-VacT7 Fuerst, T.R. et al, Proc. Natl. Acad. Sci. USA 83, 8122-8126 (1986)) and infect at about MOI 2 for 1 hour at room temperature.
  • UV irradiation of vaccinia virus for example, UV Stratalinker 2400 (catalog number 400676 (100V), Stratagene, La Jolla, CA, USA) equipped with five 15-watt bulbs can be used.
  • the plasmids expressing genomic RNA and the expression plasmids expressing N-, P-, L-, F-, and HN-proteins of minus-strand RNA virus, respectively were purified using appropriate lipofection reagents. Transfect the cells.
  • the amount ratio of the plasmid is not limited to this, but may be preferably 6: 2: 1: 2: 2: 2 in order.
  • plasmids expressing genomic RNA and expression plasmids expressing N, P, L, and F plus HN proteins pGEM / NP, pGEM / P, pGEM / L and pGEM / F-HN;
  • WO00 / 70070 Kato, A. et al., Genes Cells 1, 569-579 (1996) were compared with 12 micro-g, 4 micro-g, 2 micro-g, 4 micro-g and 4 micro-gZ, respectively. Remove the transfer ratio of the dish. After culturing for several hours, wash the cells twice with serum-free MEM, and add 40 micro-g / mL of ytosine Deta-D-arabinoluranoside (Ara: Sigma, St. Louis, MO) and 7.5 micro-g / mL. Culture in MEM containing mL of Trypsin (Gibco-BRL, Rockville, MD).
  • SeV / AMAF M and F gene deleted SeV
  • SeV / AMAF retains high levels of infectivity and gene expression in vitro and in vivo, at levels similar to those of wild-type SeV vectors.
  • a viral gene deficient vector for example, when two or more types of different viral genes deficient on the virus genome contained in the vector are introduced into the same cell, the deficiency occurs in each case.
  • Viral protein power Because it is supplied by expression from another vector, it forms complementary and infectious virus particles, and the replication cycle goes around to amplify the viral vector. That is, if two or more virus vectors of the present invention are ligated in a combination that complements the viral proteins, a mixture of the respective viral gene-deficient virus vectors can be produced in large quantities at low cost. Since these viruses lack the viral gene, they can retain foreign genes whose genome size is smaller and larger in size than viruses that lack the viral gene. In addition, these viruses, which are not proliferative due to viral gene deficiency, are diluted extracellularly and are difficult to maintain co-infection.
  • the virus vector of the present invention is, for example, 1 ⁇ 10 5 CIU / mL or more, preferably 1 ⁇ 10 6 CIU / mL or more, more preferably 5 ⁇ 10 6 CIU / mL or more.
  • 10 6 CIU / mL or more more preferably 1 X 10 7 CIU / mL or more, more preferably 5 X 10 7 CIU / mL or more over, more preferably 1 X 10 8 CIU / mL or more, more preferably 5 X 10 It can be released into the extracellular fluid of virus-producing cells at a titer of 8 CIU / mL or more.
  • the titer of the virus can be determined by the methods described herein and elsewhere (Kiyotani, K. et al, Virology 177 (1), 65-74 (1990); WO00 / 70070).
  • the recovered virus vector can be purified to be substantially pure.
  • Purification methods include known methods, including filtration, centrifugation, adsorption, and column purification. Purification can be performed by a separation method or any combination thereof.
  • “Substantially pure” means that the components of the virus occupy a major proportion in the solution containing the virus vector.
  • a substantially pure virus vector composition has a 10% (by weight) ratio of the protein contained as a component of the virus vector to the total protein contained in the solution (excluding proteins added as carriers or stabilizers). / Weight) or more, preferably 20% or more, more preferably 50% or more, preferably 70% or more, more preferably 80% or more, and still more preferably 90% or more.
  • a paramyxovirus vector as a specific purification method, a method using cellulose sulfate or a cross-linked polysaccharide sulfate (JP-B-62-30752, JP-B-62-33879, and JP-B 62-30753), and a method of adsorbing to a sulfated-fucose-containing polysaccharide and / or a decomposition product thereof (WO97 / 32010).
  • the vector can be combined with a desired pharmacologically acceptable carrier or vehicle, if necessary.
  • a pharmaceutically acceptable carrier or vehicle is a material that can be administered with a vector and does not significantly inhibit gene transfer by the vector. Examples of such a carrier or medium include sterilized water, sodium chloride solution, dextrose solution, dextrose and sodium salt, lactate-containing Ringer's solution, culture solution, serum, and phosphate buffered saline (PBS). It can be considered that these are appropriately combined with a vector to form a pharmaceutical preparation.
  • the composition of the present invention may contain a carrier or a medium such as deionized water and dextrose aqueous solution.
  • compositions of the present invention may be in the form of aqueous solutions, capsules, suspensions, syrups and the like.
  • the composition of the present invention may be in the form of a solution, a lyophilizate, or an aerosol.
  • the present invention relates to immunostimulatory
  • the present invention relates to an antitumor agent comprising a minus-strand RNA virus vector encoding a kit. Further, the present invention relates to an antitumor agent containing cells into which a minus-strand RNA virus vector encoding an immunostimulatory site force-in has been introduced.
  • the composition containing the vector of the present invention and cells into which the vector of the present invention has been introduced are useful as an antitumor drug. Further, the vector composition of the present invention and cells into which the vector of the present invention has been introduced are useful as antitumor vaccines.
  • the vector composition and cells may also be supplemented with an immunostimulant such as cytokine, cholera toxin, salmonella toxin, etc., to enhance immunogenicity.
  • Vaccines also include adjuvants such as myo-kun, incomplete Freund's adjuvant, MF59 (oil emulsion), MTP-PE (muramyl tripeptide from mycobacterial cell wall), and QS-21 (from soapbark tree Ouilaia saponaria). Can be combined.
  • cytotoxic compounds that enhance the adjuvant effect.
  • genes include, for example, i) single-chain IL-12 (Proc. Natl. Acad. Sci. USA 96 (15): 8591-8596, 1999); ii) interferon-gamma (US Pat. No. 5,798,100).
  • the in vivo dosage of the minus-strand RNA virus vector varies depending on the disease, the patient's body weight, age, gender, symptoms, form of the administration composition, administration method, introduced site gene, and the like. It can be determined appropriately by a trader.
  • the administration route can be appropriately selected, and for example, it is injected into the tumor by a syringe or a catheter.
  • Vector administered is preferably about 10 5 ClU / ml to about 10 11 CIU / more preferably mU about 10 7 ClU / ml to about 10 9 CIU / ml, and most preferably from about 1 X 10 8 CIU / ml to about It is preferred to administer an amount in the range of 5 ⁇ 10 8 CIU / ml in a pharmaceutically acceptable carrier.
  • the dose per dose is 2 x 10 5 CIU—2 x 10 11 CIU is preferred, with a single dose or multiple doses with a range of clinically acceptable side effects being possible. The same applies to the number of administrations.
  • the vector is brought into contact with the target cell outside the body (for example, in a test tube or petri dish).
  • the MOI is preferably between 2 and 300, more preferably between 2 and 300, even more preferably between 3 and 200, even more preferably between 5 and 100, even more preferably between 7 and 70.
  • a minus-strand RNA viral vector encoding an immunostimulatory site force-in or a cell into which the vector has been introduced to a tumor site is preferably combined with immunization with a tumor antigen or a vector expressing the antigen.
  • treatment in which the in vivo administration of the vector of the present invention in combination with immunization with a tumor antigen exerts a significantly higher antitumor effect than administration of the vector alone.
  • Inoculation of a tumor antigen or a vector expressing the same may be performed simultaneously with, before or after administration of a negative-strand RNA virus vector encoding an immunostimulatory cytodynamic force-in.
  • the interval between the administration of the minus-strand RNA virus vector encoding the immunostimulatory cytodynamics and the inoculation of the tumor antigen or a vector expressing the same is, for example, within 7 days, preferably within 6 days, within 5 days, and within 4 days. Within 3 days, or within 2 days, more preferably within 24 hours.
  • Antigens used for immunization with tumor antigens include, for example, tumor cells having lost growth ability, lysates of tumor cells, and the like.
  • the tumor cells are preferably treated with heat treatment, radiation treatment, mitomycin C treatment or the like to eliminate proliferation. For example, when using X-ray irradiation, irradiation can be performed at a total radiation dose of 700 to 3300 Rad.
  • cells can be supplemented with 25-50 micro-g / ml of mitomycin C and incubated at 37 ° C for 30-60 minutes.
  • heat treatment can be performed at 50 to 65 ° C. for 20 minutes.
  • a tumor antigen expressed in a target tumor cell may be used.
  • Tumor antigens may be natural or recombinant polypeptides.
  • a vector expressing a tumor antigen may be administered.
  • the vector expressing the tumor antigen is not particularly limited.
  • a desired expression vector capable of expressing the tumor antigen in the administered individual such as a plasmid, a viral vector, or naked DNA is used.
  • Such a vector may contain a nucleic acid in which a nucleic acid encoding a tumor antigen is linked downstream of an appropriate promoter (eg, SV40 promoter, CAG promoter, CMV promoter, EF1 promoter, LTR promoter).
  • an appropriate promoter eg, SV40 promoter, CAG promoter, CMV promoter, EF1 promoter, LTR promoter.
  • a nucleic acid encoding a tumor antigen is ligated under the control of an expression control sequence suitable for each viral vector.
  • the administration of the vector may be performed in vivo or ex vivo.
  • Tumor antigens are appropriately selected depending on the cancer to be treated. Examples of tumor antigens include Muc-1 or Muc-1-like mucin tandem repeat peptide (U.S. Pat. No.
  • the site of inoculation of the tumor antigen is appropriately selected, and may be performed, for example, percutaneously, intranasally, transbronchially, intramuscularly, intraperitoneally, intravenously, or subcutaneously. It is preferably inoculated subcutaneously.
  • inoculation amount is generally 10 5 - 10 9 cells, preferably 10 6 - can be 10 8 cells, more preferably about 10 7 cells.
  • kit for anti-tumor treatment comprising a negative-strand RNA vector encoding an immunostimulatory site force-in, and a tumor antigen or a vector expressing the antigen.
  • the kit is a package comprising a negative-strand RNA virus vector encoding an immunostimulatory cytoplasm, and a tumor antigen or a vector expressing the antigen.
  • the package includes, for example, a container containing the minus-strand RNA viral vector and a container containing a tumor antigen or a vector expressing the antigen.
  • Such a package is used for the combination treatments described herein.
  • the antitumor treatment method of the present invention can be applied to a desired solid tumor, it is particularly suitable for treating a tumor of a central nervous system tissue (including intra- or parenchymal brain), such as glioma and metastatic tumor.
  • Suitable for brain tumors such as brain tumors, medulloblastomas, germinomas, meningiomas, pituitary adenomas, and schwannomas. Particularly preferably, it is applied to the treatment of glioma (Darioma).
  • Negative-strand RNA virus vector encoding immunostimulatory cytodynamic force-in is highly effective against brain tumors. Induces significant migration of immunocompetent cells to brain tumor tissue. In addition, by combining with an immunoconjugate of a tumor antigen, brain tumor growth can be suppressed.
  • vectors into the central nervous system see also the following literature (Bitzer, M. et al. J. Gene Med.
  • the target organism for the antitumor treatment of the present invention includes, without limitation, desired mammals including humans and non-human mammals, and specifically includes humans, mice, rats, dogs, and pigs. , Cats, porcupines, egrets, sheep, goats and monkeys.
  • Rat 9L gliosarcoma cells were maintained in Dulbecco's modified Eagle medium containing 10% FCS in a humid atmosphere containing 5% CO. 200 and 240 g (7-8 weeks
  • mice were implanted with SeV18 + hIL2 / AMAF or SeV18 + lacZ / ⁇ F in the brain (ie transplantation) and / or sc immunized with irradiated wild-type 9L tumor cells.
  • lxlO 7 CIU in 10 micro-1 PBS Were transferred at the same stereotaxic coordinates as above.
  • wild-type 9 L cells were irradiated at 30 Gy, and 100 ⁇ l of medium containing lxlO 6 irradiated 9 L cells was inoculated into the lower abdominal (lower abdominal quadrant) (Iwaaate, Y. et al., Ancer Res., 61: 8769-8774, 2001).
  • the tumor volume (mm 3 ) was calculated as the sum of Gd-DTPA-enhanced sites obtained by multiplying each MR image area (mm 2 ) by the image thickness.
  • Tumor volume estimated by MRI has a linear correlation with actual tumor weight obtained immediately after image analysis (Namba, H. et al, Human Gene Ther., 7: 1847-1852, 1996). Analysis of tumor volume in each group was performed by univariate analysis of variance (One-factor ANOVA).
  • Foot pama, degree hemp analysis with paresis and ataxia periophtalmic encrustations surrounding crust formation
  • weight loss was less than 1 day Therefore, the day of sacrifice was treated as the day of death, and survival analysis was performed by the log-rank test using the Kaplan-Meier method.
  • the cells were stained with 3'-aiamino oenziaine tetrahydrochlonde (bigma, St. Louis, MI).
  • the expression of beta-galactosidase was detected by tissue staining of X-Gal.
  • SeV / AMAF is non-transmissible and does not cause particle formation of infectious cells, since the F protein is essential for viral infection and the M protein functions in viral assembly and budding (budding).
  • the SeV / ⁇ F vector carrying the HL-2 gene (hIL-2-2-SeV / ⁇ F) and the SeV / ⁇ MAF vector carrying the lacZ gene (lacZ-SeV / AMAF) have been described previously. (Inoue, M. et al., J. Virol, 77: 6419-6429, 2003; Inoue, M. et al., Mol. Ther., 5: S174, 2002. Specifically, a Notl-tagged primer pair containing a SeV-specific transcriptional regulatory signal sequence
  • Human IL-2 (Accession number: A14844) cDNA was amplified using AAATG GCGCGCCA-3 ′ (SEQ ID NO: 20). The amplified fragment was introduced into the Notl site of the original pSeV18 + / AMAF. In this way, cDNA of hIL-2-SeV / ⁇ F (phIL2-SeV / ⁇ M ⁇ F) was constructed. The lacZ-SeV / ⁇ F cDNA (placZ-SeV / ⁇ M ⁇ F) was similarly constructed using the amplified lacZ fragment (Li, HO et al "J. Virol, 74: 6564-6569, 2000).
  • phIL2 -SeV / ⁇ F and placZ-SeV / AMAF were transfected into cells
  • the SeV vector was amplified using a packaging cell line expressing both M and F proteins (Inoue, M. et al "J. Virol, 77: 6419-6429, 2003; Inoue, M. et al”). Mol. Ther., 5: SI 74, 2002) The titer of the virus is determined based on the infectivity and the cell infectious unit (CIU) Infection unit). SeV vectors were stored at -80 ° C until use.
  • SeV / IL-2 The therapeutic effect of ie administration of SeV / IL-2 (abbreviated as SeV / IL-2) was examined by tumor volume measurement by continuous Gd-weighted MRI (Fig. 3). 3 weeks after inoculation of 9L tumor cells (day 21), the tumor volume of rats treated with hIL2-SeV / ⁇ M ⁇ F ie and s.
  • IL-2 protein The expression of IL-2 protein in brain tumors was examined immunohistochemically. It was confirmed that the IL-2 protein was diffused and expressed in the tumor into which the hIL2-SeV / ⁇ F vector had been injected (FIG. 6). In addition, the presence of CD4 + T cells, CD8 + T cells, and NK cells was examined. Marked infiltration of CD4 +, CD8 +, and NK cells was observed in tumors treated with hIL2-SeV / AMAF vector i.e. administration and s.c.immunization (FIG. 7).
  • the present invention has provided a new method for treating tumors. Since the method of the present invention can effectively suppress tumor growth by a simple method, it is expected to be widely applied to cancer treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、免疫刺激性サイトカインをコードするマイナス鎖RNAウイルスベクターまたは該ベクターが導入された細胞を腫瘍部位に投与する工程を含む、腫瘍の処置方法を提供する。また本発明は、免疫刺激性サイトカインをコードするマイナス鎖RNAウイルスベクターまたは該ベクターが導入された細胞を有効成分として含む腫瘍処置組成物を提供する。また本発明は、免疫刺激性サイトカインをコードするマイナス鎖RNAウイルスベクター、および腫瘍抗原または該抗原を発現するベクター、を含む腫瘍の処置のためのキットを提供する。

Description

明 細 書
免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターを用 いる腫瘍の遺伝子治療
技術分野
[0001] 本発明は、免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターを 用いる腫瘍の遺伝子治療に関する。
背景技術
[0002] 近年、サイト力インを用いた癌に対する免疫療法が注目されている。例えば、外科 手術、放射線治療、および化学療法を含む多様なアプローチにも関わらず治療不能 と考えられている悪性脳腫瘍の 1つである膠芽細胞腫(Glioblastoma multiforme; GBM) (Shapiro, W.R., Arch. Neurol., 56: 429-432, 1999)の治療のために、遺伝子 導入を用いた治療戦略が模索されている(Ram, Z. et al., Cancer Res., 53: 83-88, 1993; Sampson, J.H. et al., Proc.Natl.Acad.Sci. USA, 93: 10399-10404, 1996;
Herrlinger, U. et al., Cancer Gene Ther., 4:345-352, 1997; Seleh, M. et al" J. Natl. Cancer Inst., 91: 438—445, 1999; uiezeman-Smits, K.M. et al., Cancer Res., 60: 2449-2457, 2000)。 In vivo動物モデルでの研究を基に、幾つかの遺伝子治療戦略 が有望と見られているものの、その治療効果はほとんど全てのケースにおいて、遺伝 子導入のレベルが低 、ことが限界になって 、る。遺伝子治療戦略の適用の成功にと つての主な障害は、組み換えウィルスベクターが腫瘍塊全体に広がらないこと、およ び in vivoでの導入効率が低いことである(Ram, Z. et al., Nat. Med., 3: 1354-1361, 1997)。遺伝子治療を進展させるためには、安全で効率的に遺伝子を標的細胞に導 入する能力を持つ新しいベクター系を開発する必要がある。
非特許文献 1 : Shapiro, W.R., Arch. Neurol, 56: 429-432, 1999
非特許文献 2 : Ram, Z. et al., Cancer Res., 53: 83-88, 1993
非特許文献 3 : Sampson, J.H. et al., Proc.Natl.Acad.Sci. USA, 93: 10399—10404, 1996
非特許文献 4 : Herrlinger, U. et al., Cancer Gene Ther., 4:345-352, 1997 非特許文献 5 : Seleh, M. et al, J. Natl. Cancer Inst., 91: 438-445, 1999 非特許文献 6 : Giezeman- Smits, K.M. et al., Cancer Res., 60: 2449-2457, 2000 非特許文献 7 : Ram, Z. et al., Nat. Med., 3: 1354-1361, 1997
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、免疫刺激性サイト力イン(immunostimulatory cytokines)をコードするマイ ナス鎖 RNAウィルスベクターを用いる腫瘍の処置方法を提供することを課題とする。 また本発明は、免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクター を含む腫瘍の処置のための組成物およびキット、ならびにそれらの製造方法を提供 することを課題とする。
課題を解決するための手段
[0004] マイナス鎖 RNAウィルスは、マイナス鎖 RNA (ネガティブ鎖 RNAとも言う)をゲノムに 持つエンベロープウィルスであり、高い感染性を持ち、細胞質においてウィルスが搭 載する遺伝子を高発現させる能力を持つ。近年、マイナス鎖 RNAウィルスのゲノム操 作の進展により非ウィルス遺伝子を付加的に挿入できるようになり、遺伝子導入のァ プローチのための新しいクラスのウィルスベクターの開発が可能となってきた(Bitzer, M. et al., J. Gene Med,.5: 543—553, 2003)。
[0005] マイナス鎖 RNAウィルスの複製サイクルは、感染細胞のゲノム DNAにインテグレート することなく細胞質で行われることから、遺伝子治療の臨床適用における安全性が確 保され、細胞培養で組み換え治療蛋白質を製造するためのツールとして、あるいは サイト力インまたはケモカインを用いた免疫遺伝子治療への適用のために適した分 泌蛋白質を生産するために有用と考えられる。マイナス鎖 RNAウィルスは、 (0複製サ イタルは細胞質で排他的に起こるためゲノム DNAにインテグレートされるリスクがない 、 (ii)導入効率は標的細胞の細胞周期に依存しない、 (iii)異なるウィルスゲノムまた は野生型ウィルスと相同組み換えが起こらない、 (iv)細胞の取り込みに極めて短い接 触時間しか要さない、(V)広範囲の宿主細胞においてウィルスがコードする遺伝子を 高強度でかつ調節可能に発現させることができる、などの利点がある。
[0006] 本発明者らは、マイナス鎖 RNAウィルスベクターを用いたサイト力イン遺伝子導入に よる腫瘍の遺伝子治療戦略の治療的可能性を検証するため、免疫刺激性サイトカイ ン遺伝子を搭載した SeVベクターを腫瘍に導入し、抗腫瘍効果を調べた。免疫刺激 性サイト力インの 1つであるインターロイキン- 2 (IL-2)遺伝子を搭載する SeVを構築し 、ラット脳腫瘍モデルにこの SeVベクターを脳内(I.C.)投与したところ、 SeV〖こよる腫 瘍へのサイト力イン遺伝子導入は有意な腫瘍増殖の抑制をもたらすことが判明した。 また、照射野生型 9L細胞を末梢にワクチン接種した後、 IL-2発現 SeVベクターを定着 脳腫瘍にインジェクションすると、腫瘍増殖は劇的に減少し、調べた 10個体のラットの うち 3個体において脳腫瘍を消滅させることが明らかとなった。免疫組織化学的解析 では、腫瘍を IL-2発現 SeVベクターで処理すると、 CD4+および CD8+ T細胞が脳腫 瘍へ高レベルで浸潤した。このように、 SeVベクターを用いた腫瘍への遺伝子導入は 、有意な治療効果をもたらすことが明らかとなった。免疫刺激性サイト力インをコード するマイナス鎖 RNAウィルスベクターの腫瘍への導入は、腫瘍に対する新たな遺伝 子治療戦略となることが期待される。
すなわち本発明は、免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスべ クタ一を用いる腫瘍の処置方法、および免疫刺激性サイト力インをコードするマイナ ス鎖 RNAウィルスベクターを含む腫瘍の処置のための組成物およびキット等に関し、 より具体的には、請求項の各項に記載の発明に関する。なお本発明は、請求項の各 項に記載の発明の 1つまたは複数 (または全部)の所望の組み合わせ力もなる発明、 特に、同一の独立項 (他の項に記載の発明に包含されな!、発明に関する項)を引用 する項 (従属項)に記載の発明の 1つまたは複数 (または全部)の所望の組み合わせ 力もなる発明にも関する。各独立項に記載の発明には、その従属項の任意の組み合 わせ力もなる発明も意図されている。すなわち本発明は、以下の発明を含む。
〔1〕免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターまたは該べ クタ一が導入された細胞を腫瘍部位に投与する工程を含む、抗腫瘍処置方法、 〔2〕腫瘍抗原または該抗原を発現するベクターで免疫する工程をさらに含む、〔1〕に 記載の方法、
〔3〕該腫瘍抗原または該抗原を発現するベクターを皮下接種により免疫する、〔2〕に 記載の方法、 〔4〕該腫瘍抗原が増殖能を失わせた腫瘍細胞または腫瘍細胞溶解物である、〔2〕ま たは〔3〕に記載の方法、
[5]腫瘍が脳腫瘍である、〔1〕力も〔4〕の 、ずれかに記載の方法、
〔6〕免疫刺激性サイト力インカ Sインターロイキン- 2である、〔1〕から〔5〕の 、ずれかに 記載の方法、
〔7〕免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターまたは該べ クタ一が導入された細胞を有効成分として含む抗腫瘍組成物、
〔8〕免疫刺激性サイト力インカインターロイキン- 2である、〔7〕に記載の組成物、
〔9〕(a)免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクター、および
、(b)腫瘍抗原または該抗原を発現するベクター、を含む抗腫瘍処置のためのキット
〔10〕免疫刺激性サイト力インカインターロイキン- 2である、〔9〕に記載のキット。 発明の効果
本発明により、マイナス鎖 RNAウィルスベクターは免疫刺激性サイト力イン遺伝子を 効率的に脳内腫瘍に導入することが実証されると共に、免疫刺激性サイトカインをコ ードするマイナス鎖 RNAウィルスベクターの i.e.投与は著しい抗神経膠腫効果を発揮 することができ、特に、腫瘍抗原の免疫接種と組み合わせることにより定着脳腫瘍を 完全に消滅させることが実証された。これまでに、神経膠腫組織での適当量の免疫 刺激性サイト力イン分泌が、定着脳腫瘍を消滅させるのに十分な細胞傷害性 T細胞 を動員できることが、照射した全腫瘍細胞ワクチンの s.c.投与で免疫を行った動物に おいて報告されている (Iwadate, Y. et al., Cancer Res., 61: 8769-8774, 2001)。例え 免疫特権状態(immunologically privileged state)であっても、 IL- 2のようにケモタキシ ス作用のある分子の局所発現によりエフェクター細胞の腫瘍組織への移動が効果的 に促進される場合には、脳腫瘍は全身性免疫に感受性(susceptible)となることがで きる。本発明において、マイナス鎖 RNAウィルスベクターは神経膠腫組織において IL-2蛋白質の実態的な発現をひき起こし、 IL-2蛋白質の局所的濃度は、免疫担当 細胞を有意に誘導し、その結果脳腫瘍の増殖を抑制させるのに必要なレベルに達し た。このように、本発明の方法は、特に免疫特権状態にある脳内の腫瘍に対する効 果的な治療手段となる。
図面の簡単な説明
[図 1]センダイウィルスベクターの模式的なゲノム構造を示す図である。 lacZまたはヒト IL-2遺伝子を搭載する野生型 SeV、並びに Mおよび F遺伝子両欠失型 SeVベクター が示されている。 lacZまたはヒト IL-2遺伝子のオープンリーディングフレームを、 SeV特 異的転写調節シグナル配列である endおよび startシグナルと共に、リーダー(W)およ び NP遺伝子の間に挿入した。
[図 2]lacZ- SeV/ A M A Fを in situで投与した、ラット脳組織(上パネル)および 7日間 脳内で増殖させた 9L脳腫瘍(下パネル)の X-Gal染色を示す図である。ベクター投与 の 4、 7、および 14日後に X-Gal染色を行った(x200倍)。脳組織および脳腫瘍共に、 beta-ガラクトシダーゼの最大発現または蓄積はベクター注入の 7日後に観察され、 発現レベルは 14日まで持続した。
[図 3]hIL2- SeV/ Δ M Δ Fの i. 投与および照射 9L細胞による s. 免疫の治療を行った 全 9L脳腫瘍の MRI像(Gd-DTPA注入後の前頭面の T1強調像)。 Gd-DTPAで強調さ れた腫瘍は白い領域として可視化されている。組み合わせ治療により、試験した 10ラ ット中 3匹において、腫瘍細胞接種の接種後 3週目には認められた定着脳腫瘍が、 4 週目には完全に消滅した(Rat #3, Rat #5, Rat #10)。
[図 4]腫瘍細胞接種の接種後 3週目における Gd強調 MRIによる 9L脳腫瘍の平均体積 の評価を示す図である。 s.c.免疫を組み合わせた hIL2- SeV/ A M A Fの i.e.投与(86.5 ±63.8 mm3, n=10)では、未処理(286±51.2 mm3, n=10)、 s. 免疫のみ(197±48.9 mm3, n=10)、 lacZ- SeV/ A M A Fの i.e.投与と s.c.免疫の組み合わせ(233 ±73.2 mm3, n=6)または hIL2-SeV/ A M A Fの i.e.投与のみ(256 ±53.2 mm3, n=6)の場合に比べ 有意に縮小した。各バーは平均士 S.E.を表す。
[図 5]9L細胞を day 0で L 接種し、 day 3でベクター投与および/または照射腫瘍細胞 による免疫を行ったラットの Kaplan-Meier生存曲線を示す図である。未処置コント口 ール(白円)、 s.c.免疫のみの処置(黒円)、 lacZ- SeV/ A M A Fの i.e.投与と s.c.免疫( 黒三角)、 hIL2-SeV/ Δ Μ Δ Fの i.e.投与のみ(白三角)、 hIL2- SeV/ Δ Μ Δ Fの i.e.投与 と s. 免疫の組み合わせ(黒四角)。 log-rank testによる統計解析により、 hIL2-SeV/ A M A Fの i. 投与と s. 免疫の処置を行ったラットは、他の処置群に比べ有意に長く 生存することが示された(pく 0.05)。
[図 6]9L脳腫瘍における IL-2発現の免疫組織ィ匕学解析を示す図である。 hIL2-SeV/ A M A Fを i.e.投与した 9L脳腫瘍。 A; xlOO倍、 B; x200倍。 IL-2蛋白質が拡散して発 現している。
[図 7]lacZ- SeV/ A M A Fの i.e.投与および照射 9L細胞の s. 免疫(A)、 hIL2- SeV/ Δ M A Fの i.e.投与のみ(B)、および hIL2- SeV/ A M A Fの i.e.投与と s.c.免疫の組み合わ せ(C)の処置を行ったラットの CD4、 CD8、および NK細胞抗原の発現の免疫組織ィ匕 学解析を示す図である。 (倍率 200倍)。 CD4+ T細胞および CD8+ T細胞の浸潤は、 SeV/IL-2ベクターの i.e.投与および s.c.免疫で処置した腫瘍にお!ヽて、他の処置を 行った腫瘍に比べより有意に観察された。
発明を実施するための最良の形態
本発明は、免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターま たは該ベクターが導入された細胞を腫瘍部位に投与する工程を含む、抗腫瘍処置 の方法に関する。免疫刺激性サイト力イン遺伝子を搭載するマイナス鎖 RNAウィルス ベクターは、ベクターを導入した標的 (腫瘍)に対する免疫応答を誘導し、腫瘍増殖 を有意に抑制することができる。ここで抗腫瘍処置とは、腫瘍の発生および/または増 殖の抑制を意味する。すなわち、腫瘍組織、または腫瘍の発生が懸念される部位、 あるいは腫瘍を除去した部位などの腫瘍部位に、免疫刺激性サイト力インをコードす るマイナス鎖 RNAウィルスベクターまたは該ベクターが導入された細胞を局所投与す ることにより、投与部位における抗腫瘍免疫応答を誘導し、腫瘍の発生 (再発を含む )または増殖 (転移を含む)を抑制することができる。ベクターの導入は、 in vivoまたは ex vivoで行うことができ、 in vivoにおいては該ベクターは直接腫瘍部位に注入され、 ex vivoにおいては該ベクターは体外で細胞に導入され、その細胞が腫瘍部位に注 入される。腫瘍部位とは、腫瘍そのもの、腫瘍を除去した部位、またはその近傍を言 う。ここで近傍とは、ベクターが導入された細胞カゝら分泌される免疫刺激性サイトカイ ンが腫瘍またはその除去部位に到達する領域である。好ましくは腫瘍またはその除 去部位から 5 mm以内、例えば 3 mm以内、 2 mm以内、または 1 mm以内である。ベクタ 一またはベクター導入細胞は所望の担体 (例えば培養液、生理食塩水、血液、血漿 、血清、体液など所望の生理的水溶液)中に溶解または懸濁し、これを腫瘍またはそ の近傍に直接注入することにより実施すればよい。本発明の方法により、腫瘍を効果 的に治療および予防することが可能となる。
[0011] 単純な技術により高い効率で遺伝子送達が起こることは、マイナス鎖 RNAウィルス ベクターを介した遺伝子送達の重要な優位性の 1つである。レトロウイルスベクターな どを介した遺伝子送達は一般に効率が低ぐ最適な遺伝子送達のためには遠心で 濃縮する必要がある力 遠心操作はしばしばウィルスの力価を低下させる。また、高 Vヽ効率で感染させるには毒性のある薬剤であるポリプレンを必要とする場合がある( Bunnell, B.A. et al, Proc. Natl. Acad. Sci. U S A, 1995, 92: 7739-7743; Chuck, A.S., Hum. Gene Ther., 1996, 7: 743-750; Chinnasamy, D. et al., Blood 2000, 96: 1309-1316; Fehse, B. et al" Br. J. Haematol, 1998, 102: 566-574)。また、 ex vivo 投与においては、細胞に感染後に、遺伝子が導入された細胞を選択する工程が必 要な場合がある。これに対して、マイナス鎖 RNAウィルスベクターは特別な薬剤を必 要とすることなぐ単に細胞に接触させるだけでより優れた遺伝子送達を達成すること ができる。また感染効率は非常に高ぐ通常、ベクターの感染後に薬剤等で遺伝子 導入細胞を選択する必要はない。さら〖こ、マイナス鎖 RNAウィルスベクターを介する 遺伝子送達は、細胞への非常に短 、暴露 (30分以下)で最適効率を達成することが できる。臨床場面を考えると、これらの特徴は、 ex vivoおよび in vivoなどにおける投 与操作を単純化し、操作に依存した細胞障害などの悪影響を最小化し得るものであ る。
[0012] Ex vivoによりベクターを感染を行う場合には、 MOI (多重感染度;細胞 1つあたりの 感染ウィルス数)は 1一 500の間にすることが好ましぐより好ましくは 2— 300、さらに好 ましくは 3— 200、さらに好ましくは 5— 100、さらに好ましくは 7— 70である。ベクターと標 的細胞との接触は短い時間でも十分であり、例えば 1分以上、好ましくは 3分以上、 5 分以上、 10分以上、または 20分以上接触させればよぐ例えば 1一 60分程度、より特 定すれば 5分一 30分程度であってよい。もちろん、それ以上の時間接触させてもよぐ 例えば数日間またはそれ以上接触させてもよい。細胞としては、投与する患者由来 の細胞を用いることができ、例えば患者由来の線維芽細胞の初代培養細胞を好適に 用いることができる。あるいは、異種 (xenogeneic)細胞および同種異系(allogeneic) 細胞を用いることもできる(Iwadate, Y. et al., Cancer Res., 61: 8769-8774, 2001)。こ れらの xenogeneicまたは allogeneicな細胞は、 ex vivo注入後、宿主の免疫反応により 排除されることが期待される。細胞は、ベクターを導入する前または後に、 UV、 X線、 または gamma線照射等により分裂能を欠損させ、その後、腫瘍に ex vivo投与してもよ い。
ベクターに搭載する免疫刺激性サイト力インは、免疫細胞の分ィ匕および/または増 殖を誘導するサイト力インであって、抗腫瘍作用を持つサイト力インを用いることがで きる。このようなサイト力インとしては、 T細胞、 NK細胞、単球、マクロファージ等カも産 生されるサイト力インであって、 T細胞の分化および/または増殖を誘導するサイトカイ ン等が含まれる。免疫刺激性サイト力イン遺伝子は、例えば遺伝子配列を基に設計 したプライマーを基に、 T細胞由来 cDNA等力も PCR増幅により単離することができる 。抗腫瘍効果を示すサイト力インは当業者によく知られており、それらのサイト力イン 遺伝子を本発明にお ヽて好適に用いることができる。本発明にお ヽて特に好適に用 いられる免疫刺激性サイト力インとしては、具体的には、免疫系細胞の遊走及び接着 を惹起することが示されている Interleukin- 2 (IL- 2)、 Interleukin- 4 (IL- 4)、
Interleukin- 12 (IL-12)、 granulocyte-macrophage colony-stimulating factor
GM-CSF)、及び Interleukin- 23 (IL- 23)などが含まれる。また、 Fas ligand (Fas- L)も 利用できる。 IL- 2 cDNAは、例えば Accession number NM.000586 (protein ID NP— 000577)、 IL- 4 cDNAは、例えば Accession number M13982 (protein ID
AAA59149),および M23442 (protein ID AAA59150)、 IL-12 (p35+p40)は、例えば AF180562 (protein ID AAD56385) (p35)および AF180563 (protein ID AAD56386) ( p40)、 GM- CSFは、例えば M11220 (protein ID AAA52578),および A14305 (protein ID CAA01150)、 IL-23 (pl9+p40)は、例えば AF301620 (protein ID AAG37232) ( pl9)および AF180563 (p40 : IL- 12の p40と同一)、 Fas- Lは、例えば D38122 (protein ID BAA07320)に記載されている。従って、上記に示した免疫刺激性サイト力インの アミノ酸配列をコードする所望の核酸をベクターに組み込み、本発明にお 、て用いる ことができる。
[0014] 上記のサイト力インは免疫系細胞の遊走及び接着を惹起することが報告されており 、特に、 IL-2, IL-4, GM- CSFについては、脳腫瘍動物モデルにおいてその有効性 が示されている(IL-2: Iwadate, Y. et al, Cancer Res., 61: 8769-8774 (2001); IL-2, IL-4, GM— CSF: Sampson, J.H. et al., Proc.Natl.Acad.Sci. USA 93, 10399—10404 (1996); GM— CSF: Herrlinger, U. et al., Cancer Gene Ther. 4, 345—352 (1997); IL-4: Seleh, M. et al., J. Natl. Cancer Inst. 91, 438—445, (1999); IL-4:
Giezeman— Smits, K.M. et al., Cancer Res. 60, 2449-2457 (2000))。 IL— 23について は、脳の自己免疫疾患において免疫系細胞の遊走に強く関与していることが示され た(Becher B. et al., J Clin Invest. 112(8), 1186-91 (2000))。また、 Fas- Lについても 、 chemoattractantとしての効果があることが示されている(Silvestris F et al., Br J Haematol. 122(1) 39-52. (2003))。腫瘍に対する IL-2などによる免疫系賦活化につ いては、以下の文献も参照のこと(Iwadate, Y. et al. (2000) Cancer Gene Ther. 7, 1263-1269; Iwadate, Y. et al. (2001) Cancer Res. 61, 8769-8774; Iwadate, Y. et al. (2002) Int. J. Mol. Med. 10, 741-747; Iwadate, Y. et al. (1997) Oncology (Basel) 54, 329-334; Iwadate, Y. et al. (2003) Int. J. Oncol. 23, 483-488)。
[0015] 本発明において用いられるサイト力イン遺伝子は、ヒト由来であっても、その他の哺 乳動物由来、例えはマウス、ラット、ゥサギ、ブタ、サルなどの霊長類由来であってもよ い。また本発明においてサイト力インには、生物学的活性を維持している限り天然の サイト力インのノ リアントが含まれる。例えば N末端または C末端の 1一数残基 (例えば 2、 3、 4、 5、または 6残基)のアミノ酸が欠失または付加されたポリペプチド、および 1一 数残基 (例えば 2、 3、 4、 5、または 6残基)のアミノ酸が置換されたポリペプチドなどが 挙げられる。サイト力インの生物学的活性は、公知のサイト力イン活性のアツセィ方法 により測定することができる。あるいは、本明細書に記載の腫瘍抑制のアツセィ方法 により測定することができる。天然のサイト力インと同等の生物学的活性を有するこれ らのノ リアントをコードする遺伝子は、本発明に方法に従ってマイナス鎖 RNAウィルス ベクターを介して腫瘍に投与することにより、腫瘍増殖に対して天然のサイト力インと 同等の抗腫瘍効果を示すことが期待される。天然のサイト力インのノ リアントとしては 、天然のサイト力インの断片、アナログ、派生体、および他のポリペプチドとの融合蛋 白質 (例えば異種シグナルペプチドを持つサイト力イン、または抗体断片を融合させ たポリペプチドなど)が含まれる。具体的には、本発明において用いられ得るサイト力 インには、天然のサイト力インまたは断片のアミノ酸配列の 1またはそれ以上のァミノ 酸を置換、欠失、および/または付加した配列を含み、天然のサイト力インと同等の生 物学的活性を有するポリペプチドが含まれる。断片とは、天然のサイト力インポリぺプ チドの一部を含むポリペプチドであり、例えば N末端欠失体あるいは C末端欠失体が 含まれる。生物学的活性を持つサイト力インの断片は、通常、天然のポリペプチド (分 泌後の成熟型の形態)の 70%以上、好ましくは 80%以上、より好ましくは 90%以上の 連続領域を含む。
[0016] アミノ酸配列のバリアントは、例えば天然のポリペプチドをコードする DNAに変異を 導入することにより調製することができる(Walker and Gaastra, eds. (1983)
Techniques in Molecular Biology (MacMillan Publishing Company, New York); Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods Enzymol. 154:367-382; Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, N.Y.); U.S. Pat. No. 4,873,192)。生物学的活性に影響を与えないようにアミノ酸を置換するため のガイダンスとしては、例えば Dayhoff¾ (Dayhoff et al. (1978) in Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.し.ノ)力 S挙げられ る。
[0017] 改変されるアミノ酸数に特に制限はな!/、が、例えば天然の成熟型ポリペプチドの全 アミノ酸の 30%以内、好ましくは 25%以内、より好ましくは 20%以内、より好ましくは 15 %以内、より好ましくは 10%以内であり、例えば 15アミノ酸以内、好ましくは 10アミノ酸 以内、より好ましくは 8アミノ酸以内、より好ましくは 5アミノ酸以内、より好ましくは 3アミ ノ酸以内である。アミノ酸を置換する場合は、側鎖の性質が似たアミノ酸に置換するこ とにより蛋白質の活性を維持することが期待できる。このような置換は、本発明におい て保存的置換という。保存的置換は、例えば塩基性アミノ酸 (例えばリジン、アルギニ ン、ヒスチジン)、酸性アミノ酸(例えばァスパラギン酸、グルタミン酸)、非荷電極性ァ ミノ酸(例えばグリシン、ァスパラギン、グルタミン、セリン、スレオニン、チロシン、シス ティン)、非極性アミノ酸(例えばァラニン、パリン、ロイシン、イソロイシン、プロリン、フ ェ-ルァラニン、メチォニン、トリプトファン)、 β分岐アミノ酸(例えばスレオニン、バリ ン、イソロイシン)、および芳香族アミノ酸(例えばチロシン、フエ-ルァラニン、トリプト ファン、ヒスチジン)などの各グループ内のアミノ酸間の置換などが挙げられる。また、 例えば、 BLOSUM62置換マトリックス(S. Henikoff and J.G. Henikoff, 1992, Proc. Acad. Natl. Sci. USA 89: 10915-10919)において、正の値の関係にあるアミノ酸間の 置換が挙げられる。
[0018] また、サイト力インバリアントには、天然型ポリペプチドのアミノ酸配列と高いホモロジ 一を示すアミノ酸配列を含むポリペプチドが挙げられる。高いホモロジ一としては、例 えば 70%以上、より好ましくは 75%以上、より好ましくは 80%以上、より好ましくは 85%以上 、より好ましくは 90%以上、より好ましくは 93%以上、より好ましくは 95%以上、より好ましく は 96%以上の同一性を有するアミノ酸配列が挙げられる。アミノ酸配列の同一性は、 例えば BLASTPプログラム(Altschul, S. F. et al., 1990, J. Mol. Biol. 215: 403-410) を用いて決定することができる。例えば NCBI (National Center for Biothchnology Information)の BLASTのウェブページにおいて Low complexityを含むフィルタ一は全 て OFFにして、デフォルトのパラメータを用いて検索を行う(Altschul, S.F. et al. (1993) Nature Genet. 3:266—272; Madden, T.L. et al. (1996) Meth. Enzymol.
266: 131-141; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389—3402; Zhang, J. & Madden, T.L. (1997) Genome Res. 7:649-656)。例えば 2つの配列の比較を行う blast2sequencesプログラム(Tatiana A et al. (1999) FEMS Microbiol Lett.
174:247-250)により、 2配列のァライメントを作成し、配列の同一性を決定することが できる。ギャップはミスマッチと同様に扱い、例えば天然型サイト力イン (分泌後の成 熟型の形態)のアミノ酸配列全体に対する同一性の値を計算する。具体的には、天 然型サイト力イン(成熟型の形態)の全アミノ酸数における一致するアミノ酸数の割合 を計算する。
[0019] また、好適なノ リアントとしては、天然のサイト力イン遺伝子のコード領域の一部また は全部とストリンジェントな条件でノヽイブリダィズする核酸がコードするポリペプチドで あって、天然型サイト力インと同等の生物活性を有するポリペプチドが挙げられる。ハ イブリダィゼーシヨンにお 、ては、例えば天然のサイト力イン遺伝子のコード領域の配 列またはその相補配列を含む核酸、またはハイブリダィズの対象とする核酸のどちら かからプローブを調製し、それが他方の核酸にノ、イブリダィズするかを検出すること により同定することができる。ストリンジェントなハイブリダィゼーシヨンの条件は、例え ば 5xSSC、 7%(W/V) SDS、 100 micro- g/ml変性サケ精子 DNA、 5xデンハルト液(lx デンハルト溶液は 0.2%ポリビニールピロリドン、 0.2%牛血清アルブミン、および 0.2%フィ コールを含む)を含む溶液中、 60°C、好ましくは 65°C、より好ましくは 68°Cでノヽイブリ ダイゼーシヨンを行い、その後ハイブリダィゼーシヨンと同じ温度で 2xSSC中、好ましく は lxSSC中、より好ましくは 0.5xSSC中、より好ましくは O.lxSSC中で、振蘯しながら 2時 間洗浄する条件である。
[0020] 本発明にお 、て用いられるサイト力インは、最も好ましくはインターロイキン(IL)-2で ある。 IL- 2は、 IL- 2レセプター(IL- 2レセプター alpha、 beta,および gamma)のリガンド として機能し、 T細胞の増殖および分ィ匕を調節するサイト力インである(Kuziel, W. A. and Gree, W.し. (1991), Interleukm- 2, in The Cytokine Handbook, A. Thompson (Ed.), San Diego, Calif., Academic Press, pages 83-102; Waldmann, T. A., 1993, Immunol. Today, 14:264)。 IL-2は主に CD4+ T細胞によって産生され、自己分泌型の 増殖因子として機能する。 IL-2はまた、 CD4+および CD8+の両方の細胞を含む他の T リンパ球にも作用する。また IL-2は、 T細胞のヘルパーおよび細胞傷害性の両方の サブセットの活性ィ匕を導く局所炎症応答を誘導する。 IL-2はまた、ナチュラルキラー (NK)細胞の増殖および活性を刺激する。 IL-2を発現するように改変した腫瘍細胞は 、腫瘍に対する免疫応答を刺激し、腫瘍の増殖を抑制する。ヒ HL-2 (成熟型) cDNA の塩基配列を配列番号: 1に、 IL-2のアミノ酸配列を配列番号: 2に例示する。本発明 においては、配列番号: 2に記載のアミノ酸配列をコードする遺伝子を好適に用いる ことができる。
[0021] また、生物学的に活性を持つ IL-2のノ リアントは、当業者に数多く知られている。本 発明において使用できる IL-2のノ リアントとしては、例えば欧州特許出願 136,489、 91,539、 88,195、 109,748、米国特許 4,518,584、 4,588,584、 4,752,585、 4,931,543、 5,206,344、国際特許出願 WO 99/60128、特開昭 61- 78799、 Wang, et al. Science (1984) 224:1431-1433等に記載されているものが含まれる。例えば、 N末端の Alaを 欠失する IL-2断片、 4アミノ酸を欠失する断片(特開昭 60-126088)、カルボキシル末 端を欠失する断片(特開昭 60-126088)、天然型の分泌後のポリペプチドの 125番目 のシスティンがセリンまたはァラニン等の中性アミノ酸に置換されたポリペプチド (des-ala-1, ser— 125 IL-2または des— ala— 1, ala— 125 IL-2) (米国特許 4,518,584お よび 4,588,584)、 104位のメチォニンがァラニンなどの中性アミノ酸に置換されたポリ ペプチド(des-ala-1, ala-104)などが含まれる。また、これら以外にも、 IL_2の生物活 性を保持する所望のノ リアントを用いてもよい。 IL-2の生物学的活性は、例えば IL-2 依存性の細胞傷害性 T細胞またはヘルパー T細胞の増殖刺激能を、公知の方法で 試験することにより知ることができる(Gillis et al., J. Immunol. (1978) 120:2027-2032; Watson, J" J. exp. Med. (1979) 1570: 1510—1519)。
[0022] 上記のサイト力インをコードする cDNAを用いて、該サイト力インを発現する組み換え マイナス鎖 RNAウィルスを構築する。ここでマイナス鎖 RNAウィルスとは、マイナス鎖( ウイノレス蛋白質をコードするセンス鎖に対するアンチセンス鎖)の RNAをゲノムとして 含むウィルスのことである。マイナス鎖 RNAはネガティブ鎖 RNAとも呼ばれる。本発明 にお 、て用いられるマイナス鎖 RNAウィルスとしては、特に一本鎖マイナス鎖 RNAゥ ィルス(非分節型(non- segmented)マイナス鎖 RNAウィルスとも言う)が挙げられる。「 一本鎖ネガティブ鎖 RNAウィルス」とは、一本鎖ネガティブ鎖 [すなわちマイナス鎖] RNAをゲノムに有するウィルスを言う。このようなウィルスとしては、パラミクソウィルス( Paramyxovindae; Paramyxovirus, Morbillivirus, Rubulavirus,および Pneumovirus禺 等 含む)、フブドウイノレス (Rhabdoviridae; Vesiculovirus, Lyssavirus,および
Ephemerovirus属等を含む)、フイロウィルス (Filoviridae)、オルトミクソウィルス ( Orthomyxoviridae; Iniuluenza virus A, B, し,および Thogoto— like viruses等を含む) 、ブ-ャウィルス (Bunyavindae; Bunyavirus, Hantavirus, Nairo virus,および
Phlebovirus属等を含む)、ァレナウィルス (Arenaviridae)などの科に属するウィルスが 含まれる。
[0023] また、マイナス鎖 RNAウィルスベクターとは、マイナス鎖 RNAウィルスをベースとする 、遺伝子を細胞に導入するための担体を言う。ここで「感染力」とは、マイナス鎖 RNA ウィルスベクターが細胞への接着能を保持しており、接着した細胞の内部にベクター に含まれる遺伝子を導入することのできる能力のことを言う。本発明のマイナス鎖 RNAウィルスベクターは、伝播能を有していてもよぐ伝播能を有さない欠損型べクタ 一であってもよい。「伝播能を有する」とは、ウィルスベクターが宿主細胞に感染した 場合、該細胞においてウィルスが複製され、感染性ウィルス粒子が産生されることを 指す。
[0024] 組み換えウィルスとは、組み換えポリヌクレオチドを介して生成したウィルス、または そのウィルスの増幅産物を言う。組み換えポリヌクレオチドとは、両端または片端が自 然の状態と同じようには結合していないポリヌクレオチドを言う。具体的には、組み換 えポリヌクレオチドは、人為的にポリヌクレオチド鎖の結合が改変 (切断および/または 結合)されたポリヌクレオチドである。組み換えポリヌクレオチドは、ポリヌクレオチド合 成、ヌクレアーゼ処理、リガーゼ処理等を組み合わせて、公知の遺伝子組み換え方 法により生成させることができる。組み換えウィルスは、遺伝子操作により構築された ウィルスゲノムをコードするポリヌクレオチドを発現させ、ウィルスを再構築することに よって生成することができる。例えば、ウィルスゲノムをコードする cDNAから、ウィルス 再構成する方法が知られている(Y. Nagai, A. Kato, Microbiol. Immunol, 43, 613-624 (1999))。
[0025] 本発明にお ヽて遺伝子とは遺伝物質を指し、転写単位をコードする核酸を言う。遺 伝子は RNAであっても DNAであってもよ!/、。本発明にお!/、て蛋白質をコードする核酸 は、該蛋白質の遺伝子と呼ぶ。また一般に、遺伝子は蛋白質をコードしていなくても よぐ例えば遺伝子はリボザィムまたはアンチセンス RNAなどの機能的 RNAをコード するものであってもよい。一般に、遺伝子は天然由来または人為的に設計された配 列であり得る。また、本発明において「DNA」とは、一本鎖 DNAおよび二本鎖 DNAを 含む。また蛋白質をコードするとは、ポリヌクレオチドが該蛋白質を適当な条件下で 発現できるように、該蛋白質のアミノ酸配列をコードする ORFをセンスまたはアンチセ ンスに含むことを言う。
[0026] 本発明にお!/、て得に好適に用いられるマイナス鎖 RNAウィルスとしては、例えばパ ラミクソウィルス科 (Paramyxoviridae)ウィルスのセンダイウィルス (Sendai virus),ニュー カツスノレ f丙ウイノレス (Newcastle disease virus入お 7こふく;^ぜ1/イノレス (Mumps virus) ^ 淋诊ゥイノレス (Measles virus) ^ RSウイノレス (Respiratory syncytial virus) ^牛投ゥイノレス (rinderpest virus)ゝジステンノ ーウイノレス (distemper virus)ゝサノレノ《ラインフノレエンザゥ ィルス(SV5)、ヒトパラインフルエンザウイルス 1,2,3型、オルトミクソウィルス科
(Orthomyxoviridae)のインフノレエンザゥイノレス (Influenza virus),ラブドウイノレス科 (Rhabdoviridae)の水抱'性口内炎ウイノレス (Vesicular stomatitis virus),狂犬病ウイノレス (Rabies virus)等が挙げられる。
[0027] 本発明にお!/、て用いることができるウィルスをさらに例示すれば、例えば Sendai virus (SeV)、 human parainfluenza virus- 1 (HPIV- 1)、 human parainfluenza virus- 3 (HPIV- 3)、 phocine distemper virus (PDV)、 canine distemper virus (CDV)、 dolphin molbillivirus (DMV)、 peste—des—petits— ruminants virus (PDPR)、 measles virus (MV)、 rinderpest virus (RPV)、 Hendra virus (Hendra)、 Nipah virus (Nipah)、 human parainfluenza virus- 2 (HPIV- 2)、 simian parainfluenza virus 5 (SV5)、 human parainfluenza virus- 4a (HPIV- 4a)、 human parainfluenza virus- 4b (HPIV- 4b)、 mumps virus (Mumps),および Newcastle disease virus (NDV)などが含まれる。より好ましく は、 Sendai virus (SeV)、 human parainfluenza virus- 1 (HPIV- 1)、 human parainfluenza virus- 3 (HPIV- 3)、 phocine distemper virus (PDV)、 canine distemper virus (CDV)、 dolphin molbillivirus (DMV)、 peste—des—petits— ruminants virus (PDPR)、 measles virus (MV)、 rinderpest virus (RPV)、 Hendra virus (Hendra) ^および Nipah virus (Nipah)カゝらなる群より選択されるウィルスが挙げられる。
[0028] より好ましくは、パラミクソウィルス亜科(レスピロウィルス属、ルブラウィルス属、およ びモルビリウィルス属を含む)に属するウィルスまたはその誘導体であり、より好ましく はレスピロウイノレス属 (genus Respirovirus) (パラミクソウイノレス属 (Paramyxovirus)とも 言う)に属するウィルスまたはその誘導体である。誘導体には、ウィルスによる遺伝子 導入能を損なわないように、ウィルス遺伝子が改変されたウィルス、および化学修飾 されたウィルス等が含まれる。本発明を適用可能なレスピロウィルス属ウィルスとして は、例えばヒトパラインフルエンザウイルス 1型(HPIV- 1)、ヒトパラインフルエンザウイ ルス 3型 (HPIV-3)、ゥシパラインフルエンザウイルス 3型(BPIV-3)、センダイウィルス (Sendai virus;マウスパラインフルエンザウイルス 1型とも呼ばれる)、およびサルパライ ンフルェンザウィルス 10型(SPIV-10)などが含まれる。本発明にお!/、てパラミクソウイ ルスは、最も好ましくはセンダイウィルスである。これらのウィルスは、天然株、野生株 、変異株、ラボ継代株、および人為的に構築された株などに由来してもよい。
[0029] マイナス鎖 RNAウィルスベクターはウィルスゲノム RNAに搭載遺伝子をアンチセンス にコードしている。ウィルスゲノム RNAとは、マイナス鎖 RNAウィルスのウィルス蛋白質 と共にリボヌクレオプロテイン (RNP)を形成し、該蛋白質によりゲノム中の遺伝子が発 現し、この RNAが複製されて娘 RNPが形成される機能を持つ RNAである。一般にマイ ナス鎖 RNAウィルスのゲノムは、 3'リーダー領域と 5'トレイラ一領域の間に、ウィルス遺 伝子がアンチセンス配列として並んだ構成をしている。各遺伝子の ORFの間には、転 写終結配列 (E配列) -介在配列 (I配列) -転写開始配列 (S配列)が存在し、これによ り各遺伝子の ORFをコードする RNAが別々のシストロンとして転写される。本発明のゥ ィルスに含まれるゲノム RNAは、該 RNAにコードされる遺伝子群の発現および RNA自 身の自律的な複製に必要なウィルス蛋白質である N (ヌクレオキヤプシド)、 P (ホスホ )、および L (ラージ)をアンチセンスにコードしている。また該ゲノム RNAは、ウィルス 粒子の形成に必要な M (マトリックス)蛋白質をコードしていても、していなくてもよい。 さらに該 RNAは、ウィルス粒子の感染に必要なエンベロープ蛋白質をコードしていて も、していなくてもよい。マイナス鎖 RNAウィルスのエンベロープ蛋白質としては、細 胞膜融合を起こす蛋白質である F (フュージョン)蛋白質および細胞への接着に必要 な HN (へマダルチュン-ノイラミニダーゼ)蛋白質が挙げられる。但し、ある種の細胞 では感染に HN蛋白質は必要なく(Markwell, M.A. et al., Proc. Natil. Acad. Sci. USA 82(4):978-982 (1985))、 F蛋白質のみで感染が成立する。また、 F蛋白質および Zまたは HN蛋白質以外のウィルスエンベロープ蛋白質をコードさせてもよい。このよ うに、ゲノム RNAは天然のウィルスゲノムから適宜改変されて!、るものであってよ!/ヽ( WO00/70055, WO00/70070)。
[0030] 本発明のマイナス鎖 RNAウィルスは、例えばマイナス鎖 RNAウィルスのゲノム RNAと ウィルス蛋白質力 なる複合体、すなわちリボヌクレオプロテイン (RNP)であってょ ヽ 。 RNPは、例えば所望のトランスフエクシヨン試薬と組み合わせて細胞に導入すること ができる。このような RNPは、具体的には例えばマイナス鎖 RNAウィルスのゲノム RNA 、 N蛋白質、 P蛋白質、および L蛋白質を含む複合体である。 RNPは細胞内に導入さ れると、ウィルス蛋白質の働きによりゲノム RNAからウィルス蛋白質をコードするシスト ロンが転写されると共に、ゲノム自身が複製され娘 RNPが形成される。ゲノム RNAの 複製は、該 RNAのコピー数の増加を RT-PCRまたはノーザンハイブリダィゼーシヨン 等により検出することにより確認することができる。
[0031] また本発明のマイナス鎖 RNAウィルスは、好ましくはマイナス鎖 RNAウィルスの感染 性ウィルス粒子である。ウィルス粒子とは、ウィルス蛋白質の働きにより細胞力も放出 される、核酸を含む微小粒子を言う。感染性とは、マイナス鎖 RNAウィルスが細胞へ の接着能および膜融合能を保持していることにより、接着した細胞の内部にウィルス 内部の核酸を導入することのできる能力を言う。マイナス鎖 RNAウィルスのウィルス粒 子は、ゲノム RNAとウィルス蛋白質を含む上記 RNPが細胞膜由来の脂質膜 (ェンベロ ープという)に含まれた構造をしている。本発明のマイナス鎖 RNAウィルスは、伝播能 を有していてもよぐあるいは伝播能を有さない欠損型ウィルスであってもよい。「伝播 能を有する」とは、ウィルスが宿主細胞に感染した場合、該細胞においてウィルスが 複製され、感染性ウィルス粒子が産生されることを指す。
[0032] 例えばパラミクソウィルス亜科に属する各ウィルスにおける各遺伝子は、一般に次の ように表記される。一般に、 NP遺伝子は〃 N〃とも表記される。
レスピロウィルス属 NP P/C/V M F HN - L
ルブラウィルス属 NP P/V M F HN (SH) L
モービリウィルス属 NP P/C/V M F H - L
[0033] 例えばセンダイウィルスの各遺伝子の塩基配列のデータベースのァクセッション番 号は、 NP遺伝子については M29343、 M30202, M30203, M30204, M51331, M55565, M69046, X17218, P遺伝子については M30202, M30203, M30204, M55565, M69046, X00583, X17007, X17008, M遺伝子については D11446, K02742, M30202, M30203, M30204, M69046, U31956, X00584, X53056、 F遺伝子 については D00152, D11446, D17334, D17335, M30202, M30203, M30204, M69046, X00152, X02131、 HN遺伝子については D26475, M12397, M30202, M30203, M30204, M69046, X00586, X02808, X56131、 L遺伝子については
D00053, M30202, M30203, M30204, M69040, X00587, X58886を参照のこと。またそ の他のウィルスがコードするウィルス遺伝子を例示すれば、 N遺伝子につ!、ては、 CDV, AF014953; DMV, X75961; HPIV— 1, D01070; HPIV— 2, M55320; HPIV— 3, D10025; Mapuera, X85128; Mumps, D86172; MV, K01711; NDV, AF064091;
PDPR, X74443; PDV, X75717; RPV, X68311; SeV, X00087; SV5, M81442;および Tupaia, AF079780, P遺伝子については、 CDV, X51869; DMV, Z47758; HPIV- 1, M74081; HPIV— 3, X04721; HPIV— 4a, M55975; HPIV— 4b, M55976; Mumps,
D86173; MV, M89920; NDV, M20302; PDV, X75960; RPV, X68311; SeV, M30202; SV5, AF052755;および Tupaia, AF079780, C遺伝子については CDV, AF014953; DMV, Z47758; HPIV- 1. M74081; HPIV- 3, D00047; MV, AB016162; RPV, X68311;
SeV, AB005796;および Tupaia, AF079780, M遺伝子については CDV, M12669; DMV Z30087; HPIV- 1, S38067; HPIV- 2, M62734; HPIV- 3, D00130; HPIV- 4a, D10241; HPIV- 4b, D10242; Mumps, D86171; MV, AB012948; NDV, AF089819; PDPR, Z47977; PDV, X75717; RPV, M34018; SeV, U31956;および SV5, M32248, F遺伝子については CDV, M21849; DMV, AJ224704; HPN- 1. M22347; HPIV- 2, M60182; HPIV— 3. X05303, HPIV— 4a, D49821; HPIV— 4b, D49822; Mumps, D86169;
MV, AB003178; NDV, AF048763; PDPR, Z37017; PDV, AJ224706; RPV, M21514;
SeV, D17334;および SV5, AB021962, HN (Hまたは G)遺伝子については CDV, AF112189; DMV, AJ224705; HPIV- 1, U709498; HPIV- 2. D000865; HPIV- 3, AB012132; HPIV-4A, M34033; HPIV-4B, AB006954; Mumps, X99040; MV, K01711; NDV, AF204872; PDPR, Z81358; PDV, Z36979; RPV, AF132934; SeV, U06433;および SV-5, S76876が例示できる。但し、各ウィルスは複数の株が知られ ており、株の違いにより上記に例示した以外の配列力もなる遺伝子も存在する。
これらのウィルス蛋白質をコードする ORFおよび外来遺伝子の ORFは、ゲノム RNA にお 、て上記の E-I-S配列を介してアンチセンスに配置される。ゲノム RNAにお!/、て 最も 3'に近い ORFは、 3'リーダー領域と該 ORFとの間に S配列のみが必要であり、 Eお よび I配列は必要ない。またゲノム RNAにおいて最も 5'に近い ORFは、 5'トレイラー領 域と該 ORFとの間に E配列のみが必要であり、 Iおよび S配列は必要ない。また 2つの ORFは、例えば IRES等の配列を用いて同一シストロンとして転写させることも可能で ある。このような場合は、これら 2つの ORFの間には E-ト S配列は必要ない。例えば、 野生型のパラミクソウィルスの場合、典型的な RNAゲノムは、 3'リーダー領域に続き、 N、 P、 M、 F、 HN、および L蛋白質をアンチセンスにコードする 6つの ORFが順に並ん でおり、それに続いて 5'トレイラ一領域を他端に有する。本発明のゲノム RNAにおい ては、ウィルス遺伝子の配置はこれに限定されるものではないが、好ましくは、野生 型ウィルスと同様に、 3'リーダー領域に続き、 N、 P、 M、 F、 HN、および L蛋白質をコー ドする ORFが順に並び、それに続いて 5'トレイラ一領域が配置されることが好ましい。 ある種のウィルスにおいては、ウィルス遺伝子が異なっている力 そのような場合でも 上記と同様に各ウィルス遺伝子を野生型と同様の配置とすることが好ましい。一般に N、 P、および L遺伝子を保持しているベクターは、細胞内で自律的に RNAゲノムから 遺伝子が発現し、ゲノム RNAが複製される。さらに Fおよび HN遺伝子等のェンベロー プ蛋白質をコードする遺伝子、および M遺伝子の働きにより、感染性のウィルス粒子 が形成され、細胞外に放出される。従って、このようなベクターは伝播能を有するウイ ルスベクターとなる。ベクターに搭載させるサイト力イン遺伝子は、後述するように、こ のゲノム中の蛋白質非コード領域に挿入すればよい。
また、本発明のマイナス鎖 RNAウィルスは、野生型ウィルスが持つ遺伝子のいずれ かを欠損したものであってよい。例えば、 M、 F、または HN遺伝子、あるいはそれらの 組み合わせが不活ィ匕または欠失したウィルスベクターも、本発明にお 、て好適に用 いることができる。このようなウィルスの再構成は、例えば、欠損している遺伝子産物 を外来的に供給することにより行うことができる。このようにして製造されたウィルスは 、野生型ウィルスと同様に宿主細胞に接着して細胞融合を起こす力 細胞に導入さ れたウィルスゲノムはウィルス遺伝子に欠損を有するため、最初と同じような感染力を 持つ娘ウィルス粒子は形成されない。このため、一回限りの遺伝子導入力を持つ安 全なウィルスベクターとして有用である。ゲノム力も欠損させる遺伝子としては、例え ば F遺伝子、 HN遺伝子、 M遺伝子、またはその任意の組み合わせが挙げられる。例 えば、 F遺伝子が欠損した組み換えマイナス鎖 RNAウィルスゲノムを発現するプラスミ ドを、 F蛋白質の発現ベクターならびに NP、 P、および L蛋白質の発現ベクターと共に 宿主細胞にトランスフエクシヨンすることにより、組み換えウィルスの再構成を行うこと ができる(WO00/70055, WO00/70070, WO03/025570; Li, H.— 0. et al., J. Virol. 74(14) 6564-6569 (2000))。また、例えば、 F遺伝子が染色体に組み込まれた宿主細 胞を用いてウィルスを製造することもできる。ウィルス生産細胞で発現させるこれらの 蛋白質群は、そのアミノ酸配列はウィルス由来の配列そのままでなくとも、核酸の導 入における活性が天然型のそれと同等かそれ以上ならば、変異を導入したり、あるい は他のウィルスの相同遺伝子で代用してもょ 、。
また、本発明において用いられるウィルスベクターとして、ウィルスゲノムが由来する ウィルスのエンベロープ蛋白質とは異なる蛋白質をエンベロープに含む組み換えゥ ィルスを作製することもできる。例えば、ウィルス再構成の際に、ベースとなるウィルス のゲノムが元来コードするエンベロープ蛋白質以外のエンベロープ蛋白質を細胞で 発現させることにより、所望のエンベロープ蛋白質を有する組み換えウィルスを製造 することができる。このような蛋白質に特に制限はない。細胞への感染能を与える所 望の蛋白質が用いられる。例えば、他のウィルスのエンベロープ蛋白質、例えば水 疱性口内炎ウィルス (Vesicular stomatitis virus; VSV)の G蛋白質(VSV- G)を挙げる ことができる。 VSV-G蛋白質は、任意の VSV株に由来するものであってよい。例えば Indiana血清型株(J. Virology 39: 519-528 (1981))由来の VSV- G蛋白を用いることが できるが、これに限定されない。また本発明のベクターは、他のウィルス由来のェン ベロープ蛋白質を任意に組み合わせて含むことができる。例えば、このような蛋白質 として、ヒト細胞に感染するウィルスに由来するエンベロープ蛋白質が好適である。こ のような蛋白質としては、特に制限はないが、レトロウイルスのアンフォト口ピックェン ベロープ蛋白質などが挙げられる。レトロウイルスのアンフォト口ピックエンベロープ蛋 白質としては、例えばマウス白血病ウィルス (MuLV) 4070A株由来のエンベロープ蛋 白質を用い得る。また、 MuMLV 10A1由来のエンベロープ蛋白質を用いることもでき る(例えば pCL— 10Al(Imgenex) (Naviaux, R. K. et al" J. Virol. 70: 5701-5705 (1996) ) oまた、ヘルぺスウィルス科の蛋白質としては、例えば単純へルぺスウィルスの gB、 gD、 gH、 gp85蛋白質、 EBウィルスの gp350、 gp220蛋白質などが挙げられる。へパド ナウィルス科の蛋白質としては、 B型肝炎ウィルスの S蛋白質などが挙げられる。これ らの蛋白質は、細胞外ドメインを F蛋白質または HN蛋白質の細胞内ドメインと結合さ せた融合蛋白質として用いてもょ 、。このように本発明にお 、て用いられるウィルス ベクターには、 VSV-G蛋白質などのように、ゲノムが由来するウィルス以外のウィルス に由来するエンベロープ蛋白質を含むシユードタイプウィルスベクターが含まれる。ゥ ィルスのゲノム RNAにはこれらのエンベロープ蛋白質をゲノムにコードされないように 設計すれば、ウィルス粒子が細胞に感染した後は、ウィルスベクター力 この蛋白質 が発現されることはない。
[0037] また、本発明において用いられるウィルスベクターは、例えば、エンベロープ表面に 特定の細胞に接着しうるような接着因子、リガンド、受容体等の蛋白質、抗体または その断片、あるいはこれらの蛋白質を細胞外領域に有し、ウィルスエンベロープ由来 のポリペプチドを細胞内領域に有するキメラ蛋白質などを含むものであってもよい。こ れにより、ウィルスベクターの感染の特異性を制御し得る。これらはウィルスゲノムに コードされていてもよいし、ウィルスの再構成時に、ウィルスゲノム以外の遺伝子 (例 えば別の発現ベクターまたは宿主染色体上などにある遺伝子)の発現により供給さ れてもよい。
[0038] またウィルスベクターは、例えばウィルス蛋白質による免疫原性を低下させるために 、または RNAの転写効率または複製効率を高めるために、ウィルスに含まれる任意の ウィルス遺伝子が野生型遺伝子カゝら改変されていてよい。具体的には、例えば複製 因子である N、 P、および L遺伝子の中の少なくとも一つを改変し、転写または複製の 機能を高めることが考えられる。また、エンベロープ蛋白質の 1つである HN蛋白質は 、赤血球凝集素であるへマダルチュン (hemagglutinin)活性とノイラミニダーゼ( neuraminidase)活性との両者の活性を有するが、例えば前者の活性を弱めることが できれば、血液中でのウィルスの安定性を向上させることが可能であろうし、例えば 後者の活性を改変することにより、感染能を調節することも可能である。また、 F蛋白 質を改変することにより膜融合能を調節することもできる。また、例えば、細胞表面の 抗原分子となりうる F蛋白質および/または HN蛋白質の抗原提示ェピトープ等を解析 し、これを利用してこれらの蛋白質に関する抗原提示能を弱めた組み換えウィルスべ クタ一を作製することちできる。
[0039] またマイナス鎖 RNAウィルスベクターは、アクセサリー遺伝子が欠損したものであつ てよい。例えば SeVのアクセサリー遺伝子の 1つである V遺伝子をノックアウトすること により、培養細胞における遺伝子発現および複製は障害されることなぐマウス等の 宿主に対する SeVの病原性が顕著に減少する(Kato, A. et al., 1997, J. Virol.
71:7266-7272; Kato, A. et al, 1997, EMBO J. 16:578-587; Curran, J. et al.,
WO01/04272, EP1067179) oこのような弱毒化ベクターは、 in vivoまたは ex vivoにお ける低毒性の遺伝子導入用ウィルスベクターとして特に有用である。
[0040] マイナス鎖 RNAウィルスは遺伝子導入べクタ一として優れており、宿主細胞の細胞 質でのみ転写 ·複製を行 、、 DNAフェーズを持たな 、ため染色体への組み込み( integration) ί¾起こらな ヽ (Lamb, R.A. and Kolakofsky, D., Paramyxoviriaae: Tne viruses and their replication. In: Fields BN, Knipe DM, Howley PM, (eds). Fields of virology. Vol. 2. Lippincott - Raven Publishers: Philadelphia, 199b, pp. 11 / 7-1204) 。このため染色体異常による癌化および不死化などの安全面における問題が生じな い。マイナス鎖 RNAウィルスのこの特徴は、ベクター化した時の安全性に大きく寄与 している。異種遺伝子発現の結果では、例えばセンダイウィルス (SeV)を連続多代継 代しても殆ど塩基の変異が認められず、ゲノムの安定性が高ぐ挿入異種遺伝子を 長期間に渡って安定に発現する事が示されている(Yu, D. et al., Genes Cells 2, 457-466 (1997)) oまた、力プシド構造蛋白質を持たないことによる導入遺伝子のサイ ズまたはパッケージングの柔軟性 (flexibility)など性質上のメリットがある。このように、 マイナス鎖 RNAウィルスベクターは、ヒトの抗腫瘍遺伝子治療のための高効率べクタ 一の新しいクラスとなることが示唆される。伝播能を有する SeVベクターは、外来遺伝 子を少なくとも 4kbまで導入可能であり、転写ユニットを付加することによって 2種類以 上の遺伝子を同時に発現する事も可能である。
[0041] またセンダイウィルスは、齧歯類にとっては病原性で肺炎を生じることが知られてい る力 人に対しては病原性がない。これはまた、野生型センダイウィルスの経鼻的投 与によって非ヒト霊長類において重篤な有害作用を示さないというこれまでの報告に よっても支持されている(Hurwitz, J.L. et al., Vaccine 15: 533-540, 1997; Bitzer, M. et al., J. Gene Med,.5: 543-553, 2003)。センダイウィルスのこれらの特徴は、センダ ィウィルスベクター力 ヒトの治療へ応用できることを示唆し、センダイウィルスベクタ 一が、ヒト癌を対象とした遺伝子治療の有望な選択肢の一つとなることを結論づける ものである。
[0042] ウィルスベクターは、ゲノム RNA中にサイト力イン遺伝子をコードする。サイト力イン 遺伝子を含む糸且換えウィルスベクターは、上記のウィルスベクターのゲノムにサイト力 イン遺伝子を挿入することによって得られる。サイト力イン遺伝子の挿入位置は、例え ばウィルスゲノムの蛋白質非コード領域の所望の部位を選択することができ、例えば ゲノム RNAの 3'リーダー領域と 3'端に最も近いウィルス蛋白質 ORFとの間、各ウィルス 蛋白質 ORFの間、および/または 5'端に最も近いウィルス蛋白質 ORFと 5'トレイラー領 域の間に挿入することができる。また、 Fまたは HN遺伝子などを欠失するゲノムでは、 その欠失領域にサイト力イン遺伝子をコードする核酸を挿入することができる。ノ ラミ クソウィルスに外来遺伝子を導入する場合は、ゲノムへの挿入断片のポリヌクレオチ ドの鎖長が 6の倍数となるように挿入することが望ましい(Journal of Virology, Vol. 67, No. 8, 4822-4830, 1993)。挿入したサイト力イン遺伝子とウィルス ORFとの間には、 E-I-S配列が構成されるようにする。 E-I-S配列を介して 2またはそれ以上の外来遺伝 子をタンデムに並べて挿入することができる。
[0043] ベクターに搭載する外来遺伝子の発現レベルは、その遺伝子の上流 (マイナス鎖( ネガティブ鎖)の 3'側)に付加する転写開始配列の種類により調節することができる( WO01/18223) oまた、ゲノム上の外来遺伝子の挿入位置によって制御することがで き、マイナス鎖の 3'の近くに挿入するほど発現レベルが高ぐ 5'の近くに挿入するほど 発現レベルが低くなる。このように、外来遺伝子の挿入位置は、該遺伝子の所望の発 現量を得るために、また前後のウィルス蛋白質をコードする遺伝子との組み合わせが 最適となる様に適宜調節することができる。一般に、外来遺伝子の高い発現が得られ ることが有利と考えられるため、外来遺伝子は、効率の高い転写開始配列に連結し、 マイナス鎖ゲノムの 3'端近くに挿入することが好ましい。具体的には、 3'リーダー領域 と 3'に最も近いウィルス蛋白質 ORFとの間に挿入される。あるいは、 3'に一番近いウイ ルス蛋白質遺伝子と 2番目のウィルス蛋白質遺伝子の ORFの間、または 3'から 2番目 と 3番目のウィルス蛋白質遺伝子の間に挿入してもよい。野生型パラミクソウィルスに おいては、ゲノムの 3'に最も近いウィルス蛋白質遺伝子は N遺伝子であり、 2番目の 遺伝子は P遺伝子、 3番目の遺伝子は M遺伝子である。逆に、導入遺伝子の高発現 が望ましくな 、場合は、例えば外来遺伝子の挿入位置をマイナス鎖ゲノムのなるべく 5'側に設定したり、転写開始配列を効率の低いものにするなどして、ウィルスベクター 力 の発現レベルを低く抑えることで適切な効果が得られるようにすることも可能であ る。
[0044] 外来遺伝子をコードする核酸をゲノムに挿入するときに付加する S配列としては、例 えばマイナス鎖 RNAウィルスの所望の S配列を用いることができる力 センダイウィル スであれば、 3'- UCCCWVUUWC- 5' (W= Aまたは C; V= A, C,または G) (配列番号 : 3)の配列を好適に用いることができる。特に 3'-UCCCAGUUUC-5' (配列番号: 4) 、 3'- UCCCACUUAC- 5' (配列番号: 5)、および 3'- UCCCACUUUC- 5' (配列番号: 6)が好ましい。これらの配列は、プラス鎖をコードする DNA配列で表すとそれぞれ 5 -AGGGTCAAAG-3' (配列番号: 7)、 5'- AGGGTGAATG- 3' (配列番号: 8)、およ び 5'-AGGGTGAAAG-3' (配列番号: 9)である。センダイウィルスベクターの E配列と しては、例えば 3'-AUUCUUUUU-5' (配列番号: 10) (プラス鎖をコードする DNAでは 5'-TAAGAAAAA-3' (配列番号: 11) )が好ましい。 I配列は、例えば任意の 3塩基で あってよく、具体的には 3'- GAA- 5' (プラス鎖 DNAでは 5'- CTT- 3,)を用いればよい
[0045] マイナス鎖ウィルスベクターを製造するには、哺乳動物細胞において、マイナス鎖 RNAウィルスのゲノム RNAを含む RNPの再構成に必要なウィルス蛋白質、すなわち N 、 P、および L蛋白質の存在下、マイナス鎖 RNAウィルスのゲノム RNAをコードする cDNAを転写させる。転写によりマイナス鎖ゲノム(すなわちウィルスゲノムと同じアン チセンス鎖)を生成させてもよぐあるいはプラス鎖(アンチゲノム。ゲノム RNAの相補 鎖。)を生成させても、ウィルス RNPを再構成することができる。ベクターの再構成効 率を高めるには、好ましくはプラス鎖を生成させる。 RNA末端は、天然のウィルスゲノ ムと同様に 3'リーダー配列と 5'トレイラ一配列の末端をなるベく正確に反映させること が好ましい。転写産物の 5'端を正確に制御するためには、例えば転写開始部位とし て T7 RNAポリメラーゼ認識配列を利用し、該 RNAポリメラーゼを細胞内で発現させれ ばよい。転写産物の 3'端を制御するには、例えば転写産物の 3'端に自己切断型リボ ザィムをコードさせておき、このリボザィムにより正確に 3'端が切り出されるようにする ことができる(Hasan, M. K. et al., J. Gen. Virol. 78: 2813—2820, 1997、 Kato, A. et al" 1997, EMBO J. 16: 578-587及び Yu, D. et al" 1997, Genes Cells 2: 457-466) 。リボザィムとしては、デルタ肝炎ウィルスのアンチゲノム鎖(antigenomic strand)由来 の自己開裂リボザィムが使用できる。
例えば組み換えセンダイウィルスは、 Hasan, M. K. et al., J. Gen. Virol. 78:
2813-2820, 1997、 Kato, A. et al" 1997, EMBO J. 16: 578-587及び Yu, D. et al" 1997, Genes Cells 2: 457-466の記載等に準じて、次のようにして構築することができ る。
まず、目的の外来遺伝子の cDNA塩基配列を含む DNA試料を用意する。 DNA試料 は、 25ng/micro-l以上の濃度で電気泳動的に単一のプラスミドと確認できることが好 ましい。以下、 Notl部位を利用してウィルスゲノム RNAをコードする DNAに外来遺伝 子を挿入する場合を例にとって説明する。目的とする cDNA塩基配列の中に Notl認 識部位が含まれる場合は、部位特異的変異導入法などを用いて、コードするアミノ酸 配列を変化させな 、ように塩基配列を改変し、 Notl部位を予め除去しておくことが好 ましい。この試料から目的の遺伝子断片を PCRにより増幅し回収する。 2つのプライマ 一の 5'部分に Notl部位を付加しておくことにより、増幅された断片の両端を Notl部位 とする。ウィルスゲノム上に挿入された後の外来遺伝子の ORFとその両側のウィルス 遺伝子の ORFとの間に E-卜 S配列が配置されるように、プライマー中に E-ト S配列を 含めるようにする。合成 DNAの長さは、付加した E-ト S配列を含む最終的な挿入断片 の鎖長が 6の倍数になるように塩基数を設計する( 、わゆる「6のルール (rule of six)」 ; Kolakofski, D. et al., J. Virol. 72:891—899, 1998; Calain, P. and Roux, L., J. Virol. 67:4822-4830, 1993; Calain, P. and Roux, L., J. Virol. 67: 4822-4830, 1993)。 E-ト S配列は、例えば挿入断片のオリゴ DNAの 3'側にセンダイウィルスのマイナス鎖 の S配列、 I配列、および E配列、例えばそれぞれ 5'-CTTTCACCCT-3' (配列番号: 12)、 5'- AAG- 3'、および 5'- TTTTTCTTACTACGG- 3' (配列番号: 13)が用いられる
[0047] PCRは、 Taqポリメラーゼまたはその他の DNAポリメラーゼを用いる通常の方法を用 いることができる。増幅した目的断片は Notlで消化した後、 pBluescript等のプラスミド ベクターの Notl部位に挿入する。得られた PCR産物の塩基配列をシークェンサ一で 確認し、正しい配列のプラスミドを選択する。このプラスミドから挿入断片を Notlで切り 出し、ゲノム cDNAを含むプラスミドの Notl部位にクローユングする。またプラスミドべク ターを介さずにゲノム cDNAの Notl部位に直接挿入し、組み換えセンダイウィルス cDNAを得ることも可能である。
[0048] 例えば、組み換えセンダイウィルスゲノム cDNAであれば、文献記載の方法に準じ て構築することができる(Yu, D. et al" Genes Cells 2: 457-466, 1997; Hasan, M. K. et al" J. Gen. Virol. 78: 2813-2820, 1997)。例えば、外来遺伝子のセンス鎖の 3'側 に E-I-S配列が連結した 2本鎖 DNAを合成する。これをゲノムのプラス鎖をコードする cDNAの所望の S配列のすぐ 3'側に挿入する。例えばプラス鎖ゲノムをコードする cDNAにおいて、所望のウィルス蛋白質遺伝子のコード配列とこれを転写する S配列 の間に予め制限酵素部位 (例えば Notl部位)を作っておき、ここに外来遺伝子 - E-I-S配列をコードする DNAを制限酵素部位を利用して挿入することができる( Tokusumi, T. et al. (2002) Virus Res 86(1-2), 33-8)。
[0049] このようにして作製したウィルスゲノム RNAをコードする DNAを、上記のウィルス蛋白 質 (L、 P、および N)存在下で細胞内で転写させることにより、ウィルスベクターを再構 成することができる。組み換えウィルスの再構成は公知の方法を利用して行うことが できる(W097/16539; W097/16538; WO03/025570; Durbin, A. P. et al., 1997, Virology 235: 323—332; Whelan, S. P. et al., 1995, Proc. Natl. Acad. Sci. USA 92: 8388-8392; Schnell. M. J. et al" 1994, EMBO J. 13: 4195-4203; Radecke, F. et al" 1995, EMBO J. 14: 5773-5784; Lawson, N. D. et al" Proc. Natl. Acad. Sci. USA 92: 4477-4481; Garcin, D. et al., 1995, EMBO J. 14: 6087-6094; Kato, A. et al., 1996, Genes Cells 1: 569-579; Baron, M. D. and Barrett, T., 1997, J. Virol. 71: 1265-1271; Bridgen, A. and Elliott, R. M., 1996, Proc. Natl. Acad. Sci. USA 93: 15400-15404) oこれらの方法により、パラインフルエンザ、水疱性口内炎ウィルス、狂 犬病ウィルス、麻疹ウィルス、リンダ一ペストウィルス、センダイウィルスなどを含むマ イナス鎖 RNAウィルスを DNAから再構成させることができる。これらの方法に準じて、 本発明のウィルスを再構成させることができる。ウィルスゲノムをコードする DNAにお いて、 F遺伝子、 HN遺伝子、および/または M遺伝子を欠失させた場合には、そのま までは感染性のウィルス粒子を形成しないが、宿主細胞に、これら欠失させた遺伝子 および/または他のウィルスのエンベロープ蛋白質をコードする遺伝子などを別途、 細胞に導入し発現させることにより、感染性のウィルス粒子を形成させることが可能で ある(Hirata, T. et al., 2002, J. Virol. Methods, 104:125—133; Inoue, M. et al., 2003, J. Virol. 77:6419-6429) o本発明は、抗腫瘍剤の製造における、免疫刺激性サイト 力インをコードするマイナス鎖 RNAウィルスベクターの使用に関する。また本発明は、 抗腫瘍剤の製造における、免疫刺激性サイト力インをコードするマイナス鎖 RNAウイ ルスのウィルスのウィルスゲノム RNAまたはその相補 RNAをコードする DNAの使用に 関する。本発明の抗腫瘍剤は、腫瘍の予防および/または治療のための医薬として 利用される。
[0050] 具体的な手順は、(a)マイナス鎖 RNAウィルスゲノム RNA (マイナス鎖 RNA)または その相補鎖 (プラス鎖)をコードする DNAを、 N、 P、および L蛋白質を発現する細胞で 転写させる工程、 (b)該細胞またはその培養上清力ゝら該ゲノム RNAを含む複合体を 回収する工程、により製造することができる。転写のために、ゲノム RNAをコードする DNAは適当なプロモーターの下流に連結される。転写されたゲノム RNAは N、 L、お よび P蛋白質の存在下で複製され、これらの蛋白質を含む RNP複合体を形成する。 そして M、 HN、および F蛋白質の存在下でエンベロープに包まれたウィルス粒子が 形成される。ゲノム RNAをコードする DNAは、例えば T7プロモーターの下流に連結さ せ、 T7 RNAポリメラーゼにより RNAに転写させる。プロモーターとしては、 T7ポリメラ ーゼの認識配列を含むもの以外にも所望のプロモーターを利用することができる。あ るいは、インビトロで転写させた RNAを細胞にトランスフエタトしてもよい。
[0051] DNAからのゲノム RNAの最初の転写に必要な T7 RNAポリメラーゼ等の酵素は、こ れを発現するプラスミドまたはウィルスベクターの導入によって供給することができる し、または、例えばこの遺伝子を細胞の染色体に、発現を誘導できるように組み込ん でおき、ウィルス再構成時に発現を誘導することにより供給することもできる。またゲノ ム RNA、およびウィルス再構成に必要なウィルス蛋白質は、例えばこれらを発現する プラスミドの導入によって供給する。
[0052] ゲノム RNAを発現する DNAを細胞内に導入するには、例えばリン酸カルシウム法( Graham, F.し. and Van Der Eb, J., 1973, Virology 52: 456; Wigler, M. and
Silverstein, S., 1977, Cell 11: 223)、種々のトランスフエクシヨン試薬を用いた方法、 あるいは電気穿孔法等を用いることができる。リン酸カルシウム法については、例え ば Chenおよび Okayama (Chen, C. and Okayama, H" 1987, Mol. Cell. Biol. 7: 2745 )に従って、 2-4% CO、 35°C、 15— 24時間、沈殿混液中の DNA濃度 20— 30
2
micro-g/mlの条件で実施することができる。トランスフエクシヨン試薬については、 DEAE-デキストラン(Sigma #D- 9885 M.W. 5 X 105 )、 DOTMA(Roche)ゝ Superfect™ ( QIAGEN #301305)、 DOTAP、 DOPE, DOSPER (Roche #1811169)などを用いること 力 Sできる。トランスフエクシヨン試薬と DNAとの複合体がエンドソーム中で分解されてし まうのを防ぐため、クロ口キンをカ卩えることができる(Calos, M. P., 1983, Proc. Natl. Acad. Sci. USA 80: 3015)。また、電気穿孔法は、細胞選択性がないという点で汎用 性が高ぐパルス電流の持続時間、パルスの形、電界(電極間のギャップ、電圧)の 強さ、バッファーの導電率、 DNA濃度、細胞密度を最適化して適用される。ベクター 再構成のための DNAの細胞への導入には、操作が簡便で多量の細胞を用いて多数 の検体を検討することができる点で、トランスフエクシヨン試薬を用いる方法が適して いる。好適には Superfect™ Transfection Ragent (QIAGEN, Cat No. 301305)、また は DOSPER Liposomal Transfection Reagent (Roche, Cat No. 1811169)が用いられ る力 これらに制限されない。
[0053] cDNAからのウィルスの再構成は具体的には例えば以下のようにして行うことができ る。
24穴から 6穴程度のプラスチックプレートまたは 100 mmペトリ皿等で、 10%ゥシ胎児 血清 (FCS)および抗生物質(100 units/mlペニシリン Gおよび 100 micro-g/mlストレ プトマイシン)を含む最少必須培地 (MEM)を用いてサル腎臓由来細胞株 LLC-MK2 ( ATCC CCL- 7)をほぼ 100%コンフルェントになるまで培養し、例えば 1 micro- g/ml psoralen (ソラレン)存在下、紫外線 (UV)照射処理を 20分処理で不活化した、 T7 RNAポリメラーゼを発現する組換えワクシニアウィルス vTF7- 3 (Fuerst, T. R. et al., Proc. Natl. Acad. Sci. USA 83: 8122—8126,1986、 Kato, A. et al., Genes Cells 1: 569-579, 1996)を 2 PFU/細胞で感染させる。ソラレンの添加量および UV照射時間 は適宜調整することができる。感染 1時間後、 2— 60 micro-g,より好ましくは 3— 20 micro- gの組換えセンダイウィルスのゲノム RNAをコードする DNAを、ウィルス RNPの 生成に必須なトランスに作用するウィルス蛋白質を発現するプラスミド (0.5— 24 micro— gの pGEM— N、 0.25一 12 micro— gの pGEM— P、および 0.5一 24 micro— gの pGEM-L) (Kato, A. et al., Genes Cells 1: 569-579, 1996)と共に Superfect (QIAGEN 社)を用いたリポフエクシヨン法等によりトランスフエクシヨンする。 N、 P、および Lをコー ドする発現ベクターの量比は例えば 2 : 1 : 2とすることが好ましぐプラスミド量は、例 えば 1一 4 micro— gの pGEM— N、 0.5一 2 micro— gの pGEM— P、および 1一 4 micro— gの pGEM-L程度で適宜調整する。
トランスフエクシヨンを行った細胞は、所望により 100 micro-g/mlのリファンピシン( Sigma)及びシトシンァラビノシド (AraC)、より好ましくは 40 micro- g/mlのシトシンァラ ピノシド (AraC) (Sigma)のみを含む血清不含の MEMで培養し、ワクシニアウィルスに よる細胞毒性を最少にとどめ、ウィルスの回収率を最大にするように薬剤の最適濃度 を設定する(Kato, A. et al., 1996, Genes Cells 1: 569-579)。トランスフエクシヨンから 48— 72時間程度培養後、細胞を回収し、凍結融解を 3回繰り返して細胞を破砕した 後、 RNPを含む破砕物を LLC-MK2細胞に再度トランスフエクシヨンして培養する。ま たは、培養上清を回収し、 LLC- MK2細胞の培養液に添加して感染させ培養する。ト ランスフエクシヨンは、例えばリボフヱクトァミンまたはポリカチォニックリボソームなどと 共に複合体を形成させて細胞に導入することが可能である。具体的には、種々のトラ ンスフエクシヨン試薬が利用できる。例えば、 DOTMA (Roche)、 Superfect™(QIAGEN #301305)、 DOTAP、 DOPE, DOSPER (Roche #1811169)などが挙げられる。エンドソ ーム中での分解を防ぐため、クロ口キンを加えることもできる(Calos, M. P., 1983, Proc. Natl. Acad. Sci. USA 80: 3015)。 RNPが導入された細胞では、 RNPからのウイ ルス遺伝子の発現および RNPの複製の過程が進行しウィルスが増幅する。得られた ウィルス溶液 (培養上清)を希釈 (例えば 106倍)して再増幅を繰り返すことにより、ワク シニアウィルス VTF7-3は完全に除去することができる。再増幅は、例えば 3回以上繰 り返す。得られたベクターは- 80°Cで保存することができる。エンベロープ蛋白質をコ ードする遺伝子を欠損した伝播能を持たな ヽウィルスを再構成させるには、ェンベロ ープ蛋白質を発現する LLC-MK2細胞をトランスフエクシヨンに使用する力、またはェ ンべロープ発現プラスミドを共にトランスフエクシヨンすればよい。また、トランスフエク シヨンを行った細胞にエンベロープ蛋白質を発現する LLC- MK2細胞を重層して培 養することによってエンベロープ遺伝子欠損型ウィルスを増幅することもできる(国際 公開番号 WO00/70055および WO00/70070参照)。
[0055] 回収されたウィルスの力価は、例えば CIU (Cell-Infected Unit)測定または赤血球 凝集活性 (HA)の測定することにより決定することができる (WOOO/70070; Kato, A. et al., 199り, Genes Cells 1: 569—579; Yonemitsu, Y. & Kaneda, Y., Hemaggulutinating virus of Japan— liposome— mediated gene delivery to vascular cells. Ed. by Baker AH. Molecular Biology of Vascular Diseases. Method in Molecular Medicine: Humana Press: pp. 295-306, 1999)。また、 GFP (緑色蛍光蛋白質)などのマーカー遺伝子を 搭載したベクターについては、マーカーを指標に直接的に感染細胞をカウントするこ とにより力価を定量することができる(例えば GFP-CIUとして)。このようにして測定し た力価は、 CIUと同等に扱うことができる(WOOO/70070)。
[0056] ウィルスが再構成する限り、再構成に用いる宿主細胞は特に制限されな 、。例えば 、センダイウィルスベクター等の再構成においては、サル腎由来の LLC- MK2細胞お よび CV-1細胞、ハムスター腎由来の BHK細胞などの培養細胞、ヒト由来細胞等を使 うことができる。これらの細胞に適当なエンベロープ蛋白質を発現させることで、その 蛋白質をエンベロープに含む感染性ウィルス粒子を得ることもできる。また、大量に センダイウィルスベクターを得るために、上記の宿主力 得られたウィルスベクターを 発育鶏卵に感染させ、ベクターを増幅することができる。鶏卵を使ったウィルスベクタ 一の製造方法は既に開発されている(中西ら編, (1993),「神経科学研究の先端技術 プロトコール III,分子神経細胞生理学」,厚生社,大阪, ρρ.153-172)。具体的には、 例えば、受精卵を培養器に入れ 9一 12日間 37— 38°Cで培養し、胚を成長させる。ゥ ィルスベクターを尿膜腔へ接種し、数日間(例えば 3日間)卵を培養してウィルスべク ターを増殖させる。培養期間等の条件は、使用する組み換えセンダイウィルスにより 変わり得る。その後、ウィルスを含んだ尿液を回収する。尿液力ゝらのセンダイウィルス ベクターの分離 ·精製は常法に従って行うことができる(田代眞人,「ウィルス実験プロ トコール」,永井、石浜監修,メジカルビユー社, pp.68-73,(1995))。
[0057] 例えば、 F遺伝子を欠失したセンダイウィルスベクターの構築と調製は、以下のよう に行うことができる(WO00/70055および WO00/70070参照)。
く 1〉 F遺伝子欠失型センダイウィルスゲノム cDNAおよび F発現プラスミドの構築 センダイウィルス(SeV)全長ゲノム cDNA、 pSeV18+ b (+) (Hasan, M. K. et al., 1997, J. General Virology 78: 2813—2820) (「pSeV18+ b(+)」は「pSeV18+」ともいう)の cDNAを Sphl/Kpnlで消化してフラグメント (14673bp)を回収し、 pUC18にクローユングしてプラ スミド PUC18/KSとする。 F遺伝子欠損部位の構築はこの pUC18/KS上で行う。 F遺伝 子の欠損は、 PCR-ライゲーシヨン方法の組み合わせで行い、結果として F遺伝子の ORF (ATG-TGA=1698bp)を除!、て例えば atgcatgccggcagatga (配列番号: 14)で連 結し、 F遺伝子欠失型 SeVゲノム cDNA(pSeV18+/ A F)を構築する。 PCRは、 Fの上流 【こ i [forward: 5— gttgagtactgcaagagc/酉歹 [J备号: 15, reverse:
5 - tttgccggcatgcatgtttcccaaggggagagttttgcaacc/酉 c列 ¾·号: 16]、 F遺 izs子のト流に ~ . [forward:
Figure imgf000033_0001
17, reverse:
5'-tgggtgaatgagagaatcagcZ配列番号: 18]のプライマー対を用いた PCRの産物を EcoT22Iで連結する。このように得られたプラスミドを Sadと Sailで消化して、 F遺伝子 欠損部位を含む領域の断片 (493 lbp)を回収して pUC18にクローユングし、 pUC18/dFSSとする。この pUC18/dFSSを Dralllで消化して、断片を回収して pSeV18+ の F遺伝子を含む領域の Dralll断片と置き換え、ライゲーシヨンしてプラスミド pSeV18+ / A Fを得る。外来遺伝子は、例えば pUC18/dFSSの F遺伝子欠失部位にある制限 酵素 Nsilおよび NgoMIV部位に挿入する。このためには、例えば外来遺伝子断片 を、 Nsil- tailedプライマーおよび NgoMIV- tailedプライマーで増幅すればよ!ヽ。
[0058] <2> SeV-F蛋白を誘導発現するヘルパー細胞の作製 センダイウィルスの F遺伝子(SeV-F)を発現する Cre/loxP誘導型発現プラスミドの 構築は SeV-F遺伝子を PCRで増幅し、 Cre DNAリコンビナーゼにより遺伝子産物が 誘導発現されるように設計されたプラスミド pCALNdlw(Arai, T. et al., J. Virology 72, 1998, plll5- 1121)のユニークサイト Swal部位に挿入し、プラスミド pCALNdLw/Fを 構築する。
F遺伝子欠損ゲノムから感染ウィルス粒子を回収するため、 SeV-F蛋白を発現する ヘルパー細胞株を榭立する。細胞は、例えば SeVの増殖によく用いられているサル 腎臓由来細胞株 LLC- MK2細胞を用いることができる。 LLC- MK2細胞は、 10%の熱 処理した不動化ゥシ胎児血清 (FBS)、ペニシリン Gナトリウム 50単位/ ml、およびストレ プトマイシン 50 micro- g/mlを添カ卩した MEMで 37°C、 5% COで培養する。 SeV- F遺
2
伝子産物は細胞傷害性を有するため、 Cre DNAリコンビナーゼにより F遺伝子産物を 誘導発現されるように設計された上記プラスミド pCALNdLw/Fを、リン酸カルシウム法 (.mammalian transfection kit (btratagene))【こより、周知のプロトコ ~~ノレ【こ つて LLC-MK2細胞に遺伝子導入を行う。
10cmプレートを用い、 40%コンフルェントまで生育した LLC- MK2細胞に 10 micro-g のプラスミド pCALNdLw/Fを導入後、 10mlの 10% FBSを含む MEM培地にて、 37°Cの 5 %CO インキュベータ一中で 24時間培養する。 24時間後に細胞をはがし、 10ml培地
2
に懸濁後、 10cmシャーレ 5枚を用い、 5ml 1枚、 2ml 2枚、 0.2ml 2枚に蒔き、 G418 (GIBCO- BRL)を 1200 micro- g/mlを含む 10mlの 10%FBSを含む MEM培地にて培養を 行い、 2日毎に培地交換しながら、 14日間培養し、遺伝子の安定導入株の選択を行 う。該培地により生育してきた G418に耐性を示す細胞はクローユングリングを用いて 回収する。回収した各クローンは 10cmプレートでコンフルェントになるまで拡大培養 を続ける。
F蛋白質の発現誘導は、細胞を 6cmシャーレにてコンフルェントまで生育させた後、 アデノウイルス AxCANCreを斉藤らの方法(Saito et al., Nucl. Acids Res. 23:
3816-3821 (1995); Arai, T.et al, J. Virol 72,1115-1121 (1998))により例えば moi=3 で感染させて行うことができる。
く 3〉 F遺伝子欠失 SeVウィルスの再構築及び増幅 上記 pSeV18+/ A Fの外来遺伝子が挿入されたプラスミドを以下のようにして LLC- MK2細胞にトランスフエクシヨンする。 LLC- MK2細胞を 5 X 106 cells/dishで 100mmのシャーレに播く。 T7 RNAポリメラーゼによりゲノム RNAの転写を行わせる場 合には、細胞培養 24時間後、ソラレン (psoralen)と長波長紫外線 (365nm)で 20分間 処理した T7 RNAポリメラーゼを発現するリコンビナントワクシニアウィルス (
PLWUV-VacT7 : Fuerst, T.R. et al, Proc. Natl. Acad. Sci. USA 83, 8122—8126 (1986))を MOI 2程度で室温で 1時間感染させる。ワクシニアウィルスへの紫外線照射 には、例えば 15ワットバルブを 5本が装備された UV Stratalinker 2400 (カタログ番号 400676 (100V),ストラタジーン社, La Jolla, CA, USA)を用いることができる。細胞を 無血清の MEMで洗浄した後、ゲノム RNAを発現するプラスミド、およびマイナス鎖 RNAウィルスのそれぞれ N、 P、 L、 F、および HN蛋白質を発現する発現プラスミドを、 適当なリポフエクシヨン試薬を用いてこの細胞にトランスフエタトする。プラスミドの量比 は、これに限定されないが、好適には順に 6 : 2 : 1 : 2 : 2 : 2とすることができる。例えば 、ゲノム RNAを発現するプラスミド、並びに N、 P、 L、および Fプラス HN蛋白質を発現 する発現プラスミド(pGEM/NP, pGEM/P, pGEM/L及び pGEM/F-HN;
WO00/70070, Kato, A. et al., Genes Cells 1, 569-579 (1996))を、それぞれ 12 micro- g, 4 micro- g, 2 micro- g, 4 micro- g及び 4 micro- gZ dishの量比トランスフエ外 する。数時間培養後、血清を含まない MEMで細胞を 2回洗浄し、 40 micro-g/mLの し ytosine Deta-D-arabinoluranoside (Araし: Sigma, St. Louis, MO)及び 7.5 micro- g/mLの Trypsin (Gibco-BRL, Rockville, MD)を含む MEMで培養する。これら の細胞を回収し、ペレットを OptiMEMに懸濁する(107 cells/ml) o凍結融解を 3回繰 り返して lipofection reagent DOSPER (Roche #1811169)W L (106cells/25 micro- 1
DOSPER)室温で 15分放置した後、上記でクローユングした F発現ヘルパー細胞にト ランスフエクシヨン(106cells /well 12- weU- plate)し、血清を含まない MEM (40 micro-g/ml AraC, 7.5 micro-g/mlトリプシンを含む)で培養し、上清を回収する。 F以 外の遺伝子、例えば HNまたは M遺伝子を欠損したウィルスも、これと同様の方法で 調製することができる。
F遺伝子欠失または HN遺伝子欠失は、 SeVベクターを非伝播性にするために、また 、 M遺伝子欠失は感染細胞からの粒子形成を不能にするために有効である。また、 F 、 HN、および Mの少なくとも 2つの遺伝子の任意の組み合わせを欠損するベクターは 、より安全性が保障される。例えば、 Mおよび F遺伝子両欠失 SeV (SeV/ A M A F)は 、非伝播性でかつ粒子形成を欠くベクターとなる。 SeV/ A M A Fは in vitroおよび in vivoで高レベルの感染性および遺伝子発現能を保っており、そのレベルは野生型 SeVベクターのレベルと同様である。 SeV/ A M A Fのこれらの特徴は、抗腫瘍処置に おける SeVの安全性の向上にさらに寄与するものと考えられる。
[0061] ウィルス遺伝子欠損型ベクターを調製する場合、例えば、ベクターに含まれるウイ ルスゲノム上で欠損しているウィルス遺伝子が異なる 2種またはそれ以上のベクター を同じ細胞に導入すれば、それぞれで欠損するウィルス蛋白質力 他のベクターか らの発現により供給されるため、互いに相補しあって感染力のあるウィルス粒子が形 成され、複製サイクルがまわりウィルスベクターが増幅される。すなわち、 2種またはそ れ以上の本発明のウィルスベクターを、ウィルス蛋白質を相補する組み合わせで接 種すれば、それぞれのウィルス遺伝子欠損型ウィルスベクターの混合物を大量かつ 低コストで生産することができる。これらのウィルスは、ウィルス遺伝子が欠損している ため、ウィルス遺伝子を欠損して ヽな ヽウィルスに比べゲノムサイズが小さくなりサイ ズの大きい外来遺伝子を保持することができる。また、ウィルス遺伝子の欠損により増 殖性がないこれらのウィルスは細胞外で希釈され共感染の維持が困難であることから 、不稔ィ匕するため、環境放出管理上の利点がある。
[0062] 本明細書に記載したウィルス製造方法に従えば、本発明のウィルスベクターは、例 えば 1 X 105 CIU/mL以上、好ましくは 1 X 106 CIU/mL以上、より好ましくは 5 X 106 CIU/mL以上、より好ましくは 1 X 107 CIU/mL以上、より好ましくは 5 X 107 CIU/mL以 上、より好ましくは 1 X 108 CIU/mL以上、より好ましくは 5 X 108 CIU/mL以上の力価 でウィルス産生細胞の細胞外液中に放出させることが可能である。ウィルスの力価は 、本明細書および他に記載の方法により測定することができる(Kiyotani, K. et al, Virology 177(1), 65-74 (1990); WO00/70070)。
[0063] 回収したウィルスベクターは実質的に純粋になるよう精製することができる。精製方 法はフィルトレーシヨン (濾過)、遠心分離、吸着、およびカラム精製等を含む公知の 精製 ·分離方法またはその任意の組み合わせにより行うことができる。「実質的に純 粋」とは、ウィルスベクターを含む溶液中で該ウィルスの成分が主要な割合を占める ことを言う。例えば実質的に純粋なウィルスベクター組成物は、溶液中に含まれる全 蛋白質 (但しキャリアーや安定剤として加えた蛋白質は除く)のうち、ウィルスベクター の成分として含まれる蛋白質の割合が 10% (重量/重量)以上、好ましくは 20%以上、よ り好ましくは 50%以上、好ましくは 70%以上、より好ましくは 80%以上、さらに好ましく は 90%以上を占めることにより確認することができる。例えばパラミクソウィルスベクタ 一であれば、具体的な精製方法としては、セルロース硫酸エステルまたは架橋ポリサ ッカライド硫酸エステルを用いる方法 (特公昭 62-30752号公報、特公昭 62-33879号 公報、および特公昭 62-30753号公報)、およびフコース硫酸含有多糖および/または その分解物に吸着させる方法 (WO97/32010)等を例示することができる力 これらに 制限されない。
本発明のウィルスベクターを含む組成物の製造においては、ベクターは必要に応 じて薬理学的に許容される所望の担体または媒体と組み合わせることができる。「薬 学的に許容される担体または媒体」とは、ベクターと共に投与することが可能であり、 ベクターによる遺伝子導入を有意に阻害しない材料である。このような担体または媒 体としては、例えば滅菌水、塩化ナトリウム溶液、デキストロース溶液、デキストロース および塩ィ匕ナトリウム、乳酸含有リンゲル溶液、培養液、血清、リン酸緩衝生理食塩 水(PBS)などが挙げられ、これらとベクターを適宜組み合わせて製剤化することが考 えられる。また本発明の組成物は、脱イオン水、デキストロース水溶液等の担体また は媒体を含んでいてもよい。また、リボソームの膜安定化剤(例えばコレステロール等 のステロール類)を含んでいてもよい。また、抗酸化剤(例えばトコフエロールまたはビ タミン Eなど)を含んでいてもよい。さらに、その他にも、植物油、懸濁剤、界面活性剤 、安定剤、殺生物剤等が含有されていてもよい。また保存剤やその他の添加剤を添 加することができる。本発明の組成物は、水溶液、カプセル、懸濁液、シロップなどの 形態であり得る。また本発明の組成物は溶液、凍結乾燥物、またはエアロゾルの形 態の組成物であってよい。凍結乾燥物の場合は安定化剤としてソルビトール、シユー クロース、アミノ酸及び各種蛋白質等を含んでいてもよい。本発明は、免疫刺激性サ イト力インをコードするマイナス鎖 RNAウィルスベクターを含む抗腫瘍剤に関する。ま た本発明は、免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターが 導入された細胞を含む抗腫瘍剤に関する。本発明のベクターを含む組成物、および 本発明のベクターが導入された細胞は、抗腫瘍医薬として有用である。また本発明 のベクター組成物および本発明のベクターが導入された細胞は、抗腫瘍ワクチンとし て有用である。該ベクター組成物および細胞は、免疫原性を高めるために、サイト力 イン、コレラ毒素、サルモネラ毒素等の免疫促進剤を添加することもできる。またワク チンには、ミヨウノくン、不完全 Freund'sアジュバント、 MF59 (オイルェマルジヨン)、 MTP-PE (マイコバクテリア細胞壁由来の muramyl tripeptide)、および QS- 21 (soapbark tree Ouilaia saponaria由来)などのアジュバントを組み合わせることもでき る。
[0065] また、組成物または細胞の投与に際しては、アジュバント効果を高めるサイト力イン 類を組み合わせることも有効である。このような遺伝子としては、例えば i)一本鎖 IL-12 (Proc. Natl. Acad. Sci. USA 96 (15): 8591-8596, 1999)、 ii)インターフェロン -gamma (米国特許第 5,798,100号)、m)顆粒球コロ-ー刺激因子(GM-CSF)、iv) GM-CSFと IL- 4の組み合わせ (J. Neurosurgery 90 (6), 1115-1124 (1999))などが 挙げられる。
[0066] マイナス鎖 RNAウィルスベクターのインビボでの投与量は、疾患、患者の体重、年 齢、性別、症状、投与組成物の形態、投与方法、導入サイト力イン遺伝子等により異 なるが、当業者であれば適宜決定することが可能である。投与経路は適宜選択する ことができるが、例えば注射器またはカテーテル等により腫瘍に注入される。投与さ れるベクターは好ましくは約 105 ClU/mlから約 1011 CIU/mUより好ましくは約 107 ClU/mlから約 109 CIU/ml、最も好ましくは約 1 X 108 CIU/mlから約 5 X 108 CIU/mlの範 囲内の量を薬学上容認可能な担体中で投与することが好ましい。ヒトにおいては 1回 当たりの投与量は 2 X 105 CIU— 2 X 1011 CIUが好ましぐ投与回数は、 1回または臨 床上容認可能な副作用の範囲で複数回可能であり、 1日の投与回数についても同 様である。ヒト以外の動物についても、例えば目的の動物とヒトとの体重比または投与 標的部位の容積比 (例えば平均値)で上記の投与量を換算した量を投与することが できる。なお、伝播性のマイナス鎖 RNAウィルスベクターを個体または細胞に投与後 、治療が完了するなどウィルスベクターの増殖を抑止する必要が生じた際には、 RNA 依存性 RNAポリメラーゼ阻害剤を投与すれば、宿主に障害を与えずにウィルスベクタ 一の増殖だけを特異的に抑止することもできる。エタスビボ投与の場合は、体外 (例 えば試験管またはシャーレ内)で標的細胞にベクターを接触させる。 MOIは 1一 500の 間で投与することが好ましぐより好ましくは 2— 300、さらに好ましくは 3— 200、さらに 好ましくは 5— 100、さらに好ましくは 7— 70である。
免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターまたは該べク ターが導入された細胞の腫瘍部位への投与は、腫瘍抗原または該抗原を発現する ベクターによる免疫と組み合わされることが好ましい。実施例で示すように、本発明の ベクターの in vivo投与を、腫瘍抗原の免疫と組み合わせた治療は、ベクターの単独 投与に比べ有意に高い抗腫瘍作用を発揮する。腫瘍抗原またはそれを発現するべ クタ一の接種は、免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクタ 一の投与と同時、あるいは前後に行えばよい。免疫刺激性サイト力インをコードする マイナス鎖 RNAウィルスベクターの投与と腫瘍抗原またはそれを発現するベクターの 接種との間隔は、例えば 7日以内、好ましくは 6日以内、 5日以内、 4日以内、 3日以内 、または 2日以内、より好ましくは 24時間以内である。腫瘍抗原の免疫で用いられる抗 原としては、例えば増殖能を失わせた腫瘍細胞、または腫瘍細胞溶解物などが挙げ られる。腫瘍細胞は、加熱処理、放射線処理、あるいはマイトマイシン C処理などで処 理し増殖性をなくすことが好ましい。例えば、 X線照射を利用する場合、総放射線量 700— 3300 Radで照射することができる。マイトマイシン C処理法は、例えば、細胞に 25— 50 micro- g/mlのマイトマイシン Cを添カ卩し、 37°C、 30— 60分間保温処理すること ができる。熱による細胞処理方法は、例えば、 50— 65°Cで 20分間加熱処理を行うこと ができる。また、腫瘍細胞を用いる代わりに、標的とする腫瘍細胞で発現する腫瘍抗 原を用いてもよい。腫瘍抗原は、天然または組み換えポリペプチドであってよい。また は、腫瘍抗原を発現するベクターを投与してもよい。腫瘍抗原を発現するベクターと しては、特に制限はなぐ例えばプラスミド、ウィルスベクター、 naked DNAなど、投与 個体において腫瘍抗原を発現する能力を持つ所望の発現ベクターが用いられる、こ のようなベクターは、適当なプロモーター(例えば SV40プロモーター、 CAGプロモー ター、 CMVプロモーター、 EF1プロモーター、 LTRプロモーター)の下流に腫瘍抗原 をコードする核酸が連結された核酸を含むものであってよい。あるいは、ウィルスべク ターを用いる場合は、各ウィルスベクターに適した発現調節配列の制御下に腫瘍抗 原をコードする核酸が連結される。ベクターの投与は、 in vivoまたは ex vivoで行って よい。腫瘍抗原は治療対象癌により適宜選択されるが、腫瘍抗原の例としては、卵巣 癌等に関連する Muc-1または Muc-1様ムチンタンデムリピートペプチド (米国特許第 5,744, 144号)、子宮頸癌を引き起こすヒト乳頭腫ウィルス蛋白質 E6および E7、メラノ 一マ抗原 MART-1、 MAGE-1、 -2、 -3、 gplOOおよびチロシナーゼ、前立腺癌抗原 PSA、その他にも、 CEA(Kim, C. et al., Cancer Immunol. Immunother. 47 (1998) 90-96)、および Her2neu (HER2p63- 71、 p780- 788; Eur. J. Immunol. 2000; 30: 3338-3346)などが挙げられる。腫瘍抗原の接種部位は適宜選択されるが、例えば経 皮的、鼻腔内的、経気管支的、筋内的、腹腔内、静脈内、または皮下等に行われう る。好ましくは皮下に接種される。腫瘍細胞またはその溶解物を接種する場合は、接 種量は一般的には 105— 109細胞、好ましくは 106— 108細胞、より好ましくは約 107細胞 とすることができる。本発明は、免疫刺激性サイト力インをコードするマイナス鎖 RNAゥ ィルスべクタ一、および腫瘍抗原または該抗原を発現するベクター、を含む抗腫瘍処 置のためのキットにも関する。該キットは、免疫刺激性サイト力インをコードするマイナ ス鎖 RNAウィルスベクター、および腫瘍抗原または該抗原を発現するベクターがまと まったパッケージである。該パッケージは、例えば該マイナス鎖 RNAウィルスベクター を含む容器と、腫瘍抗原または該抗原を発現するベクターを含む容器とを含む。この ようなパッケージは、本明細書に記載した組み合わせ処置のために使用される。 本発明の抗腫瘍処置方法は所望の固形腫瘍に適用できるが、特に中枢神経系組 織 (脳実質内または実質外を含む)の腫瘍の処置に適しており、例えば神経膠腫、転 移性脳腫瘍、髄芽腫、胚細胞腫、髄膜腫、下垂体腺腫、および神経鞘腫などの脳腫 瘍への適用に適している。特に好ましくは神経膠腫 (ダリオ一マ)の処置に適用される 。免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターは、脳腫瘍に 対して高!ヽ効率でサイト力イン遺伝子を導入する能力を持ち、末梢で活性化された 免疫担当細胞の脳腫瘍組織への有意な移動を誘導する。また、腫瘍抗原の免疫接 種と組み合わせることにより、脳腫瘍増殖を抑制することができる。中枢神経系への ベクターの導入に関しては、以下の文献も参照のこと(Bitzer, M. et al. J. Gene Med. 5:543-553, 2003; Li, H.O. et al" J. Virol. 74: 6564-6569, 2000; Inoue, M. et al" Mol. Ther. 5:S174, 2002; Shirakura, M. et al., Exp. Animal 52: 119-127, 2003; Suzuki, S. et al., Eur. J. Neurosci. 13: 2299-2308, 2001)。
[0069] 本発明の抗腫瘍処置の対象生物としては特に制限はなぐヒトおよび非ヒト哺乳動 物を含む所望の哺乳動物が含まれ、具体的には、ヒト、マウス、ラット、ィヌ、ブタ、ネ コ、ゥシ、ゥサギ、ヒッジ、ャギ、サルが挙げられる。
実施例
[0070] 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に制 限されるものではない。なお、本明細書中に引用された文献は、すべて本明細書の 一部として組み込まれる。
[0071] [細胞および動物]
ラット 9L神経膠肉腫(gliosarcoma)細胞は、 10% FCSを含む Dulbecco's modified Eagle medium中、 5% COを含む湿大気中で維持した。体重 200および 240 g (7-8週
2
齢)の雄 Fisher 344ラットを、以下に記載したように実験に用いた。これらの動物は Laboratory Animal Resources Commission Standards (実験動物資源委員会基準)に 従い、 specific pathogen-free (SPC;特定病原体フリー)の環境下で維持した。
[0072] [脳腫瘍モデルおよび治療]
動物を麻酔し定位固定装置に固定した。穿頭孔(burr hole)を適切な位置に開け た(ブレダマ後方 4 mm、正中線より右 3 mm)。硬膜から腹側 (ventral) 3 mmの位置 に 25ゲージ針を挿入し、マイクロインジェクター(Harvard Apparatus, South Natick, MA)を用い、 10 micro-1の培地中に含まれる 105のシンジエニックな 9L腫瘍細胞を 5 分かけてゆっくりと注入した(day 0)。治療工程は 9L腫瘍細胞の脳内(i.e.)接種の 3 日後(day 3)に開始した。動物には SeV18+hIL2/ A M A Fまたは SeV18+lacZ/ Δ Μ Δ Fの脳内移入 (i.e. transplantation),および/または照射した野生型 9L腫瘍細胞の皮 下免疫(s.c. immunization)を行った。脳内移入では、 10 micro- 1 PBS中の lxlO7 CIU の各 SeVを上記と同様の定位固定座標にて移入した。皮下免疫では、野生型 9L細 胞を 30 Gyで照射し、 lxlO6の照射 9L細胞を含む 100 micro- 1の培地を下腹部(lower abdominal quadrant)に接種した (Iwaaate, Y. et al., し ancer Res., 61: 8769-8774, 2001)。
[0073] [MRIおよび生存検査]
腫瘍細胞を接種した全ての動物は 7日毎に MRI検査を行い、 i.e.腫瘍の体積を評価 した。 50 mg/kgのペントバルビタールで麻酔したラットに 0.2 mlの Gd-DTPA (0.8-1.0 ml/kg)を注入し、 1.5テスラの MR装置(Sigma Advantage, General Electric,
Milwaukee, WI)を用いて冠状断面の Tl強調画像(TR 500 msec, TE 11 msec, 3 mm 厚, gapless)を得た。腫瘍の体積 (mm3)は、各 MR画像領域(mm2)に画像厚をかけ たものの Gd-DTPA強調部位の和として算出した。 MRIで見積もった腫瘍体積は、画 像解析の直後に得た実際の腫瘍重量とリニアな相関がある(Namba, H. et al, Human Gene Ther., 7: 1847-1852, 1996)。各群の腫瘍体積の解析を、単変量分散 分析(一元配置分散分析 (One-factor ANOVA))により実施した。
フット ίま、 度の麻 (paresis入運動失!^ (ataxia入 periophtalmic encrustations 周囲外皮形成)、または 20 %を超える体重減少が起こるまで毎日観察した。このような 動物の平均余命は 1日未満であるから、犠牲死させた日を死亡日として扱った。生存 解析は Kaplan- Meier法による log- rank testにより行った。
[0074] [免疫組織化学]
腫瘍担持ラットの上行大動脈に 4%パラホルムアルデヒドを還流させ、脳を取り出し た。脳標本の 15 micro- m厚の凍結切片を抗 CD4細胞(W3/25, Serotec, Oxford, UK) 、抗 CD8細胞(OX— 8, Serotec),抗 NK細胞 (1.2.3, Serotec),および抗ヒ HL— 2 (DAKO, Tokyo, Japan)モノクローナル抗体と反応させ、その後西洋ヮサビペルォキ シダーゼ結合ャギ抗マウス IgG (MBL, Nagoya, Japan)と反応後、 3,
3 ' -aiamino oenziaine tetrahydrochlonde (bigma, St. Louis, MI)で染色した。 X— Galの 組織染色により beta-ガラクトシダーゼの発現を検出した。
[0075] [実施例 1] ヒ HL-2遺伝子を搭載する組み換えマイナス鎖 RNAウィルスベクターの構 築 センダイウィルス (SeV)全長ゲノムのゲノム順序は、 3'端にあるリーダー(W)に続き 、ウイノレス遺伝子ヌクレオキヤプシド(NP),ホスホ(P),マトリックス(M),フュージョン (F),へマダルチュン-ノイラミニダーゼ(HN),およびラージ(L)、そして最後の 5'端に 短いテーラー (tr)が続く(図 。 M遺伝子および F遺伝子の両方を欠失させた SeVベ クタ一(SeV/AMAF)を実験に用いた。 F蛋白質はウィルス感染に必須であり M蛋白 質はウィルスのアセンブリおよびバデイング(budding)に機能するため、 SeV/AMAF は非伝播性で感染細胞力 の粒子形成が起こらな ヽ。ヒ HL-2遺伝子を搭載する SeV/ ΔΜΔ Fベクター(hIL- 2- SeV/ Δ Μ Δ F)および lacZ遺伝子を搭載する SeV/ Δ MAFベクター (lacZ-SeV/AMAF)を、以前の記載の通りに構築した(Inoue, M. et al., J. Virol, 77: 6419-6429, 2003; Inoue, M. et al., Mol. Ther., 5: S174, 2002)。具 体的には、 SeV特異的転写調節シグナル配列を含む Notlタグ付きプライマー対
TC-3' (配列番号: 19)および
AAATG GCGCGCCA- 3' (配列番号: 20)を用いて、ヒト IL- 2 (Accession number: A14844) cDNAを増幅した。増幅断片を元の pSeV18+/AMAFの Notl部位に導入し た。このようにして、 hIL- 2- SeV/ ΔΜΔ Fの cDNA (phIL2- SeV/ Δ M Δ F)を構築した。 lacZ-SeV/ ΔΜΔ Fの cDNA (placZ- SeV/ Δ M Δ F)は、 lacZ増幅断片を用いて同様に 構築した (Li, H.O. et al" J. Virol, 74: 6564-6569, 2000)。 T7 RNAポリメラーゼを発 現するワクシニアウィルス vTF7-3 (Fuerst, T.R. et al., Proc. Natl. Acad. Sci. USA, 83: 8122-8126, 1986)を LLC- MK2細胞に感染させた後、 phIL2- SeV/ Δ Μ Δ Fおよ び placZ-SeV/AMAFを細胞にトランスフエタトした。 T7 RNAポリメラーゼにより転写 が駆動された hIL2-SeV/ ΔΜΔ Fと lacZ- SeV/ ΔΜΔ Fの RNAゲノムは、コトランスフエ タトされた各プラスミドから発現が駆動された N、 P、および L蛋白質によりエンキャプシ ュレートさせた(Ikeda, Y. et al., Exp. Eye Res., 75: 39-48, 2002)。回収された SeVベ クタ一を Mおよび F両蛋白質を発現するパッケージング細胞株を用いて増幅した (Inoue, M. et al" J. Virol, 77: 6419-6429, 2003; Inoue, M. et al" Mol. Ther., 5: SI 74, 2002)。ウィルスの力価を感染性を基に決定し、 cell infectious unit (CIU;細胞 感染単位)として表記した。 SeVベクターは使用するまで- 80°Cで保存した。
[0076] [実施例 2] SeVベクターによる beta-ガラクトシダーゼ遺伝子の脳内導入
SeVベクターによる beta-ガラクトシダーゼ遺伝子の脳内導入の効率を、 lacZ- SeV/ A M A F (SeV/LacZとも略記)注入の 4、 7、および 14日後に取り出した正常脳組織ま たは脳腫瘍において調べた。脳腫瘍組織に注入した場合、ベクターを注入した組織 の外観は典型的には、 lacZ-SeV/ Δ Μ Δ Fが注入された導入腫瘍細胞とそれらの細 胞の子孫力もなる X-gal陽性細胞のコロニーが散在していた(図 2)。散在する X-gal染 色コロニーの間に非導入腫瘍細胞が見られた。 beta-ガラクトシダーゼの発現または 蓄積はベクターの注入の 7日後に最大となり、発現レベルは 14日目まで持続した(図 2)。腫瘍の周囲の正常脳への導入については、脈絡叢を除き、腫瘍周囲の組織で はほとんど見られなカゝつた。正常脳組織に注入した場合には、腫瘍内注入の場合と 同様の効率で神経およびグリア細胞への導入が観察された。ベクターの実質内注入 によっては、上衣細胞には導入されな力つた。
[0077] [実施例 3] hIL2- SeV/ A M A Fベクターの i.e.注入による抗腫瘍効果
9L神経膠肉腫を脳内に接種したナイーブラットでは増殖性 (progressive)の腫瘍が 発生し、接種力も 25日後(day 25)までにすベてのラットが死亡した。照射した全腫瘍 細胞ワクチンを用いた皮下(s.c.)免疫を組み合わせた hIL2- SeV/ A M A F
(SeV/IL-2と略記)の i.e.投与の治療効果を、連続 Gd強調 MRIによる腫瘍体積計測に より調べた(図 3)。 9L腫瘍細胞の接種から 3週間目(day 21)に hIL2- SeV/ Δ M Δ Fの i.e.投与および s. 免疫治療を行ったラットの腫瘍体積(86.5 ±63.8 mm3, n=10, on day 21)は、未処理(286±51.2 mm3, n=10, on day 21)、 s.c.免疫のみ(197±48.9 mm3, n=10, on day 21)、 lacZ- SeV/ A M A Fの i.e.投与と s.c.免疫の組み合わせ(233 ± 73.2 mm3, n=6, on day 21)、または hIL2- SeV/ A M A Fの i.e.投与のみ(256±53.2 mm3, n=6, on day 21)のものに比べ、有意に縮小していることが判明した(図 4)。 hIL2- SeV/ A M A Fを利用した組み合わせ治療(combinatory treatment)により、定 着脳腫瘍は day 21には 10匹中 3匹のラットで完全に消滅した(図 3)。対照的に、 hIL2- SeV/ A M A Fの i.e.投与単独または s. 免疫単独における腫瘍の平均体積は未 処理のものより縮小したが、それらの治療効果は、組み合わせ治療に比べると低ぐ 定着腫瘍の完全な消滅は観察されなかった(図 4)。また図 5に示すように、腫瘍担持 ラットの寿命は、 hIL2- SeV/ Δ M Δ Fの i.e.投与単独または s.c.免疫単独の処置により 未処理に比べ延長されたが、 hIL2-SeV/ Δ Μ Δ Fベクターの i.e.投与を s.c.免疫と組み 合わせた治療を行ったラットの寿命は、未処理のコントロールまたはその他の処置を 行ったラットのそれに比べても有意に延長された(p〈0.05, Logrank test) (図 5)。 hIL2-SeV/ Δ Μ Δ Fを定着腫瘍の反対側の半球に注入した場合は、腫瘍増殖は影響 を受けな力つた(非提示データ)。この結果は、著しい治療効果を達成するには、 IL-2 の発現は標的腫瘍の近傍である必要があることを示唆している。
[0078] [実施例 4] 免疫組織化学解析
脳腫瘍における IL-2蛋白質の発現を免疫組織化学的に調べた。 IL-2蛋白質は、 hIL2-SeV/ Δ Μ Δ Fベクターを注入した腫瘍内で拡散して発現して 、ることが確認さ れた(図 6)。さらに、 CD4+T細胞、 CD8+ T細胞、および NK細胞の存在を調べた。 hIL2- SeV/ A M A Fベクターの i.e.投与および s.c.免疫で治療した腫瘍では、 CD4+ T 細胞、 CD8+ T細胞、および NK細胞の顕著な浸潤が観察された(図 7)。これらの細胞 のマイグレーションは、 lacZ- SeV/ A M A Fベクターの i.e.注入および s.c.免疫による治 療、または hIL2-SeV/ Δ Μ Δ Fベクターの i.e.投与単独による治療を行った腫瘍でも中 程度に検出されたが、組み合わせ治療を行った場合は単独治療よりも顕著であった 産業上の利用可能性
[0079] 本発明により、腫瘍に対する新たな治療方法が提供された。本発明の方法は、簡 単な手法で効果的に腫瘍増殖を抑制できることから、癌治療へ広く適用されることが 期待される。

Claims

請求の範囲
[1] 免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターまたは該べク ターが導入された細胞を腫瘍部位に投与する工程を含む、抗腫瘍処置方法。
[2] 腫瘍抗原または該抗原を発現するベクターで免疫する工程をさらに含む、請求項 1 に記載の方法。
[3] 該腫瘍抗原または該抗原を発現するベクターを皮下接種により免疫する、請求項 2 に記載の方法。
[4] 該腫瘍抗原が増殖能を失わせた腫瘍細胞または腫瘍細胞溶解物である、請求項 2 に記載の方法。
[5] 腫瘍が脳腫瘍である、請求項 1に記載の方法。
[6] 免疫刺激性サイト力インカインターロイキン- 2である、請求項 1に記載の方法。
[7] 免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクターまたは該べク ターが導入された細胞を有効成分として含む抗腫瘍組成物。
[8] 免疫刺激性サイト力インカインターロイキン- 2である、請求項 7に記載の組成物。
[9] (a)免疫刺激性サイト力インをコードするマイナス鎖 RNAウィルスベクター、および、
(b)腫瘍抗原または該抗原を発現するベクター、を含む抗腫瘍処置のためのキット。
[10] 免疫刺激性サイト力インカインターロイキン- 2である、請求項 9に記載のキット。
PCT/JP2005/000238 2004-01-13 2005-01-12 免疫刺激性サイトカインをコードするマイナス鎖rnaウイルスベクターを用いる腫瘍の遺伝子治療 WO2005067981A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005517037A JPWO2005067981A1 (ja) 2004-01-13 2005-01-12 免疫刺激性サイトカインをコードするマイナス鎖rnaウイルスベクターを用いる腫瘍の遺伝子治療
CA002553377A CA2553377A1 (en) 2004-01-13 2005-01-12 Gene therapy for tumors using minus-strand rna viral vectors encoding immunostimaulatory cytokines
EP05703477A EP1712243A4 (en) 2004-01-13 2005-01-12 GENE THERAPY FOR TUMOR USING A NEGATIVE CHAIN RNA VIRAL VECTOR ENCODING AN IMMUNOSTIMULATORY CYTOKINE
AU2005205441A AU2005205441A1 (en) 2004-01-13 2005-01-12 Gene therapy for tumor using minus-strand RNA virus vector encoding immunostimulating cytokine
US10/585,884 US7521043B2 (en) 2004-01-13 2005-01-12 Gene therapy for tumors using minus-strand RNA viral vectors encoding immunostimulatory cytokines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004005186 2004-01-13
JP2004-005186 2004-01-13

Publications (1)

Publication Number Publication Date
WO2005067981A1 true WO2005067981A1 (ja) 2005-07-28

Family

ID=34792087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000238 WO2005067981A1 (ja) 2004-01-13 2005-01-12 免疫刺激性サイトカインをコードするマイナス鎖rnaウイルスベクターを用いる腫瘍の遺伝子治療

Country Status (8)

Country Link
US (1) US7521043B2 (ja)
EP (1) EP1712243A4 (ja)
JP (1) JPWO2005067981A1 (ja)
KR (1) KR20060129013A (ja)
CN (1) CN1929867A (ja)
AU (1) AU2005205441A1 (ja)
CA (1) CA2553377A1 (ja)
WO (1) WO2005067981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106608A (ja) * 2011-10-25 2013-06-06 Gifu Univ 変異狂犬病ウイルス合成・増殖方法、並びに狂犬病ワクチン製剤

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016539A1 (fr) * 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
US20030166252A1 (en) * 1999-05-18 2003-09-04 Kaio Kitazato Paramyxovirus-derived RNP
JPWO2002031138A1 (ja) * 2000-10-06 2004-02-19 株式会社ディナベック研究所 骨格筋に外来遺伝子を導入するためのパラミクソウイルスベクター
JP2002142770A (ja) * 2000-11-08 2002-05-21 Dnavec Research Inc 循環系への遺伝子送達用パラミクソウイルスベクター
JPWO2004038029A1 (ja) * 2002-10-24 2006-02-23 株式会社ディナベック研究所 T細胞に遺伝子を導入する方法
AU2004286144A1 (en) * 2003-11-04 2005-05-12 Dnavec Research Inc. Method for producing gene transferred dendritic cells
JP5296983B2 (ja) * 2004-06-24 2013-09-25 株式会社ディナベック研究所 Rnaウイルスが導入された樹状細胞を含む抗癌剤
CA2612168A1 (en) * 2005-06-14 2006-12-21 Dnavec Corporation Methods for producing antibodies
US20100167341A1 (en) * 2006-01-17 2010-07-01 Dnavec Corporation Novel protein expression system
JPWO2008136438A1 (ja) * 2007-04-27 2010-07-29 国立大学法人九州大学 遺伝子治療用ウイルスベクター
WO2010108908A1 (en) * 2009-03-24 2010-09-30 Transgene Sa Biomarker for monitoring patients

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157723A (ja) * 1982-03-15 1983-09-19 Ajinomoto Co Inc インタ−ロイキン2を含有してなる免疫療法剤
JPH07503455A (ja) * 1991-10-25 1995-04-13 サン ディエゴ リージョナル キャンサー センター 癌のリンホカイン遺伝子療法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US578085A (en) * 1897-03-02 Fishing apparatus
WO2001004271A2 (en) * 1999-07-13 2001-01-18 The Government Of The United States Of America, As Represented By The Department Of Health And Human Services Respiratory syncytial viruses expressing immune modulatory molecules
CN1118569C (zh) 1995-10-31 2003-08-20 株式会社载体研究所 具有自主复制能力的负链rna病毒载体
WO1997016539A1 (fr) 1995-11-01 1997-05-09 Dnavec Research Inc. Virus sendai recombinant
US7241617B2 (en) 1998-07-03 2007-07-10 Dnavec Research, Inc. Sendai viral vectors comprising foreign genes inserted between the R1 and R2 Loci
CA2336472C (en) 1998-07-03 2010-08-31 Dnavec Research Inc. Negative-sense rna virus vector for nerve cell
US6514728B1 (en) * 1998-11-09 2003-02-04 Nippon Biocaptal Limited Process for preparation of cytokines using Sendai virus expression system
JP2000253876A (ja) 1999-03-08 2000-09-19 Dnavec Research Inc センダイウイルスベクターを用いたワクチンおよびワクチンタンパク質
KR100739938B1 (ko) 1999-05-18 2007-07-16 가부시키가이샤 디나벡크 겐큐쇼 엔벨로프 유전자 결손 파라믹소과 바이러스 벡터
EP1179594B1 (en) 1999-05-18 2008-06-25 Dnavec Research Inc. Ribonucleoprotein complex in paramyxovirus
US20020169306A1 (en) 1999-05-18 2002-11-14 Kaio Kitazato Envelope gene-deficient paramyxovirus vector
US20030166252A1 (en) 1999-05-18 2003-09-04 Kaio Kitazato Paramyxovirus-derived RNP
US20030022376A1 (en) 1999-05-18 2003-01-30 Kaio Kitazato Paramyxovirus-derived RNP
US7226786B2 (en) 1999-05-18 2007-06-05 Dnavec Research Inc. Envelope gene-deficient Paramyxovirus vector
JPWO2002031138A1 (ja) 2000-10-06 2004-02-19 株式会社ディナベック研究所 骨格筋に外来遺伝子を導入するためのパラミクソウイルスベクター
JP2002142770A (ja) 2000-11-08 2002-05-21 Dnavec Research Inc 循環系への遺伝子送達用パラミクソウイルスベクター
KR20040039366A (ko) 2001-09-18 2004-05-10 가부시키가이샤 디나벡크 겐큐쇼 입자 형성능이 저하된 (-)가닥 rna 바이러스 벡터의 검사방법 및 제조방법
KR20040040475A (ko) 2001-09-28 2004-05-12 가부시키가이샤 디나벡크 겐큐쇼 에피토프 결합 β2m을 코드하는 포유동물 세포감염성 바이러스 벡터 및 그의 이용
WO2003102183A1 (fr) 2002-06-03 2003-12-11 Dnavec Research Inc. Vecteurs de paramyxovirus codant pour un anticorps et son utilisation
WO2004022731A1 (ja) 2002-09-04 2004-03-18 Dnavec Research Inc. シアル酸結合活性を有する膜蛋白質をエンベロープに含むウイルスベクターをグラム陽性菌由来ノイラミニダーゼを用いて製造する方法
JPWO2004038029A1 (ja) 2002-10-24 2006-02-23 株式会社ディナベック研究所 T細胞に遺伝子を導入する方法
AU2004286144A1 (en) 2003-11-04 2005-05-12 Dnavec Research Inc. Method for producing gene transferred dendritic cells
JP5296983B2 (ja) 2004-06-24 2013-09-25 株式会社ディナベック研究所 Rnaウイルスが導入された樹状細胞を含む抗癌剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157723A (ja) * 1982-03-15 1983-09-19 Ajinomoto Co Inc インタ−ロイキン2を含有してなる免疫療法剤
JPH07503455A (ja) * 1991-10-25 1995-04-13 サン ディエゴ リージョナル キャンサー センター 癌のリンホカイン遺伝子療法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BITZER M. ET AL.: "Negative-strand RNA viral vectors: intravenous application of Sendai virus vectors for the systemic delivery of therapeutic genes.", MOL.THER., vol. 7, no. 2, 2003, pages 210 - 217, XP002992142 *
HASEGAWA M. ET AL.: "Shinki Idenshi Chiryoyo Vector no Kaihatsu.", THE CELL., vol. 33, no. 6, 2001, pages 227 - 231, XP002992143 *
See also references of EP1712243A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106608A (ja) * 2011-10-25 2013-06-06 Gifu Univ 変異狂犬病ウイルス合成・増殖方法、並びに狂犬病ワクチン製剤

Also Published As

Publication number Publication date
EP1712243A4 (en) 2007-04-11
EP1712243A1 (en) 2006-10-18
US7521043B2 (en) 2009-04-21
CA2553377A1 (en) 2005-07-28
JPWO2005067981A1 (ja) 2007-12-27
US20070248627A1 (en) 2007-10-25
CN1929867A (zh) 2007-03-14
KR20060129013A (ko) 2006-12-14
AU2005205441A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US7521043B2 (en) Gene therapy for tumors using minus-strand RNA viral vectors encoding immunostimulatory cytokines
US20080031855A1 (en) Anticancer Agent Containing Minus-Strand Rna Virus
JP2012065652A (ja) 遺伝子導入された樹状細胞の製造方法
EP1891215B1 (en) Highly safe intranasally administrable gene vaccines for treating alzheimer&#39;s disease
US20100167341A1 (en) Novel protein expression system
KR20050062634A (ko) T 세포에 유전자를 도입하는 방법
WO2003102183A9 (fr) Vecteurs de paramyxovirus codant pour un anticorps et son utilisation
WO2006137517A1 (ja) 幼少個体への遺伝子導入用ベクター
US10828359B2 (en) Anti-Mycobacterium tuberculosis vaccine using sendai virus as vector
US20100203027A1 (en) Viral vector for gene therapy
JP4903159B2 (ja) アルツハイマー病の治療のための安全性に優れた鼻腔内投与可能遺伝子ワクチン

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005205441

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005517037

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2553377

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2005205441

Country of ref document: AU

Date of ref document: 20050112

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005205441

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005703477

Country of ref document: EP

Ref document number: 1020067016135

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580008130.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005703477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10585884

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067016135

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10585884

Country of ref document: US

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)