WO2005066933A1 - 制振材料用樹脂組成物、制振材料、拘束型制振材およびその用途 - Google Patents

制振材料用樹脂組成物、制振材料、拘束型制振材およびその用途 Download PDF

Info

Publication number
WO2005066933A1
WO2005066933A1 PCT/JP2004/019188 JP2004019188W WO2005066933A1 WO 2005066933 A1 WO2005066933 A1 WO 2005066933A1 JP 2004019188 W JP2004019188 W JP 2004019188W WO 2005066933 A1 WO2005066933 A1 WO 2005066933A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping material
vibration damping
weight
resin composition
chlorine content
Prior art date
Application number
PCT/JP2004/019188
Other languages
English (en)
French (fr)
Inventor
Masaki Shimada
Takeo Morikawa
Hiroyuki Abe
Akihisa Miura
Takashi Oguchi
Takeo Kuroda
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004128345A external-priority patent/JP2005307077A/ja
Priority claimed from JP2004318296A external-priority patent/JP4741829B2/ja
Priority claimed from JP2004318295A external-priority patent/JP2006125150A/ja
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Publication of WO2005066933A1 publication Critical patent/WO2005066933A1/ja
Priority to US11/480,524 priority Critical patent/US20070012509A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • B60R13/0846Insulating elements, e.g. for sound insulation for duct, cable or rod passages, e.g. between engine and passenger compartments

Definitions

  • Resin composition for damping material for damping material, damping material, restrained damping material and its use
  • the present invention relates to various structures such as houses, condominiums, office buildings, and other high-speed roads, viaducts, railway tracks and the like, and various vehicles such as automobiles, railway vehicles, ships, and the like.
  • Restraint-type damping material suitably used to reduce vibration and noise generated in equipment, OA equipment, etc., a resin composition for damping material for manufacturing the same, and a vibration damping material comprising the same About the material.
  • Patent Document 1 discloses an attenuation material obtained by blending a chlorinated paraffin, a liquid rubber, or the like with a polymer having a polar group.
  • the loss tangent (tan ⁇ ) of the above-mentioned damping material is about 1.3-2.8, and it is not always possible to exert sufficient damping properties.
  • Patent document 1 JP-A-11-80562
  • An object of the present invention is to provide a resin composition for a vibration damping material and a vibration damping material suitable as a vibration damping material exhibiting high vibration damping properties, in view of the problems of the conventional vibration damping materials, and the above-described vibration damping material.
  • An object of the present invention is to provide a restraint type vibration damping material including a vibration damping material and its use.
  • the first invention is characterized in that 100 parts by weight of a thermoplastic resin having a chlorine content of 20 to 70% by weight and a weight average molecular weight of 400,000 or more, and a carbon content of 30 to 75% by weight and a carbon content of 30 to 75% by weight.
  • An object of the present invention is to provide a resin composition for a vibration damping material comprising 100 to 1000 parts by weight, preferably 200 to 1000 parts by weight, of chlorinated paraffin having a number of 12 to 50.
  • the second invention is a thermoplastic resin having a chlorine content of 20 to 70% by weight, 100 parts by weight, a chlorine content of 30 to 75% by weight, and a number average carbon number of 12 to 50.
  • An object of the present invention is to provide a resin composition for a vibration damping material comprising 200 to 1000 parts by weight of chlorinated paraffin and 300 to 1000 parts by weight of an inorganic filler.
  • the third invention is a thermoplastic resin having a chlorine content of 20 to 70% by weight and a crystallinity of 5 jZg or more measured by a DSC method, and a chlorine content of 30 to 75% by weight.
  • Another object of the present invention is to provide a resin composition for a damping material comprising chlorinated paraffin having 12 to 50 carbon atoms.
  • a fourth invention is the resin composition for a vibration damping material according to the thirteenth invention, wherein the chlorinated paraffin contains 10 to 70% by weight of a chlorinated paraffin having a chlorine content of 70% by weight or more. It provides things.
  • a fifth invention provides a vibration damping material which also has a resin composition for a vibration damping material according to any one of the thirteenth inventions.
  • a sixth invention provides a vibration damping laminate including the vibration damping material according to the fifth invention and a restraining member laminated on one surface thereof.
  • a seventh invention provides a constrained damping material comprising the damping material of the fifth invention, a restraining member laminated on one surface thereof, and an adhesive resin layer laminated on the other surface of the damping material. It is provided.
  • the difference between the glass transition temperature (hereinafter referred to as "Tg") of the damping resin layer and the Tg of the adhesive resin layer is 10 ° C or more. It provides a vibration material.
  • a plasticizer transfer prevention film is interposed between the vibration damping resin layer and the adhesive resin layer so as to separate these layers, and the SP value of the film and the vibration damping film are separated.
  • Grease layer Another object of the present invention is to provide a constrained vibration damping material having a melting point of not less than the SP value of all components having a melting point of 80 ° C or less among constituent components of the adhesive resin layer.
  • a tenth invention provides the constrained vibration damping material according to the sixth invention, wherein at least a surface of the constraining layer on the vibration damping resin side is coated with a primer force S.
  • An eleventh invention provides a vibration damping structure in which the constrained vibration damping material according to the tenth invention is attached to a surface of a vibrating body having an uneven surface.
  • the secondary sound-suppressing material which also provides the vibration-damping laminate force of the sixth invention is provided on at least a part of peripheral equipment of an acoustic device by using the vibration-damping material constituting the vibration-damping laminate. Stuck together
  • T Provides a sound quality improvement structure for audio equipment.
  • the damping material is provided via a plasticizer migration preventing film.
  • Another object of the present invention is to provide a sound quality improving structure of an audio device attached to a peripheral device of the audio device by using a double-sided adhesive tape.
  • the damping material according to the twelfth aspect is a resin composition for damping material having a loss tangent (Tan ⁇ ) peak value of 2.5 or more.
  • An object of the present invention is to provide a sound quality improvement structure for audio equipment which is equal to or higher than lGPa.
  • thermoplastic resin having a chlorine content of 20 to 70% by weight is used.
  • thermoplastic resin examples include chlorine-containing thermoplastic resins such as chlorinated polyethylene, polyvinyl chloride, chlorinated polyvinyl chloride, and vinyl chloride-vinyl acetate copolymer.
  • the chlorine content of the thermoplastic resin is 20 to 70% by weight, preferably 30 to 50% by weight.
  • the thermoplastic resin may contain a substituent other than chlorine.
  • substituent other than chlorine include a cyano group, a hydroxyl group, an acetyl group, a methyl group, an ethyl group, Examples thereof include a bromine atom and a fluorine atom.
  • the content of the substituents other than chlorine is preferably 5% by weight or less, because if the content is too large, the vibration damping property may be insufficient.
  • the weight average molecular weight of the thermoplastic resin in the first invention is 400,000 or more. If the weight-average molecular weight is less than 400,000, it becomes difficult to maintain the shape of the vibration damper by itself. There is no particular upper limit for the weight-average molecular weight, but if it exceeds 10,000,000, the moldability may decrease, and it may be difficult to produce a vibration damping material.
  • the chlorinated paraffin in the first invention has a chlorine content of 30 to 75% by weight. If the chlorine content is outside the above range, the compatibility with the thermoplastic resin may be deteriorated, and the vibration damping property may be reduced.
  • the chlorinated paraffin has an average carbon number of 12 to 50, preferably 14 to 35. If the number of carbon atoms is less than 12, bleed-out tends to reduce the damping property over time. If the number of carbon atoms exceeds 50, the viscosity becomes too high and handling may be difficult.
  • chlorinated paraffin a single kind of chlorinated paraffin may be used alone, or two or more kinds of chlorinated paraffins having different chlorine contents or different carbon numbers within the above range may be used in combination. .
  • the resin composition for a vibration damping material includes, for example, a chlorine-based polymer material having a chlorine content of 20 to 70% by weight and at least one of a carbonaceous material having 10 to 50 carbon atoms and a chlorine content of 30 to 70% by weight.
  • a resin composition comprising chlorinated noraffin is preferred.
  • a chlorine-based polymer material having a chlorine content of 20 to 70% by weight and a chlorine-based polymer material having a carbon content of 12 to 16 and a chlorine content of 30 to 75% by weight are preferred.
  • a resin composition comprising a first chlorinated paraffin and a mixture of a second chlorinated paraffin having 20 to 50 carbon atoms and a chlorine content of 30 to 75% by weight is particularly preferred.
  • the peak value of the loss tangent (Tan ⁇ ) can be further increased, and excellent vibration damping improvement can be obtained.
  • the proportion of the second chlorinated paraffin when the proportion of the second chlorinated paraffin is 40% by weight or more of the total chlorinated paraffin, the peak value of the loss tangent (Tan ⁇ ) can be further increased and maintained for a long period of time. It is preferable because the bleed out of the chlorinated paraffin can be suppressed.
  • the proportion of the chlorinated paraffin is 100-1000 weight%, preferably 200-800 weight%, based on 100 weight parts of the thermoplastic resin.
  • the absolute value of the difference between the chlorine content of the thermoplastic resin and the chlorine content of the chlorinated paraffin [I (the chlorine content of the thermoplastic resin)-( Chlorine content) I] is preferably at most 20% by weight, more preferably at most 15% by weight. If the absolute value of this difference is too large, the compatibility between the thermoplastic resin and the chlorinated paraffin may be insufficient.
  • a plasticizer other than chlorinated paraffin may be added to the resin composition for a vibration damping material.
  • a plasticizer such as phthalates, adipates, phosphates, epoxidized polybutadienes, epoxidized fatty acids, trimellitates, pyromellites, sebacates, citrates, (Meth) acrylic acid oligomer, (meth) acrylic acid ester oligomer, methacrylic acid ester and the like are preferable.
  • phthalic acid plasticizers are preferred. These may be used alone or in combination of two or more. When a plasticizer other than the phthalic acid-based plasticizer is used, it is preferable to use it together with the phthalic acid-based plasticizer.
  • the blending amount of the plasticizer is 200 parts by weight or less, preferably 180 parts by weight or less, more preferably 100 parts by weight or less based on 100 parts by weight of the resin composition for a vibration damping material. Bleed-out can be suppressed within this range, and the effect of improving vibration damping properties can be exhibited.
  • the resin composition for a vibration damping material of the first invention contains other additives for the purpose of improving moldability, stability, vibration damping properties, etc., as long as the effects of the invention are not impaired. May be.
  • Other additives include, for example, heat stabilizers such as organotin compounds and metal stones, phenol-based antioxidants, hindered amine-based light stabilizers, and benzophenone-based and triazole-based purple stabilizers. External ray absorbents and the like can be mentioned.
  • the resin composition for a vibration damping material according to the second invention has 100 parts by weight of a thermoplastic resin having a chlorine content of 20 to 70% by weight, and a chlorine content of 30 to 75% by weight. 200-1000 parts by weight of chlorinated paraffin having an average carbon number of 12-50 and 300-1000 parts by weight of inorganic filler.
  • the weight average molecular weight of the thermoplastic resin is not particularly limited! However, if the weight average molecular weight is less than 400,000, the shape as a vibration damping material is self-retained unless the amount of the inorganic filler is large. It tends to be difficult. There is no particular upper limit for the weight-average molecular weight, but if it exceeds 10,000,000, the moldability may decrease, and it may be difficult to produce a vibration damping material.
  • chlorinated paraffin those similar to the first invention are used.
  • any conventionally known inorganic filler used in the molding of thermoplastic resin can be used, and examples thereof include calcium carbonate, myriki, talc and silica. , Alumina, titanium oxide, aluminum hydroxide, magnesium hydroxide, sauce, zeolite, zinc borate, and the like, and calcium carbonate and my strength, which easily exhibit damping properties, are preferable.
  • the number average particle diameter of the inorganic filler is not particularly limited, but is preferably 0.1 to 100 m, more preferably 0.1 to 100 m, which is easily dispersed in the thermoplastic resin and easily exhibits vibration damping properties. 5-50 ⁇ m.
  • the amount of the inorganic filler is less than 300 parts by weight based on 100 parts by weight of the thermoplastic resin, the temperature at which the loss coefficient of the resin composition for a vibration damping material has a maximum value is sufficiently high. If the amount exceeds 1000 parts by weight, the resin composition for vibration damping material becomes too hard to handle and the vibration damping performance deteriorates. -1000 parts by weight, preferably 400-900 parts by weight.
  • the thermoplastic resin constituting the resin composition for vibration damping materials of the third invention has a crystallinity of 5 jZg or more measured by a DSC method (differential scanning calorimetry). Crystallinity If the content is less than 5 jZg, the resin composition tends to flow easily at high temperatures and at high operating temperatures. Although there is no upper limit of the crystallinity, if the crystallinity is too high, the storage elastic modulus will increase, and the value of loss tangent may decrease, leading to a decrease in vibration damping performance. It is preferred that:
  • a fourth invention is the resin composition for a vibration damping material according to the thirteenth invention, wherein the chlorinated paraffin contains 10 to 70% by weight of a chlorinated paraffin having a chlorine content of 70% by weight or more. Offer things.
  • the resulting vibration damping material has improved tackiness.
  • the adhesiveness is improved, it is suitable when the vibration damping material is attached to an object and used.
  • the proportion of the chlorinated paraffin having a chlorine content of 70% by weight or more in the total amount of the chlorinated paraffins is less than 10% by weight, the adhesiveness required for long-term use will be insufficient. If this proportion exceeds 70% by weight, the tackiness may be too strong and handling may be difficult.
  • a fifth invention provides the vibration damping material according to any one of the thirteenth to thirteenth inventions, which also has a resin composition for a vibration damping material.
  • the above-mentioned damping material is prepared by converting the above-mentioned resin composition for a damping material into a sheet, tape, film or the like by using, for example, an extrusion molding method, a press molding method, a roll molding method, an injection molding method or the like. Or other suitable shapes.
  • damping materials may have a multi-layer structure as well as a single layer.
  • the shape of the vibration damping material is not particularly limited, and various structures such as houses, condominiums, office buildings, and other various structures such as highways, viaducts, railway tracks, and various vehicles such as automobiles, railway vehicles, and ships. Any shape may be used as long as it is generally used in household electric equipment, OA equipment, and the like, and examples thereof include sheet shapes, tape shapes, and film shapes.
  • a sixth invention provides a vibration damping laminate comprising the vibration damping material according to the fifth invention and a restraining member laminated on one surface thereof.
  • the restraint member preferably has a longitudinal elastic modulus of lGPa or more.
  • Damping material A material having a greater longitudinal modulus than the thermoplastic resin constituting the material is preferable, and in order to exhibit a sufficient vibration damping effect, the material is more preferably lOGPa or more.
  • the restraining member examples include metal materials such as lead, iron, steel (including stainless steel), and aluminum (including aluminum alloy); concrete, gypsum board, marble, slate board, sand board, glass, and the like.
  • Bisphenol A modified resin such as polycarbonate and polysulfone; Acrylic resin such as poly (meth) acrylate; polychlorinated vinyl resin; chlorinated polychlorinated vinyl resin Rubber-based materials such as acrylonitrile-butadiene-styrene-based rubber; saturated polyesters such as polyethylene terephthalate and polyethylene naphthalate; styrene-based resins; olefin-based resins such as polyethylene and polypropylene; nylon 6 and nylon 66 Resin such as amide, aramide (aromatic polyamide); Melamine resin; Polyimide resin Urethane resins; thermosetting resins such as dicyclopentadiene and bakelite; cellulosic materials such as wood and paper; and sheet materials or sheets having strong
  • the restraining member may be used alone or in combination of two or more.
  • the restraining member may be a composite plate having different material strengths, which may be reinforced with glass fiber, carbon fiber, liquid crystal, or the like, or may be a foam having these material strengths.
  • the constraining member be waterproof, since the water-proof performance is improved when the soundproof conveyor is used outdoors or the like.
  • the shape of the restraint member is preferably sheet-like.
  • a surface protection treatment such as plating or painting.
  • a method of providing unevenness on the surface of the restraining member, making a hole, or using an inorganic material for the restraining member may be employed.
  • the diameter should be about 3 to 20 mm so that the holes are not blocked by dirt and water does not penetrate into the holes. Even if the constraining member is vibrating, if the longitudinal elastic modulus of the constraining member does not decrease so much, the soundproofing effect tends to increase due to irregularities on the surface and perforation.
  • the thickness of the sheet-shaped vibration damping material and the thickness of the restraining member may be arbitrary.
  • the preferred thickness of the sheet-shaped vibration damping material is 0.1-5 mm.
  • the preferable thickness of the restraining member is 0.05-5 mm, and the thickness of the hard restraining member having a longitudinal elastic modulus of lOGPa or more is preferably 0.05-2 mm. It is.
  • the vibration damping material manufactured by the resin composition for vibration damping material is capable of efficiently converting vibration energy into heat energy by the internal rotation of the thermoplastic resin while maintaining the shape of the vibration damping material. It can convert well and has high vibration damping properties. Further, it is excellent in transparency and does not easily cause bleeding or agglomeration of chlorinated paraffin due to ultraviolet rays or the like even when used outdoors.
  • a seventh invention provides a constrained damping material comprising the damping material of the fifth invention, a restraining member laminated on one surface thereof, and an adhesive resin layer laminated on the other surface of the damping material.
  • the adhesive resin layer is preferably a resin which is based on an acrylic resin, a polyolefin resin, a butyral resin, a urethane resin, a rubber resin, a silicone resin, or the like, and also has a resin composition.
  • the adhesive strength of the adhesive resin layer is preferably 2 NZcm or more, more preferably 5 NZcm, in a 180 ° C peel test according to IS Z 0237.
  • the thickness of the adhesive resin layer is preferably 2 mm or less, more preferably 1.5 mm or less (?) In order to reduce the influence of the loss coefficient ((r?)) On the peak temperature.
  • Tg glass transition temperature
  • the inventors of the present invention have conducted various studies to solve this problem, and as a result, by providing a glass transition temperature lower than this and providing an adhesive resin layer on the vibration damping resin layer, the vibration damping performance peaks. It has been found that it is possible to obtain high tackiness even at low temperatures while maintaining the temperature near room temperature.
  • An eighth invention provides the constrained damping material according to the seventh invention, wherein the difference between the Tg of the damping resin layer and the Tg of the adhesive resin layer is 10 ° C or more.
  • a ninth invention is directed to the ninth invention according to the seventh invention, wherein a plasticizer transfer preventing film is interposed between the vibration damping resin layer and the adhesive resin layer so as to separate these layers, and the solubility parameter of the film (hereinafter referred to as “the solubility parameter”). SP value), and provide a constrained vibration damping material with a difference of 1 or more from the SP value of all components with melting points of 80 ° C or less among the constituent components of the vibration damping resin layer and adhesive resin layer. I do.
  • the difference between the SP value of the plasticizer transfer prevention film and the SP value of the liquid component in the vibration damping resin layer and the adhesive resin layer is less than 1, the difference between the SP value of the vibration damping resin layer and the adhesive resin layer will be reduced.
  • the plasticizer contained in may transfer.
  • the difference between the SP values is preferably 1.5 or more, and more preferably 1.8 or more.
  • a PET film is preferable.
  • the thickness of the plasticizer migration preventing film is preferably 5 ⁇ m or more, more preferably 12 ⁇ m or more.
  • the restraint-type vibration damping materials according to the seventh to ninth inventions are particularly effective when the resin composition for vibration damping materials of the second invention is used.
  • the adhesive strength between the constraining layer and the vibration damping resin layer is weak, when the vibration damping material is attached to a vibrating body having an uneven surface, it is separated at the interface between the constraining layer and the vibration damping resin layer. May occur. Even if the damping material is attached to a vibrating body having an uneven surface, there is no danger of separation occurring at the interface between the constraining layer and the damping resin layer, and a constrained damping material is desired.
  • a tenth invention provides the constrained damping material according to the sixth invention, wherein at least a surface of the constraining layer on the vibration damping resin side is coated with a primer force S.
  • the primer coating is applied to at least the surface on the vibration damping resin side of the constraining layer.
  • Primers include acrylic, polyester, polyvinyl chloride, butyral, vinyl chloride-vinylinoleate copolymer, cenorellose, rubber, epoxy, urethane, melamine, and silicone primers. May be. It is desirable that the difference between the solubility parameter (SP value) of the primer and the SP value of the damping resin layer is 1.5 or less. If this SP difference is too large, sufficient adhesion strength between the constraining layer and the vibration damping resin layer cannot be exhibited.
  • SP value solubility parameter
  • An eleventh invention provides a vibration damping structure in which the constrained vibration damping material according to the tenth invention is attached to the surface of the vibrating body having an uneven surface.
  • the thickness is 0.05-1. Omm (more preferable). Or an aluminum thin plate having a thickness of 0.1-0.3 mm).
  • in-vehicle audio equipment has been upgraded and upgraded in performance, but it is based on the vibration of an automobile equipped with the equipment and the original sound from the in-vehicle audio equipment (for example, it occurs in each part of the vehicle). Due to the effect of the secondary sound, the occupants in the vehicle are hearing a sound that is lower than the sound quality originally possessed by the audio equipment. Therefore, Japanese Utility Model Laid-Open No. 5-9095 proposes to replace the bracket for mounting the speaker with a vibration damping material as a structure for improving the sound quality.
  • the sound quality improvement structure described in the above-mentioned patent publication has a problem that it cannot be applied to a speaker mounting member that does not use a predetermined bracket.
  • vibration damping materials with excellent damping properties improves the noise caused by vibration, it is not sufficient for suppressing secondary sounds (for example, harmonics) based on the original sound from on-board audio equipment. It has no effect and does not necessarily contribute sufficiently to improving the sound quality of in-vehicle audio equipment.
  • the secondary sound-suppressing material which also provides the vibration-damping laminate force of the sixth invention is provided on at least a part of peripheral devices of the audio equipment by using the vibration-damping material constituting the vibration-damping laminate.
  • a sound quality improving structure of an acoustic device to be bonded is provided.
  • the sound quality improving structure of the audio equipment in which the vibration damping material is bonded to the peripheral equipment of the audio equipment with a double-sided adhesive tape via the plasticizer migration preventing film provide.
  • the damping material constituting the laminate has a resin composition for damping material having a loss tangent (Tan ⁇ ) peak value of 2.5 or more.
  • a sound quality improving structure for an acoustic device whose members have a modulus of longitudinal elasticity of lGPa or more.
  • the peripheral device refers to a device such as a door, a floor, a ceiling, a hood, a trunk, a fender, a pillar, a rear mount, and a dashboard on which a speaker in the case of a vehicle-mounted audio device is attached.
  • the vibration damping material may be that described in the fifth invention!
  • the restraining member may have been described according to the sixth invention.
  • a preferable vibration damping material is a sheet-like material having a length of 250 mm, a width of 20 mm, and a thickness of 1.6 mm.
  • the loss coefficient measured at 20 ° C in accordance with JIS G 0602 “Central support steady-state excitation method” at 20 ° C with the whole surface of the SPC steel plate adhered is preferably 0.15 or more. Better.
  • the resin composition for a vibration damping material according to the first to third inventions comprises the resin having a peak loss tangent (Tan ⁇ ) of 2.5 or more measured at 100 Hz. preferable.
  • the method of producing a vibration damping material from the resin composition for a vibration damping material is the same as that of the first invention, and the obtained sheet is cut into a required size to provide a structure for a sound quality improving structure of an audio device. .
  • the thickness of the sheet-like vibration damping material and the restraining member may be arbitrary! However, if it is too thin, the sound quality improvement is inferior, and if it is too thick, the weight becomes heavy and the workability deteriorates.
  • the thickness of the material is preferably 100 ⁇ m-10 mm, and the thickness of the restraining member is preferably 50 ⁇ m-10 mm. In the case of a rigid restraining member having a longitudinal elastic modulus of lOOGPa or more, the thickness is preferably 50 ⁇ m-2 mm.
  • the resin composition containing chlorinated paraffins has appropriate tackiness, and has good workability when attaching the secondary sound suppressing sheet.
  • the secondary sound suppressing sheet may be fixed using an adhesive tape or the like.
  • a double-sided adhesive tape is attached to the vibration damping material (the entire surface on the side where the restraining member is not attached) via a plasticizer migration prevention film. Is preferred.
  • the plasticizer migration prevention film is a thermoplastic film (for example, PET film) that is separated from the SP value of the plasticizer such as chlorinated paraffin by 1 or more. If the thickness is too large, the workability is impaired. If it is too thin, the effect of transferring the plasticizer is impaired.
  • the double-sided pressure-sensitive adhesive tape is, for example, an acrylic pressure-sensitive adhesive having a nonwoven fabric as a base material.
  • the pressure-sensitive adhesive strength is preferably 5 NZcm or more (based on JIS Z 0237). 0.2 mm or less is preferable because the workability of the steel is impaired.
  • the double-sided adhesive tape is attached to the sheet-shaped vibration damping material via the plasticizer migration preventing film, which improves workability and prevents the plasticizer from being transferred to the sheet-shaped vibration damping material. Thus, the sound quality improving effect can be maintained for a long time.
  • the method of manufacturing the sound quality improving structure for an audio device according to the twelfth invention may be arbitrary. However, in order to improve workability, a sheet-like vibration damping material and a restraining member are bonded in advance, and A restraining member made of a vibration-damping material is stuck, and a double-sided adhesive tape is stuck over the entire surface of the other side via a plasticizer migration prevention film to prepare a secondary sound suppressing sheet in advance to be large. After cutting with scissors or the like according to the area of the audio equipment main body or its peripheral equipment, it is better to stick the sheet-shaped vibration damping material directly or through double-sided adhesive tape so that it closely adheres to the audio equipment main body or its peripheral equipment. Good.
  • a secondary sound suppressing sheet which also includes a sheet-shaped vibration damping material and a restraining member, may be provided in a multilayer shape.
  • the secondary sound suppressing sheet is formed of, for example, a steel plate panel (consisting of two panels, an outer panel and an inner panel) and a lining. To at least a part of the steel plate panel of the door. From the viewpoint of workability, the secondary sound suppressing sheet is preferably attached to almost the entire surface of the inner panel on the indoor side (the surface near the lining), and from the viewpoint of reducing noise due to vibration. Preferably, it is further attached to the inner surface of the outer panel corresponding to the back surface of the speaker.
  • the door of the vehicle easily reaches a high temperature of about 80 ° C, and from such a viewpoint, it is preferable that the sheet-shaped vibration damping material does not slip off at a high temperature.
  • the sheet-shaped vibration damping material does not slip off at a high temperature.
  • 100 to 1000 parts by weight, more preferably 200 to 600 parts by weight, of calcium carbonate is added to 100 parts by weight of the resin composition for a vibration damping material.
  • the door panel has a curved shape, so that it has characteristics that it is easy to follow the door surface.
  • An example of such a restraining member is an aluminum thin plate having a thickness of 0.05-1. Omm (more preferably, 0.1-0.3 mm).
  • the thermoplastic resin has a good balance of chlorine and crystallinity, and the chlorine content of chlorinated paraffin, and can hardly flow even in a high temperature range. Therefore, the obtained vibration damping material can exhibit high vibration damping properties without impairing the self-maintaining property of the shape.
  • the loss coefficient of the vibration damping material is reduced by maintaining the temperature at which the loss tangent of the resin composition for a vibration damping material reaches a maximum value at room temperature or lower, by adding the inorganic filler.
  • the maximum temperature can be near room temperature, handling at low temperatures is excellent, and vibration damping at room temperature is also excellent.
  • a resin composition for a vibration damping material which has high vibration damping performance and does not flow or slip down even under conditions of high use temperature and can be suitably used. Can be done. For this reason, it can be suitably used especially for outdoor use under direct sunlight irradiation, home electric appliances or industrial equipment where a heat source is nearby.
  • the effect of the thirteenth invention becomes more remarkable and the tackiness is improved by the action of the chlorinated paraffin, which is suitable when the vibration damping material is bonded to the object and used. It is.
  • the vibration damping material has excellent handling properties at low temperatures and excellent vibration damping properties at room temperature. Therefore, various structures such as houses, condominiums, office buildings, etc., highways, viaducts, railway tracks, etc., various types of vehicles such as automobiles, railway vehicles, ships, etc., as well as household electrical equipment, OA equipment, etc. It can be suitably used to reduce the generated vibration and noise.
  • a constrained damping material including a damping material, a restraining member, and an adhesive resin layer can be provided.
  • the adhesive resin layer while maintaining the peak temperature of the vibration damping performance near room temperature, the adhesive resin layer can exhibit sufficient adhesive force even at a low temperature. It can be carried out.
  • the ninth invention migration of the plasticizer contained in the vibration damping resin layer and the adhesive resin layer can be reliably prevented, and the vibration damping performance and the adhesive performance can be maintained for a long time.
  • the twelfth to fourteenth inventions it is possible to install various types of audio equipment without any influence on the shape of the main body or the structure of the mounting member, and furthermore, it is possible to suppress the secondary sound which has not been considered in the past. By doing so, the sound quality can be greatly improved in that the original sound is faithfully reproduced.
  • CPE1 chlorinated polyethylene
  • CPE1 chlorinated polyethylene
  • Empala chlorinated paraffin
  • Salt Para 1 400 parts by weight using a roll kneader. And kneaded at 100 ° C., and the obtained resin composition was pressed at 120 ° C. to produce a sheet-shaped vibration damping material having a thickness of 1,000 ⁇ m.
  • CPE2 chlorinated polyethylene
  • salt para 1 600 parts by weight 100 parts by weight of chlorinated polyethylene (weight average molecular weight 1,000,000, chlorine content 40% by weight, hereinafter referred to as “CPE2”) produced by post-chlorination of high-density polyethylene by the water suspension method, and salt para 1 600 parts by weight were mixed and kneaded at 100 ° C. using a roll kneading machine, and the obtained resin composition was pressed at 120 ° C. to produce a 1000 ⁇ m thick sheet-like vibration damping material.
  • CPE2 chlorinated polyethylene
  • Chlorinated polyethylene Showa Denko “Eraslen 402NA”, weight-average molecular weight 200,000, chlorine content 40% by weight, hereinafter referred to as “CPE4”
  • CPE4 Chlorinated polyethylene
  • the measurement temperature was 50-50 °.
  • the measurement was performed in the range of C at a heating rate of 3 ° CZ.
  • the loss tangent (tan ⁇ ) was calculated by dividing the obtained loss expansion modulus (E ′′) by the storage tensile modulus ( ⁇ ′), and the peak value and peak temperature were determined.
  • Chlorinated polyethylene (manufactured by Showa Denko KK, trade name "Eraslen 401A", chlorine content 40% by weight), chlorinated paraffin (manufactured by Ajinomoto Fine Chemical Co., trade name “Empala K50”) Average carbon number 14, chlorine content 50% by weight), calcium carbonate (manufactured by Maruo Calcium Co., trade name “R heavy coal”, number average particle size 7.3 m) and thickener (manufactured by Arakawa Chemical Co., Ltd.) (“Alcon M90”) is supplied to a roll kneading machine, kneaded at 100 ° C, and the obtained resin composition for vibration damping material is pressed at 120 ° C to form a 1000 m thick sheet. A damping material was obtained.
  • This sheet-shaped vibration damping material was laminated on an SPC steel plate (thickness 0.3mm, modulus of longitudinal elasticity 250GPa) to obtain a vibration damping laminate.
  • the above sheet-shaped vibration damping material is supplied to a viscoelastic spectrometer (manufactured by Iwamoto Seisakusho), and the measurement frequency is 50 ⁇ , the sample length is 15mm, the strain is 20m, and the measurement temperature is 50-50 ° C. The measurement was performed at a heating rate of 3 ° CZ.
  • the loss tangent (tan ⁇ ) was calculated by dividing the obtained loss tensile modulus (E ") by the stored tensile modulus ( ⁇ '), and the peak temperature was determined.
  • the above vibration damping laminate was laminated on a base material (SPC steel plate, 1.6 mm thick X 20 mm X 250 mm) to obtain a sample for loss coefficient measurement. Attach the center of the sample to an electromagnetic vibrator (trade name: 512D, manufactured by EMIC), and measure the force and acceleration when vibrating with band noise every 3 ° C in the temperature range of 0-40 ° C. By measuring, a resonance curve in the central excitation method was prepared. The loss coefficient was calculated from the half width of the first and second order antiresonance peaks, and the maximum temperature of the loss coefficient was defined as the peak temperature. In addition, the loss coefficient at 20 ° C was determined.
  • the obtained 1000 m-thick sheet-shaped vibration damping material was bonded to SPC rice at 0 ° C and evaluated according to the following criteria.
  • Comparative Examples 3-6 the difference between the temperature at which the maximum value of the loss tangent and the temperature at which the maximum value of the loss coefficient is small is small. Comparative Example 3-6 is not preferred as a vibration damping material, for example, because of the fact that the material is easily handled at low temperatures.
  • Example 5-6 V and deviation also show the maximum value of the loss tangent and the maximum value of the loss coefficient.
  • the material can exhibit a high loss coefficient at room temperature and is suitable as a vibration damping material. (Example 7)
  • Chlorinated polyethylene product of Showa Denko "Erasuren 404B", chlorine content 40 weight 0/0, sintering crystallization degree 29JZg, hereinafter referred to as "CPE5"
  • CPE5 Chlorinated polyethylene
  • 200 parts by weight of a roll mill Was kneaded at 100 ° C., and the obtained resin composition was pressed at 120 ° C. to produce a sheet-shaped vibration damping material having a thickness of 1000 m.
  • Chlorinated polyethylene produced by post-chlorination of high-density polyethylene by the water suspension method
  • CPE6 crystallinity 10jZg, hereafter referred to as “CPE6”
  • Parts by weight were mixed and kneaded at 100 ° C. using a roll kneading machine, and the obtained resin composition was pressed at 120 ° C. to produce a sheet-shaped vibration damping material having a thickness of 1000 ⁇ m.
  • Chlorinated polyethylene product of Showa Denko "Erasuren 401A", a chlorine content of 40 weight 0/0, sintering crystallization degree lower than 2JZg, hereinafter referred to as "CPE7"
  • the mixture is kneaded at 100 ° C and pressed at 120 ° C to obtain a 1000 ⁇ m thick sheet.
  • a vibration damping material was prepared.
  • CPE8 chlorinated polyethylene
  • salt para 4 200 parts by weight of salt para 4 Using a kneader, the mixture was kneaded at 100 ° C., and the obtained resin composition was pressed at 120 ° C. to produce a sheet-shaped vibration damping material having a thickness of 1000 ⁇ m.
  • the measurement temperature was 50-50 °.
  • the measurement was performed in the range of C at a heating rate of 3 ° CZ.
  • the loss tangent (tan ⁇ ) was calculated by dividing the obtained loss expansion modulus (E ′′) by the storage tensile modulus ( ⁇ ′), and the peak value and peak temperature were determined.
  • the produced sheet-shaped vibration damping material was laminated on one surface of a stainless steel plate (0.5 mm thick) and bonded to obtain a restrained vibration damping material.
  • the obtained constrained damping material was cut into a 10 cm square, and the cut pieces were bonded to a gypsum board (15 mm thick) such that the sheet-shaped damping material side was in contact with the gypsum board.
  • the gypsum board to which the restraint-type damping material is bonded vertically supported stand still in a constant-temperature oven at 60 ° C, and the stainless steel plate part of the restraint-type damping material is less than 5 mm from the initial position. Measure the time required to fall down to the “slipping time” and evaluate the stability under high-temperature operating conditions.
  • the Tg after kneading was 15 ° C.
  • a vibration damping resin composition was prepared.
  • the soft aluminum foil had at least one surface subjected to a primer treatment, and a vibration damping resin layer was bonded to the treated surface.
  • Fig. 1 shows the restraint type damping material thus obtained.
  • (a) is a soft aluminum foil
  • (b) is a vibration damping resin layer
  • (c) is a PET film
  • (d) is an adhesive resin layer
  • (e) is a release paper.
  • Example 11 a PET film was not used, and the other operations were the same as in Example 11, except that the restrained vibration damping material (soft aluminum foil, vibration damping resin layer, adhesive resin layer, release paper) was used.
  • the restrained vibration damping material soft aluminum foil, vibration damping resin layer, adhesive resin layer, release paper
  • Example 11 as a pressure-sensitive adhesive sheet, a product name "Double Tack" manufactured by Sekisui Chemical
  • the sample was cut into a strap with a width of 20 mm, the cut piece was bonded to an SPC steel plate, and the obtained bonded product was tested at 23 ° C (room temperature adhesive force) using a universal tester (Orientec, model number UCT-5T). ) And 0 ° C (low temperature adhesive strength) and a 90 ° C peel test at 300mmZmin.
  • the sample was placed in an 80 ° C. oven for 2 weeks, and the liquid component was spotted on the adhesive surface and visually observed.
  • Table 4 shows the test results obtained.
  • a hard coating obtained by coating this damping resin composition at 150 ° C with a primer (SP 9.5), which also has the strength of a vinyl chloride vinyl acetate copolymer, on at least one side to a thickness of 30 m.
  • a 1.5 mm thick damping resin layer sandwiched between PET films was formed.
  • the vibration damping resin layer was bonded to the primer-coated surface of the constraining layer made of a soft aluminum foil.
  • a constrained vibration damping material (constrained layer Z vibration damping resin layer ZPET film Z adhesive resin layer) was obtained.
  • Example 13 a hard aluminum foil not subjected to primer coating was used as the hard aluminum foil, and otherwise the same operation as in Example 13 was performed to obtain a constrained vibration damping material.
  • the sample is cut into a strap with a width of 20 mm, and the constraining layer and the vibration damping resin layer are subjected to a tear test under a condition of 300 mmZmin at 23 ° C and a universal tester (Orientec, model number UCT-5T) at 23 ° C. Thereby, the interfacial adhesive strength was measured.
  • a sample cut in a strap shape with a width of 20 mm was attached to the inside of a steel pipe having a diameter of 150 mm, and the presence or absence of interface peeling was visually observed.
  • FIG. 2 shows an embodiment in which the sound quality improvement structure of an audio equipment according to the twelfth invention is applied to an in-vehicle audio equipment (car audio).
  • the sound quality improvement structure (1) is mounted on a speaker (9). And a secondary sound suppressing sheet (3) bonded to the door (2) of the vehicle body.
  • the door (2) has an outer steel plate panel (4), an inner steel plate panel (5) and a lining (6).
  • the secondary sound suppressing sheet (3) is As shown in Fig. 2, substantially the entire surface of the inner steel plate panel (5) except for the speaker (9) on the indoor side surface and substantially the entire outdoor surface of the lining (6) are omitted from the drawing. Affixed to the steel plate panel (4) and the surface corresponding to the back surface of the speaker (9).
  • the secondary sound suppressing sheet (3) is a laminate of a sheet-shaped damping material (7) made of a resin composition for a damping material and a restraining member (8) made of an aluminum thin plate, With the restraining member (8) facing outward (closer side), the adhesive force of the double-sided adhesive tape (not shown) is applied to the steel plate panels (4) (5) and the lining (6), You.
  • the force restraining member (8) which has curved portions such as irregularities on the indoor surface of the inner steel panel (5) and the outdoor surface of the lining (6), is made of an aluminum thin plate.
  • the secondary sound suppressing sheet (3) has a shape following property that can adhere to these curved portions.
  • the place where the secondary sound suppressing sheet (3) is attached is not limited to the above, and it may be attached to almost the entire indoor surface of the outer steel panel (4).
  • the inner steel panel (5) and the inner lining (6) there may be a place where the secondary sound suppressing sheet (3) is not attached if necessary.
  • the present invention is not limited to the door (2), but may be applied to a metal plate portion or a synthetic resin portion of a ceiling or a floor.
  • chlorinated polyethylene manufactured by Showa Denko KK, trade name "Eraslen 402NA", chlorine content 40% by weight
  • 250 parts by weight and chlorinated paraffin made of Ajinomoto Fine Technone earth, trade name "Empara 70", chlorine content 70% by weight, average carbon number 26, carbon number 20
  • Empara 70 chlorine content 70% by weight, average carbon number 26, carbon number 20
  • 50 99% by weight
  • 200 parts by weight and 400 parts by weight of calcium carbonate as a filler are kneaded with a roll kneading machine, and the obtained kneaded resin is pressed at 120 ° C to a thickness of 1.5 mm.
  • a sheet-shaped vibration damping material (7) was obtained. ⁇
  • the loss tangent (tan ⁇ ) of the fat-kneaded material was 2.7.
  • a 0.2 mm aluminum thin plate (8) (elastic modulus was 70 GPa) was adhered to the sheet-like vibration damping material (7) as a restraining member to produce a secondary sound suppressing sheet (3).
  • the loss coefficient of the secondary sound suppression sheet was 0.23.
  • Adhesion is performed using double-sided adhesive tape (trade name “Double Tack Tape # 5762” manufactured by Sekisui Chemical Co., Ltd.), and as shown in Fig.
  • a plasticizer migration prevention film made of 40 ⁇ m PET film (22) was interposed between the sheet-shaped vibration damping material (7) and the double-sided adhesive tape (21).
  • This secondary sound suppressing sheet (3) was attached to the inner steel panel (5) and the inner lining (6) of the door (2) of the actual vehicle (power roller fielder).
  • Example 15 Same as Example 15 except that the sheet-shaped vibration damping material was attached to the two sets of doors of the Corolla fielder in the same manner as in Example 15 and stood 1.7 m apart.
  • Comparative Example 11 A sheet in which the secondary sound suppressing sheet (3) was not bonded to the door (2) was referred to as Comparative Example 11.
  • Example 15 and Comparative Example 11 described above a microphone (12) was installed at a position corresponding to the driver's ear position of the driver's seat (11) as shown in Fig. 3, and Example 16 and Comparative Example 11 were compared.
  • a microphone (12) was installed at a position 0.4 m away from one speaker, and evaluation was performed using the following evaluation method 1 and evaluation method 2.
  • Volume reproducibility Evaluation of whether the ratio of the input volume recorded on the playback media (CD) to the output volume reproduced by the speakers is 1: 1. OdB, -5dB, -10 for each frequency dB, -15dB sound is input, and the slope of the relational expression between input volume and output volume is measured.
  • FIG. 4 shows the reproducibility of the volume and FIG. 5 shows the effect of reducing the overtone.
  • FIG. 7 shows the reproducibility of the sound volume and FIG. 8 shows the effect of reducing the overtone in the evaluation results of Example 16 and Comparative Example 12.
  • FIG. 4 (a) shows a general relationship between the input volume and the output volume.
  • the theoretical slope 1. If the playback volume increases as the volume of the sound increases (sound amplification), the slope becomes> 1, and if the playback volume decreases as the volume increases (the sound attenuates), the slope decreases. It becomes 1. For example, if the sound in the low frequency range is amplified by increasing the volume, and the sound in the middle frequency range is attenuated, the timbre changes due to the increase or decrease in the volume, which is not preferable.
  • FIG. 4 (b) shows the results of Example 15 and Comparative Example 11, and FIG. 7 shows the values of Example 16 and Comparative Example 12 obtained for each input signal frequency.
  • Fig. 5 shows the sound pressure levels of the overtones for each input signal frequency for Example 15 and Comparative Example 11, and Fig. 7 shows the sound pressure levels for Example 16 and Comparative Example 12.
  • Example 15 the harmonic component of Comparative Example 11 was significantly reduced (about 20 dB) in the low-frequency range (80-200 Hz) where the sound pressure level of the harmonic was the largest, and that of Example 16 Also, in the low frequency region (31.5-500 Hz) where the sound pressure level of the overtone of Comparative Example 12 is the largest, the overtone component is significantly reduced (about 10-20 dB). That is, it can be seen that, in the twelfth invention, the reproducibility of the original sound is enhanced particularly by the reduction of harmonics in the low frequency region. Therefore, it can be seen that, in the case of the present invention, the reproducibility of the original sound is enhanced particularly by the reduction of the harmonics in the low frequency region.
  • the present invention relates to various types of structures such as houses, condominiums, office buildings, and other various types of structures such as highways, viaducts, railway tracks, and various vehicles such as automobiles, railway vehicles, ships, and home electric appliances.
  • Restraint-type damping material suitably used to reduce vibration and noise generated in equipment, OA equipment, etc., a resin composition for damping material for manufacturing the same, and a vibration damping material comprising the same Provide materials.
  • FIG. 1 is a cross-sectional view illustrating a layer configuration of a restrained vibration damping material obtained in Example 11.
  • FIG. 2 is a view showing one embodiment of a sound quality improving structure of an audio device according to the present invention.
  • FIG. 3 is a view showing an actual vehicle evaluation device used for evaluating a sound quality improvement structure of an audio device according to the present invention.
  • FIG. 4 is a diagram showing the effect of the sound quality improving structure of an audio device according to the present invention.
  • FIG. 5 is a diagram showing another effect of the sound quality improving structure of the audio equipment according to the present invention.
  • FIG. 6 is a view showing a preferred embodiment of a sound quality improving structure of an audio device according to the present invention.
  • FIG. 7 is a diagram showing the effect of the sound quality improving structure of another audio device according to the present invention.
  • FIG. 8 is a diagram showing another effect of the sound quality improving structure of another audio device according to the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Vibration Prevention Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は損失正接が大きく高レベルの制振性を発現しつつも制振材料としての形状を自己保持しうる制振材料用樹脂組成物を提供することを課題とする。本発明により、20~70重量%の塩素基を有し重量平均分子量が40万以上である熱可塑性樹脂100重量部と、塩素含有量が30~75重量%であり炭素数が12~50である塩素化パラフィン100~1000重量部(好ましくは前記塩素化パラフィン中に、塩素含有量70重量%以上の塩素化パラフィンが10~70重量%含有される)とからなる制振材料用樹脂組成物が提供される。

Description

明 細 書
制振材料用樹脂組成物、制振材料、拘束型制振材およびその用途 技術分野
[0001] 本発明は、住宅、マンション、オフィスビル等の住宅建造物、高速道路、高架橋、鉄 道軌道等の各種構造物や、自動車、鉄道車両、船舶等の各種車両、更には家庭電 気機器、 OA機器等において発生する振動や騒音を低減するために好適に使用さ れる拘束型制振材、これを製造するための制振材料用榭脂組成物、および同組成 物からなる制振材料に関する。
背景技術
[0002] 従来、制振性の指標として、材料の貯蔵弾性係数 (Ε' )で損失弾性係数 (E")を除 した損失正接 (tan S =Ε"ΖΕ' )が使用されており、損失正接が大きいほど材料は 振動吸収性に優れている。一般にこの損失正接の値が 1を越えると優れた制振材料 とされるが、更なる制振性の向上が望まれており、損失正接が 3を越える材料が望ま れている。
[0003] 上記に関し、例えば特許文献 1には、極性基を有するポリマーに塩素化パラフィン や液状ゴムなどを配合してなる減衰材料が開示されている。
[0004] しかし、上記の減衰材料の損失正接 (tan δ )は、 1. 3-2. 8程度のものであり、必 ずしも充分な制振性を発揮できるものではな力つた。
[0005] また、本発明者の検討によれば、上記のような減衰材料にぉ 、ては、損失正接を向 上するために塩素化パラフィンや液状ゴムなどの配合量を増やした場合、得られる材 料の強度が不充分となり、例えば熱等制振材料としての形状を自己保持することが 困難となることがあった。
特許文献 1:特開平 11-80562号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、上記従来の制振材料の問題点に鑑み、高い制振性を発現する 振動減衰材料として好適な制振材料用榭脂組成物および制振材料、さらに上記制 振材料を含む拘束型制振材およびその用途を提供することにある。
課題を解決するための手段
[0007] 第 1発明は、塩素含有量が 20— 70重量%であり重量平均分子量が 40万以上であ る熱可塑性榭脂 100重量部と、塩素含有量が 30— 75重量%であり炭素数が 12— 5 0である塩素化パラフィン 100— 1000重量部、好ましくは 200— 1000重量部とから なる制振材料用榭脂組成物を提供するものである。
[0008] 第 2発明は、塩素含有量が 20— 70重量%の熱可塑性榭脂 100重量部と、塩素含 有量が 30— 75重量%であり、数平均炭素数が 12— 50である塩素化パラフィン 200 一 1000重量部と、無機質充填剤 300— 1000重量部からなる制振材料用榭脂組成 物を提供するものである。
[0009] 第 3発明は、塩素含有量が 20— 70重量%であり DSC法によって測定された結晶 化度が 5jZg以上である熱可塑性榭脂と、塩素含有量が 30— 75重量%であり炭素 数が 12— 50である塩素化パラフィンとからなる割振材料用榭脂組成物を提供するも のである。
[0010] 第 4発明は、第 1一 3発明において、前記塩素化パラフィン中に、塩素含有量 70重 量%以上の塩素化パラフィンが 10— 70重量%含有される制振材料用榭脂組成物を 提供するものである。
[0011] 第 5発明は、第 1一 3発明のいずれかの制振材料用榭脂組成物力もなる制振材料 を提供するものである。
[0012] 第 6発明は、第 5発明による制振材料と、その一面に積層された拘束部材からなる 制振積層体を提供するものである。
[0013] 第 7発明は、第 5発明の制振材料と、その一面に積層された拘束部材、および上記 制振材料の他面に積層された粘着榭脂層からなる拘束型制振材を提供するもので ある。
[0014] 第 8発明は、第 7発明において、制振榭脂層のガラス転移温度 (以下「Tg」とする)と 粘着榭脂層の Tgとの差が 10°C以上である拘束型制振材を提供するものである。
[0015] 第 9発明は、第 7発明において、制振榭脂層と粘着榭脂層の間にこれら層を分離 するように可塑剤移行阻止フィルムが介在され、同フィルムの SP値と制振榭脂層お よび粘着榭脂層の構成成分のうち融点が 80°C以下である全ての成分の SP値との差 力 以上である拘束型制振材を提供するものである。
[0016] 第 10発明は、第 6発明において、拘束層の少なくとも制振榭脂側の面にプライマー 力 Sコーティングされている拘束型制振材を提供するものである。
[0017] 第 11発明は、第 10発明による拘束型制振材が、凹凸面のある振動体表面に貼り 合わせられて!/ヽる制振構造を提供するものである。
[0018] 第 12発明は、第 6発明の制振積層体力もなる二次音抑制材料が、音響機器の周 辺機器の少なくとも一部に、上記制振積層体を構成する制振材料にて貼り合わされ
T ヽる音響機器の音質改善構造を提供するものである。
[0019] 第 13発明は、第 12発明において、制振材料が、可塑剤移行防止フィルムを介して
、両面粘着テープにより、音響機器の周辺機器に貼り合わされている音響機器の音 質改善構造を提供するものである。
[0020] 第 14発明は、第 12発明において、上記制振材料が損失正接 (Tan δ )のピーク値 が 2. 5以上である制振材料用榭脂組成物力 なり、拘束部材が縦弾性係数 lGPa 以上のものである音響機器の音質改善構造を提供するものである。
[0021] まず、第 1発明について、詳細に説明をする。
[0022] 第 1発明においては、塩素含有量 20— 70重量%の熱可塑性榭脂が用いられる。
上記熱可塑性榭脂としては、例えば塩素化ポリエチレン、ポリ塩化ビニル、塩素化ポ リ塩化ビニル、塩化ビニル-酢酸ビニル共重合体などの塩素含有熱可塑性榭脂が挙 げられる。
[0023] 上記熱可塑性榭脂の塩素含有量が 20重量%未満であると、熱可塑性榭脂が結晶 し易くなるため、貯蔵弾性係数 (Ε' )が大きくなり、損失正接 (tan δ )が小さくなりすぎ て制振性が低下し易くなる。塩素含有量が 70重量%を越えると、分子間力が強くなり すぎて、貯蔵弾性係数 (Ε' )が大きくなり、損失正接 (tan δ )が小さくなつて制振性が 低下することがある。したがって、上記熱可塑性榭脂の塩素含有量は 20— 70重量 %であり、好ましくは 30— 50重量%である。
[0024] 上記熱可塑性榭脂は、塩素以外の置換基が含まれたものであってもよ!、。塩素以 外の置換基としては、例えば、シァノ基、水酸基、ァセチル基、メチル基、ェチル基、 臭素原子、フッ素原子等が挙げられる。なお、塩素以外の置換基の含有量は、多す ぎると制振性が不充分になることがあるので、 5重量%以下であることが好ましい。
[0025] 第 1発明における上記熱可塑性榭脂の重量平均分子量は 40万以上である。重量 平均分子量が 40万未満であると、制振材としての形状を自己保持することが困難に なり易い。重量平均分子量の上限は特にないが、 1000万を越えると成形性が低下し 制振材料の作製が困難になることがある。
[0026] 第 1発明における塩素化パラフィンの塩素含有量は 30— 75重量%である。塩素含 有量が上記範囲外であると上記熱塑性榭脂との相溶性が悪くなり制振性が低下する ことがある。
[0027] 上記塩素化パラフィンの平均炭素数は 12— 50、好ましくは 14一 35である。炭素数 が 12未満であるとブリードアウトによって制振性が経時的に低下し易くなり、炭素数 が 50を越えると、粘度が高くなりすぎて取り扱いが困難になることがある。
[0028] 上記塩素化パラフィンは、単一種のものが単独で用いられてもよ 、し、上記の範囲 内で塩素含有量または炭素数が異なる 2種以上の塩素化パラフィンが併用されても よい。
[0029] 制振材料用榭脂組成物は、例えば、塩素含有量 20— 70重量%の塩素系高分子 材料と、炭素数 10— 50で且つ塩素含有量 30— 70重量%の少なくとも 1種の塩素化 ノ ラフィンとからなる榭脂組成物が好ましぐまた、塩素含有量 20— 70重量%の塩素 系高分子材料と、炭素数 12— 16で且つ塩素含有率 30— 75重量%の第 1塩素化パ ラフィンおよび炭素数 20— 50で且つ塩素含有率 30— 75重量%の第 2塩素化パラ フィンの混合物とからなる榭脂組成物が特に好ましい。
[0030] 上述のように炭素数が互いに異なる 2種の塩素化パラフィンを用いることにより、損 失正接 (Tan δ )のピーク値をより上昇させ、すぐれた制振改善性を得ることができる
[0031] 上記混合物において、第 2塩素化パラフィンの割合を全塩素化パラフィン中 40重 量%以上とすると、損失正接 (Tan δ )のピーク値をより上昇させるとともに長期に亘 つて維持することができ、且つ、塩素化パラフィンの制振材料力ものブリードアウトを 抑制させることができるので好まし 、。 [0032] 第 1発明の制振材料用榭脂組成物は、塩素化パラフィンの割合が 100重量部未満 であると、損失正接 (tan δ )の高い優れた制振性が得られず、 1000重量部を越える と、同組成物をシート状、フィルム状等の制振材料として成形した際に、その形状を 自己保持することが難しくなる。したがって、塩素化パラフィンの割合は熱可塑性榭 月旨 100重量咅に対し、 100— 1000重量咅であり、好ましくは 200— 800重量咅であ る。
[0033] 第 1発明において、上記熱可塑性榭脂の塩素含有量と塩素化パラフィンの塩素含 有量との差の絶対値 [ I (熱可塑性榭脂の塩素含有量) - (塩素化パラフィンの塩素 含有量) I ]は好ましくは 20重量%以下、より好ましくは 15重量%以下である。この差 の絶対値が大きすぎると、熱可塑性榭脂と塩素化パラフィンとの相溶性が不十分に なることがある。
[0034] 上記制振材料用榭脂組成物には必要に応じて塩素化パラフィン以外の可塑剤が 添加されてもよい。特に制振材料用榭脂組成物が硬過ぎる場合、可塑剤を添加する のが好ましい。塩素化パラフィン以外の可塑剤としては、フタル酸エステル、アジピン 酸エステル、リン酸エステル、エポキシ化ポリブタジエン、エポキシ化脂肪酸エステル 、トリメリット酸エステル、ピロメリット酸エステル、セバチン酸エステル、クェン酸エステ ル、 (メタ)アクリル酸オリゴマー、 (メタ)アクリル酸エステルオリゴマー、メタクリル酸ェ ステルなどが好ましい。塩素化パラフィンのブリードアウトを抑制するには、フタル酸 系可塑剤が好ましい。これらは単独で用いても、 2種類以上組み合わせ用いてもよい 。フタル酸系可塑剤以外の可塑剤を用いる場合には、これにフタル酸系可塑剤と併 用するのが好ましい。
[0035] 可塑剤の配合量は、制振材料用榭脂組成物 100重量部に対し 200重量部以下、 好ましくは 180重量部以下、より好ましくは 100重量部以下である。この範囲でブリー ドアウトが抑制でき、制振性改善効果も発現できる。
[0036] 第 1発明の制振材料用榭脂組成物は、発明の効果を損なわない限り、成形性、安 定性、制振性などを向上させる目的で、他の添加剤が配合されたものでもよい。他の 添加剤としては、例えば、有機錫化合物や金属石鹼などの熱安定剤、フエノール系 酸化防止剤、ヒンダードアミン系光安定剤、ベンゾフエノン系、トリァゾール系等の紫 外線吸収剤等が挙げられる。
[0037] 第 2発明について説明をする。
[0038] 第 2発明による制振材料用榭脂組成物は、塩素含有量が 20— 70重量%の熱可塑 性榭脂 100重量部と、塩素含有量が 30— 75重量%であり、数平均炭素数が 12— 5 0である塩素化パラフィン 200— 1000重量部と、無機質充填剤 300— 1000重量部 力もなるものである。
[0039] 上記熱可塑性榭脂の重量平均分子量は特に限定されな!、が、重量平均分子量が 40万未満であると、無機質充填材の量が多くないと制振材としての形状を自己保持 することが困難になり易い。重量平均分子量の上限は特にないが、 1000万を越える と成形性が低下し制振材料の作製が困難になることがある。
[0040] 上記塩素化パラフィンとしては第 1発明と同様のものが使用される。
[0041] 上記無機質充填剤としては、熱可塑性榭脂の成形の際に使用されている従来から 公知の任意の無機質充填剤が使用可能であり、例えば、炭酸カルシウム、マイ力、タ ルク、シリカ、アルミナ、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、タレ 一、ゼォライト、ホウ酸亜鉛等が挙げられ、制振性の発現しやすい炭酸カルシウムお よびマイ力が好ましい。
[0042] 上記無機質充填剤の数平均粒子径は、特に限定されないが、熱可塑性榭脂に分 散しやすく制振性の発現しやすい 0. 1— 100 mが好ましぐより好ましくは 0. 5— 5 0 μ mである。
[0043] 上記無機質充填剤の添加量は、熱可塑性榭脂 100重量部に対し 300重量部未満 であると、制振材料用榭脂組成物の損失係数が最大値となる温度を十分に高くする ことができず、 1000重量部を超えると制振材料用榭脂組成物が固くなりすぎ取り扱 いに《なったり、制振性能が低下するので、熱可塑性榭脂 100重量部に対し 300— 1000重量部であり、好ましくは 400— 900重量部である。
[0044] その他の構成は第 1発明と同じである。
[0045] 第 3発明について説明をする。
[0046] 第 3発明の制振材料用榭脂組成物を構成する熱可塑性榭脂は、 DSC法 (差走査 熱量測定法)によって測定された結晶化度が 5jZg以上であるものである。結晶化度 が 5jZg未満であると、高 、使用温度にぉ 、て榭脂組成物が流動を起こしやすくなる 。上記結晶化度の上限はないが、結晶化度が高くなりすぎると貯蔵弾性率が高くなり 損失正接の値力 、さくなつて制振性能が低下する恐れがあるため、結晶化度は 50J Zg以下であることが好まし 、。
[0047] その他の構成は第 1発明と同じである。
[0048] 第 4発明は、第 1一 3発明において、前記塩素化パラフィン中に、塩素含有量 70重 量%以上の塩素化パラフィンが 10— 70重量%含有される制振材料用榭脂組成物を 提供する。
[0049] 上記塩素化パラフィンの全量中に、塩素含有量 70重量%以上の塩素化パラフィン 力 S10— 70重量%含有されると、得られる制振材料の粘着性が向上する。粘着性が 向上すると、制振材料を対象物に貼り合わせて使用する際に好適である。
[0050] 上記塩素化パラフィンの全量中における、塩素含有量 70重量%以上の塩素化パ ラフィンの割合が 10重量%未満であると、長期間使用するのに必要な粘着性が不充 分になることがあり、この割合が 70重量%を超えると粘着性が強くなりすぎて、取り扱 いが困難になることがある。
[0051] 第 5発明は、第 1一 3発明のいずれかの制振材料用榭脂組成物力もなる制振材料 を提供する。
[0052] 上記制振材料は、上記制振材料用榭脂組成物を、例えば押出成形法、プレス成 型法、ロール成型法、射出成型法などを用いて、シート状、テープ状、フィルム状、若 しくはその他の適宜の形状に成型されて得られる。これらの制振材料は単層のみな らず複層構成でもよい。
[0053] 制振材料の形状は特に限定されず、住宅、マンション、オフィスビル等の住宅建造 物、高速道路、高架橋、鉄道軌道等の各種構造物、自動車、鉄道車両、船舶等の各 種車両、家庭電気機器、 OA機器等において一般に使用されている形状であればよ ぐ例えば、シート状、テープ状、フィルム状等の形状が挙げられる。
[0054] 第 6発明は、第 5発明による制振材料と、その一面に積層された拘束部材からなる 制振積層体を提供する。
[0055] 上記拘束部材としては、縦弾性係数が lGPa以上であるものが好ま 、。制振材料 を構成する熱可塑性榭脂より縦弾性係数が大き ヽ材料が好ましく、十分な制振効果 を奏するためには、 lOGPa以上であることがより好まし 、。
[0056] 上記拘束部材としては、例えば、鉛、鉄、鋼材 (ステンレス鋼を含む)、アルミニウム( アルミニウム合金を含む)等の金属材料;コンクリート、石膏ボード、大理石、スレート 板、砂板、ガラス等の無機材料;ポリカーボネート、ポリサルフフオン等のビスフエノー ル A変性榭脂;ポリ (メタ)アタリレートなどのアクリル榭脂;ポリ塩ィ匕ビュル系榭脂、塩 素化ポリ塩ィ匕ビ二ル系榭脂等の塩素系榭脂;アクリロニトリル ブタジエン スチレン 系ゴム等のゴム系材料;ポリエチレンテレフタレート、ポリエチレンナフタレート等の飽 和ポリエステル;スチレン系榭脂;ポリエチレン、ポリプロピレン等のォレフィン系榭脂; ナイロン 6、ナイロン 66、ァラミド (芳香族ポリアミド)等のポリアミド系榭脂;メラミン系榭 脂;ポリイミド系榭脂;ウレタン系榭脂;ジシクロペンタジェン、ベークライト等の熱硬化 性榭脂;木、紙等のセルロース系材料;キチン、キトサンなど力もなる板材またはシー トが挙げられる。
[0057] 上記拘束部材は単独で用いても、 2以上の組み合わせで用いてもょ 、。拘束部材 はガラス繊維、カーボン繊維、液晶などで補強されていてもよぐ互いに異なる材料 力もなる複合板であってもよぐさらに、これらの材料力もなる発泡体であってもよい。
[0058] 上記拘束部材が防水性を有するものであると、防音コンベアが屋外などで使用され る場合に耐水性能が向上する点で好適である。
[0059] 上記拘束部材の形状は、好ましくはシート状である。金属製の拘束部材の場合に は、メツキや塗装等の防鲭処理を施すのが好ましい。また、拘束部材の表面に凹凸 を設ける、孔を開ける、拘束部材を無機材にする、などの方法が採られても良い。孔 を開ける場合、孔径は、孔が汚れなどで塞がれないようにまた孔内に水が浸透しない ように、直径 3— 20mm程度にするのがよい。拘束部材が振動していても、拘束部材 の縦弾性係数があまり低下しなければ、表面の凹凸ゃ孔開けなどで防音効果は増 す傾向にある。
[0060] シート状制振材料および拘束部材の厚さは任意であってよい。シート状制振材料 の好ましい厚みは 0. 1— 5mmである。拘束部材の好ましい厚みは 0. 05— 5mmで あり、縦弾性係数 lOGPa以上の硬い拘束部材の厚みは、好ましくは 0. 05— 2mm である。
[0061] この制振材料用榭脂組成物カゝら製造された制振材料は、制振材料としての形状を 保持しながら、且つ熱可塑性榭脂の内部回転により振動エネルギーを熱エネルギー に効率よく変換することができ高い制振性を有している。また、これは、透明性が優れ ており且つ屋外で使用しても紫外線等により塩素化パラフィンのブリードや凝集が発 生しにくく透明性が低下しにく 、。
[0062] 第 7発明は、第 5発明の制振材料と、その一面に積層された拘束部材、および上記 制振材料の他面に積層された粘着榭脂層からなる拘束型制振材を提供する。
[0063] 制振材料および拘束部材は第 6発明で説明したものであってょ 、。
[0064] 粘着榭脂層としてはアクリル系、ポリオレフイン系、ブチラール系、ウレタン系、ゴム 系、シリコーン系等をベースとする榭脂組成物力もなるものが好ましい。
[0065] 粘着榭脂層の粘着力 ίお IS Z 0237準拠の 180°Cピール試験において好ましくは 2 NZcm以上、より好ましくは 5NZcmである。粘着榭脂層の厚みは損失係数(( r? ) のピーク温度に与える影響を少なくするために、好ましくは 2mm以下、より好ましくは 1. 5mm以下(?ある。
[0066] 第 8発明について説明をする。
[0067] 制振材の性能指標として用いられる損失正接 (tan δ )のピークを室温付近に出現 させようとすると、制振材榭脂のガラス転移温度 (以下「Tg」とする)も室温付近になつ てしまうため、低温では充分な粘着力を得ることができず、例えば冬場の屋外では施 ェできな!/ヽと!、う問題があった。
[0068] 本発明者らは、この問題を解決すべく検討を重ねた結果、制振榭脂層にこれよりガ ラス転移温度の低 、粘着榭脂層を設けることによって、制振性能のピーク温度を室 温付近に保ちつつ、低温でも高 、粘着性を得ることがゎカゝつた。
[0069] 第 8発明は、第 7発明において、制振榭脂層の Tgと粘着榭脂層の Tgとの差が 10 °C以上である拘束型制振材を提供する。
[0070] 制振榭脂層の Tgと粘着榭脂層の Tgとの差が 10°C未満であると、粘着榭脂層が低 温で充分な粘着力を発現することができな 、。この Tg差は 15°C以上であることが好 ましぐ 20°C以上であることがさらに好ましい。 [0071] 第 9発明は、第 7発明において、制振榭脂層と粘着榭脂層の間にこれら層を分離 するように可塑剤移行阻止フィルムが介在され、同フィルムの溶解度パラメーター(以 下 SP値と記す)と制振榭脂層および粘着榭脂層の構成成分のうち融点が 80°C以下 である全ての成分の SP値との差が 1以上である拘束型制振材を提供する。
[0072] 可塑剤移行阻止フィルムの SP値と制振榭脂層および粘着榭脂層中の液状成分の SP値との差が 1未満であると、制振榭脂層および粘着榭脂層中に含まれる可塑剤が 移行する恐れがある。 SP値の差は好ましくは 1. 5以上であり、さらに好ましくは 1. 8 以上である。このような SP値を有するフィルムとしては PETフィルムが好ましい。可塑 剤移行阻止フィルムの厚さは好ましくは 5 μ m以上であり、さらに好ましくは 12 μ m以 上である。
[0073] 第 7—第 9発明による拘束型制振材は、第 2の発明の制振材料用榭脂組成物を用 いたときに、とりわけ効果的である。
[0074] 第 10および 11発明につ 、て説明をする。
[0075] 拘束層と制振榭脂層の間の接着強度が弱いと、制振材を凹凸面のある振動体に 貼り付けた際に拘束層と制振榭脂層の間の界面で剥離が起きてしまうことがある。制 振材を凹凸面のある振動体に貼り付けても拘束層と制振榭脂層の間の界面で剥離 が起きる恐れのな 、拘束型制振材が望まれて 、る。
[0076] 第 10発明は、第 6発明において、拘束層の少なくとも制振榭脂側の面にプライマー 力 Sコーティングされて 、る拘束型制振材を提供する。
[0077] プライマーコーティングは拘束層の少なくとも制振榭脂側の面に施される。プライマ 一は、アクリル系、ポリエステル系、ポリ塩ィ匕ビニル系、ブチラール系、塩化ビニルー 酢酸ビニノレ共重合体系、セノレロース系、ゴム系、エポキシ系、ウレタン系、メラミン系、 シリコン系などのプライマーであってよい。プライマーの溶解度パラメーター(SP値)と 制振榭脂層の SP値との差は 1. 5以下であることが望ましい。この SP差が大きすぎる と拘束層と制振榭脂層の間に充分な接着強度を発現することができない。
[0078] 第 11発明は、第 10発明による拘束型制振材が、凹凸面のある振動体表面に貼り 合わせられて!/ゝる制振構造を提供する。
[0079] 第 11発明において拘束部材としては、例えば、厚みが 0. 05-1. Omm (より好まし くは厚みが 0. 1-0. 3mm)のアルミニウム製薄板が例示される。
[0080] 第 12発明について説明をする。
[0081] 近年、車載用音響機器については高級化 ·高性能化が進んでいるが、これを搭載 した自動車の振動および車載用音響機器からの原音に基づく(例えば、車内各部に 当たって生じる)二次音の影響により、車内の乗員は、音響機器が本来持っている音 質よりも低下した音を聞力されていることになる。そこで、実開平 5— 9095号公報には 、その音質を改善する構造として、スピーカを取り付けるブラケットを制振材で置き換 免ることが提案されている。
[0082] 上記特許公報記載の音質改善構造では、スピーカの取付け部材として所定のブラ ケットを使用しないものには適用できないという問題がある。また、減衰性に優れた制 振材を使用することにより、振動に伴うノイズは改良されるものの、車載用音響機器か らの原音に基づく二次音 (例えば倍音)等の抑制には十分な効果を奏さず、必ずしも 車載用音響機器の音質改善に十分寄与して 、な 、。
[0083] 各種音響機器の音質を二次音を抑制することによって改善する音響機器の音質改 善構造が望まれている。
[0084] 第 12発明は、第 6発明の制振積層体力もなる二次音抑制材料が、音響機器の周 辺機器の少なくとも一部に、上記制振積層体を構成する制振材料にて貼り合わされ て ヽる音響機器の音質改善構造を提供する。
[0085] 第 13発明は、第 12発明において、制振材料が、可塑剤移行防止フィルムを介して 、両面粘着テープにより、音響機器の周辺機器に貼り合わされている音響機器の音 質改善構造を提供する。
[0086] 第 14発明は、第 12発明において、上記積層体を構成する制振材料が損失正接( Tan δ )のピーク値が 2. 5以上である制振材料用榭脂組成物力 なり、拘束部材が 縦弾性係数 lGPa以上のものである音響機器の音質改善構造を提供する。
[0087] 第 12発明一第 14発明において周辺機器とは、車載用音響機器の場合のスピーカ が取り付けられるドア、床、天井、ボンネット、トランク、フェンダー、ピラー、リアマウン ト、ダッシュボードなどの機器を意味し、室内用音響機器の場合の機器収納用ボード 、棚、ラックその他の周辺の機器を意味する。 [0088] 制振材料は第 5発明につ 、て説明したものであってよ!/、。拘束部材は第 6発明に っ 、て説明したものであってよ 、。
[0089] 好ましい制振材料は、シート状であって長さ 250mm X幅 20mm X厚み 1. 6mmの
SPC鋼鈑の片面全面に貼合した状態で測定された 20°Cにおける JIS G 0602「中 央支持定常加振法」に準拠して測定された損失係数が 0. 15以上であることが好まし い。
[0090] 制振材料用榭脂組成物は、第 1一第 3発明において、損失正接 (Tan δ )のピーク 値が 100Hzで測定された値で 2. 5以上である榭脂からなるものが好ましい。
[0091] 制振材料用榭脂組成物から材振材料の作製方法は、第 1発明と同様であり、得ら れたシートを所要サイズにカットして音響機器の音質改善構造の構成に供する。
[0092] シート状制振材料および拘束部材の厚みは任意であってよ!、が、薄すぎると音質 改善性が劣り、厚すぎると重量が重くなり施工性が悪くなるので、シート状制振材料 の厚みは好ましくは 100 μ m— 10mm、拘束部材の厚みは好ましくは 50 μ m— 10m mである。縦弾性係数 lOOGPa以上の硬い拘束部材の場合は、厚みは好ましくは 50 μ m— 2mmで to 。
[0093] 塩素化パラフィンを含む榭脂組成物は適度な粘着性を有し、二次音抑制シートを 貼り合わせる際の施工性が良い。粘着テープなどを使用して二次音抑制シートを固 定するようにしてももちろんよ 、。
[0094] 施工性を良くするための構成としては、制振材料 (の拘束部材が貼り合わせられて いない方の面全面)に、可塑剤移行防止フィルムを介して両面粘着テープが貼り付 けられていることが好ましい。
[0095] 可塑剤移行防止フィルムは、塩素化パラフィン等の可塑剤の SP値から 1以上離れ ている熱可塑性フィルム(例えば PETフィルム)とされ、その厚みは、厚すぎると施工 性が損なわれ、薄すぎると可塑剤移行の効果が損なわれることから、 5— 100 mが 好ましい。
[0096] 両面粘着テープは、例えば、不織布を基材とするアクリル系粘着剤とされ、その粘 着力は、 5NZcm以上 (JIS Z 0237準拠)が好ましぐその厚みは、厚すぎると制振 材料の施工性が損なわれることから、 0. 2mm以下が好ましい。 [0097] シート状制振材料に可塑剤移行防止フィルムを介して両面粘着テープが貼り付け られていること〖こより、施工性が良くなるとともに、シート状制振材料の可塑剤の移行 が防止され、長期にわたって音質改善効果を維持することができる。
[0098] 第 12発明による音響機器の音質改善構造を製作する方法は任意であってよいが、 施工性を良くするためには、予めシート状制振材料と拘束部材を貼合するとともに、 シート状制振材料の拘束部材が貼り合わせられて 、な 、方の面全面に可塑剤移行 防止フィルムを介して両面粘着テープを貼合して二次音抑制シートを予め大きめに 作製しておき、音響機器本体またはその周辺機器の面積に応じてはさみなどでカット した後、シート状制振材料が直接または両面粘着テープを介して音響機器本体また はその周辺機器に密着するように貼付けるのがよい。シート状制振材料および拘束 部材カもなる二次音抑制シートを多層状に設置してもよい。
[0099] 車載用音響機器の音質改善構造に適用される場合には、二次音抑制シートは、例 えば、鋼板パネル(外パネルおよび内パネルの 2枚のパネルからなる)および内張か らなるドアの少なくとも鋼板パネルの少なくとも一部に貼り合わせられる。二次音抑制 シートは、施工性の面からは、好ましくは内パネルの室内側の面(内張に近い側の面 )の略全面に貼り付けられ、振動に伴うノイズを削減する面からは、好ましくは、さらに スピーカの裏面に対応する外パネル内側面に貼り付けられる。この場合に、自動車 のドアは、容易に 80°C程度の高温となることから、シート状制振材料は、高温時にず れ落ちないようにされていることが好ましぐこのような観点から、例えば、炭酸カルシ ゥムを制振材料用榭脂組成物 100重量部に対して、 100— 1000重量部、さらに好 ましくは、 200— 600重量部充填されていることが好ましい。さらにまた、拘束部材とし ては、ドアのパネルが曲線状であることから、ドア面に沿いやすい特性を有しているも のとするために、縦弾性係数が 1一 lOOGPaであることが好ましぐこのような拘束部 材としては、例えば、厚みが 0. 05-1. Omm (より好ましくは厚みが 0. 1-0. 3mm) のアルミニウム製薄板が例示される。 発明の効果
[0100] 第 1発明によれば、熱可塑性榭脂の塩素と結晶化度、および塩素化パラフィンの塩 素含有量のバランスが良好であり、高温域においても流動しにくい性能が得られる。 したがって、これから得られる制振材料は、形状の自己保特性を損なうことなぐ高い 制振性を発現することができる。
[0101] 第 2発明によれば、無機充填材の添カ卩により、制振材料用榭脂組成物の損失正接 が最大値となる温度を室温以下に保ちながら、制振材の損失係数が最大値となる温 度を室温付近にすることができ、低温での取り扱い性が優れており、室温での制振性 も優れている。
[0102] 第 3発明によれば、高い制振性能を有し、かつ使用温度が高い条件下でも流動や ずり落ちを起こさず好適に利用可能な制振材料用榭脂組成物を提供することができ る。このため、特に直射日光照射下での屋外用途や、熱源が近くにあるような家電装 品や産業機器などの用途にお!ヽて好適に利用できる。
[0103] 第 4発明によれば、塩素化パラフィンの働きにより、第 1一 3発明の効果が更に顕著 になると共に粘着性が向上し制振材料を対象物に貼り合わせて使用する際に好適 である。
[0104] 第 5および 6発明によれば、制振材料は、低温での取り扱!/、性が優れており、室温 での制振性も優れている。従って、住宅、マンション、オフィスビル等の住宅建造物、 高速道路、高架橋、鉄道軌道等の各種構造物や、自動車、鉄道車両、船舶等の各 種車両、更には家庭電気機器、 OA機器等において発生ずる振動や騒音を低減す るために好適に使用できる。
[0105] 第 7発明によれば、制振材料と拘束部材と粘着榭脂層からなる拘束型制振材を提 供することができる。
[0106] 第 8発明によれば、制振性能のピーク温度を室温付近に保ちつつ、粘着榭脂層が 低温でも充分な粘着力を発現することができ、例えば冬場の屋外でも支障なく施工 を行うことができる。
[0107] 第 9発明によれば、制振榭脂層および粘着榭脂層中に含まれる可塑剤の移行を確 実に防ぐことができ、制振性能および粘着性能を長く維持することができる。
[0108] 第 10発明によれば、拘束型制振材を凹凸面のある振動体に貼り付けても拘束層と 制振榭脂層の間の界面で剥離が起きるのを確実に防ぐことができる。
[0109] 第 11発明によれば、種々の振動体における振動や騒音を効果的に低減することが できる。
[0110] 第 12— 14発明によると、各種音響機器の本体形状や取付け部材の構造に全く影 響されずに設置することが可能であり、しかも、従来考慮されていなかった二次音を 抑制することによって、原音を忠実に再生するという点で、音質を大幅に改善すること ができる。
発明を実施するための最良の形態
[0111] 以下に実施例および比較例を示すことにより、本発明を具体的に説明する。尚、本 発明は下記実施例に限定されるものではない。
[0112] (実施例 1)
塩素化ポリエチレン(昭和電工社製「エラスレン 351MA」、重量平均分子量 50万、 塩素含有量 35重量%、以下「CPE1」とする) 100重量部と、塩素化パラフィン [味の 素ファインケミカル社製『ェンパラ K50」、塩素含有量 50重量%、平均炭素数 = 14 ( 炭素数 12— 50のものを 99%以上含む)、以下「塩パラ 1」とする] 400重量部とをロー ル練り機を用いて 100°Cで混練し、得られた榭脂組成物を 120°Cでプレスして厚さ 1 000 μ mのシート状制振材料を作製した。
[0113] (実施例 2)
CPE1を 100重量部、塩パラ 1を 400重量部、および塩素化パラフィン [味の素ファ インケミカル社製「ェンパラ 70」、塩素含有量 70重量%、平均炭素数 = 26 (炭素数 1 2— 50のものを 99%以上含む)、以下「塩パラ 2」とする] 300重量部を、ロール練り機 を使用して 100°Cで混練し、得られた榭脂組成物を 120°Cでプレスして厚さ 1000 μ mのシート状制振材料を作製した。
[0114] (実施例 3)
高密度ポリエチレンを水懸濁法にて後塩素化して作製した塩素化ポリエチレン (重 量平均分子量 100万、塩素含有量 40重量%、以下「CPE2」とする) 100重量部と、 塩パラ 1を 600重量部配合して、ロール練り機を用いて 100°Cで混練し、得られた榭 脂組成物を 120°Cでプレスして厚さ 1000 μ mのシート状制振材料を作製した。
[0115] (実施例 4)
CPE2を 100重量部、塩パラ 1を 600重量部、および塩パラ 2を 200重量部配合し て、ロール練り機を用いて 100°Cで混練し得られた榭脂組成物を 120°Cでプレスして 厚さ 1000 μ mのシート状制振材料を作製した。
[0116] (比較例 1)
塩素化ポリエチレン(昭和電工社製「エラスレン 401 A」、重量平均分子量 30万、塩 素含有量 40重量%、以下「CPE3」とする) 100重量部と、塩素化パラフィン E東ソー 社製「トヨバラックス」、塩素含有量 40重量%、平均炭素数 = 26 (炭素数 12— 50のも のを 99%以上含む)、以下「塩パラ 3」とする」 100重量部とを、ロール練り機を使用し て 100°Cで混練し、得られた榭脂組成物を 120°Cでプレスして厚さ 1000 μ mのシー ト状制振材料を作製した。
[0117] (比較例 2)
塩素化ポリエチレン(昭和電工社製「エラスレン 402NA」、重量平均分子量 20万、 塩素含有量 40重量%、以下「CPE4」とする) 100重皇部と、塩パラ 1を 400重量部 配合して、ロール練り機を使用して 100°Cで混練し得られた榭脂組成物を 120°Cで プレスして厚さ 1000 mのシート状制振材料を作製したが、シート形状を保持したま まプレス力 取り出すことはできず、制振材料としての形状を自己保持することはでき なかった。
[0118] 実施例 1一 4および比較例 1で得られた制振材料について損失正接 (tan δ )のピ ーク値とピーク温度、および粘着性を以下の方法で評価した。評価結果を表 1に示 す。(損失正接)
作製したシート状制振材料にっ ヽて、粘弾性スぺクトロメーク (岩本製作所社製)を 用いて、測定周波数 50Ηζ、試料長 15mm、歪み量 20 mの条件で、測定温度 5 0— 50°Cの範囲で昇温速度 3°CZ分にて測定を行った。得られた損失引脹弾性率( E")を貯蔵引張弾性率 (Ε' )で除することによって損失正接 (tan δ )を算出し、その ピーク値とピーク温度を求めた。
[0119] (粘着性)
作製したシート状制振材判につ!、て、粘着性測定器 (アイランド工業社製「タックテ スター」)を用いて、測定子直径 12mm、測定温度 23°Cの条件で、測定子を引き剥 がす際の力の最大値を求めた。 ]
Figure imgf000019_0001
表 1から明らかなように、実施例 1一 4においては、損失正接 (tan δ )が 3以上の高 い値を示すと共に、制振材料の形状の自己保特性も良好であった。これに対して、 比較例 1では損失正接が低水準であり、また比較例 2ではシート形状を自己保持す ることができず、損失正接については測定することができな力つた。
[0121] (実施例 5、 6、比較例 3— 6)
表 2に示す所定量の、塩素化ポリエチレン(昭和電工社製、商品名「エラスレン 401 A」、塩素含有率 40重量%)、塩素化パラフィン (味の素ファインケミカル社製、商品 名「ェンパラ K50」、数平均炭素数 14、塩素含有量 50重量%)、炭酸カルシウム (丸 尾カルシウム社製、商品名「R重炭」、数平均粒子径 7. 3 m)および増粘剤 (荒川 化学社製、商品名「アルコン M90」)をロール練り機に供給し、 100°Cで混練し、得ら れた制振材料用榭脂組成物を 120°Cでプレス成形して、厚さ 1000 mのシート状 制振材料を得た。
[0122] このシート状制振材料を SPC鋼板 (厚さ 0. 3mm,縦弾性係数 250GPa)に積層し て制振積層体を得た。
[0123] 実施例 5— 6および比較例 3— 6で得られたシート状制振材料および制振積層体を 用いて、損失正接 (tan δ )のピーク値および損失係数を以下の方法で評価した。評 価結果を表 2に示す。
[0124] (1)損失正接
上記シート状制振材料を、粘弾性スぺクトロメータ (岩本製作所社製)に供給し、測 定周波数 50Ηζ、試料長 15mm、歪み量 20 mの条件で、測定温度 50— 50° C の範囲で昇温速度 3°CZ分にて測定を行った。得られた損失引張弾性率 (E")を貯 蔵引張弾性率 (Ε' )で除することによって損失正接 (tan δ )を算出し、そのピーク温 度を求めた。
[0125] (2)損失係数
上記制振積層体を基材(SPC鋼板、 1. 6mm厚 X 20mm X 250mm)に積層し、 損失係数測定用の試料とした。試料中央部を電磁式加振器 (EMIC社製、商品名「 512D」)に取り付け、 0— 40°Cの温度域において 3°C毎に帯域雑音にて加振した時 の力と加速度を測定して、中央加振法における共振曲線を作製した。その 1次と 2次 の反共振ピークの半値幅から損失係数を算出し、損失係数の最大の温度をピーク温 度としした。また、 20°Cにおける損失係数を求めた。
[0126] (3)ピーク温度差 上記損失係数のピーク温度と損失正接のピーク温度の差を求めた。
[0127] (4)低温での取り扱い性
得られた厚さ 1000 mのシート状制振材料を 0°Cにおいて SPC鋼飯に貼合しり下 記の基準で評価した。
[0128] 〇···十分に接着した。
[0129] X ···接着しな力つた。
[0130] X X · 'シートが崩れて賦形でき力つた。
[表 2]
X
CD •^ρ 1 ト ト X
LO 1 t X
制材料樹誠脂用 1 <r>
振物
o o
塩素化樹脂チ oレン工
寸 觸]ベ: 1 σ¾ 〇 o 炭酸カウムルシ
>
CO 1
粘増剤 1 〇
! o w O 1 損失接度温正ピクー 〇
損失係数度温ピク <zー> CD t
LO 1 〇
損失数°係 20Cでの
:低温取扱性りのでい
T
1
D
[0131] 表 2から明らかなように、比較例 3— 6では損失正接の最大値と損失係数の最大値 を示す温度の差が小さぐ 20°C付近の室温で制振性が低下してしまったり、低温で の取り扱い性が悪ィ匕するなど、比較例 3— 6のものは制振材料として好しくない。
[0132] 一方、実施例 5— 6では、 V、ずれも損失正接の最大値と損失係数の最大値を示す 温度の差が大きぐ低温で榭脂が固くなることなぐ実施例 5— 6のものは室温で高い 損失係数を発現することができ、制振材料として好適である。 [0133] (実施例 7)
塩素化ポリエチレン(昭和電工社製「エラスレン 404B」、塩素含有量 40重量0 /0、結 晶化度 29jZg、以下「CPE5」とする) 100重量部と、塩素化パラフィン [味の素フアイ ンケミカル社製「ェンパラ K50」、塩素含有量 50重量%、平均炭素数 = 14 (炭素数 1 . 2— 50のものを 99%以上含む)、以下「塩パラ 4」とする] 200重量部とをロール練り 機を用いて 100°Cで混練し、得られた榭脂組成物を 120°Cでプレスして厚さ 1000 mのシート状制振材料を作製した。
[0134] (実施例 8)
CPE5を 100重量部、塩パラ 4を 200重量部、および塩素化パラフィン [味の素ファ インケミカル社製「ェンパラ 70」、塩素化度 70重量%、平均炭素数 = 26 (炭素数 12 一 50のものを 99%以上含む)、以下「塩パラ 5」とする] 100重量部を、ロール練り機 を使用して 100°Cで混練し、得られた榭脂組成物を 120°Cでプレスして厚さ 1000 μ mのシート状制振材料を作製した。
[0135] (実施例 9)
高密度ポリエチレンを水懸濁法にて後塩素化して試作した塩素化ポリエチレン (塩 素含有量 40重量%、結晶化度 10jZg、以下「CPE6」とする) 100重量部に、塩パラ 1を 200重量部配合して、ロール練り機を使用して 100° Cで混練し、得られた榭脂 組成物を 120°Cでプレスして厚さ 1000 μ mのシート状制振材料を作製した。
[0136] (実施例 10)
CPE6を 100重量部、塩パラ 4を 200重量部、および塩パラ 5を 100重量部配合し て、ロール練り機を使用して 100°Cで混練し、得られた榭脂組成物を 120°Cでプレス して厚さ 1000 mのシート状制振材料を作製した。
[0137] (比較例 7)
塩素化ポリエチレン(昭和電工社製「エラスレン 401A」、塩素含有量 40重量0 /0、結 晶化度 2jZg未満、以下「CPE7」とする) 100重量部と、塩素化パラフィン [東ソ一社 製「トヨバラックス」、塩素含有量 40重量%、平均炭素数 = 26 (炭素数 12— 50のもの を 99%以上含む)、以下「塩パラ 6」とする] 100重量部とを、ロール練り機を使用して 100°Cで混練し、得られた榭脂組成物を 120°Cでプレスして厚さ 1000 μ mのシート 状制振材料を作製した。
[0138] (比較例 8)
塩素化ポリエチレン(昭和電工社製「エラスレン 401」、塩素含有量 40重量%、結晶 化度 2jZg未満、以下「CPE8」とする) 100重量部と、塩パラ 4を 200重量部配合し て、ロール練り機を使用して 100° Cで混練し、得られた榭脂組成物を 120°Cでプレ スして厚さ 1000 μ mのシート状制振材料を作製した。
[0139] 実施例 7— 10および比較例 7— 8で得られた制振材料について損失正接 (tan δ ) のピーク値とピーク温度、およびずり落ち時間を以下の方法で評価した。評価結果を 表 3に示す。
[0140] (損失正接)
作製したシート状制振材料にっ ヽて、粘弾性スぺクトロメーク (岩本製作所社製)を 用いて、測定周波数 50Ηζ、試料長 15mm、歪み量 20 mの条件で、測定温度 5 0— 50°Cの範囲で昇温速度 3°CZ分にて測定を行った。得られた損失引脹弾性率( E")を貯蔵引張弾性率 (Ε' )で除することによって損失正接 (tan δ )を算出し、その ピーク値とピーク温度を求めた。
[0141] (ずり落ち時間)
作製したシート状制振材料をステンレス鋼板 (0. 5mm厚)の片面に積層して貼合し 、拘束型制振材料を得た。得られた拘束型制振材料を 10cm角に切断し、切断片を 石膏ボード(15mm厚)に上記シート状制振材料の側が接するように貼合した。拘束 型制振材料が貼合された石膏ボードを鉛直に支持した状態で、 60°Cの恒温オーブ ン中に静置し、拘束型制振材料のステンレス鋼板の部分が初期の位置から 5mmず り落ちるまでの時間を測定して「ずり落ち時間」とし高温使用条件下での安定性を評 価し 7こ。
[表 3]
Figure imgf000025_0001
[0142] 表 3から明らかなように、実施例 7— 10においては、損失正接 (tan δ )が高い値を 示すと共に、ずり落ち時間が長ぐ高温使用に適することが確認された。
[0143] 実施例 11
塩素化ポリエチレン(昭和電工社製、商品名「エラスレン 402NA」、 SP値 = 9. 2、 融点 140°C以上 (分解温度の方が低いため測定不能)) 100重量部と、塩素化バラフ イン (東ソ一社製、商品名「トヨパラックス 150」、 SP値 = 9. 3、融点 =— 35°C) 250重 量部と、塩素化パラフィン(味の素ファインテクノネ土製、商品名「ェンパラ 70」、 SP値 = 10. 6、融点 = 105°C) 200重量部とを 6インチロール (入江鉄工所社製)に投入し 、 100°Cで混練した。混練後の Tgは 15°Cであった。こうして制振榭脂組成物を調製 した。この制振榭脂組成物を 120°Cにて軟質アルミニウム箔 (サンアルミ工業社製、 商品名「8079」、厚さ =0. 2mm)と PETフィルム(厚さ =0. 012mm, SP値 = 10. 8 )の間に供給し、軟質アルミニウム箔と PETフィルムで挟まれた厚さ 1. 5mmの制振 榭脂層を形成した。軟質アルミニウム箔は少なくとも片面がプライマー処理されており 、この処理面に制振榭脂層を貼り合わせた。さらに室温にて上記 PETフィルムの他面 に粘着シート (積水化学工業社製、商品名「ダブルタック # 5762」、厚さ =0. 12mm 、 Tg = 0°C、 SP値 = 9. 5、融点 140°C以上 (分解温度の方が低いため測定不能)) を貼り合わせた。粘着榭脂層の他の面に離型紙を貼り合わせた。こうして得られた拘 束型制振材を図 1に示す。図中、(a)は軟質アルミニウム箔、(b)は制振榭脂層、(c)は P ETフィルム、(d)は粘着榭脂層、(e)は離型紙である。
[0144] 実施例 12
実施例 11において、 PETフィルムを用いず、その他の点は実施例 11と同様の操 作を行 ヽ、拘束型制振材 (軟質アルミニウム箔,制振樹脂層,粘着樹脂層,離型 紙)を得た。
[0145] 比較例 9
別途、アクリル酸エステルコポリマー(三菱レイヨン社製、商品名「P— 501A」、融点 140°C以上 (分解温度の方が低いため測定不能)) 100重量部と、塩素化パラフィン( 東ソ一社製、商品名「トヨバラックス 150」、融点 =— 35°C) 300重量部と、塩素化パラ フィン(味の素ファインテクノネ土製、商品名「ェンパラ 70」、融点 = 105°C) 100重量部 とを 6インチロール (入江鉄工所社製)に投入して、 140°Cで混練した。混練後の Tg は 15°Cであった。こうして粘着榭脂組成物を調製した。この粘着榭脂組成物を厚さ 0 . 12mmで製膜し、粘着シートを得た。
[0146] 実施例 11において、粘着シートとして、積水化学工業社製の商品名「ダブルタック
# 5762」の代わりに、上記のように別途作製した粘着シートを用い、その他の点は実 施例 11と同様の操作を行い、拘束型制振材を得た。
[0147] 性能試験
実施例 11一 12および比較例 9で得られた拘束型制振材サンプルにつ ヽて下記の 項目の性能試験を行った。
[0148] a)粘着性能
サンプルを幅 20mmでストラップ状に切断し、切断片を SPC鋼板と貼り合わせ、得 られた貼り合わせ体を万能試験器 (オリエンテック社製、型番 UCT— 5T)にて 23°C ( 常温粘着力)および 0°C (低温粘着力)で、 300mmZminの条件で 90°Cピール試験 した。
[0149] b)液状成分の移行
80°Cオーブンに上記サンプルを 2週間入れ、粘着面への液状成分のシミ出しを目 視にて観察した。
[0150] 得られた試験結果を表 4に示す。
[表 4]
Figure imgf000027_0001
〇:液状成分移行なし、 X :液状成分移行あり
[0151] 実施例 13
塩素化ポリエチレン(昭和電工社製、商品名「エラスレン 402NA」、 SP = 9. 2) 10 0重量部と、塩素化パラフィン (東ソ一社製、商品名「トヨバラックス 150」、 SP = 9. 3) 250重量部と、塩素化パラフィン(味の素ファインテクノネ土製、商品名「ェンパラ 70」、 SP= 10. 6) 200重量部と、炭酸カルシウム(丸尾カルシウム社製、商品名「R重炭」) 400重量部と、安定剤として錫系熱安定剤 (三共有機合成社製、商品名「STANN RC— 680B」) 10重量部とを 6インチロール (入江鉄工所社製)に投入して 140°Cで混 練し、制振榭脂組成物を調製した。 [0152] この制振榭脂組成物を 150°Cで、塩ィ匕ビ二ルー酢酸ビュル共重合体力もなるプライ マー(SP = 9. 5)を少なくとも片面に厚さ 30 mでコーティングした硬質アルミニウム 箔(サンアルミ工業社製、商品名「JIS 8079」、厚さ =0. 2mm)と、 PETフィルム(厚 さ =0. 012mm)の間に供給し、硬質アルミニウム箔カもなる拘束層と PETフィルムで 挟まれた厚さ 1. 5mmの制振榭脂層を形成した。こうして軟質アルミニウム箔カゝらなる 拘束層のプライマーコーティング面に制振榭脂層を貼り合わせた。さらに室温にて上 記 PETフィルムの他面に粘着シート (積水化学工業社製、商品名「ダブルタック # 57 62」、厚さ =0. 12mm)を貼り合わせた。こうして拘束型制振材 (拘束層 Z制振榭脂 層 ZPETフィルム Z粘着榭脂層)を得た。
[0153] 比較例 10
実施例 13において、硬質アルミニウム箔として、プライマーコーティングしてない硬 質アルミニウム箔を用い、その他の点は実施例 13と同様の操作を行い、拘束型制振 材を得た。
[0154] 性能試験
実施例 13および比較例 10で得られた拘束型制振材サンプルにつ ヽて下記の項 目の性能試験を行った。
[0155] a)粘着性能
サンプルを幅 20mmでストラップ状に切断し、その拘束層と制振榭脂層を万能試験 器 (オリエンテック社製、型番 UCT— 5T)にて 23°Cで、 300mmZminの条件で引き 裂き試験することにより界面接着強度を測定した。
[0156] b)凹凸面での界面剥離
直径 150mmの鋼管内側に幅 20mmでストラップ状に切断したサンプルを貼り付け 、界面剥離の有無を目視にて観察した。
[0157] 得られた試験結果を表 5に示す。
[表 5] 粘着性能 凹凸面での界面剥離
実施例 13 樹脂材料破壊 (測定不能) 無
比較例 10 8.85N 有
[0158] 表 5から明らかなように、実施例 13の拘束型制振材はいずれの項目においても良 好な結果を示した。
[0159] (実施例 14)
図 2は、第 12発明による音響機器の音質改善構造を車載用音響機器 (カーオーデ ィォ)に適用した実施形態を示すもので、この音質改善構造 (1)は、スピーカ (9)が取り 付けられた車体のドア (2)に貼り合わせられた二次音抑制シート (3)を有している。
[0160] ドア (2)は、外側鋼板パネル (4)、内側鋼板パネル (5)および内張 (6)を有しており、こ の実施形態では、二次音抑制シート (3)は、図 2に示すように、内側鋼板パネル (5)の 室内側の面のスピーカ (9)を除いた略全面および内張 (6)の室外側の面の略全面と、 図示省略したが、外側鋼板パネル (4)のスピーカ (9)の裏面に対応する面とに貼り付け られている。
[0161] 二次音抑制シート (3)は、制振材料用榭脂組成物からなるシート状制振材料 (7)およ びアルミニウム製薄板力 なる拘束部材 (8)の積層体であり、拘束部材 (8)を外側 (密 着しな ヽ側)にして、両面粘着テープ(図示略)の粘着力によって鋼板パネル (4)(5)お よび内張 (6)に密着させられて 、る。内側鋼板パネル (5)の室内側の面および内張 (6) の室外側の面には凹凸などの曲線部が存在している力 拘束部材 (8)がアルミニウム 製薄板とされていることにより、二次音抑制シート (3)は、これらの曲線部にも密着可 能な形状追随性を有している。なお、二次音抑制シート (3)の貼り付け箇所は、上記 のものに限られるものではなぐ外側鋼板パネル (4)の室内側の面の略全面に貼り付 けるようにしてもよぐまた、内側鋼板パネル (5)および内張 (6)については、必要に応 じて、二次音抑制シート (3)を貼り付けない箇所ができてもよい。また、ドア (2)だけに限 定せずに、天井や床の金属板部分や合成樹脂部分にも合わせて貼り付けるようにし てもよい。車載用音響機器のスピーカーを内張 (6)を外して取り付ける場合には、その 施工性の点から、図示したように内側鋼板パネル (5)および内張 (6)に貼り合わせるこ とが好ましい。
[0162] (実施例 15)
塩素化ポリエチレン(昭和電工社製、商品名「エラスレン 402NA」、塩素含有量 40 重量%) 100重量部と塩素化パラフィン (旭電化社製、品番「E500」、塩素含有量 50 重量%、平均炭素数 14、炭素数 12— 16 = 99重量%) 250重量部と塩素化パラフィ ン(味の素ファインテクノネ土製、商品名「ェンパラ 70」、塩素含有量 70重量%、平均炭 素数 26、炭素数 20— 50 = 99重量%) 200重量部と充填材としての炭酸カルシウム 400重量部とをロール練り機で混練し、得られた榭脂混練物を 120°Cでプレスして、 厚さ 1. 5mmのシート状制振材料 (7)を得た。榭脂混練物の損失正接 (tan δ )は 2. 7 であった。そして、シート状制振材料 (7)に拘束部材として 0. 2mmのアルミニウム製 薄板 (8) (弾性率は 70GPaであった)を貼付けて二次音抑制シート (3)を作製した。二 次音抑制シートの損失係数は 0. 23であった。貼付けは、両面粘着テープ (積水化 学社製、商品名「ダブルタックテープ # 5762」)を使用して行うとともに、図 6に示すよ うに、 40 μ mの PETフィルムからなる可塑剤移行防止フィルム (22)をシート状制振材 料 (7)と両面粘着テープ (21)との間に介在させた。この二次音抑制シート (3)を実車 (力 ローラフィールダ一)のドア (2)の内側鋼板パネル (5)および内張 (6)に貼り付けた。
[0163] (実施例 16)
上記カローラフィールダ一のドア 2セットに実施例 15と同様にしてシート状制振材料 を貼り付け、 1. 7m隔てて立設したこと以外は実施例 15と同様である。
[0164] (比較例 11)
二次音抑制シート (3)がドア (2)に貼り合わせられていないものを比較例 11とした。
[0165] (比較例 12)
塩素化パラフィン (旭電化社製、品番「E500」、塩素含有量 50重量%、平均炭素 数 14、炭素数 12— 16 = 99重量%)の量を 250重量部、塩素化パラフィン(味の素フ ァインテクノ社製、商品名「ェンパラ 70」、塩素含有量 70重量%、平均炭素数 26、炭 素数 20— 50 = 99重量%)の量を 100重量部としたこと、拘束部材として、 0. 05mm のアルミニウム製薄板 (弾性率は 70GPaであった。 )を使用したこと以外は実施例 13 と同様である。榭脂混練物の損失正接 (tan δ )は 1. 5、二次音抑制シートの損失係 数は 0. 05であった。
[0166] 上記の実施例 15および比較例 11について、図 3に示すように、運転席 (11)の運転 手の耳位置に相当する位置にマイクロフォン (12)を設置し、実施例 16および比較例 1 2については、一方のスピーカから 0. 4m離れた位置にマイクロフォン (12)を設置し、 以下に示す評価方法 1および評価方法 2を使用した評価を行った。
[0167] 評価方法 A
音量の再現性:再生メディア(CD)に記録された入力音量とスピーカで再生される 出力音量との比が 1: 1であるかどうかの評価であり、周波数ごとに OdB、—5dB、 -10 dB、— 15dBの音を入力し、入力音量と出力音量との関係式の傾きを測定する。
[0168] 評価方法 B
高調波音 (倍音)の低減:複数種類の周波数について、この周波数の音を再生した 場合に、この音に対して雑音となる 2倍音、 3倍音をどの程度発生させないようにする 力の評価であり、純音を入力したときに同時に生じてしまう倍音の音量を測定する。
[0169] 実施例 15および比較例 11の評価結果について、音量の再現性を図 4に、 2倍音の 低減効果を図 5にそれぞれ示す。
[0170] また、実施例 16および比較例 12の評価結果について、音量の再現性を図 7に、 2 倍音の低減効果を図 8にそれぞれ示す。
[0171] 図 4 (a)は、入力音量と出力音量との一般的な関係を示すもので、出力音量が入力 音量に 1 : 1である場合には、理論上の傾き = 1となる。そして、音が大きくなるにつれ て再生音量が大きくなる(音の増幅)場合には、傾き〉 1となり、音が大きくなるにつれ て再生音量力 、さくなる(音の減衰)場合には、傾きく 1となる。例えば、音量を大きく することにより、低周波域の音が増幅されて、中周波域の音が減衰した場合には、音 量の増減によって音色が変化することになり好ましくない。図 4 (b)は、実施例 15およ び比較例 11について、図 7は実施例 16および比較例 12について、各入力信号周 波数ごとに上記の傾きを求めたものである。これらの図によると、低周波から中周波 にかけての領域(80— 315Hz)において、二次音抑制シートなしのものでは、傾きが ほぼ 1. 1の周波数や 0. 9よりも小さい周波数があるのに対し、実施例 15および 16の ものでは、低周波力ら高周波に力 4ナての領域(50— 12500Hz)において、ほとんど 1 . 0近傍にあり、一番小さいものでも 0. 9より大きいものとなっている。すなわち、実施 例 15および 16のものは、各周波域において音量の再現性に優れ、特に、低周波か ら中周波にかけての領域における音量の再現性において、二次音抑制シートなしの ものから改善が見られることが分かる。
[0172] 図 5は、実施例 15および比較例 11について、図 7は実施例 16および比較例 12に ついて、各入力信号周波数ごとの倍音の音圧レベルを求めたもので、これらの図か ら分かるように、実施例 15のものは、比較例 11の倍音の音圧レベルが最も大きい低 周波域 (80— 200Hz)で倍音成分が大幅に(20dB程度)減少し、実施例 16のものも 、比較例 12の倍音の音圧レベルが最も大きい低周波域(31. 5— 500Hz)で倍音成 分が大幅に(10— 20dB程度)減少している。すなわち、第 12発明のものは、特に、 低周波領域における倍音の減少によって原音の再生性が高められていることが分か る。従って、本発明のものは、特に、低周波領域における倍音の減少によって原音の 再生性が高められていることが分かる。
産業上の利用可能性
[0173] 本発明は、住宅、マンション、オフィスビル等の住宅建造物、高速道路、高架橋、鉄 道軌道等の各種構造物や、自動車、鉄道車両、船舶等の各種車両、更には家庭電 気機器、 OA機器等において発生する振動や騒音を低減するために好適に使用さ れる拘束型制振材、これを製造するための制振材料用榭脂組成物、および同組成 物からなる制振材料を提供する。
図面の簡単な説明
[0174] [図 1]図 1は実施例 11で得られた拘束型制振材の層構成を示す断面図である。
[図 2]図 2は、本発明による音響機器の音質改善構造の 1実施形態を示す図である。
[図 3]図 3は、本発明による音響機器の音質改善構造の評価に用いた実車評価装置 を示す図である。
[図 4]図 4は、本発明による音響機器の音質改善構造の効果を示す図である。
[図 5]図 5は、本発明による音響機器の音質改善構造の他の効果を示す図である。
[図 6]図 6は、本発明による音響機器の音質改善構造の好適な実施形態を示す図で ある。 [図 7]図 7は、本発明による他の音響機器の音質改善構造の効果を示す図である。
[図 8]図 8は、本発明による他の音響機器の音質改善構造の他の効果を示す図であ る。
符号の説明
(1):音響機器の音質改善構造
(2) :ドア
(3):二次音抑制シート
(5):内側鋼板パネル
(6):内張
(7):シート状制振材料
(8):拘束部材
(21) :両面粘着テープ
(22): PETフィルム(可塑剤移行防止フィルム)
(a):軟質アルミニウム箔
(b):制振榭脂層
(c): PETフィルム
(d):粘着榭脂層
(e):離型紙

Claims

請求の範囲
[I] 塩素含有量が 20— 70重量%であり重量平均分子量が 40万以上である熱可塑性 榭脂 100重量部と、塩素含有量が 30— 75重量%であり炭素数が 12— 50である塩 素化パラフィン 100— 1000重量部とからなる制振材料用榭脂組成物。
[2] 塩素含有量が 20— 70重量%の熱可塑性榭脂 100重量部と、塩素含有量が 30— 75重量%であり、数平均炭素数が 12— 50である塩素化パラフィン 200— 1000重量 部と、無機質充填剤 300— 1000重量部カゝらなる制振材料用榭脂組成物。
[3] 塩素含有量が 20— 70重量%であり DSC法によって測定された結晶化度が 5jZg 以上である熱可塑性榭脂と、塩素含有量が 30— 75重量%であり炭素数が 12— 50 である塩素化パラフィンとからなる割振材料用榭脂組成物。
[4] 前記塩素化パラフィン中に、塩素含有量 70重量%以上の塩素化パラフィンが 10— 70重量%含有される請求項 1一 3のいずれかに記載の制振材料用榭脂組成物。
[5] 請求項 1一 3のいずれかに記載の制振材料用榭脂組成物からなる制振材料。
[6] 請求項 5記載の制振材料と、その一面に積層された拘束部材力 なる制振積層体
[7] 請求項 1一 3の ヽずれかに記載の制振材料用榭脂組成物からなる制振材料、上記 制振材料の一面に積層された拘束部材、および上記制振材料の他面に積層された 粘着樹脂層からなる拘束型制振材。
[8] 制振榭脂層のガラス転移温度 (Tg)と粘着榭脂層の Tgとの差が 10°C以上である請 求項 7記載の拘束型制振材。
[9] 制振榭脂層と粘着榭脂層の間にこれら層を分離するように可塑剤移行阻止フィル ムが介在され、同フィルムの SP値と制振榭脂層および粘着榭脂層の構成成分のうち 融点が 80°C以下である全ての成分の SP値との差が 1以上である請求項 7記載の拘 束型制振材。
[10] 拘束層の少なくとも制振榭脂側の面にプライマーがコーティングされて 、る請求項 7記載の拘束型制振材。
[II] 請求項 10記載の拘束型制振材が、凹凸面のある振動体表面に貼り合わせられて いる制振構造。
[12] 請求項 1一 3のいずれかに記載の制振材料用榭脂組成物からなる制振材料と、上 記制振材料の一面に積層された拘束部材とからなる二次音抑制シートが、音響機器 の周辺機器の少なくとも一部に、上記制振材料にて貼り合わされている音響機器の 音質改善構造。
[13] 制振材料が、可塑剤移行防止フィルムを介して、両面粘着テープにより、音響機器 の周辺機器に貼り合わされている請求項 12記載の音響機器の音質改善構造。
[14] 上記制振材料が損失正接 (Tan δ )のピーク値が 2. 5以上である制振材料用榭脂 組成物からなり、拘束部材が縦弾性係数 IGPa以上のものである請求項 12記載の音 響機器の音質改善構造。
PCT/JP2004/019188 2004-01-05 2004-12-22 制振材料用樹脂組成物、制振材料、拘束型制振材およびその用途 WO2005066933A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/480,524 US20070012509A1 (en) 2004-01-05 2006-07-05 Damping material resin compositions, damping materials, restraining-type damping members, and use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004000497 2004-01-05
JP2004-000497 2004-01-05
JP2004128345A JP2005307077A (ja) 2004-04-23 2004-04-23 制振材料用樹脂組成物、それを用いた制振シート及び制振積層体
JP2004-128345 2004-04-23
JP2004318296A JP4741829B2 (ja) 2004-11-01 2004-11-01 拘束型制振材
JP2004318295A JP2006125150A (ja) 2004-11-01 2004-11-01 拘束型制振材
JP2004-318295 2004-11-01
JP2004-318296 2004-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/480,524 Continuation-In-Part US20070012509A1 (en) 2004-01-05 2006-07-05 Damping material resin compositions, damping materials, restraining-type damping members, and use thereof

Publications (1)

Publication Number Publication Date
WO2005066933A1 true WO2005066933A1 (ja) 2005-07-21

Family

ID=34753820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019188 WO2005066933A1 (ja) 2004-01-05 2004-12-22 制振材料用樹脂組成物、制振材料、拘束型制振材およびその用途

Country Status (2)

Country Link
US (1) US20070012509A1 (ja)
WO (1) WO2005066933A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1985533T3 (pl) * 2007-02-09 2021-08-02 Sekisui Chemical Co., Ltd. Materiał tłumiący drgania i konstrukcja tłumiąca drgania
US8028800B2 (en) * 2009-04-10 2011-10-04 Saint-Gobain Performance Plastics Rencol Limited Acoustic damping compositions
JP5528540B2 (ja) * 2009-04-10 2014-06-25 サン−ゴバン パフォーマンス プラスティックス コーポレイション エラストマー粒子を含む音響減衰組成物
JP5001336B2 (ja) * 2009-08-19 2012-08-15 之啓 西川 吸音体
EP2450398B9 (en) * 2010-11-30 2012-10-24 Armacell Enterprise GmbH Material for flexible thermal and acoustic insulation
FR3023759B1 (fr) 2014-07-16 2016-08-19 Centre D'etude Et De Rech Pour L'automobile (Cera) Capot de protection acoustique pour encapsuler un composant de vehicule automobile
CN113810831A (zh) * 2020-06-12 2021-12-17 3M创新有限公司 用于屏幕发声技术的阻尼胶膜及包括其的电子器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170688A (ja) * 1994-12-16 1996-07-02 Nitto Denko Corp 制振材
JP2001131422A (ja) * 1999-11-08 2001-05-15 Sekisui Chem Co Ltd 複合制振性組成物
JP2001337682A (ja) * 2000-03-24 2001-12-07 Sekisui Chem Co Ltd 透明制振シート
JP2003253839A (ja) * 2002-02-28 2003-09-10 Sekisui Chem Co Ltd 階段の防音装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3243249A1 (de) * 1982-11-23 1984-07-26 Hoechst Ag, 6230 Frankfurt Chlorpolyethylen, verfahren zu seiner herstellung und seine verwendung
JP2623316B2 (ja) * 1987-10-20 1997-06-25 東洋紡績株式会社 複合型制振材料及び制振材料用粘弾性樹脂組成物
JPH0834089A (ja) * 1994-07-25 1996-02-06 Lintec Corp 制振シート
US5827609A (en) * 1995-06-07 1998-10-27 Avery Dennison Corporation Multilayer Pressure-sensitive adhesive construction
WO2001079376A1 (fr) * 2000-04-14 2001-10-25 Sekisui Chemical Co., Ltd. Composition de resine pour materiau amortissant les vibrations, materiau anti-vibratoire, et elements insonorisants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170688A (ja) * 1994-12-16 1996-07-02 Nitto Denko Corp 制振材
JP2001131422A (ja) * 1999-11-08 2001-05-15 Sekisui Chem Co Ltd 複合制振性組成物
JP2001337682A (ja) * 2000-03-24 2001-12-07 Sekisui Chem Co Ltd 透明制振シート
JP2003253839A (ja) * 2002-02-28 2003-09-10 Sekisui Chem Co Ltd 階段の防音装置

Also Published As

Publication number Publication date
US20070012509A1 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
EP1277823B1 (en) Resin composition for vibration-damping material, vibration-damping material, and sound-insulating member
US6828020B2 (en) Self-adhesive vibration damping tape and composition
JP2009537436A (ja) 防音合せ板ガラス、防音インサート及び最適防音減衰の該インサートを選択する方法
WO2005118733A1 (en) Self-adhesive vibration damping tape and composition
JPH07196992A (ja) 制振シート
US20070012509A1 (en) Damping material resin compositions, damping materials, restraining-type damping members, and use thereof
WO1999061541A1 (fr) Ruban en tissu autocollant pour grouper un faisceau de cables
US11701863B2 (en) Partial coverage multilayer damping laminate
JP2013018242A (ja) 貼着型制振材
JP5675520B2 (ja) 貼着型制振材
WO2006077757A1 (ja) 制振材料およびシート状制振材料の製造方法
JP4928096B2 (ja) 制振材
EP3710723A1 (en) Vibration reduction sheet and method of reducing vibration
JP2012251661A (ja) 自動車用制振シート
JP5139861B2 (ja) 自動車用制振シートの製造方法
JP2006011356A (ja) 音響機器の音質改善構造
JP2009241486A (ja) 自動車用制振シート
JP2008302882A (ja) 自動車用制振防音材
JP4741829B2 (ja) 拘束型制振材
JP2006071090A (ja) 制振材
JP2002309227A (ja) 離型剤、剥離ライナーおよび粘着シート
US20220049130A1 (en) Multilayer Tape Constructions for Low-Temperature Vibration Damping with Tunable Adhesion
EP3437932A1 (fr) Panneau d&#39;étanchéité et d&#39;insonorisation pour véhicule
JP2003253839A (ja) 階段の防音装置
JP2005307077A (ja) 制振材料用樹脂組成物、それを用いた制振シート及び制振積層体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11480524

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11480524

Country of ref document: US

122 Ep: pct application non-entry in european phase