WO2005066361A1 - Verfahren zur anreicherung und stabilisierung von dna-haltigen bestandteilen aus biologischen materialien - Google Patents

Verfahren zur anreicherung und stabilisierung von dna-haltigen bestandteilen aus biologischen materialien Download PDF

Info

Publication number
WO2005066361A1
WO2005066361A1 PCT/EP2004/014015 EP2004014015W WO2005066361A1 WO 2005066361 A1 WO2005066361 A1 WO 2005066361A1 EP 2004014015 W EP2004014015 W EP 2004014015W WO 2005066361 A1 WO2005066361 A1 WO 2005066361A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
acids
adsorbent
derivatives
polymers
Prior art date
Application number
PCT/EP2004/014015
Other languages
English (en)
French (fr)
Inventor
Rolf Wambutt
Frank Schubert
Original Assignee
AGOWA Gesellschaft für molekularbiologische Technologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGOWA Gesellschaft für molekularbiologische Technologie mbH filed Critical AGOWA Gesellschaft für molekularbiologische Technologie mbH
Priority to AU2004312137A priority Critical patent/AU2004312137A1/en
Priority to JP2006545977A priority patent/JP2007516712A/ja
Priority to US10/584,376 priority patent/US20070207460A1/en
Priority to CA002552010A priority patent/CA2552010A1/en
Priority to EP04803673A priority patent/EP1697540A1/de
Publication of WO2005066361A1 publication Critical patent/WO2005066361A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay

Definitions

  • the invention relates to an improved method for the enrichment and stabilization of DNA-containing components from biological materials, in particular from blood samples.
  • the DNA-containing sample materials are partially lysed in a lysis binding buffer system and the DNA-containing components, e.g. Cell nuclei bound to a functionalized solid surface.
  • the system comprises lysis reagents and solid adsorbents, the surfaces of the adsorbents being functionalized with polymers of polymerizable acids or their derivatives, to which DNA-containing components bind.
  • Organic or inorganic solid materials can serve as functionalizable carrier materials.
  • the remaining components of the sample material are separated.
  • the bound DNA-containing components of the sample material can then be further purified and the DNA is isolated according to techniques known per se.
  • the DNA-containing constituents of the sample material are detached from the surface at a certain ionic strength, but further processing can also be carried out directly using the solid-phase-bound DNA-containing constituents.
  • the solid adsorbents have magnetic properties and / or the shape of microparticles with a diameter in the range from 1-100 ⁇ m.
  • nucleic acid isolation processes which are suitable to be applied to automatic liquid handling systems.
  • Solid phase extraction concepts that use adsorbents with magnetic properties are outstanding, since the manipulation of these adsorbents with magnetic fields avoids manual intervention in the extraction process and the process can thus be designed fully automatically.
  • Cells from which DNA is to be isolated are e.g. enriched by centrifugation, then lysed, centrifuged again, then the lysate is brought into contact with special carriers that bind DNA.
  • One of these variants for the enrichment of DNA-containing components consists in the chemical lysis of the cells by means of so-called lysis buffers for red blood cells (Red Cell Lysis Buffer, RCB), the pelleting of the DNA-containing components of the blood by centrifugation and the subsequent extraction of the DNA therefrom Pellet [Epplen & Lubjuhn (1999) DNA profiling and DNA fingerprinting, Bir hauser Verlag, Berlin, p. 55].
  • centrifugation steps involve a fully automated extraction of conflict with nucleic acids.
  • the integration of centrifuges in robot systems is possible, but the implementation is extremely cost-intensive and technologically difficult to implement.
  • Another methodical approach uses the affinity of special antibodies against DNA-containing blood cells (e.g. CD 4 cells). These antibodies, bound to magnetic particles, allow a concentration of DNA-containing blood cells and thus a reduction in the volume that goes into the actual DNA isolation.
  • a variant for the isolation of DNA-containing blood cells by means of specific antibodies bound to magnetic particles has been described by Hardingham et al. have been described [Hardingham et al. (1993) Cancer Research 53, 3455-3458; Lundeberg & Larsen (1995) Biotechnology Annual Review 1, 373-401]. Disadvantages of the method mentioned are the high price for the magnetic particles used. On the other hand, this method fails when using frozen blood samples, which is quite the rule in clinical practice, since the cells have been destroyed by the freezing and thawing of the sample material and the specificity of the antibodies is no longer relevant.
  • the invention was therefore based on the object of developing a method for enriching and stabilizing DNA-containing constituents from biological materials, in particular from blood, the method being intended to provide sample materials which permit subsequent simple and fully automatic DNA isolation, and avoid disadvantageous large sample volumes and centrifugation steps that disrupt DNA isolation. Furthermore, a stable storage of the DNA in the sample material should be allowed under favorable temperature conditions.
  • the object was achieved according to the invention by subjecting biological materials in a first step to partial lysis in the presence of at least one lysis reagent and at least one solid adsorbent which has a surface functionalized with polymers.
  • the DNA-containing constituents of the sample material simultaneously bind to the solid surface, which according to the invention consists of polymers comprising a carrier polymer, preferably of polymerizable acids or derivatives of polymerizable acids, or of polymers comprising a mixture of the aforementioned carrier polymer and other polymerizable acids or their Derivatives, preferably selected from sulfonic acid, phosphonic acid or carboxylic acid.
  • polymerizable acids or their derivatives include those polymerizable acids or their derivatives which, in a particular embodiment of the solid surface, are not identical to those of the carrier material and are also referred to in the present invention as an acid component.
  • the bound DNA-containing constituents are fed to DNA isolation by methods known per se. To do this, they can first be eluted.
  • DNA-containing components of a lysate which to a very large extent contain the intact components of the cytoplasm, in particular the cell nuclei, e.g. contains the leukocyte nuclei of the blood, bind to the functionalized surfaces of the solid adsorbents.
  • the DNA-containing components of the sample material fixed to the adsorbents according to the invention are protected and stable against degrading enzymatic or chemical influences, and can therefore be stored or transported in an uncomplicated manner, in particular at room temperature.
  • the method according to the invention particularly facilitates the isolation of DNA from large sample volumes, because these originally large volumes, e.g. blood samples are reduced to the DNA-containing components.
  • the possibility of storing sample materials, from which the DNA is then to be isolated, is greatly improved.
  • the surface polymers preferably consist of carrier polymers of acrylic acid or methacrylic acid or their derivatives, such as e.g. made of acrylamide, methacrylamide or acrylic acid esters.
  • the polymeric surfaces can contain polymerized acids, preferably sulfonic, phosphonic or carboxylic acid, or polymerized derivatives of polymerizable acids, preferably sulfonic or phosphonic acid compounds, particularly preferably vinylphosphonic acid, vinylsulfonic acid or their derivatives, such as styrene sulfonic acid, as the second component.
  • polymerized acids preferably sulfonic, phosphonic or carboxylic acid
  • polymerized derivatives of polymerizable acids preferably sulfonic or phosphonic acid compounds, particularly preferably vinylphosphonic acid, vinylsulfonic acid or their derivatives, such as styrene sulfonic acid, as the second component.
  • copolymers of a carrier polymer and the acid component sulfonic acid or vinyl sulfonic acid are preferred.
  • further monomer components with a polymerizable double bond such as vinyl acetate, can contain vinyl groups
  • Silyl compounds and vinyl stearate can be used. It is particularly valuable
  • the surface polymers are composed under a defined ratio of the different monomers, in binary systems preferably in a ratio of 9: 1 to 1: 1 of carrier polymer to acid component, particularly preferably in a ratio of 9: 1 to 3: 1.
  • the content of the polymerizable acid component in the reaction mixture is between 10% w / w and 50% w / w, preferably between 10% w / w and 25% w / w.
  • the functionalized surfaces preferably have styrene sulfonic acid in a mass fraction between 10% w / w and 50% w / w, particularly preferably between 10% w / w and 25% w / w.
  • Carrier materials for the polymers according to the invention can be any inorganic or organic materials which, because of their chemical properties, permit activation. It is also possible to use inorganic or organic materials which can be embedded in the polymers according to the invention, for example by crosslinking soluble derivatives of polymers. These include e.g. Polystyrene, polysulfones, unmodified or modified silica gels. Polymers bearing hydroxyl groups, such as e.g. Cellulose, polyvinyl alcohol derivatives are very particularly suitable. Furthermore, polyesters, polyamides, polycarbonates, etc. can be used.
  • the polymers determining the surface properties of the adsorbents as carrier materials is also possible, provided that the physico-chemical properties of these materials allow handling in aqueous solutions.
  • the polymers applied to the adsorbent surfaces consist of the carrier material and / or vinylsulfonic acid monomers, which are introduced into the lysed biological material.
  • the solid carrier materials for enriching the DNA-containing constituents consist of microparticles with magnetic properties which make them mechanically manipulable by applying external magnetic fields. Microparticles with magnetic properties and a diameter in the range of 1-100 ⁇ m, preferably 1-30 ⁇ m, particularly preferably 3-10 ⁇ m, are particularly preferably used. Such microparticles are known to the person skilled in the art. They are produced by methods known per se, as described, for example, in DE 43 07 262 and US Pat. No. 5,648,124.
  • the preparation of the adsorbents necessary for the enrichment according to the invention can e.g. by the graft polymerization processes well known to those skilled in the art, e.g. the monomer mixtures are applied to surfaces activated by peroxide radicals.
  • polyvinyl alcohol derivatives crosslinked with dialdehydes can be activated by means of a concentrated solution of hydrogen peroxide [Bates & Shanks (1980) J. Macromol. Science Chem. A14, 137-151; Bolto et al. (1978) J. Appl. Polym. Be. 2, 1977]. Activation of the base surface by partial oxidation with cerium (IV) ammonium sulfate [Mukopadhyay et al. (1969) J.
  • the chemical bonding of the polymers determining the surface properties of the adsorbents is possible via so-called anchor groups located on the solid support materials.
  • the polymers can be condensed on amino groups located on the surface of the support materials. The person skilled in the art knows how amino groups are applied to the carrier materials.
  • Crosslinking soluble derivatives of the polymers according to the invention by means of suitable crosslinking reagents in the presence of the solid organic or inorganic carrier materials likewise leads to adsorbents with the properties according to the invention.
  • the surface properties of the adsorbents can be influenced by the additional use of further monomer components with a polymerizable double bond. For example, the use of vinyl acetate and its hydrolysis after polymerization can improve the wetting behavior of the adsorbents.
  • the solid adsorbents can preferably be used as loose powder or as filter material, which can be modified. Use as a filter matrix in filter plates is particularly preferred.
  • the functionalized adsorbents can be introduced into the biological material, which is preferably in the form of a biological solution, before, simultaneously or after the lysis.
  • the point in time is determined by the nature of the adsorbents.
  • the biological samples are preferably contacted with the described adsorbents after lysis, so that the DNA-containing components can bind to the functionalized surfaces.
  • the solid adsorbents are preferably introduced into the biological materials in the presence of the lysis reagents.
  • the biological material is lysed and the DNA-containing components of the sample material bind to the functionalized surfaces.
  • Bio materials in the sense of this invention can be body fluids, such as blood, urine or cerebrospinal fluid.
  • plasma, cells, buffy coat, leukocyte fractions, sputum, sperm or organisms can also be used as further biological materials.
  • These biological materials can furthermore include cultures of microorganisms, cell-containing materials, such as, for example, tissue or soil samples, constituents of plants or other organisms.
  • the method according to the invention is particularly suitable for the enrichment of DNA-containing constituents in blood (human whole blood), buffy coat, leukocyte fractions and cell cultures.
  • DNA-containing constituents are preferably cell nuclei and other DNA-containing organelles, such as, for example, mitochondria, chloroplasts or DNA-containing protein complexes contained in the sample material, but also DNA-containing viruses such as the hepatitis C virus, the cytomegalovirus and others
  • the lysis reagents may cause an osmotic shock and open the cell membranes.
  • Other lysis conditions interfering with the stability of the cell structure e.g. Mechanical effects by ball mill, French press, ultrasound, etc., enzymatic degradation of the cell wall or cell membrane by cell wall lytic enzymes and / or the action of surface-active substances are also conceivable.
  • Component as well as in combination with a complexing agent from the series of chelate-like ligands and / or with a native carbohydrate, preferably with an oligosaccharide that consists of at least 50% glucose units, particularly preferably with a disaccharide, such as e.g.
  • Ionic detergents such as e.g.
  • CAB Cetyltrimethylammonium bromide
  • SDS sodium dodecyl sulfate
  • Lipids from the cell membrane the destroyed structure of which cell-specific enzymes offer points of attack for further degradation of the cell wall.
  • salts or monovalent cations and / or cell wall lytic enzymes such as e.g. Glucans, proteases, cellulases, etc.
  • lysis reagents are preferably used which comprise 0.5% v / v to 5% v / v complexing agent and / or 0.5% v / v to 3% v / v detergent, a volume fraction of 1.0% v / v to 1.5% v / v v detergent is preferred.
  • a lysis reagent comprising tritone, sucrose and / or ethylenediaminetetraacetate (EDTA) is particularly preferred.
  • EDTA ethylenediaminetetraacetate
  • a reagent containing 0.5 M EDTA, 1% v / v Triton X-100 and 2.5 M sucrose is very particularly preferred.
  • the lysis reagent is preferably used in combination with magnetic microparticles which comprise a surface functionalized by acrylamide, methacrylamide, acrylic acid derivatives and / or polymerizable acids or their derivatives, preferably sulfonic acid derivatives, for binding the DNA-containing constituents.
  • DNA-containing components e.g. from cell nuclei, mitochondria, chloroplasts or DNA-containing protein complexes but also DNA-containing viruses to the adsorbent.
  • pure DNA does not bind to the adsorbent and cannot be isolated in exemplary investigations when using the buffer systems described.
  • the remaining components of the sample material are separated.
  • the adsorbents with the bound DNA-containing constituents are separated from the remaining sample material.
  • the DNA-containing constituents in the sample material are concentrated accordingly, as a result of which the volume involved in a method for DNA isolation can be drastically reduced.
  • a volume reduction to at least 1/4 of the original sample volume can be achieved, preferably to 1/8, particularly preferably to less than 1/10.
  • the DNA-containing components are optionally eluted from the adsorbents. Any elution of the DNA-containing components can take place immediately after discarding the lysed sample material or after an intermediate storage.
  • a small volume of an aqueous salt solution with a defined ionic strength is used.
  • Preferred salts are alkali halides and alkaline earth halides, such as NaCl, KCI or CaC, particularly preferably lithium or calcium halides, and very particularly preferably lithium chloride and calcium chloride, alone or in a mixture with one another.
  • the salts can be used both as sole components in aqueous solution or as components of aqueous buffer solutions with other components, such as detergents known to those skilled in the art or Complexing agents, in a preferred concentration of 0.01 M to 3.5 M, preferably in a concentration of 0.01 to 1.0 M, are used.
  • the volume of the solution required to detach the DNA-containing constituents is significantly less than the initial volume of the biological sample, so that a concentration of the DNA to be purified is achieved and the extraction in small volumes, e.g. can be done fully automatically with robots.
  • the DNA-containing constituents bound in this way can, if appropriate after storage and elution, be subjected to a purification and DNA isolation which is known per se and can also be carried out fully automatically.
  • a purification and DNA isolation which is known per se and can also be carried out fully automatically.
  • these methods are known to the person skilled in the art.
  • the DNA to be isolated is precipitated by the addition of salts, e.g. Sodium acetate, or by adding an organic solvent, especially alcohol, such as e.g. Ethanol or isopropanol, or via a known solid phase extraction principle, such as the binding of DNA in the presence of chaotropic substances to silicate materials.
  • the purification can also be carried out by gel filtration, gel elution or ion exchanger.
  • the enrichment step according to the invention can be integrated into a fully automatic process, since it only depends on the technical design of the adsorbent used which automatic process is used for the enrichment of DNA-containing components.
  • Particles are separated from the suspension and free of peroxide with water washed. Then these particles are added to a solution of 1.1 g of acrylamide and 0.5 g of styrene sulfonic acid, which was brought to pH 7 with sodium hydroxide solution. After the addition of 40 mg of iron (II) sulfate, the mixture is stirred at room temperature for 1 hour. The particles are then suctioned off, freed of residual monomer and non-grafted polymer with water and are ready for the enrichment of DNA-containing components.
  • Example 1 10 mg of the magnetic particles produced in Example 1 are placed in a mixture of 2 ml of blood and 4 ml of a lysis buffer, consisting of a 2.5 M solution of sucrose, which contains 1% v / v Triton X-100. The solution is mixed intimately to distribute the magnetic particles and incubated for 10 minutes at room temperature. Then the particles are separated by applying a permanent magnet to the vessel wall and the liquid in the vessel is discarded, being careful not to lose any magnetic particles.
  • a lysis buffer consisting of a 2.5 M solution of sucrose, which contains 1% v / v Triton X-100.
  • the particles with the bound DNA-containing constituents are now resuspended in 200 ⁇ l 1.5 M NaCl solution. Again, the magnetic particles are collected by applying an external magnetic field to the vessel wall. The supernatant can now be fed to other methods for purifying DNA.
  • Example 3 10 mg of the magnetic particles produced in Example 1 are placed in a mixture of 2 ml of blood and 4 ml of a lysis buffer, consisting of a 2.5 M solution of sucrose, which contains 1% v / v Triton X-100 and 0.5 M EDTA. The solution is mixed intimately to distribute the magnetic particles and incubated for 10 minutes at room temperature. Then the particles are separated by applying a permanent magnet to the vessel wall and the liquid in the vessel is discarded, being careful not to lose any magnetic particles. The particles with the bound DNA-containing constituents are now resuspended in 200 ⁇ l 1.5 M NaCl solution. Again, the magnetic particles are collected by applying an external magnetic field to the vessel wall. The supernatant can now be fed to other methods for purifying DNA.
  • a lysis buffer consisting of a 2.5 M solution of sucrose, which contains 1% v / v Triton X-100 and 0.5 M EDTA.
  • the solution is mixed intimately to distribute the magnetic particles and
  • Enrichment takes place as described in Example 2. After the complex of DNA-containing components and particles has been separated from the supernatant by applying a permanent magnet, this complex is stored at room temperature up to 30 ° C. for at least one week and then subjected to DNA isolation. The quantity of the isolated DNA and its quality correspond in the order of magnitude to the parameters that are achieved comparatively with immediate extraction immediately after enrichment.
  • a further storage of a complex for a further week at 4 ° C before the subsequent DNA isolation shows the same results with regard to the amount and quality of DNA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Die Erfindung betrifft ein verbessertes Verfahren zur Anreicherung und Stabilisierung von DNA-haltigen Bestandteilen aus biologischen Materialien, insbesondere aus Blutproben. Die DNA-haltigen Probenmaterialien werden in einem Lyse-BindungspufferSystem partiell lysiert und die DNA-haltigen Bestandteile, wie z.B. Zellkerne, an eine funktionalisierte feste Oberfläche gebunden. Das System umfasst Lysereagentien und feste Adsorbentien, wobei die Oberflächen der Adsorbentien mit Polymeren aus polymerisationsfähigen Säuren oder deren Derivaten funktionalisiert sind, an die DNA-haltige Bestandteile binden. Als funktionalisierbare Trägermaterialien können organische oder anorganische feste Materialien dienen.

Description

Verfahren zur Anreicherung und Stabilisierung von DNA-haltigen Bestandteilen aus biologischen Materialien
Die Erfindung betrifft ein verbessertes Verfahren zur Anreicherung und Stabilisierung von DNA-haltigen Bestandteilen aus biologischen Materialien, insbesondere aus Blutproben. Die DNA-haltigen Probenmaterialien werden in einem Lyse-BindungspufferSystem partiell lysiert und die DNA-haltigen Bestandteile, wie z.B. Zellkerne, an eine funktionalisierte feste Oberfläche gebunden. Das System umfasst Lysereagentien und feste Adsorbentien, wobei die Oberflächen der Adsorbentien mit Polymeren aus polymerisationsfähigen Säuren oder deren Derivaten funktionalisiert sind, an die DNA-haltige Bestandteile binden. Als funktionalisierbare Trägermaterialien können organische oder anorganische feste Materialien dienen. Die restlichen Bestandteile des Probenmaterials werden abgetrennt. Anschließend können die gebundenen DNA- haltigen Bestandteile des Probenmaterials weiter aufgereinigt werden und die DNA wird nach an sich bekannten Techniken isoliert. Gegebenenfalls werden die DNA-haltigen Bestandteile des Probenmaterials unter einer bestimmten lonenstärke von der Oberfläche abgelöst, eine Weiterbearbeitung kann jedoch auch direkt unter Einsatz der festphasengebundenen DNA-haltigen Bestandteile erfolgen. In einer besonderen Ausführungsform der Erfindung haben die festen Adsorbentien magnetische Eigenschaften und/oder die Gestalt von Mikropartikeln mit einem Durchmesser im Bereich von 1-100 μm.
Mit der Etablierung DNA-analytischer Methoden in der Laboratoriumspraxis, insbesondere der klinischen Analytik, haben Methoden zur Nukleinsäureaufreinigung eine rasante technologische Entwicklung durchlaufen. Besonderes Augenmerk gilt vor allem Nukleinsäureisolationsverfahren, die geeignet sind auf automatischen „Liquid Handling'-Systemen appliziert zu werden. Herausragend sind hier Festphasenextraktionskonzepte, die Adsorbentien mit magnetischen Eigenschaften nutzen, da durch die mögliche Manipulation dieser Adsorbentien mit magnetischen Feldern ein manuelles Eingreifen in den Extraktionsverlauf umgangen wird und der Prozess damit vollautomatisch gestaltet werden kann.
Gerade in der klinischen Analytik, etwa der Untersuchung des Major Histocomparability Complexes (MHC, HLA Analytik) wird eine bestimmte Mindestmenge und -konzentration von DNA nach der Isolation erwartet, die den Einsatz relativ großer Mengen an Probenmaterial erforderlich macht. Das automatische Extrahieren dieser relativ großen Probenmengen ist jedoch problematisch, da die zur Verfügung stehenden Pipettierroboter nicht in jedem Fall in der Lage sind die erforderlichen Volumina effektiv zu bearbeiten. Das gilt insbesondere für die DNA-Isolierung aus Blutproben, denn der zelluläre Anteil des Blutes besteht bekanntermaßen zum größten Teil aus roten Blutkörperchen (Erythrocyten). Diese sind aber für eine DNA-Isolierung ungeeignet, da sie keinen Kern besitzen, so dass lediglich die weißen Blutkörperchen, die Leukocyten, interessant sind.
Zusätzlich entstehen bei der Lagerung von Blutproben mit großen Volumina häufig Platzprobleme. Hier behilft man sich zur Zeit u.a. mit der Lagerung von sogenannten Buffy coats, deren Herstellung jedoch ausschließlich manuell erfolgen kann. Die nachfolgende Isolation von DNA aus Buffy coats kann sich aufgrund hoher Zellkonzentrationen schwierig gestalten. Ein weiteres Problem stellt die Instabilität der DNA-haltigen Bestandteile ummittelbar nach der Probenentnahme dar. Vollblut und Buffy coat müssen kühl gelagert werden, um einem DNA-Abbau vorzubeugen.
Dementsprechend wurden Strategien entwickelt, vor der eigentlichen DNA- Extraktion die DNA-haltigen Zellen bzw. die DNA-haltigen Bestandteile des Probenmaterials, insbesondere von Blut, anzureichern.
Entsprechende Verfahren sehen mehrere Arbeitsschritte vor. Zellen, aus denen DNA isoliert werden soll, werden z.B. durch Zentrifugation angereichert, anschließend lysiert, erneut zentrifugiert, danach wird das Lysat mit speziellen Trägern, die DNA binden, in Kontakt gebracht. Eine dieser Varianten zur Anreicherung DNA-haltiger Bestandteile besteht in der chemischen Lyse der Zellen mittels sogenannter Lysepuffer für rote Blutzellen (Red Cell Lysis Buffer, RCB), der Pelletierung der DNA-haltigen Bestandteile des Blutes durch Zentrifugation und dem anschließenden Extrahieren der DNA aus diesem Pellet [Epplen & Lubjuhn (1999) DNA profiling and DNA fingerprinting, Bir hauser Verlag, Berlin, S. 55].
Diese Verfahren sind nicht sehr automatisierungsfreundlich, da die Zentrifugationsschritte einer durchgehend automatisierten Extraktion von Nukleinsäuren entgegenstehen. Die Integration von Zentrifugen in Robotersysteme ist zwar möglich, die Umsetzung ist jedoch außerordentlich kostenintensiv und technologisch schwer zu realisieren.
Ein anderer methodischer Ansatz nutzt die Affinität spezieller Antikörper gegen DNA-haltige Blutzellen (z.B. CD 4 Zellen). Diese Antikörper, gebunden an Magnetpartikel erlauben eine Aufkonzentrierung von DNA-haltigen Blutzellen und damit eine Verringerung des Volumens, welches in die eigentliche DNA-Isolation eingeht. Eine Variante zur Isolation von DNA-haltigen Blutzellen mittels an Magnetpartikel gebundene spezifische Antikörper ist von Hardingham et al. beschrieben worden [Hardingham et al. (1993) Cancer Research 53, 3455-3458; Lundeberg & Larsen (1995) Biotechnology Annual Review 1 , 373-401]. Nachteile des angeführten Verfahrens sind einmal der hohe Preis für die eingesetzten Magnetpartikel. Zum anderen versagt dieses Verfahren beim Einsatz von gefrorenen Blutproben, wie er in der klinischen Praxis durchaus die Regel ist, da durch das Einfrieren und Auftauen des Probenmaterials die Zellen zerstört wurden und die Spezifität der Antikörper nicht mehr zum Tragen kommt.
Der Erfindung lag deshalb die Aufgabe zugrunde, ein Verfahren zur Anreicherung und Stabilisierung von DNA-haltigen Bestandteilen aus biologischen Materialien, insbesondere aus Blut, zu entwickeln, wobei durch das Verfahren ProbenMaterialien bereitgestellt werden sollen, die eine nachfolgende einfache und vollautomatische DNA-Isolierung gestatten, und nachteilige große Probenvolumina und die DNA-Isolierung störende Zentrifugationsschritte vermeiden. Des weiteren soll eine stabile Lagerung der DNA im Probenmaterial unter günstigen Temperaturbedingungen erlaubt sein.
Die Aufgabe konnte erfindungsgemäß gelöst werden, indem biologische Materialien in einem ersten Schritt einer partiellen Lyse in Gegenwart von mindestens einem Lysereagenz und mindestens einem festen Adsorbens, das eine mit Polymeren funktionalisierte Oberfläche aufweist, unterworfen werden. Dabei binden die DNA-haltigen Bestandteile des Probenmaterials gleichzeitig an die feste Oberfläche, die erfindungsgemäß aus Polymeren, umfassend ein Trägerpolymer, vorzugsweise aus polymerisationsfähigen Säuren oder Derivaten von polymerisationsfähigen Säuren, oder aus Polymeren, umfassend ein Gemisch aus vorgenanntem Trägerpolymer und anderen polymerisationsfähigen Säuren oder deren Derivaten, vorzugsweise ausgewählt aus Sulfonsäure, Phosphonsäure oder Carbonsäure, besteht. Andere polymerisationsfähige Säuren oder deren Derivate umfassen solche polymerisationsfähigen Säuren oder deren Derivate, die in einer besonderen Ausführungsform der festen Oberfläche nicht mit jenen des Trägermaterials identisch sind, und werden in der vorliegenden Erfindung auch als Säurekomponente bezeichnet. Nach der Abtrennung des Überstandes werden die gebundenen DNA-haltigen Bestandteile einer DNA-Isolierung nach an sich bekannten Verfahren zugeführt. Dazu können sie zunächst eluiert werden.
Es konnte in überraschender Weise festgestellt werden, dass nicht die freie DNA, sondern DNA-haltige Bestandteile eines Lysats, das in sehr großem Umfang die intakten Bestandteile des Cytoplasmas, insbesondere die Zellkerne, wie z.B. die Leukozytenkerne des Blutes, enthält, an die funktionalisierten Oberflächen der festen Adsorbentien binden.
Die an die erfindungsgemäßen Adsorbentien fixierten DNA-haltigen Bestandteile des Probenmaterials sind gegen degradierende enzymatische oder chemische Einflüsse geschützt und stabil, und sie können deshalb unkompliziert, insbesondere bei Raumtemperatur, gelagert bzw. transportiert werden.
Das erfindungsgemäße Verfahren erleichtert besonders die Isolation von DNA aus großen Probenvolumina, denn diese ursprünglich großen Volumina, wie z.B. von Blutproben, werden auf die DNA-haltigen Bestandteile reduziert. Die Lagermöglichkeit an Probenmaterialien, aus denen anschließend die DNA isoliert werden soll, wird enorm verbessert.
Vorzugsweise bestehen die Oberflächenpolymere aus Trägerpolymeren aus Acrylsäure oder Methacrylsäure oder deren Derivaten, wie z.B. aus Acrylamid, Methacrylamid oder Acrylsäureestern.
Darüber hinaus können die polymeren Oberflächen als zweite Komponente polymerisierte Säuren, vorzugsweise Sulfon-, Phosphon- oder Carbonsäure, oder polymerisierte Derivate von polymerisationsfähigen Säuren, vorzugsweise Sulfon- oder Phosphonsäureverbindungen, besonders bevorzugt Vinylphosphonsäure, Vinylsulfonsäure oder deren Derivate, wie z.B. Styrensulfonsäure, enthalten. Bevorzugt im Sinne der Erfindung sind Copolymere aus einem Trägerpolymer und der Säurekomponente Sulfonsäure oder Vinylsulfonsäure. Gegebenenfalls können weitere Monomerkomponenten mit einer polymerisierbaren Doppelbindung, wie z.B. Vinylacetat, vinylgruppenhaltige
Silylverbindungen und Vinylstearat, verwendet werden. Besonders wertvoll ist die
Verwendung letztgenannter Monomere zur Erzielung bestimmter Oberflächen- eigenschaften des Adsorbens, wie Benetzbarkeit oder Modifizierbarkeit.
Die Oberflächenpolymere sind im Fall von Copolymeren unter einem definierten Verhältnis der verschiedenen Monomere zusammengesetzt, in binären Systemen vorzugsweise im Verhältnis 9:1 bis 1 :1 von Trägerpolymer zu Säurekomponente, besonders bevorzugt im Verhältnis 9:1 bis 3:1.
Der Gehalt der polymerisationsfähigen Säurekomponente im Reaktionsgemisch liegt zwischen 10 % w/w und 50 % w/w, vorzugsweise zwischen 10 % w/w und 25 % w/w. Vorzugsweise haben die funktionalisierten Oberflächen Styrensulfonsäure in einem Massenanteil zwischen 10 % w/w und 50 % w/w, besonders bevorzugt zwischen 10 % w/w und 25 % w/w.
Trägermaterialien für die erfindungsgemäßen Polymere können alle anorganischen oder organischen Materialien sein, die auf Grund ihrer chemischen Eigenschaften eine Aktivierung gestatten. Ebenso können anorganische oder organische Materialien genutzt werden, die sich in die erfindungsgemäßen Polymere einbetten lassen, etwa durch Vernetzen löslicher Derivate von Polymeren. Dazu gehören z.B. Polystyren, Polysulfone, unmodifizierte oder modifizierte Kieselgele. Besonders eignen sich Hydroxylgruppen tragende Polymere, wie z.B. Cellulose, ganz besonders geeignet sind Polyvinylalkohol- derivate. Weiterhin können Polyester, Polyamide, Polycarbonate usw. eingesetzt werden.
Die Verwendung der die Oberflächeneigenschaften der Adsorbentien bestimmenden Polymere als Trägermaterialien ist ebenfalls möglich, sofern die physikalisch-chemischen Eigenschaften dieser Materialien eine Handhabung in wässerigen Lösungen erlauben. In einer bevorzugten Verfahrensvariante bestehen die auf den Adsorbentienoberflächen aufgebrachten Polymere aus dem Trägermaterial und/oder Vinylsulfonsäuremonomeren, die in das lysierte biologische Material eingebracht werden. In einer weiteren besonderen Ausführungsform dieser Erfindung bestehen die festen Trägermaterialien zur Anreicherung der DNA-haltigen Bestandteile aus Mikropartikeln mit magnetischen Eigenschaften, die sie durch Anlegen externer magnetischer Felder mechanisch manipulierbar machen. Besonders bevorzugt werden Mikropartikel mit magnetischen Eigenschaften und einem Durchmesser im Bereich von 1-100 μm, vorzugsweise 1-30 μm, besonders bevorzugt 3-10 μm, eingesetzt. Solche Mikropartikel sind dem Fachmann bekannt. Ihre Herstellung erfolgt nach an sich bekannten Methoden, so wie beispielsweise in DE 43 07 262 und US 5,648,124 beschrieben.
Die Herstellung der zur erfindungsgemäßen Anreicherung notwendigen Adsorbentien kann z.B. durch die dem Fachmann hinlänglich bekannten Pfropfpolymerisationsverfahren, wie z.B. dem Aufbringen der Monomergemische auf mittels Peroxidradikalen aktivierte Oberflächen, erfolgen.
So lassen sich beispielsweise mit Dialdehyden vernetzte Polyvinylalkoholderivate mittels konzentrierter Lösung von Wasserstoffperoxid aktivieren [Bates & Shanks (1980) J. Macromol. Science Chem. A14, 137-151 ; Bolto et al. (1978) J. Appl. Polym. Sei. 2, 1977]. Ebenso ist eine Aktivierung der Basisoberfläche durch partielle Oxidation mit Cer(IV)-ammoniumsulfat [Mukopadhyay et al. (1969) J.
Polym. Sei. A-1 7, 2079] denkbar. Andere Aktivierungsverfahren sind die photochemische Aktivierung der Oberfläche durch Sensibilisatoren wie Benzophenon oder Methylenblau.
Des weiteren ist die chemische Anbindung der die Oberflächeneigenschaften der Adsorbentien bestimmenden Polymere über auf den festen Trägermaterialien befindliche sogenannte Ankergruppen möglich. So können beispielsweise die Polymere an Aminogruppen, die sich auf der Oberfläche der Trägermaterialien befinden, kondensiert werden. Dem Fachmann ist bekannt, wie Aminogruppen auf die Trägermaterialien aufgebracht werden.
Ein Vernetzen löslicher Derivate der erfindungsgemäßen Polymere mittels geeigneter Vernetzungsreagentien in Gegenwart der festen organischen oder anorganischen Trägermaterialien führt ebenfalls zu Adsorbentien mit den erfindungsgemäßen Eigenschaften. Weiterhin können die Oberflächeneigenschaften der Adsorbentien durch die zusätzliche Verwendung von weiteren Monomerkomponenten mit einer polymerisierbaren Doppelbindung beeinflusst werden. So kann man beispielsweise durch den Einsatz von Vinylacetat und dessen Hydrolyse nach der Polymerisation das Benetzungsverhalten der Adsorbentien verbessern.
Die festen Adsorbentien können bevorzugt als loses Pulver oder als Filtermaterial, das modifiziert sein kann, zum Einsatz gelangen. Besonders bevorzugt ist ein Einsatz als Filtermatrix in Filterplatten. Beispielhaft sei eine Verwendung der beschriebenen Adsorbentien in sogenannten „Spin columns", d.h. in kleinen Chromatographiesäulen für die Handhabung in Tischzentrifugen, genannt.
Zur Anreicherung der DNA-haltigen Bestandteile können die funktionalisierten Adsorbentien vor, gleichzeitig oder nach der Lyse in das biologische Material, das vorzugsweise in Form einer biologischen Lösung vorliegt, eingebracht werden. Der Zeitpunkt wird u.a. durch die Beschaffenheit der Adsorbentien bestimmt. Beispielsweise werden bei einer Verwendung als Filtermatrix die biologischen Proben vorzugsweise nach der Lyse mit den beschriebenen Adsorbentien kontaktiert, so dass die DNA-haltigen Bestandteile an die funktionalisierten Oberflächen binden können.
Als loses Pulver werden die festen Adsorbentien vorzugsweise in Gegenwart der Lysereagentien in die biologischen Materialien eingebracht. Das biologische Material wird lysiert und die DNA-haltigen Bestandteile des Probenmaterials binden an die funktionalisierten Oberflächen.
Biologische Materialien in Sinne dieser Erfindung können Körperflüssigkeiten sein, wie z.B. Blut, Urin oder Cerebrospinalflüssigkeit. Darüber hinaus können als weitere biologische Materialien z.B. auch Plasma, Zellen, Buffy coat, Leukocytenfraktionen, Sputum, Sperma oder Organismen (Einzeller, wie z.B. Eukaryonten oder Prokaryonten, Mehrzeller, Insekten usw.) verwendet werden. Weiterhin können zu diesen biologischen Materialien Kulturen von Mikroorganismen, zellhaltige Materialien, wie z.B. Gewebe oder Bodenproben, Bestandteile von Pflanzen oder anderen Organismen gehören. Besonders eignet sich das erfindungsgemäße Verfahren für die Anreicherung DNA-haltiger Bestandteile in Blut (humanes Vollblut), Buffy coat, Leukocytenfraktionen und Zellkulturen. DNA-haltige Bestandteile im Sinne dieser Erfindung sind vorzugsweise Zellkerne und andere DNA-haltige Organellen, wie z.B. Mitochondrien, Chloroplasten oder im Probenmaterial enthaltenen DNA-haltige Proteinkomplexe aber auch DNA- haltige Viren wie das Hepatitis C Virus, das Cytomegalie-Virus u.a.
Die Lysereagentien bewirken gegebenenfalls einen osmotischen Schock und öffnen die Zellmembranen. Andere die Stabilität der Zellstruktur störende Lysebedingungen, wie z.B. mechanische Einwirkungen durch Kugelmühle, French Press, Ultraschall usw., ein enzymatischer Abbau von Zellwand bzw. Zellmembran durch zellwandlytische Enzyme und/oder die Wirkung oberflächenaktiver Substanzen sind ebenfalls denkbar.
Zur Lösung der erfindungsgemäßen Aufgabe eignen sich als Lysereagentien besonders Lösungen, die Detergentien enthalten, wie z.B. Triton X-100, Tween
20, Tween 80, NP-40 und Briej 35. Die Detergentien können sowohl als alleinige
Komponente als auch in Kombination mit einem Komplexbildner aus der Reihe der chelatartigen Liganden und/oder mit einem nativen Kohlenhydrat verwendet werden, vorzugsweise mit einem Oligosaccharid, dass zu mindestens 50 % aus Glucoseeinheiten besteht, besonders bevorzugt mit einem Disaccharid, wie z.B.
Saccharose. Weiterhin können ionische Detergentien, wie z.B.
Cetyltrimethylammoniumbromid (CTAB) oder Sodiumdodecylsulfat (SDS),
Verwendung finden. Das anionische Detergenz SDS löst durch Micellenbildung
Lipide aus der Zellmembran, deren zerstörte Struktur zelleigenen Enzymen Angriffspunkte zum weiteren Abbau der Zellwand bietet.
Gegebenenfalls können dem Lysereagenz - einzeln oder in Kombination - Salze ein- oder zweiwertiger Kationen zugesetzt sein und/oder zellwandlytische Enzyme, wie z.B. Glukansen, Proteasen , Zellulasen usw..
Erfindungsgemäß werden bevorzugt Lysereagentien eingesetzt, die 0.5 % v/v bis 5 % v/v Komplexbildner und/oder 0.5 % v/v bis 3 % v/v Detergenz umfassen, wobei ein Volumenanteil von 1.0 % v/v bis 1.5 % v/v an Detergenz bevorzugt ist. Besonders bevorzugt ist ein Lysereagenz, umfassend Triton, Saccharose und/oder Ethylendiamintetraacetat (EDTA). Ganz besonders bevorzugt ist ein Reagenz, enthaltend 0.5 M EDTA, 1 % v/v Triton X-100 und 2.5 M Saccharose. Das Lysereagenz wird bevorzugt in Kombination mit magnetischen Mikropartikeln verwendet, die eine durch Acrylamid, Methacrylamid, Acrylsäurederivate und/oder polymerisationsfähige Säuren oder deren Derivate, vorzugsweise Sulfonsäure- Derivate, funktionalisierte Oberfläche zur Bindung der DNA-haltigen Bestandteile umfassen.
Überraschend erfolgt unter den Bedingungen einer partiellen Lyse, wie sie bei der Zerstörung der Zellmembran gegeben ist, eine Bindung DNA-haltiger Bestandteile, wie z.B. von Zellkernen, Mitochondrien, Chloroplasten oder DNA-haltigen Proteinkomplexen aber auch DNA haltiger Viren an das Adsorbens. Reine DNA bindet unter diesen Bedingungen nicht an das Adsorbens und ist in beispielhaften Untersuchungen bei Verwendung der beschriebenen Puffersysteme nicht isolierbar.
Die restlichen Bestandteile des Probenmaterials werden abgetrennt. In einer Ausführungsform des erfindungsgemäßen Verfahren werden nach einer Bindungszeit der DNA-haltigen Bestandteile von 1-10 Minuten, vorzugsweise nach 2-5 Minuten, die Adsorbentien mit den gebundenen DNA-haltigen Bestandteilen vom restlichen Probenmaterial abgetrennt. Die sich im Probenmaterial befindlichen DNA-haltigen Bestandteile werden entsprechend aufkonzentriert, wodurch das in ein Verfahren zur DNA-Isolierung eingehende Volumen drastisch reduziert werden kann. Mit dem vorliegenden Anreicherungsverfahren kann eine Volumenreduzierung auf mindestens 1/4 des ursprünglichen Probenvolumens erreicht werden, vorzugsweise auf 1/8, besonders bevorzugt auf weniger als 1/10.
Nach erfolgter Bindung werden die DNA-haltigen Bestandteile gegebenenfalls von den Adsorbentien eluiert. Eine eventuelle Elution der DNA-haltigen Bestandteile kann unmittelbar nach dem Verwerfen des lysierten Probenmaterials oder nach einer Zwischenlagerung erfolgen. Dazu findet beispielsweise ein kleines Volumen einer wässerigen Salzlösung mit definierter lonenstärke Anwendung. Als Salze werden bevorzugt Alkalihalogenide und Erdalkalihalogenide, wie z.B. NaCI, KCI oder CaC , besonders bevorzugt Lithium- oder Calciumhalogenide, und ganz besonders bevorzugt Lithiumchlorid und Calciumchlorid allein oder im Gemisch miteinander, verwendet. Die Salze können sowohl als alleinige Komponenten in wässeriger Lösung oder als Bestandteile wässeriger Pufferlösungen mit anderen Komponenten, wie z.B. dem Fachmann bekannten Detergentien oder Komplexbildnern, in einer bevorzugten Konzentration von 0.01 M bis 3.5 M, vorzugsweise in einer Konzentration von 0.01 bis 1.0 M, zum Einsatz kommen.
Mit dem erfindungsgemäßen Verfahren ist das Volumen der zur Ablösung der DNA-haltigen Bestandteile benötigten Lösung deutlich geringer als das Ausgangsvolumen der biologischen Probe, so dass eine Konzentration der aufzureinigenden DNA erreicht wird und die Extraktion in kleinen Volumina z.B. mit Robotern vollautomatisch erfolgen kann.
Die so gebundenen DNA-haltigen Bestandteile können, gegebenenfalls nach Lagerung und Elution, einer an sich bekannten Aufreinigung und DNA-Isolierung, deren Durchführung auch vollautomatisch möglich ist, unterzogen werden. Diese Verfahren sind dem Fachmann bekannt. So kann beispielsweise nach Abtrennung in der Probe vorhandener Proteine, z.B. durch eine Phenol/Chloroform-Extraktion, die zu isolierende DNA präzipitiert werden durch die Zugabe von Salzen, z.B. Natriumacetat, oder durch Zugabe eines organischen Lösungsmittels, insbesondere Alkohol, wie z.B. Ethanol oder Isopropanol, oder über ein bekanntes Festphasenextraktionsprinzip, etwa der Bindung der DNA in Gegenwart von chaotropen Substanzen an silikatische Materialien, weiter aufgereinigt werden. Die Aufreinigung kann auch durch Gelfiltration, Gelelution oder Ionenaustauscher erfolgen. Mehrere der vorgenannten Methoden können kombiniert werden.
Der erfindungsgemäße Anreicherungsschritt kann in ein vollautomatisches Verfahren integriert werden, da es nur von der technischen Gestaltung des eingesetzten Adsorbens abhängt, welches automatische Verfahren zur Anreicherung DNA-haltiger Bestandteile verwendet wird.
Die Erfindung soll nun anhand einiger Beispiele illustriert werden, ohne sie aber auf diese Beispiele zu beschränken.
Beispiel 1
Herstellung von funktionalisierten magnetischen Mikropartikeln
1 g magnetischer Mikropartikel, bestehend aus mit Glutardialdehyd [Bolto et al. (1978) J. Appl. Polym. Sei. 2, 1977] vernetztem Polyvinylalkohol, werden im
Verlauf von einer Stunde mit 10 ml 30%-igem Wasserstoffperoxid aktiviert. Die
Partikel werden aus der Suspension abgetrennt und mit Wasser peroxidfrei gewaschen. Dann gibt man diese Partikel zu einer Lösung von 1.1 g Acrylamid und 0.5 g Styrensulfonsäure, die mit Natronlauge auf pH 7 gebracht wurde. Nach der Zugabe von 40 mg Eisen(ll)-sulfat rührt man 1 Stunde bei Raumtemperatur. Die Partikel werden dann abgesaugt, mit Wasser von restlichem Monomer und nicht gepfropften Polymer befreit und sind für die Anreicherung von DNA-haltigen Bestandteilen bereit.
Beispiel 2a
Anreicherung DNA-haltiger Bestandteile
10 mg der unter Beispiel 1 hergestellten Magnetpartikel werden in eine Mischung aus 2 ml Blut und 4 ml eines Lysepuffers, bestehend aus einer 2.5 M Lösung von Saccharose, die 1 % v/v Triton X-100 enthält, gegeben. Die Lösung wird innig gemischt, um die Magnetpartikel zu verteilen und 10 Minuten bei Raumtemperatur inkubiert. Dann trennt man die Partikel durch Anlegen eines Permanentmagneten an die Gefäßwand ab und verwirft die Flüssigkeit im Gefäß, wobei man darauf achtet, keine Magnetpartikel zu verlieren.
Die Partikel mit den gebundenen DNA-haltigen Bestandteilen werden nun in 200 μl 1.5 M NaCI-Lösung resuspendiert. Wiederum werden die Magnetpartikel durch Anlegen eines äußeren Magnetfeldes an der Gefäßwand gesammelt. Der Überstand kann nun weiteren Methoden zur Aufreinigung von DNA zugeführt werden.
Beispiel 2b Anreicherung DNA-haltiger Bestandteile
10 mg der unter Beispiel 1 hergestellten Magnetpartikel werden in eine Mischung aus 2 ml Blut und 4 ml eines Lysepuffers, bestehend aus einer 2.5 M Lösung von Saccharose, die 1 % v/v Triton X-100 und 0.5 M EDTA enthält, gegeben. Die Lösung wird innig gemischt, um die Magnetpartikel zu verteilen und 10 Minuten bei Raumtemperatur inkubiert. Dann trennt man die Partikel durch Anlegen eines Permanentmagneten an die Gefäßwand ab und verwirft die Flüssigkeit im Gefäß, wobei man darauf achtet, keine Magnetpartikel zu verlieren. Die Partikel mit den gebundenen DNA-haltigen Bestandteilen werden nun in 200 μl 1.5 M NaCI-Lösung resuspendiert. Wiederum werden die Magnetpartikel durch Anlegen eines äußeren Magnetfeldes an der Gefäßwand gesammelt. Der Überstand kann nun weiteren Methoden zur Aufreinigung von DNA zugeführt werden. Beispiel 3
Lagerung der angereicherten DNA-haltigen Bestandteile
Die Anreicherung erfolgt wie im Beispiel 2 beschrieben. Nach Abtrennung des Komplexes aus DNA-haltigen Bestandteilen und Partikeln vom Überstand durch Anlegen eines Permanentmagneten wird dieser Komplex bei Raumtemperatur bis 30°C mindestens eine Woche gelagert und danach einer DNA-Isolation zugeführt. Die Menge der isolierten DNA und deren Qualität entsprechen in der Größenordnung den Parametern, die vergleichsweise bei sofortiger Extraktion unmittelbar nach der Anreicherung erzielt werden.
Eine weitere Lagerung eines Komplexes für eine weitere Woche bei 4°C vor der anschließenden DNA-Isolation zeigt gleiche Ergebnisse bezüglich der DNA- Menge und Qualität.

Claims

Patentansprüche
1. Verfahren zur Anreicherung und Stabilisierung von DNA-haltigen Bestandteilen, dadurch gekennzeichnet, dass DNA-haltiges Probenmaterial in einem Lyse-Bindungspuffer-System, welches mindestens ein Lysereagenz und mindestens ein festes Adsorbens umfasst, partiell lysiert wird und die DNA-haltigen Bestandteile an das Adsorbens gebunden werden, wobei die Oberfläche des Adsorbens mit Polymeren funktionalisiert ist, die aus einem Trägerpolymer und/oder aus Säurekomponente(n) aus polymerisationsfähigen Säuren oder Derivaten von polymerisationsfähigen Säuren bestehen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Trägerpolymer polymerisationsfähige Säuren, vorzugsweise Acrylsäuren oder Methacrylsäuren, oder Derivate von polymerisationsfähigen Säuren, vorzugsweise Acrylamide, Methacrylamide oder Acrylsäureester, verwendet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als
Polymere Copolymere aus Trägerpolymer und Säurekomponente, letztere ausgewählt aus Sulfonsäuren, Phosphonsäuren oder Carbonsäuren, verwendet werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass Copolymere im
Monomerverhältnis 9:1 bis 1 :1 , vorzugsweise 9:1 bis 3:1 , von Trägerpolymer zu Säurekomponente, verwendet werden.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Gehalt der Säurekomponente im Reaktionsgemisch zwischen 10 % w/w und 50 % w/w, vorzugsweise zwischen 10 % w/w und 25 % w/w liegt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Säurekomponente ein Vinylsulfonsäurederivat verwendet wird, vorzugsweise Styrensulfonsäure.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Adsorbens aus organischen oder anorganischen festen Trägermaterialien, an die die Polymere gebunden sind, besteht, vorzugsweise Polystyren, Polysulfone, modifizierte oder unmodifizierte Kieselgele, Polyester, Polycarbonate, Polyamide oder Polymere mit
Hydroxylgruppen, vorzugsweise Cellulose oder Polyvinylalkoholderivate.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass als Adsorbens Mikropartikel mit einem mittleren Durchmesser von 1-100 μm, vorzugsweise
1-30 μm, eingesetzt werden.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass als Adsorbens magnetische Mikropartikel eingesetzt werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Lysereagenz mindestens ein Detergenz im Gemisch mit mindestens einem nativen Kohlenhydrat, vorzugsweise einem Oligosaccharid, und/oder mindestens einem Komplexbildner umfasst.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass ein nichtionisches Detergenz verwendet wird, vorzugsweise Derivate aus den Reihen Triton, Tween, NP-40 oder Gemische davon.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als
Oligosaccharid ein Disaccharid, vorzugsweise Saccharose, verwendet wird.
13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass als Komplexbildner EDTA verwendet wird.
14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Lysereagenz Triton X-100, vorzugsweise 1 % v/v, Saccharose, vorzugsweise 2.5 M, und/oder EDTA, vorzugsweise 0.5 M, umfasst.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass als DNA-haltiges Probenmaterial biologisches Material, vorzugsweise Blut, Leukocytenfraktionen, Buffy coat, Urin, Serum, Plasma, Zellsuspensionen von Mikroorganismen oder Aufschlüsse von Pflanzen, zum Einsatz kommen.
16. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als DNA-haltige Bestandteile Zellorganellen, vorzugsweise Zellkerne, Mitochondrien oder
Chloroplasten, DNA-haltige Proteinkomplexe oder DNA-haltige Viren angereichert werden.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die DNA-haltigen Komplexe mit Hilfe von wässrigen Salzlösungen, die bevorzugt Alkali- und Erdalkalihalogenide enthalten, von dem festen Adsorbens abgelöst werden.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass Alkali- und/oder Erdalkalichloride, vorzugsweise Lithium- und/oder Calciumchlorid, in einer Konzentration von 0.01-3,0 M, vorzugsweise in einer Konzentration von 0,01 bis 1 ,5M, eingesetzt werden.
PCT/EP2004/014015 2003-12-24 2004-12-07 Verfahren zur anreicherung und stabilisierung von dna-haltigen bestandteilen aus biologischen materialien WO2005066361A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2004312137A AU2004312137A1 (en) 2003-12-24 2004-12-07 Method for enriching and stabilising components which contain DNA and which are made of biological materials
JP2006545977A JP2007516712A (ja) 2003-12-24 2004-12-07 生物材料からのdna含有構成成分を集積化および安定化する方法
US10/584,376 US20070207460A1 (en) 2003-12-24 2004-12-07 Method For Enriching And Stabilising Components Which Contain Dna And Which Are Made Of Biological Materials
CA002552010A CA2552010A1 (en) 2003-12-24 2004-12-07 Method for enriching and stabilising components which contain dna and which are made of biological materials
EP04803673A EP1697540A1 (de) 2003-12-24 2004-12-07 Verfahren zur anreicherung und stabilisierung von dna-haltigen bestandteilen aus biologischen materialien

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360968.7 2003-12-24
DE10360968 2003-12-24

Publications (1)

Publication Number Publication Date
WO2005066361A1 true WO2005066361A1 (de) 2005-07-21

Family

ID=34683847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014015 WO2005066361A1 (de) 2003-12-24 2004-12-07 Verfahren zur anreicherung und stabilisierung von dna-haltigen bestandteilen aus biologischen materialien

Country Status (7)

Country Link
US (1) US20070207460A1 (de)
EP (1) EP1697540A1 (de)
JP (1) JP2007516712A (de)
AU (1) AU2004312137A1 (de)
CA (1) CA2552010A1 (de)
DE (1) DE102004059710A1 (de)
WO (1) WO2005066361A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023057A1 (de) * 2005-08-24 2007-03-01 Qiagen Gmbh Verfahren zur gewinnung von nukleinsäuren aus blut
DE102007009347A1 (de) 2007-02-27 2008-08-28 Agowa Gmbh Verfahren zur Isolierung von Nukleinsäuren

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726529B2 (ja) * 2007-11-30 2015-06-03 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション 単一試料からのゲノムdna、rnaおよびタンパク質の単離方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022201A1 (en) * 1991-06-17 1992-12-23 Baxter Diagnostics Inc. Process for producing magnetically responsive polymer particles and application thereof
DE19912799A1 (de) * 1998-03-12 1999-09-16 Agowa Ges Fuer Molekularbiolog Superparamagnetisches Adsorptionsmaterial, seine Herstellung und Verwendung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510363A (ja) * 1990-10-29 1994-11-17 ディカルブ プラント ジェネティクス 磁気性粒子を使用する生物学的材料の単離
US5380489A (en) * 1992-02-18 1995-01-10 Eastman Kodak Company Element and method for nucleic acid amplification and detection using adhered probes
US5734020A (en) * 1991-11-20 1998-03-31 Cpg, Inc. Production and use of magnetic porous inorganic materials
US5804684A (en) * 1995-08-24 1998-09-08 The Theobald Smith Research Institute, Inc. Method for isolating nucleic acids
US6869532B2 (en) * 2001-06-04 2005-03-22 Cuno Incorporated Nucleic acid binding matrix
JP2003204799A (ja) * 2002-01-11 2003-07-22 Jsr Corp 白血球含有試料からの核酸分離方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992022201A1 (en) * 1991-06-17 1992-12-23 Baxter Diagnostics Inc. Process for producing magnetically responsive polymer particles and application thereof
DE19912799A1 (de) * 1998-03-12 1999-09-16 Agowa Ges Fuer Molekularbiolog Superparamagnetisches Adsorptionsmaterial, seine Herstellung und Verwendung

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HARDINGHAM J E ET AL: "IMMUNOBEAD-PCR: A TECHNIQUE FOR THE DETECTION OF CIRCULATING TUMOR CELLS USING IMMUNOMAGNETIC BEADS AND THE POLYMERASE CHAIN REACTION", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, BALTIMORE, MD, US, vol. 53, 1 August 1993 (1993-08-01), pages 3455 - 3458, XP000605489, ISSN: 0008-5472 *
LEVISON P R ET AL: "Recent developments of magnetic beads for use in nucleic acid purification", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER SCIENCE, NL, vol. 816, no. 1, 7 August 1998 (1998-08-07), pages 107 - 111, XP004145838, ISSN: 0021-9673 *
LUNDBERG J O N ET AL: "High nitric oxide production in human paranasal sinuses", NATURE MEDICINE, vol. 1, no. 4, 1995, pages 370 - 373, XP008044959, ISSN: 1078-8956 *
ODABASI M ET AL: "Polyhydroxyethylmethacrylate-based magnetic DNA-affinity beads for anti-DNA antibody removal from systemic lupus erythematosus patient plasma", JOURNAL OF CHROMATOGRAPHY B: BIOMEDICAL SCIENCES & APPLICATIONS, ELSEVIER SCIENCE PUBLISHERS, NL, vol. 760, no. 1, 25 August 2001 (2001-08-25), pages 137 - 148, XP004273999, ISSN: 1570-0232 *
SAFARK I ET AL: "Use of magnetic techniques for the isolation of cells", JOURNAL OF CHROMATOGRAPHY B : BIOMEDICAL APPLICATIONS, ELSEVIER SCIENCE PUBLISHERS, NL, vol. 722, no. 1-2, 5 February 1999 (1999-02-05), pages 33 - 53, XP004156204, ISSN: 0378-4347 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023057A1 (de) * 2005-08-24 2007-03-01 Qiagen Gmbh Verfahren zur gewinnung von nukleinsäuren aus blut
JP2009507781A (ja) * 2005-08-24 2009-02-26 キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング 血液から核酸を抽出する方法
US8222030B2 (en) 2005-08-24 2012-07-17 Qiagen Gmbh Method for the separation of living cells
US9506107B2 (en) 2005-08-24 2016-11-29 Qiagen Gmbh Method for extracting nucleic acid from blood
DE102007009347A1 (de) 2007-02-27 2008-08-28 Agowa Gmbh Verfahren zur Isolierung von Nukleinsäuren

Also Published As

Publication number Publication date
CA2552010A1 (en) 2005-07-21
US20070207460A1 (en) 2007-09-06
EP1697540A1 (de) 2006-09-06
DE102004059710A1 (de) 2005-07-21
JP2007516712A (ja) 2007-06-28
AU2004312137A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
DE4034036C2 (de) Vorrichtung und Verfahren zur Isolierung von Nukleinsäuren aus Zellsuspensionen
DE69734263T2 (de) Verfahren zur Isolierung von Ribonucleinsäuren.
DE69802191T2 (de) Festphase nukleinsäure-isolierung
DE60012506T2 (de) Mischbett-festphase und dessen verwendung zur isolation von nukleinsäuren
DE69328459T2 (de) Vorbereitung von Nukleinsäure aus mononuklearen Zellen
DE69109275T2 (de) Verfahren zur isolierung von makromolekülen mittels magnetisch anziehbarer kugeln, die die makromoleküle unspezifisch binden.
DE60012549T2 (de) Verfahren zur isolierung von nukleinsäuren und kit
AT414209B (de) Sammelgefäss für flüssigkeiten
DE69223617T2 (de) Verfahren zum Auffangen von Zellkernen und dafür verwendete Vorrichtung
EP1121460A1 (de) Verfahren und mittel zur isolierung und reinigung von nukleinsäuren an oberflächen
EP2283026B1 (de) Verfahren zur anreicherung und isolierung von biomolekülen oder viren
DE112010001766B4 (de) Verfahren zur isolierung hochreiner rna mittels paramagnetischen mikro- und nanopartikeln
DE19736366A1 (de) Verfahren zur Isolierung von anionischen organischen Verbindungen aus wäßrigen Systemen mit kationischen Polymernanopartikeln
EP1274745B1 (de) Magnetische, silanisierte trägermaterialien auf basis von polyvinylalkohol
DE60035977T2 (de) MIT FTA BESCHICHTETER TRäGER ZUR VERWENDUNG ALS MOLEKULARES DIAGNOSEMITTEL
DE19912799B4 (de) Superparamagnetisches Adsorptionsmaterial und seine Verwendung
WO2008122500A1 (de) Verfahren zur aufreinigung von biomolekülen
EP1242816B1 (de) Chromatographiematerial und verfahren unter verwendung desselben
WO2005066361A1 (de) Verfahren zur anreicherung und stabilisierung von dna-haltigen bestandteilen aus biologischen materialien
DE102017222295B4 (de) Kits und Verfahren zur Entfernung von Verunreinigungen aus einer Nukleinsäure enthaltenden Probe
DE102015211715A1 (de) Verfahren zur Anreicherung von Mikrovesikeln
EP1693453B1 (de) Verfahren zur Isolierung und Trennung von einzel- und doppelsträngigen Nucleinsäuren sowie Trennsäule zur Durchführung des Verfahrens
WO2005007882A2 (de) Probenzubereitungseinheit
WO2022180117A1 (de) Verfahren zur simultanen isolierung von nukleinsäuren aus sedimentierbaren und nicht sedimentierbaren biomolekülen in wasserproben
EP1559790A1 (de) Vesikel zum Abtrennen von Substanzen aus flüssigen Medien

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006545977

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2552010

Country of ref document: CA

Ref document number: 548056

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004803673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004312137

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004312137

Country of ref document: AU

Date of ref document: 20041207

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004312137

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004803673

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10584376

Country of ref document: US

Ref document number: 2007207460

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10584376

Country of ref document: US