WO2005063865A1 - Stabilisierte thermoplastische zusammensetzungen - Google Patents

Stabilisierte thermoplastische zusammensetzungen Download PDF

Info

Publication number
WO2005063865A1
WO2005063865A1 PCT/EP2004/014003 EP2004014003W WO2005063865A1 WO 2005063865 A1 WO2005063865 A1 WO 2005063865A1 EP 2004014003 W EP2004014003 W EP 2004014003W WO 2005063865 A1 WO2005063865 A1 WO 2005063865A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
formula
alkyl
vinyl
parts
Prior art date
Application number
PCT/EP2004/014003
Other languages
English (en)
French (fr)
Inventor
Holger Warth
Juan Gonzalez-Blanco
Bodo Weickert
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to CA002550563A priority Critical patent/CA2550563A1/en
Priority to EP04803665A priority patent/EP1699859B1/de
Priority to MXPA06006908A priority patent/MXPA06006908A/es
Priority to JP2006545975A priority patent/JP2007515528A/ja
Priority to BRPI0417989-7A priority patent/BRPI0417989A/pt
Priority to DE502004006086T priority patent/DE502004006086D1/de
Publication of WO2005063865A1 publication Critical patent/WO2005063865A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/02Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • compositions based on impact modifiers which contain a combination of at least one compound selected from the group consisting of phosphorous acid esters, sterically hindered phenols and phosphates, in particular phosphorous acid esters and cyclic lactones.
  • WO 01/16224 describes polycarbonate molding compositions finished with cyanoacrylic acid esters in combination with a phosphite stabilizer and optionally a sterically hindered phenol and / or lactone with improved protection against UN radiation and color stability with reduced coating formation during processing.
  • Phosphoric acid esters are added to polycarbonate and polyester molding compositions to stabilize them under thermal stress, in particular to prevent discoloration properties during the production of the molding compositions by compounding and processing the molding compositions to give thermoplastic molded articles (for example DE-A 2 140207, DE-A 2255 639, DE-A 2,615,341).
  • Phosphorous acid esters in particular polyalkylene terephthalates, which are exposed to thermal and / or oxidative loads or to strong UV radiation, are added for stabilization.
  • the stabilization reduces polymer degradation when heated in hot air, which means that essential properties such as e.g. Toughness and elasticity drop to a lower level than with unstabilized molding compounds (DE-A 2 615 341).
  • Phosphoric acid esters are also added to polymer blends made of polyalkylene terephthalate and polycarbonate, which have good toughness and heat resistance, in order to enable better paintability and paint adhesion (EP-A 0 373 465).
  • WO 00/49078 describes a mixture containing vinylcyclohexane-based polymer / copolymer and a stabilizer system containing lactone, sterically hindered phenol and a phosphite component. Optical data carriers produced from this have improved thermal stabilization and lower molecular weight reduction.
  • the object of the present invention is the reduction of residual monomer components, in particular of butadiene in graft polymers, such as e.g. ABS or blends containing graft polymers. This reduction is of great importance due to the increased emission requirements, especially in the automotive sector.
  • the present invention therefore relates to compositions comprising
  • R 1 , R 2 , R 3 and R 4 independently of one another represent hydrogen, -CC 6 alkyl, preferably -C 4 alkyl, a 5- or 6-membered ring, preferably cyclohexyl or cyclopentyl, and R 1 and R. 2 independently of one another are particularly preferably branched CrC-alkyl, in particular isopropyl and / or tert-butyl, R 3 and R 4 are in particular methyl, and, if appropriate
  • R represents H or d-Cs-alkyl, C 5 -C 6 cycloalkyl, C 7 -C 9 aralkyl or C 6 -C ⁇ 0 aryl,
  • R 5 and R 6 are identical or different and are Ci-Cg-alkyl, C 5 -C 6 cycloalkyl, C 7 -C 9 aralkyl or C 6 -C ⁇ o-aryl and
  • X represents -S- or R 7 -CH with R 7 represents hydrogen, dC 6 alkyl or C 5 -C 6 cycloalkyl,
  • R 7 and R ⁇ independently of one another are hydrogen or C 1 -C 6 -alkyl, preferably C 1 -C 4 -alkyl, optionally a 5- or 6-membered ring, preferably cyclohexyl or cyclopentyl,
  • R 7 and R 8 independently of one another are particularly preferably C 3 -C 4 -alkyl, in particular iso-propyl and / or tert-butyl,
  • n is an integer from 1 to 4, preferably 3 or 4, in particular 4,
  • a 1 and A 2 independently of one another are -C 6 alkylene, preferably CC 4 alkylene, in particular methylene, ethylene, R independently for hydrogen, -CC 6 alkyl, preferably -C 4 alkyl, -C -C 6 alkoxy, preferably -C 4 alkoxy, optionally a 5- or 6-membered ring, preferably cyclohexyl or Cyclopentyl stands,
  • R 9 and R 10 independently of one another for hydrogen or CC 6 -alkyl, preferably C 1 -C 6 -alkyl, optionally a 5- or 6-membered ring, preferably cyclohexyl or cyclopentyl, x and y independently of one another for 0, 1, 2, 3 , 4, 5, preferably stand for 0, 1 or 2 and k stands for 1 or 2,
  • R 9 and R 10 independently of one another particularly preferably represent C 3 -C 4 -alkyl, in particular isopropyl and / or tert-butyl
  • flame retardants especially phosphorus-based flame retardants
  • Component B) is preferably used in amounts of 0.01 to 2% by weight, particularly preferably 0.02 to 1% by weight and very particularly preferably 0.04 to 0.5% by weight, based on 100% by weight. - Parts of the total composition used.
  • Component C) is preferably used in amounts of 0.01 to 2% by weight, preferably 0.02 to 1% by weight, particularly preferably 0.04 to 0.5 part by weight (based on 100 parts by weight) Parts of the total composition added.
  • the weight ratio of B): C) is particularly preferably 1: 2.5
  • compositions contain
  • component G 0 to 2, preferably 0.1 to 1, in particular 0.2 to 0.7 parts by weight of antidripping agent according to component G), in particular fluorinated polyolefin.
  • composition according to the invention contains one or more graft polymers according to component A.
  • Monomers A.1 are preferably mixtures of
  • Preferred monomers A.l.l are selected from at least one of the monomers styrene, ⁇ -methylstyrene and methyl methacrylate
  • preferred monomers A.1.2 are selected from at least one of the monomers acrylonitrile, maleic anhydride and methyl methacrylate.
  • Particularly preferred monomers are A.I. l styrene and A.1.2 acrylonitrile.
  • Graft bases A.2 suitable for the graft polymers A are, for example, diene rubbers, EP (D) M rubbers, that is to say those based on ethylene / propylene and, if appropriate, diene, acrylate, polyurethane, silicone, chloroprene and ethylene / vinyl acetate rubbers. Mixtures of various of the rubbers mentioned are also suitable as a graft base.
  • Preferred graft bases A.2 are diene rubbers (eg based on butadiene, isoprene) or rubber based on mixtures of dienes with further copolymerizable monomers (eg according to All and A.1.2), with the proviso that the glass transition temperature of component A.2 is below ⁇ 10 ° C, preferably ⁇ 0 ° C, particularly preferably ⁇ -20 ° C, in particular ⁇ -40 ° C. Pure polybutadiene rubber or butadiene / styrene copolymer with up to 50, preferably 40, in particular 30, in particular 30% by weight (based on the graft base) of styrene is particularly preferred.
  • Suitable acrylate rubbers according to A.2 of the polymers A are preferably polymers of acrylic acid alkyl esters, optionally with up to 40% by weight, based on the graft base, of other polymerizable, ethylenically unsaturated monomers.
  • the preferred polymerizable acrylic acid esters include Q to C 8 alkyl esters, for example methyl, ethyl, butyl, n-octyl and 2-ethylhexyl esters and mixtures of these monomers.
  • ABS polymers emulsion, bulk and suspension ABS
  • DE-A 2 035 390 US Pat. No. 3,644,574
  • Ulimanns, Encyclopedia of Technical Chemistry, Vol. 19 (1980 ) P. 280 ff.
  • the gel fraction of the graft base A.2 is generally at least 30% by weight, preferably at least 40% by weight (measured in toluene).
  • the graft base A.2 generally has an average particle size (d 50 value) of 0.05 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, particularly preferably 0.1 to 1 ⁇ m, in particular 0.2 to 0.5 microns.
  • the graft copolymers A are obtained by radical polymerization, e.g. by emulsion, suspension, solution or bulk polymerization, preferably by emulsion polymerization (see e.g. DE-A 10234419).
  • ABS polymers which are produced by redox initiation with an initiator system of organic hydroperoxide and ascorbic acid according to US Pat. No. 4,937,285 are also particularly suitable graft rubbers.
  • Monomers with more than one polymerizable double bond can be copolymerized for crosslinking.
  • Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms, or saturated polyols with 2 to 4 OH groups and 2 to 20 C atoms, such as ethylene - glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds such as trivinyl and triallyl cyanurate; polyfunctional vinyl compounds such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
  • Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethacrylate, diallyl phthalate and heterocyclic compounds which have at least three ethylenically unsaturated groups.
  • Particularly preferred crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, triacryloylhexahydro-s-triazine and triallylbenzenes.
  • the amount of crosslinked monomers is preferably 0.02 to 5, in particular 0.05 to 2% by weight, based on the graft base A.2.
  • Preferred "other" polymerizable, ethylenically unsaturated monomers which, in addition to the acrylic acid esters, can optionally be used to prepare the graft base A.2 are, for. B. acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl -CC 6 alkyl ether, methyl methacrylate, butadiene.
  • Preferred acrylate rubbers as the graft base A.2 are emulsion polymers which have a gel content of at least 60% by weight.
  • graft bases according to A.2 are silicone rubbers with graft-active sites, as are described in DE-A 3 704 657, DE-A 3 704 655, DE-A 3 631 540 and DE-A 3 631 539.
  • the gel content of the graft base A.2 is determined at 25 ° C. in a suitable solvent (M. Hoffrnann, H. Krömer, R. Kuhn, Polymeranalytik I and ⁇ , Georg Thieme-Verlag, Stuttgart 1977).
  • the average particle size d 50 is the diameter above and below which 50% by weight of the particles lie. It can be determined by means of ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymer 250 (1972), 782-1796).
  • Cyclic lactones of the formula (I) are generally known (for example WO 00/49078) or can be prepared by known processes and are also commercially available.
  • the lactone according to formula (1-1) is particularly preferred
  • n 1 in the case of compounds of the formula (IV), the valence of the carbon atom in question with hydrogen or C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy is optionally a 5- or 6-membered ring, preferably CC-alkyl, preferably bound with the radicals mentioned for R 9 and R 10 .
  • the structural formulas given each represent the main components (> 90%) of the technically used compounds, which in smaller proportions e.g. May contain isomers, starting and secondary compounds.
  • Phosphorous acid esters of the formula (II) are preferably used in which R 5 and R 6 are benzyl-, ⁇ -methylbenzyl-, ⁇ , ⁇ -dimethylbenzyl-, methyl-, ethyl-, isopropyl-, tert-butyl-, tert- Amyl, isononyl, cyclopentyl or cyclohexyl radical and X is -S— 'CH, CH 3 -CH ChLCH H,', (CH 3 ) 2 CH-CH
  • the phosphorous acid ester of the formula (II-1) is particularly preferred, where X is methylene, R 5 is cyclohexyl and R 6 is methyl [4,8-dicylohexyl-6-hydroxy-2,10-dimethyl-12H-dibenzo- ( d, g) (l, 3,2) -dioxaphosphocin]
  • the phosphorous acid esters of the formula (II) can be prepared in a known manner by reacting triphenyl phosphite with corresponding dihydroxy compounds in the presence of water (cf. e.g. DE-A 29 29 229).
  • the sterically hindered phenols and phosphite compounds are generally known and commercially available
  • a mixture of several compounds according to component (C) can also be used.
  • the composition can include other thermoplastics such as e.g. Contain polycarbonate (component D), vinyl (co) polymers (component E) and / or flame retardant F), in particular phosphorus-based flame retardants. Additives such as Mold release agents, stabilizers, etc. (component G) can also be added.
  • component D Contain polycarbonate
  • component E vinyl (co) polymers
  • F flame retardant
  • Additives such as Mold release agents, stabilizers, etc. (component G) can also be added.
  • Aromatic polycarbonates and / or aromatic polyester carbonates suitable according to the invention are known from the literature or can be prepared by processes known from the literature (for the production of aromatic polycarbonates, see, for example, Schnell, “Chemistry and Physics of Polycarbonates", üerscience Publishers, 1964 (e.g. EP-A 640 655).
  • aromatic polycarbonates takes place e.g. B. by melting processes or by reacting diphenols with carbonic acid halogens, preferably phosgene, and or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalides, according to the phase interface method, optionally using chain terminators, for example monophenols and optionally using trifunctional or more than trifunctional branching agents Tetra phenols.
  • carbonic acid halogens preferably phosgene
  • aromatic dicarboxylic acid dihalides preferably benzenedicarboxylic acid dihalides
  • Diphenols for the preparation of the aromatic polycarbonates and / or aromatic polyester carbonates are preferably those of the formula (V)
  • Ci to C 5 alkylene, C 2 to C 5 alkylidene, C 5 to C 6 cycloalkylidene, -O-, -SO-, -CO-, -S-, -S0 2 -, C 6 to -C 2 aryls, to which further aromatic rings optionally containing heteroatoms can be condensed, or a radical of the formula (1) or (2)
  • B each Q to C 2 alkyl, preferably methyl, halogen, preferably chlorine and / or bromine
  • R 11 and R 12 can be selected individually for each X 1 , independently of one another hydrogen or Q to C 6 alkyl, preferably hydrogen, methyl or ethyl,
  • n is an integer from 4 to 7, preferably 4 or 5, with the proviso that at least one atom X 1 , R 11 and R 12 are simultaneously alkyl.
  • Preferred diphenols are hydroquinone, resorcinol, dihydroxydiphenols, bis (hydroxyphenyl) -C ⁇ -
  • C 5 alkanes bis (hydroxyphenyl) -C 5 -C 6 cycloalkanes, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfoxides, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones and ⁇ , ⁇ -bis (hydroxyphenyl) diisopropyl benzenes and their core-brominated and / or core-chlorinated derivatives.
  • diphenols are 4,4'-dihydroxydiphenyl, bisphenol-A, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4-hydroxypheny ⁇ ) cyclohexane, 1,1 - Bis- (4-hydroxyphenyl) -3.3.5-trimethylcyclohexane, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone and their di- and tetrabrominated or chlorinated derivatives such as 2,2-bis (3-chloro-4- hydroxy- ⁇ henyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane. 2,2-bis (4-hydroxyphenyl) propane (bisphenol-A) is particularly preferred.
  • the diphenols can be used individually or as any mixtures.
  • the diphenols are known from the literature or can be obtained by processes known from the literature. Suitable chain terminators and branching agents, if desired, are described in EP-A 640655.
  • Both homopolycarbonates and copolycarbonates are suitable.
  • 1 to 25% by weight, preferably 2.5 to 25% by weight (based on the total amount of diphenols to be used) of polydiorganosiloxanes with hydroxyaryloxy end groups can also be used to produce copolycarbonates according to component A according to the invention. These are known (for example US 3,419,634) or can be produced by processes known from the literature.
  • the production of polydiorganosiloxane-containing copolycarbonates is, for. B. described in DE-A 3 334782.
  • preferred polycarbonates are the copolycarbonates of bisphenol A with up to 15 mol%, based on the molar sum of diphenols, of other diphenols mentioned as preferred or particularly preferred.
  • Aromatic dicarboxylic acid dihalides for the production of aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, terephthalic acid, diphenyl ether-4,4'-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid. Mixtures of the diacid dichlorides of isophthalic acid and terephthalic acid in a ratio between 1:20 and 20: 1 are particularly preferred.
  • polyester carbonates In the production of polyester carbonates, a carbonic acid halide, preferably phosgene, is additionally used as the bifunctional acid derivative.
  • the aromatic polyester carbonates can also contain aromatic hydroxycarboxylic acids.
  • the aromatic polyester carbonates can be linear or branched in a known manner (see also DE-A 2 940 024 and DE-A 3 007 934).
  • the proportion of carbonate structural units in the thermoplastic, aromatic polyester carbonates can vary as desired.
  • the proportion of carbonate groups is preferably up to 100 mol%, in particular up to 80 mol%, particularly preferably up to 50 mol%, based on the sum of ester groups and carbonate groups.
  • Both the ester and the carbonate content of the aromatic polyester carbonates can be in the form of blocks or randomly distributed in the polycondensate.
  • the relative solution viscosity ( ⁇ re ⁇ ) of the aromatic polycarbonates and polyester carbonates is in the range from 1.18 to 1.4, preferably from 1.20 to 1.32 (measured on solutions of 0.5 g of polycarbonate or polyester carbonate in 100 ml of methylene chloride solution at 25 ° C).
  • thermoplastic, aromatic polycarbonates and polyester carbonates can be used alone or in any mixture.
  • thermoplastic vinyl (co) polymers can also be added as component E).
  • Suitable as vinyl (co) polymers are polymers of at least one monomer from the group of vinyl aromatics, vinyl cyanides (unsaturated nitriles), (meth) acrylic acid (C 1 to C 8 ) alkyl esters, unsaturated carboxylic acids and derivatives (such as anhydrides and imides) of unsaturated ones carboxylic acids.
  • (Co) polymers of are particularly suitable
  • vinyl aromatics and / or nucleus-substituted vinyl aromatics such as styrene, ⁇ -methylstyrene, p-methylstyrene, p-chlorostyrene) and / or methacrylic acid (-C to C 8 ) alkyl esters such as Methyl methacrylate, ethyl methacrylate), and
  • vinyl cyanides unsaturated nitriles
  • acrylonitrile and methacrylonitrile and / or (meth) acrylic acid (-C-C 8 ) alkyl esters (such as methyl methacrylate, n-butyl acrylate, t-butyl acrylate ) and / or unsaturated carboxylic acids (such as maleic acid) and / or derivatives (such as anhydrides and imides) of unsaturated carboxylic acids (for example maleic anhydride and N-phenyl-maleimide).
  • copolymer of styrene and acrylonitrile is particularly preferred.
  • the (co) polymers are resinous and thermoplastic.
  • the (co) polymers are known and can be prepared by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the (co) polymers preferably have average molecular weights M w (weight average, determined by light scattering or sedimentation) between 15,000 and 200,000, in particular between 50,000 and 180,000.
  • compositions according to the invention can preferably contain phosphorus Flame retardants included.
  • phosphorus Flame retardants included. These are preferably selected from the groups of the mono- and oligomeric phosphorus and phosphonic acid esters, phosphonatamines and phosphazenes, it also being possible to use mixtures of several components selected from one or different of these groups as flame retardants.
  • Other halogen-free phosphorus compounds not specifically mentioned here can also be used alone or in any combination with other halogen-free phosphorus compounds.
  • Preferred mono- and oligomeric phosphoric or phosphonic acid esters are phosphorus compounds of the general formula (VI)
  • R15 and Rl6 independently of one another in each case optionally halogenated C 1 -C 8 -alkyl, in each case optionally C 5 - to C 6 -cycloalkyl, C 6 - bis substituted by alkyl, preferably CC-alkyl, and / or halogen, preferably chlorine, bromine C 2 o-aryl or C 7 to C 2 aralkyl,
  • n independently of one another, 0 or 1
  • X is a mono- or polynuclear aromatic radical having 6 to 30 carbon atoms, or a linear or branched aliphatic radical having 2 to 30 carbon atoms, which can be OH-substituted and can contain up to 8 ether bonds.
  • R 13 , R 14 R 15 and R 16 are preferably, independently of one another, CC 4 alkyl, phenyl, naphthyl or phenyl-C 1 -C 4 -alkyl.
  • the aromatic groups R 13 , R 14 R 15 and R 16 can in turn be substituted with halogen and / or alkyl groups, preferably chlorine, bromine and / or -CC alkyl.
  • Particularly preferred aryl radicals are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl and the corresponding brominated and chlorinated derivatives thereof.
  • X in the formula (T) preferably denotes a mono- or polynuclear aromatic radical having 6 to 30 carbon atoms. This is preferably derived from diphenols of the formula (V).
  • n in the formula (VT), independently of one another, can be 0 or 1, preferably n is 1.
  • q stands for number-average values from 0 to 30.
  • X particularly preferably stands for
  • X is derived from resorcinol, hydroquinone, bisphenol A or diphenylphenol.
  • X is particularly preferably derived from bisphenol A.
  • the phosphorus compounds of the formula (VI) are known (cf., for example, EP-A 363 608, EP-A 640655) or can be prepared in an analogous manner by known methods (for example Ulimann's Encyclopedia of Industrial Chemistry, vol. 18, p. 301 ff 1979; Houben-Weyl, Methods of Organic Chemistry, Vol. 12/1, p. 43; Beilstein Vol. 6, p. 177).
  • the mean q values can be determined by using a suitable method (gas chromatography (GC), high pressure liquid chromatography (HPLC), gel permeation chromatography (GPC)) to determine the composition of the phosphate mixture (molecular weight distribution) and then calculate the mean values for q become.
  • a suitable method gas chromatography (GC), high pressure liquid chromatography (HPLC), gel permeation chromatography (GPC)
  • the flame retardants according to component F) are often used in combination with so-called anti-dripping agents, which reduce the tendency of the material to burn when dripping.
  • Compounds of the substance classes of fluorinated polyolefins, silicones and aramid fibers may be mentioned here as examples. These can also be used in the compositions according to the invention.
  • Fluorinated polyolefins are preferably used as anti-dripping agents. Fluorinated polyolefins are known and are described, for example, in EP-A 0 640 655. For example, they are marketed by DuPont under the Teflon® 30N brand.
  • the fluorinated polyolefins can be used both in pure form and in the form of a coagulated mixture of emulsions of the fluorinated polyolefins with emulsions of the graft polymers (component A) or with an emulsion of a copolymer, preferably based on styrene / acrylonitrile or PMMA, the fluorinated polyolefin is mixed as an emulsion with an emulsion of the graft polymer or the copolymer and then coagulated.
  • the fluorinated polyolefins can also be used as a precompound with the graft polymer (component B1) or a copolymer, preferably based on styrene / acrylonitrile or PMMA.
  • the fluorinated polyolefins are mixed as a powder with a powder or granules of the graft polymer or copolymer and compounded in the melt generally at temperatures from 200 to 330 ° C. in conventional units such as internal kneaders, extruders or twin-screw screws.
  • the fluorinated polyolefins can also be used in the form of a masterbatch which is prepared by emulsion polymerization of at least one monoethylenically unsaturated monomer in the presence of an aqueous dispersion of the fluorinated polyolefin.
  • Preferred monomer components are styrene, acrylonitrile, methyl methacrylate and mixtures thereof. After acidic precipitation and subsequent drying, the polymer is used as a free-flowing powder.
  • the coagulates, pre-compounds or masterbatches usually have solids contents of fluorinated polyolefin of 5 to 95% by weight, preferably 7 to 80% by weight.
  • the fluorinated polyolefins are used in the amounts mentioned above, these quantities refer to the pure fluorinated polyolefin when using a coagulate, precompound or masterbatch.
  • compositions according to the invention can furthermore contain up to 10 parts by weight, preferably 0.1 to 5 parts by weight, of at least one conventional polymer additive such as a lubricant and mold release agent, for example pentaerythritol tetrastearate, a nucleating agent, an antistatic agent, a stabilizer Light stabilizers, a filler and reinforcing material, a dye or pigment and a further flame retardant or a flame retardant synergist, for example an inorganic contain ganic substance in nanoscale form and / or a silicate material such as talc or wollastonite.
  • a lubricant and mold release agent for example pentaerythritol tetrastearate
  • nucleating agent for example pentaerythritol tetrastearate
  • an antistatic agent e.g., a stabilizer Light stabilizers, a filler and reinforcing material, a dye or pigment and a further flame
  • the parts by weight in this application are to be standardized so that the sum of the parts by weight of all components A) to G) is set to 100.
  • compositions according to the invention are prepared by mixing the respective constituents in a known manner and melt-compounding and melt-extruding them at temperatures from 200 ° C. to 300 ° C. in conventional units such as internal kneaders, extruders and twin-screw screws.
  • the individual constituents can be mixed in a known manner both successively and simultaneously, both at about 20 ° C. (room temperature) and at a higher temperature.
  • compositions according to the invention can be used for the production of moldings of any kind. These can be produced, for example, by injection molding, extrusion and blow molding. Another form of processing is the production of shaped bodies by deep drawing from previously produced sheets or foils.
  • moldings are foils, profiles, housing parts of any kind, e.g. for household appliances such as juicers, coffee machines, mixers; for office machines such as monitors, printers, copiers; also plates, pipes, electrical installation ducts, profiles for the construction sector, interior fittings and exterior applications; Parts from the field of electrical engineering such as switches and plugs as well as automotive interior and exterior parts.
  • compositions according to the invention can be used, for example, to produce the following moldings or moldings:
  • Graft polymer of 40 parts by weight of a copolymer of styrene and acrylonitrile in a ratio of 73:27 to 60 parts by weight of particulate crosslinked polybutadiene rubber (average particle diameter d 50 0.3 ⁇ m), produced by emulsion polymerization.
  • Styrene / acrylonitrile copolymer with a styrene / acrylonitrile ratio of 72:28 and an intrinsic viscosity of 0.55 dl / g (measurement in dimethylformamide at 20 ° C).
  • PETS pentaerythritol tetrastearate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Zusammensetzungen enthaltend: A) Pfropfpolymerisat von A.1 5 bis 95 Gew.-% wenigstens eines Vinylmonomeren auf A.2 95 bis 5 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen <10°C; B) ein Lacton der Formel (I); C) mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus C.1) Phosphorigsäureester der Formel (II), C.2 Sterisch gehinderte Phenole der Formel (III), C.3 Phosphite der Formel (IV) und gegebenenfalls weiteren Komponenten, ausgewählt aus mindestens einer der Gruppen: D) Polycarbonat und/oder Polyestercarbonat, E) Vinyl(co)polymerisat, F) Flammschutzmittel, G) Additive.

Description

Stabilisierte thermoplastische Zusammensetzungen
Die Erfindung betrifft Zusammensetzungen auf Basis von Schlagzähmodifϊkatoren, die eine Kombination aus mindestens einer Verbindung, ausgewählt aus der Gruppe bestehend aus Phosphorigsäureester, sterisch gehinderten Phenolen und Phosphaten, insbesondere Phosphorig- säureestern und cyclischen Lactonen enthalten.
WO 01/16224 beschreibt mit Cyanacrylsäureester ausgerüstete Polycarbonat-Formmassen in Kombination mit einem Phosphit-Stabilisator und gegebenenfalls einem sterisch gehinderten Phenol und/oder Lacton mit verbessertem Schutz gegen UN-Strahlung und Farbstabilität mit reduzierter Belagsbildung während der Verarbeitung.
Zu Polycarbonat- und Polyesterformmassen werden Phosphorigsäureester zur Stabilisierung bei thermischer Belastung, insbesondere zur Verhinderung von Verfärbungseigenschaften bei der Herstellung der Formmassen durch Compoundierung und Verarbeitung der Formmassen zu thermoplastischen Formkörpern zugesetzt (z.B. DE-A 2 140207, DE-A 2255 639, DE-A 2 615 341).
Phosphorigsäureester werden insbesondere Polyalkylenterephthalaten, die thermischen und/oder oxidativen Belastungen oder starker UV-Bestrahlung ausgesetzt sind, zur Stabilisierung zugesetzt. Die Stabilisierung reduziert den Polymerabbau bei Temperung an heißer Luft, wodurch für die praktische Anwendung wesentliche Eigenschaften wie z.B. Zähigkeit und Dehnungsfähigkeit, auf ein weniger niedriges Niveau abfallen als bei unstabilisierten Formmassen (DE-A 2 615 341).
Phosphorigsäureester werden ebenfalls Polymerblends aus Polyalkylenterephthalat und Polycar- bonat, die eine gute Zähigkeit sowie Wärmeformbeständigkeit aufweisen, zugesetzt, um eine bessere Lackierbarkeit und Lackhaftung zu ermöglichen (EP-A 0 373 465).
WO 00/49078 beschreibt eine Mischung enthaltend Vinylcyclohexan basierendes Polymer/- Copolymer und ein Stabilisatorsystem, enthaltend Lacton, sterisch gehindertes Phenol und einer Phosphitkomponente. Daraus hergestellte optische Datenträger weisen eine verbesserte Thermosta- bilisierung und geringeren Molekulargewichtsabbau auf.
Die Aufgabe der vorliegenden Erfindung ist die Reduzierung von Restmonomerbestandteilen, insbesondere von Butadien in Pfropfpolymerisaten, wie z.B. ABS oder Blends enthaltend Pfropfpolymerisate. Diese Reduzierung ist aufgrund der erhöhten Emissionsanforderungen insbesondere im Automobilbereich von großer Bedeutung.
Es wurde nun gefunden, dass der Zusatz einer Kombination eines oder mehrerer cyclischen Lactone mit mindestens einer Verbindung, ausgewählt aus der Gruppe bestehend aus Phosphorig- säureester, sterisch gehinderten Phenolen und Phosphaten, insbesondere Phosphorigsäureester zu Pfropφolymerisaten und Blends davon mit weiteren Thermoplasten diese Aufgabe löst. Mit dieser Additivkombination gelingt es auch unter scharfen Verarbeitungsbedingungen die Restmonomer- gehalte in der Zusammensetzung abzusenken und die von der Automobilindustrie gewünschten Grenzwerte bei wirtschaftlichem Durchsatz einzustellen.
Gegenstand der vorliegenden Erfindung sind daher Zusammensetzungen enthaltend
A) Pfropfpolymerisat von
A.l 5 bis 95 Gew.-%, vorzugsweise 8 bis 90 Gew.-%, insbesondere 10 bis 50 Gew.-% wenigstens eines Vinylmonomeren auf
A.2 95 bis 5 Gew.-%, vorzugsweise 92 bis 10 Gew.-%, insbesondere 90 bis 50 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen <10°C, vorzugsweise <0°C, besonders bevorzugt < -20°C, insbesondere < -40°C
B) ein Lacton der Formel (I)
Figure imgf000004_0001
in welcher
R1, R2, R3 und R4 unabhängig voneinander für Wasserstoff, Cι-C6-Alkyl, vorzugsweise Cι-C4-Alkyl, einen 5- oder 6-gliedrigen Ring, vorzugsweise Cyclohexyl oder Cyclopentyl stehen und R1 und R2 unabhängig voneinander besonders bevorzugt für verzweigtes CrC -Alkyl, insbesondere iso-Propyl und/oder tert-Butyl stehen, R3 und R4 insbe- sondere für Methyl stehen, und gegebenenfalls
C) mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus
C.l) Phosphorigsäureester der Formel (II)
Figure imgf000005_0001
woπn
R für H oder für d-Cs-Alkyl, C5-C6-Cycloalkyl, C7-C9-Aralkyl oder C6-Cι0-Aryl steht,
R5 und R6 gleich oder verschieden sind und für Ci-Cg-Alkyl, C5-C6-Cycloalkyl, C7-C9- Aralkyl oder C6-Cιo-Aryl stehen und
X für -S- oder R7-CH mit R7 für Wasserstoff, d-C6-Alkyl oder C5-C6-Cycloalkyl steht,
sterisch gehinderte Phenole der Formel (HI)
Figure imgf000005_0002
in welcher
R7 und R^ unabhängig voneinander für Wasserstoff oder Cι-C6-Alkyl, vorzugsweise Cι-C4-Alkyl, gegebenenfalls einen 5- oder 6-gliedrigen Ring, vorzugsweise Cyclohexyl oder Cyclopentyl,
R7 und R8 unabhängig voneinander besonders bevorzugt für C3-C4-Alkyl, insbesondere für iso-Propyl und/oder tert.-Butyl stehen,
n für eine ganze Zahl von 1 bis 4, vorzugsweise für 3 oder 4, insbesondere 4 steht,
A1 und A2 unabhängig voneinander für Cι-C6-Alkylen, vorzugsweise C C4-Alkylen, insbesondere Methylen, Ethylen stehen, R unabhängig für Wasserstoff, Cι-C6-Alkyl, vorzugsweise Cι-C4-Alkyl, Cι-C6-Alkoxy, vorzugsweise Cι-C4-Alkoxy, gegebenenfalls einen 5- oder 6-glied- rigen Ring, vorzugsweise Cyclohexyl oder Cyclopentyl steht,
C.3 Phosphite der Formel (IV)
Figure imgf000006_0001
in welcher
R9 und R10 unabhängig voneinander für Wasserstoff oder C C6-Alkyl, vorzugsweise Cι-C -Alkyl, gegebenenfalls einen 5- oder 6-gliedrigen Ring, vorzugsweise Cyclohexyl oder Cyclopentyl, x und y unabhängig voneinander für 0, 1, 2, 3, 4, 5, vorzugsweise für 0, 1 oder 2 stehen und k für 1 oder 2 steht,
R9 und R10 unabhängig voneinander besonders bevorzugt für C3-C4-Alkyl, insbesondere iso-Propyl und/oder tert-Butyl stehen
und gegebenenfalls weiteren Komponenten, ausgewählt aus mindestens einer der Gruppen
D) Polycarbonat und/oder Polyestercarbonat
E) Vinyl(co)polymerisat
F) Flammschutzmittel, insbesondere Phosphor-basierende Flammschutzmittel
G) weitere Additive.
Komponente B) wird bevorzugt in Mengen von 0,01 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-% und ganz besonders bevorzugt 0,04 bis 0,5 Gew.-%, bezogen auf 100 Gew. -Teile der Gesamtzusammensetzung eingesetzt. Komponente C) wird bevorzugt in Mengen von 0,01 bis 2 Gew.-%, vorzugsweise 0,02 bis 1 Gew.-%, besonders bevorzugt von 0,04 bis 0,5 Gew.-Teilen (bezogen auf 100 Gew.-Teile der Gesamtzusammensetzung zugesetzt.
Besonders bevorzugt beträgt das Gewichtsverhältnis von B) : C) 1 :2,5
Bevorzugte Zusammensetzungen enthalten
A) 2 bis 50, vorzugsweise 3 bis 45, insbesondere 4 bis 30 Gew.-Teile Pfropφolymerisat der Komponente A)
B) 0,01 bis 1, vorzugsweise 0,02 bis 0,5, besonders bevorzugt 0,04 bis 0,2 Gew.-Teile Lacton der Formel (1)
C) 0,01 bis 2, vorzugsweise 0,01 bis 1, besonders bevorzugt 0,03 bis 0,5 Gew.-Teile Phosphorigsäureester der Formel (H)
D) 20 bis 98, vorzugsweise 25 bis 97, insbesondere 30 bis 93 Gew.-Teile, ganz besonders bevorzugt 60 bis 93 Gew.-Teile Poly(ester)carbonat
E) 0 bis 40, vorzugsweise 0 bis 35 Gew.-Teile, insbesondere 2 bis 25 Gew.-Teile Vinyl(co)polymerisat
F) 0 bis 20, vorzugsweise 2 bis 18 Gew.-Teile Flammschutzmittel gemäß Komponente F)
G) 0 bis 2, vorzugsweise 0,1 bis 1, insbesondere 0,2 bis 0,7 Gew.-Teile Antidrippingmittel gemäß Komponente G), insbesondere fluoriertes Polyolefm.
Komponente A
Die erfindungsgemäße Zusammensetzung enthält ein oder mehrere Pfropφolymerisate gemäß Komponente A.
Monomere A.1 sind vorzugsweise Gemische aus
A.l.l 50 bis 99 Gew.-% mindestens eines Monomeren ausgewählt aus der Gruppe bestehend aus Vinylaromaten, kernsubstituierten Vinylaromaten (wie beispielsweise Sty- rol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol), Methacrylsäure-(C C8)-Alkyl- ester (wie Methylmethacrylat, Ethylmethacrylat) und A.1.2 1 bis 50 Gew.-% rnindestens eines Monomeren ausgewählt aus der Gruppe bestehend aus Vinylcyaniden (ungesättigte Nitrile wie Acrylnitril und Methacrylnitril) und/oder (Meth)Acrylsäure-(Cι-C8)-Alkylester (wie Methylmethacrylat, n-Butylacrylat, tert- Butylacrylat) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäu- ren (beispielsweise Maleinsäureanhydrid und N-Phenyl-Maleinimid).
Bevorzugte Monomere A.l.l sind ausgewählt aus mindestens einem der Monomere Styrol, α- Methylstyrol und Methylmethacrylat, bevorzugte Monomere A.1.2 sind ausgewählt aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Metliylmethacrylat.
Besonders bevorzugte Monomere sind A.l.l Styrol und A.1.2 Acrylnitril.
Für die Pfropφolymerisate A geeignete Pfropfgrundlagen A.2 sind beispielsweise Dienkautschuke, EP(D)M-Kautschuke, also solche auf Basis Ethylen/Propylen und gegebenenfalls Dien, Acrylat-, Polyurethan-, Silikon-, Chloropren und Ethylen/Vinylacetat-Kautschuke. Ebenso sind Mischungen aus verschiedenen der genannten Kautschuke als Pfropfgrundlage geeignet.
Bevorzugte Pfropfgrundlagen A.2 sind Dienkautschuke (z.B. auf Basis Butadien, Isopren) oder Kautschuk auf Basis von Gemischen von Dienen mit weiteren copolymerisierbaren Monomeren (z.B. gemäß A.l.l und A.1.2), mit der Maßgabe, dass die Glasübergangstemperatur der Komponente A.2 unterhalb <10°C, vorzugsweise <0°C, besonders bevorzugt <-20°C, insbesondere <-40°C liegt. Besonders bevorzugt ist reiner Polybutadienkautschuk oder Butadien/Styrolcopoly- merisat mit bis zu 50, vorzugsweise 40, insbesondere 30 Gew.-% (bezogen auf die Pfropfgrund- läge) Styrol.
Geeignete Acrylatkautschuke gemäß A.2 der Polymerisate A sind vorzugsweise Polymerisate aus Acrylsäurealkylestern, gegebenenfalls mit bis zu 40 Gew.-%, bezogen auf die Pfropfgrundlage, anderen polymerisierbaren, ethylenisch ungesättigten Monomeren. Zu den bevorzugten polymerisierbaren Acrylsäureestern gehören Q bis C8-Alkylester, beispielsweise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethylhexylester sowie Mischungen dieser Monomeren.
Besonders bevorzugte Polymerisate A sind z.B. ABS-Polymerisate (Emulsions-, Masse- und Suspensions-ABS), wie sie z.B. in der DE-A 2 035 390 (=US-PS 3 644 574) oder in der DE-A 2 248 242 (=GB-PS 1 409 275) bzw. in Ulimanns, Enzyklopädie der Technischen Chemie, Bd. 19 (1980), S. 280 ff. beschrieben sind.
Der Gelanteil der Pfropfgrundlage A.2 beträgt im Allgemeinen mindestens 30 Gew.-%, vorzugsweise mindestens 40 Gew.-% (in Toluol gemessen). Die Pfropfgrundlage A.2 hat im Allgemeinen eine mittlere Teilchengröße (d50-Wert) von 0,05 bis 10 μm, vorzugsweise 0,1 bis 5 μm, besonders bevorzugt 0,1 bis 1 μm, insbesondere 0,2 bis 0,5 μm.
Die Pfropfcopolymerisate A werden durch radikalische Polymerisation, z.B. durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation, vorzugsweise durch Emulsionspolymerisation hergestellt (vgl. z.B. DE-A 10234419).
Besonders geeignete Pfropfkautschuke sind auch ABS-Polymerisate, die durch Redox-Initiierung mit einem Initiatorsystem aus organischem Hydroperoxid und Ascorbinsäure gemäß US-A 4937 285 hergestellt werden.
Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbindung copoly- merisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Mono- carbonsäuren mit 3 bis 8 C-Atomen und ungesättigter einwertiger Alkohole mit 3 bis 12 C- Atomen, oder gesättigter Polyole mit 2 bis 4 OH-Gruppen und 2 bis 20 C-Atomen, wie Ethylen- glykoldimethacrylat, Allylmethacrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinylbenzole; aber auch Triallylphosphat und Diallylphthalat.
Bevorzugte vernetzende Monomere sind Allylmethacrylat, Ethylenglykoldimethacrylat, Diallylphthalat und heterocyclische Verbindungen, die mindestens drei ethylenisch ungesättigte Gruppen aufweisen. Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Triallylcyanurat, Triallylisocyanurat, Triacryloylhexahydro-s-triazin, Triallylbenzole. Die Menge der ver- netzten Monomere beträgt vorzugsweise 0,02 bis 5, insbesondere 0,05 bis 2 Gew.-%, bezogen auf die Pfropfgrundlage A.2.
Bevorzugte "andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acryl- säureestern gegebenenfalls zur Herstellung der Pfropfgrundlage A.2 dienen können, sind z. B. Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl-Cι-C6-alkylether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Pfropfgrundlage A.2 sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-% aufweisen.
Weitere geeignete Pfropfgrundlagen gemäß A.2 sind Silikonkautschuke mit pfropfaktiven Stellen, wie sie in den DE-A 3 704 657, DE-A 3 704 655, DE-A 3 631 540 und DE-A 3 631 539 beschrieben werden. Der Gelgehalt der Pfropfgrundlage A.2 wird bei 25 °C in einem geeigneten Lösungsmittel bestimmt (M. Hoffrnann, H. Krömer, R. Kuhn, Polymeranalytik I und π, Georg Thieme-Verlag, Stuttgart 1977).
Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-1796) bestimmt werden.
Komponente B
Cyclische Lactone der Formel (I) sind allgemein bekannt (z.B. WO 00/49078) bzw. nach bekannten Verfahren herstellbar und auch käuflich erhältlich. Besonders bevorzugt ist das Lacton gemäß Formel (1-1)
Figure imgf000010_0001
Komponente C
Im Falle n = 1 bei Verbindungen der Formel (IV) ist die Valenz des in Frage kommenden Kohlenstoffatoms mit Wasserstoff oder Cι-C6-Alkyl, Cι-C6-Alkoxy gegebenenfalls 5- oder 6-gliedrigen Ring, vorzugsweise C C -Alkyl , vorzugsweise mit den bei R9 und R10 genannten Resten, gebunden.
Die angegebenen Strukturformeln geben jeweils die Hauptkomponenten (>90 %) der technisch eingesetzten Verbindungen wieder, welche in geringeren Anteilen z.B. Isomere, Ausgangs- und Nebenverbindungen enthalten können.
Bevorzugt werden Phosphorigsäureester der Formel (II) eingesetzt, in denen R5 und R6 für einen Benzyl-, α-Methylbenzyl-, α,α-Dimethylbenzyl-, Methyl-, Ethyl-, Isopropyl-, tert-Butyl-, tert- Amyl-, Isononyl-, Cyclopentyl- oder Cyclohexyl-Rest stehen und X für -S— ' CH, CH3-CH ChLCH H ,' , (CH3)2CH-CH
Figure imgf000011_0001
oder ) — CH steht.
Figure imgf000011_0002
Besonders bevorzugt ist der Phosphorigsäureester der Formel (II-l), worin X für Methylen, R5 für Cyclohexyl und R6 für Methyl stehen [4,8-Dicylohexyl-6-hydroxy-2,10-dimethyl-12H-dibenzo- (d,g)(l ,3,2)-dioxaphosphocin]
Figure imgf000011_0003
Die Phosphorigsäureester der Formel (II) können in bekannter Weise hergestellt werden durch Umsetzung von Triphenylphosphit mit entsprechenden Dihydroxyverbindungen in Gegenwart von Wasser (vgl. z.B. DE-A 29 29 229).
Im folgenden sind die Formeln der Verbindungen HI-1, IV-1 und TV-2, gezeigt:
Figure imgf000011_0004
(erhältlich unter dem Handelsnamen Irgafos P EPO, Ciba Specialities)
Figure imgf000011_0005
(erhältlich unter dem Handelsnamen Irgafos 168, Ciba Specialities)
Figure imgf000012_0001
Die sterisch gehinderten Phenole und Phosphit-Verbindungen sind allgemein bekannt und käuflich erhältlich
Es kann auch eine Mischung mehrerer Verbindungen gemäß Komponente (C) eingesetzt werden.
Die Zusammensetzung kann weitere Thermoplasten, wie z.B. Polycarbonat (Komponente D), Vinyl(co)polymerisate (Komponente E) und/oder Flammschutzmittel F), insbesondere Phosphorbasierende Flammschutzmittel enthalten. Additive wie z.B. Entformungsmittel, Stabilisatoren usw. (Komponente G) können ebenfalls zugesetzt werden.
Komponente D
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Polyestercarbonate sind literaturbekannt oder nach literaturbekannten Verfahren herstellbar (zur Herstellung aromatischer Polycarbonate siehe beispielsweise Schnell, "Chemistry and Physics of Polycarbonates", üi- terscience Publishers, 1964 (z.B. EP-A 640 655).
Die Herstellung aromatischer Polycarbonate erfolgt z. B. durch Schmelzeverfahren oder durch Umsetzung von Diphenolen mit Kohlensäurehalogemden, vorzugsweise Phosgen, undoder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalogeniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Verwendung von trifunktionellen oder mehr als trifunktionellen Verzweigern, beispielsweise Triphenolen oder Tetraphenolen.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (V)
Figure imgf000012_0002
wobei eine Einfachbindung, Ci bis C5-Alkylen, C2 bis C5-Alkyliden, C5 bis C6-Cycloalkyliden, -O-, -SO-, -CO-, -S-, -S02-, C6 bis Cι2-Arylen, an das weitere aromatische gegebenenfalls Heteroatome enthaltende Ringe kondensiert sein können, oder ein Rest der Formel (1) oder (2)
Figure imgf000013_0001
B jeweils Q bis Cι2-Alkyl, vorzugsweise Methyl, Halogen, vorzugsweise Chlor und/oder Brom
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R11 und R12 für jedes X1 individuell wählbar, unabhängig voneinander Wasserstoff oder Q bis C6- Alkyl, vorzugsweise Wasserstoff, Methyl oder Ethyl,
X1 Kohlenstoffund
m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten, mit der Maßgabe, dass an mindestens einem Atom X1, R11 und R12 gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resorcin, Dihydroxydiphenole, Bis-(hydroxyphenyl)-Cι-
C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis-(hydroxyphenyl)-ether, Bis-(hydroxy- phenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und α,α-Bis- (hydroxyphenyl)-diisopropyl-benzole sowie deren kembromierte und/oder kernchlorierte Derivate. Besonders bevorzugte Diphenole sind 4,4'-Dihydroxydiphenyl, Bisphenol-A, 2,4-Bis(4-hydroxy- phenyl)-2-methylbutan, 1 , 1 -Bis-(4-hydroxyphenyι)-cyclohexan, 1 , 1 -Bis-(4-hydroxyphenyl)-3.3.5- trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'-Dihydroxydiphenylsulfon sowie deren di- und tetrabromierten oder chlorierten Derivate wie beispielsweise 2,2-Bis(3-Chlor-4-hydroxy- ρhenyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hy- droxyphenyl)propan. Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)propan (Bisphenol-A).
Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden. Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich. Geeignete Kettenabbrecher und Verzweigungsmittel, falls gewünscht, sind in EP-A 640655 beschrieben.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfϊndungs- gemäßer Copolycarbonate gemäß Komponente A können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.-% (bezogen auf die Gesamtmenge an einzusetzenden Diphenolen) Polydiorgano- siloxane mit Hydroxyaryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (beispielsweise US 3 419 634) bzw. nach literaturbekannten Verfahren herstellbar. Die Herstellung Polydiorgano- siloxanhaltiger Copolycarbonate wird z. B. in DE-A 3 334782 beschrieben.
Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die Copolycarbonate von Bisphenol-A mit bis zu 15 mol-%, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt bzw. besonders bevorzugt genannten Diphenolen. Aromatische Dicarbonsäure- dihalogenide zur Herstellung von aromatischen Polyestercarbonaten sind vorzugsweise die Disäuredichloride der Isophthalsäure, Terephthalsäure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-2,6-dicarbonsäure. Besonders bevorzugt sind Gemische der Disäuredichloride der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1:20 und 20:1. Bei der Herstellung von Polyestercarbonaten wird zusätzlich ein Kohlensäurehalogenid, vorzugsweise Phosgen als bifunktionelles Säurederivat mit verwendet. Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsäuren eingebaut enthalten. Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu ebenfalls DE-A 2 940 024 und DE-A 3 007 934).
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Carbonatstruktur- einheiten beliebig variieren. Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 Mol-%, insbesondere bis zu 80 Mol-%, besonders bevorzugt bis zu 50 Mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen. Sowohl der Ester- als auch der Carbonatanteil der aromatischen Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Poly- kondensat vorliegen. Die relative Lösungsviskosität (ηreι) der aromatischen Polycarbonate und Polyestercarbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,20 bis 1,32 (gemessen an Lösungen von 0,5 g Polycarbonat oder Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C).
Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch eingesetzt werden.
Komponente E
Als Komponente E) können weiterhin ein oder mehrere thermoplastische Vinyl(Co)Polymerisate zugesetzt werden.
Geeignet sind als Vinyl(Co)Polymerisate Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(Cι bis C8)- Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind (Co)Polymerisate aus
50 bis 99, vorzugsweise 60 bis 80 Gew.-% Vinylaromaten und/oder kernsubstituierten Vinylaromaten wie beispielsweise Styrol, α-Methylstyrol, p-Methylstyrol, p-Chlorstyrol) und/oder Meth- acrylsäure-(Cι bis C8)-Alkylester wie Methylmethacrylat, Ethylmethacrylat), und
1 bis 50, vorzugsweise 20 bis 40 Gew.-% Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(Cι-C8)-Alkylester (wie Methylmethacrylat, n-Butyl- acrylat, t-Butylacrylat) und/oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und N-Phenyl-Maleinimid).
Besonders bevorzugt ist das Copolymerisat aus Styrol und Acrylnitril.
Die (Co)Polymerisate sind harzartig und thermoplastisch. Die (Co)Polymerisate sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation herstellen. Die (Co)Polymerisate besitzen vorzugsweise mittlere Molekulargewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15.000 und 200.000, insbesondere zwischen 50.000 und 180.000.
Komponente F
Vorzugsweise können die erfindungsgemäßen Zusammensetzungen, insbesondere Zusammensetzungen enthaltend Polycarbonat und Pfropfpolymerisat gemäß Komponente A), phosphorhaltige Flammschutzmittel enthalten. Diese sind bevorzugt ausgewählt aus den Gruppen der Mono- und oligomeren Phosphor- und Phosphonsäureester, Phosphonatamine und Phosphazene, wobei auch Mischungen von mehreren Komponenten ausgewählt aus einer oder verschiedenen dieser Gruppen als Flammschutzmittel zum Einsatz kommen können. Auch andere hier nicht speziell erwähnte halogenfreie Phosphorverbindungen können alleine oder in beliebiger Kombination mit anderen halogenfreien Phosphorverbindungen eingesetzt werden.
Bevorzugte Mono- und oligomere Phosphor- bzw. Phosphonsäureester sind Phosphorverbindungen der allgemeinen Formel (VI)
Figure imgf000016_0001
woπn
RlΞ> 5 £l4? R15 un Rl6 unabhängig voneinander jeweils gegebenenfalls halogeniertes Ci- bis C8- Alkyl, jeweils gegebenenfalls durch Alkyl, vorzugsweise C C -Alkyl, und/oder Halogen, vorzugsweise Chlor, Brom, substituiertes C5- bis C6-Cycloalkyl, C6- bis C2o-Aryl oder C7- bis Ci2-Aralkyl,
n unabhängig voneinander, 0 oder 1
q 0 bis 30 und
X einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen, oder einen linearen oder verzweigten aliphatischen Rest mit 2 bis 30 C-Atomen, der OH-substituiert sein und bis zu 8 Etherbindungen enthalten kann, bedeuten.
Bevorzugt stehen R13, R14 R15 und R16 unabhängig voneinander für C C4-Alkyl, Phenyl, Naphthyl oder Phenyl-Cι-C -alkyl. Die aromatischen Gruppen R13, R14 R15 und R16 können ihrerseits mit Halogen- und/oder Alkylgruppen, vorzugsweise Chlor, Brom und/oder Cι-C -Alkyl substituiert sein. Besonders bevorzugte Aryl-Reste sind Kresyl, Phenyl, Xylenyl, Propylphenyl oder Butylphenyl sowie die entsprechenden bromierten und chlorierten Derivate davon.
X in der Formel ( T) bedeutet bevorzugt einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen. Dieser leitet sich bevorzugt von Diphenolen der Formel (V) ab. n in der Formel (VT) kann, unabhängig voneinander, 0 oder 1 sein, vorzugsweise ist n gleich 1.
q steht für zahlengemittelte Werte von 0 bis 30. Vorzugsweise für zahlengemittelte q-Werte von 0,3 bis 20, besonders bevorzugt 0,5 bis 10, insbesondere 0,5 bis 6, ganz besonders bevorzugt von 0,7 bis 1,4.
X steht besonders bevorzugt für
Figure imgf000017_0001
oder deren chlorierte oder bromierte Derivate, insbesondere leitet sich X von Resorcin, Hydrochinon, Bisphenol A oder Diphenylphenol ab. Besonders bevorzugt leitet sich X von Bisphenol A ab.
Die Phosphorverbindungen gemäß Formel (VI) sind bekannt (vgl. z.B. EP-A 363 608, EP-A 640655) oder lassen sich nach bekannten Methoden in analoger Weise herstellen (z.B. Ulimanns Encyklopädie der technischen Chemie, Bd. 18, S. 301 ff. 1979; Houben-Weyl, Methoden der organischen Chemie, Bd. 12/1, S. 43; Beilstein Bd. 6, S. 177).
Die mittleren q-Werte können bestimmt werden, indem mittels geeigneter Methode (Gaschromatographie (GC), High Pressure Liquid Chromatography (HPLC), Gelpermeationschromatographie (GPC)) die Zusammensetzung der Phosphat-Mischung (Molekulargewichtsverteilung) bestimmt wird und daraus die Mittelwerte für q berechnet werden.
Komponente G
Die Flammschutzmittel entsprechend Komponente F) werden oft in Kombination mit sogenannten Antidrippingmitteln verwendet, welche die Neigung des Materials zum brennenden Abtropfen im Brandfall verringern. Beispielhaft seien hier Verbindungen der Substanzklassen der fluorierten Polyolefϊne, der Silikone sowie Aramidfasern genannt. Diese können auch in den erfindungsgemäßen Zusammensetzungen zum Einsatz kommen. Bevorzugt werden fluorierte Polyolefϊne als Antidrippingmittel eingesetzt. Fluorierte Polyolefine sind bekannt und beispielsweise in der EP-A 0 640 655 beschrieben. Sie werden zum Beispiel unter der Marke Teflon® 30N von DuPont vertrieben.
Die fluorierten Polyolefine können sowohl in reiner Form als auch in Form einer koagulierten Mischung von Emulsionen der fluorierten Polyolefine mit Emulsionen der Pfropφolymerisate (Komponente A) oder mit einer Emulsion eines Copolymerisats, vorzugsweise auf Styrol/Acrylnitril- oder PMMA-Basis eingesetzt werden, wobei das fluorierte Polyolefin als Emulsion mit einer Emulsion des Pfropφolymerisats oder des Copolymerisats gemischt und anschließend koaguliert wird.
Weiterhin können die fluorierten Polyolefine als Präcompound mit dem Pfropφolymerisat (Kom- ponente Bl) oder einem Copolymerisat, vorzugsweise auf Styrol/Acrylnitril- oder PMMA-Basis, eingesetzt werden. Die fluorierten Polyolefine werden als Pulver mit einem Pulver oder Granulat des Pfropφolymerisats oder Copolymerisats vermischt und in der Schmelze im allgemeinen bei Temperaturen von 200 bis 330°C in üblichen Aggregaten wie Innenknetern, Extrudern oder Doppelwellenschnecken compoundiert.
Die fluorierten Polyolefine können auch in Form eines Masterbatches eingesetzt werden, der durch Emulsionspolymerisation mindestens eines monoethylenisch ungesättigten Monomers in Gegenwart einer wässrigen Dispersion des fluorierten Polyolefms hergestellt wird. Bevorzugte Mono- merkomponenten sind Styrol, Acrylnitril, Methylmethycrylat und deren Gemische. Das Polymerisat wird nach saurer Fällung und nachfolgender Trocknung als rieselfähiges Pulver eingesetzt.
Die Koagulate, Präcompounds oder Masterbatches besitzen üblicherweise Feststoffgehalte an fluoriertem Polyolefin von 5 bis 95 Gew.-%, vorzugsweise 7 bis 80 Gew.-%.
Die fluorierten Polyolefine werden in den oben genannten Mengen eingesetzt, wobei sich diese Mengenangaben bei Einsatz eines Koagulats, Präcompounds oder Masterbatches auf das reine fluorierte Polyolefin beziehen.
Weitere Zusätze
Die erfindungsgemäßen Zusammensetzungen können weiterhin bis zu 10 Gew.-Teile, bevorzugt 0,1 bis 5 Gew.-Teile, wenigstens eines üblichen Polymeradditivs wie ein Gleit- und Entformungs- mittel, beispielsweise Pentaerythrittetrastearat, ein Nukleiermittel, ein Antistatikum, einen Stabilisator, ein Lichtschutzmittel, einen Füll- und Verstärkungsstoff, ein Farbstoff oder Pigment sowie ein weiteres Flammschutzmittel oder einen Flammschutzsynergisten, beispielsweise einen anor- ganischen Stoff in nanoskaliger Form und/oder ein silikatisches Material wie Talk oder Wollastonit enthalten.
Der Gewichtsteil-Angaben in dieser Anmeldung sind so zu normieren, dass die Summe der Gewichtsteile aller Komponenten A) bis G) gleich 100 gesetzt werden.
Die erfindungsgemäßen Zusammensetzungen werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 200°C bis 300°C in üblichen Aggregaten wie Innenknetern, Extrudern und Doppelwellenschnecken schmelzcompoundiert und schmelzextrudiert.
Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl sukzessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei höherer Temperatur.
Die erfindungsgemäßen Zusammensetzungen können zur Herstellung von Formkörpern jeder Art verwendet werden. Diese können beispielsweise durch Spritzguss, Extrasion und Blasformverfahren hergestellt werden. Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpern durch Tiefziehen aus zuvor hergestellten Platten oder Folien.
Beispiele für solche Formkörper sind Folien, Profile, Gehäuseteile jeder Art, z.B. für Haushaltsgeräte wie Saftpressen, Kaffeemaschinen, Mixer; für Büromaschinen wie Monitore, Drucker, Kopierer; weiterhin Platten, Rohre, Elektroinstallationskanäle, Profile für den Bausektor, Innenausbau und Außenanwendungen; Teile aus dem Gebiet der Elektrotechnik wie Schalter und Stecker sowie Automobilinnen- und -außenteile.
Insbesondere können die erfindungsgemäßen Zusammensetzungen beispielsweise zur Herstellung von folgenden Formkörpern oder Formteilen verwendet werden:
Innenausbauteile für Schienenfahrzeuge, Schiffe, Flugzeuge, Busse und Automobile, Radkappen, Gehäuse von Kleintransformatoren enthaltenden Elektrogeräten, Gehäuse für Geräte zur Infor- mationsverbreitung und -Übermittlung, Gehäuse und Verkleidung für medizinische Zwecke, Massagegeräte und Gehäuse dafür, Spielfahrzeuge für Kinder, Flächige Wandelemente, Gehäuse für Sicherheitseinrichtungen, Heckspoiler, Karosserieteile für KFZ, Wärmeisolierte Transportbehält- nisse, Vorrichtung zur Haltung oder Versorgung von Kleintieren, Formteile für Sanitär- und Badausrüstungen, Abdeckgitter für Lüfteröffnungen, Formteile für Garten- und Gerätehäuser, Gehäuse für Gartengeräte.
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung. Beispiele
Die in der Tabelle 1 angegebenen und nachfolgend kurz erläuterten Komponenten werden auf einer ZSK-25 bei verschiedenen Massetemperaturen (s. Tabelle 1) compoundiert. Anschließend werden die Restmonomerwerte, insbesondere die Menge an Butadien gemessen. Diese Messungen erfolgen sowohl am Granulat, als auch an Formkörpern,, welche auf einer Spritzgießmaschine Typ Arburg 270 E bei den angegebenen Temperaturen (280/300°C)hergestellt werden.
Komponente A (ABS)
Pfropφolymerisat von 40 Gew.-Teilen eines Copolymerisats aus Styrol und Acrylnitril im Verhältnis von 73:27 auf 60 Gew.-Teile teilchenförmigen vernetzten Polybutadienkautschuks (mittle- rer Teilchendurchmesser d50 = 0,3 μm), hergestellt durch Emulsionspolymerisation.
Komponente B (l-ϊ)
HP 136 der Ciba Speciality Chemicals, Basel, Schweiz (Lacton der Formel 1-1 - siehe vorne).
Komponente C (II-l)
Phosphorigsäureester der Formel II-l (siehe vorne)
Komponente D (PC)
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von 1,24, gemessen in CH2C12 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml.
Komponente E (SAN)
Styrol/Acrylnitril-Copolymerisat mit einem Styrol/Acrylnitril-Verhältnis von 72:28 und einer Grenzviskosität von 0,55 dl/g (Messung in Dimethylformamid bei 20°C).
Komponente G (PETS
PETS = Pentaerythrittetrastearat
Die Bestimmung des Restmonomer-Gehalt erfolgt mittels GC MS (Gaschromatographie/Massenspektroskopie) . Tabelle 1: Zusammensetzung der Formmassen und Eigenschaften
Figure imgf000021_0001
Im Gegensatz zum Vergleichsbeispiel 1 werden mit den anderen Einstellungen eine deutliche Absenkung des Restmonomergehaltes erreicht. Der Restmonomergehalt eines Vergleichsbeispiels ohne die Additive (I-l) und (II-l) lag geringfügig höher als im Beispiel 1. Die Reduzierung wird sowohl am Granulat erreicht, als auch bei einer späteren Weiterverarbeitung zu Formmassen erhalten.

Claims

Patentansprüche
Zusammensetzungen enthaltend
A) Pfropφolymerisat von
A.1 5 bis 95 Gew.-% wenigstens eines Vmylmonomeren auf
A.2 95 bis 5 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen <10°C,
B) ein Lacton der Formel (I)
Figure imgf000022_0001
in welcher
R1, R2, R3 und R4 unabhängig voneinander für Wasserstoff, Cι-C6-Alkyl oder einen 5- oder 6-gliedrigen Ring, und gegebenenfalls
C) mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus
C.1) Phosphorigsäureester der Formel (II)
Figure imgf000022_0002
worin
R für H oder C C9-Alkyl, C5-C6-Cycloalkyl, C7-C9-Aralkyl oder C6-C10-Aryl steht, R5 und R6 gleich oder verschieden sind und für C C9-Alkyl, C5-C6-Cycloalkyl, C7-C9-Aralkyl oder Cö-Cio-Aryl stehen und
X für -S- oder R7-CH mit R7 für Wasserstoff, C C6-Alkyl oder C5-C6-Cyclo- alkyl steht,
Sterisch gehinderte Phenole der Formel (IH)
Figure imgf000023_0001
in welcher
R7 und R8 unabhängig voneinander für Wasserstoff, Cι-C6-Alkyl oder einen 5- oder 6-gliedrigen Ring,
n für eine ganze Zahl von 1 bis 4,
A1 und A2 unabhängig voneinander für Cι-C6-Alkylen stehen,
R unabhängig für Wasserstoff, Cι-C6-Alkyl, C C6-Alkoxy oder einen 5- oder 6-gliedrigen Ring, steht;
C.3 Phosphite der Formel (IV)
Figure imgf000023_0002
in welcher
R9 und R10 unabhängig voneinander für Wasserstoff oder Cx-Cβ-Alkyl, gegebenenfalls einen 5- oder 6-gliedrigen Ring,
x und y unabhängig voneinander für 0, 1, 2, 3, 4, 5 stehen und n für 1 oder 2 steht, und gegebenenfalls weiteren Komponenten, ausgewählt aus mindestens einer der Gruppen
D) Polycarbonat und/oder Polyestercarbonat E) Vmyl(co)polymerisat F) Flammschutzmittel, G) Additive.
2. Zusammensetzung gemäß Anspruch 1, enthaltend 0,01 bis 2 Gew.-Teile der Komponente B).
3. Zusammensetzung gemäß Anspruch 1 oder 2, enthaltend 0,01 bis 2 Gew.-Teile der Komponente C).
4. Zusammensetzungen gemäß einem der vorhergehenden Ansprüche enthaltend
A) 2 bis 50 Gew.-Teile Pfropφolymerisat der Komponente A)
B) 0,01 bis 1 Gew.-Teil Lacton der Formel (I)
C) 0,01 bis 2 Gew.-Teil Phosphorigsäureester der Formel (II) D) 20 bis 98Gew.-Teile Poly(ester)carbonat
E) 0 bis 40 Gew.-Teile Vinyl(co)polymerisat
F) 0 bis 20 Gew.-Teile Flammschutzmittel
G) 0 bis 2 Gew.-Teile Antidrippingmittel.
5. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, enthaltend Pfropφolymerisate, erhältlich durch Polymerisation von
A.l.l 50 bis 99 Gew.-% mindestens eines Monomeren ausgewählt aus der Gruppe bestehend aus Vinylaromaten, kernsubstituierten Vinylaromaten und Methacrylsäure- (Cι-C8)-Alkylester und
A.1.2 1 bis 50 Gew.-% mindestens eines Monomeren ausgewählt aus der Gruppe bestehend aus Vinylcyaniden, (Meth)Acrylsäure-(Cι-C8)-Alkylester und Derivaten ungesättigter Carbonsäuren.
6. Zusammensetzung gemäß Anspruch 5, wobei Monomere A.l.l ausgewählt sind aus mindestens einem der Monomere Styrol, α-Methylstyrol und Methylmethacrylat, und Monomere A.1.2 ausgewählt sind aus mindestens einem der Monomere Acrylnitril, Maleinsäureanhydrid und Methylmethacrylat.
7. Zusammensetzung gemäß Anspruch 4, wobei die Pfropfgrundlage A.2 ausgewählt ist aus Dienkautschuk, EP(D)M-Kautschuk, Acrylat-, Polyurethan-, Silikon-, Chlorpren und Ethylen/Vinylacetat-Kautschuk sowie Kompositen aus den genannten Kautschuken.
8. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, enthaltend ein cyclisches Lacton der Formel (I)
Figure imgf000025_0001
9. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, enthaltend Phosphorigsäureester der Formel (II), in denen R5 und R6 für einen Benzyl-, α-Methyl- benzyl-, α,α-Dimethylbenzyl-, Methyl-, Ethyl-, Isopropyl-, tert.-Butyl-, tert-Amyl-, Isononyl-, Cyclopentyl- oder Cyclohexyl-Rest stehen und X für
_S_ • CH2 , CH3-C CHH ,, CCHH,3CCHH22CCHH , CCHH33((CCHH22))22--CCHH ,, ((CCHH33))22CCHH--Cι rH ,
oder steht.
Figure imgf000025_0003
Figure imgf000025_0002
10. Zusammensetzung gemäß einem der vorhergehenden Ansprüche, enthaltend Phosphorigsäureester der Formel - ?ά .
Figure imgf000026_0001
11. Zusaritmensetzung gemäß einem der vorhergehenden Ansprüche, enthaltend mindestens eine Verbindung der Formel:
Figure imgf000026_0002
12. Verwendung der Zusammensetzungen gemäß einem der vorhergehenden Ansprüche, zur Herstellung von Formteilen.
13. Formteile erhältlich aus Zusammensetzungen gemäß einem der vorhergehenden Ansprüche. Stabilisierte thermoplastische Zusammensetzungen
Zusammensetzung
Zusammensetzungen enthaltend
A) Pfropφolymerisat von
A.1 5 bis 95 Gew.-% wenigstens eines Vinylmonomeren auf
A.2 95 bis 5 Gew.-% einer oder mehrerer Pfropfgrundlagen mit Glasübergangstemperaturen <10°C
B) ein Lacton der Formel (I)
Figure imgf000027_0001
C) mindestens eine Verbindung ausgewählt aus der Gruppe bestehend aus
C.1) Phosphorigsäureester der Formel (II)
Figure imgf000027_0002
C.2 Sterisch gehinderte Phenole der Formel (HI)
Figure imgf000028_0001
C.3 Phosphite der Formel (IV)
Figure imgf000028_0002
und gegebenenfalls weiteren Komponenten, ausgewählt aus mindestens einer der Gruppen
D) Polycarbonat und/oder Polyestercarbonat
E) Vinyl(co)polymerisat
F) Flammschutzmittel,
G) Additive.
PCT/EP2004/014003 2003-12-22 2004-12-09 Stabilisierte thermoplastische zusammensetzungen WO2005063865A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002550563A CA2550563A1 (en) 2003-12-22 2004-12-09 Stabilised thermoplastic compositions
EP04803665A EP1699859B1 (de) 2003-12-22 2004-12-09 Stabilisierte thermoplastische zusammensetzungen
MXPA06006908A MXPA06006908A (es) 2003-12-22 2004-12-09 Composiciones termoplasticas estabilizadas.
JP2006545975A JP2007515528A (ja) 2003-12-22 2004-12-09 安定化熱可塑性組成物
BRPI0417989-7A BRPI0417989A (pt) 2003-12-22 2004-12-09 composições termoplásticas estabilizadas
DE502004006086T DE502004006086D1 (de) 2003-12-22 2004-12-09 Stabilisierte thermoplastische zusammensetzungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360367A DE10360367A1 (de) 2003-12-22 2003-12-22 Stabilisierte thermoplastische Zusammensetzungen
DE10360367.0 2003-12-22

Publications (1)

Publication Number Publication Date
WO2005063865A1 true WO2005063865A1 (de) 2005-07-14

Family

ID=34683745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014003 WO2005063865A1 (de) 2003-12-22 2004-12-09 Stabilisierte thermoplastische zusammensetzungen

Country Status (12)

Country Link
US (1) US20050159517A1 (de)
EP (1) EP1699859B1 (de)
JP (1) JP2007515528A (de)
KR (1) KR20060123359A (de)
CN (1) CN100549076C (de)
AT (1) ATE384758T1 (de)
BR (1) BRPI0417989A (de)
CA (1) CA2550563A1 (de)
DE (2) DE10360367A1 (de)
MX (1) MXPA06006908A (de)
TW (1) TW200540213A (de)
WO (1) WO2005063865A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791189B2 (en) * 2008-01-15 2014-07-29 Sabic Innovative Plastics Ip B.V. Moldable polyester compositions, processes of manufacture, and articles thereof
US8168707B2 (en) * 2008-01-15 2012-05-01 Sabic Innovative Plastics Ip B.V. Moldable polyester compositions, processes of manufacture, and articles thereof
CN104363876B (zh) 2012-03-09 2017-08-11 森西勒Pat股份公司 药物重配系统
CN113637268B (zh) * 2020-04-27 2024-03-26 深圳市汇进智能产业股份有限公司 一种适用于电气领域的介电性能好的组合物及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808938A1 (de) * 1997-03-06 1998-10-08 Ciba Geigy Ag Stabilisierung von Polycarbonaten, Polyester und Polyketonen
WO2001016224A2 (en) * 1999-09-01 2001-03-08 The Dow Chemical Company Polycarbonate resin compositions comprising cyanacrylic acid ester stabilizer compounds

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323501A (en) * 1971-08-11 1982-04-06 Bayer Aktiengesellschaft Esters of phosphorous acid
DE2140207C3 (de) * 1971-08-11 1975-11-27 Farbenfabriken Bayer Ag, 5090 Leverkusen Stabilisiertes aromatisches PoIycarbonat
US4073769A (en) * 1971-08-11 1978-02-14 Bayer Aktiengesellschaft Esters of phosphorous acid
DE2929229A1 (de) * 1979-07-19 1981-02-12 Bayer Ag Stabilisierte thermoplastische formmassen
ES2051794T3 (es) * 1987-05-23 1994-07-01 Bayer Ag Policarbonatos alifaticos estabilizados.
DE3808839A1 (de) * 1988-03-17 1989-10-05 Bayer Ag Thermoplastische formmassen enthaltend spezielle copolymere
US5231124A (en) * 1988-12-15 1993-07-27 Bayer Aktiengesellschaft Stabilized thermoplastic molding compositions
CH686306A5 (de) * 1993-09-17 1996-02-29 Ciba Geigy Ag 3-Aryl-benzofuranone als Stabilisatoren.
JP3823348B2 (ja) * 1995-11-01 2006-09-20 住友化学株式会社 亜リン酸エステル類、その製法及びその用途
US6521681B1 (en) * 1996-07-05 2003-02-18 Ciba Specialty Chemicals Corporation Phenol-free stabilization of polyolefin fibres
JP3876479B2 (ja) * 1996-08-05 2007-01-31 住友化学株式会社 亜リン酸エステル類、その製造法及びその用途
DE59702969D1 (de) * 1996-10-30 2001-03-08 Ciba Sc Holding Ag Stabilisatorkombination für das Rotomolding-Verfahren
JPH1180563A (ja) * 1997-09-11 1999-03-26 Asahi Denka Kogyo Kk 合成樹脂組成物
JP2000154290A (ja) * 1998-11-20 2000-06-06 Asahi Chem Ind Co Ltd 安定化樹脂組成物
DE19962930A1 (de) * 1999-12-24 2001-06-28 Bayer Ag Flammwidrige Polycarbonat-Formmassen mit Talk besonderer Reinheit
IT1318423B1 (it) * 2000-03-24 2003-08-25 Great Lakes Chemical Europ Miscele stabilizzanti per polimeri organici.
US6197854B1 (en) * 2000-04-03 2001-03-06 Bayer Corporation Polycarbonate composition resistant to gamma radiation
ATE271101T1 (de) * 2000-05-19 2004-07-15 Dow Global Technologies Inc Polycarbonatzusammensetzungen enthaltend schwerflüchtige uv-absorbierende verbindungen
US20020111405A1 (en) * 2000-12-20 2002-08-15 General Electric Company Flame retardant polycarbonate resin/ABS graft copolymer blends
DE10128174A1 (de) * 2001-06-11 2002-12-12 Bayer Ag Schlagzähmodifizierte Polymer-Zusammensetzung
JP2003206384A (ja) * 2002-01-16 2003-07-22 Ps Japan Corp ゴム変性スチレン系樹脂組成物およびそのインジェクションブロー成形品
JP2003301101A (ja) * 2002-02-08 2003-10-21 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物および成形品
JP2003292706A (ja) * 2002-04-01 2003-10-15 Sumitomo Chem Co Ltd 安定化された熱可塑性樹脂組成物
DE10235754A1 (de) * 2002-08-05 2004-02-19 Bayer Ag Flammwidrige mit Pfropfpolymerisat modifizierte Polycarbonat-Formmassen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808938A1 (de) * 1997-03-06 1998-10-08 Ciba Geigy Ag Stabilisierung von Polycarbonaten, Polyester und Polyketonen
WO2001016224A2 (en) * 1999-09-01 2001-03-08 The Dow Chemical Company Polycarbonate resin compositions comprising cyanacrylic acid ester stabilizer compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CLAUSS M ET AL: "Stabilization of styrenic based compounds in presence of benzofuranone derivatives", April 1997, RESEARCH DISCLOSURE, KENNETH MASON PUBLICATIONS, HAMPSHIRE, GB, ISSN: 0374-4353, XP007121695 *

Also Published As

Publication number Publication date
ATE384758T1 (de) 2008-02-15
CN100549076C (zh) 2009-10-14
MXPA06006908A (es) 2006-08-23
DE10360367A1 (de) 2005-07-21
BRPI0417989A (pt) 2007-04-27
US20050159517A1 (en) 2005-07-21
CA2550563A1 (en) 2005-07-14
TW200540213A (en) 2005-12-16
KR20060123359A (ko) 2006-12-01
CN1954026A (zh) 2007-04-25
EP1699859B1 (de) 2008-01-23
DE502004006086D1 (de) 2008-03-13
EP1699859A1 (de) 2006-09-13
JP2007515528A (ja) 2007-06-14

Similar Documents

Publication Publication Date Title
EP1355987B1 (de) Flammwidrige; mineralverstärkte polycarbonatzusammensetzungen mit hoher bindenahtfestigkeit
EP1527137B1 (de) Schlagzähmodifizierte polycarbonat blends
EP1490436B1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzung, enthaltend kalzinierten talk
WO2003037986A1 (de) Schlagzähmodifizierte flammwidrig ausgerüstete polycarbonat-formmassen
EP1095097B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP2285905B1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzungen mit hoher hydrolysebeständigkeit und hellem rohton
EP1641880B1 (de) Polycarbonatformmassen mit verbesserter schmelzefliessfähigkeit und chemikalienbeständigkeit
EP1165680B1 (de) Flammwidrige, schlagzähmodifizierte polycarbonat-formmassen
EP1567596B1 (de) Schlagzähmodifizierte blends
EP1592740B1 (de) Flammwidrige polycarbonat-blends
WO2008061643A1 (de) Schlagzähmodifizierte gefüllte polycarbonat-zusammensetzungen
EP2556114B1 (de) Flammgeschützte polycarbonat-zusammensetzungen
EP1458813B1 (de) Extrudierbare polycarbonat-formmassen
EP3365390B1 (de) Verfahren zur herstellung von polycarbonat-formmassen mit verbesserter thermischer verarbeitungsstabilität
EP1846504B1 (de) Polycarbonatformmassen mit verbesserter hydrolysebestaendigkeit
DE10257081A1 (de) Flammwidrige Polycarbonat-Zusammensetzungen mit Phosphor-Silizium-Verbindungen
EP1309655A1 (de) Flammwidrige polycarbonat-zusammensetzungen
WO2003027165A1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzung
WO2004013227A1 (de) Flammwidrige formmassen
EP1169385B1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
EP1910469B1 (de) Schlagzähmodifizierte polycarbonat- zusammensetzungen, verfahren zu ihrer herstellung und formkörper enthaltend diese zusammensetzungen
EP2262853B1 (de) Schlagzählmodifizierte polyalkylenterephthalat/polycarbonat-zusammensetzungen
EP1699859B1 (de) Stabilisierte thermoplastische zusammensetzungen
DE10224616A1 (de) Schlagzähmodidizierte Polycarbonat-Zusammensetzung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004803665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3445/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/006908

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2550563

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067012307

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006545975

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200480041999.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004803665

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067012307

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0417989

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2004803665

Country of ref document: EP