WO2005062100A1 - Optical element holding apparatus, barrel, exposure apparatus, and device producing method - Google Patents

Optical element holding apparatus, barrel, exposure apparatus, and device producing method Download PDF

Info

Publication number
WO2005062100A1
WO2005062100A1 PCT/JP2004/019264 JP2004019264W WO2005062100A1 WO 2005062100 A1 WO2005062100 A1 WO 2005062100A1 JP 2004019264 W JP2004019264 W JP 2004019264W WO 2005062100 A1 WO2005062100 A1 WO 2005062100A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
frame member
holding device
adjustment
element holding
Prior art date
Application number
PCT/JP2004/019264
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Shibazaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2005516519A priority Critical patent/JP4586731B2/en
Publication of WO2005062100A1 publication Critical patent/WO2005062100A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Definitions

  • Optical element holding device lens barrel, exposure device, and device manufacturing method
  • the present invention relates to an optical device of an exposure apparatus used in a lithography step in a process of manufacturing a device such as a semiconductor device, a liquid crystal display device, an imaging device, a thin film magnetic head, or a mask such as a reticle or a photomask.
  • the present invention relates to an optical element holding device for holding. Further, the present invention relates to a lens barrel and an exposure apparatus provided with the optical element holding device. Further, the present invention relates to a device manufacturing method using the exposure apparatus.
  • an optical element holding device including a lens frame holding an optical element and a frame supporting the lens frame via flexure members arranged at equal intervals.
  • the flexure member includes a connection block connected to the lens frame, and a flexure fixing portion that supports the connection block and is fixed to the frame.
  • the flexure member enables the optical element to move and rotate along the radial, circumferential, and optical axis directions of the optical element in a polar coordinate system having the origin substantially at the center of the optical element. That is, the optical element is held in a state where six degrees of freedom of movement are secured, that is, kinematically.
  • the wiring pattern power S has been increasingly miniaturized. For this reason, especially in an exposure apparatus for manufacturing a semiconductor device, a projection optical system with extremely low wavefront aberration and distortion has been required, and the relative position of each optical element housed inside the lens barrel has been narrowed. It is necessary to control the force.
  • Patent Document 1 US Patent Application Publication No. 2002Z0163741
  • An object of the present invention is to provide an optical element holding device and a lens barrel that can maintain a high airtightness while finely adjusting the attitude of the optical element.
  • Another object of the present invention is to provide an exposure apparatus with improved exposure accuracy.
  • a further object of the present invention is to provide a device manufacturing method capable of improving the yield of highly integrated devices.
  • a first aspect of the present invention is directed to an optical element holding device including a frame member and a holding member provided inside the frame member and holding the optical element.
  • An optical element holding device including an adjustment member for adjusting a position via a holding member, and a first seal member provided between the adjustment member and the frame member is characterized.
  • the frame member has a joint portion laminated with another frame member and joined to the other frame member, and the frame member has a joint portion with the other frame member.
  • a second seal member provided between them.
  • the second seal member may include an O-ring disposed along a circle centered on the optical axis of the optical element.
  • the o-ring may have a hollow structure that is closely adhered to the joint and is elastically deformable.
  • the frame member has an opening
  • the adjustment member has a displacement mechanism for displacing the position of the optical element
  • the displacement mechanism is provided in the opening of the frame member. It may be accommodated so as to be displaceable.
  • the displacement mechanism has a first adjustment component and a second adjustment component arranged side by side in the opening, and when the first adjustment component is removed from the opening, the second adjustment component opens. It may be left in the department.
  • the first adjustment component is It is one of the first adjustment components, and the displacement of the optical element may be adjusted by replacing the first adjustment component.
  • the first seal member may be arranged between the second adjustment component and the inner peripheral surface of the opening.
  • the first adjustment component may include a coarse adjustment component for roughly adjusting the displacement of the optical element and a fine adjustment component for finely adjusting the displacement of the optical element.
  • the optical element holding device includes a tubular body that accommodates the adjusting member, and the first seal member is a seal provided between the adjusting member and the tubular body. May be included.
  • the optical element holding device may include an urging member that returns the holding member to a predetermined position when at least a part of the displacement mechanism is removed.
  • a second aspect of the present invention is a lens barrel that accommodates at least one optical element and includes the optical element holding device according to the first aspect of the present invention that holds at least one of the optical elements.
  • the optical element may be one of a plurality of optical elements constituting a projection optical system that projects an image of a predetermined pattern formed on a mask onto a substrate. Good.
  • an exposure apparatus for transferring an image of a predetermined pattern formed on a mask onto a substrate to transfer the image of the predetermined pattern onto the substrate.
  • An exposure apparatus including the lens barrel according to the second aspect of the present invention is characterized.
  • a fourth aspect of the present invention is characterized by a method for manufacturing a device having a lithographic process for performing exposure using the exposure apparatus of the third aspect of the present invention.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of an exposure apparatus of the present invention.
  • FIG. 2 is a perspective view showing the optical element holding device of FIG. 1.
  • FIG. 3 is a plan view showing the optical element holding device of FIG. 1.
  • FIG. 4 is a cross-sectional view taken along line 4-4 in FIG.
  • FIG. 5 is an enlarged plan view mainly showing a pair of arms of the frame member of FIG. 2.
  • FIG. 6 is a plan view showing a further enlarged pair of arms of the frame member of FIG. 2.
  • FIG. 7 is a sectional view taken along line 7_7 of FIG.
  • FIG. 8 is a cross-sectional view of the frame member of FIG. 2 on a plane orthogonal to the optical axis of the optical element.
  • FIG. 9 is a cross-sectional view showing a displacement module according to a modification.
  • FIG. 10 is a flowchart of a device manufacturing example.
  • FIG. 11 A detailed flowchart regarding the substrate processing of FIG. 10 in the case of a semiconductor device.
  • an exposure apparatus a lens barrel, and an optical element holding device according to the present invention are described as an exposure apparatus for manufacturing a semiconductor element, a lens barrel that houses the projection optical system thereof, and a lens of a part of the projection optical system.
  • One embodiment embodied in the optical element holding device for holding will be described with reference to FIGS.
  • FIG. 1 shows a schematic configuration of the exposure apparatus 31 with its projection optical system 35 at the center.
  • an exposure apparatus 31 of this embodiment includes a light source 32, an illumination optical system 33, a reticle stage 34 for holding a reticle Rt as a mask, a projection optical system 35, and a substrate as a substrate. And a wafer stage 36 for holding the wafer W.
  • the light source 32 is, for example, an ArF excimer laser having a wavelength of 193 nm, or an F excimer laser having a wavelength of 157 nm.
  • the illumination optical system 33 includes optical integrators (not shown) such as a fly-eye lens and a rod lens, various lens systems such as a relay lens and a condenser lens, and an aperture stop.
  • the exposure light EL emitted from the light source 32 passes through the illumination optical system 33, and is adjusted so as to uniformly illuminate the pattern on the reticle Rt.
  • the reticle stage 34 is arranged between the illumination optical system 33 and a projection optical system 35 described later such that the mounting surface of the reticle Rt is substantially orthogonal to the optical axis direction of the projection optical system 35.
  • the projection optical system 35 includes an optical element 37 such as a plurality of lenses arranged so that their optical axes coincide with each other.
  • the projection optical system 35 is housed in a lens barrel 39 with each optical element 37 held substantially horizontally (so-called horizontal type) by an optical element holding device 38.
  • the lens barrel 39 has a divided lens barrel structure in which a plurality of lens barrel modules 39a are stacked.
  • the wafer stage 36 is located on the image plane side of the projection optical system 35 (the exit side of the exposure light EL).
  • the mounting surface of the wafer W is disposed so as to intersect with the optical axis direction of the projection optical system 35.
  • the image of the pattern on the reticle Rt illuminated with the exposure light EL is reduced to a predetermined reduction magnification through the projection optical system 35 and transferred to the wafer W on the wafer stage 36.
  • FIG. 2 is a perspective view showing the optical element holding device 38
  • FIG. 3 is a plan view of the optical element holding device 38
  • FIG. 4 is a sectional view taken along line 4-14 in FIG.
  • the optical element 37 is made of a glass material such as synthetic quartz or fluorite having a breaking strength of a predetermined level or more, and a flange 37a is formed on the periphery of the optical element 37 as shown in FIG.
  • the optical element holding device 38 is provided via a frame member 41 having a fastening portion 40 serving as a joint portion with another lens barrel module 39a to be laminated, and a support member 42.
  • a lens frame 43 serving as a holding member for holding the optical element 37;
  • the frame member 41 and the lens frame 43 are both formed in a substantially annular shape.
  • the lens frame 43 is attached to the inside of a frame member 41 (an inner ring 51 to be described later), and a plurality of step portions 44 formed on the inner peripheral surface of the frame member 41 are provided. It is fixed by bolt 45.
  • three support members 42 are provided at equal angular intervals.
  • the support member 42 includes a base member 46 (see FIG. 4) for holding the flange 37a of the optical element 37, and a clamp member 47.
  • the base member 46 is transmitted to the support member 42 from a device outside the support member 42 and is a factor that affects the state of the optical surface of the optical element 37 (for example, the main body of the exposure device 31, Etc.), which has a fretting structure to absorb minute surface roughness and surface undulations. For this reason, in a state where the optical element 37 is held on the lens frame 43 via the support member 42, even if the lens frame 43 is mounted on an external device via the frame member 41, the optical element 37 The surface is kept in good condition.
  • Frame B material 41 has inner ring 51, outer ring 52, arms 53al, 53a2, 53bl,
  • the arms 53al, 53a2, 53bl, 53b2, 53cl, 53c2, Reno 54, and the support link 55 are formed by force.
  • the arms 53al, 53a2, 53bl, 53b2, 53cl, 53c2 and the reno 54 form a posture adjusting mechanism 50 that adjusts the posture of the optical element 37 by adjusting the posture of the inner ring 51.
  • the c2, the lever 54, and the support link 55 are formed on the frame member 41 made of one structure by wire cutting and electric discharge machining.
  • the inner ring 51 and the outer ring 52 are connected to each other via arms 53a1, 53a2, 53bl, 53b2, 53cl, 53c2, a reno 54, and a support link 55 so as to be able to move in a pair.
  • FIG. 5 is an enlarged plan view showing a pair of arms 53al and 53a2 of the frame member 41 and the periphery thereof.
  • FIG. 6 is a plan view showing the arm 53al further enlarged, and
  • FIG. 7 is a sectional view taken along line 7-7 in FIG.
  • the frame, the frame member 41, and the six arms 53al, 53a2, 53bl, 53b2, 53c1, 53c2 are provided so as to form three pairs.
  • the arm 53al and the arm 53a2 form a first link mechanism 53a
  • the arm 53bl and the arm 53b2 form a second link mechanism 53b
  • the arm 53cl and the arm 53c2 form a third link mechanism 53c.
  • These three link mechanisms 53a, 53b, 53c are arranged at equal angular intervals on the circumference of a circle centered on the optical axis AX of the optical element 37.
  • first link mechanism 53a Since the first to third link mechanisms 53a, 53b, 53c have the same configuration, the first link mechanism 53a will be described below as an example.
  • a pair of through holes 56 are formed at the first end of each of the arms 53al and 53a2, and a pair of slits 57 extend from the through holes 56.
  • the pair of through holes 56 and the pair of slits 57 form an element-side pivot 58.
  • the first ends of the arms 53al and 53a2 are rotatably connected to the inner ring 51 via element-side pivots 58.
  • each arm 53al, 53a2 At the second end of each arm 53al, 53a2, a pair of through-holes 56 is formed, and the pair of through-holes 56 and a pair of slits 57 communicating with the pair of through-holes 56 form a frame joint J pivot 59.
  • Force S formed.
  • the second ends of the arms 53al and 53a2 are rotatably connected to the lever 54 via a frame-side pivot 59.
  • a first surface 60 of the frame member 41 which is substantially orthogonal to the optical axis AX of the optical element 37, has an element side Corresponding to the pivot 58, a small opening recessed portion 61a dug by a power discharger is formed.
  • the first surface 60 is formed with a large opening recess 62a having an opening larger than the small opening recess 61a, corresponding to the frame-side pivot 59.
  • the second surface 63 parallel to the first surface 60 and opposite to the first surface 60 has a large opening recess 6 formed in the first surface 60 corresponding to the element-side pivot 58.
  • a large opening recess 62b having the same size as 2a is formed.
  • a small opening recess 6 lb having the same size as the small opening recess 61 a formed in the first surface 60 is formed on the second surface 63 in correspondence with the frame-side pivot 59.
  • each of the arms 53al and 53a2 is equivalent to a rigid body that is arranged in a state of being inclined with respect to the optical axis AX of the optical element 37 within the range of the thickness of the frame member 41.
  • the rigid force of each of the arms 53al and 53a2 is arranged in a tangential plane that includes a tangent of a circle centered on the optical axis AX of the optical element 37 and that is substantially parallel to a plane parallel to the optical axis AX. It has been.
  • the rigid body of the arm 53al and the rigid body of the arm 53a2 are defined by a radiation plane Pr (that is, a second plane extending in the radial direction of the optical element 37) that includes the optical axis AX of the optical element 37 and is orthogonal to the tangent plane Pt. On the other hand, they are arranged substantially symmetrically.
  • the lever 54 is disposed between the adjacent link mechanisms 53a, 53b, 53c, and has a substantially rectangular parallelepiped shape. As shown in FIG. 5, the portion near the inner periphery of the frame member 41 at the first end of the lever 54 is rotated to the second end of each arm 53al, 53a2 via the frame-side pivot 59. It is connected as possible. A portion of the lever 54 near the outer periphery of the frame member 41 at the first end is rotatably connected to the outer ring 52 via a fulcrum pivot 66.
  • the fulcrum pivot 66 is formed by a pair of through holes 67 formed in the frame member 41 and a pair of slits 68 extending from each through hole 67. This fulcrum, pivot 66, is arranged on a straight line that is orthogonal to the straight line that connects the frame Tsukuda J pivot 59 of each arm 53al, 53a2 and the element rule pivot 58.
  • FIG. 8 is a cross-sectional view of the frame member 41 taken along a plane perpendicular to the optical axis AX of the optical element 37.
  • a support link 55 is connected near the second end of the lever 54.
  • the support link 55 includes a first support link 69 and a second support link 70.
  • the first and second support links 69, 70 are formed by a plurality of pairs of through holes 71 formed in the frame member 41 and a plurality of slits 72 extending from the through holes 71.
  • the first end of the first support link 69 is connected to a recessed portion of the second end of the lever 54 via a distal end support pivot 73 formed by a pair of through holes 71 and a pair of slits 72.
  • the second end of the first support link 69 is rotatable to the first end of the second support link 70 via an intermediate support pivot 74 formed by a pair of through holes 71 and a pair of slits 72. It is connected to.
  • the second support link 70 is disposed so as to extend in a direction perpendicular to the first support link 69. Note that the distal-end-side support pivot 73, the intermediate support pivot 74, and the fulcrum pivot 66 are aligned.
  • a second end of the second support link 70 is rotatably connected to the frame member 41 via a base end support pivot 75 formed by a pair of through holes 71 and a pair of slits 72. I have.
  • the base support pivot 75 is formed to be thicker than the distal support pivot 73 and the intermediate support pivot 74.
  • a spring receiving recess 76 is provided on the first surface 60 and the second surface 63 of the frame member 41 near the second end of the lever 54.
  • a pair of biasing springs 77 for biasing the second end of the lever 54 toward the outer ring 52 are stretched between the lever 54 and the outer ring 52.
  • a pair of fastening portions 40 project from the outer peripheral edge of the outer ring 52 at predetermined intervals.
  • a plurality of bolt holes 80 are formed in the fastening portion 40, and a plurality of lens barrel modules 39a are fastened by bolts (not shown) using the bonnet holes 80, and are stacked.
  • An annular groove 81 is formed in an inner peripheral portion of the fastening portion 40 on the first surface 60 of the frame member 41.
  • the annular groove 81 accommodates a hollow ring 81a as a second seal member for maintaining airtightness inside the lens barrel 39 in a state where a plurality of lens barrel modules 39a are stacked. That is, the hollow ring 81a is arranged along a circle centered on the optical axis AX of the optical element 37.
  • a displacement module as an opening for accommodating a displacement module 82 constituting an adjustment member and a displacement mechanism is provided on a side surface of the outer ring 52 at a position corresponding to the biasing spring 77.
  • a mounting hole 83 (see FIG. 8) is provided.
  • the displacement module 82 includes a displacement rod 84 as a second adjustment component, an adjustment pusher 85 having a role as a fine adjustment component, and an adjustment button 86 having a role as a coarse adjustment component.
  • Adjust Base plate 87 Adjust Base plate 87.
  • the adjustment pusher 85 and the adjustment button 86 form a first adjustment component.
  • a displacement rod housing 89 (tubular body) having a pair of first O-rings 88 mounted thereon is fitted on the outer peripheral surface thereof.
  • the displacement rod 84 is slidably inserted into the displacement rod housing 89 via a first seal member and a ring 90 as a seal portion.
  • the displacement rod 84 is formed in a substantially cylindrical shape having both ends in a planar shape.
  • a spherical boss 92 is mounted via a stud bolt 91, and the distal end surface of the displacement rod 84 is in contact with the spherical boss 92.
  • a support bolt 93 is screwed so as to penetrate the adjustment base plate 87.
  • the tip of the support bolt 93 is inserted into the adjustment pusher 85 and the adjustment button 86.
  • the tip of the adjustment button 86 is formed in a substantially spherical shape.
  • the adjustment base plate 87 is attached to the frame member 41 by positioning pins 94, and the tip of the adjustment button 86 is in contact with the base end surface of the displacement rod 84.
  • a plurality of adjustment washers 85 having different thicknesses in units of 1 ⁇ m are prepared.
  • a plurality of adjustment buttons 86 having different heights in units of 0.1 lm are provided. From the plurality of adjustment pushers 85 and the plurality of adjustment buttons 86, those capable of setting a predetermined displacement amount on the displacement rod 84 are appropriately selected and fitted to the tip of the support bolt 93.
  • the displacement rod 84 is movable along the longitudinal direction of the displacement module mounting hole 83, and the displacement force applied to the lever 54 can be changed by the movement of the displacement rod 84.
  • the displacement force is generated when the displacement rod 84 is moved by replacing the already installed adjustment pusher 85 and adjustment button 86 with another adjustment pusher 85 and adjustment button 86 in the displacement module 82.
  • the driving force is hereinafter referred to as “driving force F”.
  • the adjustment button 86 coarsely adjusts the driving force F, and the adjustment pusher 85 plays a role of finely adjusting the driving force F.
  • a JU module mounting hole 98 for accommodating a jack-up module (hereinafter referred to as “JU module”) 97 is provided on the side surface of the outer ring 52 adjacent to the displacement module mounting hole 83. Is formed.
  • the JU module 97 consists of a jack-up rod (hereinafter referred to as “JU rod”) 99 and a jack-up housing (hereinafter referred to as “JU housing”) 1 00 and a position adjusting screw 101.
  • the JU rod 99 is slidably inserted into the JU module mounting hole 98 via a plurality of rings 102. By the o-ring 102, the airtightness inside the frame member 41 is maintained.
  • the tip of the JU rod 99 has a spherical shape, and when the JU rod 99 is moved toward the lever 54, the tip of the JU rod 99 contacts the side surface of the lever 54.
  • the JU rod 99 is provided with a screw hole 103 from the proximal end side along the axis thereof.
  • a rotation stopping portion 104 which is engaged with the inner peripheral surface of the JU module mounting hole 98 to prevent the rotation of the JU rod 99.
  • the JU housing 100 includes a holding plate 105 for holding the position adjusting screw 101 and a stop plate 106 for preventing the position adjusting screw 101 from dropping off.
  • a stepped accommodation hole 107 is formed at the center of the holding plate 105.
  • the position adjusting screw 101 is rotatably inserted into the holding plate 105 such that the head portion 101a is housed in the step portion 108 of the housing hole 107.
  • a wrench hole 101b into which a jig such as a hexagon wrench is engaged is recessed in the head 101a of the position adjusting screw 101.
  • An opening 110 is provided through the center of the stopper plate 106.
  • the stopper plate 106 and the holding plate 105 are joined and fixed to the frame member 41 by bolts 109.
  • the jig can be inserted into the wrench hole 101b through the opening 110.
  • the diameter of the opening 110 is smaller than the diameter of the head 101a of the position adjusting screw 101, and the stopper plate 106 is fixed to the frame member 41 in a state of being joined to the holding plate 105, so that the position adjusting screw 101 is not dropped. Will be blocked.
  • the frame member 41 is provided with a fastening portion 40 used for joining with another frame member 41 that is in P-contact, and the fastening portion 40 of the adjacent frame member 41 is provided.
  • a hollow O-ring 81a interposed therebetween is provided. Therefore, the airtightness between the laminated frame members 41 can be improved.
  • the hollow ring 81a is arranged along a circle centered on the optical axis AX of the optical element 37. Therefore, high airtightness can be maintained over the entire circumference of the frame member 41.
  • the displacement module 82 for applying a displacement to the optical element 37 is accommodated in the displacement module mounting hole 83 formed in the frame member 41, and the displacement module mounting hole 83 It is movable along the longitudinal direction. Therefore, the opening diameter of the displacement module mounting hole 83 can be reduced, and the airtightness of the frame member 41 can be ensured by the small O-ring 88.
  • the displacement module 82 has a displacement rod 84, an adjustment button 86, and an adjustment pusher 85 that are arranged side by side in the longitudinal direction of the displacement module mounting hole 83. You. When the adjustment button 86 and the adjustment pusher 85 are removed from the displacement module mounting hole 83, the displacement rod 84 is retained in the displacement module mounting hole 83. Thus, since the displacement rod 84 is placed in the displacement module mounting hole 83, gas does not flow inside and outside the frame member 41 through the displacement module mounting hole 83. Therefore, for example, even when the adjustment button 86 and the adjustment pusher 85 are removed for replacement in the position adjustment of the optical element 37, the airtightness inside the frame member 41 can be maintained.
  • the O-ring 88, 90 force is disposed between the displacement rod 84 retained in the displacement module mounting hole 83 and the inner peripheral surface of the displacement module mounting hole 83. Have been. For this reason, even if the adjustment button 86 and the adjustment washer 85 are removed for replacement, the airtightness inside the frame member 41 can be reliably maintained.
  • the displacement module 82 has the adjustment button 86 for roughly adjusting the displacement of the optical element 37 and the adjustment pusher 85 for finely adjusting the displacement of the optical element 37. I have. Therefore, the position of the optical element 37 in the frame member 41 can be finely adjusted using the adjustment button 86 and the adjustment pusher 85.
  • the displacement module 82 is housed inside the displacement rod housing 89 via the O-ring 90, and the displacement rod housing 89 is framed via the O-ring 88. It is attached to member 41. ⁇ Due to the presence of the ring 90, the displacement button 84 is displaced by replacing the adjustment button 86 and the adjustment pusher 85 while maintaining the airtightness of the inside of the frame member 41. Can be done. Further, even if the displacement rod 84 is displaced, the O-ring 88 does not slide, so that the durability of the ring 88 can be improved.
  • the hollow ring 81a has a hollow structure that is closely adhered over the entire periphery of the fastening portion 40 and is elastically deformed. Therefore, the adhesion of the hollow ring 81a to the fastening portion 40 of each frame member 41 can be improved. Also, the hollow ring 81a is easily crushed. When stacking a plurality of lens barrel modules 39a, the centering operation of each lens barrel module 39a can be easily performed.
  • the optical element holding device 38 is provided with a biasing spring 77 for returning the lever 54 for displacing the optical element 37 to a predetermined position when the adjustment button 86 and the adjustment pusher 85 are removed. ing. Therefore, when the adjustment button 86 and the adjustment pusher 85 are removed, the lens frame 43 can be disposed at the reference position, and the optical element 37 is stably held.
  • the adjustment pusher 85 and the adjustment button 86 are appropriately selected, the adjustment pusher 85 and the adjustment button 86 are exchanged, and the displacement rod 84 is displaced.
  • a micrometer may be provided in the displacement module 82, and the displacement rod 84 may be displaced by moving the micrometer forward and backward. In this case, the driving force F can be easily adjusted, and the fine adjustment can be easily performed.
  • an actuator 122 such as a piezo element is provided in a displacement module 121 serving as an adjusting member and a displacement mechanism, and the displacement rod 84 is displaced by driving the actuator 122.
  • the attitude of the optical element 37 can be controlled at a remote position, which is convenient.
  • predetermined control based on aberration information obtained during the operation of the exposure apparatus 31, irradiation history of the optical element 37, changes in environmental conditions in which the exposure apparatus 31 is arranged, changes in exposure conditions such as illumination conditions, and the like.
  • the attitude of the optical element 37 can be controlled, and the aberration can be corrected more finely.
  • the exposure accuracy of the exposure apparatus 31 is improved, and Thus, the throughput can be improved by shortening the run time.
  • a fluid pressure actuator or the like may be employed as the actuator.
  • a sensor for detecting the attitude of the optical element 37 may be provided in the optical element holding device 38. In this case, more accurate attitude control of the optical element 37 can be performed.
  • an optical window is provided on the outer peripheral surface of the frame member 41, and the optical element 37 or the lens frame 43 is attached through the optical window. It is preferable to use a sensor of an optical encoder type, a capacitance type, or the like that reads the attached scale with a head disposed outside the lens barrel 39. With this configuration, it is not necessary to dispose the cord connected to the sensor and the substrate of the sensor in the lens barrel 39, and the inside of the lens barrel 39 can be kept clean.
  • the hollow ring 81a is provided so as to be pressed between the fastening portions 40 of the frame member 41 of the lens barrel module 39a to be joined to each other.
  • the hollow ring 81a may be omitted by processing and finishing the joining surface of the fastening portion 40 with high precision.
  • a gasket may be interposed between the joint surfaces of the joints 40, the joint of the joints 40 may be covered with a cover, and an O-ring may be arranged between the cover and the outer peripheral surface of the joint 40. Good.
  • the o-ring interposed between the fastening portions 40 may have a solid structure.
  • the lens frame 43 is omitted, and the first ends of the arms 53al, 53a2, 53bl, 53b2, 53cl, 53c2 are directly connected to the support member 42 via the element-side pivot 58. They may be connected.
  • the O-ring 90 is provided between the outer peripheral surface of the displacement rod 84 and the displacement rod housing 89 and between the outer peripheral surface of the displacement rod housing 89 and the inner peripheral surface of the displacement module mounting hole 83. , 88 are interposed.
  • a magnetic fluid seal may be used instead of the o-rings 90 and 88.
  • the hysteresis element is eliminated, it is particularly effective in a configuration in which the attitude of the optical element 37 is controlled during the operation of the exposure apparatus 31.
  • the displacement rod 84 is accommodated in the displacement rod housing 89.
  • the force accommodated in the displacement module mounting hole 83 of the frame member 41 may be omitted, and the displacement rod 84 may be directly mounted in the displacement module mounting hole 83 without the displacement rod housing 89.
  • the driving force F is applied to the lever 54 by the movement (translational movement) of the displacement rod 84 in the radial direction of the optical element 37.
  • a driving force is applied to the lever 54 by, for example, rotating the displacement rod 84, moving the displacement rod 84 in the optical axis direction or another direction, or rotating the displacement rod 84 in the circumferential direction of the frame member 41. You may.
  • a lens is exemplified as the optical element 37, but the optical element 37 may be another optical element such as a parallel plate, a mirror, a half mirror, or the like.
  • the optical element holding device 38 of the present invention is not limited to the holding structure of the horizontal type optical element 37 in the projection optical system 35 of the exposure apparatus 31 of the above embodiment.
  • the present invention may be embodied in a configuration for holding the optical element in the illumination optical system 33 of the exposure apparatus 31 and a configuration for holding the optical element 37 of the vertical type.
  • the present invention may be embodied in a configuration for holding an optical element in another optical machine, for example, an optical system such as a microscope or an interferometer.
  • a contact exposure apparatus for transferring a mask pattern to a substrate by bringing a mask and a substrate into close contact without using a projection optical system as an exposure apparatus, and a mask pattern for bringing a mask and a substrate close to each other.
  • the present invention can also be applied to an optical system of a proximity exposure apparatus that transfers the light onto a substrate.
  • the projection optical system is not limited to the total refraction type, but may be a reflection refraction type.
  • the exposure apparatus of the present invention is not limited to a reduction exposure type exposure apparatus, and may be, for example, a 1 ⁇ exposure type or an enlargement type exposure apparatus.
  • a transmission reticle is generally used, and as a reticle substrate, quartz glass, fluorine-doped quartz glass, fluorite, magnesium fluoride, Or a crystal is used.
  • a proximity type X-ray exposure apparatus or electron beam exposure apparatus In this case, a transmission type mask (stencil mask, memrene mask) is used, and a silicon wafer is used as a mask substrate.
  • the present invention is also applied to an exposure apparatus used for manufacturing a display including a liquid crystal display element (LCD) and the like, which transfers a device pattern onto a glass plate, which is not limited to an exposure apparatus used for manufacturing a semiconductor element. can do.
  • the present invention is also applicable to an exposure apparatus used for manufacturing a thin-film magnetic head and transferring a device pattern to a ceramic wafer, and an exposure apparatus used for manufacturing an imaging device such as a CCD. .
  • the present invention can be applied to a scanning stepper that transfers a pattern of a mask to a substrate in a state where the mask and the substrate are relatively moved, and sequentially moves the substrate in steps. Further, the present invention can be applied to a step-and-repeat type stepper in which a pattern of a mask is transferred to a substrate while the mask and the substrate are stationary and the substrate is sequentially moved stepwise.
  • the light source of the exposure apparatus in addition to the ArF excimer laser (193 nm) and the F laser (157 nm) described in the above embodiment, for example, g-line (436 nm)
  • Ar laser may be used.
  • a single-wavelength laser beam in the infrared or visible range oscillated from a DFB semiconductor laser or fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and the amplified laser light is amplified.
  • a harmonic converted to ultraviolet light using a nonlinear optical crystal may be used as a light source.
  • the exposure apparatus 31 of the embodiment is manufactured, for example, as follows.
  • the optical element 37 such as a plurality of lenses or mirrors constituting the illumination optical system 33 and the projection optical system 35 is held by the optical element holding device 38 of the embodiment or each of the modified examples.
  • the illumination optical system 33 and the projection optical system 35 are incorporated in the main body of the exposure device 31 to perform optical adjustment.
  • a wafer stage 36 including a reticle stage 34 in the case of a scan type exposure apparatus
  • wiring is connected to the main body of the exposure apparatus 31, and wiring is connected.
  • comprehensive adjustment electrical adjustment, operation confirmation, etc.
  • Each component constituting the optical element holding device 38 is processed by ultrasonic cleaning with processing oil and metal. It is assembled after removing impurities such as substances. It is desirable that the manufacture of the exposure apparatus 31 be performed in a clean room in which the temperature, humidity and pressure are controlled and the cleanliness is adjusted.
  • fluorite, quartz, or the like is used as the glass material in the above embodiment
  • lithium fluoride, magnesium fluoride, strontium fluoride, lithium-calcium-aluminum-fluoride, and lithium-strontium are used.
  • Alluminum-fluoride crystal, zirconium-barium-lanthanum-aluminum fluoride glass, fluorine-doped quartz glass, quartz glass doped with hydrogen in addition to fluorine, quartz containing OH groups Use improved quartz such as glass and quartz glass containing OH groups in addition to fluorine.
  • FIG. 10 is a flowchart illustrating an example of manufacturing a device (eg, a semiconductor element such as an IC or an LSI, a liquid crystal display element, an imaging element (eg, a CCD), a thin-film magnetic head, a micromachine, etc.).
  • a device eg, a semiconductor element such as an IC or an LSI, a liquid crystal display element, an imaging element (eg, a CCD), a thin-film magnetic head, a micromachine, etc.
  • step S201 design step
  • a function and performance design of a device for example, a circuit design of a semiconductor device
  • a pattern design for realizing the function is performed. I do.
  • step S202 mask manufacturing step
  • a mask such as reticle Rt
  • step S203 substrate manufacturing step
  • a substrate wafer W when a silicon material is used
  • a material such as silicon or a glass plate.
  • step S204 substrate processing step
  • step S201 to S203 substrate processing step
  • step S205 device assembly step
  • step S205 includes a plurality of steps such as a dicing step, a bonding step, and a packaging step (such as chip encapsulation) as necessary.
  • step S206 inspection step
  • inspections such as an operation confirmation test and a durability test of the device manufactured in step S205 are performed. After these steps, Is completed and shipped.
  • FIG. 11 is a flowchart showing details of an example of step S204 in FIG. 10 in the case of a semiconductor device.
  • step S211 oxidation step
  • step S212 CVD step
  • step S213 electrode formation step
  • step S214 ion implantation step
  • ions are implanted into the wafer W.
  • step S215 resist formation step
  • step S216 exposure step
  • step S216 exposure step
  • step S217 image step
  • step S218 etching step
  • the above-described exposure apparatus 31 is used in the exposure step (step S216), and the resolution can be improved by the exposure light EL in the vacuum ultraviolet region, and the exposure amount can be controlled. Can be performed with high accuracy. Therefore, as a result, highly integrated devices with a minimum line width of about 0.1 ⁇ m can be produced with good yield.

Abstract

An optical element holding apparatus capable of finely adjusting the attitude of an optical element and where the inside air-tightness can be maintained high. The optical element holding device has a frame member (41) and a lens frame body provided inside the frame member and holding an optical element. A displacement module (82) provided on the frame member adjusts the position of the optical element through the lens frame body. O-rings (88, 90) are arranged between the displacement module and the frame member.

Description

明 細 書  Specification
光学素子保持装置、鏡筒、露光装置、及びデバイスの製造方法 技術分野  Optical element holding device, lens barrel, exposure device, and device manufacturing method
[0001] 本発明は、例えば半導体素子、液晶表示素子、撮像素子、薄膜磁気ヘッド等のデ バイス、あるいはレチクル、フォトマスク等のマスクの製造プロセスにおけるリソグラフィ 工程で使用される露光装置の光学素子を保持する光学素子保持装置に関する。ま た、本発明は、その光学素子保持装置を備えた鏡筒及び露光装置に関する。さらに 、本発明は、その露光装置を用いたデバイスの製造方法に関する。  The present invention relates to an optical device of an exposure apparatus used in a lithography step in a process of manufacturing a device such as a semiconductor device, a liquid crystal display device, an imaging device, a thin film magnetic head, or a mask such as a reticle or a photomask. The present invention relates to an optical element holding device for holding. Further, the present invention relates to a lens barrel and an exposure apparatus provided with the optical element holding device. Further, the present invention relates to a device manufacturing method using the exposure apparatus.
背景技術  Background art
[0002] 例えば、特許文献 1に示すように、光学素子を保持するレンズ枠体と、そのレンズ枠 体を、等間隔で配置されたフレクシャ部材を介して支持する枠体とを備える光学素子 保持装置が知られている。フレクシャ部材は、レンズ枠体に接続される接続ブロックと 、接続ブロックを支持し、かつ枠体に固定されるフレタシャ固定部とを備える。このフ レクシャ部材によって光学素子は、光学素子の略中心を原点とする極座標系内で、 光学素子の径方向、周方向、光軸方向の各軸に沿った移動及び回転が可能となる。 すなわち、光学素子は、 6つの運動自由度が確保された状態、つまりキネマチックに 保持されている。  [0002] For example, as shown in Patent Document 1, an optical element holding device including a lens frame holding an optical element and a frame supporting the lens frame via flexure members arranged at equal intervals. Devices are known. The flexure member includes a connection block connected to the lens frame, and a flexure fixing portion that supports the connection block and is fixed to the frame. The flexure member enables the optical element to move and rotate along the radial, circumferential, and optical axis directions of the optical element in a polar coordinate system having the origin substantially at the center of the optical element. That is, the optical element is held in a state where six degrees of freedom of movement are secured, that is, kinematically.
[0003] ところで、近年における半導体素子の著しい高度集積化に伴って、配線のパターン 力 Sますます微細化してきている。このため、特に半導体装置製造用の露光装置では 、波面収差及びディストーションの極めて少ない投影光学系が要求されるようになつ てきており、鏡筒の内部に収容される各光学素子の相対位置を細力べ制御する必要 力 Sある。  [0003] By the way, with the recent remarkable high integration of semiconductor elements, the wiring pattern power S has been increasingly miniaturized. For this reason, especially in an exposure apparatus for manufacturing a semiconductor device, a projection optical system with extremely low wavefront aberration and distortion has been required, and the relative position of each optical element housed inside the lens barrel has been narrowed. It is necessary to control the force.
[0004] 200nm以下の極めて短波長の露光光を使用するような場合には、その露光光が 通過する鏡筒内に、例えば水又は酸素などの吸光物質が存在すると、露光光が大き く減衰される。露光装置内には、例えば各種電動機器への給電及びセンサとの間で の信号通信のために、被覆線が使用されている。これらの被覆線からは極微量の有 機物質が徐々に揮散しており、この有機物質は、汚染物質となり得る。 [0005] このため、鏡筒の内部のガスを窒素又は希ガス等の不活性ガスで置換する必要が ある。し力しながら、鏡筒には、光学素子の位置調整等のため開口部が多く形成され てレ、ることがある。また、 1つまたは複数の光学素子を保持する多数の枠体を積層し て、鏡筒を構成する場合には、各枠体の接合部分を介して、鏡筒外の気体が鏡筒内 に侵入する可能性があった。 [0004] In the case of using exposure light having an extremely short wavelength of 200 nm or less, if a light-absorbing substance such as water or oxygen is present in a lens barrel through which the exposure light passes, the exposure light is greatly attenuated. Is done. In the exposure apparatus, for example, a covered wire is used for power supply to various electric devices and signal communication with a sensor. Trace amounts of organic substances are gradually volatilized from these coated wires, and these organic substances can be pollutants. [0005] For this reason, it is necessary to replace the gas inside the lens barrel with an inert gas such as nitrogen or a rare gas. While applying force, the lens barrel may have many openings for adjusting the position of the optical element and the like. In addition, when a large number of frames holding one or more optical elements are stacked to form a lens barrel, gas outside the lens barrel enters the lens barrel via a joint portion of each frame. There was a possibility of intrusion.
特許文献 1 :米国特許出願公開第 2002Z0163741号明細書  Patent Document 1: US Patent Application Publication No. 2002Z0163741
発明の開示  Disclosure of the invention
[0006] 本発明は、このような従来の技術に存在する問題点に着目してなされたものである 。その目的としては、光学素子の姿勢を細かく調整しつつ、内部の気密性を高く保つ ことのできる光学素子保持装置及び鏡筒を提供することにある。  [0006] The present invention has been made by focusing on the problems existing in such conventional techniques. An object of the present invention is to provide an optical element holding device and a lens barrel that can maintain a high airtightness while finely adjusting the attitude of the optical element.
[0007] また、本発明のその他の目的は、露光精度が向上された露光装置を提供すること にある。  Another object of the present invention is to provide an exposure apparatus with improved exposure accuracy.
さらに、本発明のその上の目的は、高集積度のデバイスの歩留まりを向上すること のできるデバイスの製造方法を提供することにある。  A further object of the present invention is to provide a device manufacturing method capable of improving the yield of highly integrated devices.
[0008] 本発明の第 1の態様は、枠部材と、枠部材の内側に設けられ、光学素子を保持す る保持部材とを備える光学素子保持装置において、枠部材に設けられ、光学素子の 位置を保持部材を介して調整する調整部材と、調整部材と枠部材との間に設けられ た第 1のシール部材とを備える光学素子保持装置を特徴とする。  [0008] A first aspect of the present invention is directed to an optical element holding device including a frame member and a holding member provided inside the frame member and holding the optical element. An optical element holding device including an adjustment member for adjusting a position via a holding member, and a first seal member provided between the adjustment member and the frame member is characterized.
[0009] 本発明の第 1の態様において、枠部材は、他の枠部材と積層され、他の枠部材に 対して接合する接合部を有し、枠部材は、他の枠部材と接合部との間に設けられた 第 2のシール部材を備えてもよい。さらに、第 2のシール部材カ 光学素子の光軸を 中心とする円に沿って配置される Oリングを含んでもよい。さらに、〇リングが、接合部 に密着され、弾性変形可能な中空構造を有してもよい。  [0009] In the first aspect of the present invention, the frame member has a joint portion laminated with another frame member and joined to the other frame member, and the frame member has a joint portion with the other frame member. And a second seal member provided between them. Further, the second seal member may include an O-ring disposed along a circle centered on the optical axis of the optical element. Further, the o-ring may have a hollow structure that is closely adhered to the joint and is elastically deformable.
[0010] 本発明の第 1の態様において、枠部材は、開口部を有し、調整部材は、光学素子 の位置を変位させる変位機構を有し、変位機構は、枠部材の開口部内に、変位可能 に収容されてもよい。さらに、変位機構は、開口部内に並んで配置される第 1の調整 部品と第 2の調整部品とを有し、第 1の調整部品を開口部から取り外した際、第 2の 調整部品が開口部内に留置されてもよい。さらに、第 1の調整部品は、異なる複数の 第 1の調整部品の一つであり、第 1の調整部品を交換することにより、光学素子の変 位量が調整されてもよレ、。さらに、第 1のシール部材は、第 2の調整部品と、開口部の 内周面との間に配置されてもよい。さらに、第 1の調整部品は、光学素子の変位量を 粗調整する粗調整部品と、光学素子の変位量を微調整する微調整部品とを含んでも よい。 [0010] In the first aspect of the present invention, the frame member has an opening, the adjustment member has a displacement mechanism for displacing the position of the optical element, and the displacement mechanism is provided in the opening of the frame member. It may be accommodated so as to be displaceable. Further, the displacement mechanism has a first adjustment component and a second adjustment component arranged side by side in the opening, and when the first adjustment component is removed from the opening, the second adjustment component opens. It may be left in the department. In addition, the first adjustment component is It is one of the first adjustment components, and the displacement of the optical element may be adjusted by replacing the first adjustment component. Further, the first seal member may be arranged between the second adjustment component and the inner peripheral surface of the opening. Furthermore, the first adjustment component may include a coarse adjustment component for roughly adjusting the displacement of the optical element and a fine adjustment component for finely adjusting the displacement of the optical element.
[0011] 本発明の第 1の態様において、光学素子保持装置は、調整部材を収容する筒状体 を備え、第 1のシール部材は、調整部材と筒状体との間に設けられたシール部を含 んでもよい。  [0011] In the first aspect of the present invention, the optical element holding device includes a tubular body that accommodates the adjusting member, and the first seal member is a seal provided between the adjusting member and the tubular body. May be included.
本発明の第 1の態様において、光学素子保持装置は、変位機構の少なくとも一部 を取り外したとき、保持部材を所定位置に復帰させる付勢部材を備えてもよい。  In the first aspect of the present invention, the optical element holding device may include an urging member that returns the holding member to a predetermined position when at least a part of the displacement mechanism is removed.
[0012] 本発明の第 2の態様は、少なくとも 1つの光学素子を収容する鏡筒において、光学 素子の少なくとも 1つを保持する本発明の第 1の態様の光学素子保持装置を備える 鏡筒を特徴とする。  [0012] A second aspect of the present invention is a lens barrel that accommodates at least one optical element and includes the optical element holding device according to the first aspect of the present invention that holds at least one of the optical elements. Features.
[0013] 本発明の第 2の態様において、光学素子は、マスク上に形成された所定のパターン の像を基板上に投影する投影光学系を構成する複数の光学素子の一つであっても よい。  In the second aspect of the present invention, the optical element may be one of a plurality of optical elements constituting a projection optical system that projects an image of a predetermined pattern formed on a mask onto a substrate. Good.
本発明の第 3の態様は、マスク上に形成された所定のパターンの像を基板上に転 写する露光装置にぉレ、て、所定のパターンの像を基板上に転写するための本発明 の第 2の態様の鏡筒を備える露光装置を特徴とする。  According to a third aspect of the present invention, there is provided an exposure apparatus for transferring an image of a predetermined pattern formed on a mask onto a substrate to transfer the image of the predetermined pattern onto the substrate. An exposure apparatus including the lens barrel according to the second aspect of the present invention is characterized.
[0014] 本発明の第 4の態様は、本発明の第 3の態様の露光装置を用いて露光を行うリソグ ラフイエ程を備えるデバイスの製造方法を特徴とする。 [0014] A fourth aspect of the present invention is characterized by a method for manufacturing a device having a lithographic process for performing exposure using the exposure apparatus of the third aspect of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の露光装置の一実施形態を示す概略構成図。  FIG. 1 is a schematic configuration diagram showing one embodiment of an exposure apparatus of the present invention.
[図 2]図 1の光学素子保持装置を示す斜視図。  FIG. 2 is a perspective view showing the optical element holding device of FIG. 1.
[図 3]図 1の光学素子保持装置を示す平面図。  FIG. 3 is a plan view showing the optical element holding device of FIG. 1.
[図 4]図 3の 4一 4線に沿う断面図。  FIG. 4 is a cross-sectional view taken along line 4-4 in FIG.
[図 5]図 2の枠部材の一対のアームを中心に示す拡大平面図。  FIG. 5 is an enlarged plan view mainly showing a pair of arms of the frame member of FIG. 2.
[図 6]図 2の枠部材の一対のアームをさらに拡大して示す平面図。 [図 7]図 5の 7_7線に沿う断面図。 FIG. 6 is a plan view showing a further enlarged pair of arms of the frame member of FIG. 2. FIG. 7 is a sectional view taken along line 7_7 of FIG.
[図 8]図 2の枠部材における光学素子の光軸との直交平面での断面図。  FIG. 8 is a cross-sectional view of the frame member of FIG. 2 on a plane orthogonal to the optical axis of the optical element.
[図 9]変更例の変位モジュールを示す断面図。  FIG. 9 is a cross-sectional view showing a displacement module according to a modification.
[図 10]デバイスの製造例のフローチャート。  FIG. 10 is a flowchart of a device manufacturing example.
[図 11]半導体デバイスの場合における図 10の基板処理に関する詳細なフローチヤ ート。  [FIG. 11] A detailed flowchart regarding the substrate processing of FIG. 10 in the case of a semiconductor device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に、本発明の露光装置及び鏡筒、光学素子保持装置を、半導体素子製造用 の露光装置及びその投影光学系を収容する鏡筒、そして投影光学系の一部のレン ズを保持する光学素子保持装置に具体化した一実施形態について図 1一図 8に基 づいて説明する。 Hereinafter, an exposure apparatus, a lens barrel, and an optical element holding device according to the present invention are described as an exposure apparatus for manufacturing a semiconductor element, a lens barrel that houses the projection optical system thereof, and a lens of a part of the projection optical system. One embodiment embodied in the optical element holding device for holding will be described with reference to FIGS.
[0017] 図 1は、露光装置 31の概略構成を、その投影光学系 35を中心として示している。  FIG. 1 shows a schematic configuration of the exposure apparatus 31 with its projection optical system 35 at the center.
図 1に示すように、この実施形態の露光装置 31は、光源 32と、照明光学系 33と、マ スクとしてのレチクル Rtを保持するレチクルステージ 34と、投影光学系 35と、基板と してのウェハ Wを保持するウェハステージ 36とを備える。  As shown in FIG. 1, an exposure apparatus 31 of this embodiment includes a light source 32, an illumination optical system 33, a reticle stage 34 for holding a reticle Rt as a mask, a projection optical system 35, and a substrate as a substrate. And a wafer stage 36 for holding the wafer W.
[0018] 光源 32は、例えば波長 193nmの ArFエキシマレーザ、あるいは波長 157nmの F  The light source 32 is, for example, an ArF excimer laser having a wavelength of 193 nm, or an F excimer laser having a wavelength of 157 nm.
2 レーザを発振する。照明光学系 33は、図示しないフライアイレンズ及びロッドレンズ 等のオプティカルインテグレータ、リレーレンズ、コンデンサレンズ等の各種レンズ系 及び開口絞りを含む。光源 32から出射される露光光 ELが、この照明光学系 33を通 過することにより、レチクル Rt上のパターンを均一に照明するように調整される。  2 Start the laser. The illumination optical system 33 includes optical integrators (not shown) such as a fly-eye lens and a rod lens, various lens systems such as a relay lens and a condenser lens, and an aperture stop. The exposure light EL emitted from the light source 32 passes through the illumination optical system 33, and is adjusted so as to uniformly illuminate the pattern on the reticle Rt.
[0019] レチクルステージ 34は、照明光学系 33と、後述する投影光学系 35との間において 、そのレチクル Rtの載置面が投影光学系 35の光軸方向とほぼ直交するように配置さ れている。投影光学系 35は、互いの光軸が一致するように配列された複数のレンズ 等の光学素子 37を含む。この投影光学系 35は、各光学素子 37が光学素子保持装 置 38によりほぼ水平(いわゆる横置きタイプ)に保持された状態で、鏡筒 39内に収容 されている。この鏡筒 39は、複数の鏡筒モジュール 39aが積層された分割鏡筒構造 を有している。 The reticle stage 34 is arranged between the illumination optical system 33 and a projection optical system 35 described later such that the mounting surface of the reticle Rt is substantially orthogonal to the optical axis direction of the projection optical system 35. ing. The projection optical system 35 includes an optical element 37 such as a plurality of lenses arranged so that their optical axes coincide with each other. The projection optical system 35 is housed in a lens barrel 39 with each optical element 37 held substantially horizontally (so-called horizontal type) by an optical element holding device 38. The lens barrel 39 has a divided lens barrel structure in which a plurality of lens barrel modules 39a are stacked.
[0020] ウェハステージ 36は、投影光学系 35の像面側(露光光 ELの射出側)において、ゥ ェハ Wの載置面が投影光学系 35の光軸方向と交差するように配置されている。露光 光 ELにて照明されたレチクル Rt上のパターンの像は、投影光学系 35を通して所定 の縮小倍率に縮小され、ウェハステージ 36上のウェハ Wに転写される。 The wafer stage 36 is located on the image plane side of the projection optical system 35 (the exit side of the exposure light EL). The mounting surface of the wafer W is disposed so as to intersect with the optical axis direction of the projection optical system 35. The image of the pattern on the reticle Rt illuminated with the exposure light EL is reduced to a predetermined reduction magnification through the projection optical system 35 and transferred to the wafer W on the wafer stage 36.
[0021] 次に、光学素子保持装置 38の詳細構成について説明する。  Next, a detailed configuration of the optical element holding device 38 will be described.
図 2は、光学素子保持装置 38を示す斜視図であり、図 3は、光学素子保持装置 38 の平面図であり、図 4は、図 3の 4一 4線における断面図である。光学素子 37は、合成 石英、蛍石等の所定以上の破壊強度を有する硝材からなり、光学素子 37の周縁部 には、図 4に示すように、フランジ 37aが形成されている。図 2に示すように、光学素子 保持装置 38は、積層される他の鏡筒モジュール 39aとの接合部としての役割を有す る締結部 40を有する枠部材 41と、支持部材 42を介して光学素子 37を保持する保持 部材としての役割を有するレンズ枠体 43とを備える。  FIG. 2 is a perspective view showing the optical element holding device 38, FIG. 3 is a plan view of the optical element holding device 38, and FIG. 4 is a sectional view taken along line 4-14 in FIG. The optical element 37 is made of a glass material such as synthetic quartz or fluorite having a breaking strength of a predetermined level or more, and a flange 37a is formed on the periphery of the optical element 37 as shown in FIG. As shown in FIG. 2, the optical element holding device 38 is provided via a frame member 41 having a fastening portion 40 serving as a joint portion with another lens barrel module 39a to be laminated, and a support member 42. A lens frame 43 serving as a holding member for holding the optical element 37;
[0022] 図 2及び図 3に示すように、枠部材 41とレンズ枠体 43とは、ともに略円環状に形成 されている。図 4に示すように、レンズ枠体 43は、枠部材 41の内部(後述するインナリ ング 51)に取り付けられ、その枠部材 41の内周面上に形成された段部 44に対し複 数のボルト 45により固定されている。図 3に示すように、そのレンズ枠体 43上には、 等角度間隔をおいて 3つの支持部材 42が設けられている。  As shown in FIGS. 2 and 3, the frame member 41 and the lens frame 43 are both formed in a substantially annular shape. As shown in FIG. 4, the lens frame 43 is attached to the inside of a frame member 41 (an inner ring 51 to be described later), and a plurality of step portions 44 formed on the inner peripheral surface of the frame member 41 are provided. It is fixed by bolt 45. As shown in FIG. 3, on the lens frame 43, three support members 42 are provided at equal angular intervals.
[0023] この支持部材 42は、光学素子 37のフランジ 37aを挟持する基台部材 46 (図 4参照 )と、クランプ部材 47とを含む。この基台部材 46は、支持部材 42の外部の装置から 支持部材 42に伝達され、光学素子 37の光学面の状態に影響を与える要因(例えば 露光装置 31の本体、枠部材 41の締結部 40等の微小な表面荒れ、表面うねり等)を 吸収するためのフレタシャ構造を有する。このため、光学素子 37を支持部材 42を介 してレンズ枠体 43に保持した状態では、そのレンズ枠体 43を枠部材 41を介して外 部の装置に装着したとしても光学素子 37の光学面が良好な状態に保たれる。  The support member 42 includes a base member 46 (see FIG. 4) for holding the flange 37a of the optical element 37, and a clamp member 47. The base member 46 is transmitted to the support member 42 from a device outside the support member 42 and is a factor that affects the state of the optical surface of the optical element 37 (for example, the main body of the exposure device 31, Etc.), which has a fretting structure to absorb minute surface roughness and surface undulations. For this reason, in a state where the optical element 37 is held on the lens frame 43 via the support member 42, even if the lens frame 43 is mounted on an external device via the frame member 41, the optical element 37 The surface is kept in good condition.
[0024] 枠咅 B材 41には、インナリング 51と、ァウタリング 52と、アーム 53al, 53a2, 53bl,  [0024] Frame B material 41 has inner ring 51, outer ring 52, arms 53al, 53a2, 53bl,
53b2, 53cl , 53c2と、レノ一 54と、支持リンク 55と力形成されてレヽる。アーム 53al , 53a2, 53bl , 53b2, 53cl , 53c2とレノ一 54とは、インナリング 51の姿勢を調整 することにより、光学素子 37の姿勢を調節する姿勢調整機構 50を形成している。こ れらインナリング 51、ァウタリング 52、アーム 53al , 53a2, 53bl , 53b2, 53cl , 53 c2、レバー 54及び支持リンク 55は、ワイヤカット及び放電加工により一つの構造体か らなる枠部材 41に形成されている。インナリング 51とァウタリング 52とは、アーム 53a 1, 53a2, 53bl , 53b2, 53cl , 53c2とレノ一 54と支持リンク 55とを介して、ネ目対移 動可能に連結されている。 53b2, 53cl, 53c2, Reno 54, and the support link 55 are formed by force. The arms 53al, 53a2, 53bl, 53b2, 53cl, 53c2 and the reno 54 form a posture adjusting mechanism 50 that adjusts the posture of the optical element 37 by adjusting the posture of the inner ring 51. These inner rings 51, outer rings 52, arms 53al, 53a2, 53bl, 53b2, 53cl, 53 The c2, the lever 54, and the support link 55 are formed on the frame member 41 made of one structure by wire cutting and electric discharge machining. The inner ring 51 and the outer ring 52 are connected to each other via arms 53a1, 53a2, 53bl, 53b2, 53cl, 53c2, a reno 54, and a support link 55 so as to be able to move in a pair.
[0025] 図 5は、枠部材 41における一対のアーム 53al , 53a2とその周辺を示す拡大平面 図である。図 6は、そのアーム 53alをさらに拡大して示した平面図であり、図 7は、図 5の 7—7線における断面図である。  FIG. 5 is an enlarged plan view showing a pair of arms 53al and 53a2 of the frame member 41 and the periphery thereof. FIG. 6 is a plan view showing the arm 53al further enlarged, and FIG. 7 is a sectional view taken along line 7-7 in FIG.
[0026] 図 3【こ示すよう ίこ、枠咅材 41 ίこ ίま、 6 のアーム 53al , 53a2, 53bl , 53b2, 53c 1 , 53c2力 3つの対をなすように設けられている。アーム 53alとアーム 53a2とが第 1のリンク機構 53aを構成し、アーム 53blとアーム 53b2とが第 2のリンク機構 53bを 構成し、アーム 53clとアーム 53c2とが第 3のリンク機構 53cを構成している。これら 3 個のリンク機構 53a, 53b, 53cは、光学素子 37の光軸 AXを中心とする円の円周上 におレ、て等角度間隔をおレ、て配置されてレ、る。  [0026] As shown in FIG. 3, the frame, the frame member 41, and the six arms 53al, 53a2, 53bl, 53b2, 53c1, 53c2 are provided so as to form three pairs. The arm 53al and the arm 53a2 form a first link mechanism 53a, the arm 53bl and the arm 53b2 form a second link mechanism 53b, and the arm 53cl and the arm 53c2 form a third link mechanism 53c. ing. These three link mechanisms 53a, 53b, 53c are arranged at equal angular intervals on the circumference of a circle centered on the optical axis AX of the optical element 37.
[0027] なお、第 1一第 3のリンク機構 53a, 53b, 53cは同様の構成をなしているため、以下 、第 1のリンク機構 53aを例にとって説明する。図 5及び図 6に示すように、各アーム 5 3al , 53a2の第 1端部には、一対の貫通孔 56が形成され、その貫通孔 56から一対 のスリット 57が延びている。一対の貫通孔 56と一対のスリット 57は素子側ピボット 58 を形成する。各アーム 53al, 53a2の第 1端部は、素子側ピボット 58を介してインナリ ング 51に対して回転可能に連結されている。各アーム 53al, 53a2の第 2端部には 、一対の貫通孔 56が形成され、その一対の貫通孔 56と、一対の貫通孔 56と連通す る一対のスリット 57とにより枠佃 Jピボット 59力 S形成される。各アーム 53al , 53a2の第 2端部は、枠側ピボット 59を介してレバー 54に対して回転可能に連結されている。  Since the first to third link mechanisms 53a, 53b, 53c have the same configuration, the first link mechanism 53a will be described below as an example. As shown in FIGS. 5 and 6, a pair of through holes 56 are formed at the first end of each of the arms 53al and 53a2, and a pair of slits 57 extend from the through holes 56. The pair of through holes 56 and the pair of slits 57 form an element-side pivot 58. The first ends of the arms 53al and 53a2 are rotatably connected to the inner ring 51 via element-side pivots 58. At the second end of each arm 53al, 53a2, a pair of through-holes 56 is formed, and the pair of through-holes 56 and a pair of slits 57 communicating with the pair of through-holes 56 form a frame joint J pivot 59. Force S formed. The second ends of the arms 53al and 53a2 are rotatably connected to the lever 54 via a frame-side pivot 59.
[0028] 図 5の 7—7線に沿った断面図である図 7に示すように、枠部材 41における光学素子 37の光軸 AXに対して略直交する第 1面 60には、素子側ピボット 58と対応して、放 電力卩ェにより掘り込まれた小開口凹部 61aが形成されている。また、その第 1面 60に は、枠側ピボット 59と対応して、小開口凹部 61aより大きな開口部を有する大開口凹 部 62aが形成されている。枠部材 41において、第 1面 60と平行で第 1面 60と反対側 の第 2面 63には、素子側ピボット 58と対応して、第 1面 60に形成された大開口凹部 6 2aと同様のサイズの大開口凹部 62bが形成されている。また、その第 2面 63には、枠 側ピボット 59と対応して、第 1面 60に形成された小開口凹部 61aと同様のサイズの小 開口凹部 6 lbが形成されている。 As shown in FIG. 7, which is a cross-sectional view taken along line 7-7 in FIG. 5, a first surface 60 of the frame member 41, which is substantially orthogonal to the optical axis AX of the optical element 37, has an element side Corresponding to the pivot 58, a small opening recessed portion 61a dug by a power discharger is formed. The first surface 60 is formed with a large opening recess 62a having an opening larger than the small opening recess 61a, corresponding to the frame-side pivot 59. In the frame member 41, the second surface 63 parallel to the first surface 60 and opposite to the first surface 60 has a large opening recess 6 formed in the first surface 60 corresponding to the element-side pivot 58. A large opening recess 62b having the same size as 2a is formed. In addition, a small opening recess 6 lb having the same size as the small opening recess 61 a formed in the first surface 60 is formed on the second surface 63 in correspondence with the frame-side pivot 59.
[0029] 小開口凹部 61a, 61bは、第 1面 60または第 2面 63から浅く掘り込まれているのに 対し、大開口凹部 62a, 62bは、第 2面 63または第 1面 60から深く掘り込まれている。 従って、素子側ピボット 58は、第 1面 60の近傍に首部として形成され、枠側ピボット 5 9は、第 2面 63の近傍に首部として形成されている。このため、各アーム 53al , 53a2 は、枠部材 41の厚さの範囲内において、光学素子 37の光軸 AXに対して傾斜した 状態で配置された剛体と等価である。  [0029] The small opening recesses 61a and 61b are dug shallowly from the first surface 60 or the second surface 63, whereas the large opening recesses 62a and 62b are deeper from the second surface 63 or the first surface 60. It is dug. Therefore, the element-side pivot 58 is formed as a neck near the first surface 60, and the frame-side pivot 59 is formed as a neck near the second surface 63. For this reason, each of the arms 53al and 53a2 is equivalent to a rigid body that is arranged in a state of being inclined with respect to the optical axis AX of the optical element 37 within the range of the thickness of the frame member 41.
[0030] そして、各アーム 53al , 53a2の剛体力 光学素子 37の光軸 AXを中心とする円の 接線を含みかつ光軸 AXに平行な面に対して実質的に平行な接平面内に配置され ている。また、アーム 53alの剛体とアーム 53a2の剛体とは、光学素子 37の光軸 AX を含み、かつ接平面 Ptと直交する放射平面 Pr (つまり光学素子 37の径方向に延び る第 2平面)に対して、略対称に配置されている。  [0030] The rigid force of each of the arms 53al and 53a2 is arranged in a tangential plane that includes a tangent of a circle centered on the optical axis AX of the optical element 37 and that is substantially parallel to a plane parallel to the optical axis AX. It has been. The rigid body of the arm 53al and the rigid body of the arm 53a2 are defined by a radiation plane Pr (that is, a second plane extending in the radial direction of the optical element 37) that includes the optical axis AX of the optical element 37 and is orthogonal to the tangent plane Pt. On the other hand, they are arranged substantially symmetrically.
[0031] 図 3に示すように、レバー 54は、隣接するリンク機構 53a, 53b, 53cの間に配置さ れており、略直方体状をなしている。図 5に示すように、このレバー 54の第 1端部にお ける枠部材 41の内周に近接する部分は、枠側ピボット 59を介して各アーム 53al , 5 3a2の第 2端部に回転可能に連結されている。また、このレバー 54の第 1端部におけ る枠部材 41の外周に近接する部分は、支点ピボット 66を介してァウタリング 52に対 し回転可能に連結されている。この支点ピボット 66は、枠部材 41に形成された一対 の貫通孔 67と、各貫通孔 67から延びる一対のスリット 68とにより形成される。この支 点、ピボット 66は、各アーム 53al , 53a2の枠佃 Jピボット 59と素子ィ則ピボット 58とを結 ぶ直線と直交する直線上に配置されてレ、る。  As shown in FIG. 3, the lever 54 is disposed between the adjacent link mechanisms 53a, 53b, 53c, and has a substantially rectangular parallelepiped shape. As shown in FIG. 5, the portion near the inner periphery of the frame member 41 at the first end of the lever 54 is rotated to the second end of each arm 53al, 53a2 via the frame-side pivot 59. It is connected as possible. A portion of the lever 54 near the outer periphery of the frame member 41 at the first end is rotatably connected to the outer ring 52 via a fulcrum pivot 66. The fulcrum pivot 66 is formed by a pair of through holes 67 formed in the frame member 41 and a pair of slits 68 extending from each through hole 67. This fulcrum, pivot 66, is arranged on a straight line that is orthogonal to the straight line that connects the frame Tsukuda J pivot 59 of each arm 53al, 53a2 and the element rule pivot 58.
[0032] 図 8は、枠部材 41を光学素子 37の光軸 AXに直交する平面で切った断面図である 。図 8に示すように、レバー 54の第 2端部の近傍には、支持リンク 55が連結されてい る。この支持リンク 55は、第 1支持リンク 69と第 2支持リンク 70とを備える。第 1及び第 2支持リンク 69, 70は、枠部材 41に形成された複数対の貫通孔 71と、貫通孔 71か ら延びる複数のスリット 72とにより形成される。 [0033] 第 1支持リンク 69の第 1端部は、一対の貫通孔 71と一対のスリット 72とにより形成さ れる先端側支持ピボット 73を介して、レバー 54の第 2端部のへこみ部分に回転可能 に連結されている。また、第 1支持リンク 69の第 2端部は、一対の貫通孔 71と一対の スリット 72とにより形成される中間支持ピボット 74を介して、第 2支持リンク 70の第 1端 部に回転可能に連結されている。この第 2支持リンク 70は、第 1支持リンク 69に対し、 直角方向に延びるように配置されている。なお、先端側支持ピボット 73と中間支持ピ ボット 74と支点ピボット 66とは、一直線上に並んでいる。 FIG. 8 is a cross-sectional view of the frame member 41 taken along a plane perpendicular to the optical axis AX of the optical element 37. As shown in FIG. 8, a support link 55 is connected near the second end of the lever 54. The support link 55 includes a first support link 69 and a second support link 70. The first and second support links 69, 70 are formed by a plurality of pairs of through holes 71 formed in the frame member 41 and a plurality of slits 72 extending from the through holes 71. [0033] The first end of the first support link 69 is connected to a recessed portion of the second end of the lever 54 via a distal end support pivot 73 formed by a pair of through holes 71 and a pair of slits 72. It is rotatably connected. The second end of the first support link 69 is rotatable to the first end of the second support link 70 via an intermediate support pivot 74 formed by a pair of through holes 71 and a pair of slits 72. It is connected to. The second support link 70 is disposed so as to extend in a direction perpendicular to the first support link 69. Note that the distal-end-side support pivot 73, the intermediate support pivot 74, and the fulcrum pivot 66 are aligned.
[0034] 第 2支持リンク 70の第 2端部は、一対の貫通孔 71と一対のスリット 72とにより形成さ れる基端側支持ピボット 75を介して、枠部材 41に回転可能に連結されている。基端 側支持ピボット 75は、先端側支持ピボット 73及び中間支持ピボット 74に比べて肉厚 に形成されている。  [0034] A second end of the second support link 70 is rotatably connected to the frame member 41 via a base end support pivot 75 formed by a pair of through holes 71 and a pair of slits 72. I have. The base support pivot 75 is formed to be thicker than the distal support pivot 73 and the intermediate support pivot 74.
[0035] 図 3に示すように、枠部材 41の第 1面 60及び第 2面 63上において、レバー 54の第 2端部の近傍には、ばね収容凹部 76が設けられている。このばね収容凹部 76内に おいて、レバー 54の第 2端部をァウタリング 52に向かって付勢する一対の付勢ばね 77力 レバー 54とァウタリング 52との間に掛け渡されている。  As shown in FIG. 3, a spring receiving recess 76 is provided on the first surface 60 and the second surface 63 of the frame member 41 near the second end of the lever 54. In the spring accommodating recess 76, a pair of biasing springs 77 for biasing the second end of the lever 54 toward the outer ring 52 are stretched between the lever 54 and the outer ring 52.
[0036] 図 2に示すように、ァウタリング 52の外周縁から一対の締結部 40が所定間隔をおい て突出している。この締結部 40には、複数のボルト孔 80が穿設されており、このボノレ ト孔 80を利用して、複数の鏡筒モジュール 39aが図示しないボルトにより締結され、 積層される。枠部材 41の第 1面 60における締結部 40の内周部分には、環状溝 81が 形成されている。この環状溝 81には、複数の鏡筒モジュール 39aが積層された状態 で鏡筒 39の内部の気密性を維持するための第 2のシール部材としての中空〇リング 81aが収容される。つまり、中空〇リング 81aは、光学素子 37の光軸 AXを中心とする 円に沿って配置されている。  As shown in FIG. 2, a pair of fastening portions 40 project from the outer peripheral edge of the outer ring 52 at predetermined intervals. A plurality of bolt holes 80 are formed in the fastening portion 40, and a plurality of lens barrel modules 39a are fastened by bolts (not shown) using the bonnet holes 80, and are stacked. An annular groove 81 is formed in an inner peripheral portion of the fastening portion 40 on the first surface 60 of the frame member 41. The annular groove 81 accommodates a hollow ring 81a as a second seal member for maintaining airtightness inside the lens barrel 39 in a state where a plurality of lens barrel modules 39a are stacked. That is, the hollow ring 81a is arranged along a circle centered on the optical axis AX of the optical element 37.
[0037] 図 2に示すように、ァウタリング 52の側面には、付勢ばね 77と対応する位置に、調 整部材及び変位機構を構成する変位モジュール 82を収容するための開口部として の変位モジュール取付孔 83 (図 8参照)が透設されている。図 8に示すように、変位モ ジュール 82は、第 2の調整部品としての変位ロッド 84と、微調整部品としての役割を 有する調整ヮッシャ 85と、粗調整部品としての役割を有する調整ボタン 86と、調整べ ース板 87とを含む。調整ヮッシャ 85と調整ボタン 86は、第 1調整部品を形成する。 As shown in FIG. 2, a displacement module as an opening for accommodating a displacement module 82 constituting an adjustment member and a displacement mechanism is provided on a side surface of the outer ring 52 at a position corresponding to the biasing spring 77. A mounting hole 83 (see FIG. 8) is provided. As shown in FIG. 8, the displacement module 82 includes a displacement rod 84 as a second adjustment component, an adjustment pusher 85 having a role as a fine adjustment component, and an adjustment button 86 having a role as a coarse adjustment component. , Adjust Base plate 87. The adjustment pusher 85 and the adjustment button 86 form a first adjustment component.
[0038] 変位モジュール取付孔 83内には、その外周面上に一対の第 1のシール部材として の Oリング 88が装着された変位ロッドハウジング 89 (筒状体)が揷嵌されている。変位 ロッド 84は、第 1のシール部材及びシール部としての〇リング 90を介して摺動可能に 変位ロッドハウジング 89内に挿入されている。これらの〇リング 88, 90により、枠部材 41の内部の気密性が維持される。変位ロッド 84は、平面状の両端面を有する略円 柱状に形成されている。レバー 54の第 2端部の近傍には、スタッドボルト 91を介して 、球面ボス 92が取付けられており、変位ロッド 84の先端面は、その球面ボス 92に当 接している。 In the displacement module mounting hole 83, a displacement rod housing 89 (tubular body) having a pair of first O-rings 88 mounted thereon is fitted on the outer peripheral surface thereof. The displacement rod 84 is slidably inserted into the displacement rod housing 89 via a first seal member and a ring 90 as a seal portion. By these o-rings 88 and 90, airtightness inside the frame member 41 is maintained. The displacement rod 84 is formed in a substantially cylindrical shape having both ends in a planar shape. Near the second end of the lever 54, a spherical boss 92 is mounted via a stud bolt 91, and the distal end surface of the displacement rod 84 is in contact with the spherical boss 92.
[0039] 調整ベース板 87の中央には、支持ボルト 93がその調整ベース板 87を貫くように螺 着されている。この支持ボルト 93の先端は、調整ヮッシャ 85及び調整ボタン 86に挿 嵌されている。この調整ボタン 86の先端は略球面状に形成されいる。調整ベース板 87は位置決めピン 94により枠部材 41に取着され、調整ボタン 86の先端が変位ロッ ド 84の基端面に当接している。  At the center of the adjustment base plate 87, a support bolt 93 is screwed so as to penetrate the adjustment base plate 87. The tip of the support bolt 93 is inserted into the adjustment pusher 85 and the adjustment button 86. The tip of the adjustment button 86 is formed in a substantially spherical shape. The adjustment base plate 87 is attached to the frame member 41 by positioning pins 94, and the tip of the adjustment button 86 is in contact with the base end surface of the displacement rod 84.
[0040] 1 μ m単位で厚さの異なる複数の調整ヮッシャ 85が用意されてレ、る。また、 0. lm m単位で高さの異なる複数の調整ボタン 86が用意されてレ、る。これら複数の調整ヮッ シャ 85及び複数の調整ボタン 86から変位ロッド 84に所定の変位量を設定可能なも のを適宜選択して、支持ボルト 93の先端に嵌合する。ここで、変位ロッド 84は、変位 モジュール取付孔 83の長手方向に沿って移動可能であり、この変位ロッド 84の移動 によりレバー 54に加えられる変位力を変更することができる。ここで、変位力とは、変 位モジュール 82において、既に装着されている調整ヮッシャ 85及び調整ボタン 86を 別の調整ヮッシャ 85及び調整ボタン 86に交換して変位ロッド 84を移動させたときに 発生する力であり、以降「駆動力 F」とする。調整ボタン 86はその駆動力 Fを粗調整し 、調整ヮッシャ 85はその駆動力 Fを微調整する役割を担ってレ、る。  [0040] A plurality of adjustment washers 85 having different thicknesses in units of 1 µm are prepared. A plurality of adjustment buttons 86 having different heights in units of 0.1 lm are provided. From the plurality of adjustment pushers 85 and the plurality of adjustment buttons 86, those capable of setting a predetermined displacement amount on the displacement rod 84 are appropriately selected and fitted to the tip of the support bolt 93. Here, the displacement rod 84 is movable along the longitudinal direction of the displacement module mounting hole 83, and the displacement force applied to the lever 54 can be changed by the movement of the displacement rod 84. Here, the displacement force is generated when the displacement rod 84 is moved by replacing the already installed adjustment pusher 85 and adjustment button 86 with another adjustment pusher 85 and adjustment button 86 in the displacement module 82. The driving force is hereinafter referred to as “driving force F”. The adjustment button 86 coarsely adjusts the driving force F, and the adjustment pusher 85 plays a role of finely adjusting the driving force F.
[0041] 図 8に示すように、ァウタリング 52の側面には、変位モジュール取付孔 83に隣接し て、ジャッキアップモジュール(以下「JUモジュール」という) 97を収容するための JU モジュール取付孔 98が形成されている。 JUモジュール 97は、ジャッキアップロッド( 以下「JUロッド」とレ、う) 99と、ジャッキアップハウジング(以下「JUハウジング」とレ、う) 1 00と、位置調整ねじ 101とを含む。 As shown in FIG. 8, a JU module mounting hole 98 for accommodating a jack-up module (hereinafter referred to as “JU module”) 97 is provided on the side surface of the outer ring 52 adjacent to the displacement module mounting hole 83. Is formed. The JU module 97 consists of a jack-up rod (hereinafter referred to as “JU rod”) 99 and a jack-up housing (hereinafter referred to as “JU housing”) 1 00 and a position adjusting screw 101.
[0042] JUロッド 99は、 JUモジュール取付孔 98内に複数の〇リング 102を介して摺動可能 に揷通されている。この〇リング 102により、枠部材 41の内部の気密性が維持される 。この JUロッド 99の先端は球面状をなしており、 JUロッド 99がレバー 54に向かって 移動された時に、 JUロッド 99の先端がレバー 54の側面に当接する。 JUロッド 99には 、その軸線に沿って基端側からねじ孔 103が穿設されている。 JUロッド 99の基端部 には、 JUモジュール取付孔 98の内周面に係合して JUロッド 99の回転を阻止する回 り止め部 104が形成されている。  The JU rod 99 is slidably inserted into the JU module mounting hole 98 via a plurality of rings 102. By the o-ring 102, the airtightness inside the frame member 41 is maintained. The tip of the JU rod 99 has a spherical shape, and when the JU rod 99 is moved toward the lever 54, the tip of the JU rod 99 contacts the side surface of the lever 54. The JU rod 99 is provided with a screw hole 103 from the proximal end side along the axis thereof. At the base end of the JU rod 99, there is formed a rotation stopping portion 104 which is engaged with the inner peripheral surface of the JU module mounting hole 98 to prevent the rotation of the JU rod 99.
[0043] JUハウジング 100は、位置調整ねじ 101を保持する保持板 105と、その位置調整 ねじ 101の脱落を阻止する止め板 106とを備える。保持板 105の中央部には、段付 きの収容孔 107が形成されている。位置調整ねじ 101は、その頭部 101aが収容孔 1 07の段部 108に収容されるように保持板 105に回転可能に挿通されている。位置調 整ねじ 101の頭部 101aには、六角レンチ等のジグが係合されるレンチ孔 101bが凹 設されている。止め板 106の中央部には、開口 110が透設されている。その止め板 1 06と保持板 105とが接合され、ボルト 109により枠部材 41に固定される。この状態で 、開口 110を介してレンチ孔 101bへジグを挿入することができる。この開口 110の直 径は、位置調整ねじ 101の頭部 101aの直径よりも小さぐ止め板 106を保持板 105 に接合した状態で枠部材 41に固定することにより、位置調整ねじ 101の脱落が阻止 される。  The JU housing 100 includes a holding plate 105 for holding the position adjusting screw 101 and a stop plate 106 for preventing the position adjusting screw 101 from dropping off. At the center of the holding plate 105, a stepped accommodation hole 107 is formed. The position adjusting screw 101 is rotatably inserted into the holding plate 105 such that the head portion 101a is housed in the step portion 108 of the housing hole 107. A wrench hole 101b into which a jig such as a hexagon wrench is engaged is recessed in the head 101a of the position adjusting screw 101. An opening 110 is provided through the center of the stopper plate 106. The stopper plate 106 and the holding plate 105 are joined and fixed to the frame member 41 by bolts 109. In this state, the jig can be inserted into the wrench hole 101b through the opening 110. The diameter of the opening 110 is smaller than the diameter of the head 101a of the position adjusting screw 101, and the stopper plate 106 is fixed to the frame member 41 in a state of being joined to the holding plate 105, so that the position adjusting screw 101 is not dropped. Will be blocked.
[0044] 従って、本実施形態によれば、以下のような効果を得ることができる。  Therefore, according to the present embodiment, the following effects can be obtained.
(1) この光学素子保持装置 38では、光学素子 37の位置を調整する変位モジユー ノレ 82と枠咅 才 41との間に Oリング 88, 90カ設けられてレヽる。このため、光学素子 37 の位置調整を行う際に、枠部材 41の内部の気密性を維持することができる。これによ り、露光装置 31においては、露光精度を向上させることができる。  (1) In the optical element holding device 38, 88 and 90 O-rings are provided between the displacement module 82 for adjusting the position of the optical element 37 and the frame member 41. Therefore, when the position of the optical element 37 is adjusted, the airtightness inside the frame member 41 can be maintained. Thereby, in the exposure apparatus 31, the exposure accuracy can be improved.
[0045] (2) この光学素子保持装置 38では、枠部材 41が、 P 接する他の枠部材 41との接 合に使用される締結部 40が設けられ、隣接する枠部材 41の締結部 40間に介装され る中空 Oリング 81aが設けられている。このため、積層される枠部材 41間における気 密性を高めることができる。 [0046] (3) この光学素子保持装置 38では、中空〇リング 81aが、光学素子 37の光軸 AX を中心とする円に沿って配置されている。このため、枠部材 41の全周にわたって気 密性を高く維持することができる。 (2) In this optical element holding device 38, the frame member 41 is provided with a fastening portion 40 used for joining with another frame member 41 that is in P-contact, and the fastening portion 40 of the adjacent frame member 41 is provided. A hollow O-ring 81a interposed therebetween is provided. Therefore, the airtightness between the laminated frame members 41 can be improved. (3) In the optical element holding device 38, the hollow ring 81a is arranged along a circle centered on the optical axis AX of the optical element 37. Therefore, high airtightness can be maintained over the entire circumference of the frame member 41.
[0047] (4) この光学素子保持装置 38では、光学素子 37に変位を与える変位モジュール 82が、枠部材 41に形成された変位モジュール取付孔 83に収容され、その変位モジ ユール取付孔 83の長手方向に沿って移動可能である。このため、変位モジュール取 付孔 83の開口径を小さくすることができて、小さな Oリング 88で枠部材 41の気密性 を確保することができる。  (4) In the optical element holding device 38, the displacement module 82 for applying a displacement to the optical element 37 is accommodated in the displacement module mounting hole 83 formed in the frame member 41, and the displacement module mounting hole 83 It is movable along the longitudinal direction. Therefore, the opening diameter of the displacement module mounting hole 83 can be reduced, and the airtightness of the frame member 41 can be ensured by the small O-ring 88.
[0048] (5) この光学素子保持装置 38では、変位モジュール 82が、変位モジュール取付 孔 83の長手方向に並んで配置される変位ロッド 84、調整ボタン 86及び調整ヮッシャ 85を有してレ、る。調整ボタン 86及び調整ヮッシャ 85を変位モジュール取付孔 83から 取り外した際、変位ロッド 84が変位モジュール取付孔 83内に留置される。このように 変位ロッド 84が変位モジュール取付孔 83内に留置されるため、変位モジュール取付 孔 83を介して枠部材 41の内外でガスが流通することがない。このため、例えば光学 素子 37の位置調整で、調整ボタン 86及び調整ヮッシャ 85を交換するために取り外し たとしても、枠部材 41の内部の気密性を保つことができる。  (5) In this optical element holding device 38, the displacement module 82 has a displacement rod 84, an adjustment button 86, and an adjustment pusher 85 that are arranged side by side in the longitudinal direction of the displacement module mounting hole 83. You. When the adjustment button 86 and the adjustment pusher 85 are removed from the displacement module mounting hole 83, the displacement rod 84 is retained in the displacement module mounting hole 83. Thus, since the displacement rod 84 is placed in the displacement module mounting hole 83, gas does not flow inside and outside the frame member 41 through the displacement module mounting hole 83. Therefore, for example, even when the adjustment button 86 and the adjustment pusher 85 are removed for replacement in the position adjustment of the optical element 37, the airtightness inside the frame member 41 can be maintained.
[0049] (6) この光学素子保持装置 38では、〇リング 88, 90力 変位モジュール取付孔 8 3内に留置される変位ロッド 84と、変位モジュール取付孔 83の内周面との間に配置 されている。このため、調整ボタン 86及び調整ヮッシャ 85を交換するために取り外し たとしても、枠部材 41の内部の気密性を確実に保つことができる。  (6) In the optical element holding device 38, the O-ring 88, 90 force is disposed between the displacement rod 84 retained in the displacement module mounting hole 83 and the inner peripheral surface of the displacement module mounting hole 83. Have been. For this reason, even if the adjustment button 86 and the adjustment washer 85 are removed for replacement, the airtightness inside the frame member 41 can be reliably maintained.
[0050] (7) この光学素子保持装置 38では、変位モジュール 82が、光学素子 37の変位 を粗調整する調整ボタン 86と、光学素子 37の変位を微調整する調整ヮッシャ 85とを 有している。このため、これら調整ボタン 86及び調整ヮッシャ 85を用いて枠部材 41 内の光学素子 37の位置を細力べ調整することができる。  (7) In the optical element holding device 38, the displacement module 82 has the adjustment button 86 for roughly adjusting the displacement of the optical element 37 and the adjustment pusher 85 for finely adjusting the displacement of the optical element 37. I have. Therefore, the position of the optical element 37 in the frame member 41 can be finely adjusted using the adjustment button 86 and the adjustment pusher 85.
[0051] (8) この光学素子保持装置 38では、変位モジュール 82を、〇リング 90を介して変 位ロッドハウジング 89の内部に収容し、その変位ロッドハウジング 89を、 Oリング 88を 介して枠部材 41に取着している。〇リング 90の存在により、枠部材 41の内部の気密 性を保ちつつ、調整ボタン 86及び調整ヮッシャ 85を交換して、変位ロッド 84を変位 させることができる。また、変位ロッド 84を変位させても、 Oリング 88が摺動されること がなぐ〇リング 88の耐久性を向上させることができる。 (8) In the optical element holding device 38, the displacement module 82 is housed inside the displacement rod housing 89 via the O-ring 90, and the displacement rod housing 89 is framed via the O-ring 88. It is attached to member 41.存在 Due to the presence of the ring 90, the displacement button 84 is displaced by replacing the adjustment button 86 and the adjustment pusher 85 while maintaining the airtightness of the inside of the frame member 41. Can be done. Further, even if the displacement rod 84 is displaced, the O-ring 88 does not slide, so that the durability of the ring 88 can be improved.
[0052] (9) この光学素子保持装置 38では、中空〇リング 81aが、締結部 40の全周にわ たって密着され、弾性変形される中空構造を有している。このため、各枠部材 41の締 結部 40に対する中空〇リング 81aの密着性を高めることができる。また、中空〇リング 81aはつぶれやす 複数の鏡筒モジュール 39aを積み重ねる際に、各鏡筒モジュ ール 39aの芯出し作業を容易に行うことができる。  (9) In the optical element holding device 38, the hollow ring 81a has a hollow structure that is closely adhered over the entire periphery of the fastening portion 40 and is elastically deformed. Therefore, the adhesion of the hollow ring 81a to the fastening portion 40 of each frame member 41 can be improved. Also, the hollow ring 81a is easily crushed. When stacking a plurality of lens barrel modules 39a, the centering operation of each lens barrel module 39a can be easily performed.
[0053] (10) この光学素子保持装置 38では、調整ボタン 86及び調整ヮッシャ 85を取り外 した状態では、光学素子 37を変位させるレバー 54を所定位置に復帰させる付勢ば ね 77が設けられている。このため、調整ボタン 86及び調整ヮッシャ 85を取り外した状 態では、レンズ枠体 43を基準位置に配置することができて、光学素子 37が安定して 保持される。  (10) The optical element holding device 38 is provided with a biasing spring 77 for returning the lever 54 for displacing the optical element 37 to a predetermined position when the adjustment button 86 and the adjustment pusher 85 are removed. ing. Therefore, when the adjustment button 86 and the adjustment pusher 85 are removed, the lens frame 43 can be disposed at the reference position, and the optical element 37 is stably held.
[0054] (変形例)  (Modification)
なお、本発明の実施形態は、以下のように変形してもよい。  Note that the embodiment of the present invention may be modified as follows.
• 前記実施形態では、変位モジュール 82における駆動力 Fを調整するために、調 整ヮッシャ 85及び調整ボタン 86を適宜選択して、調整ヮッシャ 85及び調整ボタン 86 を交換し、変位ロッド 84を変位させる。これに対して、変位モジュール 82内に、例え ばマイクロメータを装備して、そのマイクロメータの進退により変位ロッド 84を変位させ てもよレ、。このようにした場合、駆動力 Fの調整作業が容易なものとなるとともに、微調 整も容易なものとすること力 Sできる。  In the embodiment, in order to adjust the driving force F in the displacement module 82, the adjustment pusher 85 and the adjustment button 86 are appropriately selected, the adjustment pusher 85 and the adjustment button 86 are exchanged, and the displacement rod 84 is displaced. . On the other hand, for example, a micrometer may be provided in the displacement module 82, and the displacement rod 84 may be displaced by moving the micrometer forward and backward. In this case, the driving force F can be easily adjusted, and the fine adjustment can be easily performed.
[0055] また、図 9に示すように、調整部材及び変位機構をなす変位モジュール 121内に、 ピエゾ素子等のァクチユエータ 122を装備して、そのァクチユエータ 122の駆動により 変位ロッド 84を変位させてもよレ、。このようにした場合、ァクチユエータ 122を遠隔操 作することにより、光学素子 37の姿勢制御を離れた位置で行うことができ便利である 。また、例えば露光装置 31の稼働中に、得られる収差情報、光学素子 37の照射履 歴、露光装置 31の配置される環境条件の変化、照明条件等の露光条件の変化等に 基づく所定の制御信号の入力により、光学素子 37の姿勢を制御して、収差の補正を より細かく行うことができる。これにより、露光装置 31における露光精度の向上と、ダウ ンタイムの短縮によるスループットの向上を図ることができる。 As shown in FIG. 9, an actuator 122 such as a piezo element is provided in a displacement module 121 serving as an adjusting member and a displacement mechanism, and the displacement rod 84 is displaced by driving the actuator 122. Yeah. In this case, by remotely operating the actuator 122, the attitude of the optical element 37 can be controlled at a remote position, which is convenient. Also, for example, predetermined control based on aberration information obtained during the operation of the exposure apparatus 31, irradiation history of the optical element 37, changes in environmental conditions in which the exposure apparatus 31 is arranged, changes in exposure conditions such as illumination conditions, and the like. By inputting the signal, the attitude of the optical element 37 can be controlled, and the aberration can be corrected more finely. As a result, the exposure accuracy of the exposure apparatus 31 is improved, and Thus, the throughput can be improved by shortening the run time.
[0056] なお、ァクチユエータとしては、流体圧ァクチユエ一タ等を採用してもよい。 [0056] Note that a fluid pressure actuator or the like may be employed as the actuator.
• 前記実施形態において、光学素子 37の姿勢を検出するセンサを光学素子保持 装置 38に設けてもよい。このようにした場合、光学素子 37のより正確な姿勢制御が できる。  In the above embodiment, a sensor for detecting the attitude of the optical element 37 may be provided in the optical element holding device 38. In this case, more accurate attitude control of the optical element 37 can be performed.
[0057] 特に、鏡筒 39内の気密性を確保する必要がある場合には、枠部材 41の外周面上 に光学窓を設け、その光学窓介して光学素子 37またはレンズ枠体 43に取着したス ケールを、鏡筒 39外に配置したヘッドで読みとるような光学エンコーダ式、静電容量 式等のセンサが好ましい。このように構成ことで、センサに接続されるコード及びセン サの基板を鏡筒 39内に配置する必要がなくなり、鏡筒 39内を清浄に保つことができ る。  In particular, when it is necessary to ensure airtightness in the lens barrel 39, an optical window is provided on the outer peripheral surface of the frame member 41, and the optical element 37 or the lens frame 43 is attached through the optical window. It is preferable to use a sensor of an optical encoder type, a capacitance type, or the like that reads the attached scale with a head disposed outside the lens barrel 39. With this configuration, it is not necessary to dispose the cord connected to the sensor and the substrate of the sensor in the lens barrel 39, and the inside of the lens barrel 39 can be kept clean.
[0058] · 前記実施形態では、互いに接合される鏡筒モジュール 39aの枠部材 41の締結 部 40間で押圧されるように中空〇リング 81aを設けている。これに対して、締結部 40 の接合面を高精度に加工及び仕上げすることにより、中空〇リング 81aを省略しても よい。また、例えば締結部 40の接合面間にガスケットを介装するとともに、締結部 40 の接合部分をカバーで覆い、そのカバーと締結部 40の外周面との間に Oリングを配 置してもよい。  In the above embodiment, the hollow ring 81a is provided so as to be pressed between the fastening portions 40 of the frame member 41 of the lens barrel module 39a to be joined to each other. On the other hand, the hollow ring 81a may be omitted by processing and finishing the joining surface of the fastening portion 40 with high precision. Alternatively, for example, a gasket may be interposed between the joint surfaces of the joints 40, the joint of the joints 40 may be covered with a cover, and an O-ring may be arranged between the cover and the outer peripheral surface of the joint 40. Good.
[0059] また、この締結部 40間に介装される〇リングを、中実構造のものとしてもよい。  [0059] Further, the o-ring interposed between the fastening portions 40 may have a solid structure.
• 前記実施形態 ίこおレヽて、レンズ枠体 43を省略して、アーム 53al, 53a2, 53bl , 53b2, 53cl , 53c2の第 1端部を、素子側ピボット 58を介して支持部材 42に直接 連結してもよい。  In the above embodiment, the lens frame 43 is omitted, and the first ends of the arms 53al, 53a2, 53bl, 53b2, 53cl, 53c2 are directly connected to the support member 42 via the element-side pivot 58. They may be connected.
[0060] · 前記実施形態では、変位ロッド 84の外周面と変位ロッドハウジング 89との間、及 び変位ロッドハウジング 89の外周面と変位モジュール取付孔 83の内周面との間に O リング 90, 88が介装されている。この〇リング 90, 88に代えて、例えば磁性流体シー ルを用いてもよい。このようにした場合、ヒステリシス要素が排除されるため、露光装置 31の動作中に光学素子 37の姿勢を制御するような構成において、特に有効である  In the above embodiment, the O-ring 90 is provided between the outer peripheral surface of the displacement rod 84 and the displacement rod housing 89 and between the outer peripheral surface of the displacement rod housing 89 and the inner peripheral surface of the displacement module mounting hole 83. , 88 are interposed. Instead of the o-rings 90 and 88, for example, a magnetic fluid seal may be used. In this case, since the hysteresis element is eliminated, it is particularly effective in a configuration in which the attitude of the optical element 37 is controlled during the operation of the exposure apparatus 31.
[0061] · 前記実施形態では、変位ロッド 84を変位ロッドハウジング 89内に収容した状態 で枠部材 41の変位モジュール取付孔 83内に収容した力 変位ロッドハウジング 89 を省略して、変位ロッド 84を直接変位モジュール取付孔 83内に装着してもよい。 In the embodiment, the displacement rod 84 is accommodated in the displacement rod housing 89. The force accommodated in the displacement module mounting hole 83 of the frame member 41 may be omitted, and the displacement rod 84 may be directly mounted in the displacement module mounting hole 83 without the displacement rod housing 89.
[0062] · 前記実施形態では、変位ロッド 84の光学素子 37の径方向への移動(並進運動) により、レバー 54に駆動力 Fを与える。これに対して、例えば変位ロッド 84を、回転さ せること、または光軸方向またはその他の方向に移動させること、または枠部材 41の 周方向に回動させることにより、レバー 54に駆動力を与えてもよい。  In the above embodiment, the driving force F is applied to the lever 54 by the movement (translational movement) of the displacement rod 84 in the radial direction of the optical element 37. On the other hand, a driving force is applied to the lever 54 by, for example, rotating the displacement rod 84, moving the displacement rod 84 in the optical axis direction or another direction, or rotating the displacement rod 84 in the circumferential direction of the frame member 41. You may.
[0063] · 前記実施形態では、光学素子 37としてレンズが例示されているが、この光学素 子 37は平行平板、ミラー、ハーフミラー等の他の光学素子であってもよい。  In the above embodiment, a lens is exemplified as the optical element 37, but the optical element 37 may be another optical element such as a parallel plate, a mirror, a half mirror, or the like.
• この発明の光学素子保持装置 38は、前記実施形態の露光装置 31の投影光学 系 35における横置きタイプの光学素子 37の保持構成に限定されるものではなレ、。例 えば露光装置 31の照明光学系 33における光学素子の保持構成、縦置きタイプの光 学素子 37の保持構成に本発明を具体化してもよい。さらに、他の光学機械、例えば 顕微鏡、干渉計等の光学系における光学素子の保持構成に本発明を具体化しても よい。  The optical element holding device 38 of the present invention is not limited to the holding structure of the horizontal type optical element 37 in the projection optical system 35 of the exposure apparatus 31 of the above embodiment. For example, the present invention may be embodied in a configuration for holding the optical element in the illumination optical system 33 of the exposure apparatus 31 and a configuration for holding the optical element 37 of the vertical type. Further, the present invention may be embodied in a configuration for holding an optical element in another optical machine, for example, an optical system such as a microscope or an interferometer.
[0064] · また、露光装置として、投影光学系を用いることなぐマスクと基板とを密接させて マスクのパターンを基板に転写するするコンタクト露光装置、マスクと基板とを近接さ せてマスクのパターンを基板に転写するプロキシミティ露光装置の光学系にも本発明 を適用することができる。また、投影光学系としては、全屈折タイプに限らず、反射屈 折タイプであってもよレ、。  · A contact exposure apparatus for transferring a mask pattern to a substrate by bringing a mask and a substrate into close contact without using a projection optical system as an exposure apparatus, and a mask pattern for bringing a mask and a substrate close to each other. The present invention can also be applied to an optical system of a proximity exposure apparatus that transfers the light onto a substrate. Further, the projection optical system is not limited to the total refraction type, but may be a reflection refraction type.
[0065] さらに、本発明の露光装置は、縮小露光型の露光装置に限定されるものではなぐ 例えば等倍露光型、拡大露光型の露光装置であってもよい。  Further, the exposure apparatus of the present invention is not limited to a reduction exposure type exposure apparatus, and may be, for example, a 1 × exposure type or an enlargement type exposure apparatus.
半導体素子などのマイクロデバイスだけでなぐ光露光装置、 EUV露光装置、 X線 露光装置、及び電子線露光装置などで使用されるレチクルまたはマスクを製造する ために、マザーレチクルからガラス基板又はシリコンウェハへ回路パターンを転写す る露光装置にも本発明を適用できる。例えば、 DUV (深紫外)又は VUV (真空紫外) 光を用いる露光装置では一般に透過型レチクルが用いられ、レチクル基板としては、 石英ガラス、フッ素がドープされた石英ガラス、蛍石、フッ化マグネシウム、または水 晶などが用いられる。例えば、プロキシミティ方式の X線露光装置又は電子線露光装 置では、透過型マスク(ステンシノレマスク、メンバレンマスク)が用いられ、マスク基板と してはシリコンウェハが用いられる。 From a mother reticle to a glass substrate or a silicon wafer to manufacture reticles or masks used in light exposure equipment, EUV exposure equipment, X-ray exposure equipment, and electron beam exposure equipment that can be used only with microdevices such as semiconductor devices. The present invention can be applied to an exposure apparatus for transferring a circuit pattern. For example, in an exposure apparatus using DUV (deep ultraviolet) or VUV (vacuum ultraviolet) light, a transmission reticle is generally used, and as a reticle substrate, quartz glass, fluorine-doped quartz glass, fluorite, magnesium fluoride, Or a crystal is used. For example, a proximity type X-ray exposure apparatus or electron beam exposure apparatus In this case, a transmission type mask (stencil mask, memrene mask) is used, and a silicon wafer is used as a mask substrate.
[0066] 半導体素子の製造に用いられる露光装置だけでなぐ液晶表示素子 (LCD)などを 含むディスプレイの製造に用いられてデバイスパターンをガラスプレート上へ転写す る露光装置にも、本発明を適用することができる。また、薄膜磁気ヘッドの製造に用 レ、られて、デバイスパターンをセラミックウェハへ転写する露光装置、及び CCD等の 撮像素子の製造に用レ、られる露光装置にも本発明を適用することができる。  The present invention is also applied to an exposure apparatus used for manufacturing a display including a liquid crystal display element (LCD) and the like, which transfers a device pattern onto a glass plate, which is not limited to an exposure apparatus used for manufacturing a semiconductor element. can do. The present invention is also applicable to an exposure apparatus used for manufacturing a thin-film magnetic head and transferring a device pattern to a ceramic wafer, and an exposure apparatus used for manufacturing an imaging device such as a CCD. .
[0067] さらに、本発明は、マスクと基板とが相対移動した状態でマスクのパターンを基板へ 転写し、基板を順次ステップ移動させるスキャニング'ステツパに適用することができ る。また、本発明は、マスクと基板とが静止した状態でマスクのパターンを基板へ転写 し、基板を順次ステップ移動させるステップ ·アンド'リピート方式のステツパにも適用 すること力 Sできる。  Further, the present invention can be applied to a scanning stepper that transfers a pattern of a mask to a substrate in a state where the mask and the substrate are relatively moved, and sequentially moves the substrate in steps. Further, the present invention can be applied to a step-and-repeat type stepper in which a pattern of a mask is transferred to a substrate while the mask and the substrate are stationary and the substrate is sequentially moved stepwise.
[0068] • 露光装置の光源としては、前記実施形態に記載の ArFエキシマレーザ(193nm )、 Fレーザ(157nm)の他、例えば g線(436nm)  [0068] As the light source of the exposure apparatus, in addition to the ArF excimer laser (193 nm) and the F laser (157 nm) described in the above embodiment, for example, g-line (436 nm)
2 、 i線(365nm)、 KrFエキシマレ 一ザ(248nm)、Krレーザ(146nm) 126nm)を用  2. For i-line (365nm), KrF excimer laser (248nm), Kr laser (146nm) 126nm)
2 、 Arレーザ( いてもよレヽ。また、  2. Ar laser (may be used.
2  2
DFB半導体レーザまたはファイバレーザから発振される赤外域、または可視域の単 一波長レーザ光を、例えばエルビウム(またはエルビウムとイッテルビウムの双方)が ドープされたファイバアンプで増幅し、増幅されたレーザ光を非線形光学結晶を用い て紫外光に波長変換した高調波を光源として用いてもよい。  A single-wavelength laser beam in the infrared or visible range oscillated from a DFB semiconductor laser or fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium), and the amplified laser light is amplified. A harmonic converted to ultraviolet light using a nonlinear optical crystal may be used as a light source.
[0069] なお、前記実施形態の露光装置 31は、例えば次のように製造される。  The exposure apparatus 31 of the embodiment is manufactured, for example, as follows.
すなわち、まず、照明光学系 33、投影光学系 35を構成する複数のレンズまたはミ ラー等の光学素子 37の少なくとも一部を前記実施形態または前記各変形例の光学 素子保持装置 38で保持し、この照明光学系 33及び投影光学系 35を露光装置 31の 本体に組み込み、光学調整を行う。次いで、多数の機械部品からなるウェハステー ジ 36 (スキャンタイプの露光装置の場合は、レチクルステージ 34も含む)を露光装置 31の本体に取り付けて配線を接続する。そして、露光光の光路内にガスを供給する ガス供給配管を接続した上で、さらに総合調整 (電気調整、動作確認など)を行う。  That is, first, at least a part of the optical element 37 such as a plurality of lenses or mirrors constituting the illumination optical system 33 and the projection optical system 35 is held by the optical element holding device 38 of the embodiment or each of the modified examples. The illumination optical system 33 and the projection optical system 35 are incorporated in the main body of the exposure device 31 to perform optical adjustment. Next, a wafer stage 36 (including a reticle stage 34 in the case of a scan type exposure apparatus) composed of a number of mechanical parts is attached to the main body of the exposure apparatus 31, and wiring is connected. Then, after connecting a gas supply pipe that supplies gas into the optical path of exposure light, comprehensive adjustment (electrical adjustment, operation confirmation, etc.) is performed.
[0070] 光学素子保持装置 38を構成する各部品は、超音波洗浄により、加工油、及び金属 物質などの不純物を落としたうえで、組み上げられる。露光装置 31の製造は、温度、 湿度及び気圧が制御され、かつクリーン度が調整されたクリーンルーム内で行うこと が望ましい。 [0070] Each component constituting the optical element holding device 38 is processed by ultrasonic cleaning with processing oil and metal. It is assembled after removing impurities such as substances. It is desirable that the manufacture of the exposure apparatus 31 be performed in a clean room in which the temperature, humidity and pressure are controlled and the cleanliness is adjusted.
[0071] 前記実施形態における硝材として、蛍石、石英などが使用される例を説明したが、 フッ化リチウム、フッ化マグネシウム、フッ化ストロンチウム、リチウム—カルシウム—アル ミニゥム—フロオライド、及びリチウム—ストロンチウム—アルミニウム—フロオライド等の 結晶、ジルコニウム-バリウム—ランタン-アルミニウムからなるフッ化ガラス、フッ素をド ープした石英ガラス、フッ素に加えて水素もドープされた石英ガラス、 OH基を含有さ せた石英ガラス、フッ素に加えて OH基を含有した石英ガラス等の改良石英を用いて ちょい。  [0071] Although examples in which fluorite, quartz, or the like is used as the glass material in the above embodiment have been described, lithium fluoride, magnesium fluoride, strontium fluoride, lithium-calcium-aluminum-fluoride, and lithium-strontium are used. —Aluminum-fluoride crystal, zirconium-barium-lanthanum-aluminum fluoride glass, fluorine-doped quartz glass, quartz glass doped with hydrogen in addition to fluorine, quartz containing OH groups Use improved quartz such as glass and quartz glass containing OH groups in addition to fluorine.
[0072] 次に、上述した露光装置 31をリソグラフイエ程で使用したデバイスの製造方法の実 施形態について説明する。  Next, an embodiment of a device manufacturing method using the above-described exposure apparatus 31 in a lithographic process will be described.
図 10は、デバイス (例えば、 IC又は LSI等の半導体素子、液晶表示素子、撮像素 子(例えば、 CCD)、薄膜磁気ヘッド、マイクロマシン等)の製造例を示すフローチヤ ートである。図 10に示すように、まず、ステップ S201 (設計ステップ)において、デバ イス (マイクロデバイス)の機能及び性能設計 (例えば、半導体デバイスの回路設計等 )を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ S202 ( マスク製作ステップ)において、設計した回路パターンを有するマスク(レクチル Rt等 )を製作する。ステップ S203 (基板製造ステップ)において、シリコン、ガラスプレート 等の材料を用いて基板(シリコン材料を用いた場合にはウェハ W)を製造する。  FIG. 10 is a flowchart illustrating an example of manufacturing a device (eg, a semiconductor element such as an IC or an LSI, a liquid crystal display element, an imaging element (eg, a CCD), a thin-film magnetic head, a micromachine, etc.). As shown in FIG. 10, first, in step S201 (design step), a function and performance design of a device (micro device) (for example, a circuit design of a semiconductor device) is performed, and a pattern design for realizing the function is performed. I do. Subsequently, in step S202 (mask manufacturing step), a mask (such as reticle Rt) having the designed circuit pattern is manufactured. In step S203 (substrate manufacturing step), a substrate (wafer W when a silicon material is used) is manufactured using a material such as silicon or a glass plate.
[0073] 次に、ステップ S204 (基板処理ステップ)において、ステップ S201— S203で用意 したマスクと基板を使用して、後述するように、リソグラフィ技術等によって基板上に実 際の回路等を形成する。次いで、ステップ S205 (デバイス組立ステップ)において、 ステップ S204で処理された基板を用いてデバイス組立を行う。このステップ S205に は、ダイシング工程、ボンディング工程、及びパッケージング工程 (チップ封入等)等 の複数の工程が必要に応じて含まれる。  Next, in step S204 (substrate processing step), using the mask and the substrate prepared in steps S201 to S203, an actual circuit or the like is formed on the substrate by lithography or the like, as described later. . Next, in step S205 (device assembly step), device assembly is performed using the substrate processed in step S204. Step S205 includes a plurality of steps such as a dicing step, a bonding step, and a packaging step (such as chip encapsulation) as necessary.
[0074] 最後に、ステップ S206 (検查ステップ)において、ステップ S205で作製されたデバ イスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にデバィ スが完成し、これが出荷される。 Finally, in step S206 (inspection step), inspections such as an operation confirmation test and a durability test of the device manufactured in step S205 are performed. After these steps, Is completed and shipped.
[0075] 図 11は、半導体デバイスの場合における、図 10のステップ S204の一例を詳細に 示すフローチャートである。図 11において、ステップ S211 (酸化ステップ)では、ゥェ ハ Wの表面を酸化させる。ステップ S212 (CVDステップ)では、ウェハ W表面に絶縁 膜を形成する。ステップ S213 (電極形成ステップ)では、ウェハ W上に電極を蒸着に よって形成する。ステップ S214 (イオン打込みステップ)では、ウェハ Wにイオンを打 ち込む。以上のステップ S211— S214のそれぞれは、ウェハ処理の各段階の前処 理工程を構成しており、各段階にぉレ、て必要な処理に応じて選択されて実行される FIG. 11 is a flowchart showing details of an example of step S204 in FIG. 10 in the case of a semiconductor device. In FIG. 11, in step S211 (oxidation step), the surface of wafer W is oxidized. In step S212 (CVD step), an insulating film is formed on the surface of the wafer W. In step S213 (electrode formation step), electrodes are formed on the wafer W by vapor deposition. In step S214 (ion implantation step), ions are implanted into the wafer W. Each of the above steps S211 to S214 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to required processing in each stage.
[0076] ウェハプロセスの各段階において、上述の前処理工程が終了すると、以下のように して後処理工程が実行される。この後処理工程では、まず、ステップ S215 (レジスト 形成ステップ)において、ウェハ Wに感光剤を塗布する。引き続き、ステップ S216 ( 露光ステップ)において、先に説明したリソグラフィシステム(露光装置 31)によってマ スク(レチクル Rt)の回路パターンをウェハ W上に転写する。次に、ステップ S217 (現 像ステップ)では露光されたウェハ Wを現像し、ステップ S218 (エッチングステップ) において、レジストが残存している部分以外のウェハ Wの部分をエッチングにより取り 去る。そして、ステップ S219 (レジスト除去ステップ)において、エッチングが済んで不 要となったレジストを取り除く。 At each stage of the wafer process, when the above-described pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step S215 (resist formation step), a photosensitive agent is applied to the wafer W. Subsequently, in step S216 (exposure step), the circuit pattern of the mask (reticle Rt) is transferred onto the wafer W by the lithography system (exposure apparatus 31) described above. Next, in step S217 (image step), the exposed wafer W is developed, and in step S218 (etching step), portions of the wafer W other than the portion where the resist remains are removed by etching. Then, in step S219 (resist removing step), unnecessary resist after etching is removed.
[0077] これらの前処理工程と後処理工程とを繰り返し行うことによって、ウェハ W上に多重 に回路パターンが形成される。  By repeatedly performing these pre-processing and post-processing steps, multiple circuit patterns are formed on wafer W.
以上説明した本実施形態のデバイス製造方法を用いれば、露光工程 (ステップ S2 16)において上記の露光装置 31が用いられ、真空紫外域の露光光 ELにより解像力 の向上が可能となり、しかも露光量制御を高精度に行うことができる。従って、結果的 に最小線幅が 0. 1 μ m程度の高集積度のデバイスを歩留まりよく生産することができ る。  By using the device manufacturing method of the present embodiment described above, the above-described exposure apparatus 31 is used in the exposure step (step S216), and the resolution can be improved by the exposure light EL in the vacuum ultraviolet region, and the exposure amount can be controlled. Can be performed with high accuracy. Therefore, as a result, highly integrated devices with a minimum line width of about 0.1 μm can be produced with good yield.

Claims

請求の範囲 The scope of the claims
[1] 枠部材と、該枠部材の内側に設けられ、光学素子を保持する保持部材とを備える 光学素子保持装置において、  [1] An optical element holding device including: a frame member; and a holding member provided inside the frame member and holding the optical element.
前記枠部材に設けられ、前記光学素子の位置を前記保持部材を介して調整する 調整部材と、前記調整部材と前記枠部材との間に設けられた第 1のシール部材とを 備えることを特徴とする光学素子保持装置。  An adjusting member provided on the frame member to adjust the position of the optical element via the holding member; and a first seal member provided between the adjusting member and the frame member. Optical element holding device.
[2] 前記枠部材は、他の枠部材と積層され、前記他の枠部材に対して接合する接合部 を有し、前記枠部材は、前記他の枠部材と前記接合部との間に設けられた第 2のシ 一ル部材を備えることを特徴とする請求項 1に記載の光学素子保持装置。  [2] The frame member has a joining portion that is laminated with another frame member and joined to the other frame member, and the frame member is located between the other frame member and the joining portion. 2. The optical element holding device according to claim 1, further comprising a second seal member provided.
[3] 前記第 2のシール部材が、前記光学素子の光軸を中心とする円に沿って配置され る Oリングを含むことを特徴とする請求項 2に記載の光学素子保持装置。  3. The optical element holding device according to claim 2, wherein the second seal member includes an O-ring arranged along a circle centered on an optical axis of the optical element.
[4] 前記〇リングが、前記接合部に密着され、弾性変形可能な中空構造を有することを 特徴とする請求項 3に記載の光学素子保持装置。  [4] The optical element holding device according to claim 3, wherein the o-ring has a hollow structure which is in close contact with the joint portion and is elastically deformable.
[5] 前記枠部材は、開口部を有し、前記調整部材は、前記光学素子の位置を変位させ る変位機構を有し、前記変位機構は、前記枠部材の開口部内に、変位可能に収容 されていることを特徴とする請求項 1一請求項 4のうちいずれか一項に記載の光学素 子保持装置。  [5] The frame member has an opening, the adjusting member has a displacement mechanism for displacing the position of the optical element, and the displacement mechanism is displaceable into the opening of the frame member. 5. The optical element holding device according to claim 1, wherein the optical element holding device is housed.
[6] 前記変位機構は、前記開口部内に並んで配置される第 1の調整部品と第 2の調整 部品とを有し、前記第 1の調整部品を前記開口部から取り外した際、前記第 2の調整 部品が前記開口部内に留置されることを特徴とする請求項 5に記載の光学素子保持  [6] The displacement mechanism has a first adjustment component and a second adjustment component arranged side by side in the opening, and when the first adjustment component is removed from the opening, the second adjustment component is removed. The optical element holding device according to claim 5, wherein the adjustment component of (2) is placed in the opening.
[7] 前記第 1の調整部品は、異なる複数の第 1の調整部品の一つであり、第 1の調整部 品を交換することにより、前記光学素子の変位量が調整されることを特徴とする請求 項 6に記載の光学素子保持装置。 [7] The first adjustment component is one of a plurality of different first adjustment components, and the displacement amount of the optical element is adjusted by replacing the first adjustment component. The optical element holding device according to claim 6, wherein
[8] 前記第 1のシール部材は、前記第 2の調整部品と、前記開口部の内周面との間に 配置されることを特徴とする請求項 7に記載の光学素子保持装置。  [8] The optical element holding device according to claim 7, wherein the first seal member is arranged between the second adjustment component and an inner peripheral surface of the opening.
[9] 前記第 1の調整部品は、前記光学素子の変位量を粗調整する粗調整部品と、前記 光学素子の変位量を微調整する微調整部品とを含むことを特徴とする請求項 8に記 載の光学素子保持装置。 9. The first adjustment component includes a coarse adjustment component for coarsely adjusting the displacement of the optical element and a fine adjustment component for finely adjusting the displacement of the optical element. Written in Optical device holding device.
[10] 前記調整部材を収容する筒状体を備え、前記第 1のシール部材は、前記調整部材 と前記筒状体との間に設けられたシール部を含むことを特徴とする請求項 1一請求 項 9のうちいずれか一項に記載の光学素子保持装置。 10. The apparatus according to claim 1, further comprising: a tubular body that houses the adjustment member, wherein the first seal member includes a seal portion provided between the adjustment member and the tubular body. The optical element holding device according to claim 9.
[11] 前記変位機構の少なくとも一部を取り外したとき、前記保持部材を所定位置に復帰 させる付勢部材を備えることを特徴とする請求項 1一請求項 10のうちいずれか一項 に記載の光学素子保持装置。 11. The device according to claim 11, further comprising an urging member for returning the holding member to a predetermined position when at least a part of the displacement mechanism is removed. Optical element holding device.
[12] 少なくとも 1つの光学素子を収容する鏡筒において、  [12] In a lens barrel containing at least one optical element,
前記光学素子の少なくとも 1つを保持する、請求項 1一請求項 11のうちいずれか一 項に記載の光学素子保持装置を備えることを特徴とする鏡筒。  12. A lens barrel comprising the optical element holding device according to claim 11, which holds at least one of the optical elements.
[13] 前記光学素子は、マスク上に形成された所定のパターンの像を基板上に投影する 投影光学系を構成する複数の光学素子の一つであることを特徴とする請求項 12に 記載の鏡筒。  13. The optical element according to claim 12, wherein the optical element is one of a plurality of optical elements constituting a projection optical system that projects an image of a predetermined pattern formed on a mask onto a substrate. Barrel.
[14] マスク上に形成された所定のパターンの像を基板上に転写する露光装置にぉレ、て 前記所定のパターンの像を前記基板上に転写するための請求項 13に記載の鏡筒 を備えることを特徴とする露光装置。  14. The lens barrel according to claim 13, for transferring the image of the predetermined pattern onto the substrate by exposing the image of the predetermined pattern formed on the mask to an exposure apparatus that transfers the image of the predetermined pattern onto the substrate. An exposure apparatus comprising:
[15] デバイスの製造方法において、 [15] In the device manufacturing method,
請求項 14に記載の露光装置を用いて露光を行うリソグラフイエ程を備えることを特 徴とするデバイスの製造方法。  A method for manufacturing a device, comprising: a lithographic process for performing exposure using the exposure apparatus according to claim 14.
PCT/JP2004/019264 2003-12-24 2004-12-22 Optical element holding apparatus, barrel, exposure apparatus, and device producing method WO2005062100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516519A JP4586731B2 (en) 2003-12-24 2004-12-22 Optical element holding device, lens barrel, exposure apparatus, and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003428417 2003-12-24
JP2003-428417 2003-12-24

Publications (1)

Publication Number Publication Date
WO2005062100A1 true WO2005062100A1 (en) 2005-07-07

Family

ID=34708931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019264 WO2005062100A1 (en) 2003-12-24 2004-12-22 Optical element holding apparatus, barrel, exposure apparatus, and device producing method

Country Status (2)

Country Link
JP (1) JP4586731B2 (en)
WO (1) WO2005062100A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013393A (en) * 2004-06-29 2006-01-12 Nikon Corp Optical-element-holding device, body tube, aligner, and method for manufacturing device
JP2012504330A (en) * 2008-09-30 2012-02-16 カール・ツァイス・エスエムティー・ゲーエムベーハー Support elements for optical elements
JP2013225154A (en) * 2006-09-14 2013-10-31 Carl Zeiss Smt Gmbh Optical element unit and method of supporting optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195779A (en) * 1998-12-28 2000-07-14 Nikon Corp Aligner and manufacture of micro devices
JP2001035773A (en) * 1999-07-19 2001-02-09 Nikon Corp Illumination optical apparatus and aligner
JP2001343575A (en) * 2000-03-31 2001-12-14 Nikon Corp Optical element holding device, lens barrel, exposure device, and manufacturing method of microdevice
JP2002134384A (en) * 2000-10-20 2002-05-10 Nikon Corp Exposure method and projection aligner and device- manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195779A (en) * 1998-12-28 2000-07-14 Nikon Corp Aligner and manufacture of micro devices
JP2001035773A (en) * 1999-07-19 2001-02-09 Nikon Corp Illumination optical apparatus and aligner
JP2001343575A (en) * 2000-03-31 2001-12-14 Nikon Corp Optical element holding device, lens barrel, exposure device, and manufacturing method of microdevice
JP2002134384A (en) * 2000-10-20 2002-05-10 Nikon Corp Exposure method and projection aligner and device- manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013393A (en) * 2004-06-29 2006-01-12 Nikon Corp Optical-element-holding device, body tube, aligner, and method for manufacturing device
JP4655520B2 (en) * 2004-06-29 2011-03-23 株式会社ニコン Optical element holding apparatus, lens barrel, exposure apparatus, and device manufacturing method
JP2013225154A (en) * 2006-09-14 2013-10-31 Carl Zeiss Smt Gmbh Optical element unit and method of supporting optical element
US9134501B2 (en) 2006-09-14 2015-09-15 Carl Zeiss Smt Gmbh Optical element unit and method of supporting an optical element
JP2012504330A (en) * 2008-09-30 2012-02-16 カール・ツァイス・エスエムティー・ゲーエムベーハー Support elements for optical elements

Also Published As

Publication number Publication date
JP4586731B2 (en) 2010-11-24
JPWO2005062100A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4665759B2 (en) Optical element holding device, lens barrel, exposure apparatus, and device manufacturing method
EP1312965B1 (en) Optical element holding device
US8498067B2 (en) Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device
JP4945864B2 (en) Holding device, optical element holding device, lens barrel, exposure apparatus, and microdevice manufacturing method
US7161750B2 (en) Retainer, exposure apparatus, and device fabrication method
US20080291555A1 (en) Optical element holding apparatus, barrel, exposure apparatus and device manufacturing method
JP4654915B2 (en) Optical element holding device, lens barrel, exposure apparatus, and device manufacturing method
JP2002162549A (en) Optical element holder, lens barrel and aligner, and method of manufacturing microdevice
JP2004220032A (en) Perfluoropolyether liquid pellicle and method of cleaning mask using perfluoropolyether liquid
JP2004062091A (en) Holding apparatus, aligner, and device manufacturing method
JP2003337272A (en) Device for holding optical system, method of positionally adjusting optical device, lens barrel, exposure device, and method of manufacturing device
WO2005062100A1 (en) Optical element holding apparatus, barrel, exposure apparatus, and device producing method
JP2008047622A (en) Exposure apparatus, device manufacturing method, and regulating method for regulating position of optical element
JP2002236242A (en) Optical element holding apparatus, lens barrel, exposure device, and method for manufacturing micro device
JPWO2002052624A1 (en) Exposure apparatus, optical member mounting member, optical member attaching / detaching jig, and device manufacturing method
JP2008263091A (en) Optical cleaning member, maintenance method, cleaning method, exposure method, exposure device and device manufacturing method
JP4655520B2 (en) Optical element holding apparatus, lens barrel, exposure apparatus, and device manufacturing method
JP2011119550A (en) Optical member deformation apparatus, optical system, aligner method of manufacturing device
JP2008166613A (en) Cleaning method, exposure method, device manufacturing method, cleaning member, maintenance method and exposure apparatus
JP2005266146A (en) Optical element holding device, lens barrel, exposure device, and device manufacturing method
JP2006066688A (en) Fixing apparatus, stage device, exposure device and method of manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516519

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase