WO2005061858A1 - Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung - Google Patents

Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung Download PDF

Info

Publication number
WO2005061858A1
WO2005061858A1 PCT/EP2004/053654 EP2004053654W WO2005061858A1 WO 2005061858 A1 WO2005061858 A1 WO 2005061858A1 EP 2004053654 W EP2004053654 W EP 2004053654W WO 2005061858 A1 WO2005061858 A1 WO 2005061858A1
Authority
WO
WIPO (PCT)
Prior art keywords
roots blower
expansion device
working fluid
working medium
pressure
Prior art date
Application number
PCT/EP2004/053654
Other languages
English (en)
French (fr)
Inventor
Erwin Oser
Michael Rannow
Original Assignee
Erwin Oser
Michael Rannow
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34714591&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005061858(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE2003160379 external-priority patent/DE10360379A1/de
Priority claimed from DE2003160380 external-priority patent/DE10360380A1/de
Priority claimed from DE2003160364 external-priority patent/DE10360364A1/de
Priority claimed from DE2003161203 external-priority patent/DE10361203A1/de
Priority claimed from DE2003161223 external-priority patent/DE10361223A1/de
Application filed by Erwin Oser, Michael Rannow filed Critical Erwin Oser
Priority to US10/583,925 priority Critical patent/US8132413B2/en
Priority to EP04816348A priority patent/EP1702140B1/de
Priority to ES04816348T priority patent/ES2293384T3/es
Priority to DE502004004776.9T priority patent/DE502004004776C5/de
Publication of WO2005061858A1 publication Critical patent/WO2005061858A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Definitions

  • the invention relates to a method for converting heat energy generated in an evaporator into mechanical energy by expanding a vaporous working medium which evaporates in the evaporator and is expanded in a expansion device. Furthermore, the invention relates to a relaxation device for converting thermal energy into mechanical energy.
  • Wäi ⁇ iekraftaölagen are known, for example, in which a working medium at a high in a boiler Isobaric pressure is heated to the boiling point, evaporated and then overheated in a superheater. The steam is then adiabatically expanded in a turbine, performing work, and liquefied in a condenser, giving off heat. The liquid, usually water, is brought to a pressure by the feed water pump and pumped back into the boiler.
  • One of the disadvantages of these devices is that high pressures of over 15 bar to 200 bar must be generated in the expansion processes in turbines, in which case the realized pressure ratio of the expansion is decisive for the efficiency achieved for turbines.
  • the invention has for its object to provide a method and an apparatus for converting thermal energy into mechanical energy, which avoid the disadvantages mentioned, in particular have an improved efficiency.
  • the expansion device is designed as a low-pressure expansion device, which is designed as a Roots blower, in which the working medium is expanded and thermal energy is converted into mechanical energy.
  • the Roots blower as a low-pressure expansion device, however, has the advantage according to the invention that it can work with low gas friction and at the same time is insensitive to liquid drops. Furthermore, it achieves this Roots blowers at rotational speed at which the sealing edge on the outer radius reaches speeds of more than about 1/10 of the speed of sound have a particularly high volumetric efficiency, since the gap acts as a dynamic seal at these speeds.
  • the Roots blower which can be in the form of an oval gear pump, can operate at full efficiency at a pressure difference of 500 mbar and can be used in a closed system at pressures of 10 to 0.5 bar.
  • Another advantage is that in the relaxation devices mentioned, only the pressure difference and not the mass or the relaxation ratio is decisive for the efficiency. With already small pressure differences of less than two bar, full efficiency can be achieved. The physical reason for this lies in the high operating time of almost 95% in the pump, since it is actually not a conventional expansion in the sense of a compressor, but the expansion takes place through the discharge of the gas into the pressure port.
  • the inflow and outflow with an increase or decrease in the scooping volume does not take place in the Roots blower, but the inflow of the gas takes place parallel to the transport of the gas via the rotary movement at a constant volume and thus with full efficiency.
  • the Roots blower and other comparable low-pressure expansion devices according to the invention are distinguished here from other expansion devices in which the pressure change itself takes place by changing the scoop volume. As a result, the working time of this device is much shorter.
  • the thermal energy of the vaporous working medium is at least partially converted into mechanical energy.
  • the Roots blower is advantageously connected to a generator which converts the mechanical energy into electrical energy.
  • the relaxed working fluid can be condensed in a heat exchanger.
  • at least some of the condensed working fluid can be injected into the Roots blower during the expansion process, for example up to 16% of the mass fraction, whereby according to the invention the injected working fluid in the Roots blower partially condenses in the blower in the heat exchange with the steam and thereby the acting pressure difference of relaxation increases.
  • a separator is connected downstream of the heat exchanger, which removes part of the condensed working fluid for injection into the Roots blower.
  • a pump which is in turn connected downstream of the separator, expediently asks the condensed working medium back into the evaporator.
  • a pressure-controlled injection takes place in a further embodiment of the invention.
  • the method preferably has a first component of the working medium, which is formed by a mixture, is absorbed in and / or after the low-pressure expansion device by means of an absorption medium, heat being transferred to the remaining, vaporous second component, which is traceable.
  • the mixture is an azeotr ⁇ p with a boiling point minimum at a specific mixing ratio of the components.
  • the evaporation temperatures can be lowered so that they are below the condensation temperatures of the individual components. If the first component is absorbed adiabatically from the steam mixture, the corresponding heat is transferred to the second component remaining in vapor form.
  • the heat of condensation can thus be withdrawn at an elevated temperature level.
  • the second vapor-like component can be condensed in the evaporator of the working medium itself, giving off the heat of condensation, so that the corresponding proportion of the thermal energy can be returned to the process.
  • the first component to be absorbed is water, an alkaline silicate solution, for example, can be used as the absorbent.
  • the working medium for example an azeotropic mixture of water with perchlorethylene or silicone
  • the working medium can be evaporated, for example, by heat exchange with primary energy from process vapors or heated process liquids and / or heat stores.
  • the absorption in which, according to the invention, the heat of absorption obtained is transferred to the second component remaining in vapor form, as a result of which this component heats up to a temperature level above the boiling point of the azeotropic mixture, can take place in and / or after the expansion device.
  • One of the main advantages here is that mechanical energy can be "gained” by the relaxation of the azeotropic mixture in the Roots blower and at the same time the relaxed working medium, which has already done “work” in the relaxation process, by separating (absorption) the first from the second component heats up due to the released heat of absorption.
  • it can remaining work equipment can be returned after relaxation, for example, to give off its heat in the heat exchanger.
  • the remaining working fluid only second component
  • the remaining working fluid condenses and, due to the heat of condensation that arises, the liquid working fluid with the first and second components evaporated and then returned to the expansion device.
  • the efficiency of the method for converting thermal energy into mechanical energy can be significantly improved.
  • the working medium is preferably formed by an azeotropic mixture with a boiling point or an almost azeotropic mixture.
  • the invention is described below with an azeotropic mixture; of course, the invention can also be applied to almost azeotropic mixtures or to non-azeotropic mixtures. High efficiencies can be achieved particularly with an azeotropic or an almost azeotropic mixture.
  • the evaporation temperatures can be lowered so that they are below the evaporation temperatures of the individual components.
  • the working medium has a low volume-specific or low molar enthalpy of vaporization. This ensures that a large amount of motive steam is generated with a predetermined amount of thermal energy.
  • the working medium is preferably a solvent mixture which has organic and / or inorganic solvent components. Examples of this are mixtures of water and selected silicones.
  • at least one component can also be a protic solvent.
  • the absorbent is a reversible immobilizable solvent, which is the first component of the working medium in the non-immobilized physical state.
  • the reversible solvent in the boiling agent can advantageously change through physico-chemical changes in such a way that it can be changed from the non-immobilized state to the reversibly immobilized state by ionization or complex formation from the vapor phase and in the non-immobilized form as an absorbent works for the work equipment.
  • the vaporous working medium thus already contains the absorbent (in the non-immobilized state) before the expansion.
  • the reversibly immobilized solvent is in a vaporous state and changes to the liquid state due to physico-chemical changes - such as pH shift, change in mole fraction and temperature in its volatility and / or vapor pressure (comparable to steam as a solvent in non-immobilized form and water as a reversibly immobilizable solvent).
  • the advantage here is that the working fluid consists of two components, with one component simultaneously acting as an absorbent for the other component in the reversibly immobilized state.
  • Cyclic nitrogen compounds such as pyridines, for example, can be used as pH-dependent, reversibly immobilizable solvents.
  • the object of the invention is also achieved by a relaxation device for converting thermal energy into mechanical energy by relaxing a vaporous working medium with the features of claim 15.
  • a relaxation device for converting thermal energy into mechanical energy by relaxing a vaporous working medium with the features of claim 15.
  • the expansion device is designed as a low-pressure expansion device, which is designed as a Roots blower.
  • a Roots blower two rotors run on one another on elliptical or oval-shaped pitch curves.
  • Well-known examples are the oval wheel pump or the Roots blower.
  • With multi-bladed rotors higher order elliptical pitch curves can be realized.
  • One advantage of Roots blowers with multi-bladed rotors is a reduction in the pulsations that occur, since the chamber volume, based on the scooping volume, is smaller and the frequency of gas discharge increases.
  • the Roots blower expediently has a gas-tight seal between the pump chamber and the gear chamber in order to prevent oil from entering the vaporous working medium.
  • the Roots blower also has a shaft that can be connected to the generator, whereby the mechanical energy can be converted into electrical energy.
  • the use of a Roots blower as a low-pressure expansion device opens up the possibility, on the one hand, of the process by injecting absorption agents, in particular when using waste heat with a temperature of less than approximately 100 ° C. for driving pumps or generators support, and on the other hand to "raise the condensation energy of the working fluid, for example with a heat pump," to an increased temperature level due to the small pressure and temperature differences.
  • FIG. 1 shows a method for converting thermal energy accumulating in an evaporator 6 into mechanical energy by expanding a vaporous working medium which evaporates in the evaporator 6 and is expanded in a low-pressure expansion device 2.
  • the working medium in this exemplary embodiment is water, which is conveyed in the vapor state to the expansion device 2, which is designed as a Roots blower 2.
  • the expansion device 2 which is designed as a Roots blower 2.
  • the Roots blower 2 is connected to a generator 1 and drives it, so that mechanical energy is converted into electrical energy.
  • the expanded motive steam is condensed in a heat exchanger 7.
  • the evaporator 6 is preferably connected to the heat exchanger 7, the condensate being conveyed back into the evaporator 6 by means of the pump 9.
  • the heat exchanger 7 is followed by a separator 3, which removes part of the condensed working fluid for injection into the Roots blower 2.
  • the Roots blower 2 has a plurality of injection openings (not shown) through which the condensed working fluid is injected into the scooping space of the Roots blower 2, a portion of the vaporous working fluid condensing in the Roots blower 2, thereby reducing the outlet pressure and thus improving the efficiency. Due to the pressure difference compared to the heat exchanger 7 connected to the outlet of the Roots blower 2, the rotors arranged in the Roots blower 2 are set in motion by the relaxing working medium, and those that come with the relaxation Change in entropy is given off as mechanical energy.
  • a pump 9 is connected downstream of the separator 3, which conveys the condensed working fluid back into the evaporator 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Umwandlung von in einem Verdampfer (6) anfallender Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels, das in dem Verdampfer (6) verdampft und in einer Entspannungsvorrichtung (2) entspannt wird. Erfindungsgemäss ist vorgesehen, dass die Entspannung in einer Niederdruck- Entspannungsvorrichtung erfolgt, die als Wälzkolbengebläse (2) ausgebildet ist, in dem das Arbeitsmittel entspannt wird und dabei Wärmeenergie in mechanische Energie umgewandelt wird.

Description

Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie mit einer Niederdruck-Entspannungsvorrichtung
Die Erfindung betrifft ein Verfahren zur Umwandlung von in einem Verdampfer anfallender Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels, das in dem Verdampfer verdampft und in einer Entspannungsvorrichtung entspannt wird. Des Weiteren betrifft die Erfindung eine Entspannungsvorrichtung zur Umwandlung von Wärmeenergie in mechanische Energie.
Aus dem Stand der Technik sind eine Vielzahl von Verfahren sowie Vorrichtungen zur Umwandlung von Wärmeenergie in mechanische Energie bekannt. Es sind beispielsweise WäiΩiekraftaölagen bekannt, in denen in einem Kessel ein Arbeitsmittel bei einem hohen Druck isobar bis zum Siedepunkt erwärmt wird, verdampft und anschließend in einem Überhitzer noch überhitzt wird. Der Dampf wird anschließend in einer Turbine unter Verrichtung von Arbeit adiabat entspannt und in einem Kondensator unter Wärmeabgabe verflüssigt. Die Flüssigkeit, in der Regel Wasser, wird von der Speisewasserpumpe auf einen Druck gebracht und wieder in den Kessel gefördert. Einer der Nachteile dieser Vorrichtungen ist, dass bei den Entspannungsprozessen in Turbinen hohe Drücke von über 15 bar bis 200 bar erzeugt werden müssen, dabei Turbinen das realisierte Druckverhältnis der Entspannung für den erreichten Wirkungsgrad entscheidend ist. Dies ist der wesentliche Grund dafür, dass in großen Entspannungsturbinen der Dampf in das Vakuum hinein entspannt wird, wodurch die Kondensation bei relativ tiefen Temperaturen um die 40° C erfolgt. Die bei der Kondensation anfallende Kondensationswärme wird im Wärmetausch mit Kühlsystemen abgefiihrt. Diese als Abwärme abgeführte Kondensationswärme bestimmt wesentlich den mit thermischen Entspannungsprozessen in Turbinen erreichbaren Wirkungsgrad.
Auch bekannte Umwandlungsanlagen mit organischen Lösemitteln als Arbeitsmittel (ORC- Anlagen, Organic Rankine Cycle) oder der Kalina-Prozess mit einem Gemisch aus Wasser und Ammoniak basieren auf dem beschriebenen Dampfkraftprozess mit Verdampfung und Kondensation; sie sind lediglich technische Modifikationen, um entweder mit niedrigeren Temperatur- und Druckniveaus arbeiten zu können und/oder durch eine bessere Wärrnenut- zung mit einem Siedebereich den Wirkungsgrad zu verbessern.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Vorrichtung zur Umwandlung von Wärmeenergie in mechanische Energie zu schaffen, die die genannten Nachteile vermeiden, insbesondere einen verbesserten Wirkungsgrad aufweisen.
Zur Lösung dieser Aufgabe wird ein Verfahren mit den Merkmalen des Anspruches 1 vorgeschlagen. In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen ausgeführt.
Dazu ist erfindungsgemäß vorgesehen, dass die Entspannungsvorrichtung als Niederdruck- Entspannungsvorrichtung ausgeführt ist, die als Wälzkolbengebläse ausgebildet ist, in dem das Arbeitsmittel entspannt wird und dabei Wärmeenergie in mechanische Energie umgewandelt wird. Das Wälzkolbengebläse als Niederdruck-Entspannungsvorrichtung hingegen weist erfindungsgemäß den Vorteil auf, dass diese mit geringer Gasreibung arbeiten kann und gleichzeitig gegen Flüssigkeitstropfen unempfindlich ist. Des Weiteren erreicht das Wälzkolbengebläse bei Drehgeschwindigkeit, bei denen die Dichtkante am Außenradius Geschwindigkeiten von mehr als etwa 1/10 der Schallgeschwindigkeit erreicht, einen besonders hohen volumetrischen Wirkungsgrad, da der Spalt bei diesen Geschwindigkeiten als dynamische Dichtung wirkt. Das Wälzkolbengebläse, das in Form einer Ovalradpumpe ausgeführt sein kann, kann bei Druckdifferenz von 500 mbar mit einem vollen Wirkungsgrad arbeiten und in einem geschlossenen System bei Drücken von 10 bis 0,5 bar eingesetzt werden. Eine weiterer Vorteil ist, dass bei den genannten Entspannungsvorrichtungen nur die Druckdifferenz und nicht die Masse oder das Entspannungsverhältnis für den Wirkungsgrad maßgebend ist. Bei bereits kleinen Druckdifferenzen von weniger als zwei bar kann ein voller Wirkungsgrad erreicht werden. Die physikalische Begründung liegt in der hohen Wirkzeit von nahezu 95% in der Pumpe, da es sich tatsächlich nicht um eine herkömmliche Entspannung im Sinne eines Verdichters handelt, sondern die Entspannung durch den Austritt des Gases in den Druckstutzen erfolgt. Ein- und Ausströmen mit Vergrößerung oder Verringerung des Schöpfvolumens findet im Wälzkolbengebläse nicht statt, sondern das Einströmen des Gases erfolgt parallel zum Transport des Gases über die Drehbewegung bei konstantem Volumen und dadurch bei vollem Wirkungsgrad. Das Wälzkolbengebläse und andere vergleichbare erfindungsgemäße Niederdruck-Entspannungsvorrichtungen zeichnen sich hier gegenüber anderen Entspannungsvorrichtungen aus, bei denen durch Änderung des Schöpfvolumens selbst die Druckänderung erfolgt. Dies hat zur Folge, dass die Wirkzeit dieser Vorrichtung sehr viel kleiner ist. Während des Entspannungsvorganges wird die Wärmeenergie des dampfförmigen Arbeitsmittels zumindest teilweise in mechanische Energie umgewandelt. Vorteilhafterweise ist das Wälzkolbengebläse mit einem Generator verbunden, der die mechanische Energie in elektrische Energie umwandelt.
Erfindungsgemäß kann das entspannte Arbeitsmittel in einem Wärmetauscher kondensiert werden. In einer weiteren Ausführungsform der Erfindung kann zumindest ein Teil des kondensierten Arbeitsmittels während des Entspannungsprozesses in das Wälzkolbengebläse eingespritzt werden, beispielsweise bis zu 16% des Masseanteils, wobei erfindungsgemäß das eingespritzte Arbeitsmittel im Wälzkolbengebläse im Wärmetausch mit dem Dampf diesen teilweise im Gebläse kondensiert und dadurch die wirkende Druckdifferenz der Entspannung vergrößert. In einer möglichen Alternative ist ein Seperator dem Wärmetauscher nachgeschaltet, der einen Teil des kondensierten Arbeitsmittels für die Einspritzung in das Wälzkolbengebläse entnimmt. Zweckmäßigerweise fordert eine Pumpe, die dem Separator wiederum nachgeschaltet ist, das kondensierte Arbeitsmittel in den Verdampfer zurück. Um eventuell auftretende Flüssigkeitsschäden durch den Zusammenprall der schnell rotierenden Kolben mit Tröpfchen zu verhindern, erfolgt in einer weiteren Ausgestaltung der Erfindung eine druckgesteuerte Einspritzung.
Vorzugsweise weist das Verfahren eine erste Komponente des Arbeitsmittels auf, das durch ein Gemisch gebildet ist, in und/oder nach der Niederdruck-Entspannungsvorrichtung mittels eines Absorptionsmittels absorbiert wird, wobei Wärme auf die verbleibende, dampfförmige zweite Komponente übergeht, die rückfiihrbar ist. In einer Ausführungsform der Erfindung ist das Gemisch bei einem bestimmten Mischungsverhältnis der Komponenten ein Azeotrσp mit Siedepunktminimum. Bei azeotrop verdampfenden Gemischen mit Siedepur-ktminimuna lassen sich je nach Typ die Verdampfungstemperaturen absenken, so dass diese unter den Kondensationstemperaturen der einzelnen Komponenten liegen. Wird aus dem Dampfgemisch adiäbat die erste Komponente absorbiert, so geht die entsprechende Wärme auf die dampfförmig verbleibende zweite Komponente über. Der Entzug der Kondensationswärme kann dadurch auf einem erhöhten Temperaturniveau erfolgen. Insbesondere kann bei geeignet ausgewählten Azeotropmischungen die zweite dampfiormige Komponente im Verdampfer des Arbeitsmittels selbst unter Abgabe der Kondensationswärme kondensiert werden, so dass der entsprechende Anteil der Wärmeenergie in den Prozess zurückgeführt werden kann. Sofern die zu absorbierende erste Komponente Wasser ist, kann als Absorptionsmittel beispielsweise eine alkalische Silikatlösung eingesetzt werden.
In einer weiteren Ausfuhrungsform kann das Arbeitsmittel, beispielsweise ein azeotropes Gemisch aus Wasser mit Perchloräthylen oder Silikon, zum Beispiel durch Wärmetauscli mit Primärenergie aus Prozessdämpfen oder erwärmten Prozessflüssigkeiten und/oder Wärmespeichern verdampft werden. Die Absorption, bei der erfindungsgemäß die anfallende Absorptionswärme auf die zweite dampfförmig verbleibende Komponente übertragen wird, wodurch sich diese Komponente auf ein Temperaturniveau oberhalb der Siedetemperatur des azeotropen Gemisches erwärmt, kann in und/oder nach der Entspannungsvorrichtung erfolgen. Einer der wesentlichen Vorteile ist hierbei, dass durch die Entspannung des azeotropen Gemisches im Wälzkolbengebläse mechanische Energie „gewonnen" werden kann und gleichzeitig das entspannte Arbeitsmittel, das im Entspannungsprozess bereits , A-ϊbeit" geleistet hat, durch die Trennung (Absorption) der ersten von der zweiten Komponente sich aufgrund der freiwerdenden Absorptionswärme erwärmt. Hierbei kann das verbleibende Arbeitsmittel nach der Entspannung zurückgeführt werden, um beispielsweise in dem Wärmetauscher seine Wärme abzugeben. Zum Beispiel ist es in einer Ausgestaltung der Erfindung möglich, dass das verbleibende Arbeitsmittel (nur zweite Komponente) in den Wärmetauscher (Verdampfer) geleitet wird, in dem das verbleibende Arbeitsmittel kondensiert und aufgrund der entstehenden Kondensationswärme das flüssige Arbeitsmittel mit der ersten und der zweiten Komponente verdampft und anschließend wieder in die Entspannungsvorrichtung geführt wird. Hierdurch kann erfindungsgemäß der Wirkungsgrad des Verfahrens zur Umwandlung von Wärmeenergie in mechanische Energie wesentlich verbessert werden.
Das Arbeitsmittel ist vorzugsweise durch ein azeotropes Gemisch mit Siedepunktainimum oder nahezu azeotropes Gemisch gebildet. Im folgenden wird die Erfindung mit einem azeotropen Gemisch beschrieben, selbstverständlich kann die Erfindung ebenfalls auf nahezu azeotrope Gemische beziehungsweise auf nicht azeotrope Gemische bezogen werden. Hohe Wirkungsgrade lassen sich besonders mit einem azeotropen oder einem nahezu azeotropen Gemisch erzielen. Bei einem Einsatz eines azeotropen Gemisches können je nach Typ die Verdampfungstemperaturen abgesenkt werden, so dass diese unter den Verdampfungstemperaturen der einzelnen Komponenten liegen.
In einer bevorzugten Ausführungsform weist das Arbeitsmittel eine geringe volumenspezifϊsche beziehungsweise geringe molare Verdampftingsenthalpie auf. Damit wird erreicht, dass mit einer vorgegebenen Menge an Wärmeenergie eine große Menge an Treibdampf erzeugt wird. Vorzugsweise ist das Arbeitsmittel ein Lösemittelgemisch, das organische und/oder anorganische Lösemittelkomponenten aufweist. Beispiele hierfür sind etwa Gemische aus Wasser und ausgewählten Silikonen. Vorteilhafterweise kann auch mindestens eine Komponente ein protisches Lösemittel sein.
Bei einer alternativen Ausfuhrungsform ist das Absorptionsmittel ein reversibles immobilisierbares Lösemittel, das in dem nicht-immobilisierten Aggregatzustand die erste Komponente des Arbeitsmittels ist. Das reversible Lösemittel im siedenden Arbeitsmittel kann sich vorteilhafterweise durch physikalisch-chemische Veränderungen so verändern, in dem es durch Ionisieren oder Komplexbildung aus der Dampfphase von dem nicht- immobilisierten Zustand in den reversibel immobilisierten Zustand verändert werden kann und in der nicht-immobilisierten Form als Absorptionsmittel für das Arbeitsmittel wirkt. Somit enthält das dampfförmige Arbeitsmittel vor der Entspannung bereits das Absorptionsmittel (im nicht-immobilisierten Zustand). Das reversibel immobilisierte Lösemittel ist in einem dampfförmigen Aggregatzustand und geht durch physikalischchemische Veränderungen - wie zum Beispiel pH- Verschiebung, Veränderung des Molenbruches und der Temperatur in seiner Flüchtigkeit und/oder in seinem Dampfdruck - in den flüssigen Zustand über (vergleichbar mit Dampf als Lösemittel in nicht-hnmobilisierter Form und Wasser als reversibel immobilisierbares Lösemittel). Der Vorteil ist hierbei, dass das Arbeitsmittel aus zwei Komponenten besteht, wobei gleichzeitig die eine Komponente im reversiblen immobilisierten Zustand als Absorptionsmittel für die andere Komponente wirkt. Als pH-abhängige reversibel immobilisierbare Lösemittel können beispielsweise zyklische Stickstoffverbindungen - wie Pyridine - eingesetzt werden.
Die Aufgäbe der Erfindung wird ebenfalls durch eine Entspannungsvorrichtung zrur Umwandlung von Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels mit den Merkmalen des Anspruches 15 gelöst. In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen ausgeführt.
Erfindungsgemäß ist vorgesehen, dass die Entspannungsvorrichtung als Niederdruck- Entspannungsvorrichtung ausgebildet ist, die als Wälzkolbengebläse ausgeführt ist. Hierbei laufen zwei Rotoren auf elliptischen oder ovalförmigen Wälzkurven aufeinander ab. Bekannte Beispiele sind etwa die Ovalradpumpe oder das Rootsgebläse. Mit mehrflügeligen Rotoren können elliptische Wälzkurven höherer Ordnung realisiert werden. Ein Vorteil von Wälzkolbengebläsen mit mehrflügeligen Rotoren liegt etwa in einer Reduzierung der wirkenden Pulsationen, da das Kammervolumen, bezogen auf das Schöpf volumen, kleiner ist und die Frequenz des Gasaustritts zunimmt. Zweckmäßigerweise weist das Wälzkolbengebläse eine gasdichte Dichtung zwischen dem Schöpfraum und dem Getrieberaum auf, um den Eintritt von Öl in das dampfförmige Arbeitsmittel zu verhindern.
Das Wälzkolbengebläse weist ferner eine Welle auf, die mit dem Generator verbunden werden kann, wodurch die mechanische in elektrische Energie umgewandelt werden kann. Die Verwendung von einem Wälzkolbengebläse als Niederdruckentspannungsvorrichtung eröffnet, insbesondere bei der Nutzung von Abwärme mit einer Temperatur von weniger als ungefähr 100°C, für den Antrieb von beispielsweise Pumpen oder Generatoren die Möglichkeit, zum einen den Prozess durch Einspritzung von Absorptionsmitteln zu unterstützen, und zum anderen wegen der geringen Druck- und Temperaturdifferenzen die Kondensationsenergie des Arbeitsmittels, beispielsweise mit einer Wärmepumpe, "wieder auf ein erhöhtes Temperaturniveau zu heben.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung ein Ausf hrungsbeispiel der Erfindung im Einzelnen beschrieben ist. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich, oder in beliebiger Kombination erfindungswesentlich sein.
Figur 1 zeigt ein Verfahren zur Umwandlung von in einem Verdampfer 6 anfallender Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels, das in dem Verdampfer 6 verdampft und in einer Niederdruck- Entspannungsvorrichtung 2 entspannt wird. Das Arbeitsmittel ist in diesem Ausfiihrungsbeispiel Wasser, das im dampfförmigen Aggregatzustand zur Entspannungsvorrichtung 2, die als Wälzkolbengebläse 2 ausgebildet ist, gefördert wird. Während des Entspannungsprozesses wird im Wälzkolbengebläse 2 die im Arbeitsmittel enthaltende Wärmeenergie in mechanische Energie umgewandelt. Das Wälzkolbengebläse 2 ist mit einem Generator 1 verbunden und treibt diesen an, so dass mechanische Energie in elektrische Energie umgewandelt wird.
Der entspannte Treibdampf wird in einem Wärmetauscher 7 kondensiert. Vorzugsweise ist der Verdampfer 6 mit dem Wärmetauscher 7 verbunden, wobei das Kondensat mittels der Pumpe 9 zurück in den Verdampfer 6 gefördert wird.
Dem Wärmetauscher 7 ist ein Separator 3 nachgeschaltet, der einen Teil des kondensierten Arbeitsmittels für die Einspritzung in das Wälzkolbengebläse 2 entnimmt. Das Wälzkolbengebläse 2 weist mehrere nicht dargestellte Einspritzöffhungen auf, durch die das kondensierte Arbeitsmittel in den Schöpfraum des Wälzkolbengebläses 2 eingedüst wird, wobei ein Teil des dampfförmigen Arbeitsmittels im Wälzkolbengebläse 2 kondensiert, wodurch der Ausgangsdruck reduziert und damit der Wirkungsgrad verbessert wird. Durch die Druckdifferenz gegenüber dem am Auslass des Wälzkolbengebläses 2 angesαhlossenen Wärmetauscher 7 werden die im Wälzkolbengebläse 2 angeordneten Rotoren von dem sich entspannenden Arbeitsmittel in Bewegung gesetzt, und die mit der Entspannung eingehende Entropieänderung wird als mechanische Energie abgegeben. Eine Pumpe 9 ist dem Separator 3 nachgeschaltet, die das kondensierte Arbeitsmittel in den Verdampfer 6 zurückfördert.
Bezuaszeichenliste
Generator
Entspannungsvorrichtung, Wälzkolbengebläse
Separator
Verdampfer
Wärmetauscher
Pumpe

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Umwandlung von in einem Verdampfer (6) anfallender Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels, das in dem Verdampfer (6) verdampft und in einer Entspannungsvorrichtung (2) entspannt wird, dadurch gekennzeichnet, dass die Entspannungsvorrichtung (2) als Niederdruck- Entspannungsvorrichtung ausgeführt ist, die als Wälzkolbengebläse (2) ausgebildet ist, in dem das Arbeitsmittel entspannt wird und dabei Wärmeenergie in mechanische Energie umgewandelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das entspannte Arbeitsmittel in einem Wärmetauscher (7) kondensiert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zumindest ein Teil des kondensierten Arbeitsmittels während des Entspannungsprozesses in das Wälzkolbengebläse (2) eingespritzt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass zumindest ein Teil des eingespritzten Arbeitsmittels im Wälzkolbengebläse (2) durch Wärmetausch einen Teil des dampfförmigen Arbeitsmittels kondensiert und damit den Ausgangsdruck reduziert.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Arbeitsmittel druckgesteuert in das Wälzkolbengebläse (2) eingespritzt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Pumpe (9) das kondensierte Arbeitsmittel in den Verdampfer (6) "fördert.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Separator (3) dem Wärmetauscher (7) nachgeschaltet ist, der einen Teil des kondensierten Arbeitsmittels für die Einspritzung in das Wälzkolbengebläse (2) entnimmt.
SAM:mg
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine erste Komponente des Arbeitsmittels, das durch ein Gemisch gebildet ist, in und/oder nach der Niederdruck-Entspannungsvorrichtung (2) mittels eines Absorptionsmittels absorbiert wird, wobei Wärme auf die verbleibende, dampfförmige zweite Komponente übergeht, die rückfuhrbar ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Gemisch bei einem bestimmten Mischungsverhältnis der Komponenten ein Azeotrop mit Sied unktminimum bildet.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Arbeitsmittel als azeotropes Gemisch oder als nahezu azeotropes Gemisch vorliegt.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die bei der Absorption übergangene Wärme die dampfförmig verbleibende zweite Komponente auf eine Temperatur oberhalb der Siedetemperatur des Gemisches erwärmt wird, wobei die zweite Komponente in einem Wärmetauscher (7) kondensiert wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Absorptionsmittel ein reversibel immobilisierbares Lösemittel ist, das in dem nicht- immobilisierten Aggregatzustand die erste Komponente des Arbeitsmittels ist.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Arbeitsmittel ein azeotropes Gemisch aus Wasser und Silikon ist.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Absorptionsmittel eine Silikatlösung ist.
15. Entspannungsvorrichtung (2) zur Umwandlung von Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels, dadurch gekennzeichnet, dass die Entspannungsvorrichtung (2) als Niederdruck-Entspannungsvorrichtung (2) ausgebildet ist, die als Wälzkolbengebläse (2) ausgeführt ist.
16. Entspannungsvorrichtung (2) nach Anspruch 15, dadurch gekennzeichnet, dass das Wälzkolbengebläse (2) mit einem Generator (1) verbunden ist.
17. Entspannungsvorrichtung (2) nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass das Wälzkolbengebläse (2) mit mindestens einer Einspriteöflhung ausgeführt ist.
18. Entspannungsvorrichtung (2) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wälzkolbengebläse (2) mehrflügelige Rotoren aufweist.
19. Entspannungsvorrichtung (2) nach Anspruch 15 bis 18, die nach einem der genannten Verfahren 1 bis 14 betreibbar ist.
20. Verwendung einer Niederdruck-Entspannungsvorrichtung (2), die als Wälzkolbengebläse ausgebildet ist, zur Umwandlung von in einem Verdampfer (6) anfallender Wärmeenergie in mechanische Energie durch Entspannung eines dampfförmigen Arbeitsmittels, das in dem Verdampfer (6) verdampft und in der Niederdruck- Entspannungsvorrichtung (2) entspannt wird.
PCT/EP2004/053654 2003-12-22 2004-12-22 Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung WO2005061858A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/583,925 US8132413B2 (en) 2003-12-22 2004-12-22 Method of transforming heat energy to mechanical energy in a low-pressure expansion device
EP04816348A EP1702140B1 (de) 2003-12-22 2004-12-22 Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung
ES04816348T ES2293384T3 (es) 2003-12-22 2004-12-22 Procedimiento para la conversion de energia termina en energia mecaniza con un dispositivo de expansion a baja presion.
DE502004004776.9T DE502004004776C5 (de) 2003-12-22 2004-12-22 Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE10360380.8 2003-12-22
DE2003160379 DE10360379A1 (de) 2003-12-22 2003-12-22 Niederdruck-Entspannungsmotor auf der Basis von Rootsgebläsen
DE2003160380 DE10360380A1 (de) 2003-12-22 2003-12-22 Extraktions-Wärmepumpe mit reversibel immobilisierbarem Lösemittel
DE2003160364 DE10360364A1 (de) 2003-12-22 2003-12-22 Offene Wärmepumpe unter Verwendung von flüssigkeitsüberlagerten Verdichtersystemen
DE10360379.4 2003-12-22
DE10360364.6 2003-12-22
DE10361223.8 2003-12-24
DE2003161203 DE10361203A1 (de) 2003-12-24 2003-12-24 Niederdruck-Entspannungsmotor mit Energierückführung
DE10361203.3 2003-12-24
DE2003161223 DE10361223A1 (de) 2003-12-24 2003-12-24 Niederdruck-Entspannungsmotor mit Treibdampftrennung mittels extraktiver Rektifikation

Publications (1)

Publication Number Publication Date
WO2005061858A1 true WO2005061858A1 (de) 2005-07-07

Family

ID=34714591

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/EP2004/053649 WO2005066465A1 (de) 2003-12-22 2004-12-22 Verfahren und anlage zur umwandlung von wärmeenergie aus kältemaschinen
PCT/EP2004/053655 WO2005066466A1 (de) 2003-12-22 2004-12-22 Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie
PCT/EP2004/053651 WO2005061973A1 (de) 2003-12-22 2004-12-22 Verfahren und anlage zur temperaturerhöhung eines dampfförmigen arbeitsmittels
PCT/EP2004/053654 WO2005061858A1 (de) 2003-12-22 2004-12-22 Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung
PCT/EP2004/053650 WO2005061857A1 (de) 2003-12-22 2004-12-22 Vorrichtung und verfahren zur umwandlung von wärmeenergie in mechanische energie

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/EP2004/053649 WO2005066465A1 (de) 2003-12-22 2004-12-22 Verfahren und anlage zur umwandlung von wärmeenergie aus kältemaschinen
PCT/EP2004/053655 WO2005066466A1 (de) 2003-12-22 2004-12-22 Verfahren und anlage zur umwandlung von anfallender wärmeenergie in mechanische energie
PCT/EP2004/053651 WO2005061973A1 (de) 2003-12-22 2004-12-22 Verfahren und anlage zur temperaturerhöhung eines dampfförmigen arbeitsmittels

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/053650 WO2005061857A1 (de) 2003-12-22 2004-12-22 Vorrichtung und verfahren zur umwandlung von wärmeenergie in mechanische energie

Country Status (6)

Country Link
US (2) US8132413B2 (de)
EP (5) EP1706681A1 (de)
AT (1) ATE371101T1 (de)
DE (1) DE502004004776C5 (de)
ES (2) ES2624638T3 (de)
WO (5) WO2005066465A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128423A2 (de) * 2005-06-02 2006-12-07 Lutz Giechau Verfahren und vorrichtung zur erzeugung mechanischer energie
WO2007131943A3 (de) * 2006-05-16 2008-09-18 Ecoenergy Patent Gmbh Umwandlung von wärme in mechanische energie mit verwendung eines strahlverdichters
WO2009030283A2 (de) * 2007-08-31 2009-03-12 Siemens Aktiengesellschaft Verfahren und vorrichtung zur umwandlung der wärmeenergie einer niedertemperatur-wärmequelle in mechanische energie
WO2009140944A2 (de) * 2008-05-17 2009-11-26 Hamm & Dr. Oser Gbr Umwandlung der druckenergie von gasen und dämpfen bei niedrigen ausgangsdrücken in mechanische energie
DE102012016991A1 (de) 2012-08-25 2014-02-27 Erwin Oser Energieeffizientes Entspannungsaggregat
DE102013112024A1 (de) * 2013-10-31 2015-04-30 ENVA Systems GmbH Drehkolbengebläse mit einem Dichtsystem

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013737A1 (de) 2008-03-06 2009-09-10 Heinz Manfred Bauer Verfahren zur Wandlung thermischer Energie in mechanische und weiter in elektrische Energie
DE102008036917A1 (de) 2008-08-05 2010-02-11 Heinz Manfred Bauer Verfahren zur Wandlung thermischer Energie in mechanische und weiter in elektrische Energie
WO2010104601A1 (en) * 2009-03-12 2010-09-16 Seale Joseph B Heat engine with regenerator and timed gas exchange
US20130174552A1 (en) * 2012-01-06 2013-07-11 United Technologies Corporation Non-azeotropic working fluid mixtures for rankine cycle systems
WO2013130774A1 (en) * 2012-02-29 2013-09-06 Eaton Corporation Volumetric energy recovery device and systems
US10648745B2 (en) 2016-09-21 2020-05-12 Thermal Corp. Azeotropic working fluids and thermal management systems utilizing the same
DE102019135820A1 (de) 2019-12-27 2021-07-01 Corinna Ebel Verfahren zur Dampferzeugung, Dampferzeuger und Verwendung eines Wälzkolbengebläses
CN112412560A (zh) * 2020-10-28 2021-02-26 北京工业大学 一种基于单螺杆膨胀机的卡琳娜循环系统
DE202021100874U1 (de) 2021-02-23 2022-05-30 Marlina Hamm Wälzkolbengebläse zur Entspannung eines dampfförmigen Mediums bei hohem Druck und guter Dichtigkeit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1301214A (en) * 1970-05-26 1972-12-29 Wallace Louis Minto Prime mover system
WO1985002881A1 (en) * 1983-12-22 1985-07-04 Lipovetz Ivan System for converting heat energy, particularly for utilizing heat energy of the environment
DE3619547A1 (de) * 1984-12-13 1987-12-17 Peter Koch Verfahren und einrichtung zur erzeugung einer kraft aus einer temperaturdifferenz zweier medien
US20030172654A1 (en) * 2002-03-14 2003-09-18 Paul Lawheed Rankine cycle generation of electricity

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1546326A (fr) * 1966-12-02 1968-11-15 Générateur d'énergie perfectionné, particulièrement pour créer une énergie enutilisant un réfrigérant
GB1214499A (en) 1966-12-02 1970-12-02 Gohee Mamiya A system for generating power
US3972195A (en) * 1973-12-14 1976-08-03 Biphase Engines, Inc. Two-phase engine
US4009575A (en) * 1975-05-12 1977-03-01 said Thomas L. Hartman, Jr. Multi-use absorption/regeneration power cycle
FR2374539A1 (fr) * 1976-12-15 1978-07-13 Air Ind Procede de compression de vapeur d'eau, et circuits thermiques pour sa mise en oeuvre
US4295335A (en) * 1978-01-09 1981-10-20 Brinkerhoff Verdon C Regenative absorption engine apparatus and method
DE2803118B2 (de) * 1978-01-25 1980-07-31 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Verfahren zur Beheizung mit einer Absorptionswärmepumpenanlage und Vorrichtung zur Durchführung des Verfahrens
US4195485A (en) * 1978-03-23 1980-04-01 Brinkerhoff Verdon C Distillation/absorption engine
US4307572A (en) * 1978-05-15 1981-12-29 New Energy Dimension Corporation Externally cooled absorption engine
US4429661A (en) * 1981-11-27 1984-02-07 Mcclure Michael C Heat recovery apparatus and method
US4534175A (en) * 1982-03-11 1985-08-13 Gason Energy Engineering Ltd. Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles
DE3219680A1 (de) * 1982-05-21 1983-11-24 Siemens AG, 1000 Berlin und 8000 München Waermepumpenanlage
DE3417833A1 (de) * 1984-05-14 1985-11-14 VEB Wärmeanlagenbau "DSF" im VE Kombinat Verbundnetze Energie, DDR 1020 Berlin Anordnung fuer eine resorptionswaermepumpenanlage zur erzeugung von heizwaerme aus industrie- und umweltwaerme
JPS61171811A (ja) 1985-01-28 1986-08-02 Sanyo Electric Co Ltd 動力取出し用吸収ヒ−トポンプ装置
US4622820A (en) * 1985-09-27 1986-11-18 Sundquist Charles T Absorption power generator
JPH0696978B2 (ja) * 1985-12-03 1994-11-30 トヨタ自動車株式会社 過給機付内燃機関
US4848088A (en) * 1987-12-03 1989-07-18 Lazarevich Milan P M Heat recycling process
US5027602A (en) * 1989-08-18 1991-07-02 Atomic Energy Of Canada, Ltd. Heat engine, refrigeration and heat pump cycles approximating the Carnot cycle and apparatus therefor
US5791157A (en) * 1996-01-16 1998-08-11 Ebara Corporation Heat pump device and desiccant assisted air conditioning system
DE19712325A1 (de) * 1997-03-24 1998-10-15 Wilhelm Holzapfel Anlage zur Umwandlung thermischer Energie niedrigen Niveaus in mechanische Energie
KR20010002901A (ko) * 1999-06-18 2001-01-15 김창선 물질 열팽창에너지 재활용 방법
GB0007917D0 (en) * 2000-03-31 2000-05-17 Npower An engine
HU0100463D0 (en) * 2001-01-29 2001-03-28 Szopko Mihaly Method and device for absorption heat pumping
DE10214183C1 (de) * 2002-03-28 2003-05-08 Siemens Ag Kraftwerk zur Kälteerzeugung
US7019412B2 (en) * 2002-04-16 2006-03-28 Research Sciences, L.L.C. Power generation methods and systems
DE10221145A1 (de) * 2002-05-11 2003-11-20 Juergen Uehlin Wärmekraftmaschine mit interner Wärmesenke
US7028476B2 (en) * 2004-05-22 2006-04-18 Proe Power Systems, Llc Afterburning, recuperated, positive displacement engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1301214A (en) * 1970-05-26 1972-12-29 Wallace Louis Minto Prime mover system
WO1985002881A1 (en) * 1983-12-22 1985-07-04 Lipovetz Ivan System for converting heat energy, particularly for utilizing heat energy of the environment
DE3619547A1 (de) * 1984-12-13 1987-12-17 Peter Koch Verfahren und einrichtung zur erzeugung einer kraft aus einer temperaturdifferenz zweier medien
US20030172654A1 (en) * 2002-03-14 2003-09-18 Paul Lawheed Rankine cycle generation of electricity

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128423A2 (de) * 2005-06-02 2006-12-07 Lutz Giechau Verfahren und vorrichtung zur erzeugung mechanischer energie
WO2006128423A3 (de) * 2005-06-02 2008-04-10 Lutz Giechau Verfahren und vorrichtung zur erzeugung mechanischer energie
WO2007131943A3 (de) * 2006-05-16 2008-09-18 Ecoenergy Patent Gmbh Umwandlung von wärme in mechanische energie mit verwendung eines strahlverdichters
US8196406B2 (en) 2006-05-16 2012-06-12 Ecoenergy Patent Gmbh Conversion of heat into mechanical energy by means of a jet compressor
AU2007251575B2 (en) * 2006-05-16 2012-12-13 Ecoenergy Patent Gmbh Conversion of heat into mechanical energy by means of a jet compressor
WO2009030283A2 (de) * 2007-08-31 2009-03-12 Siemens Aktiengesellschaft Verfahren und vorrichtung zur umwandlung der wärmeenergie einer niedertemperatur-wärmequelle in mechanische energie
WO2009030283A3 (de) * 2007-08-31 2010-03-18 Siemens Aktiengesellschaft Verfahren und vorrichtung zur umwandlung der wärmeenergie einer niedertemperatur-wärmequelle in mechanische energie
WO2009140944A2 (de) * 2008-05-17 2009-11-26 Hamm & Dr. Oser Gbr Umwandlung der druckenergie von gasen und dämpfen bei niedrigen ausgangsdrücken in mechanische energie
WO2009140944A3 (de) * 2008-05-17 2012-08-09 Hamm & Dr. Oser Gbr Umwandlung der druckenergie von gasen und dämpfen bei niedrigen ausgangsdrücken in mechanische energie
DE102012016991A1 (de) 2012-08-25 2014-02-27 Erwin Oser Energieeffizientes Entspannungsaggregat
DE102013112024A1 (de) * 2013-10-31 2015-04-30 ENVA Systems GmbH Drehkolbengebläse mit einem Dichtsystem

Also Published As

Publication number Publication date
DE502004004776C5 (de) 2020-01-16
EP1706599A1 (de) 2006-10-04
ES2293384T3 (es) 2008-03-16
WO2005066465A1 (de) 2005-07-21
US20080289336A1 (en) 2008-11-27
EP1706599B1 (de) 2017-02-15
WO2005061973A1 (de) 2005-07-07
US20080134680A1 (en) 2008-06-12
EP1706598A1 (de) 2006-10-04
EP1706681A1 (de) 2006-10-04
ATE371101T1 (de) 2007-09-15
EP1702139A1 (de) 2006-09-20
WO2005066466A1 (de) 2005-07-21
WO2005061857A1 (de) 2005-07-07
EP1706598B1 (de) 2013-10-16
US7726128B2 (en) 2010-06-01
ES2624638T3 (es) 2017-07-17
US8132413B2 (en) 2012-03-13
EP1702140B1 (de) 2007-08-22
DE502004004776D1 (de) 2007-10-04
EP1702140A1 (de) 2006-09-20

Similar Documents

Publication Publication Date Title
EP1702140B1 (de) Verfahren zur umwandlung von wärmeenergie in mechanische energie mit einer niederdruck-entspannungsvorrichtung
DE69932766T2 (de) Methode zum Vorwärmen von Brennstoff für eine Gasturbine in einem Kombikraftwerk mit einer Strömung von Mehrkomponentenmischungen
EP2188499B1 (de) Verfahren und vorrichtung zur umwandlung der wärmeenergie einer niedertemperatur-wärmequelle in mechanische energie
DE69935087T2 (de) Einlassluftkühlung für Gas-Dampf Kombikraftwerk
DE102007009503B4 (de) Mehrstufiger ORC-Kreislauf mit Zwischenenthitzung
EP1613841B1 (de) Verfahren und vorrichtung zur ausführung eines thermodynamischen kreisprozesses
WO2009027302A2 (de) Verfahren und vorrichtung zur umwandlung thermischer energie in mechanische energie
EP2021634B1 (de) Anlage und assoziiertes verfahren zur umwandlung von wärmeenergie in mechanische, elektrische und/oder thermische energie
WO2005014981A1 (de) Verfahren und vorrichtung zur ausführung eines thermodynamischen kreisprozesses
CH675749A5 (de)
WO2007042215A1 (de) Verfahren und vorrichtung zur gewinnung von mechanischer oder elektrischer energie aus wärme
WO2008055720A2 (de) Arbeitsmedium für dampfkreisprozesse
DE202004021185U1 (de) Entspannungsvorrichtung zur Umwandlung von Wärmeenergie in mechanische Energie mit einer Niederdruck-Entspannungsvorrichtung
DE102004040730B3 (de) Verfahren und Vorrichtung zum Nutzen von Abwärme
WO2008031613A2 (de) Stromerzeugung im grundlastbereich mit geothermischer energie
WO1999025955A1 (de) Wärmekraftmaschine mit verbessertem wirkungsgrad
DE102022127011A1 (de) Wärmepumpenvorrichtung zum energieeffizienten Erzeugen einer Prozesswärme, Trocknervorrichtung zum Trocknen eines zu trocknenden Gutes und Verfahren zum Betreiben einer Wärmepumpenvorrichtung
DE2803953A1 (de) Verfahren zur verbesserung des wirkungsgrades bei dampfkraftmaschinen
DE4243569A1 (en) Efficient steam-raising process for thermally operated power station - has additional water circulation for reclamation of latent heat of condensation to assist steam generation and eliminate cooling towers
DE102012024023B4 (de) Verfahren und Vorrichtung zum Umwandeln thermischer Energie aus einer Niedertemperatur-Wärmequelle
DE102004030367A1 (de) Stromgewinnung aus der Kondensatorabwärme einer Anlage zur Wassergewinnung aus Luft mittels Kondensation zur anteiligen Deckung des Energiebedarfs
DE10360379A1 (de) Niederdruck-Entspannungsmotor auf der Basis von Rootsgebläsen
DE10361203A1 (de) Niederdruck-Entspannungsmotor mit Energierückführung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004816348

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3652/DELNP/2006

Country of ref document: IN

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004816348

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10583925

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004816348

Country of ref document: EP