Zündspule
Stand der Technik
Die Erfindung geht von einer Zündspule einer Zündanlage einer Brennkraftmaschine gemäß der im Oberbegriff des Patentanspruches 1 näher definierten Art aus.
Eine derartige Zündspule ist aus der Praxis bekannt und dient insbesondere zur Ansteuerung einer Zündkerze einer nach dem Otto-Prinzip arbeitenden Kraftfahizeugbrennkraftmaschine. Die Zündspule bildet einen Energiespeicher und Transformator, mittels dessen elektrische Energie einer vergleichsweise niedrigen Versorgungsspannung, die in der Regel durch ein Gleichspannungsbordnetz des betreffenden Kraftfahrzeuges bereitgestellt wird, in magnetische Energie umgewandelt wird, welche zu einem gewünschten Zeitpunkt, zu dem ein Zündimpuls an die zu einer Zündung eines Kraftstoffgemisches im Brennraum der Brennkraftmaschine dienenden Zündkerze abgegeben werden soll, in einen Hochspannungsimpuls umgesetzt wird.
Die bekannte Zündspule umfasst ein Gehäuse, in dem ein magnetisch wirksamer Kern aus ferromagnetischem Material, beispielsweise aus Eisen, angeordnet ist. Der Kern ist von einer ersten, mit einer Versorgungsspannung verbundenen, so genannten Primärwicklung und einer zweiten, mit einem Hochspannungsanschluss der Zündspule verbundenen, so genannten
Sekundärwicklung umschlossen. Die beiden Wicklungen sind üblicherweise aus Kupferdraht gefertigt.
Zur Umwandlung der von dem Gleichspannungsbordnetz des Kraftfahrzeuges gelieferten Spannung in eine Hochspannung fließt durch die Primärwicklung ein Strom, durch den ein diese Wicklung umgebendes, geschlossenes und eine bestimmte Richtung aufweisendes Magnetfeld entsteht. Um die gespeicherte elektrische Energie in Form von Hochspannungsimpulsen abzugeben, wird der elektrische Strom abgeschaltet, so dass das aufgebaute Magnetfeld zu einer Richtungsänderung gezwungen wird. Dadurch resultiert in der Sekundärwicklung, welche nahe an der Primärwicklung ausgebildet ist und eine sehr viel größere Windungszahl als die Sekundärwicklung aufweist, eine elektrische Hochspannung. Durch Umsetzung der nun elektrischen Energie an der Zündkerze bricht das zuvor ausgebildete Magnetfeld zusammen. Die Zündspule entlädt sich. In Abhängigkeit von der Auslegung der Sekundärwicklung können die Hochspannung, ein Funkenstrom und eine Funkendauer bei der Zündung des in den Brennraum der Brennkraftmaschine eingespeisten Kraftstoffgemisches den jeweiligen Anforderungen angepasst werden.
Zur Gewährleistung der Funktion der Zündspule ist es erforderlich, dass die in ihr generierte Hochspannung gegen andere elektrisch leit ahige Teile isoliert ist. Die elektrische Isolierung der Sekundär- bzw. Hochspannungswicklung erfolgt in der Regel mittels elektrisch isolierender Materialien und/oder durch Luftspalte zu anderen elektrisch leitfahigen Teilen. Wenn eine derartige Isolierung unzureichend ist, kann es zu einem so genannten elektrischen Nebenschluss bzw. zu einem elektrischen Durchschlag von der Hochspannungswicklung zu einem anderen elektrisch leitfähigen Bauteil der Zündspule kommen. Dies hat zur Folge, dass am Hochspannungsanschluss der Zündspule nur noch eine reduzierte Hochspannung zur
Verfügung steht, die im Allgemeinen zur Durchführung eines zuverlässigen Zündvorgangs an der Zündkerze nicht mehr ausreicht.
Hinsichtlich eines elektrischen Durchschlags kritische Bauteile der Zündspule können die Wicklungen und insbesondere Bestandteile des magnetisch wirksamen Kerns sein. Der Kern liegt in der Regel auf Masse, so dass zwischen der auf Hochspannung liegenden Sekundär-
wicklung und dem magnetisch wirksamen Kern eine große elektrische Potenzialdifferenz gegeben ist.
Das Risiko eines elektrischen Durchschlages ist nicht allein durch die Potenzialdifferenz sondern auch durch die elektrische Feldstärke bestimmt, die zwischen der
Hochspannungs wicklung und dem jeweiligen elektrisch leitfähigen Bauteil anliegt. Die elektrische Feldstärke ist stark abhängig von den vorliegenden geometrischen Bedingungen. Insbesondere eckige oder sogar spitze Oberflächenkonturen des jeweiligen Bauteils führen physikalisch bedingt zu lokalen Feldstärkeerhöhungen, welche wiederum einen elektrischen Durchschlag begünstigen. Ecken, Spitzen oder auch Kanten an elektrisch leitfähigen Teilen, die im Einflussbereich der Hochspannung angeordnet sind, stellen bei einer Zündspule also ein potenzielles Risiko hinsichtlich eines elektrischen Durchschlages dar.
Der magnetisch wirksame Kern besteht üblicherweise aus gestanzten Einzelblechen, die zu einem Stapel bestimmter Höhe paketiert sind. Dadurch hat der Stapel insbesondere an seinen Flanken zahlreiche eckige bzw. spitze Unebenheiten, die beim Betrieb der Zündspule zu starken Feldüberhöhungen und dadurch zu einem Durchschlag führen können. Um elektrische Durchschläge zu vermeiden, wurden bisher entsprechend große Isolationsabstände eingehalten oder, wenn möglich, entsprechend gute Isolationsmaterialien eingesetzt.
Der Erfindung liegt die Aufgabe zugrunde, eine Zündspule der einleitend genannten Art zu schaffen, bei der trotz Vorliegens einer rauen Oberfläche an einem elektrisch leitfähigen Bauteil ein geringes Risiko eines elektrischen Durchschlags besteht und die mit einer geringen Baugröße realisierbar ist.
Vorteile der Erfindung
Die erfindungsgemäße Zündspule einer Zündanlage einer Brennkraftmaschine mit den Merk- malen nach dem Oberbegriff des Patentanspruches 1, bei welcher Zündspule zumindest ein elektrisch leitendes Bauteil zumindest bereichsweise mit einem Mittel zum elektrisch wirksamen Einebnen seiner Oberfläche versehen ist, hat den Vorteil, dass konstruktionsbedingte,
einen elektrischen Durchschlag begünstigende Unebenheiten, wie Ecken, Kanten, Grate oder dergleichen, an dem elektrisch leitenden Bauteil ausgeglichen sind und die Gefahr eines elektrischen Durchschlags minimiert ist. Dadurch kann gegenüber dem Stand der Technik bei einer konstanten Potenzialdifferenz zwischen diesem Bauteil und einem hochspannungs- führenden Bauteil der Abstand verringert werden, was geringere Baugrößen der Zündspule zulässt. Alternativ kann auch bei gleichem Abstand eine größere Potenzialdifϊerenz zwischen einem hochspannungsführenden Bauteil und dem mit dem Mittel zum elektrisch wirksamen Einebnen seiner Oberfläche versehenen Bauteil erreicht werden, was wiederum zu einer Leistungsverbesserung der Zündspule führt.
Bei einer bevorzugten Ausführungsform der Zündspule nach der Erfindung ist das Mittel zum elektrisch wirksamen Einebnen der Oberfläche des elektrisch leitenden Bauteils aus einer elektrisch leitfähigen Umhüllung gebildet, die eine glatte Oberfläche hat. Diese Umhüllung ist ein einfach aufzubringendes Mittel, um eine raue Oberfläche des elektrisch leitenden Bauteils, d. h. dessen Unebenheiten, in elektrisch wirksamer Weise zu verdecken bzw. abzuschirmen. Die Umhüllung reduziert also durch Unebenheiten des elektrisch leitenden Bauteils entstehende Feldstärkeüberhöhungen deutlich. Dadurch ist auch das Risiko eines elektrischen Durchschlags zwischen einem hochspannungsfuhrenden Bauteil und dem mit der Umhüllung versehenen Bauteil herabgesetzt.
Die elektrisch leitfähige Umhüllung ist gegebenenfalls nur in denjenigen Bereichen des elektrisch leitenden Bauteils ausgebildet, die Unebenheiten aufweisen und somit die Gefahr von Durchschlägen bergen.
Die Umhüllung besteht beispielsweise aus einem elektrisch leitfähigen Kunststoff, der auf das betreffende elektrisch leitende Bauteil aufgespritzt ist oder als separates Teil auf das elektrisch leitende Bauteil aufgesetzt ist. Es muss stets gewährleistet sein, dass die Umhüllung und das elektrisch leitende Bauteil miteinander kontaktiert sind.
Die Umhüllung aus dem elektrisch leitfähigen Kunststoff hat beispielsweise eine Dicke zwischen 0,1 mm und 1 mm und vorzugsweise von 0,5 mm.
Insbesondere ist das elektrisch leitende Bauteil der magnetisch wirksame Kern der Zündspule, der in der Regel aus einem Blechpaket gebildet ist, das aus gestanzten Einzelblechen aufgebaut ist und mithin an seinen Flanken Ecken, Kanten, Grate oder dergleichen aufweisen kann.
Die Zündspule nach der Erfindung ist beispielsweise als Kompaktzündspule ausgebildet, die einen so genannten I-Kern und einen so genannten Umfangskern bzw. O-Kern aufweist, der mit dem I-Kern einen magnetischen Kreis bildet und die Anordnung aus der Primärwicklung und der Sekundärwicklung umschließt. In diesem Fall kann das mit dem Mittel zum Einebnen der Oberfläche versehene Bauteil der I-Kern und/oder der Umfangskern sein.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes nach der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.
Zeichnung
Zwei Ausf hrungsbeispiele einer Zündspule nach der Erfindung sind in der Zeichnung schematisch vereinfacht dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine Draufsicht auf eine Zündspule nach der Erfindung; Figur 2 einen Schnitt durch die Zündspule nach Figur 1 entlang der Linie II-II in Figur 1; und Figur 3 eine ausschnittsweise, allgemeine Schnittdarstellung durch eine Zündspule.
Beschreibung der Ausführungsbeispiele
In den Figuren 1 und 2 ist eine Zündspule 10 einer ansonsten nicht näher dargestellten Zündanlage einer als Otto-Motor ausgelegten Brennkraftmaschine eines Kraftfahrzeuges dargestellt. Die Zündspule 10 dient zur Versorgung einer hier ebenfalls nicht näher dargestellten Zündkerze mit Hochspannungsimpulsen, so dass ein im Brennraum der
Brennkraftmaschine enthaltenes Luft Kraftstofϊ-Gemisch entzündet werden kann.
Die Zündspule 10 stellt eine Kompaktzündspule dar und umfasst ein aus einem elektrisch isolierenden Kunststoff gefertigtes Gehäuse 12, in dem in zentraler Lage ein weichmagnetischer, quaderfbrmiger I-Kern 14 angeordnet ist.
Der magnetisch wirksame I-Kern 14 ist von einem aus Gießharz bestehenden Isolator 16 umgeben, der als Spulenkörper für eine aus Kupferdraht gebildete, so genannte Primärwicklung 18 dient, die über einen Niederspannunganschluss 20 mit einem Gleichspannungsnetz des Kraftfahrzeuges verbunden ist und so mit einer Gleichspannung von beispielsweise 12 V versorgt werden kann.
Die Primärwicklung 18 ist wiederum von einem Spulenköφer 22 umgeben, der als Träger für eine so genannte Sekundärwicklung 24 dient, die im Betrieb auf Hochspannung liegt und mit einem Hochspannungsanschluss 26 verbunden ist, der zur Verbindung mit einer Zündkerze dient.
Der I-Kern 14, der Spulenkörper 16, die Primärwicklung 18, der Spulenköφer 22 und die Sekundärwicklung 24 bilden eine Baueinheit, die zur Fixierung in dem Gehäuse 12 in hier nicht näher dargestellter Weise in Gießharz eingegossen ist.
In Höhe des I-Kerns 14 ist das Gehäuse 12 von einem so genannten O-Kern bzw.
Umfangskern 28 umgeben, der aus einem Blechpaket, d. h. geschichtetem Eisenblech, gebildet ist und mit dem I-Kern 14 zur Bildung eines magnetischen Kreises verbunden ist. Der O-Kern hat an seiner dem Niederspannungsanschluss 20 äbgewandten Seite ein so genanntes Anschraubauge 30, das zur Massekontaktierung dient.
An seiner Innenseite, d. h. an seiner der Sekundärwicklung 24 zugewandten Seite ist der O- Kern 28 mit einer aufgespritzten, elektrisch leitfähigen Kunststofrumhüllung 31 versehen, die über eine glatte Oberfläche an das Gehäuse 12 grenzt und als Mittel zum elektrisch wirksamen Einebnen der innenseitigen Oberfläche des ein Blechpaket darstellenden O-Kerns 28 dient. Die Umhüllung 31 hat eine Dicke von etwa 0,5 mm.
Figur 3 zeigt eine schematische, allgemeine Darstellung der Verhältnisse bei einer erfindungsgemäßen Zündspule 32 und verdeutlicht die durch eine Kunststoffumhüllung entstehende "elektrische Einebnung" der ansonsten durch die Kanten des Eisenkerns entstehenden Feldüberhöhungen, durch die das Risiko eines elektrischen Durchschlags sehr viel höher wäre. Eine derartige Kunststofrumhüllung kann bei Kompaktzündspulen, aber auch beispielsweise bei Stabzündspulen eingesetzt werden.
Die Zündspule 32 weist einen magnetisch wirksamen Eisenkern 37 auf, der aus einem Blechpaket gebildet ist. Der Eisenkern 37 hat eine mit Kanten ausgebildete Flanke 33 und ist von einer aus elektrisch leitfähigem Kunststoff bestehenden Umhüllung 34 umschlossen, die eine glatte Oberfläche hat und ein Mittel zum elektrisch wirksamen Einebnen der Flanke 33 darstellt. Im Bereich der Ecken des Eisenkerns 37 ist die Umhüllung 34 mit Radien versehen. Der Eisenkern 37 und die Umhüllung 34 sind wiederum in einem Isoliermaterial 35 eingebettet, das beispielsweise aus Gießharz besteht
Der Eisenkern 37 wirkt mit einer Sekundär- bzw. Hochspannungswicklung 36 zusammen, von der in Figur 3 die äußere Wickellage dargestellt ist und die mit einem Hochspannungs- anschluss verbunden ist, sowie einer Niederspannungs- bzw. Primärwicklung zusammen, die in Figur 3 nicht näher dargestellt ist und mit einem Niederspannungsanschluss verbunden ist.