WO2005054035A1 - Überlagerungslenkung für ein fahrzeug - Google Patents

Überlagerungslenkung für ein fahrzeug Download PDF

Info

Publication number
WO2005054035A1
WO2005054035A1 PCT/EP2004/013710 EP2004013710W WO2005054035A1 WO 2005054035 A1 WO2005054035 A1 WO 2005054035A1 EP 2004013710 W EP2004013710 W EP 2004013710W WO 2005054035 A1 WO2005054035 A1 WO 2005054035A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
gear
input shaft
shaft
transmission
Prior art date
Application number
PCT/EP2004/013710
Other languages
English (en)
French (fr)
Inventor
Andreas Kruttschnitt
Arthur Rupp
Original Assignee
Zf Lenksysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20030028023 external-priority patent/EP1431161B1/de
Application filed by Zf Lenksysteme Gmbh filed Critical Zf Lenksysteme Gmbh
Priority to KR1020067010968A priority Critical patent/KR101203808B1/ko
Priority to CA002548609A priority patent/CA2548609A1/en
Priority to JP2006541897A priority patent/JP4699381B2/ja
Priority to US10/581,976 priority patent/US7905317B2/en
Priority to DE502004005297T priority patent/DE502004005297D1/de
Priority to EP04819648A priority patent/EP1689632B1/de
Publication of WO2005054035A1 publication Critical patent/WO2005054035A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/008Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • B62D5/0415Electric motor acting on the steering column the axes of motor and steering column being parallel the axes being coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • F16C2326/24Steering systems, e.g. steering rods or columns

Definitions

  • the invention relates to a superimposed steering system for a vehicle, in particular a power steering system or auxiliary power steering system for a motor vehicle according to the preamble of claim 1.
  • Superposition steering systems are known and are characterized in that the steering angle selected by a driver of a vehicle on a steering handle can be superimposed by an actuator if necessary.
  • the additional angle of rotation is controlled by an electronic control and / or regulating device and serves to increase the driving stability of the vehicle or for other purposes.
  • a planetary gear as a superposition gear
  • a steering shaft which is connected to a first transmission input shaft, being axially interrupted and by one Steps planet, which moves around sun gears of the steering shaft parts, is rotatably connected.
  • the planetary stages are supported in a planet carrier.
  • the planet gear carrier is in turn movable with a screw or worm gear around the steering shaft and its sun gears, the rotational movement of the planet gear carrier being carried out with the aid of a screw or worm on a second gear input shaft of the superposition gear.
  • Such superposition gears have a large number of meshes. This results in a gear play that can result in an undesirable steering play.
  • the described superposition gears with servo motors are also technically relatively complex and expensive.
  • DE 102 20 123 A1 discloses a superimposed steering system, a servo-electric motor drive being integrated in a steering column shaft which connects a steering wheel to a steering gear.
  • the servo-electric motor drive has a housing which is connected to a first section of the steering column shaft and a drive shaft which is connected to a second section of the steering column shaft.
  • the first section of the steering column shaft is connected to a steering wheel and the second section to the steering gear or vice versa.
  • the drive shaft is rotatable relative to the housing of the servo-electromotive drive in order to generate an additional angle of rotation.
  • Superposition steering systems which have a corrugated or pulsator transmission as a superposition gear.
  • the servo motor of such a wave gear supports its torque on the steering column.
  • these wave gears require a stable housing in order to transmit the torque and the angle of rotation on the steering handle to the transmission output shaft of the superposition gear.
  • the invention has for its object to provide a backlash-free steering for a vehicle that is free of play, comfortable to use and simple in construction, the space requirement of which is minimized.
  • the superposition gear can be designed without a housing in that the torque and the angle of rotation on the steering handle and the first transmission input shaft are transmitted directly to the radially flexible rolling bushing of the wave gear via a detachable connection.
  • the first gear input shaft penetrates an eccentric, preferably elliptical drive core of the shaft gear, which projects in the radial direction in a cam shape into the radially flexible rolling bushing and is connected in a rotationally fixed manner to the second gear input shaft and the servo motor.
  • the wave gear has a first gear input shaft which is connected in a rotationally fixed manner to the steering shaft and the steering handle of the vehicle.
  • the second transmission input shaft is designed as a hollow shaft which is driven by the servo motor.
  • the second transmission input shaft is non-rotatably connected to the eccentric, in particular elliptical drive core of the wave transmission.
  • the Eccentric drive core engages axially in the radially flexible roll-off bushing (flex-spline) of the wave gear, one or more peripheral sections of an outer circumferential surface of the radially flexible roll-off bushing being in constant alternation with a substantially cylindrical support surface of a support ring connected non-rotatably to the transmission output shaft.
  • the steering shaft is thus separated in the axial region of the support ring of the wave transmission into a first transmission input shaft, which is non-rotatably connected to the steering handle, and a transmission output shaft, which is non-rotatably connected to the support ring.
  • the transmission output shaft is fixedly connected to the support ring and can be rotatably arranged in a frame or housing of the wave transmission. In this way it is possible to rotate the transmission output shaft relative to the first transmission input shaft, whereby a positive or negative steering angle can be entered into the steering shaft in addition to the steering angle entered by the driver on the steering handle.
  • the first gear input shaft is detachably connected to the eccentric roll-off bushing to facilitate the assembly of the shaft gear and to be able to quickly replace individual components.
  • This also has the advantage that the individual components of the wave gear can be made of different materials and known manufacturing processes for the components remain applicable.
  • the torque of the servo motor is supported on a component of the steering system or vehicle which is fixed to the vehicle and which is not the steering column itself.
  • the radially flexible roll-off bushing is preferably detachably fixed to the first transmission input shaft in a form-fitting manner for easy assembly and possible maintenance-related disassembly with the aid of a connecting element, such as a screw bolt.
  • a clutch disc which causes a non-rotatable positive connection, is arranged or clamped.
  • the clutch disc engages with locking elements in a form-fitting manner in the first transmission input shaft and the radially flexible rolling bush.
  • the eccentric drive core which is non-rotatably connected to a shaft of the servo motor, is rotatably supported on its axial ends on the first transmission input shaft via roller bearings.
  • the eccentric drive core is radial between the first transmission input shaft and the radially flexible rolling bush arranged and radially compact as possible to reduce the space requirement of the steering system.
  • the eccentric drive core preferably engages axially over a large part in the radially flexible rolling bush and in the preferably bell-shaped support ring. This results in an axially and radially compact design of the wave gear and the steering system.
  • the eccentric drive core rolls with a flexible ball bearing in the radially flexible roll-off bushing and deforms it in continuous change.
  • one or more circumferential sections of the outer circumferential surface of the radially flexible rolling bush come into engagement with an essentially cylindrical support surface of the support ring.
  • the support ring (circular spline) radially surrounds the rolling bushing.
  • the support ring rotates about this length difference and thus the gearbox output shaft, which is connected in a rotationally fixed manner to the support ring, which in turn is connected to the input shaft of the steering gear.
  • An additional steering angle in a positive or negative direction to the steering angle entered on the steering handle can be applied with great precision to the support ring and the transmission output shaft.
  • one or more rolling bearings are axially preloaded on the first transmission input shaft.
  • the axial preload is preferably carried out with a plate spring, which is axially supported on an outer or inner ring of the rolling bearing and on the clutch disc.
  • a bearing is preferably designed as a needle sleeve.
  • a positively releasable bearing journal preferably engages in the bearing at the axial end of the first transmission input shaft.
  • the bearing pin has a width across flats or a possibility of engagement for a tool, such as a hexagon socket, which deviates from the circular shape, and thus simultaneously forms the fastening element for positively releasable fixing of the clutch disc and the radially flexible rolling bushing on the first transmission input shaft.
  • a tool such as a hexagon socket
  • the gear can be designed as a gear transmission, such as a spur gear, a worm gear, a screw gear or a bevel gear.
  • the eccentric drive core can preferably be formed integrally at one axial end with a gear wheel of the transmission.
  • the transmission can also be designed as a traction mechanism transmission with all suitable and known traction means, such as toothed belts, V-belts, chains, etc., wherein the eccentric drive core can be formed in one piece with a belt pulley or a chain wheel.
  • the servo motor can also be expedient to design the servo motor as a hollow shaft motor, a rotor of the servo motor being arranged so as to be rotatable about the steering shaft.
  • the hollow shaft of the servo motor can be formed in one piece with the eccentric drive core and end with it in the radially flexible rolling bush.
  • the servomotor is controlled by a control and / or regulating device, the control and / or regulating device being connected on the input side to a sensor for determining the steering torque, the steering angle and / or with a sensor for determining the angle of rotation of the steering handle. It can be expedient to design the sensors as contactless sensors and to design the steering system as parameter-controlled servo or power steering.
  • the servo motor, the control and / or regulating device, the wave gear and the sensors for determining the angle of rotation and torque of the steering handle are preferably combined in one housing.
  • the individual components can be arranged separately and shielded from one another in the housing.
  • the entire structure of the superimposed steering enables the power and / or signal line between the components of the steering system to be possible without additional current-carrying devices, such as grinders or coil springs or the like. This increases the operational safety of the steering system.
  • the wave gear is preferably predominantly made of steel, at least the radially flexible rolling bushing and the drive core are made of this material. It can also be expedient to form components of the wave gear from a non-metal or non-ferrous metal material.
  • the engagement of the outer jacket The area of the radially flexible roll-off bushing in the cylindrical support surface of the support ring (circular spline) can be positive or non-positive. It may be expedient to provide the outer circumferential surface of the radially flexible roll-off bush with external teeth and the cylindrical support surface of the support ring with internal teeth for positive engagement.
  • the internally toothed support ring has a larger number of teeth than the outer circumferential surface of the radially flexible roll-off bushing, which is in engagement with the inner toothing of the support ring with at least two diametrically opposed peripheral sections of its external toothing. Due to the rotation of the eccentric or elliptical drive core in the radially flexible roll-off bush, all teeth of the external toothing of the radially flexible roll-off bush are successively brought into engagement with the teeth of the inner toothing of the support ring with each revolution, whereby the support ring rotates with the transmission output shaft by the difference in the number of teeth.
  • a gear stage of the wave gear ratios in the slow range of about 1:20 to 1: 600 can be achieved, with several gear stages being switchable in series.
  • the superposition gear is expediently arranged between a steering valve and the steering gear or between the steering handle and the steering valve.
  • the superposition gear is preferably arranged between a steering torque sensor and the steering gear or between the steering handle and the steering gear.
  • FIG. 1 shows a view and a partial longitudinal section through an overlay steering system according to the invention
  • FIG. 2 shows a longitudinal section through a wave gear of the superimposed steering in FIG. 1,
  • FIG. 4 shows a detail IV in FIG. 3.
  • a superimposed steering system 1 which is designed as an active steering, for a vehicle is shown in a view and a partial longitudinal section.
  • the superimposed steering 1 is an electric superimposed steering system consisting of a servo motor 10, which is supported on a component 17 which is fixed to the vehicle and which is not the steering column of the vehicle, a steering shaft 8 which is connected in a rotationally fixed manner to a steering handle 9, and a superimposed gear 4 which is used as a wave gear 11 is formed and an input shaft 6 for a steering gear 7 is formed.
  • the steering gear 7 can be part of an electric or hydraulic power steering system.
  • the steering gear 7 consists of a helical toothed pinion 37 which is arranged at an axial end of the input shaft 6 and an axially displaceable toothed rack 38 with which the pinion 37 meshes.
  • the rack 38 is articulated in a known manner with track levers on steerable wheels, not shown, of the vehicle.
  • the servo motor shaft 32 of the servo motor 10 is connected to the wave gear 11 via a gear 29, which is designed as a traction mechanism gear 30.
  • the servo motor 10 provides an additional steering angle to the wave gear 11, whereby in the embodiment shown in FIGS. 1 and 2 a toothed belt 39 transmits the torque and the speed of the servo motor 10 to a pulley 31 of the wave gear 11.
  • the pulley 31 is part of the transmission 29 and is formed in one piece with a second transmission input shaft 3 and an eccentric, preferably elliptical drive core 12.
  • the drive core 12 is on its axial region immediately following the pulley 31 is elliptical.
  • a flexible ball bearing 40 is mounted around its elliptical circumference.
  • the drive core 12 engages with its axial extension from the pulley 31 into a cup-shaped, radially flexible roll-off bushing 13 (flex-spline) made of elastic steel sheet.
  • the drive core 12 is rotatably arranged on the first transmission input shaft 2 via roller bearings 20, 20 'arranged at each of its axial ends 21, 21', which are formed as a groove ball bearing.
  • the radially flexible rolling bushing 13 has an outer circumferential surface 14 which has an external toothing 35 in the axial region of the ball bearing 40.
  • the external toothing 35 engages under the effect of the elliptical widening of the rolling bush 13 with two circumferential sections 41 in an internal toothing 36 on a cylindrical support surface 15 of a support ring 16 (circular-spline) connected to the input shaft 6 and a gearbox output shaft 5 of the shaft gear 11 in a rotationally fixed manner.
  • the support ring 16 is fixed concentrically to the longitudinal axis 42 of the steering shaft 8 on the input shaft 6 of the steering gear 7 or the transmission output shaft 5.
  • the internally toothed support ring 16 has a larger number of teeth than the radially flexible rolling bush 13, whereby the support ring 16 is rotated per revolution of the drive core 12 by the difference in the number of teeth.
  • the wave gear 11 For the cost-effective representation and assembly of the wave gear 11, it is designed so functionally that it can be built without a housing, although it is expedient to arrange it in a housing 43 on the steering gear 7 (cf. FIGS. 3, 4).
  • the steering shaft 8 is separated in the axial region x of the support ring 16 and into a first transmission input shaft 2, which is connected in a rotationally fixed manner to the steering handle 9 and at the other end of which the drive core 12 and the radially flexible rolling bushing 13 are arranged, as well as in a transmission output shaft 5 which is rotatably connected to the support ring 16 and the input shaft 6, divided.
  • the transmission output shaft 5 can be rotated relative to the first transmission input shaft 2 by the wave transmission 11 and a steering angle dependent on driving and vehicle parameters can be input into the steering shaft 8 in front of the steering transmission 7.
  • the first transmission input shaft 2 is positively and detachably connected to the radially flexible roll-off bushing 13 for easier assembly, for possible simple replacement of parts of the shaft transmission 11 and to be able to manufacture the parts of the shaft transmission with known manufacturing methods from different materials.
  • the torque transmission from the first transmission input shaft 2 to the radially flexible roll-off bush 13 is carried out by a clutch disc 19, which projects into the radially flexible roll-off bush 13 and the first transmission input shaft 2 with the aid of latching elements.
  • the clutch disc 19 is detachably fixed on the end face of the first transmission input shaft 2, which projects into the support ring 16, with a connecting element 18, which is designed as a screw bolt and projects into the first transmission input shaft 2.
  • a plate spring 24 is clamped axially between an inner ring 23 of the roller bearing 20 and an annular flange 44 of the radially flexible rolling bush 13.
  • the plate spring 24 preloads the roller bearing 20 axially and releases the drive core 12 on the first transmission input shaft 2.
  • the plate spring 24 can also act on the outer ring 22 of the roller bearing 20.
  • Figures 3 and 4 show in a longitudinal section through a superimposed steering 1, the servo motor 10 of which is designed as a hollow shaft motor 33, that the first transmission input shaft 2 does not necessarily have to be overhung in the shaft transmission 11 designed according to the invention, but that the first transmission input shaft 2 has a bearing 25 can be mounted in the support ring 16 or in the first transmission output shaft 5.
  • the bearing 25 is formed as a needle sleeve 26 and radial bearing, a positively releasable bearing pin 27 protruding into the needle sleeve 26 on the end face of the first transmission input shaft 2.
  • the bearing pin 27 has a hexagon socket and thus simultaneously serves as a connecting element 18 for fixing the clutch disc 19 and the radially flexible rolling bush 13 to the first transmission input shaft 2.
  • a head of the connecting element 18 projects axially into the transmission output shaft 5, which means that the design of the Shaft gear 11 gains in compactness.
  • the hollow shaft motor 33 is arranged coaxially to the longitudinal axis 42 of the steering shaft 8.
  • the servo motor 10 is penetrated by the first transmission input shaft 2 of the steering shaft 8, a rotor 34 of the servo motor 10 on the Servo motor shaft 32 is arranged rotatable about the steering shaft 8.
  • the servo motor shaft 32 is formed in one piece with the drive core 12 and is supported between the first gearbox input shaft 2 and the servo motor shaft 32 with the aid of the roller bearings 20, 20 'and the needle sleeve 26 in the transmission output shaft 5 and a further needle sleeve 45.
  • the further needle sleeve 45 is arranged at an axial distance from the roller bearings 20, 20 '.
  • the stator 46 of the servo motor 10 is fixedly arranged on the housing 43, which encloses the wave gear 11, the servo motor 10 and a control and / or regulating device 47.
  • the wave gear 11, the servo motor 10 and the control and / or regulating device 47 are spatially separated from one another and are shielded in the housing 43.
  • any reduction ratios can be selected, the denominator of which is not an integer is. Fine tooth pitches, corrugations or knurls can also be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Steering Mechanism (AREA)
  • Retarders (AREA)

Abstract

Die Erfindung betrifft eine Überlagerungslenkung (1) für ein Fahrzeug, insbesondere eine Servo- oder Hilfskraftlenkung für ein Kraftfahrzeug, mit einem, eine erste Getriebeeingangswelle (2) und eine zweite Getriebeeingangswelle (3) aufweisenden Überlagerungsgetriebe (4) das als Wellgetriebe (11) ausgebildet ist, zur Überlagerung der an den beiden Getriebeeingangswellen (2,3) auftretenden Drehwinkeln auf eine Getriebeausgangswelle (5) des Überlagerungsgetriebes (4). Die Getriebeausgangswelle (5) wirkt auf eine Eingangswelle (6) eines Lenkgetriebes (7). Die erste Getriebeeingangswelle (2) ist über eine Lenkwelle (8) mit einer Lenkhandhabe (9) wirkverbunden und die zweite Getriebeeingangswelle (3) ist mit einem Servomotor (10) wirkverbunden. Um eine Überlagerungslenkung zu schaffen, die in der Lage ist, einen zusätzlichen Lenkwinkel spielfrei auf die Getriebeausgangswelle (5) aufzubringen und deren Bauraumbedarf bei einfacher und kostengünstiger, montagefreundlicher Bauweise gering ist, ist vorgesehen die erste Getriebeeingangswelle (2) direkt lösbar mit einer radialflexible Abrollbuchse (13) des Wellgetriebes (11) zu verbinden wobei die erste Getriebeeingangswelle (2) einen exzentrischen Antriebskern (12) des Wellgetriebes (11) der in die radialflexible Abrollbuchse (13) ragt, durchgreift.

Description

Uberlagerungslenkung für ein Fahrzeug
Die Erfindung betrifft eine Uberlagerungslenkung für ein Fahrzeug, insbesondere eine Servo- oder Hilfskraftlenkung für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1.
Überlagerungslenkungen sind bekannt und zeichnen sich dadurch aus, dass dem von einem Fahrer eines Fahrzeugs an einer Lenkhandhabe gewählten Lenkwinkel bei Bedarf ein weiterer Drehwinkel durch einen Aktuator überlagert werden kann. Der zusätzliche Drehwinkel wird durch eine elektronische Steuerungs- und/oder Regelungseinrichtung gesteuert und dient zur Erhöhung der Fahrstabilität des Fahrzeugs oder zu sonstigen Zwecken.
Zur Erzeugung eines Zusatzwinkels oder weiteren Drehwinkels ist aus der DE 101 29 450 A1 und der DE 101 60 313 A1 bekannt, ein Planetenradgetriebe als Über- lagerungsgetriebe anzuwenden, wobei eine Lenkwelle, die mit einer ersten Getriebeeingangswelle verbunden ist, axial unterbrochen ist und von einem Stufen planeten, der um Sonnenräder der Lenkwellenteile sich bewegt, drehbar verbunden wird. Die Stufen planeten sind in einem Planetenradträger gelagert. Der Planetenradträger ist wiederum mit einem Schraub- oder Schneckengetriebe um die Lenkwelle und deren Sonnenräder bewegbar, wobei die Drehbewegung des Planetenradträgers mit Hilfe einer Schraube oder Schnecke an einer zweiten Getriebeeingangswelle des Uberlagerungsgetriebes ausgeführt wird.
Solche Überlagerungsgetriebe weisen eine Vielzahl an Zahneingriffen auf. Dadurch ergibt sich ein Getriebespiel, das sich in einem unerwünschten Lenkungsspiel niederschlagen kann. Die beschriebenen Überlagerungsgetriebe mit Servomotor sind zudem technisch relativ aufwendig und teuer.
Die DE 102 20 123 A1 offenbart eine Uberlagerungslenkung, wobei in eine Lenksäulenwelle, die ein Lenkrad mit einem Lenkgetriebe verbindet ein servo- elektromotorischer Antrieb integriert ist. Der servo-elektromotorische Antrieb weist ein Gehäuse auf, das mit einem ersten Abschnitt der Lenksäulenweile verbunden ist und eine Antriebswelle auf, die mit einem zweiten Abschnitt der Lenksäulenwelle verbunden ist. Der erste Abschnitt der Lenksäulenwelle ist mit einem Lenkrad und der zweite Abschnitt mit dem Lenkgetriebe oder umgekehrt verbunden. Durch den servo- elektromotorischen Antrieb ist die Antriebswelle relativ zu dem Gehäuse des servo- elektromotorischen Antriebs drehbar, um einen zusätzlichen Drehwinkel zu erzeugen. Mit dieser Uberlagerungslenkung wird zwar einer Rotationsbewegung zwischen Lenkrad und Lenkgetriebe ein zusätzlicher Winkel überlagert, das Gegendrehmoment des servo-elektromotorischen Antriebs stützt sich aber an der Lenksäulenwelle ab, was zu einem unkomfortablen Lenk- oder Fahrgefühl eines Fahrers führen kann.
Es sind Überlagerungslenkungen bekannt, die als Überlagerungsgetriebe ein Welloder Pulsatorgetriebe aufweisen. Der Servomotor solcher Wellgetriebe stützt aber sein Drehmoment an der Lenksäule ab. Zudem benötigen diese Wellgetriebe ein stabiles Gehäuse um das Drehmoment und den Drehwinkel an der Lenkhandhabe auf die Getriebeausgangswelle des Uberlagerungsgetriebes zu übertragen.
Der Erfindung liegt die Aufgabe zugrunde, eine spielfreie, in der Handhabung komfortable und im Aufbau einfache Uberlagerungslenkung für ein Fahrzeug zu schaffen, deren Bauraumbedarf minimiert ist.
Die Aufgabe wird mit einer Uberlagerungslenkung mit den Merkmaien des Anspruchs 1 gelöst.
Das Überlagerungsgetriebe kann zu diesem Zweck ohne Gehäuse ausgebildet sein, indem das Drehmoment und der Drehwinkel an der Lenkhandhabe und der ersten Getriebeeingangswelle auf die radialflexible Abrollbuchse des Wellgetriebes direkt über eine lösbare Verbindung übertragen wird. Dabei durchreift die erste Getriebeeingangswelle einen exzentrischen, vorzugsweise ellipsenförmigen Antriebskern des Wellgetriebes, der in radialer Richtung nockenförmig in die radialflexible Abrollbuchse ragt und mit der zweiten Getriebeeingangswelle und dem Servomotor drehfest verbunden ist.
Bevorzugte Ausführungen ergeben sich aus den Unteransprüchen.
Das Wellgetriebe weist eine erste Getriebeeingangswelle auf, die drehfest mit der Lenkwelle und der Lenkhandhabe des Fahrzeugs verbunden ist. Die zweite Getriebeeingangswelle ist als Hohlwelle ausgebildet die von dem Servomotor angetrieben ist. Die zweite Getriebeeingangswelle ist drehfest mit dem exzentrischen, insbesondere ellipsenförmigen Antriebskern des Wellgetriebes verbunden. Der exzentrische Antriebskern greift axial in die radialflexible Abrollbuchse (flex-spline) des Wellgetriebes ein, wobei ein oder mehrere Umfangsabschnitte einer Außenmantelfläche der radialflexiblen Abrollbuchse in fortlaufendem Wechsel mit einer im wesentlichen zylindrischen Stützfläche eines drehfest mit der Getriebeausgangswelle verbundenen Stützrings in Eingriff ist. Die Lenkwelle ist somit im axialen Bereich des Stützrings des Wellgetriebes in eine erste Getriebeeingangswelle, die mit der Lenkhandhabe drehfest verbunden ist, und in eine Getriebeausgangswelle, die drehfest mit dem Stützring verbunden ist, getrennt. Die Getriebeausgangswelle ist mit dem Stützring fest verbunden und kann drehbar in einem Gestell oder Gehäuse des Wellgetriebes angeordnet sein. Auf diese Weise ist es ermöglicht, die Getriebeausgangswelle relativ zu der ersten Getriebeeingangswelle zu drehen, wodurch ein positiver oder negativer Lenkwinkel zusätzlich zu dem vom Fahrer an der Lenkhandhabe eingegebenen Lenkwinkel in die Lenkwelle eingegeben werden kann.
Zur Erleichterung der Montage des Wellgetriebes und um einzelne Komponenten rasch austauschen zu können, ist die erste Getriebeeingangswelle lösbar mit der exzentrischen Abrollbuchse verbunden. Dies hat zudem den Vorteil, dass die einzelnen Komponenten des Wellgetriebes aus verschiedenen Werkstoffen darstellbar sind und bekannte Fertigungsverfahren für die Komponenten anwendbar bleiben. Um den Bedienungskomfort des Lenksystem zu verbessern, ist vorgesehen, dass das Drehmoment des Servomotors sich an einem fahrzeugfesten Bauteil des Lenksystems oder Fahrzeugs abstützt, das nicht die Lenksäule selbst ist.
Die radialflexible Abrollbuchse ist zur einfachen Montage und eventuellen wartungsbedingten Demontage mit Hilfe eines Verbindungselements, wie etwa einem Schraubbolzen, bevorzugt formschlüssig lösbar an der ersten Getriebeeingangswelle festgelegt. Zwischen der radialflexiblen Abrollbuchse und der ersten Getriebeeingangswelle ist eine, einen drehfesten Formschluß bewirkende Kupplungsscheibe angeordnet oder geklemmt. Die Kupplungsscheibe greift mit Rastelementen formschlüssig in die erste Getriebeeingangswelle und die radialflexible Abrollbuchse ein. Der drehfest mit einer Welle des Servomotors verbundene exzentrische Antriebskern ist über Wälzlager an seinen axialen Enden auf der ersten Getriebeeingangswelle drehbar gelagert. Der exzentrische Antriebskern ist radial zwischen der ersten Getriebeeingangswelle und der radialflexiblen Abrollbuchse angeordnet und zur Verringerung des Bauraumbedarfs des Lenksystems radial möglichst gedrungen ausgeführt.
Der exzentrische Antriebskern greift bevorzugt axial über einen großen Teil in die radialflexible Abrollbuchse und in den bevorzugt glockenförmigen Stützring ein. Dadurch ergibt sich eine axial und radial kompakte Bauweise des Wellgetriebes und des Lenksystems. Der exzentrische Antriebskern wälzt sich mit einem flexiblen Kugellager in der radialflexiblen Abrollbuchse ab und verformt diese in fortlaufendem Wechsel. Dabei gelangen, in Abhängigkeit von der Querschnittsform des Antriebskernes, ein oder mehrer Umfangsabschnitte der Außenmantelfläche der radialflexiblen Abrollbuchse mit einer im wesentlichen zylindrischen Stützfläche des Stützringes in Eingriff. Der Stützring ( circular-spline) umgibt radial die Abrollbuchse. Da der Umfang der Außenmantelfläche der radialflexiblen Abrollbuchse kürzer als der Umfang der zylindrischen Stützfläche des Stützringes ist, dreht sich der Stützring um diese Längendifferenz und somit die mit dem Stützring drehfest verbundene Getriebeausgangswelle, die wiederum mit der Eingangswelle des Lenkgetriebes verbunden ist. Ein zusätzlicher Lenkwinkel in positiver oder negativer Richtung zu dem an der Lenkhandhabe eingegebenen Lenkwinkel ist dadurch mit großer Präzision auf den Stützring und die Getriebeausgangswelle aufbringbar.
Zur Spielfreistellung des exzentrischen Antriebskerns sind ein oder mehrere Wälzlager dessen auf der ersten Getriebeeingangswelle axial vorgespannt. Die axiale Vorspannung erfolgt bevorzugt mit einer Tellerfeder, die sich axial an einem Außenoder Innenring des Wälzlagers und an der Kupplungsscheibe abstützt. Zur bevorzugten Loslagerung der ersten Getriebeeingangswelle ist diese über ein Lager an einem axialen Ende der Getriebeausgangswelle gelagert. Das Lager ist bevorzugt als Nadelhülse ausgebildet. In das Lager greift bevorzugt ein formschlüssig lösbarer Lagerzapfen am axialen Ende der ersten Getriebeeingangswelle ein. Der Lagerzapfen weist eine Schlüsselweite oder eine von der Kreisform abweichende Eingriffsmöglichkeit für ein Werkzeug, wie etwa einen Innensechskant auf, und bildet somit gleichzeitig das Befestigungselement zur formschlüssig lösbaren Festlegung der Kupplungsscheibe und der radialflexiblen Abrollbuchse an der ersten Getriebeeingangswelle.
Es kann zweckmäßig sein, den Servomotor mit seinem Gehäuse getrennt von dem Gehäuse des Wellgetriebes anzuordnen und die Servomotorwelle über ein Getriebe, welches bevorzugt ins Langsame übersetzt, mit dem exzentrischen Antriebskern zu verbinden. Das Getriebe kann als Zahnradgetriebe, wie etwa als Stirnradgetriebe, als Schneckengetriebe, als Schraubgetriebe oder als Kegelradgetriebe ausgebildet sein. Dabei kann der exzentrische Antriebskern bevorzugt an einem axialen Ende einstückig mit einem Zahnrad des Getriebes ausgebildet sein. Das Getriebe kann auch als Zugmittelgetriebe mit allen geeigneten und bekannten Zugmitteln, wie Zahnriemen, Keilriemen, Ketten usw. ausgebildet sein, wobei der exzentrische Antriebskern einstückig mit einer Riemenscheibe oder einem Kettenrad ausgebildet sein kann.
Es kann auch zweckmäßig sein, den Servomotor als Hohlwellenmotor auszubilden, wobei ein Läufer des Servomotors um die Lenkwelle drehbar angeordnet ist. Die Hohlwelle des Servomotors kann dabei einstückig mit dem exzentrischen Antriebskern gebildet sein und mit diesem in der radialflexiblen Abrollbuchse enden.
Der Servomotor wird von einer Steuerungs- und/oder Regelungseinrichtung angesteuert, wobei die Steuerungs- und/oder Regelungseinrichtung eingangseitig mit einem Sensor zur Bestimmung des Lenkdrehmomentes, des Lenkwinkels und/oder mit einem Sensor zu Bestimmung des Drehwinkels der Lenkhandhabe signalübertragend verbunden ist. Es kann zweckmäßig sein, die Sensoren als kontaktlos arbeitende Sensoren auszubilden und das Lenksystem als parametergesteuerte Servo- oder Hilfskraftlenkung auszubilden. Bevorzugt sind der Servomotor, die Steuerungs- und/oder Regelungseinrichtung, das Wellgetriebe und die Sensoren zur Drehwinkel- und Drehmomentbestimmung der Lenkhandhabe in einem Gehäuse zusammengefasst. Die einzelnen Bauelemente können in dem Gehäuse getrennt und abgeschirmt voneinander angeordnet sein.
Der gesamte Aufbau der Uberlagerungslenkung ermöglicht, dass die Strom- und/oder Signalleitung zwischen den Komponenten des Lenksystems ohne zusätzliche Stromführungseinrichtungen, wie Schleifer oder Wickelfedern oder dgl. möglich ist. Eine Steigerung der Betriebssicherheit des Lenksystems ist dadurch gegeben.
Das Wellgetriebe ist bevorzugt überwiegend aus Stahl gebildet, zumindest die radialflexible Abrollbuchse und der Antriebskern sind aus diesem Werkstoff gebildet. Es kann auch zweckmäßig sein, Komponenten des Wellgetriebes aus einem Nichtmetall - oder Nichteisenmetallwerkstoff zu bilden. Der Eingriff der Außenmantel- fläche der radialflexiblen Abrollbuchse in die zylindrische Stützfläche des Stützringes (circular-spline) kann form- oder kraftschlüssig erfolgen. Es kann zweckmäßig sein, zum formschlüssigen Eingriff die Außenmantelfläche der radialflexiblen Abrollbuchse mit einer Außenverzahnung und die zylindrische Stützfläche des Stützringes mit einer Innenverzahnung zu versehen. Der innenverzahnte Stützring hat eine größere Zähnezahl als die Außenmantelfläche der radialflexiblen Abrollbuchse, die mit zumindest zwei sich diametral gegenüberliegenden Umfangsabschnitten ihrer Außenverzahnung mit der Innerverzahnung des Stützringes im Eingriff steht. Durch die Drehung des exzentrischen oder ellipsenförmigen Antriebskernes in der radialflexiblen Abrollbuchse werden bei jeder Umdrehung alle Zähne der Außenverzahnung der radialflexiblen Abrollbuchse nacheinander mit den Zähnen der Innenverzahnung des Stützringes in Eingriff gebracht, wodurch sich der Stützring mit der Getriebeausgangswelle um die Differenz der Zähnezahl verdreht. Es lassen sich mit einer Getriebestufe des Wellgetriebes Übersetzungen ins Langsame von etwa 1 :20 bis 1 :600 erreichen, wobei mehrer Getriebestufen hintereinander schaltbar sind. Es sind viele Zähne gleichzeitig im Eingriff, so dass bei der hohen Überdeckung eine mehrfache Drehmomentbelastung gegenüber vergleichbaren Getrieben ermöglicht ist und das Wellgetriebe entsprechend klein baut und eine sichere, spielfreie Drehmoment- und Drehwinkelübertragung zwischen der ersten Getriebeeingangswelle und der Getriebeausgangswelle der Lenkwelle durch das Wellgetriebe gewährleistet ist. Ist die Außenmantelfläche der Abrollbuchse mit der Stützfläche des Stützringes reibschlüssig im Eingriff, so lassen sich innerhalb gewisser Grenzbereiche beliebige Übersetzungen wählen.
Bei einer hydraulischen Hilfskraftlenkung ist das Überlagerungsgetriebe zweckmäßig zwischen einem Lenkventil und dem Lenkgetriebe oder zwischen der Lenkhandhabe und dem Lenkventil angeordnet. Bei einer elektrischen Hilfskraftlenkung ist das Überlagerungsgetriebe bevorzugt zwischen einem Lenkmomentsensor und dem Lenkgetriebe oder zwischen der Lenkhandhabe und dem Lenkgetriebe angeordnet.
Es kann auch zweckmäßig sein, das Wellgetriebe so in die Lenkwelle oder den Antriebsstrang zwischen der Lenkhandhabe und dem Lenkgetriebe einzubauen, dass die Lenkhandhabe drehfest mit dem Stützring verbunden ist und die radialflexible Abrollbuchse mit der Getriebeausgangswelle des Uberlagerungsgetriebes drehfest verbunden ist. Die Erfindung wird nun näher anhand eines Ausführungsbeispiels beschrieben und anhand der beiliegenden Zeichnung wiedergegeben.
Fig. 1 zeigt eine Ansicht und einen teilweisen Längsschnitt durch eine erfindungsgemäße Uberlagerungslenkung,
Fig. 2 zeigt einen Längsschnitt durch ein Wellgetriebe der Uberlagerungslenkung in Fig. 1 ,
Fig. 3 zeigt einen Längsschnitt durch eine weitere Uberlagerungslenkung,
Fig. 4 zeigt ein Detail IV in Fig. 3.
In Figur 1 ist in einer Ansicht und einem teilweisen Längsschnitt eine als Active Steering ausgebildete Uberlagerungslenkung 1 für ein Fahrzeug gezeigt. Die Uberlagerungslenkung 1 ist als elektrische Uberlagerungslenkung aus einem Servomotor 10, der an einem fahrzeugfesten Bauteil 17 abgestützt ist, das nicht die Lenksäule des Fahrzeugs ist, einer Lenkwelle 8, die drehfest mit einer Lenkhandhabe 9 verbunden ist, aus einem Überlagerungsgetriebe 4 das als Wellgetriebe 11 ausgebildet ist und einer Eingangswelle 6 für ein Lenkgetriebe 7 gebildet. Das Lenkgetriebe 7 kann Teil einer elektrischen oder hydraulischen Hilfskraftlenkung sein.
Das Lenkgetriebe 7 besteht in dem gezeigten Ausführungsbeispiel aus einem schrägverzahnten Ritzel 37 das an einem axialen Ende der Eingangswelle 6 angeordnet ist und einer axialverschieblich gelagerten Zahnstange 38 mit der das Ritzel 37 kämmt. Die Zahnstange 38 ist in bekannter Weise gelenkig mit Spurhebeln an nicht dargestellten lenkbaren Rädern des Fahrzeugs befestigt.
Die Servomotorwelle 32 des Servomotors 10 ist über ein Getriebe 29, das als Zugmittelgetriebe 30 ausgebildet ist, mit dem Wellgetriebe 11 verbunden. Der Servomotor 10 stellt einen zusätzlichen Lenkwinkel auf das Wellgetriebe 1 1 bereit, wobei in dem in den Fig. 1 und 2 gezeigten Ausführungsbeispiel ein Zahnriemen 39 das Drehmoment und die Drehzahl des Servomotors 10 auf eine Riemenscheibe 31 des Wellgetriebes 11 überträgt. Die Riemenscheibe 31 ist Teil des Getriebes 29 und ist einstückig mit einer zweiten Getriebeeingangswelle 3 und einem exzentrischen, vorzugsweise ellipsenförmigen Antriebskern 12 gebildet. Der Antriebskern 12 ist an seinem, der Riemenscheibe 31 unmittelbar anschließenden axialen Bereich, ellipsenförmig ausgebildet.
Um dessen ellipsenförmigen Umfang ist ein flexibles Kugellager 40 aufgezogen. Der Antriebskern 12 greift mit seiner axialen Erstreckung von der Riemenscheibe 31 an in eine aus elastischem Stahlblech gebildete, topfförmige, radialflexible Abrollbuchse 13 (flex-spline) ein. Der Antriebskern 12 ist über jeweils an seinen axialen Enden 21 ,21' angeordneten Wälzlagern 20,20', die als Rille kugellager gebildet sind, drehbar auf der ersten Getriebeeingangswelle 2 angeordnet. Die radialflexible Abrollbuchse 13 weist eine Außenmantelfläche 14 auf, die im axialen Bereich des Kugellagers 40 eine Außenverzahnung 35 trägt. Die Außenverzahnung 35 greift unter Wirkung der ellipsenförmigen Aufweitung der Abrollbuchse 13 mit zwei Umfangsabschnitten 41 in eine Innenverzahnung 36 an einer zylindrischen Stützfläche 15 eines drehfest mit der Eingangswelle 6 und einer Getriebeausgangswelle 5 des Wellgetriebes 11 verbundenen Stützringes 16 (circular-spline). Der Stützring 16 ist konzentrisch zu der Längsachse 42 der Lenkwelle 8 an der Eingangswelle 6 des Lenkgetriebes 7 bzw. der Getriebeausgangswelle 5 festgelegt. Bei Rotation des Antriebskernes 12 erfolgt die ellipsenförmige Aufweitung in fortlaufendem Wechsel entlang der Innenverzahnung 36. Der innenverzahnte Stützring 16 weist eine größere Zähnezahl als die radialflexible Abrollbuchse 13 auf, wodurch eine Verdrehung des Stützringes 16 pro Umdrehung des Antriebskernes 12 um die Differenz der Zähnezahl erfolgt.
Zur kostengünstigen Darstellung und Montage des Wellgetriebes 11 ist dieses so funktional gestaltet, dass es ohne Gehäuse gebaut werden kann, obwohl es zweckmäßig ist, es in einem Gehäuse 43 an dem Lenkgetriebe 7 anzuordnen (vgl. Fig. 3,4).
Die Lenkwelle 8 ist im axialen Bereich x des Stützringes 16 getrennt und in eine erste Getriebeeingangswelle 2, die drehfest mit der Lenkhandhabe 9 verbunden ist und an deren anderen Ende der Antriebskern 12 und die radialflexible Abrollbuchse 13 angeordnet ist, sowie in eine Getriebeausgangswelle 5, die drehfest mit dem Stützring 16 und der Eingangswelle 6 verbunden ist, aufgeteilt. Auf diese Weise kann die Getriebeausgangswelle 5 relativ zu der ersten Getriebeeingangswelle 2 durch das Wellgetriebe 11 verdreht werden und ein von Fahrt- und Fahrzeugparametern abhängiger Lenkwinkel in die Lenkwelle 8 vor dem Lenkgetriebe 7 eingegeben werden. Die erste Getriebeeingangswelle 2 ist zur leichteren Montage, zum etwaigen einfachen Tausch von Teilen des Wellgetriebes 11 und um die Teile des Wellgetriebes mit bekannten Fertigungsverfahren auch aus verschiedenen Werkstoffen herstellen zu können, formschlüssig lösbar mit der radialflexiblen Abrollbuchse 13 verbunden. Die Drehmomentübertragung von der ersten Getriebeeingangswelle 2 auf die radialflexible Abrollbuchse 13 übernimmt eine Kupplungsscheibe 19, die mit Hilfe von Rastelementen in die radialflexible Abrollbuchse 13 und die erste Getriebeeingangswelle 2 ragt. Die Kupplungsscheibe 19 ist an der Stirnseite der ersten Getriebeeingangswelle 2, die in den Stützring 16 ragt, mit einem als Schraubbolzen ausgebildeten, in die erste Getriebeeingangswelle 2 ragenden Verbindungselement 18 lösbar festgelegt.
Wie die Fig. 1 bis 4 zeigen, ist eine Tellerfeder 24 axial zwischen einem Innenring 23 des Wälzlagers 20 und einem Ringflansch 44 der radialflexiblen Abrollbuchse 13 eingespannt. Die Tellerfeder 24 spannt das Wälzlager 20 axial vor und bewirkt eine Spielfreistellung des Antriebskernes 12 auf der ersten Getriebeeingangswelle 2. Die Tellerfeder 24 kann auch auf den Außenring 22 des Wälzlagers 20 wirken.
Die Figuren 3 und 4 zeigen in einem Längsschnitt durch eine Uberlagerungslenkung 1 , deren Servomotor 10 als Hohlwellenmotor 33 ausgebildet ist, dass die erste Getriebeeingangswelle 2 in dem erfindungsgemäß gestalteten Wellgetriebe 11 nicht zwangsläufig fliegend gelagert sein muß, sondern dass die erste Getriebeeingangswelle 2 mit einem Lager 25 in dem Stützring 16 oder in der ersten Getriebeausgangswelle 5 gelagert sein kann. Das Lager 25 ist als Nadelhülse 26 und Radiallager gebildet, wobei ein formsc lüssig lösbarer Lagerzapfen 27 an der Stirnfläche der ersten Getriebeeingangswelle 2 in die Nadelhülse 26 ragt. Der Lagerzapfen 27 weist einen Innensechskant auf und dient somit gleichzeitig als Verbindungselement 18 zur Festlegung der Kupplungsscheibe 19 und der radialflexiblen Abrollbuchse 13 an der ersten Getriebeeingangswelle 2. Bei allen gezeigten Ausführungsbeispielen ragt ein Kopf des Verbindungselements 18 axial in die Getriebeausgangswelle 5, wodurch die Bauform des Wellgetriebes 11 an Kompaktheit gewinnt.
Der Hohlwellenmotor 33 ist koaxial zu der Längsachse 42 der Lenkwelle 8 angeordnet. Der Servomotor 10 wird von der ersten Getriebeeingangswelle 2 der Lenkwelle 8 durchragt, wobei ein Läufer 34 des Servomotors 10 auf der Servomotorwelle 32 um die Lenkwelle 8 drehbar angeordnet ist. Die Servomotorwelle 32 ist einstückig mit dem Antriebskern 12 ausgebildet und mit Hilfe der Wälzlager 20,20' und der Nadelhülse 26 in der Getriebeausgangswelle 5 und einer weiteren Nadelhülse 45 zwischen der ersten Getriebeeingangswelle 2 und der Servomotorwelle 32 gelagert. Die weitere Nadelhülse 45 ist mit axialem Abstand zu den Wälzlagern 20,20' angeordnet.
Der Stator 46 des Servomotors 10 ist fest an dem Gehäuse 43 angeordnet, das das Wellgetriebe 11 , den Servomotor 10 und eine Steuerungs- und/oder Regel ungs- einrichtung 47 umschließt. Das Wellgetriebe 1 1 , der Servomotor 10 und die Steuerungs- und/oder Regelungseinrichtung 47 sind voneinander räumlich getrennt und abgeschirmt in dem Gehäuse 43 angeordnet.
Anstelle des formschlüssigen Eingriffs der Außenmantelfläche 14 der Abrollbuchse 13 mit der Innerverzahnung 36 des Stützringes 16 kann es zweckmäßig sein, einen reibschlüssigen Eingriff der Außenmantelfläche 14 mit der zylindrischen Stützfläche 15 des Stützringes 16 vorzusehen, wodurch beliebige Untersetzungsverhältnisse gewählt werden können, deren Nenner keine ganze Zahl ist. Es können außerdem feine Zahnteilungen, Riefelungen oder Rändelungen vorgesehen sein.
BEZUGSZEICHENLISTE EM 038a
Figure imgf000013_0001

Claims

Patentansprüche
1. Uberlagerungslenkung für ein Fahrzeug, insbesondere für eine Servo- oder Hilfskraftlenkung eines Kraftfahrzeuges, mit einem, eine erste Getriebeeingangswelle (2) und eine zweite Getriebeeingangswelle (3) aufweisenden, als Wellgetriebe (11) ausgebildeten Überlagerungsgetriebe (4) zur Überlagerung der an den beiden Getriebeeingangswellen (2,3) auftretenden Drehwinkeln auf eine Getriebeausgangswelle (5) des Uberlagerungsgetriebes (4), die auf eine Eingangswelle (6) eines Lenkgetriebes (7) wirkt, wobei die erste Getriebeeingangswelle (2) über eine Lenkwelle (8) mit einer Lenkhandhabe (9) wirkverbunden ist und die zweite Getriebeeingangswelle (3) mit einem Servomotor (10) wirkverbunden ist, d a d u r c h g e k e n n z e i c h n e t , dass die erste Getriebeeingangswelle (2) lösbar mit einer radialflexiblen Abrollbuchse (13) des Wellgetriebes (11 ) verbunden ist und einen exzentrischen Antriebskern (12) des Wellgetriebes (11 ), der in die radialflexible Abrollbuchse (13) ragt, durchgreift.
2. Uberlagerungslenkung nach Anspruch 1 , dadurch gekennzeichnet, dass der Servomotor (10) auf den exzentrischen Antriebskern (12) an der zweiten Getriebeeingangswelle (3) des Wellgetriebes ( 11 ) ein Drehmoment und Drehwinkel bereitstellt und die radialflexible Abrollbuchse (13) formschlüssig lösbar mit der ersten Getriebeeingangswelle (2) verbunden ist und ein oder mehrer Umfangsabschnitte einer Außenmantelfläche (14) der radialflexiblen Abrollbuchse (13) in fortlaufendem Wechsel mit einer im wesentlichen zylindrischen Stützfläche (15) eines drehfest mit der Getriebeausgangswelle (5) verbundenen Stützrings (16) in Eingriff ist.
3. Uberlagerungslenkung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Drehmoment des Servomotors (10) an einem fahrzeugfesten anderen Bauteil (17) der Uberlagerungslenkung (1) oder des Fahrzeugs abgestützt ist, als einer Lenksäule.
4. Uberlagerungslenkung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die radialflexible Abrollbuchse (13) mit einem Verbindungselement (18) und einer Kupplungsscheibe (19) an der ersten Getriebeeingangswelle (2) festgelegt ist. 14
14. Uberlagerungslenkung nach Anspruch 13, dadurch gekennzeichnet, dass das Getriebe (29) ein Zahnradgetriebe, wie etwa ein Stirnradgetriebe, ein Schneckengetriebe, ein Schraubgetriebe oder ein Kegelradgetriebe ist.
15. Uberlagerungslenkung nach Anspruch 14, dadurch gekennzeichnet, dass der exzentrische Antriebskern (12) mit der zweiten Getriebeeingangswelle (3) und einem Zahnrad des Getriebes (29) einstückig ausgebildet ist.
16. Uberlagerungslenkung nach Anspruch 13, dadurch gekennzeichnet, dass das Getriebe (29) als Zugmittelgetriebe (30) ausgebildet ist.
17. Uberlagerungslenkung nach Anspruch 16, dadurch gekennzeichnet, dass der exzentrische Antriebskern (12) und die zweite Getriebeeingangswelle (3) einstückig mit einer Riemenscheibe (31 ) des Getriebes (29) ausgebildet ist.
18. Uberlagerungslenkung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der exzentrische Antriebskern (12) mit einer, die zweite Getriebeeingangswelle (3) bildenden Servomotorwelle (32) einstückig gebildet ist.
19. Uberlagerungslenkung nach Anspruch 18, dadurch gekennzeichnet, dass der Servomotor (10) als Hohlwellenmotor (33) ausgebildet ist, wobei ein Läufer (34) des Servomotors (10) um die Lenkwelle (8) drehbar angeordnet ist.
20. Uberlagerungslenkung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Stromzufuhr und/oder die Signalleitung zu dem Servomotor (10) ohne eine Übertragungseinrichtung wie Schleifer oder Wickelfedern erfolgt.
21. Uberlagerungslenkung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass das Wellgetriebe (11 ) im wesentlichen aus Stahl gebildet ist.
22. Uberlagerungslenkung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass das Wellgetriebe im wesentlichen aus Kunststoff gebildet ist. 15
23. Uberlagerungslenkung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Abrollbuchse (13) eine Außenverzahnung (35) aufweist, die mit einer Innenverzahnung (36) des Stützringes (16) in Eingriff ist.
24. Uberlagerungslenkung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das Überlagerungsgetriebe (4) bei einer hydraulischen Hilfskraftlenkung zwischen einem Lenkventil und dem Lenkgetriebe (7) oder zwischen der Lenkhandhabe (9) und dem Lenkventil angeordnet ist.
25. Uberlagerungslenkung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das Überlagerungsgetriebe (4) bei einer elektrischen Hilfskraftlenkung zwischen einem Lenkmomentsensor und dem Lenkgetriebe (7) oder zwischen der Lenkhandhabe (9) und dem Lenkgetriebe (7) angeordnet ist.
26. Uberlagerungslenkung nach einem der Ansprüche 2 bis 25, dadurch gekennzeichnet, dass das Wellgetriebe (1 1 ) so zwischen der Lenkhandhabe (9) und dem Lenkgetriebe (7) eingebaut ist, dass der Stützring (16) drehfest mit der Lenkhandhabe (9) verbunden ist und die radialflexible Abrollbuchse (13) drehfest mit der Getriebeausgangswelle (5) verbunden ist.
PCT/EP2004/013710 2003-12-06 2004-12-02 Überlagerungslenkung für ein fahrzeug WO2005054035A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020067010968A KR101203808B1 (ko) 2003-12-06 2004-12-02 차량용 중첩식 조향 시스템
CA002548609A CA2548609A1 (en) 2003-12-06 2004-12-02 Superimposed steering system for a vehicle
JP2006541897A JP4699381B2 (ja) 2003-12-06 2004-12-02 車両用重畳式操向システム
US10/581,976 US7905317B2 (en) 2003-12-06 2004-12-02 Superimposed steering system for a vehicle
DE502004005297T DE502004005297D1 (de) 2003-12-18 2004-12-02 Überlagerungslenkung für ein fahrzeug
EP04819648A EP1689632B1 (de) 2003-12-18 2004-12-02 Überlagerungslenkung für ein fahrzeug

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03028023.4 2003-12-06
EP20030028023 EP1431161B1 (de) 2002-12-19 2003-12-18 Lenksystem für ein Fahrzeug
DE102004003582 2004-01-23
DE102004003582.2 2004-01-23

Publications (1)

Publication Number Publication Date
WO2005054035A1 true WO2005054035A1 (de) 2005-06-16

Family

ID=44237192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/013710 WO2005054035A1 (de) 2003-12-06 2004-12-02 Überlagerungslenkung für ein fahrzeug

Country Status (7)

Country Link
US (1) US7905317B2 (de)
EP (1) EP1689632B1 (de)
JP (1) JP4699381B2 (de)
KR (1) KR101203808B1 (de)
AT (1) ATE375911T1 (de)
CA (1) CA2548609A1 (de)
WO (1) WO2005054035A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039825A1 (de) * 2004-10-16 2006-04-20 Thyssenkrupp Presta Ag Einrichtung zur drehzahlüberlagerung für ein lenksystem
EP1870312A2 (de) * 2006-06-20 2007-12-26 ZF-Lenksysteme GmbH Überlagerungslenkung
WO2008080661A1 (de) * 2006-12-29 2008-07-10 Robert Bosch Gmbh Lenksystem in einem fahrzeug mit einem elektrischen servomotor
DE102007012767A1 (de) 2007-03-17 2008-09-18 Zf Lenksysteme Gmbh Wellgetriebe
DE102007000941A1 (de) 2007-09-04 2009-03-05 Zf Lenksysteme Gmbh Wellgetriebe
EP2088059A1 (de) 2008-02-08 2009-08-12 Audi AG Kraftfahrzeug
DE102008040835A1 (de) * 2008-07-29 2010-02-04 Zf Lenksysteme Gmbh Servolenkung
DE102008044109A1 (de) 2008-11-27 2010-06-02 Zf Lenksysteme Gmbh Wellgetriebe
DE102009000486A1 (de) 2009-01-29 2010-08-05 Zf Lenksysteme Gmbh Radialflexible Abrollbuchse
DE102012101936A1 (de) 2012-03-08 2013-09-12 Zf Lenksysteme Gmbh Elektrische Servolenkung
DE102007000940B4 (de) * 2007-09-04 2014-07-10 Zf Lenksysteme Gmbh Überlagerungslenkung für ein Fahrzeug
DE102015104316A1 (de) 2015-03-23 2016-09-29 Robert Bosch Automotive Steering Gmbh Wellgetriebe für einen Aktuator eines Lenksystems
DE102016108876A1 (de) 2016-05-13 2017-11-16 Robert Bosch Automotive Steering Gmbh Vorrichtung zur Betätigung eines Eingangsglieds
DE102016108869A1 (de) 2016-05-13 2017-11-16 Robert Bosch Automotive Steering Gmbh Vorrichtung zur Betätigung eines Eingangsglieds einer Einrichtung eines Verbrennungsmotors
DE102016108871A1 (de) 2016-05-13 2017-11-16 Robert Bosch Automotive Steering Gmbh Vorrichtung zur Betätigung einer Exzenterwelle und Verfahren zur Montage
EP3079967B1 (de) 2013-12-13 2019-10-09 Ovalo GmbH Fahrzeuglenkung mit einem überlagerungssteller
FR3100051A1 (fr) * 2019-08-20 2021-02-26 Jtekt Europe Module d’assistance pour un système de direction assistée de véhicule automobile, avec élimination du risque d’éjection d’une cage de séparation d’un roulement mécanique.
DE102013010362B4 (de) * 2013-06-21 2021-03-11 Thyssenkrupp Presta Ag Doppelritzel-Lenkgetriebe mit Hohlwellenmotor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208867A (ja) * 2007-02-23 2008-09-11 Jtekt Corp 波動歯車減速機及び伝達比可変操舵装置
JP5013193B2 (ja) * 2007-10-22 2012-08-29 株式会社ジェイテクト 車両用操舵装置
KR100857354B1 (ko) 2007-10-31 2008-09-05 현대자동차주식회사 Afs-mdps 통합 액츄에이터 시스템
GB2459714B (en) * 2008-05-02 2011-03-23 Ge Aviat Uk Aircraft landing gear steering system
JP5218830B2 (ja) * 2008-06-30 2013-06-26 株式会社ジェイテクト 車両用操舵装置
US9150243B2 (en) * 2010-11-23 2015-10-06 Steering Solutions Ip Holding Corporation Harmonic pinion torque correction
JP2012144181A (ja) * 2011-01-13 2012-08-02 Jtekt Corp 舵取り装置
JP5466185B2 (ja) * 2011-02-08 2014-04-09 トヨタ自動車株式会社 車両の後輪操舵装置
US8312959B1 (en) * 2011-11-10 2012-11-20 The Gates Corporation Vehicle steering system transmission
US8327972B1 (en) * 2011-11-10 2012-12-11 The Gates Corporation Vehicle steering system transmission
US8297401B1 (en) * 2011-11-10 2012-10-30 The Gates Corporation Vehicle steering system transmission
KR20140003781A (ko) * 2012-06-28 2014-01-10 엘지이노텍 주식회사 모터
WO2014085554A1 (en) * 2012-11-28 2014-06-05 Eaton Corporation Locking differential having preload spring wear pads
US9303734B2 (en) 2013-08-09 2016-04-05 Gates Corporation Belt transmission
DE102014106255A1 (de) 2014-05-06 2015-11-12 Robert Bosch Automotive Steering Gmbh Überlagerungslenkung
US9611927B2 (en) * 2014-09-23 2017-04-04 Cone Drive Operations, Inc. Worm gearing with harmonic drive or strain wave gearing primary
DE102015107202B4 (de) 2015-05-08 2022-01-20 Robert Bosch Gmbh Sperrvorrichtung und lenksystem mit einer überlagerungslenkvorrichtung
CN106208543B (zh) * 2016-07-30 2018-10-19 深圳市优必选科技有限公司 一种伺服电机及其控制方法
CN107089263A (zh) * 2017-06-20 2017-08-25 徐州徐工矿山机械有限公司 一种矿用自卸车用全液压转向器的连接接头
US10793183B2 (en) * 2017-12-22 2020-10-06 Trw Automotive U.S. Llc Torque overlay steering apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19748667A1 (de) * 1996-11-05 1998-05-20 Toyota Motor Co Ltd Lenkkrafthilfe
US6029768A (en) * 1997-10-16 2000-02-29 Harmonic Drive Systems, Inc. Power assist device for steering apparatus
EP1013534A1 (de) * 1998-12-08 2000-06-28 Ford-Werke Aktiengesellschaft Elektrische Servolenkung, insbesondere für Kraftfahrzeuge
DE10253465A1 (de) * 2002-06-22 2004-01-22 Zf Lenksysteme Gmbh Lenksystem für ein Fahrzeug
EP1384648A2 (de) * 2002-07-26 2004-01-28 Toyoda Koki Kabushiki Kaisha Lenkungssteuersystem für Kraftfahrzeuge

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1590629A (en) * 1976-09-23 1981-06-03 Cam Gears Ltd Powerassisted gear system
JPS58141963A (ja) * 1982-02-19 1983-08-23 Toyota Motor Corp 電動式パワ−ステアリング装置
JPS62149481U (de) * 1986-03-14 1987-09-21
FR2706846B1 (de) 1993-06-21 1995-10-13 Valeo Electronique
DE69505983T2 (de) 1994-07-29 1999-07-29 Ikona Inc Getriebesystem
JPH1059192A (ja) * 1996-08-20 1998-03-03 Mitsuba Corp 操舵装置
DE19747638C1 (de) * 1997-10-29 1999-07-01 Zahnradfabrik Friedrichshafen Elektrisch unterstützte Hilfskraftlenkung für Kraftfahrzeuge
JP3536296B2 (ja) * 1999-01-22 2004-06-07 トヨタ自動車株式会社 車両用操舵制御装置
IT1320454B1 (it) 2000-06-27 2003-11-26 Fiat Ricerche Sospensione a controllo elettronico per veicoli.
DE10220123A1 (de) 2001-05-23 2002-12-12 Continental Teves Ag & Co Ohg Überlagerungslenkung
DE10129450A1 (de) 2001-06-19 2003-01-02 Bosch Gmbh Robert Stellglied für eine Fahrzeug-Lenkvorrichtung
DE10160313A1 (de) 2001-08-14 2003-03-20 Continental Teves Ag & Co Ohg Überlagerungsgetriebe für eine Überlagerungslenkung
JP2003306155A (ja) * 2002-04-15 2003-10-28 Toyoda Mach Works Ltd 伝達比可変操舵装置
WO2004000629A2 (de) 2002-06-22 2003-12-31 Zf Lenksysteme Gmbh Lenksystem für ein fahrzeug
JP3979318B2 (ja) * 2002-10-01 2007-09-19 株式会社ジェイテクト 車両用操舵装置
US6938724B2 (en) * 2003-03-18 2005-09-06 Toyoda Koki Kabushiki Kaisha Motor vehicle steering device
JP2005162111A (ja) * 2003-12-04 2005-06-23 Toyota Motor Corp 車両用操舵装置
JP4228899B2 (ja) * 2003-12-05 2009-02-25 トヨタ自動車株式会社 車両用操舵力伝達装置
US7306535B2 (en) * 2004-06-29 2007-12-11 Delphi Technologies, Inc. Vehicle steering device and method
US7178427B2 (en) * 2004-08-26 2007-02-20 Honeywell International, Inc. Motor driven harmonic drive actuator having an interposed output mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19748667A1 (de) * 1996-11-05 1998-05-20 Toyota Motor Co Ltd Lenkkrafthilfe
US6029768A (en) * 1997-10-16 2000-02-29 Harmonic Drive Systems, Inc. Power assist device for steering apparatus
EP1013534A1 (de) * 1998-12-08 2000-06-28 Ford-Werke Aktiengesellschaft Elektrische Servolenkung, insbesondere für Kraftfahrzeuge
DE10253465A1 (de) * 2002-06-22 2004-01-22 Zf Lenksysteme Gmbh Lenksystem für ein Fahrzeug
EP1384648A2 (de) * 2002-07-26 2004-01-28 Toyoda Koki Kabushiki Kaisha Lenkungssteuersystem für Kraftfahrzeuge

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039825A1 (de) * 2004-10-16 2006-04-20 Thyssenkrupp Presta Ag Einrichtung zur drehzahlüberlagerung für ein lenksystem
EP1870312A2 (de) * 2006-06-20 2007-12-26 ZF-Lenksysteme GmbH Überlagerungslenkung
EP1870312A3 (de) * 2006-06-20 2008-10-01 ZF-Lenksysteme GmbH Überlagerungslenkung
WO2008080661A1 (de) * 2006-12-29 2008-07-10 Robert Bosch Gmbh Lenksystem in einem fahrzeug mit einem elektrischen servomotor
EP1972832A3 (de) * 2007-03-17 2010-04-28 ZF-Lenksysteme GmbH Wellgetriebe
DE102007012767A1 (de) 2007-03-17 2008-09-18 Zf Lenksysteme Gmbh Wellgetriebe
EP1972832A2 (de) 2007-03-17 2008-09-24 ZF-Lenksysteme GmbH Wellgetriebe
DE102007000941A1 (de) 2007-09-04 2009-03-05 Zf Lenksysteme Gmbh Wellgetriebe
DE102007000940B4 (de) * 2007-09-04 2014-07-10 Zf Lenksysteme Gmbh Überlagerungslenkung für ein Fahrzeug
DE102007000941B4 (de) * 2007-09-04 2016-03-31 Ovalo Gmbh Wellgetriebe
DE102008008182A1 (de) 2008-02-08 2009-10-08 Audi Ag Kraftfahrzeug
EP2088059A1 (de) 2008-02-08 2009-08-12 Audi AG Kraftfahrzeug
DE102008008182B4 (de) * 2008-02-08 2011-01-13 Audi Ag Kraftfahrzeug und Verfahren zum Betrieb eines Kraftfahrzeugs
DE102008040835A1 (de) * 2008-07-29 2010-02-04 Zf Lenksysteme Gmbh Servolenkung
DE102008044109A1 (de) 2008-11-27 2010-06-02 Zf Lenksysteme Gmbh Wellgetriebe
DE102009000486A1 (de) 2009-01-29 2010-08-05 Zf Lenksysteme Gmbh Radialflexible Abrollbuchse
DE102012101936A1 (de) 2012-03-08 2013-09-12 Zf Lenksysteme Gmbh Elektrische Servolenkung
DE102013010362B4 (de) * 2013-06-21 2021-03-11 Thyssenkrupp Presta Ag Doppelritzel-Lenkgetriebe mit Hohlwellenmotor
EP3079967B1 (de) 2013-12-13 2019-10-09 Ovalo GmbH Fahrzeuglenkung mit einem überlagerungssteller
DE102015104316A1 (de) 2015-03-23 2016-09-29 Robert Bosch Automotive Steering Gmbh Wellgetriebe für einen Aktuator eines Lenksystems
DE102016108876A1 (de) 2016-05-13 2017-11-16 Robert Bosch Automotive Steering Gmbh Vorrichtung zur Betätigung eines Eingangsglieds
DE102016108869A1 (de) 2016-05-13 2017-11-16 Robert Bosch Automotive Steering Gmbh Vorrichtung zur Betätigung eines Eingangsglieds einer Einrichtung eines Verbrennungsmotors
DE102016108871A1 (de) 2016-05-13 2017-11-16 Robert Bosch Automotive Steering Gmbh Vorrichtung zur Betätigung einer Exzenterwelle und Verfahren zur Montage
FR3100051A1 (fr) * 2019-08-20 2021-02-26 Jtekt Europe Module d’assistance pour un système de direction assistée de véhicule automobile, avec élimination du risque d’éjection d’une cage de séparation d’un roulement mécanique.

Also Published As

Publication number Publication date
KR20060129209A (ko) 2006-12-15
EP1689632B1 (de) 2007-10-17
ATE375911T1 (de) 2007-11-15
JP2007513006A (ja) 2007-05-24
US7905317B2 (en) 2011-03-15
JP4699381B2 (ja) 2011-06-08
EP1689632A1 (de) 2006-08-16
CA2548609A1 (en) 2005-06-16
US20070209861A1 (en) 2007-09-13
KR101203808B1 (ko) 2012-11-22

Similar Documents

Publication Publication Date Title
EP1689632B1 (de) Überlagerungslenkung für ein fahrzeug
DE4201906A1 (de) Lenkvorrichtung mit veraenderbarem lenkwinkelverhaeltnis
EP1013534B1 (de) Elektrische Servolenkung, insbesondere für Kraftfahrzeuge
DE19723358B4 (de) Motorbetriebenes Servolenksystem
EP0507137B1 (de) Lenkbarer Radantrieb
DE10253465A1 (de) Lenksystem für ein Fahrzeug
DE102004052562B3 (de) Kraftfahrzeuglenkung mit Überlagerungsgetriebe
DE19527951C2 (de) Antriebseinheit zum Antrieb wenigstens eines Rades, insbesondere Radnabenantrieb
EP0827472B1 (de) Hilfskraftlenkung für kraftfahrzeuge
DE10316599A1 (de) Getriebeeinrichtung für Antriebe von Kraftfahrzeuglenkungen
EP2066925B1 (de) Mehrstufiges untersetzungsgetriebe
DE102012203553A1 (de) Übersetzungsgetriebe
EP3334638B1 (de) Servolenkbaugruppe mit lenkmomentüberlagerung
DE102008009060B4 (de) Elektrische Servolenkung mit angetriebener Lenkwelle
DE102006046579A1 (de) Mehrstufiges Untersetzungsgetriebe
DE102019205944B4 (de) Getriebeeinheit für eine Kraftfahrzeuglenkung
EP1431161B1 (de) Lenksystem für ein Fahrzeug
DE10239968A1 (de) Spielfreies Planetenradgetriebe
DE102009056356A1 (de) Servolenkung
WO2004000629A2 (de) Lenksystem für ein fahrzeug
DE102008043913A1 (de) Überlagerungslenkung für ein Fahrzeug
EP2562058B1 (de) Modular aufgebaute Stützvorrichtung für einen Sattelanhänger und Sattelanhänger mit einer solchen Stützvorrichtung
WO2005054034A1 (de) Überlagerungslenkung
DE19931850A1 (de) Kraftfahrzeugservolenkung mit elektrischem Servomotor und Planetenwälzgetriebespindeltrieb
DE102014108948B3 (de) Servolenkbaugruppe mit Lenkmomentüberlagerung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480029091.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004819648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006541897

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067010968

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2548609

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2004819648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10581976

Country of ref document: US

Ref document number: 2007209861

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10581976

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004819648

Country of ref document: EP