WO2005053079A1 - 燃料電池の製造方法及び製造装置 - Google Patents

燃料電池の製造方法及び製造装置 Download PDF

Info

Publication number
WO2005053079A1
WO2005053079A1 PCT/JP2004/016624 JP2004016624W WO2005053079A1 WO 2005053079 A1 WO2005053079 A1 WO 2005053079A1 JP 2004016624 W JP2004016624 W JP 2004016624W WO 2005053079 A1 WO2005053079 A1 WO 2005053079A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cells
unit fuel
support plate
pressing force
unit
Prior art date
Application number
PCT/JP2004/016624
Other languages
English (en)
French (fr)
Inventor
Ryuichiro Furukawa
Akihiro Usui
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP04799562.6A priority Critical patent/EP1689015B1/en
Priority to CA2541353A priority patent/CA2541353C/en
Priority to US10/595,937 priority patent/US7615302B2/en
Publication of WO2005053079A1 publication Critical patent/WO2005053079A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a fuel cell, and more particularly to manufacturing a unit fuel cell by providing positive and negative electrodes on both sides of an electrolyte membrane and providing a separator on the outer surface of the positive and negative electrodes. Further, the present invention relates to a method and an apparatus for manufacturing a fuel cell for manufacturing a fuel cell by stacking a large number of unit fuel cells. Background art
  • a method of manufacturing a unit fuel cell (unit cell) constituting a fuel cell is disclosed in, for example,
  • the unit fuel cell 300 has a membrane electrode structure 301 formed by providing positive and negative electrodes 303 and 304 on both sides of an electrolyte membrane 302. Separators 305, 306 are provided on both sides of the membrane electrode structure 301.
  • the unit fuel cell 300 In order for the unit fuel cell 300 to generate power, it is necessary to supply fuel gas and oxygen gas into the unit fuel cell 300. In order to keep the supplied fuel gas or oxygen gas in the unit fuel cell 300, it is necessary to seal the outer periphery of the unit fuel cell 300.
  • the electrolyte membrane 302 is extended from the outer periphery of the positive and negative electrodes 303, 304, and the outer periphery 308, 309 of the separators 305, 306 is opposed to the overhanging portion 307.
  • Grooves 311 and 312 are formed on the outer peripheral portions 308 and 309, and a liquid seal 311 and 313 are applied to the grooves 311 and 312.
  • Separators 305, 306 coated with liquid seals 313, 313 are provided on both sides of the membrane electrode structure 301, and the liquid seals 313, 313 are solidified to form separators 305, 306 and an electrolyte membrane. Close the gap 31 4, 31 4 with 302.
  • a stack of many unit fuel cells 300 is a fuel cell. That is, in the fuel cell, a large number of unit fuel cells 300 are stacked to form a stacked body 316, and the stacked body 3 A first support plate (not shown) is provided at one end of 16, and a second support plate (not shown) is provided at the other end of the laminated body 316. The laminated body 3 16 is connected to hold the pressed state.
  • the separators 305 and 306 have gas supply grooves 321 and Drainage grooves 3 2 2 are formed in advance, and when separators 3 0 5 and 3 0 6 are laminated, the gas supply grooves 3 2 1 and the drainage grooves 3 2 2 are closed and the flow path is closed.
  • the unit fuel cell 300 is preferably used when manufacturing the laminate 316. It is necessary to stack them in an aligned state.
  • the liquid seals 3 13 and 3 13 of the unit fuel cell 300 are compressed. If the unit fuel cells 300 are not aligned properly when compressing the liquid seals 3 13 and 3 13, it is difficult to apply a uniform pressing force to the liquid seals 3 13 and 3 13. However, it is conceivable that a large pressing force is applied to the local portions of the liquid seals 3 13 and 3 13, which is not preferable in view of the durability of the liquid seals 3 13 and 3 13.
  • a unit fuel cell is manufactured by providing positive and negative electrodes on both sides of the electrolyte membrane and providing a separator on the outer surface of these positive and negative electrodes, and stacking a large number of these unit fuel cells.
  • a method of manufacturing a fuel cell wherein the plurality of unit fuel cells are stacked and mounted on an inclined table, and the left and right sides of the mounted plurality of unit fuel cells are provided. Supporting a side; aligning a number of unit fuel cells by vibrating action while tilting the inclined table sideways; and first and second support plates on both end faces of the aligned number of unit fuel cells. Arranging a plurality of unit fuel cells via the first and second support plates, and applying a predetermined pressing force to the plurality of unit fuel cells. In the state A step of connecting the first and second support plates with connection members, the manufacturing method of the fuel cell Ru Tona is provided.
  • the step of applying the pressing force preferably, when gradually increasing the pressing force applied to the plurality of unit fuel cells to the predetermined pressing force, it takes time as the predetermined pressing force is approached. Gradually increase.
  • the separator in order to supply hydrogen gas or oxygen gas to the unit fuel cell, the separator has a supply groove for supplying hydrogen gas or oxygen gas. Therefore, when a predetermined pressing force is applied to a large number of unit fuel cells, if the pressing force is increased in a short time to the predetermined pressing force, the pressing force is locally concentrated on the positive / negative diffusion layer that contacts the separator. The positive-negative diffusion layer may be damaged.
  • the hydrogen gas and oxygen gas supplied to the unit fuel cell A seal is provided along the outer periphery of the unit fuel cell in order to maintain For this reason, when a predetermined pressing force is applied to a large number of unit fuel cells, if the pressing force is increased to the predetermined pressing force in a short time, the pressing force may be locally concentrated on the seal, and the seal may be damaged. I will.
  • the pressing force applied to a large number of unit fuel cells is increased stepwise to a predetermined pressing force.
  • the local pressing force is prevented from concentrating on the seal, and the local pressing force is concentrated on the positive / negative diffusion layer contacting the separator. Is prevented.
  • the pressing force gradually increases as the pressing force approaches a predetermined pressing force. This more reliably prevents the pressing force from locally concentrating on the seal, and more reliably prevents the pressing force from locally concentrating on the positive / negative diffusion layer that contacts the separator.
  • An apparatus for manufacturing a fuel cell comprising: first and second support plates provided on both end surfaces of the stacked unit fuel cell; and a connecting member that connects the first and second support plates.
  • a pusher beam portion provided on a gantry so as to swing freely is stacked on the first support plate and the plurality of unit fuel cells.
  • a pusher beam turning portion for swinging the pusher beam portion to an upward position and a lateral position connecting the second support plate to the first support plate, and a pusher beam turning portion provided along the longitudinal direction of the pusher beam portion; Said many Guide means for slidably supporting three sides of the unit fuel cells; vibrating means for applying vibration to the guide means to align the plurality of unit fuel cells supported by the guide means; A pusher moving means for moving the first support portion and a large number of unit fuel cells along the guide means; and a swinger provided to face the pusher beam portion to support the second support plate.
  • a receiver a receiver for swinging the receiver to an upward position supporting the second support plate, and a horizontal position connecting the second support plate to the first support plate;
  • the swivel part, the receiver part and the pusher beam part are respectively arranged at lateral positions, and when one end face of a large number of unit fuel cells is pressed against the second support plate by the pusher moving means, A pressing force measuring means for measuring such pressing force and a fuel cell manufacturing apparatus comprising the pressing force measuring means are provided.
  • the pusher beam is swingably provided between the upward position and the lateral position.
  • the first support plate and a number of unit fuel cells are sequentially placed and stacked from above the pusher beam.
  • a large number of unit fuel cells are easily stacked on the first support plate.
  • the vibrating means By vibrating means provided in the guide means, when the pusher beam moves from the upward position to the horizontal position, the vibrating means vibrates many unit fuel cells and aligns many unit fuel cells. I do. Thus, a large number of fuel cells can be placed relatively roughly when the above-described stacking is performed.
  • the receiver section is provided so as to be freely swingable between an upward position and a horizontal position, so that the receiver section and the pusher beam section are respectively disposed at the horizontal positions, and the front end faces of a large number of unit fuel cells are moved to the second position by the pusher moving means. Press on the support plate.
  • the pressing force measuring means measures the pressing force applied to the second support plate when the front end faces of the multiple unit fuel cells are pressed against the second support plate by the pusher moving means. This makes it possible to easily and reliably apply a predetermined pressing force to a large number of unit fuel cells.
  • FIG. 1 is an exploded perspective view of a fuel cell reassembled by the fuel cell manufacturing apparatus according to the present invention
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1,
  • FIG. 3 is a perspective view showing a fuel cell manufacturing apparatus according to the present invention.
  • FIG. 4 is an exploded perspective view of the manufacturing apparatus shown in FIG. 3,
  • FIG. 5 is a side view showing the manufacturing apparatus shown in FIG. 3
  • FIG. 6 is a sectional view taken along line 6—6 in FIG. 5,
  • 8A and 8B are diagrams showing a process of supporting the bottom and right sides of the unit fuel cell
  • 9A and 9B are diagrams showing a process of supporting the bottom and left and right sides of the unit fuel cell
  • FIGS. 10 to 10 are diagrams showing a process of aligning a number of unit fuel cells
  • FIGS. 11A and 11B are diagrams showing a process of locking a pusher unit to a horizontal position
  • FIG. 12 is a diagram showing a process of lowering the cylinder rod of the overturn prevention cylinder.
  • FIG. 14 is a diagram showing a process of arranging the first and second support plates on both end surfaces of the unit fuel cell
  • FIGS. 15A and 15B are diagrams showing a process of applying a predetermined pressing force to a large number of stacked unit fuel cells
  • FIG. 16 is a graph in which when a predetermined pressing force is applied to a number of stacked unit fuel cells, the pressing force is applied stepwise,
  • FIG. 17A and FIG. 17B are diagrams showing a process of connecting the first and second support plates with a connection plate
  • FIG. 18 is a perspective view showing a fuel cell 10 manufactured by the method for manufacturing a fuel cell according to the present invention.
  • FIG. 19 is a cross-sectional view showing a basic configuration of a conventional unit fuel cell. BEST MODE FOR CARRYING OUT THE INVENTION
  • first and second support plates are provided on both end surfaces (both ends) 12 and 13 of the stacked unit fuel cell 11.
  • first and second support plates are provided on both end surfaces (both ends) 12 and 13 of the stacked unit fuel cell 11.
  • the unit fuel cell 11 includes a membrane electrode structure 21 formed by providing positive and negative electrodes 23 and 24 on both sides of an electrolyte membrane 22 (see FIG. 2 for a negative electrode 24). It comprises separators 26 and 27 provided on both sides of the electrode structure 21.
  • the first and second support plates 14 and 15 have connection terminals 28 and 29 projecting from the surfaces 18 and 19, respectively.
  • the unit fuel cell 11 is formed in a substantially rectangular shape with four sides: a bottom side 11a, left and right sides 11b, 11c, and an upper side 11d.
  • the first support plate 14 has a bottom side 14a, left and right sides 14b,
  • the first support plate 14 has mounting holes 31 and 31 at both ends of an upper side 14d. Similarly, mounting holes 31 and 31 are provided at both ends of the bottom side 14a.
  • the second support plate 15 has a bottom 15a, left and right sides 15b,
  • the four sides of 15c and the upper side 15d are formed in a substantially rectangular shape.
  • the second support plate 15 has mounting holes 32, 32 at both ends of the upper side 15d. Similarly, mounting holes 32 and 32 are provided at both ends of the base 15a.
  • the side walls 34 of the left and right connecting plates 16 are each formed in a substantially rectangular shape.
  • a pair of bent pieces 35, 35 are formed on the upper and lower sides of the side wall 34, respectively.
  • Mounting holes 36, 36 are formed at both ends (front and rear ends) of the upper bent piece 35, and mounting holes 36, 36 are also formed at both ends of the lower bent piece 35.
  • a plurality of locking pieces 37, 37 are formed on both sides (front and rear sides) of the side wall 34, respectively.
  • a pair of upper and lower bent pieces 35, 35 are placed on a number of unit fuel cells 11 and the first and second support plates 14, 15 to form a plurality of bent pieces 35, 35 formed on the bent pieces 35, 35. Align the mounting holes 36 of the first and second support plates 14, 15 with the mounting holes 31, 31, 32, 32, and insert the pin 17 into the mounting holes 36, 31. Insert into the mounting holes 36, 32. As a result, the first and second support plates 14 and 15 are connected by the left and right connection plates 16.
  • the fuel cell 10 is assembled by connecting the first and second support plates 14 and 15 with the left and right connection plates 16 and 16.
  • a plurality of locking pieces 37 are the first and second support plates 1. 4 Contact the surfaces 18 and 19 of 15.
  • the unit fuel cell 11 shown in FIG. 2 has positive and negative electrodes 23 and 24 on both sides of an electrolyte membrane 22, and a positive electrode-side base layer 41 and a diffusion layer 4 2 outside the positive electrode 23.
  • a membrane electrode structure 21 formed by providing an underlayer 43 and a diffusion layer 44 on the negative electrode side outside the negative electrode 24, and separators provided on both sides of the membrane electrode structure 21. It consists of 26 and 27.
  • the diffusion layers 42 and 44 for example, porous porous paper is used.
  • the electrolyte membrane 22 is extended outward from the outer periphery of the positive and negative electrodes 23 and 24, and the extended portion 22 a is opposed to the outer periphery 26 a and 27 a of the separators 26 and 27.
  • Grooves 26 b and 27 b for applying the liquid seal 45 are formed on the outer peripheral portions 26 a and 27 a of the separators 27 and 27.
  • separators 26 and 27 are provided on both sides of the membrane electrode structure 21 to solidify the liquid seals 45 and 45. Then, the gaps 46 and 46 between the separates 26 and 27 and the electrolyte membrane 22 are closed.
  • the openings of the gas supply grooves 47 a formed in the separators 26 and 27 are closed to form the flow path 47. I do.
  • the openings of the drain grooves 48 a formed in the separator 26 are closed to form the flow channels 48.
  • fuel gas or oxygen gas is supplied into the unit fuel cell 11 from the flow path 47, and the generated water is discharged from the flow path 48.
  • the fuel cell manufacturing apparatus 50 includes a pusher unit 52 on the rear side of the mount 51 (right side in the figure) and a receiver unit 5 on the front side of the mount 51 (left side in the figure). 3 is provided.
  • the pusher unit 52 has an upward position P 1 (see FIG. 7B) in which the first support plate 14 shown in FIG. 1 and a number of unit fuel cells 11 are vertically stacked, and the first support plate 14 shown in FIG. It is rotatable to a lateral position P2 (see FIGS. 5 and 7A) in which the stacking direction of the plate 14 and the large number of unit fuel cells 11 is horizontal.
  • the lateral position P2 indicates the direction in which the second support plate 15 (see FIG. 1) is connected to the first "first support plate 14".
  • the receiver unit 53 has an upward position P3 (see FIG. 7 (b)) for vertically supporting the second support plate 15 (see FIG. 1) and a horizontal position P2 for supporting the second support plate 15 (see FIG. 7 (b)). And a lateral position P 4 (see FIGS. 5 and 7 (a)) facing the front end surface 13 (see FIGS. 1 and 13) of the multiplicity of unit fuel cells 11 placed in the stack. It is rotatable.
  • the lateral position P4 indicates the direction in which the second support plate 15 is connected to the first support plate 14.
  • the pusher unit 52 includes a beam-shaped pusher beam portion 55, a pusher beam turning portion 56, guide means 57, vibration means 58, and a pusher unit.
  • the pusher beam portion 55 is provided swingably with respect to the gantry 51 to support the first support plate 14 and a large number of unit fuel cells 11 in a stacked state.
  • the pusher beam swivel portion 56 includes two pusher beam portions at an upper position P 1 in the vertical direction in which the first support plate 14 and a large number of unit fuel cells 11 are stacked, and the lateral position P 2. 5 Swing 5.
  • the guide means 57 is provided along the pusher beam portion 55, and has three sides (a bottom side 14a, left and right sides 14b, 14c) and a large number of the first support plate 14 shown in FIG.
  • the three sides of the unit fuel cell 11 bottom 11a, left and right sides 11b, 11c) are supported by the slide itself, and the first support plate 14 and a number of stacked unit fuel cells 11 is guided in the receiver unit 53 direction.
  • the vibrating means 58 applies vibration to the guide means 57 in order to align the first support plate 14 supported by the guide means 57 and a number of unit fuel cells 11.
  • the pusher moving means 59 moves the first support plate 14 and a number of unit fuel cells 11 along the guide means 57 in the direction of the receiver unit 53.
  • the receiver unit 53 includes a receiver section 61, a receiver turning section 62, and pressing force measuring means 63.
  • the receiver 61 is opposed to the pusher beam 55 to support the second support plate 15 shown in FIG. 1, and is provided on the mount 51 so as to be freely swingable.
  • the receiver turning portion 62 includes the upward position P3 that supports the second support plate 15 and the horizontal position P that faces the front end surface 13 of the unit fuel cells 11 with the second support plate 15.
  • the receiver unit 61 is swung to two positions 4 and 4.
  • the pressing force measuring means 63 arranges the pusher beam part 55 and the receiver part 61 at the lateral positions P2 and P4, respectively, and the front end face 13 of a large number of unit fuel cells 11 (FIGS. 1 and 2). 13) is pressed against the second support plate 15 by the pusher moving means 59, and the pressing force F (see Fig. 15A) applied to the second support plate 15 is measured.
  • FIG. 4 shown in an exploded perspective view.
  • the pusher beam portion 55 of the pusher knit 52 is a beam-shaped member extending linearly.
  • the pusher beam portion 55 has a through hole 72 formed at a base end portion 71 thereof.
  • the base end 71 is mounted between mounting brackets 73 provided on the base 51.
  • the pusher beam portion 55 is connected to the pusher beam turning portion 56 via the base end 71.
  • the pusher beam turning section 56 has a drive motor 77 and a speed reducer 78 attached to the drive motor 77.
  • the speed reducer 78 is attached to the gantry 51.
  • the output shaft (not shown) of the speed reducer 78 is connected to the shaft 75.
  • the pusher beam portion 55 swings between an upward position P1 and a lateral position P2 (see FIG. 7).
  • a spring 79 acting to offset the weight of the push unit 52 is provided between the speed reducer 78 and the mounting bracket 3.
  • the guide means 57 provided on the pusher beam portion 55 includes lower guide brackets 82, 82 provided on both side walls 81, 81 of the pusher beam portion 55 (see also FIG. 6).
  • the left guide part 84 provided on the left outer wall 83 of the pusher beam part 55 and the right guide part 86 provided on the right outer wall 85 of the pusher beam part 55 (see FIG. 6) Have.
  • the upper sides 82a, 82a of the pair of lower guide plates 82, 82 project above both side walls 81, 81 of the pusher beam portion 55.
  • the base 14a of the first support plate 14 shown in FIG. 1 and the base 11a of the multiple unit fuel cells 11 are supported by the pair of lower guide plates 82,82.
  • the left side 14 b of the first support plate 14 and the left side 11 b of the multiple unit fuel cells 11 are supported by the left guide plate 87 of the left guide portion 84.
  • the right side 14 c of the first support plate 14 shown in FIG. 1 and the right side 11 c of the multiple unit fuel cells 11 are supported by the right guide plate 88 of the right guide portion 86.
  • the vibration means 58 is provided in the left guide portion 84.
  • the vibrating means 58 is provided on the left swinging part 91 of the left guide part 84, and vibrates in the front-rear direction as indicated by an arrow A1, thereby forming the first support plate 14 shown in FIG. Vibration is applied to the unit fuel cells 11 to align them.
  • the vibrating means 58 vibrates the vibrating body using, for example, an electromagnetic coil, but the configuration of the vibrating means 58 is not limited to this.
  • the pusher moving means 59 is provided on the base end 71 side of the pusher beam portion 55.
  • the pusher moving means 59 includes slide guides 92, 92 (the right slide guide 92 is not shown) attached to the left and right of the pusher beam portion 55, and left and right slide guides 92, 99. 2, a movable body 93 provided slidably, a holding section 94 provided at a front end of the movable body 93 to hold the first support plate 14 shown in FIG.
  • a ball screw 96 provided at the rear via a support portion 95, a large-diameter pulley 97 attached to the pole screw 96, and a large-diameter pulley 97 connected to the large-diameter pulley 97 via a belt 98.
  • a small-diameter pulley 99, and a drive motor 101 mounted on the small-diameter pulley 99 via a drive shaft 102.
  • the moving body 93 is rotatably connected to a front end 96 a of the ball screw 96.
  • the ball screw 96 rotates forward via the small-diameter pulley 99, belt 98, and large-diameter pulley 97, and the moving body 93 is moved to the pusher beam section 5 5 Along the guide, specifically, along the guide means 57.
  • the pole screw 96 is reversed via the small-diameter pulley 99, belt 98, and large-diameter pulley 97, and the moving body 93 is moved to the pusher beam section 55.
  • the guide means 57 specifically, toward the rear.
  • the gantry 51 includes pusher unit lock means 105 for holding the pusher unit 52 at the lateral position P2 (see FIGS. 5 and 7A).
  • the push unit lock means 105 includes a receiving portion 106 provided on the gantry 51 and a lock portion 107 in front of the receiving portion 106.
  • the pusher unit 52 is placed in the horizontal position P 2 (see FIGS. 5 and 7) by inserting the positioning protrusions 108 (see FIGS. 6 and 7B) into the grooves 106 a formed in the receiving portion 106. Refer to A).
  • the positioning protrusion 108 protrudes downward from the lower surface of the distal end portion of the pusher beam portion 55 as shown in FIG. 7B.
  • the receiver unit 61 of the receiver unit 53 includes a receiver body 111.
  • the rear part 1 1 1a of the receiver body 1 1 1 has an inverted U-shaped cross section.
  • Mounting holes 1 1 4 and 1 1 4 are formed on both side walls of the rear portion 1 1 a.
  • the mounting bracket 1 1 3 of the gantry 5 1 into the downward opening of the rear part 1 1 1 a of the receiver body 1 1 1 and attach the mounting holes 1 1 4, 1 1 4 and the mounting bracket 1 1 3 Insert the mounting pins 1 15 into these mounting holes 1 1 4 and 1 13 a along with the holes 1 1 3 a.
  • the receiver main body 11 1, that is, the receiver section 61 is swingably supported by the mounting bracket 113 of the gantry 51.
  • Mounting holes 1 1 1 and 1 7 are formed in the left and right brackets 1 1 6 and 1 16 that constitute the rear part of the receiver body 1 1 1 respectively.
  • a swivel cylinder 1 2 1 is used as an example.
  • the cylinder body 124 is attached to the base 51 via mounting pins 125 at the lower end thereof (see FIG. 5).
  • the receiver part 61 becomes the upward position P3 (see FIG. 7B) so as to support the second support plate 15.
  • the second support plate 15 shown in FIG. 1 faces the front end face 13 of the multiple unit fuel cells 11 as shown in FIG.
  • the horizontal position is P4 (see Fig. 5).
  • the pressing force measuring means 63 is provided on the front part 113 b of the mounting bracket 113 provided on the gantry 51.
  • the pressing force measuring means 63 is provided with slide guides 127, 127 extending vertically in the front part 113b of the mounting bracket 113 of the gantry 51. It is provided movably in the vertical direction via 8.
  • the load cell 129 is provided on the elevating body 128.
  • the lifting body 128 is connected to the cylinder rod 132 of the lifting cylinder 131.
  • the elevating cylinder 13 1 is connected to the gantry 51.
  • the receiver section 61 includes a receiver body 111, and slide guides 1336, 1 attached to left and right side walls 1 lib, 11b (not shown) of the receiver body 111, respectively. 3 6 (rear side not shown) and left and right slide guides 13 6 13 6, a movable body 137 provided movably in the front-rear direction, a holding portion 1338 provided at a front end of the movable body 137 and holding the second support plate 15 (see FIG. 1), and a receiver. And a moving cylinder 141 having a cylinder rod 142 whose tip is connected to the upper front end 137a of the moving body 137, which is provided on the upper surface of the main body 111.
  • the moving body 133 that is, the holding portion 138 moves to the set position P8 (FIG. 7B) where the second support plate 15 is set. See).
  • the receiver section 61 further includes first holding cylinders 1 45, attached to left and right walls 137b, 137b of the moving body 137 (the back wall 137b is not shown). 1 45 (The first holding cylinder 145 on the back side is not shown) and the brackets 1 47 attached to the tip of the cylinder rods 146, 146 of the left and right first holding cylinders 145, 145, respectively.
  • Each of the left and right locking claws 1 5 1, 1 5 1 is arranged in the front-rear direction, and the tip is bent along the surface 1 38 a of the holding portion 1 38 1 5 1 a, which has 1 5 1 a ⁇ .
  • the left and right locking claws 15 1 and 15 1 are retracted by retracting the cylinder rods 146 and 146 of the left and right first holding cylinders 1 45 and 1 45. Further, as the cylinder rods 149, 149 of the left and right second holding cylinders 148, 148 move forward, the left and right locking claws 15 1, 15 1 approach each other, that is, the holding section 1 3 Move toward each of the eight sides.
  • the bent pieces 1 51, 15 1 51 a and 15 1 a can contact the back surface 15 e of the second support plate 15.
  • the holding portion 138 supporting the second support plate 15 has a concave portion 138b formed on the surface 138a.
  • the recess 1338b receives the connection terminal 29 (see FIG. 1) of the second support plate 15.
  • the pusher unit 52 includes a fall prevention means 155 provided at the tip of the pusher beam portion 55.
  • the overturn prevention means 155 includes left and right overturn prevention cylinders 156 and 156 shown in FIG. 6 and cylinder rods located at the tips 8 2 b and 8 2 b of the left and right lower guide plates 82 and 82. 1 57 and 1 57 are provided.
  • Each of the cylinder rods 157, 157 can protrude above the upper sides 82a, 82a of the left lower guide plates 82, 82 as indicated by the two-dot line in FIG. .
  • the pusher unit 52 By inserting the positioning projection 108 of the pusher beam portion 55 into the receiving portion 106 provided on the gantry 51, the pusher unit 52 is positioned at the lateral position P2. Further, the lock pin 109 provided on the positioning projection 108 is locked by the lock portion 107, so that the pusher unit 52 is held at the lateral position P2.
  • the vibrating means 58 provided on the left guide portion 84 vibrates the left swing portion 91 in the front-rear direction (lateral direction), and the first support plate 14 shown in FIG. Vibration is transmitted to the unit fuel cell 1 1.
  • the pusher beam portion 55 has left and right legs 1558, 158 attached to the left and right end portions 55a, 55a.
  • the left and right fall prevention cylinders 156, 156 are vertically attached to brackets 159, 159 provided at the upper ends of the left and right legs 158, 158, respectively.
  • the lock portion 107 of the push unit lock means 105 provided on the gantry 51 includes a guide member 161, an L-shaped locking member 163, a first link 166, The second link 1 6 7 is provided.
  • the guide member 16 1 is provided on the upper surface 51 a of the gantry 51 so as to be located on the side of the lock pin 109 (the left side in FIG. 6).
  • One support bracket 162 is provided on the left side of the lock pin 109.
  • the locking member 163 is rotatably attached to one of the support brackets 162 via a pin 164.
  • One end of the first link 166 is rotatably connected to the locking member 163 via a pin 165, and the other end has a pin 177 "1 attached to the tip of the cylinder rod 169. It is rotatably connected via
  • One end of the second link 167 is rotatably connected to the distal end of the cylinder rod 169 via the pin 171, and the other end has a pin 172 connected to the other support bracket 173. It is rotatably connected through the.
  • the other support bracket 173 is provided on the upper surface 51 a of the gantry 51.
  • the lock cylinder 168 having the cylinder rod 169 is supported by the base 51 so as to be swingable leftward as indicated by the arrow.
  • the cylinder rod 166 of the lip cylinder 168 ⁇ force
  • the locking member 163 rotates clockwise, and the locking member
  • the locking piece 16 3 a of 16 3 that is, the tip of the locking member 16 3 moves away from the upper surface of the lock pin 109 to the retracted position (see FIG. 11A).
  • the lock state of the lock pin 109 is released.
  • the left guide portion 84 of the guide means 57 includes a left swing portion 91, a guide cylinder 181, and a left guide plate provided above the left swing portion.
  • the left swing portion 91 is swingably attached to the support portion 177 via a pin 176.
  • the support part 177 is fixed to the left part of the pusher beam part 55.
  • the tip of the cylinder rod 18 2 of the guide cylinder 18 1 is connected to the lower part of the left swing part 91 via a pin 178.
  • the guide cylinder 18 1 is attached to a bracket 18 3 provided on the left outer wall 83 of the pusher beam section 55 via a pin so as to be swingable in the left-right direction.
  • the vibrating means 58 is provided on the inclined lower surface of the left swinging part 91 via a mounting plate 184.
  • the left swing part 91 swings upward as indicated by arrow A around the pin 176 as the cylinder rod 18 2 of the guide cylinder 18 1 advances. Move.
  • the left guide plate 87 becomes a horizontal support position, and supports the left side 14 b of the first support plate 14 shown in FIG. 1 and the left side 1 1 b of many unit fuel cells 11. .
  • the left swing portion 91 swings downward about the pin 1 76 as shown by the arrow B.
  • the left guide plate 87 becomes a vertical retreat position (the position shown), and the first guide plate 87 shown in FIG. Separate from the left side 14 b of the support plate 14 and the left side 11 b of many unit fuel cells 11.
  • the guide portion 86 of the guide means 57 has a right swing portion 186 corresponding to the left swing portion 91 of the left guide portion 84, and other configurations are the same as those of the left guide portion 84. is there.
  • the right swing part 186 has a structure in which the vibration means 58 is removed from the left swing part 91.
  • the right swing portion 186 swings upward about the pin 176 as shown by an arrow C by the forward movement of the cylinder rod 18 2 of the guide cylinder 18 1. I do.
  • the right guide plate 88 becomes a horizontal support position (the position shown in the drawing), and the right side 14 c of the first support plate 14 shown in FIG. Support the right side 1 1 c.
  • the right swing unit 18 6 swings downward about the pin 17 6 as shown by the arrow D.
  • the right guide plate 88 becomes a vertical retreat position, and moves away from the right side 14 c of the first support plate 14 and the right side 11 c of the multiple unit fuel cells 11 shown in FIG.
  • the holding portion 94 supporting the first support plate 14 has a concave portion 94a formed substantially at the center thereof.
  • the recess 94 a houses the terminal 28 of the first support plate 14 (see FIG. 1).
  • FIGS. 7A and 7B show a process of mounting a large number of unit fuel cells on the inclined lower guide plates 82, 82 (inclined table) in a stacked state in the fuel cell manufacturing method.
  • the cylinder rod 169 of the lock cylinder 168 provided in the push unit lock means 105 descends as shown by the arrow c.
  • the locking piece 16 3 a of the locking member 16 3 moves to the retracted position away from the upper surface of the lock pin 109 and locks with the lock pin 109. The state is released.
  • the pusher beam portion 55 swings from the lateral position P2 to the upward position P1 (the position shown in FIG. 7B) as indicated by an arrow d.
  • the upward position P1 shown in FIG. 7B is a state where the pusher beam portion 55 is inclined obliquely, and the pusher beam portion 55 provided with the lower guide plates 82 and 82 forms an inclined base.
  • the second support plate 15 is placed on the holding portion 1338 of the receiver portion 61 as shown by an arrow g.
  • Cylinder rods 1 46, 1 4 6 of left and right 1st holding cylinders 1 45, 1 45 (only the 1st holding cylinder 1 4 5 and cylinder rod 1 4 6 in front are shown.)
  • the left and right locking claws 15 1, 15 1 (see FIG. 4 for the rear locking claw 15 1) move forward as indicated by arrow h.
  • the first support plate 14 is placed on the holding portion 94 of the push unit 52 as shown by an arrow i.
  • the pusher beam portion 55 is configured to be swingable between the upward position P1 and the lateral position P2, so that when the pusher beam portion 55 becomes the upward position P1, the first support plate 1 4 and a large number of unit fuel cells 11 are sequentially stacked from above and can be placed on the holder 94. Therefore, a large number of unit fuel cells 11 can be easily stacked on the first support plate 14.
  • the holding portion 94 is positioned at the setting position P9 at the tip of the pusher beam portion 55.
  • the holder 94 is lowered by the drive motor 101 as indicated by an arrow k.
  • the back surface 14e (see FIG. 1) of the first support plate 14 is at the set position P9.
  • the upper surface 11e of the unit fuel cell 11 becomes the set position P9.
  • the mounting surfaces of the first support plate 14 and the many unit fuel cells 11 are always kept at the same height at the set position P9, and the first support plate 14 and the many unit fuel cells 1 1 can always be supplied from a constant height.
  • the burden on the operator is reduced.
  • the supply of the first support plate 14 and a large number of unit fuel cells 11 is automated by, for example, a robot, the operation of the robot can be simplified.
  • 8A and 8B show a process of supporting the bottom and right sides of a large number of unit fuel cells stacked.
  • the cylinder rods 1557 and i57 of the left and right overturn prevention cylinders 156 and 1556 of the overturn prevention means 1555 advance as shown by the arrows, and the lower guide plates 82 on the left and right sides.
  • the unit fuel cells 11 supported by the left and right lower guide plates 8 2, 8 2 It is possible to prevent the dropping of the tips 82, 82 from the tip side and the overturning of a large number of unit fuel cells 11.
  • the left and right lower guide plates 82, 82 support the base 14a of the first support plate 14 and the bases 11a of a number of unit fuel cells 11.
  • the right guide plate 88 includes a right side 14 c of the first support plate 14 supported by the left and right lower guide plates 82, 82 and a right side 1 1 c of many unit fuel cells 11. Support.
  • 9A and 9B show a process of supporting the bottom and left and right sides of the unit fuel cell.
  • the left and right lower guide plates 82, 82 support the base 14a of the first support plate 14 and the bases 11a of the multiple unit fuel cells 11.
  • the left guide plate 87 supports the left side 14 b of the first support plate 14 and the left side 11 b of many unit fuel cells 11.
  • the guide means 57 is provided on the three sides (the bottom side 14a, the left and right sides 14b, 14c) of the first support plate 14 and the three sides (the bottom side) of a large number of unit fuel cells 11. 1 1a, left and right sides 1 1b, 1 1c) are freely slidable, so that the bottom 1 1a and left and right sides 1 1b, 1 1c of the unit fuel cell 11 placed are aligned. Thus, a number of unit fuel cells 11 are aligned.
  • the pusher beam portion 55 moves from the upward position P 1 (see FIG. 7B) to the horizontal position P 2 ( (See Fig. 7A).
  • FIG. 10 to FIG. 10C show a process of arranging a large number of unit fuel cells.
  • the pusher beam portion 55 (see FIG. 9A) is swung as indicated by an arrow n, and the vibration means 58 is operated.
  • the vibration means 58 By the operation of the vibration means 58, the left guide plate 87 provided on the upper part of the left swing part 91 vibrates as shown by the arrow o.
  • the multiple unit fuel cells 11 vibrate as shown by the arrow o in the longitudinal direction of the pusher beam portion 55.
  • FIG. 10B when a large number of unit fuel cells 11 are sequentially placed on the holding portion 94 of the pusher unit 52 as shown in FIG. It is conceivable that a part is placed diagonally. A large number of unit fuel cells 11 in this state are vibrated by the vibration means 58 as shown by an arrow o in the longitudinal direction of the pusher beam portion 55 shown in FIG. 7B.
  • the multiple unit fuel cells 11 vibrate in the longitudinal direction of the pusher beam portion 55 as indicated by an arrow o, and the unit fuel cells 11 are aligned in parallel with each other.
  • each unit fuel cell 11 is weighed by its own weight of the unit fuel cell 11 placed on top of it, and a large number of unit fuel cells 11 are in close contact with each other (that is, they are in contact with each other and Force is generated).
  • a vibration action is employed while swinging the pusher beam portion 55 from the upward position P 1 (see FIG. 7B) to the lateral position P 2 (see FIG. 7A) as indicated by an arrow n.
  • the contact state of many unit fuel cells 11 is released.
  • vibration was applied to the unit fuel cells 11 so that many unit fuel cells 11 were aligned.
  • the drive motor 101 of the pusher moving means 59 is rotated forward to rotate the pole screw 96 forward.
  • the mobile unit 93 and the holding unit 94 are moved toward the distal end side of the pusher beam unit 55, that is, toward the cylinder rods 1557, 157 of the overturn prevention unit 1555.
  • the front ends of the large number of unit fuel cells 11 are brought into contact with the cylinder rods 15 7, 15 7 of the overturn prevention means 15 55 by the holding portion 94.
  • the pusher beam portion 55 reaches the horizontal position P2 (see FIG. 7A)
  • the aligned unit fuel cells 11 are kept in a well-aligned state so as not to fall down. It is.
  • the drive motor 101 stops when the front ends of the multiple unit fuel cells 11 abut against the cylinder rods 157, 157.
  • FIGS. 11A and 11B show the process of locking the pusher unit to the sideways position.
  • the pusher beam portion 55 swings and moves as indicated by an arrow n, and reaches a lateral position P 2 (see FIG. 7A). At this time, the positioning projection 108 fits into the groove 106 a of the receiving portion 106 provided on the gantry 51 as shown by an arrow p. Then, the pusher beam portion 55 is positioned at the lateral position P2.
  • the locking piece 16 3 a of the locking member 16 3 is at the lock position on the upper surface of the lock pin “109.
  • the lock pin 109 is It is prevented from moving upward by the stop piece 16 3 a and is kept locked.
  • FIG. 12 shows the process of lowering the cylinder rod 1557 of the overturn prevention cylinder 1556.
  • the unit of the fuel cell 11 which is in contact with the cylinder rods 15 7 and 15 57 of the overturn prevention means 15 55 is shown.
  • the front end side will be described in a state not shown.
  • the vibration means 58 stops its operation.
  • the cylinder rods 15 7 and 15 7 of the overturn prevention cylinders 15 6 and 15 6 of the overturn prevention means 15 5 are indicated by arrows r. Descend like.
  • the cylinder rod 122 of the receiver revolving part 62 of the receiver unit 53 advances, and the receiver part 61 swings to the lateral position P4 (position shown) as indicated by an arrow s.
  • FIG. 13 shows a step of arranging the load cell 12 9 at the measurement position P3.
  • the second support plate 15 is placed on the distal ends of the lower left guide plates 82, 82.
  • FIG. 14 shows a process of arranging the first and second support plates at both ends of a large number of unit fuel cells 11. 16624
  • the moving body 93 is continuously moving forward along the pusher beam portion 55 (see FIG. 13) as indicated by an arrow u.
  • bent pieces 15 la, 15 1 a of the left and right locking claws 15 1, 15 1 correspond to the second support plate 15. Move away from the back 15 e (see Fig. 13).
  • first and second support plates 14 and 15 are disposed on both end surfaces (both ends) 12 and 13 of the aligned unit fuel cells 11 respectively.
  • the moving body 93 moves along the pusher beam portion 55 (see FIG. 13) along the arrow. It moves continuously forward like u.
  • the second support plate 15, the holding section 13 8, and the moving body 1 37 are retracted as indicated by an arrow x, and the moving body 1 37 is moved beyond the load cell 1 29 of the pressing force measuring means 63 (see FIG. 13). Abut the edge.
  • the load cell 129 measures the pressing force F for pressing a large number of unit fuel cells 11 with the pusher moving means 59 (see FIG. 13). By measuring the pressing force F using the load cell 129, the predetermined pressing force F3 can be relatively easily and accurately measured, and the predetermined pressing force F is applied to the unit fuel cell 11. Easy to apply 3 Can do. That is, the stacked unit fuel cells 11 are pressed by the pusher moving means 59 until the measured value F of the mouth cell 12 9 reaches the predetermined pressing force F3.
  • FIGS. 15A and 15B show a process of applying a predetermined pressing force to a large number of unit fuel cells 11.
  • FIG. 15A by pressing a number of unit fuel cells 11 stacked by the pusher moving means 59 (see FIG. 13), the pressing force F is applied to a number of unit fuel cells 11 by an arrow. It takes like. When a pressing force F is applied to many unit fuel cells 11, the separator 26 moves in parallel as indicated by an arrow y.
  • the opening of the drain groove 48 a formed in the separator 26 is closed by the separator 27 adjacent to the separator 26, and the flow path 48 is formed.
  • FIG. 16 shows a graph relating to the pressing force of a large number of unit fuel cells 11 stacked.
  • the vertical axis is the pressing force F (kgf), and the horizontal axis is the pressing time t (second).
  • the pressing force F is gradually increased along the curve g1 of the inclination angle 0 1 so that the pressing force F becomes F1 when the pressing time t is t1.
  • the pressing force F is gradually increased along the curve g2 of the inclination angle 02 so that the pressing force F becomes F2 when the pressing time t is t3.
  • the pressing force F becomes F2
  • the pressing force F is kept constant at F2 until the pressing time t becomes t4 seconds.
  • the pressing time t is t4
  • the pressing force F applied to the large number of unit fuel cells 11 is gradually increased to a predetermined pressing force F3.
  • a predetermined pressing force F3 is applied to a large number of unit fuel cells 11, the pressing force F3 is prevented from being locally concentrated on the liquid seal 45 (see FIG. 15B). It also prevents the pressing force from being locally concentrated on the positive and negative diffusion layers 42 and 44 that are in contact with the separators 26 and 27 shown in 15B.
  • porous carbon paper is used for the diffusion layers 42 and 44 on the positive and negative sides, so if local pressing force concentrates on the diffusion layers 42 and 44, the diffusion layers 42 and 44 will be damaged. It is possible.
  • the diffusion layers 42 and 44 are not damaged.
  • the inclination angle 01 of the curve g1, the inclination angle 02 of the curve g2, and the inclination angle 03 of the curve g3 have a relationship of 0 1> S 2> 03. Therefore, the increasing rate of the pressing force F is smaller in the curve g2 than in the curve g1, and is smaller in the curve g3 than in the curve g2.
  • the pressing force “slowly rises as it approaches the predetermined pressing force F3, and it is possible to more reliably prevent the pressing force from locally concentrating on the seal, It is possible to more reliably prevent the pressing force from locally concentrating on the positive / negative diffusion layer that comes into contact with the substrate.
  • FIGS. 17A and 17B show a process of connecting the first and second support plates 14 and 15 with left and right connection plates 16 and 16.
  • FIG. 17A while a large number of unit fuel cells 11 are pressed with a predetermined pressing force F 3, the left and right connecting plates 16, 1 Attach 6 with multiple pins 17.
  • the multiple unit fuel cells 11 and the first and second support plates 14 and 15 are integrally connected by the left and right connection plates 16 and 16.
  • the first and second support plates 14, 15 are connected to the connecting plates 16 and 1 while a predetermined pressing force F3 is applied to many unit fuel cells 11.
  • the fuel cell 10 can be obtained by connecting them at 6. Then, by reversing the drive motor 101 of the pusher moving means 59, the pole screw 96 is reversed via the small-diameter pulley 99, the belt 98, and the large-diameter pulley 97, and the moving body 9 3 And the holding part 94 is retracted as shown by the arrow z.
  • the fuel cell 10 is taken out from the manufacturing apparatus 50 as shown by the arrow.
  • the fuel cell 10 when the fuel cell 10 is manufactured using the fuel cell manufacturing apparatus 50, a large number of unit cells are provided on the first support plate 14. After stacking the fuel cells 11 and placing a number of the fuel cells 11 roughly on the left and right lower guide plates 82, 82, a predetermined number of the unit fuel cells 1 "1 By applying the pressing force F3, a fuel cell 10 in which many unit fuel cells 11 are aligned can be obtained.
  • FIG. 18 shows a fuel cell 10 manufactured by the fuel cell manufacturing method of the present invention.
  • first and second support plates 14 and 15 are arranged on both end surfaces 12 and 13 (see FIG. 1) of a large number of unit fuel cells 11 which are stacked.
  • first and second support plates 14 and 15 are integrally connected.
  • the connecting member connecting the first and second support plates 14 and 15 constituting the fuel cell 10 is the connecting plate 16.
  • the connecting member is not limited to this. Instead, other shapes such as connecting rods may be selected.
  • the vibration means 58 is provided on the left guide portion 84 of the guide means 57 .
  • the invention is not limited to this, and the vibration means 58 may be provided on the right side of the guide means 57.
  • the guide portions 86 may be provided, or both guide portions 84 and 86 may be provided respectively.
  • the vibration means 58 is vibrated in the horizontal direction to align a large number of unit fuel cells 11, but the vibration direction of the vibration means 58 is horizontal. However, it is also possible to vibrate in other directions.
  • the left and right guide portions 84, 86 of the guide means 57 are provided.
  • the invention is not limited thereto, and only the left guide section 84 may be swingably configured and the right guide section 86 may be fixed.
  • the curves g 1, g 2, and g are used until the pressing force F for pressing the large number of unit fuel cells 11 reaches the predetermined pressing force F 3.
  • the example in which the curve g3 gradually increases in three stages has been described.However, the invention is not limited thereto, and the pressing force F is gradually increased in two or more stages such as four stages until the predetermined pressing force F3 is reached. You may make it raise.
  • the present invention is not limited to this.
  • the second support plate 15 may not be placed on the tips of the left and right lower guide plates 82, 82.
  • the work of laminating a large number of unit fuel cells constituting the fuel cell is not troublesome, and the productivity of the fuel cell is improved. This makes the fuel cell more inexpensive, and is useful for the industry that manufactures the fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

多数枚の単位燃料電池(11)を積層することで燃料電池を得る製造方法が提供される。僅かに傾斜した上向き位置のプッシャユニット(52)の前部に第1支持板(14)を載置した後、該第1支持板上に多数枚の単位燃料電池を積層する。その後プッシャユニットを水平位置に倒しながら積層された多数枚の単位燃料電池に振動を加え、該多数枚の単位燃料電池を整列させる。整列された多数枚の単位燃料電池の前端面に第2支持板(15)を配置する。第1支持板及び第2支持板を介して多数枚の単位燃料電池に所定の押付力を付与しながら、第1及び第2支持板を連結プレート(16,16)で連結する。

Description

明 細 書 燃料電池の製造方法及び製造装置 技術分野
本発明は、 燃料電池の製造方法及び製造装置に関し、 特に、 電解質膜の両側 に正■負の電極を設け、 正■負の電極の外面にセパレ一タを設けることで単位燃 料電池を製造し、 この単位燃料電池を多数枚積層して燃料電池を製造する燃料電 池の製造方法及び製造装置に関する。 背景技術
燃料電池を構成する単位燃料電池 (単位セル) の製造方法は、 例えば特開 2
002-246044公報において提案されている。 の単位燃料電池の製造方
■ί
法について、 図 1 9に基づいて説明する。
図 1 9を参照するに、 単位燃料電池 300は、 電解質膜 302の両面に正 負の電極 303, 304を設けて形成される膜電極構造体 301を有する。 この 膜電極構造体 301の両面にはセパレータ 305, 306が設けられる。
この単位燃料電池 300が発電するには、 単位燃料電池 300内に燃料ガス や酸素ガスを供給する必要がある。 供給した燃料ガスや酸素ガスを単位燃料電池 300内に保っために、 単位燃料電池 300の外周をシールする必要がある。
このため、 電解質膜 302を正■負の電極 303, 304の外周から張り出 し、 この張り出した部位 307にセパレータ 305, 306の外周部 308, 3 09を対向させる。 外周部 308, 309に溝部 3 1 1, 3 1 2を形成し、 溝部 31 1 , 31 2に液状シール 3 1 3, 3 1 3を塗布する。
液状シール 3 1 3, 31 3を塗布したセパレータ 305, 306を膜電極構 造体 301の両側に設け、 液状シール 3 1 3, 3 1 3を固化させることで、 セパ レータ 305, 306と電解質膜 302との隙間 31 4, 31 4を塞ぐ。
この単位燃料電池 300を多数枚積層したものが燃料電池である。すなわち、 燃料電池は、 単位燃料電池 300を多数枚積層して積層体 31 6とし、 積層体 3 1 6の一端に第 1支持板 (図示せず) を設けるとともに、 積層体 3 1 6の他端に 第 2支持板 (図示せず) を設け、 第 1、 第 2支持板を連結部材を連結して積層体 3 1 6を押付状態に保持する構造をしている。
ところで、 燃料電池の発電性能を確保するためには、 発電に必要な水素ガス や酸素ガスを良好に供給し、 かつ発電の際に生成した水を良好に排出する必要が ある。 このため、 水素ガスや酸素ガスを供給するガス供給用の流路 3 1 8や、 水 を排出する排水用の流路 3 1 9を良好に確保することは重要である。
これらのガス供給用の流路 3 1 8や、 排水用の流路 3 1 9を積層体 3 1 6に 備えるために、 セパレータ 3 0 5, 3 0 6にガス供給用溝 3 2 1や、 排水用溝 3 2 2を予め形成しておき、 セパレータ 3 0 5, 3 0 6を積層した際にガス供給用 溝 3 2 1の開口や、 排水用溝 3 2 2の開口を塞いで流路 3 1 8, 3 1 9とする。
これらのガス供給用の流路 3 1 8や、 排水用の流路 3 1 9を良好に確保する ためには、 積層体 3 1 6を製造する際に、 単位燃料電池 3 0 0を好適に整列させ た状態で積層する必要がある。
加えて、 積層体 3 1 6を押付け状態に保持することで、 単位燃料電池 3 0 0 の液状シール 3 1 3, 3 1 3が圧縮される。 液状シール 3 1 3, 3 1 3を圧縮す る際に、 単位燃料電池 3 0 0が良好に整列されていないと、 液状シール 3 1 3 , 3 1 3に均一な押付力をかけ難くなリ、 液状シール 3 1 3 , 3 1 3の局部に大き な押付力がかかることが考えられ、 液状シール 3 1 3, 3 1 3の耐久性などの観 点から考慮して好ましくない。
従って、 液状シール 3 1 3 , 3 1 3に均等な押付力をかけるためには、 多数 枚の単位燃料電池 3 0 0を好適に整列させた状態で積層する必要がある。
しかし、 多数枚の単位燃料電池 3 0 0を重ね合わせて積層体 3 1 6とする作 業は、 通常作業者が手作業でおこなつている。 このため、 多数枚の単位燃料電池 3 0 0を積層させる際、 作業者が個々の単位燃料電池 3 0 0を慎重に取り扱う必 要があり、 作業者に過大な負担がかかり、 そのことが生産性を高める妨げになつ ていた。
そこで、 作業者にかかる負担を軽減するとともに、 生産性を高めることがで きる燃料電池の製造方法および製造装置が望まれる。 発明の開示
本発明においては、 電解質膜の両側に正■負の電極を設け、 これらの正 '負 の電極の外面にセパレータを設けることで単位燃料電池を製造し、 この単位燃料 電池を多数枚積層することで燃料電池を得る燃料電池の製造方法であって、 前記 多数枚の単位燃料電池が傾斜された傾斜台に積層状態で載置されるステップと、 載置された多数枚の単位燃料電池の左右辺を支持するステップと、 前記傾斜台を 横向きに倒しながら多数枚の単位燃料電池を振動作用で整列させるステップと、 整列された多数枚の単位燃料電池の両端面に第 1および第 2支持板をそれぞれ配 置するステップと、 前記第 1および第 2支持板を介して多数枚の単位燃料電池に 所定の押付力を付与するステップと、 多数枚の単位燃料電池に所定の押付力を付 与した状態で、 第 1および第 2支持板を連結部材で連結するステップと、 からな る燃料電池の製造方法が提供される。
要は、 多数枚の単位燃料電池を傾斜台に積層した状態で載置し、 載置した単 位燃料電池の左右辺を支える。 その後、 傾斜台を横向きに倒しつつ、 多数枚の単 位燃料電池に振動を加えることで、 多数枚の単位燃料電池を整列させる。 このよ うに、 多数枚の単位燃料電池を振動作用で整列させることで、 多数枚の単位燃料 電池を傾斜台に比較的ラフに載置することが可能になる。 よって、 多数枚の単位 燃料電池を人手をかけることなく短い時間で傾斜台に載置することができ、 整列 された多数枚の燃料電池の積層体が得られる。 燃料電池を製造する際、 作業者に かかる負担は軽減され、 かつ燃料電池の生産性の向上が図れる。
上記押付力を付与するステップにおいて、 好ましくは、 前記多数枚の単位燃 料電池に付与する押付力を前記所定の押付力まで段階的に高める際、 所定の押付 力に近づくにしたがって時間をかけて徐々に高めるようにする。
ここで、 単位燃料電池に水素ガスや酸素ガスを供給するために、 セパレータ は水素ガスや酸素ガスを供給するための供給溝を有する。 このため、 多数枚の単 位燃料電池に所定の押付力をかける際に、所定の押付力まで短時間で高くすると、 セパレータに接触する正■負の拡散層に局部的に押付力が集中することがあり、 正 -負の拡散層が破損するおそれがある。
加えて、 単位燃料電池内に供給した水素ガスや酸素ガスを、 単位燃料電池内 に保っために、 単位燃料電池の外周に沿ってシールを設ける。 このため、 多数枚 の単位燃料電池に所定の押付力をかける際、 所定の押付力まで短時間で高くする と、 シールに局部的に押付力が集中することがあり、 シールが破損するおそれが める。
そこで、 本発明においては、 前述したように多数枚の単位燃料電池にかける 押付力を、 所定の押付力まで段階的に高めるようにした。 これにより、 多数枚の 単位燃料電池に押付力をかける際、 シールに局部的押付力が集中することが防止 され、 かつセパレータに接触する正■負の拡散層に局部的押付力が集中すること が防止される。
本発明では、 さらに、 押付力が所定の押付力に近づくにしたがって緩やかに 高くなるようにした。 これにより、 シールに局部的に押付力が集中することをよ リ確実に防ぎ、 かつセパレータに接触する正■負の拡散層に局部的に押付力が集 中することをより確実に防ぐ。
さらに、 本発明においては、 電解質膜の両側に正■負の電極を設け、 これら の正■負の電極の外面にセパレータが設けられた単位燃料電池と、 該単位燃料電 池が多数枚積層された積層単位燃料電池の両端面に設けられた第 1および第 2支 持板と、 第 1および第 2支持板を連結する連結部材とで構成された燃料電池を製 造する装置であって、 前記第 1支持板および前記多数枚の単位燃料電池を積層状 態に支えるために、 架台にスイング自在に設けられたプッシャビーム部と、 第 1 支持板および前記多数枚の単位燃料電池を積層する上向き位置、 および第 1支持 板に前記第 2支持板を連結する横向き位置に前記プッシャビーム部をスイングす るためのプッシャビーム旋回部と、 前記プッシャビーム部の長手方向に沿って設 けられ、 前記多数枚の単位燃料電池の三辺をスライド自在に支持するガイド手段 と、 前記ガイド手段で支持された前記多数枚の単位燃料電池を整列させるために 該ガイド手段に振動を加える加振手段と、 前記ガイド手段に沿って第 1支持部お よび多数枚の単位燃料電池を移動させるためのプッシャ用移動手段と、 前記プッ シャビーム部に対向してスイング可能に設けられ、 前記第 2支持板を支持するレ シーバ部と、 前記第 2支持板を支持する上向き位置、 および第 2支持板を前記第 1支持板に連結する横向き位置に前記レシーバ部をスイングするためのレシーバ 旋回部と、 前記レシーバ部およびプッシャビーム部がそれぞれ横向き位置に配置 され、 前記プッシャ用移動手段で多数枚の単位燃料電池の一方の端面を第 2支持 板に押し付けた際、 第 2支持板にかかる押付力を測定する押付力測定手段と、 か らなる燃料電池の製造装置が提供される。
このように、 プッシャビーム部が上向き位置と横向き位置とにスイング自在 に設けられる。 プッシャビーム部が上向き位置のとき、 第 1支持板および多数枚 の単位燃料電池をプッシャビーム部の上方から順次載置して積層する。 これによ リ、 第 1支持板に多数枚の単位燃料電池が簡単に積層される。
ガイド手段に加振手段が設けられることによって、 プッシャビーム部が上向 き位置から横向き位置まで移動する際、 加振手段で多数枚の単位燃料電池を振動 させ、 多数枚の単位燃料電池を整列する。 これにより、 多数枚の燃料電池は、 前 記積層する際比較的ラフに載置することができる。
レシーバ部は上向き位置と横向き位置とにスイング自在に設けられることに よって、 レシーバ部およびプッシャビーム部はそれぞれ横向き位置に配置され、 プッシャ用移動手段で多数枚の単位燃料電池の前端面を第 2支持板に押付ける。
押付力測定手段は、 プッシャ用移動手段で多数枚の単位燃料電池の前端面を 第 2支持板に押し付けた際、第 2支持板にかかる押付力を測定する。これによリ、 多数枚の単位燃料電池に所定の押付力を簡単にかつ確実にかけることができる。
このように、 第 1支持板に多数枚の単位燃料電池を簡単かつラフに積層し、 多数枚の単位燃料電池に所定の押付力をかけることで、 多数枚の単位燃料電池か ら燃料電池を手間をかけないで簡単に製造することができ、 生産性が向上する。 図面の簡単な説明
図 1は、 本発明に係る燃料電池の製造装置によリ組み付けられる燃料電池の 分解斜視図、
図 2は、 図 1の 2— 2線に沿った断面図、
図 3は、 本発明に係る燃料電池の製造装置を示す斜視図、
図 4は、 図 3に示された製造装置の分解斜視図、
図 5は、 図 3に示された製造装置を示す側面図、 図 6は、 図 5の 6— 6線に沿った断面図、
図 7 A及び図 7 Bは、 本発明に係る燃料電池の製造方法において多数枚の単 位燃料電池を傾斜台に積層状態で載置する工程を示した図、
図 8 A及び図 8 Bは、 単位燃料電池の底辺および右辺を支持する工程を示し た図、
図 9 A及び図 9 Bは、 単位燃料電池の底辺および左右辺を支持する工程を示 した図、
図 1 0 〜図1 O Cは、 多数枚の単位燃料電池を整列する工程を示した図、 図 1 1 A及び図 1 1 Bは、 プッシャユニットを横向き位置にロックする工程 を示した図、
図 1 2は、 転倒防止シリンダのシリンダロッドが下降する工程を示した図、 図 1 3は、 ロードセルを測定位置に配置する工程を示した図、
図 1 4は、 単位燃料電池の両端面に第 1及び第 2支持板を配置する工程を示 した図、
図 1 5 A及び図 1 5 Bは、 積層された多数枚の単位燃料電池に所定の押付力 を付与する工程を示した図、
図 1 6は、 積層された多数枚の単位燃料電池に所定の押付力を付与する際、 段階的に押付力を付与するようにしたグラフ、
図 1 7 A及び図 1 7 Bは、 第 1及び第 2支持板を連結プレートで連結するェ 程を示した図、
図 1 8は、 本発明に係る燃料電池の製造方法において製造された燃料電池 1 0を示す斜視図、
図 1 9は、 従来の単位燃料電池の基本構成を示した断面図である。 発明を実施するための最良の形態
図 1に示す燃料電池 1 0は、 単位燃料電池 1 1を多数枚積層し、 この積層し た単位燃料電池 1 1の両端面 (両端) 1 2, 1 3側に第 1、 第 2支持板 1 4, 1 5を配置し、 第 1、 第 2支持板 1 4 , 1 5に左右の連結プレート (連結部材) 1 6, 1 6を複数のピン 1 7で連結することで、多数枚の単位燃料電池 1 1、第 1 、 第 2支持板 1 4 , 1 5を一体的に連結した構造をしている。
単位燃料電池 1 1は、 電解質膜 2 2の両側に正 '負の電極 2 3 , 2 4 (負電 極 2 4は図 2参照) を設けて形成された膜電極構造体 2 1 と、 該膜電極構造体 2 1の両面に設けられたセパレータ 2 6 , 2 7とからなる。
第 1、 第 2支持板 1 4, 1 5は、 表面 1 8、 1 9から突出した接続用の端子 2 8, 2 9を有する。
単位燃料電池 1 1は、 底辺 1 1 a、 左右辺 1 1 b、 1 1 cおよび上辺 1 1 d の 4辺で略矩形状に形成されている。
第 1支持板 1 4は、単位燃料電池 1 1 と同様に、底辺 1 4 a、左右辺 1 4 b、
1 4 cおよび上辺 1 4 dの 4辺で略矩形状に形成されている。第 1支持板 1 4は、 上辺 1 4 dの両端部に取付孔 3 1 , 3 1を有する。 同様に底辺 1 4 aの両端部に も取付孔 3 1 , 3 1を有する。
第 2支持板 1 5は、 第 1支持板 1 4と同様に、 底辺 1 5 a、 左右辺 1 5 b、
1 5 cおよび上辺 1 5 dの 4辺で略矩形状に形成されている。第 2支持板 1 5は、 上辺 1 5 dの両端部に取付孔 3 2, 3 2を有する。 同様に底辺 1 5 aの両端部に も取付孔 3 2, 3 2を有する。
左右の連結プレート 1 6の側壁 3 4は各々略矩形状に形成されている。 該側 壁 3 4の上下辺にはそれぞれ一対の折曲片 3 5、 3 5が形成されている。 上側の 折曲片 3 5の両端 (前後端) には取付孔 3 6, 3 6が形成され、 下側の折曲片 3 5の両端にも取付孔 3 6, 3 6が形成されている。 側壁 3 4の両辺 (前後辺) に はそれぞれ複数の係止片 3 7 , 3 7が形成されている。
上下一対の折曲片 3 5 , 3 5を多数枚の単位燃料電池 1 1および第 1、 第 2 支持板 1 4, 1 5に被せ、 該折曲片 3 5, 3 5に形成された複数の取付孔 3 6を 第 1、 第 2支持板 1 4, 1 5の取付孔 3 1 , 3 1, 3 2, 3 2に合わせ、 取付孔 3 6, 3 1にピン 1 7を差し込むとともに、 取付孔 3 6, 3 2に差し込む。 これ により、 第 1、 第 2支持板 1 4, 1 5は左右の連結プレート 1 6で連結される。
このように、 左右の連結プレート 1 6, 1 6で第 1、 第 2支持板 1 4, 1 5 を連結することで、 燃料電池 1 0を組み付ける。
なお、 この組付け状態において、 複数の係止片は 3 7は第 1、 第 2支持板 1 4 , 1 5の表面 1 8, 1 9に当接する。
図 2に示す単位燃料電池 1 1は、 電解質膜 2 2の両側に正■負の電極 2 3 , 2 4を設け、 正電極 2 3の外側に正極側の下地層 4 1および拡散層 4 2を設け、 負電極 2 4の外側に負極側の下地層 4 3および拡散層 4 4を設けて形成された膜 電極構造体 2 1 と、 この膜電極構造体 2 1の両面に設けられたセパレータ 2 6, 2 7とからなる。 拡散層 4 2 , 4 4は、 一例として多孔質の力一ボンペーパーが 使用される。
電解質膜 2 2を正 '負の電極 2 3 , 2 4の外周から外側に張り出し、 張り出 した部位 2 2 aをセパレータ 2 6, 2 7の外周部 2 6 a , 2 7 aに対向させる。 セパレ一タ 2 7、 2 7の外周部 2 6 a , 2 7 aに、 液状シール 4 5を塗布する溝 部 2 6 b, 2 7 bを形成する。
溝部 2 6 b、 2 7 bに液状シール 4 5 , 4 5を塗布した後、セパレータ 2 6, 2 7を膜電極構造体 2 1の両側に設け、 液状シール 4 5, 4 5を固化させること で、 セパレート 2 6, 2 7と電解質膜 2 2の隙間 4 6, 4 6を塞ぐ。
さらに、 セパレータ 2 6, 2 7を膜電極構造体 2 1の両側に設けることで、 セパレータ 2 6, 2 7に形成されたガス供給用溝 4 7 aの開口を塞いで流路 4 7 を形成する。
単位燃料電池 1 1同士を積層することで、 セパレータ 2 6に形成された排水 用溝 4 8 aの開口を塞いで流路 4 8を形成する。
単位燃料電池 1 1を発電させるには、 単位燃料電池 1 1内に流路 4 7から燃 料ガスや酸素ガスを供給し、 生成した水を流路 4 8から排出する。
ここで、 単位燃料電池 1 1の外周を液状シール 4 5で塞いでいるので、 単位 燃料電池 1 1内に燃料ガスや酸素ガスを供給した際、 これらのガスは漏れること なく単位燃料電池 1 1内に良好に保たれる。
以下、 単位燃料電池 1 1 を多数枚積層し、 この積層した単位燃料電池 1 1の 両端面 1 2, 1 3に略矩形状の第 1、 第 2支持板 1 4, 1 5 (図 1参照) を配置 し、 第 1、 第 2支持板 1 4, 1 5を左右の連結プレー卜 1 6, 1 6で連結して燃 料電池 1 0を組み付ける燃料電池の製造装置について、 図 3〜図 6に基づいて説 明する。 図 3を参照するに、 燃料電池の製造装置 5 0は、 架台 5 1の後側 (図におい て右側) にプッシャユニット 5 2と、 架台 5 1の前側 (図において左側) にレシ ーバュニッ卜 5 3とを備える。
プッシャュニット 5 2は、 図 1に示した第 1支持板 1 4と多数枚の単位燃料 電池 1 1とを上下方向に積層する上向き位置 P 1 (図 7 B参照) と、 積層された 第 1支持板 1 4と多数枚の単位燃料電池 1 1との積層方向が水平となる横向き位 置 P 2 (図 5、 図 7 A参照) とに回動可能となっている。 横向き位置 P 2は、 第 "1支持板 1 4に第 2支持板 1 5 (図 1参照) を連結する向きを示す。
レシーバユニット 5 3は、 第 2支持板 1 5 (図 1参照) を上下方向において 支持する上向き位置 P 3 (図 7 ( b ) 参照) と、 第 2支持板 1 5が前記横向き位 置 P 2に配置された前記積層された多数枚の単位燃料電池 1 1の前端面 1 3 (図 1および図 1 3参照) に対面する横向き位置 P 4 (図 5、 図 7 ( a ) 参照) とに 回動可能となっている。 横向き位置 P 4は、 第 2支持板 1 5を第 1支持板 1 4に 連結する向きを示す。
プッシャユニット 5 2は、 図 3および図 4に示すように、 梁状のプッシャビ ーム部 5 5と、 プッシャビーム旋回部 5 6と、 ガイド手段 5 7と、 加振手段 5 8 と、 プッシャ用移動手段 5 9とを備えている。
プッシャビーム部 5 5は、 第 1支持板 1 4および多数枚の単位燃料電池 1 1 を積層状態に支えるために架台 5 1に対してスイング自在に設けられる。
プッシャビーム旋回部 5 6は、 第 1支持板 1 4と多数枚の単位燃料電池 1 1 を積層する上下方向の前記上向き位置 P 1と、 前記横向き位置 P 2の 2つの位置 に前記プッシャビーム部 5 5をスィングする。
前記ガイド手段 5 7は、 プッシャビーム部 5 5に沿って設けられ、 図 1に示 した第 1支持板 1 4の三辺 (底辺 1 4 a、 左右辺 1 4 b、 1 4 c ) および多数枚 の単位燃料電池 1 1の三辺 (底辺 1 1 a、 左右辺 1 1 b、 1 1 c ) をスライド自 在に支持し、 第 1支持板 1 4および積層された多数枚の単位燃料電池 1 1を前記 レシーバュニッ卜 5 3方向にガイドする。
加振手段 5 8は、 前記ガイド手段 5 7で支持された第 1支持板 1 4および多 数枚の単位燃料電池 1 1を整列させるために該ガイド手段 5 7に振動を与える。 プッシャ用移動手段 5 9は、 ガイド手段 5 7に沿って第 1支持板 1 4および 多数枚の単位燃料電池 1 1を前記レシーバュニッ卜 5 3方向に移動させる。
レシーバュニット 5 3は、 レシーバ部 6 1 と、 レシーバ旋回部 6 2と、 押付 力測定手段 6 3とを備えている。
レシーバ部 6 1は、 図 1に示す第 2支持板 1 5を支えるためにプッシャビー ム部 5 5に対向し、 架台 5 1にスィング自在に設けられている。
レシーバ旋回部 6 2は、 第 2支持板 1 5を支持する前記上向き位置 P 3と、 第 2支持板 1 5を多数枚の単位燃料電池 1 1の前端面 1 3に対面する前記横向き 位置 P 4との 2つの位置に前記レシーバ部 6 1をスイングする。
前記押付力測定手段 6 3は、 プッシャビーム部 5 5およびレシーバ部 6 1を それぞれ横向き位置 P 2, P 4に配置し、 多数枚の単位燃料電池 1 1の前端面 1 3 (図 1、 図 1 3参照) をプッシャ用移動手段 5 9で第 2支持板 1 5に押し付け た際、 第 2支持板 1 5にかかる押付力 F (図 1 5 A参照) を測定する。
以下、 上記燃料電池の製造装置について、 分解斜視図で示された図 4に基づ いて、 さらに詳細に説明する。
図 4を参照すると、 プッシャュニット 5 2のプッシャビーム部 5 5は直線状 に延びた梁状の部材である。 該プッシャビーム部 5 5はその基端部 7 1に形成さ れた貫通孔 7 2を有する。 該基端部 7 1は架台 5 1に設けられた取付ブラケット 7 3, 7 3間に取付けられる。 この取付けの際、 基端部 7 1の貫通孔 7 2を取付 ブラケットフ 3に形成された取付孔 7 4 , 7 4 (手前側の取付孔 7 4は図示せず) に合わせた後、 取付孔 7 4, 7 4および貫通孔 7 2にシャフト 7 5を差し込む。 差し込んだシャフ卜 7 5をプッシャビーム旋回部 5 6に連結することにより、 プ ッシャビーム部 5 5は基端部 7 1を介してプッシャビーム旋回部 5 6に連結され る。
プッシャビーム旋回部 5 6は駆動モータ 7 7およぴ該駆動モータ 7 7に取付 けられた減速機 7 8を有する。 該減速機 7 8は架台 5 1に取付けられる。 減速機 7 8の出力軸 (図示せず) は前記シャフト 7 5に連結される。
駆動モータ 7 7を駆動することにより、 プッシャビーム部 5 5は上向き位置 P 1 と横向き位置 P 2 (図 7参照) とにスイングされる。 プッシャュニット 5 2の重量を相殺するよう作用するばね 7 9は、 減速機 7 8と取付ブラケットフ 3との間に設けられる。
プッシャビーム部 5 5に設けられたガイド手段 5 7は、 プッシャビーム部 5 5の両側壁 8 1 , 8 1 (図 6も参照) にそれぞれ設けられた下ガイドブレ一卜 8 2 , 8 2と、 プッシャビーム部 5 5の左外側壁 8 3に設けられた左ガイド部 8 4 と、 プッシャビーム部 5 5の右外側壁 8 5 (図 6参照) に設けられた右ガイド部 8 6とを備えている。 上記一対の下ガイドプレート 8 2, 8 2の上辺 8 2 a, 8 2 aは、 プッシャビーム部 5 5の両側壁 8 1, 8 1の上方に突出する。
図 1に示した第 1支持板 1 4の底辺 1 4 aおよび多数枚の単位燃料電池 1 1 の底辺 1 1 aを前記一対の下ガイドプレート 8 2, 8 2で支持する。 前記第 1支 持板 1 4の左辺 1 4 bおよび多数枚の単位燃料電池 1 1の左辺 1 1 bを前記左ガ ィド部 8 4の左ガイドプレート 8 7で支持する。
さらに、 図 1に示した第 1支持板 1 4の右辺 1 4 cおよび多数枚の単位燃料 電池 1 1の右辺 1 1 cを右ガイド部 8 6の右ガイドプレー卜 8 8で支持する。
加振手段 5 8は左ガイド部 8 4に設けられる。 この加振手段 5 8は、 左ガイ ド部 8 4の左揺動部 9 1に設けられ、 矢印 A 1の如く前後方向に振動することで 図 1に示す第 1支持板 1 4および多数枚の単位燃料電池 1 1に振動を与えてこれ らを整列させる。 加振手段 5 8は、 例えば電磁コイルを用いて振動体を振動させ るが、 加振手段 5 8の構成はこれに限定するものではない。
前記プッシャ用移動手段 5 9は、 プッシャビーム部 5 5の基端部 7 1側に設 けられる。 このプッシャ用移動手段 5 9は、 プッシャビーム部 5 5の左右に取り 付けられたスライドガイド 9 2, 9 2 (右側のスライドガイド 9 2は図示せず) と、左右のスライドガイド 9 2, 9 2にスライド自在に設けられた移動体 9 3と、 この移動体 9 3の前端に設けられて図 1に示した第 1支持板 1 4を保持する保持 部 9 4と、移動体 9 3の後方に支持部 9 5を介して設けられたボールねじ 9 6と、 このポールねじ 9 6に取付けられた大径プーリ 9 7と、 この大径プーリ 9 7にべ ルト 9 8を介して連結された小径プーリ 9 9と、 この小径プーリ 9 9を駆動軸 1 0 2を介して取付けられた駆動モータ 1 0 1 と、 を備えている。
前記移動体 9 3は前記ボールねじ 9 6の前端部 9 6 aに回転自在に連結され る。
駆動モータ 1 0 1を正転することで、 小径プーリ 9 9、 ベルト 9 8、 大径プ ーリ 9 7を介してボールねじ 9 6が正転し、 移動体 9 3はプッシャビーム部 5 5 に沿って、 具体的にはガイド手段 5 7に沿って前方に向けて移動する。
駆動モータ 1 0 1を逆転することで、 小径プーリ 9 9、 ベル卜 9 8、 大径プ ーリ 9 7を介してポールねじ 9 6が逆転し、 移動体 9 3はプッシャビーム部 5 5 に沿って、 具体的にはガイド手段 5 7に沿って後方に向けて移動する。
架台 5 1は、 プッシャユニット 5 2を横向き位置 P 2 (図 5、 図 7 A参照) に保持するプッシャュニットロック手段 1 0 5を備える。
プッシャュニットロック手段 1 0 5は、 架台 5 1に設けられた受け部 1 0 6 と、 該受け部 1 0 6の前方にロック部 1 0 7とを具備する。
受け部 1 0 6に形成された溝部 1 0 6 aに位置決め突片 1 0 8 (図 6、 図 7 B参照) を差し込むことで、 プッシャユニット 5 2を横向き位置 P 2 (図 5、 図 7 A参照) に位置決めする。
位置決め突片 1 0 8は、 図 7 Bに示すようにプッシャビーム部 5 5の先端部 下面から下方に向けて突出する。
ロック部 1 0 7がロックピン 1 0 9 (図 5および図 6参照) に係止すること で、 プッシャュニッ卜 5 2は前記横向き位置 P 2に位置決めされた状態に保持さ れる。 前記ロックピン 1 0 9は、 図 7 Bに示すように位置決め突片 1 0 8の前端 1 0 8 aから前方に向けて突出している。
レシーバュニッ卜 5 3のレシーバ部 6 1はレシーバ本体 1 1 1を備えてい る。 レシーバ本体 1 1 1の後部 1 1 1 aは断面逆 U字形状をしている。 この後部 1 1 1 aの両側壁にそれぞれ取付孔 1 1 4 , 1 1 4 (奥側は図示せず) が形成さ れている。
レシーバ本体 1 1 1の後部 1 1 1 aの下向き開口内に架台 5 1の取付ブラケ ット 1 1 3を嵌め込み、 前記左右の取付孔 1 1 4 , 1 1 4と取付ブラケット 1 1 3の取付孔 1 1 3 aとを合わせて、 これらの取付孔 1 1 4, 1 1 3 aに取付ピン 1 1 5を揷入する。 これにより、 レシーバ本体 1 1 1、 すなわちレシーバ部 6 1 は、 架台 5 1の取付ブラケット 1 1 3にスイング自在に支持される。 レシーバ本体 1 1 1の後部を構成する左右のブラケッ卜 1 1 6, 1 1 6にそ れぞれ取付孔 1 1 7, 1 7を形成する。 取付孔 1 1 7 , 1 1 7と、 レシーバ旋回 部 6 2のシリンダロッド 1 2 2の上端部に形成された取付孔 1 2 2 aとを合わせ て、 これらの取付孔 1 1 7, 1 2 2 aに取付ピン 1 2 3を差し込み、 左右のブラ ケット 1 1 6, 1 1 6にシリンダロッド 1 2 2を連結する。
レシーバ旋回部 6 2は、 一例として旋回シリンダ 1 2 1 を用いられる。 シリ ンダ本体 1 2 4はその下端部において取付ピン 1 2 5 (図 5参照) を介して架台 5 1に取付けられる。
レシーバ旋回部 6 2のシリンダロッド 1 2 2が後退することで、 レシーバ部 6 1は、 第 2支持板 1 5を支持するよう上向き位置 P 3 (図 7 B参照) になる。
レシーバ旋回部 6 2のシリンダロッド 1 2 2が前進することで、 レシーバ部 6 1は、 図 1に示す第 2支持板 1 5が多数枚の単位燃料電池 1 1の前端面 1 3に 対面する横向き位置 P 4 (図 5参照) になる。
押付力測定手段 6 3は、 架台 5 1上に設けられた取付ブラケット 1 1 3の前 部 1 1 3 bに設けられる。 この押付力測定手段 6 3は、 架台 5 1の取付ブラケッ ト 1 1 3の前部 1 1 3 bに上下方向に延びるよう設けられたスライドガイ ド 1 2 7, 1 2 7に昇降体 1 2 8を介して上下方向に移動自在に設けられる。 ロードセ ル 1 2 9はこの昇降体 1 2 8に設けられる。 該昇降体 1 2 8は、 昇降シリンダ 1 3 1のシリンダロッド 1 3 2に連結される。 昇降シリンダ 1 3 1 は架台 5 1に連 結される。
昇降シリンダ 1 3 1のシリンダロッド 1 3 2が前進することで、 昇降体 1 2 8とともにロードセル 1 2 9は測定位置 P 6 (図 5、図 1 3参照)まで上昇する。 ロードセル 1 2 9が測定位置 P 6に位置することで、 第 2支持板 1 5にかかる押 付力が測定される。
昇降シリンダ 1 3 1のシリンダロッド 1 3 2が後退することで、 昇降体 1 2 8とともにロードセル 1 2 9は退避位置 P 7 (図 5参照) まで下降する。
レシーバ部 6 1は、 レシーバ本体 1 1 1 と、 該レシーバ本体 1 1 1の左右の 側壁 1 l i b , 1 1 1 b (奥側は図示せず) にそれぞれ取付けられたスライドガ イド 1 3 6, 1 3 6 (奥側は図示せず) と、 左右のスライドガイド 1 3 6, 1 3 6に前後方向に移動自在に設けられた移動体 1 37と、 この移動体 1 37の前端 に設けられ、 第 2支持板 1 5 (図 1参照) を保持する保持部 1 3 8と、 レシーバ 本体 1 1 1の上面に設けられ、 移動体 1 37の前端上部 1 37 aに先端部が連結 されたシリンダロッド 1 42を有する移動シリンダ 1 4 1 と、 を備えている。
移動シリンダ 1 4 1のシリンダロッド 1 42が前進することで、 移動体 1 3 7 (すなわち、 保持部 1 38) は、 第 2支持板 1 5をセッ卜するセッ卜位置 P 8 (図 7 B参照) に移動する。
移動シリンダ 1 4 1がフリーになることで、 第 2支持板 1 5 (図 1参照) が 後方に向げて押し付けられた際、 保持部 1 38は後方に移動し、 図 5および図 1 3に示す測定位置 P 6に位置するロードセル 1 2 9に第 2支持板 1 5は当接す る。
レシーバ部 6 1は、 さらに、 移動体 1 37の左右の壁部 1 37 b、 1 37 b (奥側の壁部 1 37 bは図示せず) にそれぞれ取付けられた第 1保持シリンダ 1 45, 1 45 (奥側の第 1保持シリンダ 1 45は図示せず) と、 左右の第 1保持 シリンダ 1 45, 1 45のシリンダロッド 1 46, 1 46の先端部にそれぞれ取 付けられたブラケット 1 47, 1 47 (ブラケット 1 47は図示せず) と、 左右 のブラケット 1 47, 1 47にそれぞれ取付けられた第 2保持シリンダ 1 48, 1 48と、 左右の第 2保持シリンダ 1 48, 1 48のシリンダロッド 1 49, 1 49 (奥側のシリンダロッド 1 49は図示せず) にそれぞれ取付けられた左右の 係止爪 1 5 1, 1 5 1と、 を備えている。
左右の係止爪 1 5 1 , 1 5 1の各々は、 前後方向に向けて配置され、 先端部 が保持部 1 38の表面 1 38 aに沿って折リ曲げられた折曲片 1 5 1 a, 1 5 1 aを有す^。
左右の折曲片 1 5 1 a, 1 5 1 aが第 2支持板 1 5の裏面 1 5 e (図 1参照) に接触することで、 保持部 1 3 8は第 2支持板 1 5を保持する。
左右の第 1保持シリンダ 1 45, 1 45のシリンダロッド 1 46, 1 46が 前進することで、 左右の係止爪 1 5 1 , 1 5 1は前進する。
左右の第 1保持シリンダ 1 45, 1 45のシリンダロッド 1 46, 1 46力 後退することで、 左右の係止爪 1 5 1, 1 5 1は後退する。 さらに、 左右の第 2保持シリンダ 1 48, 1 48のシリンダロッド 1 49, 1 49が前進することで、 左右の係止爪 1 5 1 , 1 5 1は互いに近づく方向、 す なわち保持部 1 3 8の側面に向けてそれぞれ移動する。
左右の第 2保持シリンダ 1 48, 1 48のシリンダロッド 1 49, 1 49力《 後退することで、 左右の係止爪 1 5 1, 1 5 1は保持部 1 3 8の側面から離れる 方向に移動する。
このように、 左右の第 1保持シリンダ 1 45, 1 45および左右の第 2シリ ンダ 1 48, 1 48を操作することで、 左右の係止爪 1 5 1, 1 5 1の折曲片 1 5 1 a, 1 5 1 aは第 2支持板 1 5の裏面 1 5 eに接触することが可能となる。
第 2支持板 1 5を支える保持部 1 38はその表面 1 38 aに形成された凹部 1 38 bを有する。 この凹部 1 3 8 bは、 第 2支持板 1 5の接続用端子 29 (図 1参照) を受け入れる。
図 5に示すように、 押付力測定手段 6 3を構成する昇降シリンダ 1 3 1のシ リンダロッド 1 3 2が突出することで、 昇降体 1 28及び口一ドセル 1 29 (想 像線で示す) は測定位置 P 6 (図 1 3も参照) まで上昇する。 ロードセル 1 29 は測定位置 P 6に位置することで、 第 2支持板 1 5 (図 1参照) にかかる押付力 Fを測定することが可能になる。
昇降シリンダ 1 3 1のシリンダロッド 1 32が後退することで、 昇降体 1 2 8およびロードセル 1 29 (実線で示す) は退避位置 P 7まで下降する。
プッシャュニッ卜 5 2は、 プッシャビーム部 5 5の先端部に設けられた転倒 防止手段 1 55を備える。 この転倒防止手段 1 55は、 図 6に示された左右の転 倒防止シリンダ 1 56, 1 56と、 左右の下ガイドプレート 82, 8 2の先端 8 2 b、 8 2 bに位置するシリンダロッド 1 57, 1 57とを備える。
各々のシリンダロッド 1 57, 1 57は、 図 6において二点差線で示される ように左おの下ガイドプレート 8 2, 82の上辺 82 a, 82 aの上方にまで突 出可能となっている。
架台 5 1に設けられた受け部 1 06にプッシャビ一厶部 55の位置決め突片 1 08を差し込むことで、 プッシャュニッ卜 52は横向き位置 P 2に位置決めさ れる。 さらに、 前記位置決め突片 1 0 8に設けられたロックピン 1 0 9をロック部 1 0 7で係止することで、プッシャュニッ卜 5 2は横向き位置 P 2に保持される。
左ガイド部 8 4に設けられた加振手段 5 8は、 左揺動部 9 1を前後方向 (横 方向) に振動し、 図 1に示した第 1支持板 1 4および積層された多数枚の単位燃 料電池 1 1に振動を伝える。
図 6に示されるようにプッシャビーム部 5 5は、 その左右先端部 5 5 a , 5 5 aに取付けら た左右の脚部 1 5 8, 1 5 8を有する。 左右の転倒防止シリン ダ 1 5 6 , 1 5 6は、 左右の脚部 1 5 8, 1 5 8の上端部に設けられたブラケッ 卜 1 5 9 , 1 5 9に垂直方向に取付けられる。
左右の転倒防止シリンダ 1 5 6 , 1 5 6のシリンダロッド 1 5 7, 1 5 7が 前進すると、 該シリンダロッド 1 5 7, 1 5 7の先端部は想像線で示されるよう に左右の下ガイドプレー卜 8 2, 8 2の上辺 8 2 a , 8 2 aよりも上方に突出す る。 従って、 左右の下ガイドプレート 8 2 , 8 2の上辺 8 2 a , 8 2 aに載置さ れた多数枚の単位燃料電池 1 1 (図 1、 図 8参照) の転倒が防止される。
架台 5 1に設けられたプッシャュニットロック手段 1 0 5のロック部 1 0 7 は、 ガイド部材 1 6 1 と、 L字状の係止部材 1 6 3と、 第 1 リンク 1 6 6と、 第 2リンク 1 6 7とを備えている。
ガイド部材 1 6 1は、 架台 5 1の上面 5 1 aにロックピン 1 0 9のお側 (図 6においては左側) の位置となるよう設けられる。 ロックピン 1 0 9の左側には 一方の支持ブラケット 1 6 2が設けられる。
前記係止部材 1 6 3は、 一方の支持ブラケット 1 6 2にピン 1 6 4を介して 回転自在に取付けられる。
第 1 リンク 1 6 6の一端は、 ピン 1 6 5を介して前記係止部材 1 6 3に回転 自在に連結され、 他端は、 シリンダロッド 1 6 9の先端部にピン 1 7 "1を介して 回転可能に連結される。
第 2リンク 1 6 7の一端は、 前記ピン 1 7 1を介してシリンダロッド 1 6 9 の先端部に回転可能に連結され、 他端は、 他方の支持ブラケット 1 7 3にピン 1 7 2を介して回転可能に連結される。 該他方の支持ブラケット 1 7 3は架台 5 1 の上面 5 1 aに設けられる。 前記シリンダロッド 1 6 9を有するロックシリンダ 1 6 8は、 架台 5 1に矢 印の如く左お方向に揺動自在に支持される。
口ック部 1 0 7によれば、 口ックシリンダ 1 6 8のシリンダロッド 1 6 9力《 図示の位置から後退すると、 係止部材 1 6 3は時計回り方向に回転し、 該係止部 材 1 6 3の係止片 1 6 3 a、 すなわち係止部材 1 6 3の先端部はロックピン 1 0 9の上面から離れて退避位置 (図 1 1 A参照) に移動する。 これにより、 ロック ピン 1 0 9のロック状態は開放される。
一方、 ロックシリンダ 1 6 8のシリンダロッド 1 6 9が図示の位置まで前進 すると、 係止部材 1 6 3は反時計回り方向に回転し、 係止部材 1 6 3の係止片 1 6 3 aはロックピン 1 0 9の上面のロック位置に移動する。 これにより、 ロック ピン 1 0 9はロック状態になる。
ガイド手段 5 7の左ガイ ド部 8 4は、 左揺動部 9 1 と、 ガイ ドシリンダ 1 8 1 と、 左揺動部の上部に設けられた左ガイ ドプレートと、 を備えている。
左揺動部 9 1は、 ピン 1 7 6を介して支持部 1 7 7に揺動自在に取付けられ る。 該支持部 1 7 7はプッシャビーム部 5 5の左側部に固定される。
ガイドシリンダ 1 8 1のシリンダロッド 1 8 2の先端部は、 前記左揺動部 9 1の下部にピン 1 7 8を介して連結される。 ガイ ドシリンダ 1 8 1は、 プッシャ ビーム部 5 5の左外側壁 8 3に設けられたブラケッ卜 1 8 3にピンを介して左右 方向に揺動自在に取付けられる。
前記加振手段 5 8は、 左揺動部 9 1の傾斜した下面に取付プレー卜 1 8 4を 介してを設けられる。
左ガイ ド部 8 4によれば、 ガイドシリンダ 1 8 1のシリンダロッド 1 8 2が 前進することで、 左揺動部 9 1はピン 1 7 6を中心にして矢印 Aの如く上方向に 揺動する。 これにより、 左ガイドプレート 8 7は、 水平な支持位置となり、 図 1 に示された第 1支持板 1 4の左辺 1 4 bおよび多数枚の単位燃料電池 1 1の左辺 1 1 bを支持する。
ガイドシリンダ 1 8 1のシリンダロッド 1 8 2が後退することで、 左揺動部 9 1はピン 1 7 6を中心にして矢印 Bの如く下方向に揺動する。 これにより、 左 ガイ ドブレー卜 8 7は、 垂直な退避位置 (図示の位置) となり、 図 1に示す第 1 支持板 1 4の左辺 1 4 bおよび多数枚の単位燃料電池 1 1の左辺 1 1 bから離れ る。
ガイド手段 5 7のおガイド部 8 6は、 左ガイド部 8 4の左揺動部 9 1に対応 する右揺動部 1 8 6を有し、 その他の構成は左ガイド部 8 4と同様である。
右揺動部 1 8 6は、 左揺動部 9 1から加振手段 5 8を除去した構造となって いる。
右ガイド部 8 6によれば、 ガイドシリンダ 1 8 1のシリンダロッド 1 8 2が 前進することで、 右揺動部 1 8 6はピン 1 7 6を中心として矢印 Cの如く上方向 に揺動する。 これにより、 右ガイドプレート 8 8は、 水平な支持位置 (図示の位 置) となり、 図 1に示された第 1支持板 1 4の右辺 1 4 cおよび多数枚の単位燃 料電池 1 1の右辺 1 1 cを支持する。
ガイドシリンダ 1 8 1のシリンダロッド 1 8 2が後退することで、 右揺動部 1 8 6はピン 1 7 6を中心にして矢印 Dの如く下方向に揺動する。 これにより、 右ガイドプレート 8 8は、 垂直な退避位置となり、 図 1に示された第 1支持板 1 4の右辺 1 4 cおよび多数枚の単位燃料電池 1 1の右辺 1 1 cから離れる。
なお、 第 1支持板 1 4を支える保持部 9 4は、 その略中央に形成された凹部 9 4 aを有する。 該凹部 9 4 aは第 1支持板 1 4の端子 2 8 (図 1参照) を収納 する。
次に、 本実施例に係る燃料電池の製造装置を用いた燃料電池の製造方法につ いて、 図 7 A〜図 1 8に基づいて説明する。
図フ Aおよび図 7 Bは、 燃料電池の製造方法において多数枚の単位燃料電池 を傾斜された下ガイドプレート 8 2, 8 2 (傾斜台) に積層状態で載置する工程 を示している。
図 7 Aにおいて、 プッシャ用移動手段 5 9の駆動モータ 1 0 1が正転するこ とで、 小径プーリ 9 9、 ベルト 9 8、 および大径プーリ 9 7を介してボールねじ 9 6が正転する。 これにより、 移動体 9 3はプッシャビーム部 5 5に沿って矢印 aの如く前方に向けて移動する。
移動体 9 3の保持部 9 4がプッシャビーム部 5 5の前端位置 (図 7 B参照) まで移動した時点で、 駆動モータ 1 0 1は停止する。 保持部 9 4はプッシャビー ム部 5 5の前端位置に静止する。
ガイド手段 5 7の左ガイド部 8 4に備えられたガイドシリンダ 1 8 1のシリ ンダロッド 1 8 2が後退することで、 左揺動部 9 1はピン 1 7 6を中心にして矢 印 bの如く揺動する。 これにより、 左ガイドプレート 8 7は支持位置から退避位 置まで移動する。
プッシャュニットロック手段 1 0 5に備えられたロックシリンダ 1 6 8のシ リンダロッド 1 6 9は矢印 cの如く下降する。 これにより、 図 6に示されるよう に係止部材 1 6 3の係止片 1 6 3 aは、 ロックピン 1 0 9の上面から離れた退避 位置に移動し、 ロックピン 1 0 9とのロック状態が開放される。
プッシャビーム旋回部 5 6の駆動モータ 7 7が駆動すると、 プッシャビーム 部 5 5を横向き位置 P 2から上向き位置 P 1 (図 7 Bに示された位置) まで矢印 dの如くスイング移動する。
図 7 Bに示された上向き位置 P 1は、 プッシャビーム部 5 5が斜めに傾いた 状態であり、 下ガイドプレート 8 2 , 8 2を備えたプッシャビーム部 5 5は傾斜 台を構成する。
レシーバ部 6 1に備えた左おの第 2保持シリンダ 1 4 8, 1 4 8のシリンダ ロッド 1 4 9, 1 4 9 (図 4參照) が後退すると、 左右の係止爪 1 5 1, 1 5 1 (図 4参照) は互いに離れる方向に移動する。
次に、 左右の第 1保持シリンダ 1 4 5, 1 4 5のシリンダロッド 1 4 6, 1 4 6 (この図 7 Aでは、 左側の第 1保持シリンダ 1 4 5およびシリンダロッド 1 4 6のみが示されている) が後退すると、 左右の係止爪 1 5 1 , 1 5 1 (奥側の 係止爪 1 5 1は図 4参照) は矢印 eの如く後退する。
レシーバ旋回部 6 2のシリンダロッド 1 2 2が後退すると、 レシ一ノく部 6 1 は、 第 2支持板 1 5を支持する上向き位置 P 3 (図 7 B参照) に取付ピン 1 1 5 を中心として矢印 f の如くスィングする。
次に、 図 7 Bに示されるように、 レシーバ部 6 1の保持部 1 3 8上に第 2支 持板 1 5が矢印 gの如く載置される。
左右の第 1保持シリンダ 1 4 5, 1 4 5のシリンダロッド 1 4 6, 1 4 6 (手 前の第 1保持シリンダ 1 4 5およびシリンダロッド 1 4 6のみが示されている。) が前進すると、 左右の係止爪 1 5 1 , 1 5 1 (奥側の係止爪 1 5 1は図 4参照) は矢印 hの如く前進する。
次いで、左右の第 2保持シリンダ 1 4 8 , 1 4 8のシリンダロッド 1 4 9 , 1 4 9 (図 4参照) が前進すると、 左右の係止爪 1 5 1 , 1 5 1は互いに近づく 方向に向けて移動する。 これによリ、 左右の係止爪 1 5 1 , 1 5 1の折曲片 1 5 1 a , 1 5 1 a (図 4参照) は第 2支持板 1 5の裏面 1 5 eに接触する。 第 2支 持板 1 5は折曲片 1 5 1 a , 1 5 1 aと保持部 1 3 8とで保持される。
第 2支持板 1 5の保持が完了した後、 あるいは第 2支持板 1 5の保持と同時 に、プッシャュニット 5 2の保持部 9 4に第 1支持板 1 4を矢印 i の如く載せる。
次に、 第 1支持板 1 4の上に多数枚の単位燃料電池 1 1を矢印 jの如く順次 載置する。 これにより、 多数枚の単位燃料電池 1 1は傾斜したプッシャビーム部 5 5の下ガイ ドプレート 8 2 , 8 2に沿って保持部 9 4上に積層される。
このように、 プッシャビーム部 5 5が上向き位置 P 1 と横向き位置 P 2とに スイング自在に構成されることで、 プッシャビーム部 5 5が上向き位置 P 1にな ると、 第 1支持板 1 4および多数枚の単位燃料電池 1 1が上方から順次積層され 保持部 9 4上に載置されることが可能になった。 したがって、 第 1支持板 1 4上 に多数枚の単位燃料電池 1 1を簡単に積層することができる。
第 1支持板 1 4を保持部 9 4上に載せる際、 該保持部 9 4はプッシャビーム 部 5 5先端のセット位置 P 9に位置される。
第 1支持板 1 4および単位燃料電池 1 1が保持部 9 4上に載置される毎に、 保持部 9 4は矢印 kの如ぐ駆動モータ 1 0 1で下降される。 保持部 9 4に第 1支 持板 1 4が載置されると、 該第 1支持板 1 4の裏面 1 4 e (図 1参照) はセット 位置 P 9になる。 さらに、 第 1支持板 1 4上に単位燃料電池 1 1 を載ると、 単位 燃料電池 1 1の上面 1 1 eがセット位置 P 9になる。
よって、 第 1支持板 1 4および多数枚の単位燃料電池 1 1の載置面は、 常に 同じ高さのセット位置 P 9に保たれ、 第 1支持板 1 4および多数枚の単位燃料電 池 1 1 を常に一定の高さから供給することが可能になる。 この結果、 第 1支持板 1 4および多数枚の単位燃料電池 1 1の供給を手作業で行うとき、 作業者の負担 が軽減される。 一方、 第 1支持板 1 4や多数枚の単位燃料電池 1 1の供給を、 例えばロポッ 卜で自動化する場合には、 ロボッ卜の操作を簡単にすることができる。
図 8 Aおよび図 8 Bは、 積層された多数枚の単位燃料電池の底辺および右辺 を支持する工程を示している。
図 8 Aにおいて、 転倒防止手段 1 5 5の左右の転倒防止シリンダ 1 5 6, 1 5 6のシリンダロッド 1 5 7, i 5 7が矢印の如く前進し、 左右の下ガイ ドプレ —卜 8 2 , 8 2の上辺 8 2 a , 8 2 aの上方に突出すると、 左右の下ガイ ドプレ 一卜 8 2 , 8 2に支持された多数枚の単位燃料電池 1 1は、 左右の下ガイ ドブレ 一卜 8 2, 8 2の先端側からの落下、 および多数枚の単位燃料電池 1 1の転倒が 防止される。
図 8 Bにおいて、 左右の下ガイドプレート 8 2, 8 2は、 第 1支持板 1 4の 底辺 1 4 aおよび多数枚の単位燃料電池 1 1の底辺 1 1 a…を支持する。
さらに、 右ガイ ドブレー卜 8 8は、 左右の下ガイドプレート 8 2 , 8 2で支 持された第 1支持板 1 4の右辺 1 4 cおよび多数枚の単位燃料電池 1 1の右辺 1 1 cを支持する。
図 9 A及び図 9 Bは、 単位燃料電池の底辺および左右辺を支える工程を示し ている。
図 9 Aにおいて、 左ガイ ド部 8 4におけるガイ ドシリンダ 1 8 1のシリンダ ロッド 1 8 2が前進すると、 左揺動部 9 1はピン 1 7 6 (図 9 B参照) を中心に して矢印 mの如くスィングする。
図 9 Bにおいて、 左右の下ガイドブレ一ト 8 2, 8 2は、 第 1支持板 1 4の 底辺 1 4 aおよび多数枚の単位燃料電池 1 1の底辺 1 1 aを支持する。
左ガイ ドプレート 8 7は、 第 1支持板 1 4の左辺 1 4 bおよび多数枚の単位 燃料電池 1 1の左辺 1 1 bを支持する。
このように、 ガイ ド手段 5 7は、 第 1支持板 1 4の三辺 (底辺 1 4 a、 左右 辺 1 4 b、 1 4 c ) および多数枚の単位燃料電池 1 1の三辺 (底辺 1 1 a、 左右 辺 1 1 b、 1 1 c ) をスライ ド自在に支持することにより、 載置された単位燃料 電池 1 1の底辺 1 1 aおよび左右辺 1 1 b , 1 1 cが揃えられ、 多数枚の単位燃 料電池 1 1が整列される。 次に、 図 9 Aに示されたプッシャビーム旋回部 5 6の駆動モータ 7 7を駆動 することにより、 プッシャビーム部 5 5は、 上向き位置 P 1 (図 7 B参照) から 横向き位置 P 2 (図 7 A参照) まで矢印 nの如く移動される。
図 1 0 〜図1 0 Cは、多数枚の単位燃料電池を整列する工程を示している。 図 1 0 Aにおいて、 プッシャビーム部 5 5 (図 9 A参照) を矢印 nの如くス イングするとともに、 加振手段 5 8を作動する。 加振手段 5 8の作動により、 左 揺動部 9 1の上部に設けられた左ガイドプレート 8 7は矢印 oの如く振動する。 左ガイドプレート 8 7が前記プッシャビーム部 5 5の長手方向において矢印 oの 如く振動すると、 多数枚の単位燃料電池 1 1はプッシャビーム部 5 5の長手方向 において矢印 oの如く振動する。
図 1 0 Bにおいて、 多数枚の単位燃料電池 1 1が図 7 Bに示すようにプッシ ャユニット 5 2の保持部 9 4に順次載置されたとき、 多数枚の単位燃料電池 1 1 のなかの一部が斜めに載置されることが考えられる。 この状態の多数枚の単位燃 料電池 1 1を加振手段 5 8で図 7 Bに示されたプッシャビーム部 5 5の長手方向 である矢印 oの如く振動する。
図 1 O Cに示すように、 多数枚の単位燃料電池 1 1は、 プッシャビーム部 5 5の長手方向に矢印 oの如く振動することで、 各々の単位燃料電池 1 1は互いに 平行に整列する。
ここで、 図 9 Aに示すようにプッシャュニッ卜 5 2の保持部 9 4に多数枚の 単位燃料電池 1 1を載置する際、 左右の下ガイドプレート 8 2, 8 2は傾斜して いる。 このため、 多数枚の単位燃料電池 1 1は保持部 9 4に積み上げられる。 よ つて、 各々の単位燃料電池 1 1にその上方に重ねた単位燃料電池 1 1の自重がか かり、 多数枚の単位燃料電池 1 1が互いに密着した状態 (すなわち、 互いに接触 して接触による摩擦力が発生した状態) になるおそれがある。
このように単位燃料電池 1 1が密着したときは、 単位燃料電池 1 1に振動を 加えても単位燃料電池 1 1を振動作用で整列させることは難しくなる。
そこで、 本実施例では、 プッシャビーム部 5 5を上向き位置 P 1 (図 7 B参 照)から横向き位置 P 2 (図 7 A参照)まで矢印 nの如くスイング移動しながら、 振動作用を採用することにより、 多数枚の単位燃料電池 1 1の密着状態を解除し た後、 該単位燃料電池 1 1に振動を加え、 多数枚の単位燃料電池 1 1が整列する ようにした。
プッシャビーム部 5 5が上向き位置 P 1から横向き位置 P 2にまでスイング 移動する間に、多数枚の単位燃料電池 1 1は振動作用により整列性が高められる。 よって、 図 9 Bに示された多数枚の単位燃料電池 1 1を下ガイドプレート 8 2, 8 2に載置する際、 多数枚の単位燃料電池 1 1はプッシャビーム部 5 5の下ガイ ドプレート (傾斜台) 8 2 , 8 2に比較的ラフに載置される。 従って、 手間をか けないで短い時間で左右の下ガイドプレート (傾斜台) 8 2 , 8 2に多数枚の単 位燃料電池 1 1を載置することができる。
図 9 Aに示されたプッシャビーム部 5 5が上向き位置 P 1 (図 7 B参照) か ら横向き位置 P 2 (図 7 A参照) まで移動する間に、 多数枚の単位燃料電池 1 1 を振動作用で良好に整列させた後、 多数枚の単位燃料電池 1 1を転倒防止手段 1 5 5のシリンダロッド 1 5 7, 1 5 7に押し付ける。
具体的には、 多数枚の単位燃料電池 1 1が振動作用で良好に整列された後、 プッシャ用移動手段 5 9の駆動モータ 1 0 1を正転してポールねじ 9 6を正転す ることで、 プッシャビーム部 5 5の先端側、 すなわち転倒防止手段 1 5 5のシリ ンダロッド 1 5 7, 1 5 7に向けて移動体 9 3および保持部 9 4を移動する。
よって、 保持部 9 4で多数枚の単位燃料電池 1 1の前端を転倒防止手段 1 5 5のシリンダロッド 1 5 7, 1 5 7に当接する。 これにより、 プッシャビーム部 5 5が横向き位置 P 2 (図 7 A参照) になったとき、 整列された多数枚の単位燃 料電池 1 1は、 倒れないよう良好に整列された状態に保たれる。
多数枚の単位燃料電池 1 1の前端がシリンダロッド 1 5 7 , 1 5 7に当接し たとき駆動モータ 1 0 1は停止する。
図 1 1 Aおよび図 1 1 Bは、 プッシャユニットを横向き位置にロックするェ 程を示している。
図 1 1 Aに示されるように、 プッシャビーム部 5 5は矢印 nの如くスイング して移動し、 横向き位置 P 2 (図 7 A参照) に到達する。 このとき、 位置決め突 片 1 0 8は、 架台 5 1上に設けられた受け部 1 0 6の溝部 1 0 6 aに矢印 pの如 く嵌る。 そして、 プッシャビ一厶部 5 5は横向き位置 P 2に位置決めされる。 T JP2004/016624
- 24 - この際、 ロックピン 1 0 9はプッシャュニッ卜ロック手段 1 0 5のガイド部 材 1 6 1に沿って下降する。 この状態で、 プッシャユニットロック手段 1 0 5に のロックシリンダ 1 6 8のシリンダロッド 1 6 9は矢印 qの如く前進する。 これ により、 係止部材 1 6 3はピン 1 6 4を中心として反時計回り方向に回転する。
図 1 1 Bに示されるように、 係止部材 1 6 3の係止片 1 6 3 aはロックピン "1 0 9の上面のロック位置となる。 これにより、 ロックピン 1 0 9は、 係止片 1 6 3 aにより上方に移動するのを阻止され、 ロック状態に保たれる。
図 1 2は、 転倒防止シリンダ 1 5 6のシリンダロッド 1 5 7が下降する工程 を示している。 なお、 図 1 2においては、 転倒防止手段 1 5 5の理解を容易にす るために、 転倒防止手段 1 5 5のシリンダロッド 1 5 7, 1 5 7に当接した単位 燃料電池 1 1の前端側を不図示の状態で説明する。
プッシャビーム部 5 5が横向き位置 P 2 (図示の位置) に位置決めされた状 態となつたとき、 加振手段 5 8はその作動を停止する。
次に、 転倒防止手段 1 5 5の左右の転倒防止シリンダ 1 5 6 , 1 5 6 (奥側 の転倒防止シリンダ 1 5 6は図示せず) のシリンダロッド 1 5 7, 1 5 7は矢印 rの如く下降する。
次いで、レシーバュニット 5 3のレシーバ旋回部 6 2のシリンダロッド 1 2 2が前進し、 レシーバ部 6 1は横向き位置 P 4 (図示の位置) に矢印 sの如くス イングする。
図 1 3は、 ロードセル 1 2 9を測定位置 P 3に配置する工程を示している。 レシーバ部 6 1を横向き位置 P 4に配置することで、 第 2支持板 1 5を左お の下ガイドプレート 8 2 , 8 2の先端部に載置する。
次に、 押付力測定手段 6 3の昇降シリンダ 1 3 1のシリンダロッド 1 3 2が 矢印 tの如く上昇すると、 昇降体 1 2 8とともにロードセル 1 2 9は測定位置 P 6まで上昇する。 この状態で、 プッシャ用移動手段 5 9の駆動モータ 1 0 1を正 転してポールねじ 9 6を正転することで、 移動体 9 3をプッシャビーム部 5 5に 沿って矢印 uの如く前方に向けて移動する。
図 1 4は、 多数の単位燃料電池 1 1の両端に第 1および第 2支持板を配置す る工程を示している。 16624
- 25 - 左右の第 2保持シリンダ 1 48, 1 48のシリンダロッド 1 49, 1 49 (手 前側のシリンダロッド 1 49のみを図示する) が後退すると、 左右の係止爪 1 5 1, 1 5 1 (奥側の係止爪 1 5 1は図 4参照) は矢印 Vの如く互いに離れる方向 に移動する。 これによリ、 左右の係止爪 1 5 1, 1 5 1による第 2支持板 1 5の 保持が開放される。
次に、 左右の第 1保持シリンダ 1 45, 1 45のシリンダロッド 1 46, 1 46 (奥側の第 1保持シリンダ 1 45およびシリンダロッド 1 46は図示せず) が後退すると、 左右の係止爪 1 5 1 , 1 5 1は矢印 wの如く後退する。
ここで、 移動体 93はプッシャビーム部 55 (図 1 3参照) に沿って矢印 u の如く前方に向けて継続的に移動している。
よって、 左右の係止爪 1 5 1 , 1 5 1の折曲片 1 5 l a, 1 5 1 a (奥側の 折曲片 1 5 1 aは図 4参照) が第 2支持板 1 5の裏面 1 5 e (図 1 3参照) から 離れる。
このように、 左右の折曲片 1 5 1 a, 1 5 1 aによる第 2支持板 1 5の保持 が開放されたとき、 積層された多数の単位燃料電池 1 1の前端面 1 3 (図 9 B参 照) は第 2支持板 1 5の裏面 1 5 e (図 1 3参照) に当接する。 この際、 移動シ リンダ 1 4 1はフリーに切リ替えられる。
これにより、 整列された多数枚の単位燃料電池 1 1の両端面 (両端) 1 2, 1 3に第 1、 第 2支持板 1 4, 1 5がそれぞれ配置され。
積層された単位燃料電池 1 1の前端面 1 3が第 2支持板 1 5の裏面 1 5 eに 当接した後、 移動体 93はプッシャビーム部 5 5 (図 1 3参照) に沿って矢印 u の如く前方に向けて継続的に移動する。
第 2支持板 1 5、 保持部 1 3 8、 および移動体 1 37は矢印 xの如く後退し て、 移動体 1 37が押付力測定手段 6 3のロードセル 1 29 (図 1 3参照) の先 端に当接する。
ロードセル 1 29は、 プッシャ用移動手段 59 (図 1 3参照) で多数枚の単 位燃料電池 1 1を押し付ける押付力 Fを測定する。 ロードセル 1 29を用いて押 付力 Fを測定することで、 所定の押付力 F 3を比較的簡単にかつ精度よく測定す ることが可能になり、 単位燃料電池 1 1に所定の押付力 F 3を簡単にかけること ができる。つまり、口一ドセル 1 2 9の測定値 Fが所定の押付力 F 3になるまで、 プッシャ用移動手段 5 9で積層された単位燃料電池 1 1を押し付ける。
図 1 5 Aおよび図 1 5 Bは、 多数枚の単位燃料電池 1 1に所定の押付力をか ける工程を示している。
図 1 5 Aにおいて、 プッシャ用移動手段 5 9 (図 1 3参照) で積層された多 数枚の単位燃料電池 1 1 を押し付けることで、 多数枚の単位燃料電池 1 1に押付 力 Fが矢印の如くかかる。多数枚の単位燃料電池 1 1に押付力 Fがかかることで、 セパレータ 2 6が矢印 yの如く平行に移動する。
図 1 5 Bにおいて、 押付力 Fが所定の押付力 F 3まで上昇すると、 第 1およ び第 2支持板 1 4 , 1 5 (図 1 3参照) を介して多数枚の単位燃料電池 1 1に所 定の押付力 F 3がかかる。 これにより、 セパレータ 2 6, 2 7間の隙間 4 6, 4 6が小さくなリ、 液状シール 4 5が押し付けられ、 セパレート 2 6, 2 7と電解 質膜 2 2の隙間 4 6, 4 6を塞ぐ。 同時に、 セパレータ 2 6, 2 7を膜電極構造 体 2 1の両側に押し付けることで、 セパレータ 2 6, 2 7に形成されたガス供給 用溝 4 7 aの開口を正■負側の拡散層 4 2, 4 4で塞いで流路 4 7が形成される。
加えて、 セパレ一タ 2 6に隣接するセパレータ 2 7で、 セパレータ 2 6に形 成された排水用溝 4 8 aの開口が塞がれ流路 4 8が形成される。
図 1 6は、 積層された多数枚の単位燃料電池 1 1の押付力に関するグラフを 示している。縦軸は押付力 F ( k g f ) であり、横軸は押付時間 t (秒) である。
このグラフに基づいて、 多数枚の単位燃料電池 1 1に押付力 Fが所定の押付 力 F 3になるまで押し付ける例について説明する。
先ず、 押付時間 tが t 1のときに押付力 Fが F 1 となるよう、 傾斜角 0 1の 曲線 g 1に沿って押付力 Fを徐々に上げる。
押付力 Fが F 1になると、 押付時間 tが t 2秒になるまで押付力 Fを F 1に 一定に保つ。
押付時間 tが t 2後は、 押付時間 tが t 3のときに押付力 Fが F 2となるよ う、 傾斜角 0 2の曲線 g 2に沿って押付力 Fを徐々に上げる。
押付力 Fが F 2になると、 押付時間 tが t 4秒になるまで押付力 Fを F 2に 一定に保つ。 押付時間 tが t 4後は、 押付時間 tが t 5がのときに押付力 Fが所定の押付 力 F 3となるよう、 傾斜角 03の曲線 g 3に沿って押付力 Fを徐々に上げる。
このように、 多数枚の単位燃料電池 1 1にかける押付力 Fを所定の押付力 F 3まで段階的に上げる。 これにより、 多数枚の単位燃料電池 1 1に所定の押付力 F3をかける際、 液状シール 45 (図 1 5 B参照) に対して局部的に押付力 F 3 が集中することを防ぐとともに、 図 1 5 Bに示されたセパレータ 26, 27に接 触する正■負側の拡散層 42, 44に対しても局部的に押付力が集中することを 防ぐ。
正■負側の拡散層 42, 44は、 一例として多孔質のカーボンペーパーを採 用しているので、拡散層 42, 44に局部的に押付力が集中すると、拡散層 42, 44が破損することが考えられる。
しかし、 本実施例によれば、 拡散層 42, 44に局部的に押付力が集中する ことを防いでいるため、 拡散層 42, 44が破損することがない。
ここで、 曲線 g 1の傾斜角 0 1、 曲線 g 2の傾斜角 02、 曲線 g 3の傾斜角 03は、 0 1 > S 2> 03の関係を有する。 よって、 押付力 Fの上昇割合は、 曲 線 g 1に比べて曲線 g 2の方が小さく、曲線 g 2に比べて曲線 g 3の方が小さい。
これにより、 押付力「は、 所定の押付力 F 3に近づくに従って、 ゆっくり上 昇することになリ、 シールに対して局部的に押付力が集中することをより確実に 防ぐとともに、 セパレ一タに接触する正■負の拡散層に局部的に押付力が集中す ることをより確実に防ぐ。
図 1 7 Aおよび図 1 7 Bは、 第 1、 第 2支持板 1 4, 1 5を左右の連結プレ ート 1 6, 1 6で連結する工程を示している。
図 1 7 Aにおいて、 多数枚の単位燃料電池 1 1 を所定の押付力 F 3で押し付 けた状態で、 第 1、 第 2支持板 1 4, 1 5に左右の連結プレー卜 1 6, 1 6を複 数のピン 1 7で取リ付ける。これにより、多数枚の単位燃料電池 1 1および第 1、 第 2支持板 1 4, 1 5は、左右の連結プレート 1 6, 1 6で一体的に連結される。
図 1 7 Bに示すように、 多数枚の単位燃料電池 1 1に所定の押付力 F 3をか けた状態で、 第 1、 第 2支持板 1 4, 1 5を連結プレー卜 1 6, 1 6で連結する ことより燃料電池 1 0が得られる。 その後、 プッシャ用移動手段 5 9の駆動モータ 1 0 1を逆転することで、 小 径プーリ 9 9、 ベルト 9 8、 大径プーリ 9 7を介してポールねじ 9 6を逆転し、 移動体 9 3および保持部 9 4を矢印 zの如く後退させる。
移動体 9 3および保持部 9 4を後退させた後、 製造装置 5 0から燃料電池 1 0を矢印の如く取り出す。
図 7 A〜図 1 7 Bに基づいて説明したように、 本発明においては、 燃料電池 製造装置 5 0を用いて燃料電池 1 0を製造する際、 第 1支持板 1 4に多数枚の単 位燃料電池 1 1 を積層し、 さらに多数枚の燃料電池 1 1をラフに左右の下ガイ ド プレー卜 8 2, 8 2に載置した後、 多数枚の単位燃料電池 1 "1に所定の押付力 F 3をかけることで、 多数枚の単位燃料電池 1 1が整列された状態の燃料電池 1 0 が得られる。
図 1 8は、 本発明の燃料電池の製造方法において製造された燃料電池 1 0を 示している。
この燃料電池 1 0は、 積層された多数枚の単位燃料電池 1 1の両端面 1 2, 1 3 (図 1参照) に第 1、 第 2支持板 1 4, 1 5を配置し、 第 1、 第 2支持板 1 4 , 1 5に左右の連結プレート 1 6, 1 6を複数のピン 1 7で連結することによ リ、 多数枚の単位燃料電池 1 1、 第 1及び第 2支持板 1 4 , 1 5を一体的に連結 した構成となる。
本実施例では、 燃料電池 1 0を構成する第 1、 第 2支持板 1 4 , 1 5を連結 する連結部材を連結プレート 1 6とした例について説明したが、 連結部材は、 こ れに限らず、 連結ロッドなどのその他の形状のものを選択してもよい。
さらに、 本実施例では、 加振手段 5 8をガイド手段 5 7の左ガイ ド部 8 4に 設けた例について説明したが、 これに限らず、 加振手段 5 8をガイド手段 5 7の 右ガイ ド部 8 6に設けてもよく、 両方のガイド部 8 4, 8 6にそれぞれ設けるよ うにしてもよい。
さらにまた、 本実施例では、 加振手段 5 8を横方向に振動させて、 多数枚の 単位燃料電池 1 1を整列させた例について説明したが、 加振手段 5 8の振動方向 は横方向に限らないで、 その他の方向に振動させることも可能である。
さらに、 本実施例では、 ガイ ド手段 5 7のうち左右のガイド部 8 4 , 8 6を 揺動可能に構成した例について説明したが、 これに限らず、 左ガイド部 8 4のみ を揺動自在に構成し、 右ガイド部 8 6を固定する構成にしてもよい。
さらにまた、 本実施例では、 多数枚の単位燃料電池 1 1を押し付ける押付力 Fが所定の押付力 F 3になるまで、 図 1 6のグラフに示すように曲線 g 1、 曲線 g 2、 および曲線 g 3の三段階で徐々に上昇する例について説明したが、 これに 限らず、 押付力 Fを 2段階、 4段階などのその他の複数の段階で所定の押付力 F 3になるまで徐々に上昇させるようにしてもよい。
さらに、 本実施例では、 レシーバ部 6 1を横向き位置 P 4に配置した際、 第 2支持板 1 5を左おの下ガイドプレート 8 2, 8 2の先端に載せる例について説 明したが、 これに限らず、 レシーバ部 6 1を横向き位置 P 4に配置した際、 第 2 支持板 1 5を左右の下ガイドブレート 8 2 , 8 2の先端に載せないようにしても よい。 産業上の利用可能性
以上説明したように、 本発明の燃料電池の製造方法によれば、 燃料電池を構 成する多数枚の単位燃料電池の積層作業に手間がかかることがなく、 燃料電池の 生産性が向上することにより廉価となリ、 該燃料電池を製造する業界にとって有 用である。

Claims

請 求 の 範 囲
1 . 電解質膜の両側に正 '負の電極を設け、 これらの正■負の電極の外面にセパ レータを設けることで単位燃料電池を製造し、 この単位燃料電池を多数枚積層す ることで燃料電池を得る燃料電池の製造方法であって、
前記多数枚の単位燃料電池が傾斜された傾斜台に積層状態で載置されるステ ップと ;
載置された多数枚の単位燃料電池の左右辺を支持するステップと ; 前記傾斜台を横向きに倒しながら多数枚の単位燃料電池を振動作用で整列さ せるステップと ;
整列された多数枚の単位燃料電池の両端面に第 1および第 2支持板をそれぞ れ配置するステップと ;
前記第 1および第 2支持板を介して多数枚の単位燃料電池に所定の押付力を 付与するステップと ;
多数枚の単位燃料電池に所定の押付力を付与した状態で、 第 1および第 2支 持板を連結部材で連結するステップと ;
からなる燃料電池の製造方法。
2 . 前記押付力を付与するステップにおいて、 前記多数枚の単位燃料電池に付与 する押付力を前記所定の押付力まで段階的に高める際、 所定の押付力に近づくに したがって時間をかけて徐々に高くすることを特徴とする請求項 1記載の燃料電 池の製造方法。
3 . 電解質膜の両側に正 '負の電極を設け、 これらの正 '負の電極の外面にセパ レータが設けられた単位燃料電池と、 該単位燃料電池が多数枚積層された積層単 位燃料電池の両端面に設けられた第 1および第 2支持板と、 第 1および第 2支持 板を連結する連結部材とで構成された燃料電池を製造する装置であって、
前記第 1支持板および前記多数枚の単位燃料電池を積層状態に支えるため に、 架台にスイング自在に設けられたプッシャビーム部と ; 第 1支持板および前記多数枚の単位燃料電池を積層する上向き位置、 および 第 1支持板に前記第 2支持板を連結する横向き位置に前記プッシャビーム部をス イングするためのプッシャビーム旋回部と ;
前記プッシャビーム部の長手方向に沿って設けられ、 前記多数枚の単位燃料 電池の三辺をスライド自在に支持するガイド手段と ;
前記ガイド手段で支持された前記多数枚の単位燃料電池を整列させるために 該ガイド手段に振動を加える加振手段と ;
前記ガイド手段に沿って第 1支持部および多数枚の単位燃料電池を移動させ るためのプッシャ用移動手段と ;
前記プッシャビーム部に対向してスイング可能に設けられ、 前記第 2支持板 を支持するレシーバ部と;
前記第 2支持板を支持する上向き位置、 および第 2支持板を前記第 1支持板 に連結する横向き位置に前記レシーバ部をスイングするためのレシーバ旋回部と 前記レシーバ部およびプッシャビーム部がそれぞれ横向き位置に配置され、 前記プッシャ用移動手段で多数枚の単位燃料電池の一方の端面を第 2支持板に押 し付けた際、 第 2支持板にかかる押付力を測定する押付力測定手段と;
からなる燃料電池の製造装置。
PCT/JP2004/016624 2003-11-27 2004-11-02 燃料電池の製造方法及び製造装置 WO2005053079A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04799562.6A EP1689015B1 (en) 2003-11-27 2004-11-02 Fuel cell producing method and apparatus
CA2541353A CA2541353C (en) 2003-11-27 2004-11-02 Fuel cell producing method and apparatus
US10/595,937 US7615302B2 (en) 2003-11-27 2004-11-02 Fuel cell producing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003398052A JP4402438B2 (ja) 2003-11-27 2003-11-27 燃料電池の製造方法および燃料電池の製造装置
JP2003-398052 2003-11-27

Publications (1)

Publication Number Publication Date
WO2005053079A1 true WO2005053079A1 (ja) 2005-06-09

Family

ID=34631557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016624 WO2005053079A1 (ja) 2003-11-27 2004-11-02 燃料電池の製造方法及び製造装置

Country Status (7)

Country Link
US (1) US7615302B2 (ja)
EP (1) EP1689015B1 (ja)
JP (1) JP4402438B2 (ja)
KR (1) KR101041920B1 (ja)
CN (1) CN100456547C (ja)
CA (1) CA2541353C (ja)
WO (1) WO2005053079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025258A1 (de) * 2006-05-31 2007-12-06 Volkswagen Ag Vorrichtung zum Einspannen von Brennstoffzellen-Prüflingen und/oder Brennstoffzellenstapel-Prüflingen

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059341A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp 燃料電池
JP2007184200A (ja) * 2006-01-10 2007-07-19 Toyota Motor Corp 燃料電池スタック
JP5196411B2 (ja) * 2006-01-20 2013-05-15 アイシン精機株式会社 燃料電池スタック装置
JP5109277B2 (ja) * 2006-03-30 2012-12-26 トヨタ自動車株式会社 マルチセルモジュールおよび燃料電池スタック
KR100873238B1 (ko) * 2006-10-27 2008-12-10 현대자동차주식회사 연료전지 스택의 체결장치
JP5151116B2 (ja) * 2006-11-10 2013-02-27 日産自動車株式会社 燃料電池の製造方法および製造装置
DE102007012763B4 (de) * 2007-03-16 2014-04-10 Staxera Gmbh Gehäuse zum Aufnehmen zumindest eines Brennstoffzellenstapels und Brennstoffzellensystem mit einem solchen Gehäuse
JP5134272B2 (ja) 2007-03-23 2013-01-30 本田技研工業株式会社 燃料電池スタック
JP5205029B2 (ja) * 2007-10-16 2013-06-05 本田技研工業株式会社 燃料電池セル積層方法
JP5245520B2 (ja) * 2008-04-30 2013-07-24 トヨタ自動車株式会社 燃料電池の製造装置およびその方法
DE112010006034B4 (de) 2010-11-30 2014-05-15 Toyota Jidosha Kabushiki Kaisha Verfahren zum Herstellen einer Brennstoffzelle, Brennstoffzellen-Herstellungsvorrichtung und Brennstoffzelle
US8453334B2 (en) * 2011-02-07 2013-06-04 GM Global Technology Operations LLC Fuel cell plate measurement features
JP5601311B2 (ja) * 2011-11-24 2014-10-08 トヨタ自動車株式会社 バンド組み付け装置およびバンド組み付け方法
GB2502517A (en) * 2012-05-28 2013-12-04 Intelligent Energy Ltd Fuel Cell Plate Assemblies and methods of assembly thereof
JP6133114B2 (ja) * 2013-04-22 2017-05-24 本田技研工業株式会社 燃料電池スタックの組み立て方法
DE102013210545A1 (de) * 2013-06-06 2014-12-11 Volkswagen Ag Verfahren zur Montage eines Brennstoffzellenstapels sowie Positioniervorrichtung zur Durchführung des Verfahrens
KR101664321B1 (ko) * 2014-05-14 2016-10-11 주식회사 노바 연료전지 스택 체결 장치
KR101664547B1 (ko) * 2014-06-17 2016-10-11 현대자동차주식회사 연료전지용 스택 조립장치
US9997800B2 (en) 2014-07-09 2018-06-12 GM Global Technology Operations LLC Fuel cell stack and assembly method of same
KR102109123B1 (ko) * 2014-12-09 2020-05-11 현대자동차주식회사 연료 전지 스택의 조립 시스템
KR101734271B1 (ko) * 2015-06-09 2017-05-11 현대자동차 주식회사 연료전지 스택 자동 적층 장치
KR101765588B1 (ko) * 2015-09-25 2017-08-07 현대자동차 주식회사 연료전지 스택 조립 장치 및 그의 제어방법
KR102187458B1 (ko) * 2015-12-09 2020-12-07 현대자동차 주식회사 연료전지 스택 반출 장치
DE102015225761A1 (de) * 2015-12-17 2017-06-22 Volkswagen Aktiengesellschaft Verfahren und System zur Herstellung einer Brennstoffzelle
DE102016213149A1 (de) 2016-07-19 2018-01-25 Robert Bosch Gmbh Verfahren zur Herstellung einer Elektrodeneinheit für eine Batteriezelle und Elektrodeneinheit
CN108448148A (zh) * 2018-02-01 2018-08-24 广东国鸿氢能科技有限公司 一种燃料电池电堆连续化组装装置及其组装方法
DE102019110472A1 (de) * 2019-04-23 2020-10-29 Grob-Werke Gmbh & Co. Kg Vorrichtung und Verfahren zum Herstellen eines Zellstapels
GB201913907D0 (en) 2019-09-26 2019-11-13 Ceres Ip Co Ltd Fuel cell stack assembly apparatus and method
JP7062728B2 (ja) * 2020-08-06 2022-05-06 本田技研工業株式会社 発電セル積層体の製造方法及び製造装置
EP4205207A1 (en) * 2020-08-28 2023-07-05 Hyzon Motors Inc. Stack assembly machine and process
JP7141431B2 (ja) 2020-09-16 2022-09-22 本田技研工業株式会社 燃料電池積層体の製造方法及び燃料電池スタックの製造方法
DE102021118976A1 (de) * 2021-07-22 2023-01-26 Audi Aktiengesellschaft Verfahren zur Herstellung eines Stapels aus einer Mehrzahl von elektrochemischen Zellen und Vorrichtung zur Herstellung eines derartigen Stapels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121267A (ja) * 1984-11-16 1986-06-09 Sanyo Electric Co Ltd 燃料電池のスタツク組立方法
JPH08171926A (ja) 1994-10-21 1996-07-02 Toyota Motor Corp 燃料電池
JP2002203585A (ja) * 2000-12-28 2002-07-19 Toshiba Eng Co Ltd 燃料電池
JP2002246044A (ja) * 2001-02-14 2002-08-30 Honda Motor Co Ltd 単位燃料電池及び燃料電池スタックの製造方法
WO2003026049A2 (en) 2001-09-18 2003-03-27 Dupont Canada Inc. Modular fuel cell cartridge and stack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541148B1 (en) * 2000-10-31 2003-04-01 Plug Power Inc. Manifold system for a fuel cell stack
US20030211376A1 (en) * 2002-03-26 2003-11-13 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell, method of manufacturing the same and inspection method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121267A (ja) * 1984-11-16 1986-06-09 Sanyo Electric Co Ltd 燃料電池のスタツク組立方法
JPH08171926A (ja) 1994-10-21 1996-07-02 Toyota Motor Corp 燃料電池
JP2002203585A (ja) * 2000-12-28 2002-07-19 Toshiba Eng Co Ltd 燃料電池
JP2002246044A (ja) * 2001-02-14 2002-08-30 Honda Motor Co Ltd 単位燃料電池及び燃料電池スタックの製造方法
WO2003026049A2 (en) 2001-09-18 2003-03-27 Dupont Canada Inc. Modular fuel cell cartridge and stack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1689015A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025258A1 (de) * 2006-05-31 2007-12-06 Volkswagen Ag Vorrichtung zum Einspannen von Brennstoffzellen-Prüflingen und/oder Brennstoffzellenstapel-Prüflingen

Also Published As

Publication number Publication date
US20080120829A1 (en) 2008-05-29
CA2541353A1 (en) 2005-06-09
CA2541353C (en) 2012-08-28
US7615302B2 (en) 2009-11-10
EP1689015A1 (en) 2006-08-09
JP4402438B2 (ja) 2010-01-20
JP2005158615A (ja) 2005-06-16
EP1689015B1 (en) 2015-09-23
KR20060108630A (ko) 2006-10-18
CN1883074A (zh) 2006-12-20
CN100456547C (zh) 2009-01-28
KR101041920B1 (ko) 2011-06-16
EP1689015A4 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
WO2005053079A1 (ja) 燃料電池の製造方法及び製造装置
KR101745083B1 (ko) 연료전지 스택 체결장치 및 그 체결방법
JP2017033916A (ja) 燃料電池スタック組立装置
KR101830350B1 (ko) 리튬전지 포메이션 챔버용 그립핑시스템
CN113241468A (zh) 一种隔膜翻转包覆的叠片机构与叠片方法
KR101806236B1 (ko) 이차전지용 전극판의 자동 공급장치
CN108461797B (zh) 二次电池的高速电池堆制造装置
JPH08335462A (ja) 燃料電池電極の膜合わせ装置
WO2003005467A1 (fr) Procede de recouvrement d'un separateur utilise dans une pile a combustible, et element de jonction film/electrode, ainsi que dispositif utilises a cet effet
CN115351483B (zh) 一种锂电池组的焊接装置
KR102586960B1 (ko) 이차전지 전극조립체의 단면 전극 스택용 분리막 핸들링장치 및 이를 이용한 이차전지 전극조립체 제조 방법
JPH08250107A (ja) 液含浸装置及び液含浸方法
CN213858007U (zh) 成型装置
CN213916639U (zh) 一种夹具、盖板和固定装置
TW200402822A (en) Port structure of semiconductor processing apparatus
JP4402324B2 (ja) 燃料電池用セパレータの反り矯正方法、同反り矯正装置及び同シール材塗布方法
JP3980855B2 (ja) 電子部品へのテスト用気体充填装置
KR102165376B1 (ko) 2차 전지용 연속식 고속 셀 스택 적층장치
CN219881626U (zh) 缝焊机上料机构及缝焊机
JP3785649B2 (ja) 液含浸装置
CN217071304U (zh) 电池模组端板及侧板的焊接工装
JP3766323B2 (ja) 電気二重層キャパシタセルの製造方法及び製造装置
KR100642800B1 (ko) 통화 테스트 시스템 및 그 방법
JP4235394B2 (ja) 電気二重層キャパシタの製造方法およびその装置
JP3810674B2 (ja) 電気二重層キャパシタの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034495.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2541353

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067008104

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004799562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10595937

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004799562

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067008104

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10595937

Country of ref document: US