WO2005051417A1 - Formulations pharmaceutiques pour la liberation prolongee d'interferons et leurs applications therapeutiques - Google Patents

Formulations pharmaceutiques pour la liberation prolongee d'interferons et leurs applications therapeutiques Download PDF

Info

Publication number
WO2005051417A1
WO2005051417A1 PCT/FR2004/050605 FR2004050605W WO2005051417A1 WO 2005051417 A1 WO2005051417 A1 WO 2005051417A1 FR 2004050605 W FR2004050605 W FR 2004050605W WO 2005051417 A1 WO2005051417 A1 WO 2005051417A1
Authority
WO
WIPO (PCT)
Prior art keywords
formulation according
formulation
interferon
polymer
hydrophobic
Prior art date
Application number
PCT/FR2004/050605
Other languages
English (en)
Inventor
Gauthier Pouliquen
Rémi Meyrueix
Olivier Soula
Original Assignee
Flamel Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/580,037 priority Critical patent/US20070269517A1/en
Priority to MXPA06005716A priority patent/MXPA06005716A/es
Priority to DE602004024920T priority patent/DE602004024920D1/de
Priority to EP04805848A priority patent/EP1689426B1/fr
Priority to DK04805848.1T priority patent/DK1689426T3/da
Priority to AU2004292370A priority patent/AU2004292370B2/en
Priority to BRPI0416766-0A priority patent/BRPI0416766A/pt
Priority to CA002546677A priority patent/CA2546677A1/fr
Application filed by Flamel Technologies filed Critical Flamel Technologies
Priority to JP2006540559A priority patent/JP2007511587A/ja
Priority to SI200431373T priority patent/SI1689426T1/sl
Priority to PL04805848T priority patent/PL1689426T3/pl
Priority to AT04805848T priority patent/ATE453400T1/de
Publication of WO2005051417A1 publication Critical patent/WO2005051417A1/fr
Priority to IL175805A priority patent/IL175805A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/66Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells
    • A61K47/665Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid the modifying agent being a pre-targeting system involving a peptide or protein for targeting specific cells the pre-targeting system, clearing therapy or rescue therapy involving biotin-(strept) avidin systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to novel pharmaceutical formulations based on stable and fluid aqueous colloidal suspensions for the sustained release of proteinaceous active ingredients, namely interferons (IFN), as well as the active pharmaceutical agents. therapeutic applications of these formulations.
  • IFN interferons
  • These active pharmaceutical formulations concern both human and veterinary therapeutics.
  • Interferons are glycoproteins belonging to the family of cytokines. They are biological mediators that, by binding to membrane receptors, trigger a pleiotropic cellular response. This results in antiviral, antiproliferative and immunomodulatory activity. Interferons have also been recognized as effective anti-tumor or anticancer agents. Interferon refers to all interferon fungi, such as alpha, beta or gamma interferons.
  • IFN can be produced by genetic engineering.
  • the sustained-release pharmaceutical formulations of TFN are subject to the need to reproduce at best in the patient a plasma concentration of IFN close to the value observed in the healthy subject. This objective is hampered by the short lifespan of IFNs in plasma, which makes it very difficult to inject them repeatedly.
  • the plasma concentration of therapeutic protein then has a "sawtooth" profile characterized by high peaks of concentration and n ⁇ ttima very low concentration. Concentration peaks, well above the basal concentration in healthy subjects, have very strong adverse effects due to the high toxicity of IFNs. In addition, concentration levels are lower than the concentration required to have a therapeutic effect, resulting in poor therapeutic coverage of the patient and serious long-term side effects.
  • the pharmaceutical formulation considered makes it possible to release the therapeutic protein over a prolonged period of time so as to limit the variations in plasma concentration at the same time. course of time.
  • this active formulation should preferably satisfy the following specification, already known to those skilled in the art: 1 - prolonged release of one or more active and undenatured interferons (no modified), so that the plasma concentration is maintained at the therapeutic level, 2 - liquid form sufficiently fluid to be easily injectable and sterilizable by filtration on filters whose pore size is less than or equal to 0.2 microns, 3 - form stable liquid, 4 - biocompatibility and biodegradability, 5 - nontoxicity, 6 - non-immunogenicity, 7 - excellent local tolerance.
  • 1 - prolonged release of one or more active and undenatured interferons (no modified) so that the plasma concentration is maintained at the therapeutic level
  • 2 - liquid form sufficiently fluid to be easily injectable and sterilizable by filtration on filters whose pore size is less than or equal to 0.2 microns
  • 3 - form stable liquid 4 - biocompatibility and biodegradability, 5 - nontoxicity, 6 - non-immunogenicity, 7 - excellent local tolerance
  • the native therapeutic protein is modified by covalent grafting of one or more polymer chains or by covalent grafting of a protein such as human serum albumin (HSA).
  • HSA human serum albumin
  • the protein thus modified has a lower affinity for its receptors and its half-life time in the general circulation increases considerably. The amplitude of the concentration variation between peaks and troughs of plasma protein concentration is thus considerably reduced.
  • NIRAFERON® PEG an interferon alpha 2b chemically modified by grafting a polyethylene glycol (PEG) chain of mass 12kD. This chemical modification results in an increase in half-life time in the patient from 6.8 to 33 hours.
  • This solution comprises: (A) 10 to 80% by weight of a thermoplastic base polymer, biocompatible, biodegradable and insoluble in water or physiological fluids (for example PolyLactic and / or PolyGlycolic); (B) an organic solvent, such as N-methylpyrrolidone dispersing in physiological fluids; o (C) an active ingredient (AP); (D) and finally 1 to 50% by weight of a controlled release agent consisting of a block copolymer type PolyLacticG lycolique / PolyEthyleneGlycol.
  • a thermoplastic base polymer biocompatible, biodegradable and insoluble in water or physiological fluids
  • an organic solvent such as N-methylpyrrolidone dispersing in physiological fluids
  • AP active ingredient
  • D and finally 1 to 50% by weight of a controlled release agent consisting of a block copolymer type PolyLacticG lycolique / PolyEthyleneGlycol.
  • (B) disperses or dissipates in the physiological fluids.
  • (A) forms an encapsulant implant (C) which is not covalently bound to either (A) or (D) and which is then slowly released in vivo.
  • the main disadvantage of this technique is to use an organic solvent (B), potentially denaturing for PA (C) (eg therapeutic proteins) and toxic for the patient.
  • PA eg therapeutic proteins
  • the in vivo hydrolysis of the polymer (A) generates an acid which can lead to local tolerance problems.
  • PCT applications WO-A-99/18142 and WO-A-00/18821 relate to aqueous solutions of polymers which contain a PA in dissolved or colloidal form, which can be administered to warm-blooded animals, in particular by injection, and which form a deposit of PA (eg insulin) gelled in vivo, because the physiological temperature is higher than their gelation temperature. The gel thus formed releases the PA for a prolonged period.
  • PA eg insulin
  • the liquid / gel transformation temperatures of these triblock polymers are, for example, 36, 34, 30 and 26 ° C.
  • This formulation is intended for local administration in a target organ (eg eye).
  • the aggregation active ingredient that is formed in situ allows the slow release of the active ingredient in the target organ.
  • hGH human growth hormone e
  • the biocompatible polymer is, for example, a poly (lactide), a poly (glycolide) or a poly (lactide-co-glycolide) copolymer.
  • the composition is, for example, in the form of a suspension of microspheres in a solution of sodium carboxymethylcellulose.
  • This approach has several disadvantages: firstly, during the microsphere manufacturing process, the protein is contacted with potentially denaturing organic solvents. In addition, the microspheres are of a high size (1 to 1000 microns), which constitutes a constraint in terms of injection and easy sterilization on filters. Finally, local tolerance problems can arise during the in situ hydrolysis of the polymer.
  • sustained-release forms of therapeutic protein consisting of liquid suspensions of nanoparticles loaded with proteins. These allowed the administration of the native protein in a liquid formulation of low viscosity.
  • the nanoparticulate sustained release suspension consists of liposome suspensions in which the unmodified native therapeutic protein is encapsulated. After injection, the protein is progressively released from the liposomes, which prolongs the time of presence of the protein in the general circulation.
  • Frossen et al. Describe in the article Cancer Res. 43 p 546, 1983 Encapsulation of anti-neoplastic agents in liposomes to increase therapeutic efficacy.
  • Liposom e Company Inc in its US-B-5 399 331 patent proposes to improve the in vitro release time of interferon 2 by covalently grafting it to the liposome. We then fall back into the first "modified protein" approach mentioned above.
  • Flamel Technologies has proposed a second prolonged release route in which the therapeutic protein is associated with nanoparticles. a water-soluble polymer "hydrophobic modified", that is to say, modified by grafting hydrophobic groups.
  • This polymer is chosen, in particular, from polyamino acids (polyglutamates or polyaspartates) carrying hydrophobic grafts.
  • polyamino acids polyglutamates or polyaspartates
  • hydrophobic modified polymers One of the notable interests of these hydrophobic modified polymers is to self-assemble spontaneously in water to form nanoparticles.
  • Another advantage of these systems is that the therapeutic proteins or peptides associate spontaneously with the nanoparticles of hydrophobic modified polymers, this combination is non-covalent and is carried out without using a surfactant or a potentially denaturing transformation process. This is not an encapsulation of the protein in a microsphere as disclosed in US-B-6,500,448 and US-A-2003/0133980.
  • these nanoparticles of hydrophobic modified copolyamino acids spontaneously adsorb proteins in solut ion, without chemically modifying or denaturing them and without subjecting them to aggressive processing steps of the "emulsification” and "solvent evaporation” type.
  • the formulations can be stored in liquid form or in lyophilized form. After injection, for example subcutaneously, these suspensions of protein-loaded nanoparticles progressively release the undenatured and bioactive protein in vivo.
  • Such non-covalent combinations of active ingredient (PA) protein / poly [Glu] or poly [Asp] are disclosed in the patent application WO-A-00/30618.
  • This application notably describes colloidal suspensions of pH 7.4 comprising combinations of human insulin with nanoparticles of "hydrophobic modified” polyglutamate.
  • the table below gives an account of the "hydrophobic modified” polyamino acids used and the levels of association obtained in the examples of WO-A-00/30618.
  • colloidal suspensions contain 1.4 mg / ml of insulin and 10 mg / ml of "hydrophobic modified" polyamino acid. It is apparent from FIG. 1 of WO-A-00/30618 that the in vivo release time of the insulin vectorized by the suspensions mentioned above is 12 h. This release duration would benefit to be increased. Thus, even if this PCT application already represents considerable progress, its technical content can still be optimized in view of the specifications set out above and especially with regard to the lengthening of the in vivo release time of interferons.
  • amphiphilic "hydrophobic modified" polyamino acids according to the French patent application No. 02 07008 comprise aspartic units and / or glutamic units, carrying hydrophobic grafts comprising at least one alpha-tocopherol unit, eg: (polyglutamate or polyaspartate grafted with alpha tocopherol of synthetic or natural origin).
  • This unpublished application specifically discloses a colloidal suspension which contains nanoparticles formed by polymer / active protein combinations and which is obtained by mixing 1 mg of a polyglutamate grafted with alpha-tocopherol and 7 mg of insulin in 1 ml. of water, at pH 7.0.
  • the amphiphilic "hydrophilic modified" polyamino acids according to the French patent application No. 02 09670 comprise aspartic units and or glutamic units, carrying hydrophobic grafts comprising at least one hydrophobic unit and connected to the aspartic and or glutamic units via a ball joint containing two amide functions, and more specifically via a "spacer" of the lysine or ornithine type.
  • 03 50190 comprise aspartic units and / or glutamic units, some of which carry at least one graft connected to an aspartic or glutamic unit, via a "spacer""aminoacid” based on Leu, and / or ILeu, and or Val, and / or Phe, a C6-C30 hydrophobic group being connected by an ester bond to the "spacer".
  • This unpublished application specifically discloses a colloidal suspension which contains nanoparticles formed by polymer / active protein combinations and which is obtained by mixing an aqueous solution containing 10 mg of a grafted polyglutamate with a graft -Leu-OC8, -Val-OC12 or -Nal-cholesteryl and 200 IU insulin (7.4 mg) per milliliter of water at pH 7.4.
  • French Patent Application No. 01 50641 discloses linear, amphiphilic, anionic homopolyamino acids, comprising aspartic units or glutamic units and whose ends carry hydrophobic groups containing from 8 to 30 carbon atoms.
  • the "hydrophobic modified" telechelic homopolyamino acids are for example a poly [GluONa] with PheOC18 / C18 ends or a poly [GluONa] with PheOC18 / alpha-tocopherol ends.
  • This unpublished application also describes a colloidal suspension which contains nanoparticles formed by polymer / active protein combinations and which is obtained by mixing 10 mg of one of the abovementioned polymers and 200 IU of insulin (7.4 mg) per milliliter. of water, at pH 7.4. The duration of in vivo release of insulin "vectorized" by the suspensions according to these unpublished requests, would benefit from being increased.
  • Another essential objective of the invention is to propose a liquid pharmaceutical formulation with sustained release of interferon (s) in vivo, which is sufficiently fluid to be easily injectable and sterilizable by filtration on filters whose pore size is less than or equal to 0.2 microns.
  • Another essential objective of the invention is to provide a liquid pharmaceutical formulation with sustained release of interferon (s) in vivo, which is stable to preservation both physico-chemical and biological.
  • the invention is to propose a liquid pharmaceutical formulation with sustained release of interferon (s) in vivo, which has at least one of the following properties: biocompatibility, biodegradability, atoxicity, good local tolerance
  • Another essential objective of the invention is to provide a pharmaceutical formulation for slow sustained release of interferon (s) in vivo, this formulation being a low viscosity aqueous colloidal suspension comprising submicron particles of polymer PO self-associated with at least one interferon (s), the polymer PO being a biodegradable, water-soluble polymer carrying hydrophobic groups
  • another essential objective of the inv Invention is to propose a slow sustained release pharmaceutical formulation of interferon (s) in vivo, this formulation being an aqueous colloidal suspension of low viscosity comprising submicron particles of polymer PO self-associated with at least one interferon, the polymer PO being for example, a polyamino acid formed by aspartic units and / or glutamic units, at least a part of these units
  • Another essential object of the invention is to propose derived products and / or precursors of the formulation referred to in the abovementioned objectives. It is in particular merit of the Applicant to have developed liquid aqueous pharmaceutical formulations of low viscosity at physiological temperature, which, surprisingly, form a gelled deposit in vivo after easy parenteral administration in humans or mammals with warm blood, the formation of this deposit is not triggered by a change in pH or temperature during parenteral injection, nor by the dispersion of organic solvent in the physiological medium. The gelled deposit thus formed significantly increases the in vivo release time of the BFN.
  • the invention relates to a liquid pharmaceutical formulation for the sustained release of interferon (s), this formulation comprising a colloidal suspension, aqueous, of low viscosity, based on submicron particles of polymer (PO ) biodegradable, water-soluble and hydrophobic group-bearing (GH), said particles being non-covalently associated with at least one interferon and optionally with at least one other active ingredient (AP), characterized in that: suspension is essentially constituted by water, in that it is capable of being injected parenterally and then forming a gelled deposit in vivo, this gelled deposit formation: o being, on the one hand, at least part caused by at least one physiological protein present in vivo, and allowing, on the other hand, to prolong and control the release time of AP in vivo, beyond 24 hours after administration, * in that it is liquid under the conditions of injection, and in that it is also liquid at physiological temperature and / or pH, and / or in the presence of: physiological electrolyte at
  • this gelation in vivo does not result from a change in pH and / or temperature, nor an in vivo dispersion of one or more organic solvents possibly contained in the injected formulation.
  • physiological proteins present in vivo in physiological concentrations allow the aggregation of the PO nanoparticles associated with at least one interferon.
  • Such gelling takes place, for example, in one or more hours, 24 hours, 48 hours or 72 hours, among others.
  • the gelled deposit obtained after parenteral injection of the formulation allows an interesting prolongation of the duration of release of the protein as well as a reduction of the plasma concentration peak of interferon (s).
  • the concentration of [PO] is such that it forms a deposition g eluted in vivo, after parenteral injection.
  • the invention relates to a liquid pharmaceutical formulation for the sustained release of active principle (s).
  • this formulation o being liquid in ambient atmosphere, o also being liquid at physiological temperature and / or pH and / or in the presence of: * physiological electrolyte at physiological concentration, * and / or at least one surfactant, o and comprising a colloidal suspension, aqueous, low viscosity, based on submicron particles of biodegradable PO polymer, water-soluble and bearing hydrophobic groups GH, said particles being non-covalently associated with at least one inter-feron (and optionally at least one other active ingredient) and the dispersing medium of the suspension consisting essentially of water, characterized in that its concentration of [PO] is set at a sufficiently high value to allow the formation of gelled deposit in vitro, after parenteral injection, in the presence of at least one protein .
  • the liquid pharmaceutical formulation according to the invention is characterized in that its concentration of [PO] is such that: - [PO]> 0.9.C1, • preferably 20.C1>[PO]> C1, and more preferably 10.C1>[PO]> Cl with Cl representing the concentration of "induced gelation" of the PO particles as measured in a GI test.
  • the gelled deposit obtained after parenteral injection of the formulation allows an interesting prolongation of the duration of release of the protein as well as a reduction of the plasma concentration peak of interferon (s).
  • the AP release time is significantly increased over that of the prior art formulations, particularly those described in published PCT patent application WO-A-00/30618 and unpublished French patent applications.
  • interferons are different from unmodified interferons or modified interferons, for example by grafting one or more polyoxyethylene groups.
  • proteins of the inter feron family there may be mentioned: IFN alpha, IFN beta and IFN gamma.
  • the associated supramolecular polymeric PO arrangements or not to at least one interferon and, optionally to at least one other active ingredient will be indifferently referred to as "submicron particles” or “nanoparticles”.
  • these formulations are liquid, that is to say advantageously have a very low viscosity, which makes their injection easy. They gel only in vivo.
  • the qualifiers "liquid”, “low” or “very low viscosity” correspond, advantageously, to a dynamic viscosity at 20 ° C. of less than or equal to 5 Pa ⁇ s.
  • the reference measurement for the viscosity can be carried out, for example, at 20 ° C. using an AR1000 rheometer (TA Instruments) equipped with a cone-plane geometry (4 cm, 2 °).
  • the viscosity of the formulations according to the invention may be, for the exemp, between 1.10" 3 and 5 Pa.s, preferably between 1.10 "and 3 0.8 Pa.s and even more preferably, between 1.10 "and 0.5 3 Pa.s.
  • This low viscosity makes the formulations of the invention not only easily injectable parenterally, in particular intramuscularly or subcutaneously, inter alia, but also sterilizable easily and at a lower cost by filtration on 0.2 sterilization filters. ⁇ m of pore size.
  • the formulation according to the invention is preferably an aqueous colloidal suspensio n of nanoparticles associated with one or more interferons and optionally one or more other PAs.
  • the dispersive medium of this suspension is essentially formed by water. In practice, this water represents, for example, at least 50% by weight relative to the total weight of the formulation.
  • the term "protein” refers to both a protein and a peptide. This protein or peptide may or may not be modified, for example by grafting one or more polyoxyethylene groups.
  • physiological proteins is intended to mean the endogenous proteins and / or peptides of warm-blooded mammals present at the injection site.
  • physiological temperature is intended to mean the physiological temperature of the warm-blooded mammals, namely, for example, approximately 37 ° -42 ° C.
  • physiological pH is meant, in the sense of the invention, a pH for example between 6 and 7.6.
  • the term “gel” means a semisolid state in which the liquid formulation according to the invention is converted, and this spontaneously by the mere presence of physiological protein (s), without essential intervention of the physiological pH and / or the physiological temperature and / or the presence of a physiological electrolyte (Ca ++ eg) and / or the dispersion (or dissipation) in vivo of an organic solvent possibly present in the injected formulation.
  • physiological electrolyte is meant, within the meaning of the invention, any electrolyte element (for example Ca 44 ions) present in warm-blooded mammals.
  • physiological concentration is meant, within the meaning of the invention, any physiological concentration encountered in warm-blooded mammals, for the physiological medium in question.
  • the formulations according to the invention are nontoxic, well tolerated locally and stable. It is also the merit of the inventors to have developed an in vitro GI test for selecting a population of the preferred formulations according to the invention and to determine the appropriate concentrations of PO in the formulations.
  • the GI test for measuring the gelation concentration Cl is a reference test that makes it possible to define the critical concentration Cl, hereinafter referred to as the Cl induced gelation concentration, which characterizes each colloidal formulation according to the invention.
  • the GI test for determining the induced gelling concentration C1 is the following: In order to determine the concentration Cl, colloidal formulations of varying concentrations of amphiphilic polymer according to the invention and of constant concentration of therapeutic protein are prepared.
  • the viscoelasticity measurements are carried out on a rheometer TA instrument s AR 1000, equipped with a cone-plane geometry (diameter 4cm and angle 1.59). A deformation of 0.01 rad, located in the field of linear viscoelasticity, is imposed sinusoidally over a frequency range between 0.1 and 300 rad / s. The temperature of the sample is kept constant at 20 ° C by means of a Peltier cell.
  • the frequency spectra of the elastic modulus G 'and of the viscous or loss modulus, G " make it possible to define the characteristic relaxation time Tr defined here as the inverse of the frequency at which the elastic modulus G' crosses the viscous modulus G
  • Tr defined here as the inverse of the frequency at which the elastic modulus G' crosses the viscous modulus G
  • association or “associate” used to qualify the relations between one or more active ingredients and polymers PO (for example polyamino acids), mean in particular that the active principle (s) are (are) bound to the PO polymer (s) [for example the polyamino acid (s)] by a non-covalent bond, for example by electrostatic and / or hydrophobic interaction and / or hydrogen bonding and / or steric hindrance.
  • the PO polymers according to the invention are biodegradable polymers, water-soluble and bearing hydrophobic groups GH.
  • the hydrophobic groups may be in reduced number with respect to the rest of the chain and may be located laterally to the chain or intercalated in the chain, and may be randomly distributed (random copolymer) or distributed in the form of sequences or grafts ( block copolymers or block copolymers).
  • the hydrophobic modified PO polymers may be chosen from the group comprising amphiphilic copolamino acids, polysaccharides, preferably in the subgroup including pullulans and / or chitosans and / or mucopolysaccharides, gelatins or their mixtures.
  • PO is selected from amphiphilic copolyamino acids.
  • polyamino acid covers both the oligomino acids comprising from 2 to 20 "amino acid” units and the polyamino acids comprising more than 20 "amino acid” units.
  • the polyamino acids according to the present invention are oligomers or homopolymers comprising glutamic or aspartic acid repeating units or copolymers comprising a mixture of these two types of "amino acid” units.
  • the units considered in these polymers are amino acids having the D or L or D / L configuration and are linked by their alpha or gamma positions for the glutamate or glutamic unit and alpha or beta for the aspartic or aspartate unit.
  • the preferred "amino acid" units of the main polyamino acid chain are those having the L-configuration and an alpha-type bond.
  • the polymer PO is a polyamino acid formed by aspartic units and / or glutamic units, at least a portion of these units carrying scions comprising at least one hydrophobic group GH.
  • These polyamino acids are in particular of the type described in PCT patent application WO-A-00/30618.
  • the PO (s) of the formulation are defined by the following general formula (I):
  • R 1 represents H, linear C 2 -C 10 or branched C 3 -C 10 alkyl, benzyl, a terminal amino acid unit or -R 4 - [GH];
  • R 2 represents an H, a C2 to C10 or branched C3 to C10 linear acyl group, a pyroglutamate or -R 4 - [GH];
  • R 3 is an H or a cationic entity, preferably selected from the group comprising: metal cations advantageously chosen from the subgroup including: sodium, potassium calcium, magnesium, organic cations advantageously selected in the sub-group comprising: • amine-based cations, • oligoamine-based cations, • polya-based cations (polyeylenimine being particularly preferred), • acid-based cations (s) amine (s) advantageously chosen from the class comprising cations based on lysine or arginine, or cationic polyamino acids advantageously chosen from the subgroup comprising
  • 1 GH represents a hydrophobic group
  • R 30 is a C2 to C6 linear alkyl group
  • R 3 ' is an H or a cationic entity, preferably selected from the group consisting of: - the metal cations advantageously chosen in the subgroup including: sodium, potassium, calcium, magnesium, - the cations organic compounds which are advantageously chosen from the sub-group comprising: • amine-based cations, • oligoamine-based cations, • polyamine-based cations (polyethyleneimine being particularly preferred), • cations based on amino acid (s) advantageously chosen from the class comprising cations based on lysine or arginine, or cationic polyamino acids advantageously chosen from the subgroup comprising polylysine or oligolysine,
  • R 50 is a C2-C6 alkyl, dialkoxy or diamine group; R represents a direct bond or a "spacer" based on 1 to 4 amino acid units; A is independently a radical -CH 2 - (aspartic unit) or -CH 2 -CH 2 - (glutamic unit); B n '+ m' or n "is defined as the degree of polymerization and varies from 10 to 1000, preferably from 50 to 300.
  • the n groups GH of the PO each represent each of them a monovalent radical of following formula:
  • R 5 is methyl (alanine), isopropyl (valine), isobutyl (ucin), secbutyl (isoleucine), benzyl (phenylalanine);
  • - R 6 represents a hydrophobic radical containing from 6 to 30 carbon atoms; - 1 varies from 0 to 6.
  • all or part of the hydrophobic groups R 6 of the PO are independently selected from the group of radicals comprising: a linear or branched alkoxy containing from 6 to 30 carbon atoms and may comprise at least one heteroatom (preferably O and or N and / or S) or at least one unsaturation, "an alkoxy having 6 to 30 carbon atoms and having one or more annealed carbocycles and optionally containing at least one unsaturation and / or at least one heteroatom (preferably O and or N and / or S), an alkoxyaryl or an aryloxyalkyl of 7 to 30 carbon atoms and which may comprise at least one unsaturation and / or at least one a hetero-atom (preferably O and or N and / or S).
  • PO is derived from an alcoholic precursor selected from the group consisting of: octanol, dodecanol, tetradecanol, hexadecanol, octadecanol, oleyl alcohol, tocopherol or cholesterol.
  • the main chains of the polyamino acids are home-polymers of alpha-L-glutamate or alpha-L-glutamic acid.
  • the main chains of the polyamino acids are homopolymers of alpha-L-aspartate or alpha-L-aspartic acid.
  • the main chains of the polyamino acids are copolymers of alpha-L-aspartate / alpha-L-glutamate or alpha-L-aspartic / alpha-L-glutamic acid.
  • the distribution of the aspartic and / or glutamic units of the main polyamino acid chain of the PO is such that the polymer thus constituted is either random, of the block type or of the multiblock type.
  • the PO used in the formulation according to the invention has a molar mass which is between 2,000 and 100,000 g / mol, and preferably between 5,000 and 40,000 g / mol.
  • the hydrophobic radical R 6 of the PO graft is derived from an alcoholic precursor formed by tocopherol: 1% ⁇ [n / (n + m)] ⁇ 100 ⁇ 10% of Preferably 3.5% ⁇ [n / (n + m)] ⁇ 100 ⁇ 7.5% 4 n + m varies from 100 to 400, preferably from 120 to 300.
  • the hydrophobic radical 6 of the PO graft is derived from an alcoholic precursor formed by cholesterol: 41% ⁇ [n / (n + m)] x 100 ⁇ 10%, preferably 3.5% ⁇ [n / ( n + m)] x 100 ⁇ 6.5%> n + m varies from 100 to 400, preferably from 120 to 300.
  • the concentration in polymer [PO] is between 15 and 50 mg / ml
  • the PO of the formulation according to the invention carries at least one graft of polyalkylene-glycol type bonded to a glutamate and / or aspartate unit.
  • this graft is of polyalkylene glycol type and is of formula (N) below.
  • the polyalkylene glycol is, for example, a polyethylene glycol.It is desirable, according to the invention, for the molar percentage of grafting of the polyalkylene glycol to vary from 10 to 1000, preferably from 50 to 300.
  • PO polyamino acids are also extremely interesting, because at an adjustable grafting rate, they are dispersed in water at pH 7.4 (for example with a phosphate buffer) to give suspensions
  • active principles that are interferons or other PAs chosen from among proteins, peptides or small molecules can spontaneously associate with nanoparticles comprising these PO-polyamino acids.
  • polyamino base contain carboxyl groups which are either neutral (COOH form) or ionized (COO anion "), depending on pH and composition. For this reason, the solubility in an aqueous phase is directly a function of the level of free COOH of the PO (not grafted by the hydrophobic unit) and the pH.
  • the countercation may be a metal cation such as sodium, calcium or magnesium, or an organic cation such as triethanolamine, tris (hydroxymethyl) aminomethane or a polyamine such as pol yethyleneimine.
  • PO polyamino acid type may be used in the formulation of the invention are, for example, obtained by methods known to those skilled in the art.
  • the random polyamino acids can be obtained by grafting the hydrophobic gr, previously functionalized by the "spacer", directly onto the polymer by a conventional coupling reaction.
  • the block or multiblock polyamino acid POs can be obtained by sequential polymerization of the corresponding N-carboxy-amino acid anhydrides (NCA).
  • a polyamino acid, homopolyglutamate, homopolyaspartate or a glutamate / aspartate, block, multiblock or random copolymer is prepared according to conventional methods.
  • N-carboxy-amino acid anhydrides NCA
  • the most common technique is based on the polymerization of N-carboxy-amino acid anhydrides (NCA), described, for example, in the article "Biopolymers, 1976, 15, 1869 and in HR Kricheldorf's "Alpha-Aminoacid-N-carboxy Anhydride and related Heterocycles" Springer Verlag (1987)
  • NCA derivatives are preferably NCA-O-Me, NCA-O-Et or NCA derivatives.
  • Coupling of the graft with an acidic function of the polymer is easily achieved by reacting the polyamino acid in the presence of a carbodiimide as a coupling agent and optionally a catalyst such as 4-dimethylamino-pyridine and in a suitable solvent such as dimethylformamide (DMF). N-methyl pyrrolidone (NMP) or dimethyl sulfoxide (DMSO).
  • a carbodiimide is, for example, dicyclohexylcarbodiimide or dnsopropylcarbodiimide.
  • the degree of grafting is chemically controlled by the stoichiometry of the constituents and reactants or the reaction time.
  • Hydrophobic grafts functionalized by a "spacer" are obtained by conventional peptide coupling or by direct condensation by acid catalysis. These techniques are well known to those skilled in the art.
  • NCA derivatives previously synthesized with the hydrophobic graft are used!
  • the NCA-hydrophobic derivative is copolymerized with the NCA-O-Benzyl and then the benzyl groups are selectively removed by hydrolysis.
  • the synthesis of PO polyamino acids preferably leads to aqueous suspensions of PO nanoparticles.
  • Such suspensions can be converted into powders of PO nanoparticles by drying, as appropriate and known to those skilled in the art, such as, for example: heating (oven, etc.), evacuation, use of desiccants , lyophilization, atomization.
  • These nanoparticles of PO, in suspensions or in powder form form a raw material for the preparation of the formulations according to the invention.
  • the formulations according to the invention result from the non-covalent combination of nanoparticles based on at least one PO and at least one PA, in an aqueous liquid medium.
  • the PO and or interferon (s) may be in solid form (preferably powder) and / or in liquid form (preferably aqueous colloidal suspension).
  • the interferon (s) / PO combination means, within the meaning of the present disclosure, that the interferon (s) is (are) associated with the PO polymer (s) [eg one or more polyamino acids (s) )] by one or more bonds other than one (or more) chemical bond (s) covalent (s).
  • the techniques for associating one or more interleukins with the POs according to the invention are described in particular in the patent application WO-A-00/30618.
  • the invention therefore also relates to a process for preparing the aforementioned formulation.
  • this method is characterized in that it essentially consists in: implementing a colloidal suspension of nanoparticles of at least one PO, mixing this colloidal suspension of PO nanoparticles with at least an interferon (and one or more other possible active principle (s)), preferably in aqueous solution, to optionally add at least one excipient, 4 if necessary to adjust the pH and / or the osmolarity and, if necessary 4 filtering the suspension thus obtained.
  • the interferon (and one or more other possible active principle (s)) is in the form of a suspension or an aqueous solution for mixing with the colloidal suspension of PO nanoparticles.
  • this process is characterized in that it essentially consists in: implementing a powder of at least one PO polymer, 4 to mix this powder with a suspension or aqueous solution of at least one interferon (and one or more other active principle (s)), preferably in aqueous solution, 4 to optionally add at least one excipient, 4 if necessary to adjust the pH and / or the osmolarity and possibly to filter the suspension thus obtained.
  • the formulations thus obtained can also be put in the form of gels, powder or film by conventional methods known to those skilled in the art, such as concentration by diafiltration or evaporation, coating, atomization or lyophilization, among others. These methods may possibly be combined.
  • this third mode consisting essentially of: 4 to implement a powder resulting from the drying of the liquid formulation according to the invention; the invention as defined above, 4 to mix this powder with an aqueous liquid medium, preferably with stirring, 4 to optionally add at least one excipient, 4 if necessary to adjust the pH and or the osmolarity and, ••> optionally to filter the suspension thus obtained.
  • the excipients which may be added are, for example, microbials, buffers, antioxidants, agents for adjusting isotonicity which are known to those skilled in the art.
  • its mass fraction in mterleimjine (s) not associated with submicron particles [interleukin (s) not associated (s)] in% by weight is such that: o [interferon (s) not associated (s)] ⁇ 1 o preferably [interferon (s) not associated (s)] ⁇ 0.5.
  • the preferred interferon is alpha interferon.
  • the invention encompasses any derivative product obtained from the liquid formulation according to the invention as defined above and comprising submicron particles, formed by non-covalent PO / interferon combinations as defined above. .
  • these derived products may in particular be constituted by powders, gels, implants or films, among others.
  • the invention relates to any precursor of the injectable liquid formulation as defined above.
  • the invention also relates to a process for preparing a powder derived from the formulation as defined above, this process being characterized in that said powder is obtained by drying the formulation as defined above.
  • the formulation according to the invention is preferably pharmaceutical, without excluding cosmetic, dietetic or phytosanitary formulations comprising at least one PO as defined above and at least one interferon and optionally at least one other active ingredient.
  • the optional additional active principle other than an interferon may be a protein, a glycoprotein, a protein linked to one or more polyalkylene glycol chains [preferably Polyethylene glycol (PEG): "PEG-protected protein”), a polysaccharide, a liposaccharide, an oligonucleotide, a polynucleotide or a peptide.
  • PEG Polyethylene glycol
  • This additional active ingredient may be selected from hemoglobins, cytochromes, albumins, interferons, cytokines, antigens, antibodies, erythropoietin, insulin, growth hormones, factors VIII and IX, factors stimulants of hematopoiesis or their mixtures.
  • this additional active principle is a "small" hydrophobic, hydrophilic or amphiphilic organic molecule, for example peptides such as leuprolide or cyclosporin or small molecules such as those belonging to the family of anthracyclines, taxoids or Camp Tothecins and their mixtures.
  • the formulation according to the invention may in particular be injected parenterally, subcutaneously, intramuscularly, intradermally, intraperitoneally, intracerebrally or into a tumor.
  • the formulation according to the invention can also be administered orally, nasally, vaginally, ocularly or buccally.
  • the formulation is intended for the preparation of medicaments, in particular for parenteral, subcutaneous, intramuscular, intradermal, intraperitoneal, intracerebral or tumoral administration, or even by oral, nasal, vaginal or ocular route.
  • the formulation according to the invention is preferably pharmaceutical, this does not exclude cosmetic formulations, dietary or phytosanitary comprising at least one PO as defined above and at least one corresponding active ingredient.
  • the invention is directed to a process for the preparation of medicaments, in particular for parenteral, subcutaneous, intramuscular, intradermal, intraperitoneal, intracerebral or tumor administration, or even orally, nasally, vaginally or vaginally.
  • ocular characterized in that it consists essentially in implementing at least one above-defined formulation and / or any derivative product and / or any precursor of said formulation.
  • the invention also relates to a method of therapeutic treatment essentially consisting in administering the formulation as described herein, parenterally, subcutaneously, intramuscularly, intradermally, intraperitoneally, intracerebrally or in a tumor, or even orally. , nasal, vaginal or ocular.
  • this method of therapeutic treatment essentially consists in administering the formulation as described above by parenteral, subcutaneous, intramuscular, intradermal, intraperitoneal, intracerebral or tumor injection, preferably so as to it forms a gelled / crosslinked deposit on the injection site.
  • FIG. 1 Plasma concentration curves of IFN (picogram / ml) obtained in the dog after subcutaneous injection • of the IFN (A) formulation according to the invention (Examples 9 & 10): (curve - M-M- • and of the control IFN (D) formulation outside the invention (Example 10): (-A- A- curve, as a function of time T in hours and at an IFN dose of 60 ⁇ g kg.
  • Example 3 Preparation of 30 ml of a formulation of interferon alpha 2b (IFN) based on the polymer P6.
  • IFN interferon alpha 2b
  • the polymer concentration is adjusted to 45 mg / ml by addition of a sterile aqueous solution of 0.15M NaCl.
  • the polymer solution is then filtered through a pore size filter of between 0.8 and 0.2 microns and stored at 4 ° C.
  • Example 4 Preparation of a long-acting interferon (IFN) formulation according to the present invention, based on one of the polymers P1 to P5.
  • IFN interferon
  • the preparation is carried out as in Example 3, firstly preparing a colloidal polymer solution at 1.25 times the desired final concentration, and then mixing this solution with an interferon solution of 2.42 mg concentration. / ml.
  • the volume of the protein solution is determined by the choice of the ratio of the polymer concentration to the target protein concentration.
  • the adjustments of concentrations and pH are carried out by adding NaCl and sodium hydroxide solution.
  • Example S Measurement of the average hydrodynamic diameter of the nanoparticles of different PO polymers according to the invention.
  • the average hydrodynamic diameter of the PO polymer particles according to the invention is measured according to the procedure Md defined below.
  • the PO solutions are prepared at concentrations of 1 or 2 mg / ml in 0.15M NaCl medium and left stirring for 24 h. These solutions are then filtered over 0, 8-0.2 ⁇ m, before analyzing them in dynamic light scattering using a Brookhaven-type apparatus, operating with a laser beam of wavelength 488 nm and vertically polarized.
  • the hydrodynamic diameter of the polymer nanoparticles PO is calculated from the autocorrelation function of the electric field by the cumulant method, as described in the "Surfactant Science Series" volume 22, Surfactant Solutions, Ed. R. Zana, chap. 3, M. Dekker, 1984. The following results are obtained for polymers PO P2 P3 P4 and P6 of Example 2:
  • a solution of 25 mM phosphate buffer is prepared from NaH 2 PO powder.
  • a colloidal suspension of PI polymer nanoparticles is prepared by overnight dissolving the lyophilized polymer at 5 mg / ml in the previous phosphate buffer solution.
  • a stock solution of BSA (Sigma A-2934) is prepared by dissolving protein at 10 mg / ml for two hours in the same buffer.
  • Mixtures are made by adding predetermined volumes of the two stock solutions and dilution into the phosphate buffer so as to ultimately have a range of samples having a constant polymer concentration (0.1 mg / ml) and increasing concentrations of protein. (0 to 1, 8 mg / ml).
  • the analyzes are carried out on an Ag ilent G16000A apparatus provided with a fused silica bubble capillary (type GI 600 -62-232).
  • the height of the first plateau corresponding to the free protein makes it possible to determine the concentration of non-associated BSA.
  • the protein is associated with the polymer nanoparticles.
  • the GI test is applied to IFN formulations associated with polymers P1 to P6 of Examples 1 and 2.
  • the protein concentrations of these formulations are reported in the table below.
  • the measurement of the relaxation time of formulations in the presence of BSA (concentration 30 mg / ml) is carried out according to the procedure of the GI test. Concentration Critical Cl, for which the relaxation time exceeds ls is reported in Table 3 for IFN.
  • Example 8 Pharmacokinetics of IFN in dogs after subcutaneous injection of an IFN formulation belonging to the selection according to the invention.
  • a formulation (A) of IFN (concentration 0.3 mg / ml) and of amphiphilic polymer PI at a concentration of 30 mg / ml is prepared according to the procedure described in Example 4.
  • Plasma concentration of IFN is measured on these samples by ELIS A assay (IM 3193 immunotech kit).
  • FIG. 1 An average plasma concentration profile is thus obtained as shown in FIG. 1 which clearly demonstrates the prolonged release of the protein in the serum compared with a control formulation (D) outside the invention of IFN (concentration 0.3 mg / ml) and P6 amphiphilic polymer at a concentration of 40 mg / ml (see Table 5, Example 9).
  • the prolongation of the release of IFN by the formulations according to the invention is estimated by measuring: (a) the time Tmax, median of the time for which the plasma concentration is maximal, (b) the time T50, the average time after which the area under the plasma concentration curve reaches 50% of its maximum measured value.
  • Formulation A has a higher polymer concentration than the Cl gelling concentration measured in Example 6. In other words, the relaxation time measured in the GI test is greater than 1 second.
  • This formulation A therefore belongs to the selection according to the invention.
  • formulations B, C and D have concentrations lower than their gelling concentrations and do not belong to the selection according to the invention. These formulations are injected at a dose of 60 ⁇ g / kg into Beagle dogs. Plasma samples are taken at times 1, 5, 11, 24, 36, 48, 72, 96, 120, 144, 168 and 240 hours. The plasma concentration of IFN is measured as in the previous example.
  • formulation A which belongs to the selection according to the invention, has a considerably increased release time compared to formulations B, C and D which do not belong to the selection according to the invention.
  • Example 10 Observation of in vivo gelling of the formulations according to the invention after subcutaneous injection.
  • Formulation A Isotomous aqueous solution at pH 7.3 of the polymer P6 of Example 2 concentrated at 45 mg / ml.
  • Formulation B Isotonic aqueous solution at pH 7.3 of the PI polymer of Example 1 concentrated to 20 mg / ml.
  • the injected sites were taken 72 hours after administration. Histological examination reveals the presence of a gelled polymer deposit for formulation B. It is in the form of uniformly colored plaques. This phenomenon is however not observed for the formulation A for which the polymer is infiltrated between the collagen fibers.
  • polymer matrix B is perfectly biodegradable because the tissue has completely returned to its normal state after 21 days.

Abstract

La présente invention concerne de nouvelles formulations pharmaceutiques à base de suspensions colloïdales aqueuses stables et fluides pour la libération prolongée d'interféron -IFN- (et un ou plusieurs autres principe(s) actif(s) éventuels), ainsi que les applications, notamment thérapeutiques, de ces formulations. Le but de l'invention est de proposer une formulation pharmaceutique fluide pour la libération prolongée d'interféron(s) (et un ou plusieurs autres principe(s) actif(s) éventuels), permettant après injection par voie parentérale d'accroître significativement la durée de libération in vivo des interférons, tout en diminuant le pic de concentration plasmatique de cet IFN, ladite formulation se devant par ailleurs d'être stable à la conservation et de surcroît biocompatible, biodégradable non-toxique, non-immunogène et bien tolerée localement. La formulation selon l'invention est une suspension colloïdale aqueuse de basse viscosité, de particules submicroniques de polymère PO biodégradable, hydrosoluble et porteur de groupements hydrophobes (GH), lesquelles particules étant associées de façon non covalente avec au moins un interféron (et un ou plusieurs autres principe(s) actif(s) éventuels) et formant un dépôt gélifié sur le site d'injection, cette gélification étant provoquée par une protéine présente dans le milieu physiologique.

Description

FORMULATIONS PHARMACEUTIQUES POUR LA LIBERATION PROLONGEE DTNTEREÉRONS ET LEURS APPLICATIONS THERAPEUTIQUES La présente invention concerne de nouvelles formulations pharmaceutiques à base de suspensions colloïdales aqueuses stables et fluides pour la libération prolongée de principes actif s protéinique s, à savoir les interférons ( IFN), ainsi que les applications thérapeutiques, de ces formulations. Ces formulations pharmaceutiques actives concernent aussi bien la thérapeutique humaine que vétérinaire. Les interférons sont des glycoprotéines appartenant à la famille des cytokines. Ce sont des médiateurs biologiques qui, en se fixant sur des récepteurs membranaires , déclenchent une réponse cellulaire pléiotropique. Il en résulte une activité antivirale, antiproliférative et immunomodulatrice. Les interférons ont aussi été reconnus comme agents anti tumoral ou anticancéreux efficaces. Par interferon, on désigne ici toutes les fo rmes d' interférons, telles que les interférons alpha, bêta ou gamma. L'IFN peut être produit par génie génétique . Les formulations pharmaceutiques à libération prolongée d TFN, sont soumises à la nécessité de reproduire au mieux chez le patient une concentration plasmatique en IFN proche de la valeur observée chez le sujet sain. Cet objectif se heurte à la faible durée de vie des IFN dans le plasma, ce qui oblige de manière très contraignante à les injecter de façon répétée . La concentration plasmatique en protéine thérapeutique présente alors un profil « en dents de scie » caractérisé par des pics élevés de concentration et des nώttima de concentration très bas. Les pics de concentration, très supérieurs à la concentration basale chez le sujet sain , ont des effets nocifs très marqués du fait de la toxicité élevée des IFN. Par ailleurs, les inima de concentration sont inférieurs à la concentration nécessaire pour avoir un effet thérapeutique , ce qui entraîne une mauvaise couverture thérapeutique du patient et des effets secondaires graves à long terme. Aussi, pour reproduire chez le patient une concentration plasmatique en interferon proche de la valeur idéale pour le traitement, il importe que la formulation pharmaceutique considérée permette de libérer la protéine théra peutique sur une durée prolongée, de façon à limiter les variations de concentration plasmatique au cours du temps. Par ailleurs, cette formulation active doit de préférence satisfaire au cahier des charges suivant, déjà connu de l'homme de l'art : 1 - libération prolongée d'un ou plusieurs interférons actifs et non dénaturés (non modifiés), de sorte que la concentration plasmatique est maintenue au niveau thérapeutique, 2 - forme liquide suffisamment fluide pour être aisément injectable et stérilisable par filtration sur des filtres dont la taille des pores est inférieure ou égale à 0,2 microns, 3 - forme liquide stable, 4 - biocompatibilité et biodégradabilité, 5 - non toxicité, 6 - non immunogénicité, 7 - excellente tolérance locale. Pour tenter d'atteindre ces objectifs, plusieurs approches ont déjà été proposées dans l'art antérieur. Dans la première approche, la protéine thérapeutique native est modifiée par greffage covalent d'une ou de plusieurs chaînes de polymère ou encore par greffage covalent d'une protéine telle que l'albumine sérique humaine (HSA). La protéine ainsi modifiée a une moindre affinité pour ses récepteurs et son temps de demi -vie dans la circulation générale augmente considérablement. L'amplitude de la variation de concentration entre les pics et les creux de concentration plasmatique en protéine est ainsi considérablement réduite. A titre d'illustration de cette première approche , il convient de noter que la société Shering Plough commercialise sous le nom NIRAFERON® PEG un interferon alpha 2b modifié chimiquement par greffage d'une chaîne de polyéthylène glycol (PEG) de masse 12kD. Cette modification chimique se traduit par une augmentation du temps de demi -vie chez le patient de 6,8 à 33 heures. Dans le même temps, la bioactivité de la protéine modifiée est fortement réduite. En outre, la modification irréversible de la protéine, qui n'est plus alors une protéine humaine, peut conduire à long terme à des problèmes de toxicité et d'immunogénicité. Dans une deuxième approche, il a été proposé d'augmenter la durée d'action grâce à des formulations comportant au moins un polymère et un principe actif, liquides à température et atmosphère ambiantes, injec tables et devenant plus visqueuses après injection, par exemple sous l'effet d'un changement de pH et/ou de température. Ainsi dans ce registre, le brevet US-B-6 1*43 314 divulgue une solution organique polymère à libération contrôlée de PA, formant un implant solide après injection. Cette solution comprend: o (A) 10 à 80 % en poids d'un polymère thermoplastique de base, biocompatible, biodégradable et insoluble dans l'eau ou les fluides physiologiques (par exemple PolyLactique et/ou PolyGlycolique) ; o (B) un solvant organique, tel que la N -MéthylPyrrolidone se dispersant dans les fluides physiologiques ; o (C) un principe actif (P A) ; o (D) et enfin 1 à 50 % en poids d'un agent de libération contrôlée constitué par un copolymére bloc de type PolyLactiqueG lycolique / PolyEthylèneGlycol.
Après injection, (B) se disperse ou se dissipe dans les fluides physiologiques. (A) forme un implant encapsulant (C) qui n'est pas lié de façon covalente ni à (A) ni à (D) et qui se libère alors lentement in vivo. Le principal inconvénient de cette technique est d'utILiser un solvant organique (B), potentiellement dénaturant pour le PA (C) (e.g. protéines thérapeutiques) et toxique pour le patient. En outre, l'hydrolyse in vivo du polymère (A) génère un acide qui peut conduir e à des problèmes de tolérance locale. Les demandes PCT WO-A-99/18142 et WO -A-00/18821 concernent des solutions aqueuses de polymères qui contiennent un PA sous forme dissoute ou colloïdale, qui sont administrables à des animaux à sang chaud, notamment par injection et qui forment un dépôt de PA (e.g insuline) gélifié in vivo, car la température physiologique est supérieure à leur température de gélification. Le gel ainsi formé libère le PA de façon prolongée. Ces polymères biodégradables particuliers s ont des triblocs ABA ou BAB avec A = polylactique - coglycolique (PLAGA) ou polylactique (PLA) et B = PolyEthylèneGlycol. Les températures de transformation liquide /gel de ces polymères triblocs sont par exemple de 36, 34, 30 et 26 °C. A l'instar des polymères (A) selon l'US-B-6 143 314, L'hydrolyse de ces polymères triblocs ABA ou BAB in vivo conduit à des acides qui peuvent ne pas être correctement tolérés localement. La demande PCT WO-A-98/11874 décrit des formulations pharmaceutiques comprenant un principe actif lipophile, un polymère gélifiant (Gelrite ® = gomme gellane désacétylée ou éthylhydroxycellulose) et un surfactant. L'interaction polymère/surfactant et éventuellement la seule présence d'électrolytes tels que des ions Ca ++ en concentration physiologique s'agissant du polymère Gelrite ®, conduit à la formation d'un gel constitué par un agrégat polymère/surfactant, auquel se lie de façon non covalente le principe actif lipophile. Cette formulation est destinée à une adtriinistration locale dans un o rgane cible (œil e.g.). L'association agrégat principe actif qui se forme in situ permet la libération lente du principe actif dans l'organe cible. Une troisième approche mise en œuvre pour tenter de prolonger la durée d'action d'une protéine tout en cons ervant sa bioactivité, fût d' utiliser une protéine thérapeutique non dénaturée et de l'incorporer dans des microsphères ou des implants à base de polymères biocompatibles. Cette approche est notamment illustrée par le brevet US-B-6 500 448 et la demande US -A-2003/0133980 qui décrivent une composition à libération prolongée d'hormone de croissance humain e (hGH) dans laquelle, la protéine hormonale, préalablement stabilisée par complexation avec un métal, est ensuite dispersée dans une matrice polymère biocompatible. Le polymère biocompatible est par exemple un poly(lactide), un poly(glycolide) ou un copolymère poly(lactide -co-glycolide). La composition se présente par exemple sous la forme d'une suspension de microsphères dans une solution de carboxyméthylcellulose de sodium. Cette approche présente plusieurs inconvénients : tout d'abord, au cours du procédé de fabrication des microsphères, la protéine est mise au contact de solvants organiques potentiellement dénaturants. En outre, les microsphères sont d'un e taille élevée (l à 1000 microns), ce qui constitue une contrainte en termes d'injection et de stérilisation aisée sur filtres. Enfin, des problèmes de tolérance locale peuvent survenir lors de l'hydrolyse in situ du polymère. Selon une quatrième approch e, ont été développées des formes à libération prolongée de protéine thérapeutique (notamment d'interleukines) constituées par des suspensions liquides de nanoparticules chargées en protéines. Ces dernières ont permis l'administration de la protéine native dans une formulation liquide de faible viscosité. Selon une première voie de libération prolongée, la suspension nanoparticulaire de libération prolongée est constituée par des suspensions de liposomes dans lesque lles la protéine thérapeutique native non modifiée est encapsulée. Après injection, la protéine est libérée progressivement des liposomes , ce qui prolonge le temps de présence de la protéine dans la circulation générale. Ainsi par ex emple, Frossen et al, décrivent dans l'article Cancer Res. 43 p 546, 1983 Pencapsulation d'agents anti -néoplastiques dans des liposomes afin d'en accroître l'efficacité thérapeutique. La libération de la drogue est cependant trop rapide pour obtenir une réelle libération prolongée. La société Liposom e Company Inc, dans son brevet US-B-5 399 331 propose d'améliorer le temps de libération in vitro de l' interferon 2 en la greffant de façon covalente au liposome. On retombe alors dans les travers de 1 a première approche "protéine modifiée " évoquée ci dessus. Afin de pallier le manque de stabilité des liposomes, tout en gardant les avantages d'une formulation nanoparticulaire liquide et de basse viscosité, la société Flamel Technologies a proposé une deuxième voie de libération prolongée dans laquelle la protéine thérapeutique est associée à des nanoparticules d'un polymère hydrosoluble "modifié hydrophobe", c'est-à-dire modifié par greffage de groupements hydrophobes. Ce polymère est choisi, en particulier, parmi les polyaminoacides (polyglutamates ou polyaspartates) porteurs de greffons hydrophobes. Un des intérêts notable s de ces polymères modifiés hydrophobes est de s'auto assembler spontanément dans l'eau pour former des nanoparticules. Un autre intérêt de ces systèmes est que les protéines ou les peptides thérapeutiques s'associent spontanément avec les nanoparticules de polymères modifiés hydrophobes, cette association est non covalente et s'effectue sans avoir recours à un tensioactif ni à un procédé de transformation potentiellement dénaturant. Il ne s'agit pas d'une encapsulati on de la protéine dans une microsphère, comme divulgué dans le brevet US -B-6 500 448 et la demande US-A-2003/0133980. De façon totalement différente, ces nanoparticules de copolyaminoacides modifiés hydrophobes adsorbent spontanément les protéines en solut ion, sans les modifier chimiquement ni les dénaturer et sans leur faire subir des étapes de traitement agressives du type "mise en émulsion" et "évaporation de solvant". Les formulations peuvent être stockées sous forme liquide ou sous forme lyophilisée. Après injection, par exemple par voie sous cutanée, ces suspensions de nanoparticules chargées en protéines libèrent progressivement la protéine non dénaturée et bioa ctive in vivo De telles associations non covalentes principe actif (PA) protéinique / poly[Glu] ou poly[Asp] sont divulguées dans la demande de brevet WO -A-00/30618. Cette demande décrit notamment des suspensions colloïdales de pH 7,4 comprenant des associations d'insuline humaine avec des nanoparticules de polyglutamate "modifié hydrophobe". Le tableau ci -dessous rend compte des polyaminoacides "modifié es hydrophobe" mis en œuvre et des taux d'association obtenus dans les exemples du WO-A-00/30618
Figure imgf000007_0001
Ces suspensions colloïdales titrent 1,4 mg/ml d'insuline et 10 mg/ml de polyaminoacide "modifié hydrophobe". Il ressort de la figure 1 du WO-A-00/30618 que la durée de libération in vivo de l'insuline vectorisée par les suspensions susvisées, est de 12 h. Cette durée de libération gagnerait à être augmentée. Ainsi, même si cette demande PCT représente déjà un progrès considérable, son contenu technique peut encore être optimisé au regard du cahier des charges énoncé ci -dessus et surtout au regard de l'allongement de la durée de libération in vivo des interférons. Les demandes de brevet français non publiées N os 0207008 du 07/06/2002, 02 09670 du 30/07/2002, 03 50190 du 28/05/2003 et 01 50641 du 03/10/2003, concernent de nouveaux polyaminoacides amphiphiles, hydrosolubles et comprenant des unités aspartique et/ou des unités glutamique, dans lesquels au moins une partie de ces unités sont porteuses de greffons hydrophobes. A l'instar des polyaminoacides modifiés hydrophobes divulgués dans la demande WO-A-00/30618, ces nouvelles matières premières polymères forment spontanément en milieu liquide aqueux des suspensions colloïdales de nanoparticules qui peuvent être utilisées pour la libération prolongée de PA (insuline). Elles sont biocomp atibles, biodégradables et les protéines, en particulier les protéines thérapeutiques s'adsorbent spontanément sur ces nanoparticules sans subir de modification chimique ou de dénaturation. Ces demandes visent aussi de nouvelles compositions pharmaceutiqu es, cosmétiques, diététiques ouphytosanitaires à base de ces polyaminoacides. Les polyaminoacides "modifiés hydrophobes" amphiphiles selon la demande de brevet français N° 02 07008 comprennent des unités aspartique et/ou des unités glutamique, porteuses de greffons hydrophobes comportant au moins un motif alpha -tocophérol, e.g. : (polyglutamate ou polyaspartate greffé par l'alpha tocophérol d'origine synthétique ou naturelle). Cette demande non publiée divulgue spécifiquement une suspension colloïdale qu i contient des nanoparticules formées par des associations polymère/protéine active et qui est obtenue en mélangeant 1 mg d'un polyglutamate greffé par l'alpha -tocophérol et 7 mg d'insuline dans 1 ml d'eau, à pH 7,0. Les polyaminoacides "modifiés hydropho bes" amphiphiles selon la demande de brevet français N° 02 09670 comprennent des unités aspartique et ou des unités glutamique, porteuses de greffons hydrophobes comportant au moins un motif hydrophobe et reliés aux unités aspartique et ou glutamiques par l'intermédiaire d'une rotule contenant deux fonctions amides, et plus précisément via un "espaceur" de type lysine ou ornithine. Cette demande non publiée divulgue spécifiquement une suspension colloïdale qui contient des nanoparticules formées par des as sociations polymère/protéine active et qui est obtenue en mélangeant 10 mg d'un polyglutamate greffé avec de l'acide palmitique via un "espaceur" lysine et 200 UI d'insuline (7,4 mg) dans 1 ml d'eau, à pH 7,4. Les polyaminoacides "modifiés hydrophobes" amphiphiles selon la demande de brevet fiançais N° 03 50190 comprennent des unités aspartique et/ou des unités glutamique, dont certaines sont porteuses d'au moins un greffon relié à une unité aspartique ou glutamique, par l'intermédiaire d'un "espaceur" "acide aminé" à base de Leu, et/ou ILeu, et ou Val, et/ou Phe, un groupement hydrophobe en C6 -C30 étant relié par une liaison ester à "l'espaceur". Cette demande non publiée divulgue spécifiquement une suspension colloïdale qui contient des nanoparticules formées par des associations polymère/protéine active et qui est obtenue en mélangeant une solution aqueuse contenant 10 mg d'un polyglutamate greffé avec un greffon -Leu-OC8, -Val-OC12 ou -Nal-cholestéryle et 200 UI d'insuline (7,4 mg), par millilitre d'eau, àpH 7,4. La demande de brevet français Ν° 01 50641 divulgue des homopolyaminoacides linéaires, amphiphiles, anioniques, comprenant des unités aspartiques ou des unités glutamiques et dont les extrémités sont porteuses de groupements hydrophobes comportant de 8 à 30 atomes de carbone . En particulier, les homopolyaminoacides téléchéliques "modifiés hydrophobes" sont par exemple un poly[GluONa] à extrémités PheOC18/C18 ou un poly[GluONa] à extrémités PheOC18/alpha-tocophérol. Cette demande non publiée décrit également une suspension colloïdale qui contient des nanoparticules formées par des associations polymère/protéine active et qui est obtenue en mélangeant 10 mg de l'un des polymères susvisés et 200 UI d'insuline (7,4 mg) par millilitre d'eau, àpH 7,4. La durée de libération in vivo de l'insuline "vectorisée" par les suspensions selon ces demandes non publiées, gagnerait à être augmentée. En tout état de cause, tout cet art antérieur sur les suspensions colloïdales de nanoparticules de polyaminoacides modifiés hydrophobes, ne révèle pas de formulation permettant : (I) d'accroître suffisamment la durée de libération de la protéine active après injection par voie parentérale, en particulier sous cutanée ; (H) et/ou de réduire le pic de concentration plasmatique de la protéine active après injection de la formulation la contenant. Dans ces conditions, l'un des objectifs essentiels de la présente invention est donc de proposer une formulation pharmaceutique liquide pour la libération prolongée d 'IFN(s) actif(s), remédiant aux carences de l'art antérieur, et en particulier permettant après injection par voie parentérale (e.g. sous cutanée), d'obtenir une durée de libération in vivo prolongée pour des interférons non dénaturé s. Un autre objectif essentiel de l'invention est de proposer une formulation pharmaceutique liquide à libération prolongée d'interféron(s) in vivo, qui soit suffisamment fluide pour être aisément injectable et stér ilisable par filtration sur des filtres dont la taille des pores est inférieure ou égale à 0,2 microns. Un autre objectif essentiel de l'invention est de proposer une formulation pharmaceutique liquide à libération prolongée d'interféron(s) in vivo, qui soit stable à la conservation tant sur le plan physico -"-chimique que biologique. Un autre objectif essentiel de l'invention est de proposer une formulation pharmaceutique liquide à libération prolongée d'interféron(s) in vivo, qui présente au moins l'une des propriétés suivantes: biocompatibilité, biodégradabilité, atoxicité, bonne tolérance locale. Un autre objectif essentiel de l'invention est de proposer une formulation pharmaceutique pour la libération prolongée lente d'interféron(s) in vivo, cette formulation étant une suspension colloïdale aqueuse de basse viscosité comprenant des particules submicroniques de polymère PO auto -associées à au moins un interféron(s), le polymère PO étant un polymère biodégradable, hydrosoluble et porteur de groupements hydropho bes. Un autre objectif essentiel de l'invention est de proposer une formulation pharmaceutique de libération prolongée lente d'interféron(s) in vivo, cette formulation étant une suspension colloïdale aqueuse de basse viscosité comprenant des particules submicroniques de polymère PO auto -associées à au moins un interferon, le polymère PO étant, par exemple, un polyaminoacide formé par des unités aspartiques et/ou des unités glutamiques, au moins une partie de ces unités étant porteuses de greff ons comportant au moins un groupement hydrophobe (GH), PO étant en outre biodégradable, hydrosoluble, et amphiphile. Un autre objectif essentiel de l'invention est de proposer des produits dérivés et/ou des précurseurs de la formulation visée dans les ob jectifs sus énoncés. II est en particulier du mérite de la Demanderesse d'avoir mis au point des formulations pharmaceutiques liquides aqueuses de basse viscosité à température physiologique, qui, de façon surprenante, forment un dépôt gélifié in vivo après administration parentérale aisée chez l'homme ou les mammifères à sang chaud, la formation de ce dépôt n'étant pas déclenchée par un changement de pH ni de température lors de l'injection parentérale, ni encore par la dispersion de solvant organique dans le milieu physiologique. Le dépôt gélifié ainsi formé augmente de façon significative la durée de libération in vivo de l'BFN . D'où il s'ensuit que l'invention concerne une formulation pharmaceutique liquide pour la libération prolongée d'interféron(s), cette formulation comprenant une suspension colloïdale, aqueuse, de basse viscosité, à base de particules submicroniq ues de polymère (PO) biodégradable, hydrosoluble et porteur de groupements hydrophobes (GH), lesdites particules étant associées de façon non covalente avec au moins un interferon et éventuellement avec au moins un autre principe actif (PA), caractérisée : •* en ce que le milieu dispersif de la suspension est essentiellement constitué par de l'eau, en ce qu'elle est apte à être injectée par voie parentérale et à former ensuite in vivo un dépôt gélifié, cette formation de dépôt gélifié : o étant, d'une part, au moins en partie provoquée par au moins une protéine physiologique présente in vivo, o et permettant, d'autre part, de prolonger et de contrôler la durée de libération du PA in vivo, au-delà de 24 h après l'administration, * en ce qu'elle est liquide dans les conditions d'injection , * et en ce qu'elle est également liquide à la température et ou au pH physiologiques , et/ou en présence : * d'électrolyte physiologique en concentration physiologique , * et/ou d'au moins un tensioactif. Avantageusement, cette gélification in vivo ne résulte pas d'un changement de pH et/ou de température, ni d'une dispersion in vivo d' un ou plusieurs solvants organiques éventuellement contenus dans la formulation injectée. Sans vouloir être lié par la théorie, on peut penser que les protéines physiologiques présentes in vivo dans des concentrations physiologiques, permettent l'agrégation des nanoparticules de PO associées à au moins un interferon . Une telle gélification s'opère, par exemple, en une ou plusieurs heures, 24 h, 48 h ou 72 h, entre autres. Le dépôt gélifié obtenu après injection parentérale de la formulation permet un e prolongation intéressante de la durée de libération de la protéine ainsi qu'une réduction du pic de concentration plasmatique d'interféron(s). Conformément à une forme optimisée de l'invention, La concentration en [PO] est telle qu'elle forme un dépôt g élifié in vivo, après injection parentérale. Selon un mode de définition , qui n'est plus basé sur un comportement in vivo comme ci-dessus indiqué, mais sur un comportement in vitro, l'invention concerne une formulation pharmaceutique liquide pour la libération prolongée de principe(s) actif(s) -PA-, cette formulation : o étant liquide en atmosphère ambiante , o étant également liquide à la température et/ou au pH physiologiques et/ou en présence: * d'électrolyte physiologique en concentration physiologique , * et/ou d'au moins un tensioactif , o et comprenant une suspension colloïdale, aqueuse, de basse viscosité, à base de particules submicroniques de polymère PO biodégradable, hydrosoluble et porteur de groupements hydrophobes GH, lesdites particules étant asso ciées de façon non covalente avec au moins un inter feron (et éventuellement au moins un autre principe actif) et le milieu dispersif de la suspension étant essentiellement constitué par de l'eau, caractérisée en ce que sa concentration en [PO] est fixée à une valeur suffisamment élevée pour permettre la formation de dépôt gélifié in vitro, après injection parentérale, en présence d'au moins une protéine . De préférence, la formulation pharmaceutique liquide selon l'invention est caractérisée en ce que sa concentration en [PO] est telle que : - [PO] > 0,9.C1, • de préférence 20.C1 > [PO] > Cl, - et mieux encore 10.C1 > [PO] > Cl avec Cl représentant la concentration de "gélification induite" des particules de PO telle que mesurée dans un test GI. Le dépôt gélifié obtenu après injection parentérale de la formulation permet une prolongation intéressante de la durée de libération de la protéine ainsi qu'une réduction du pic de concentration plasmatique d'inter féron(s). La durée de libération du PA est signifîcativement augmentée par rapport à celle des formulations de l'art antérieur, en particu lier celles décrites dans la demande de brevet PCT publiée WO-A-00/30618 et les demandes de brevet f ançais non publiées N os 02 07008, 02 09670, 03 50190 et 01 50641. La prolongation de la durée de libération in vivo induite par les formulations selon l'invention, est d'autant plus appréciable que les interférons libérés sont toujours pleinement bioactifs et non dénaturé s . Les interférons au sens du présent exposé sont ^différemment des inter ferons non modifiés ou des interférons modifiés, par exemple par greffage d'un ou de plusieurs groupements polyoxyéthylén iques. Parmi les protéines de la famille des inter ferons, on peut citer: IFN alpha, IFN beta et IFN gamma. Dans tout le présent exposé, les arrangements supramoléculaires polymère PO associé ou non à au moins un interferon et, éventuellement à au moins un autre principe actif, seront indifféremment désignés par "particules submicroniques" ou "nanoparticules". Cela correspond à des particules de diamètre hydrodynamique moyen (mesuré selon un mode opératoire Md défini infra dans les exemples) e.g. compris en tre 1 et 500 nm, de préférence entre 5 et 250 nm. En outre, il est tout à fait important de noter que ces formulations sont liquides, c'est-à-dire présentent avantageusement une viscosité très faible, qui rend leur injection aisée. Elles ne gélifient qu'in vivo. Suivant l'invention, les qualificatifs "liquide", "basse" ou "très faible viscosité" correspondent, avantageusement, à une viscosité dynamique à 20 °C inférieure ou égale à 5 Pa.s. La mesure de référence pour la viscosité peut être réalisée, par exemple, à 20 °C à l'aide d'un rhéomètre AR1000 (TA Instruments) équipé d'une géométrie cône -plan (4 cm, 2°). La viscosité v est mesurée pour un gradient de cisaillement de 10 s "\ Ainsi, la viscosité des formulations selon l'invention peut être, par exemp le, comprise entre 1.10"3 et 5 Pa.s, de préférence entre 1.10 "3 et 0,8 Pa.s et, plus préférentiellement encore, entre 1.10"3 et 0,5 Pa.s.
Cette faible viscosité rend les formulations de l'invention non seulement aisément injectables par voie parentérale, en particulier par voie intramusculaire ou sous -cutanée, entre autres, mais aussi stérilisables aisément et à moindre coût par filtration sur des filtres de stérilisation de 0,2 μm de taille de pores.
Cet état liquide ou cette faible viscosité des formulât ions de l'invention existe aussi bien à des températures d'injection correspondant à des températures ambiantes, par exemple comprises entre 4 et 30 °C, qu'à la température physiologique. La formulation selon l'invention est, de préférence, une suspensio n colloïdale aqueuse de nanoparticules associées à un ou plusieurs interférons et éventuellement un ou plusieurs autres PA. Cela signifie que, conformément à l'invention, le milieu dispersif de cette suspension est essentiellement formé par de l'eau. En pr atique, cette eau représente, par exemple, au moins 50 % en poids par rapport à la masse totale de la formulation. Au sens de l'invention, le terme "protéine" désigne aussi bien une protéine qu'un peptide. Cette protéine ou ce peptide pouvant être modifié ou non, par exemple, par greffage d'un ou de plusieurs groupement s polyoxyéthylèniques . Par "protéines physiologiques", on entend, au sens de l'invention, les protéines et/ou les peptides endogènes des mammifères à sang chaud présents sur le site d'injection. Par "température physiologique", on entend au sens de l'invention, la température physiologique des marnmifères à sang chaud, à savoir par exemple environ 37 -42 °C. Par "pH physiologique", on entend, au sens de l'invention, un pH par exemple compris entre 6 et 7,6. Par "gel", on entend, au sens de l'invention, un état semi -solide dans lequel se transforme la formulation liquide selon l'invention, et ce spontanément par la seule présence de protéine(s) physiologique(s), sans intervention essentielle du pH physiologique et/ou de la température physiologique et/ou de la présence d'un électrolyte physiologique (Ca ++ e.g.) et/ou de la dispersion (ou dissipation) in vivo d'un solvant organique éventuellement présent dans la formulation injectée. Par "électrolyte physiologique", on entend, au sens de l'invention, tout élément électrolyte (par exemple des ions Ca44) présent chez les mammifères à sang chaud. Par "concentration physiologique", on entend, au sens de l'invention, toute concentration physiologique rencontrée chez les mammifères à sang chaud, pour le milieu physiologique considéré. En outre, les formulations selon l'invention sont non toxiques, bien tolérée s localement et stables. Il est également du mérite des inventeurs d'avoir mis au point un test in vitro GI permettant de sélectionner une population des formulations préférées selon l'invention et de déterminer les concentrations idoines en PO dans les f ormulations. Conformément à l'invention, le test GI de mesure de la concentration de gélification Cl, est un test de référence permettant de définir la concentration critique Cl, dénommée ci - après concentration de gélification induite Cl, qui caractérise chaque formulation colloïdale selon l'invention. Le test GI de détermination de la concentration Cl de gélification induite est le suivant : Afin de déterminer la concentration Cl, on prépare des formulations colloïdales de concentrations variables en polymère amphiphile selon l'invention et de concentration constante en protéine thérapeutique. A cette fin on met en solution dans de l'eau de -ionisée des quantités croissantes de poudre sèche du polymère. Les solutions sont maintenues à 25 °C sous agitation magnétique durant 16 heures avant d'être mélangées avec une solution concentrée en protéine thérapeutique. Le volume et la concentration de cette solution de protéine thérapeutique sont ajustés afin d'obtenir la concentration en protéine recherchée pour la formulation [par exemple 0, 3 mg/ml d' interferon alpha 2b ]. Les formulations colloïdales ainsi préparées sont mélangées à une solution aqueuse d'albumine de sérum bovin (BSA) concentrée à 30 mg/ml, puis centrifugées pe ndant 15 minutes à 3 000 t min. Les mélanges sont laissés sous agitation douce pendant 24 h avant d' être récupérés pour être caractérisés. Les mesures de viscoélasticité sont effectuées sur un rhéomètre TA instrument s AR 1000, équipé d'une géométrie cône -plan (diamètre 4cm et angle 1,59). Une déformation de 0,01 rad, située dans le domaine de viscoélasticité linéaire, est imposée de manière sinusoïdale sur une gamme de fréquence comprise entre 0 ,1 et 300 rad/s. La température de l'échantillon est maintenue constante à 20°C par le biais d'une cellule Peltier. Les spectres en fréquence du module élastique G' et du module visqueux ou de perte, G", permettent de définir le temps de relaxation caractéristique Tr défini ici comme l'inverse de la fréquence à laquelle le module élastique G' croise le module visqueux G" , On trouvera un exposé détaillé de ces questions dans l'ouvrage Ferry , Viscoelastic Properties ofPolymers , J.D.Ferry, J.Wiley, NY, 1980 et dans l'article de J. REGALADO et al Macromolecules 1999, 32, 8580. La mesure du temps de relaxation Tr en fonction de la concentration en polymère de la formulation permet de dé finir la concentration Cl à laquelle ce temps Tr excède 1 seconde. Des exemples de valeurs de la concentration de gélification Cl seront donnés dans l'exemple 7 ci après. De la même façon, on peut définir les concentrations C0,1 et C10 pour lesquelles le temps de relaxation dépasse respectivement 0,1 s et 10 s. Ces concentrations se classent dans l'ordre croissant suivant : C0,1 < Cl < C10. Suivant une variante de la formulation selon l'invention : > [PO] > C0,1, > de préférence [PO] > Cl, > et plus préférentiellement encore [PO] > C10. Suivant une caractéristique additionnelle avantageuse : [PO] < 20.C1 Au sens de l'invention et dans tout le présent expo se, les termes "association" ou "associer" employés pour qualifier les relations entre un ou plusieurs principes actifs et les polymères PO (par exemple les polyaminoacides), signifient en particulier que le ou les principes actifs sont liés au(x) polymère (s) PO [par exemple le (ou les) polyaminoacide(s)] par une liaison non covalente, par exemple par interaction électrostatique et/ou hydrophobe et/ou liaison hydrogène et/ou gêne stérique. Les polymères PO selon l'invention sont des polymères biod égradables, hydrosolubles et porteurs de groupements hydrophobes GH. Les groupements hydrophobes peuvent être en nombre réduit vis à vis du reste de la chaîne et peuvent se situer latéralement à la chaîne ou intercalés dans la chaîne, et être répartis de façon aléatoire (copolymère statistique) ou répartis sous forme de séquences ou de greffons (copolymères blocs ou copolymères séquences). Sans vouloir se limiter les polymères PO modifiés hydrophobes peuvent être choisis dans le groupe comprenant les copol yaminoacides amphiphiles, les polysaccharides -de préférence dans le sous -groupe comprenant les pullulanes et/ou les chitosans et/ou les mucopolysaccharides-, les gélatines ou leurs mélanges. Selon un mode préféré de réalisation de l'invention, PO est ch oisi parmi les copolyaminoacides amphiphiles.
Au sens de l'invention et dans tout le présent exposé, le terme « polyaminoacide » couvre aussi bien les oUgoaminoacides comprenant de 2 à 20 unités "acide aminé" que les polyaminoacides comprenant plus de 20 unités "acide aminé". De préférence, les polyaminoacides selon la présente invention sont des oligomères ou des homopolymères comprenant des unités récurrentes acide glutamique ou aspartique ou des copolymères comprenant un mélange de ces deux types d'unit es "acide aminé". Les unités considérées dans ces polymères sont des acides aminés ayant la configuration D ou L ou D/L et sont liées par leurs positions alpha ou gamma pour l'unité glutamate ou glutamique et alpha ou bêta pour l'unité aspartique ou aspart ate. Les unités "acide aminé" préférées de la chaîne polyaminoacide principale sont celles ayant la configuration L et une liaison de type alpha. Suivant un mode encore plus préféré de réalisation de l'invention, le polymère PO est un polyaminoacide formé par des unités aspartiques et/ou des unités glutamiques, au moins une partie de ces unités étant porteuses de greffons comportant au moins un groupement hydrophobe GH. Ces polyaminoacides sont notamment du type de ceux décrits dans la demande de brevet PCT WO-A-00/30618. Selon une première possibilité, le (ou les) PO de la formulation sont définis par la formule générale (I) suivante :
Figure imgf000016_0001
O) dans laquelle : " R1 représente un H, un alkyle linéaire en C2 à C10 ou ramifié en C3 à CIO, benzyle, une unité acide aminé terminale ou -R4-[GH] ; • R2 représente un H, un groupe acyle linéaire en C2 à CIO ou ramifié en C3 à CIO, un pyroglutamate ou -R4-[GH] ; • R3 est un H ou une entité cationique, de préférence sélectionnée dans le groupe comprenant : - les cations métalliques avantageusement choisis dans le sous -groupe comprenant : le sodium, le potassium le calcium, le magnésium, - les cations organiques avantageusement c hoisis dans le sous -groupe comprenant : • les cations à base d'aminé, • les cations à base d'oligoamine, • les cations à base de polya nine (la polye ylèneimine étant particulièrement préférée), • les cations à base d'acide(s) aminé(s) avantageusement choisis d ans la classe comprenant les cations à base de lysine ou d'arginine, - ou les polyaminoacides cationiques avantageusement choisis dans le sous - groupe comprenant la polylysine ou l'oligolysine ; " R4 représente une liaison directe ou un "espaceur" à base de 1 à 4 unités acide aminé ; " A représente indépendamment un radical -CH2- (unité aspartique) ou -CH2- CH2- (unité glutamique) ; ' n/(n+m) est défini comme le taux de greffage molaire et sa valeur est suffisamment basse pour que PO mis en solution dans l'eau à p H 7 et à 25 °C, forme une suspension colloïdale de particules submicroniques de PO, de préférence n/(n + m) est compris entre 1 à 25 % molaire et mieux encore entre 1 et 15 % molaire ; " n + m est défini comme le degré de polymérisation et varie de 10 à 1000, de préférence entre 50 et 300 ; " GH représente un groupement hydrophobe. Selon une deuxième possibilité, le (ou les) PO de la formulation répond à l'une des formules générales (II), (UI) et (TV) suivantes :
Figure imgf000018_0001
dans lesquelles :
1 GH représente un groupement hydrophobe ;
• R30 est un groupement alkyle linéaire en C2 à C6 ;
• R3 ' est un H ou une entité cationique, de préférence séle ctionnée dans le groupe comprenant : - les cations métalliques avantageusement choisis dans le sous -groupe comprenant : le sodium, le potassium, le calcium, le magn ésium, - les cations organiques avantageusement choisis dans le sous -groupe comprenant: • les cations à base d'aminé, • les cations à base d'oligoamine, • les cations à base de polyamine (la polyé ylèneimine étant particulièrement préférée), • les cations à base d'acide(s) aminé(s) avantageusement choisis dans la classe comprenant les cations à base de lysine ou d'arg inine, - ou les polyaminoacides cationiques avantageusement choisis dans le sous - groupe comprenant la polylysine ou l'oligolysine,
" R50 est un groupement alkyle, dialcoxy ou diamine en C2 à C6; " R représente une liaison directe ou un "espaceur" à base de 1 à 4 unités acide aminé ; " A représente indépendamment un radical -CH2- (unité aspartique) ou -CH2-CH2- (unité glutamique) ; B n' + m' ou n"est défini comme le degré de polymérisation et varie de 10 à 1000, de préférence entre 50 et 300. Avantageusement, les n groupements GH du PO représentent chacun md endamment les uns des autres un radical monovalent de formule suivante :
Figure imgf000019_0001
(GH) dans laquelle : - R5 représente un méthyle(alanine), isopropyle (valine), isobutyle (le ucine), secbutyle (isoleucine), benzyle (phénylalanine) ; - R6 représente un radical hydrophobe comportant de 6 à 30 atomes de carbone; - 1 varie de 0 à 6. Selon une caractéristique remarquable de l'invention, tout ou partie des groupements hydrophobes R6 des PO sont choisis de façon indépendante , dans le groupe de radicaux comportant : " un alcoxy linéaire ou ramifié comportant de 6 à 30 atomes de carbone et pouvant comporter au moins un hétéroatome (de préférence O et ou N et/ou S) el ou au moins une insaturation, " un alcoxy comportant 6 à 30 atomes de carbone et ayant un ou plusieurs carbocycles annelés et contenant éventuellement au moins une insatu -ration et/ou au moins un hétéroatome (de préférence O et ou N et/ou S), un alcoxyaryle ou un aryloxyalkyle de 7 à 30 atomes de carbone et pouvant comporter au moins une insaturation et/ou au moins un hétéro -atome (de préférence O et ou N et/ou S). En pratique et sans que cela ne soit limitatif, le radical hydrophobe R 6 du greffon du
PO est issu d'un précurseur alcoolique choisi dans le groupe comprenant: l'octanol, le dodécanol, le tétradécanol, l'hexadécanol, l'octadécanol, l'oleylalcool, le tocophérol ou le cholestérol. Selon une première forme de réalisation de l'invention, les chaînes principales des polyaminoacides sont des home-polymères d'alpha -L-glutamate ou d'alpha-L-glutamique. Selon une deuxième forme de réalisation de l'invention, les chaînes principales des polyaminoacides sont des homopolymères d'alpha -L-aspartate ou d'alpha -L-aspartique. Selon une troisième forme de réalisation de l'invention, les chaînes principales des polyaminoacides sont des copolymères d'alpha -L-aspartate/alpha-L-glutamate ou d'alpha -L- aspartique/alpha-L-glutamique. Avantageusement, la distribution des unités aspartiques et/ou glutamiques de la chaîne polyaminoacide principale du PO est teËe que le polymère ainsi constitué est soit aléatoire, soit de type bloc, soit de type multibloc. De préférence, le PO mis en œuvre dans la formulation selon l'invention a une masse molaire qui se situe entre 2 000 et 100 000 g/mole, et de préférence entre 5 000 et 40 000 g/mole. Suivant un premier mode préféré de réalisation de la formulation, le radical hydrophobe R6 du greffon du PO est issu d'un précurseur alcoolique formé par le tocophérol : 1 % < [n / (n+m)]x 100 < 10 % de préférence 3,5 % < [n / (n+m)]x 100 < 7,5 % 4 n + m varie de 100 à 400, de préférence entre 120 et 300. Suivant un deuxième mode préféré de réalisation de la f ormulation, le radical hydrophobe 6 du greffon du PO est issu d'un précurseur alcoolique formé par le cholestérol : 4 1 % < [n / (n+m)]x 100 < 10 % de préférence 3,5 % < [n / (n+m)] x 100 < 6,5 % > n + m varie de 100 à 400, de préférence entre 120 et 300. Dans ces deux modes préférés de réalisation de la formulation de l'invention, il est avantageux que la concentration en polymère [PO] soit comprise entre 15 et 50 mg/ml Selon une variante, le PO de la formulation selon l'invention est porteur d'au moins un greffon de type polyalkylène -glycol lié à une unité glutamate et/ou aspartate. Avantageusement, ce greffon est de type polyalkylène -glycol est de formule (N) suivante.
Figure imgf000020_0001
(V) dans laquelle : - R'4 représente une liaison directe ou un "espaceur" à base d e 1 à 4 unités acide aminé ; - X est un hétéroatome choisi dans le groupe comportant l'oxygène, l'azote ou un soufre ; - R7 et R8 représentent indépendamment un H, un alkyle linéaire en Cl à C4 ; - n'" varie de 10 à 1000, de préférence de 50 à 300. En pratique, le polyalkylèneglycol est par exemple un polyethylène glycol. II est souhaitable, conformément à l'invention, que le pourcentage molaire de greffage du polyalkylène glycol varie de 1 à 30 %. Les polyaminoacides PO sont en o utre extrêmement intéressants, du fait qu'à un taux de greffage ajustable, ils se dispersent dans l'eau à pH 7,4 (par exemple avec un tampon phosphate) pour donner des suspensions colloïdales. De plus, les principes actifs que sont les interférons ou d'autres PA choisis parmi les protéines, les peptides ou les petites molécules, peuvent s'associer spontanément à des nanoparticules comprenant ces polyaminoacides PO. Il convient de comprendre que les PO à base de polyaminoacides contiennent des fonctions carboxyliques qui sont, soit neutres (forme COOH), soit ionisées (anion COO "), selon le pH et la composition. Pour cette raison, la solubilité dans une phase aqueuse est directement fonction du taux de COOH libres des PO (non greffé par le motif hydrophobe) et du pH. En solution aqueuse, le contre -cation peut être un cation métallique tel que le sodium, le calcium ou le magnésium, ou un cation organique tel que la triéthanolamine, la tris(hydroxyméthyl)-aminométhane ou une polyamine tel que la pol yéthylèneimine. Les PO de type polyaminoacides susceptibles d'être utilisés dans la formulation de l'invention sont, par exemple, obtenus par des méthodes connues de l'homme de l'art. Les polyaminoacides statistiques peuvent être obtenus par greffage du gr effbn hydrophobe, préalablement fonctionnalisé par "l'espaceur", directement sur le polymère par une réaction classique de couplage. Les PO polyaminoacides blocs ou multiblocs peuvent être obtenus par polymérisation séquentielle des anhydrides de N -carboxy-aminoacides (NCA) correspondants. On prépare par exemple un polyaminoacide, homopolyglutamate, homopolyaspartate ou un copolymère glutamate/aspartate, bloc, multibloc ou aléatoire selon des méthodes classiques. Pour l'obtention de polyaminoacide de type alpha, la technique la plus courante est basée sur la polymérisation d'anhydrides de N -carboxy-aminoacides (NCA), décrite , par exemple, dans l'article " Biopolymers , 1976, 15, 1869 et dans l'ouvrage de H.R. Kricheldorf "alpha-Aminoacid-N-carboxy Anhydride and related Heterocycles " Springer Verlag (1987). Les dérivés d'NCA sont de préférence des dérivés NCA -O-Me, NCA-O-Et ou NCA-O-Bz (Me = Méthyl, Et = Ethyle et Bz = Benzyle). Les polymères sont ensuite hydrolyses dans des conditions appropriées pour obtenir le polymère sous sa forme acide. Ces méthodes sont inspirées de la description donnée dans le brevet FR -A-2 801 226 de la demanderesse. Un certain nombre de polymères utilisables selon l'invention, par exemple, de type poly(alpha -L- aspartique), poly(alpha-L-glutamique), poly(alpha-D-glutamique) et poly(gamma-L- glutamique) de masses variables sont disponibles commercialement. Le polyaspartique de type alpha-bêta est obtenu par condensation de l'acide aspartique (pour obtenir un polysuccinimide) suivie d'une hydrolyse basique (cf. Tomida et al. Polymer 1997, 38, 4733-36). Le couplage du greffon avec une fonction acide du polymère est réalisé aisément par réaction du polyaminoacide en présence d'un carbodiimide comme agent de couplage et optionnellement, un catalyseur tel que le 4-diméthylammopyridine et dans un solvant approprié tel que la diméthylformamide (DMF), la N -méthyl pyrrolidone (NMP) ou la diméthylsulfoxide (DMSO). Le carbodiimide est par exemple, le dicyclohexylcarbo -diimide ou le dnsopropylcarbodiimide. Le taux de greffage est contrôlé chimiquement par la stœchiométrie des constituants et réactifs ou le temps de réaction. Les greffons hydrophobes fonctionnalisés par un "espaceur" sont obtenus par couplage peptidique classique ou par condensation directe par catalyse acide. Ces techniques sont bien connues de l'homme de l'art. Pour la synthèse de copolymère bloc ou multibloc, on utilise des dérivés NCA préalablement synthétisé s avec le greffon hydrophobe! Par exemple, le dérivé NCA - hydrophobe est copolymérisé avec le NCA-O-Benzyl puis on enlève par hydrolyse sélectivement les groupements benzyliques. La synthèse de polyaminoacides PO conduit préférablement à des suspensions aqueuses de nanoparticules de PO. De telles suspensions peuvent être trans formées en poudres de nanoparticules de PO par séchage, de manière appropriée et connue de l'homme de l'art, comme par exemple : chauffage (étuve....), mise sous vide, utilisation de dessiccants, lyophilisation, atomisation. Ces nanoparticules de PO, en susp ension ou à l'état pulvérulent, forment une matière première pour la préparation des formulations selon l'invention. A ce propos, il peut être précisé que les formulations selon l'invention résultent de l'association non covalente de nanoparticules à base d'au moins un PO et d'au moins un PA, dans un milieu liquide aqueux. Pour la préparation, le PO et ou l'interféron(s) (et/ou l'éventuel PA supplémentaire) peut être sous forme solide (de préférence poudre) et/ou sous forme liquide (de préférence suspension aqueuse colloïdale). L'association interféron(s)/PO signifie au sens du présent exposé que le (ou les) interféron(s) est (sont) associé(s) au(x) polymère(s) PO [e.g. un ou plusieurs polyaminoacide(s)] par une ou plusieurs liaisons autre(s) qu'une (ou que des) liaison(s) chimique(s) covalente(s). Les techniques d'association d'un ou de plusieurs interleukines aux PO selon l'invention, sont décrites notamment dans la demande de brevet WO -A-00/30618. Elles consistent à incorporer au moins un interferon (et un ou plusieurs autres principe(s) actif(s) éventuels) dans le milieu liquide contenant des nanopa rticules de PO, de manière à obtenir une suspension colloïdale de nanoparticules chargées en ou associées avec un ou plusieurs interférons (et un ou plusieurs autres principe(s) actif(s) éventuels). L'invention a donc également pour objet un procédé de préparation de la formulation susvisée. Selon un premier mode préféré de mise en oeuvre , ce procédé est caractérisé en ce qu'il consiste essentiellement : à mettre en œuvre une suspension colloïdale de nanoparticules d'au moins un PO, à mélanger cette suspension colloïdale de nanoparticules de PO avec au moins un interferon (et un ou plusieurs autres principe(s) actif(s) éventuels), de préférence en solution aqueuse, à ajouter éventuellement au moins un excipient, 4 au besoin à ajuster le pH et/ou l'osmolarité et, 4 éventuellement à filtrer la suspension ainsi obtenue. Avantageusement, l'interféron (et un ou plusieurs autres principe(s) actif(s) éventuels) est sous forme de suspension ou de solution aqueuse pour le mélange avec la suspension colloïdale de nanoparticules de PO. Selon un second mode de réalisation, ce procédé est caractérisé en ce qu'il consiste essentiellement : à mettre en œuvre une poudre d'au moins un polymère PO, 4 à mélanger cette poudre avec une suspension ou solution aqueuse d'au moins un interferon (et un ou plusieurs autres principe(s) actif(s) éventuels) , de préférence en solution aqueuse, 4 à ajouter éventuellement au moins un excipient, 4 au besoin à ajuster le pH et/ou l'osmolarité et, 4 éventuellement à filtrer la suspension ainsi obtenue. Les formulations ainsi obtenues peuvent également être mises en sous forme de gels, de poudre ou de film par les méthodes classiques connues de l'homme de l'art, telles que la concentration par diafiltration ou évaporation, le couchage, l'atomisation ou la lyophilisation, entre autres. Ces méthodes peuvent être éventuellem ent combinées. D'où il s'ensuit un troisième mode de mise en œuvre du procédé de préparation des formulations liquides selon l'invention, ce troisième mode consistant essentiellement : 4 à mettre en œuvre une poudre issue du séchage de la formulât ion liquide selon l'invention telle que définie ci -dessus, 4 à mélanger cette poudre avec un milieu liquide aqueux, de préférence sous agitation, 4 à ajouter éventuellement au moins un excipient, 4 au besoin à ajuster le pH et ou l'osmolarité et, ••> éventuellement à filtrer la suspension ainsi obtenue . Les excipients susceptibles d'être rajoutés sont par exemple des a microbiens, des tampons, des antioxydants, des agents permettant d'ajuster Pisotonicité qui sont connus de l'homme de l'art. On pourra par exemple se référer à l'ouvra ge : Injectable Drug Development, P.K. Gupta et al., Interpharm Press, Denver,Colorado 1999. La filtration éventuelle de la formulation liquide sur des filtres de porosité égale, par exemple, à 0,2 μm, permet de la stériliser. Elle peut être ainsi directement injectée à un patient. Tous ces exemples de préparation de formulations Uquides selon l'invention sont avantageusement réalisés en atmosphère et à température ambiantes (25 °C e.g.). Suivant une disposition intéressante de la formulation selon l'inv ention, sa fraction massique en mterleιj ine(s) non associée(s) aux particules submicroniques [interleukine(s) non associée(s)] en % en poids est telle que : o [interféron(s) non associé (s)] < 1 o de préférence [interféron(s) non associé (s)] < 0,5. Conformément à l'invention, l'interféron préféré est l'interféron alpha. Selon un autre de ses aspects, l'invention englobe tout produit dérivé obtenu à partir de la formulation liquide selon l'invention telle que définie supra et comprenant des particules submicroniques, formées par des associations non covalentes PO /interferon telles que définies ci-dessus. En pratique, ces produits dérivés peuvent notamment être constitués par des poudres, des gels, des implants ou des films, entre autres. En outre, l'invention vise tout précurseur de la formulation liquide injectable telle que définie supra. S'agissant toujours de ces produits dérivés, il doit être souligné que l'invention concerne également un procédé de préparation d'une poudre dérivée de la formulation telle que définie supra, ce procédé étant caractérisé en ce que ladite poudre est obtenue par séchage de la formulation telle que définie ci -dessus. La formulation selon l'invention est de préférenc e pharmaceutique, sans exclure les formulations cosmétiques, diététiques ou phytosanitaires comprenant au moins un PO tel que défini ci-dessus et au moins un interferon et éventuellement au moins un autre principe actif. Selon l'invention, l'éventuel principe actif supplémentaire autre qu'un interferon, peut être une protéine, une glycoprotéine, une prot éine liée à une ou plusieurs chaînes polyalkylèneglycol [de préférence PolyEthylèneGlycol (PEG) : "protéine -PEGylée"], un polysaccharide, un liposaccharide, un oligonucléotide, un polynucléotide ou un peptide.
Ce principe actif supplémentaire peut être sélectionné parmi les hémoglobines, les cytochromes, les albumines, les interférons, les cytokines, les antigènes, les anticorps, l'érythropoïétine, l'insuline, les hormones de croissance, les facteurs VIII et IX, les facteurs stimulants de l'hématopoïèse ou leurs mélanges . Selon une variante, ce principe actif supplémentaire est une "petite" molécule organique hydrophobe, hydrophile ou amphiphile, par exemple les peptides tels que la leuprolide ou la cyclosporine ou les petites molécules telles que celles appartenant à la famille des anthracyclines, des taxoïdes ou des camp tothécines et leurs mélanges . Parmi les qualités primordiales de la formulation selon l'i nvention, figurent son caractère injectable et sa capacité à former un dépôt sur le site d'injection, in vivo, par gélification ou encore par agrégation des nanoparticules, en présence de protéines physiologiques ou analogues. La formulation selon l'invention peut notamment être injectée par v oie parentérale, sous-cutanée, intramusculaire, intradermique, intrapéritonéale, intracérébrale ou dans une tumeur. La formulation selon l'invention peut aussi être administrée par voie orale, nasale, vaginale, oculaire ou buccale. Avantageusement.; la formulation est destinée à la préparation de médicaments, en particulier pour administration parentérale, sous -cutanée, intramusculaire, intradermique, intrapéritonéale, intracérébrale ou dans une tumeur, voire par v oie orale, nasale, vaginale ou oculaire. Bien que la formulation selon l'invention soit de préférence pharmaceutique, cela n'exclut pas pour autant les formulations cosmétiques, diététiques ou phytosanitaires comprenant au moins un PO tel que défini ci -dessus et au moins un principe actif correspondant. Selon encore un autre de ses aspects, l'invention vise un procédé de préparation de médicaments, en particulier pour administration parentérale, sous -cutanée, intramusculaire, intradermique, intrapéritonéale, intracérébrale ou dans une tumeur, voire par voie orale, nasale, vaginale ou oculaire , caractérisé en ce qu'il consiste essentiellement à mettre en œuvre au moins une formulation sus -définie et/ou tout produit dérivé et/ou tout précurseur de ladite formulation. L'invention concerne également une méthode de traitement thérapeutique consi stant essentiellement à administrer la formulation telle que décrite dans le présent exposé, par voie parentérale, sous -cutanée, intramusculaire, intradermique, intrapé ritonéale, intracérébrale ou dans une tumeur, voire par voie orale, nasale, vaginale ou oculaire. Suivant une variante particulière de l'invention, cette méthode de traitement thérapeutique consiste essentiellement à administrer la formulation telle que décrite supra par injection parentérale, sous -cutanée, intramusculaire, intradermique, intrapéritonéale, intracérébrale ou dans une tumeur, de préférence de manière à ce qu'elle forme un dépôt gélifié/réticulé sur le site d'injection. L'invention sera mieux comprise et ses avantages et variantes, de mise en œuvre ressortiront bien des exemples qui suivent et qui décrivent la synthèse des PO formés pa r des polyaminoacides greffés par un groupement hydrophobe, leur transformation en système de libération prolongée d'un interferon, à savoir en formulation selon l'invention (suspension colloïdale aqueuse stable) et la démonstration de la capacité d'un tel système non seulement de s'associer à un interferon, mais surtout à géHfier/réticuler pour libérer de manière très prolongée in vivo les interférons. DESCRIPTION DES FIGURES
Figure 1 . Courbes des Concentrations plasmatiques d' IFN (picogramme/mL) relevées chez le chien après injection sous cutanée • de la formulation d' IFN (A) selon l'invention (exemples 9 & 10) : ( courbe — M— M— • et de la formulation d' IFN (D) témoin hors de l'invention (exemple 10) : ( courbe —A— A—, en fonction du temps T en heures et à une dose d' IFN de 60μg kg.
EXEMPLES
Exemple 1 : Polymère amphiphile PI
Synthèse d'un polyglutamate greffé par l'alpha -tocophérol d'origine synthétique On solubilise 5,5 g d'un alpha -L-polyglutamate (de masse équivalente à environ 10 000 Da) par rapport à un standard en polyoxyéthylène et obtenu par polymérisation de NCAGluOMe suivie d'une hydrolyse comme décrits dans la demande de brevet FR -A-2 801 226) dans 92 ml de diméthylformamide (DMF) en chauffant à 40°C pendant 2 heures. Une fois le polymère solubilisé, on laisse revenir la température à 25 °C et on ajoute successivement 1,49 g de D,L - alpha-tocophérol (> 98 % obtenu de Fluka®) préalablement solubilisé dans 6 ml de DMF, 0,09 g de 4-dimethylammopyridine préalablement solubilisé dans 6 ml de DMF et 0,57 g de diisopropylcarbodiimide préalablement solubilisé dans 6 ml de DMF. Après 8 heures à 25 °C sous agitation, le milieu réactionnel est versé dans 800 ml d'eau contenant 15 % de chlorure de sodium et d'acide chlorhydrique (pH 2). Le polymère précipité est ensu ite récupéré par filtration, lavé par de l'acide chlorhydrique 0,1 N puis par de l'eau. Le polymère est ensuite resolubilisé dans 75 ml de DMF puis reprécipité dans de l'eau contenant comme précédemment du sel et de l'acide à pH 2. Après deux lavages à l'e au, on lave plusieurs fois par de l'éther dϋsopropylique. Le polymère est ensuite séché à l'étuve sous vide à 40 °C. On obtient un rendement de l'ordre de 85 %.
Exemple 2 : Polymères amphiphiles P2, P3, P4, P5 et P6
Ces polymères sont obtenus de la même façon que pour l'obtention du polymère PI. Le tableau 1 ci-dessous résume les caractéristiques de ces polymères. Celles du polymère PI sont données à titre de comparaison. TABLEAU 1
Figure imgf000028_0001
1 En équivalent polyoxyéthylène. 2 Taux de greffage molaire estimé par la RMN du proton. 3d' origine synthétique
Exemple 3 : Préparation de 30 ml d'une formulation d'interféron alpha 2b (IFN) à base du polymère P6. (a) Préparation d'une solution colloïdale de polymère amphiphile :
On introduit dans un flacon 1,5 g de poudre lyophilisée du polyaminoacide amphiphile P6 de l'exemple 2 ci -dessus. Cette poudre est dissoute dans 30 ml d'eau stérile pour injection. La solution de polymère est maintenue 16 heures à 35°C sous agitation magnétique. L'osmolarité de la solution est ajustée à 275 ± 20 mOsmol à l'aide d'un osmomètre Fiske Mark 3, en introduisant la quantité nécessaire d'une solution aqueuse de NaCl 5,13M (30 % p/p). Le pH est ajusté si nécessaire àpH 7,4 ± 0,2 par ajout d'une solution de NaOH IN. La concentration en polymère est ajustée à 45 mg/ml par ajout d'une solution aqueuse stérile de NaCl 0,15M. La solution de polymère est ensuite filtrée sur un filtre de taille de pore comprise entre 0,8 et 0,2 microns, puis stockée à 4 °C.
(b) Association de la protéine au polymère :
Dans un flacon en verre, on mélange ensuite 26,65 ml de la solution colloïdale de polymère P6 précédente et 1,85 ml de solution d'BFN (PC GEN ; solution concentrée à 2,42 mg/ml). L'osmolarité et le pH sont réajustés si nécessaire à 300 ± 20 mOsmol et pH 7, 4 + 0,2 par ajout de soude 0,1N et chlorure de sodium 0,9 % stérile. La solution chargée en protéine est mise en maturation pendant 5 h à 25°C à l'étuve, puis est ensuite filtrée sur 0,8 -0,2 microns. On obtient ainsi 30 ml d'une formulation prête à être injectée contenant 0,15 mg/ml d'EFN et 40 mg/ml de polymère P6.
Exemple 4: Préparation d'une formulation d'interféron ( IFN) longue action selon la présente invention, à base de l'un des polym ères PI à P5.
La préparation s'effectue comme dans l'exemple 3 en préparant dans un premier temps une solution colloïdale de polymère à 1,25 fois la concentration finale recherchée, puis en mélangeant cette solution avec une solution d'interféron concent rée à 2,42 mg/ml. Le volume de la solution de protéine est déterminé par le choix du rapport de la concentration en polymère à la concentration en protéine visé. Comme dans l'exemple 3, les ajustements de concentrations et de pH sont réalisé s par ajout de solution de NaCl et de soude.
Exemple S : Mesure du diamètre hydrodynamique moyen des nanoparticules de différents polymères PO selon l'invention .
Le diamètre hydrodynamique moyen des particules de polymère PO selon l'invention est mesuré selon le Mode opératoire Md défini ci -après .
Les solutions de PO sont préparées à des concentrations de 1 ou 2 mg/ml en milieu NaCl 0,15M et laissées sous agitation pendant 24 h. Ces solutions sont ensuite filtrées sur 0, 8- 0,2 μm, avant de les analyser en diffusion dynamique de la lumière grâce à un appareil de type Brookhaven, fonctionnant avec un faisceau laser de longueur d'onde 488 nm et polarisé verticalement. Le diamètre hydrodynamique des nanoparticules de polymère PO est calculé à partir de la fonction d'autocorrélation du champ électrique par la méthode des cumulants, comme décrit dans l'ouvrage « Surfactant Science Séries » volume 22, Surfactant Solutions, Ed. R. Zana, chap. 3, M. Dekker, 1984. On obtient les résultats suivants pour les polymères PO P2 P3 P4 et P6 de l'exemple 2 :
TABLEAU 2
Figure imgf000029_0001
Exemple 6 : Association spontanée d'une protéine aux nanoparticules de polymère PO
Une solution de tampon phosphate à 25 mM est préparée à partir de poudre de NaH 2PO
(Sigma ref S-0751) et ajustée avec de la soude IN (SDS ref 3470015) à pH = 7.2.
Une suspension colloïdale de nanoparticules de polymère PI est préparée par dissolution pendant une nuit du polymère lyophilisé à 5 mg/ml dans la solution de tampon phosphate précédente.
Une solution mère de BSA (Sigma A -2934) est préparée par dissolution pendant deux heures de protéine à 10 mg/ml dan s le même tampon.
Les solutions mères ainsi que le tampon sont filtrées sur 0,22 μm
Des mélanges sont réalisés par ajout de volumes prédéterminés des deux solutions mères et dilution dans le tampon phosphate de façon à avoir au final une gamme d' échantillons ayant une concentration constante en polymère (0 ,1 mg/ml) et des concentrations croissantes de protéines (0 à 1 ,8 mg/ml).
Les échantillons sont laissés 5 heures à associer à 25 °C puis ils sont analysés par électrophorèse capillaire dans une méthode dite frontale où il est possible de visualiser séparément la protéine et le complexe protéine - polymère. Pour plus de détails sur cette technique, on consultera l'article suivant : Gao JY, Dublin PL, Muhoberac BB, Anal. Chem.
1997, 69, 2945. Les analyses sont réalisées sur un appareil Ag ilent G16000A muni d'un capillaire à bulle en silice fondue (type GI 600 -62-232). La hauteur du premier plateau correspondant à la protéine libre permet de déterminer la concentration en BSA non associée. L'expérience montre que pour des quantités de protéines inférieures à 0,1 g de protéine par g de polymère, la protéine est associée aux nanoparticules de polymère.
Exemple 7 : Détermination de la concentration de gélification Cl pour les polymères PO PI à P4 et P6.
Le test GI est appliqué à des formulations d' IFN associés aux polymères PI à P6 des exemples 1 et 2. Les concentrations en protéines de ces formulations sont reportées dans le tableau ci dessous. La mesure du temps de relaxation des formulations en prés ence de BSA (concentration 30 mg/ml) s'effectue selon le mode opératoire du test GI. La concentration critique Cl, pour laquelle le temps de relaxation excède ls est reportée sur le tableau 3 pour l'IFN.
TABLEAU 3 : Concentration de gélification indui te pour des formulations d' IFN
Figure imgf000031_0001
Exemple 8 : Pharmacocinétique de l' IFN chez le chien après injection sous cutanée d'une formulation d' IFN appartenant à la sélection selon l'invention.
Une formulation (A) d' IFN (concentration 0,3 mg/ml) et de polymère amphiphile PI à la concentration de 30 mg/ml est préparée selon le mode opératoire décrit dans l'exemple 4.
Cette formulation est injectée par voie sous cutanée à des chiens Beagles (n = 3), à la dose de 60 μg/kg). Des prélèvements de sérum sont effectués aux temp s 1, 5, 11, 24, 36, 48, 72, 96,
120, 144, 168 et 240 heures. La concentration plasmatique en IFN est mesurée sur ces prélèvements par dosage ELIS A (kit immunotech IM 3193).
On obtient ainsi un profil de concentration plasmatique moyen tel que représenté su r la figure 1 qui met clairement en évidence la libération prolongée de la protéine dans le sérum par rapport à une formulation témoin (D) hors invention d' IFN (concentration 0,3 mg/ml)et de polymère amphiphile P6 à la concentration de 40 mg/ml ( cf. tableau 5, exemple 9). Sur un plan quantitatif, la prolongation de la libération de l' IFN par les formulations selon l'invention est estimée par la mesure : (a) du temps Tmax, médiane du temps pour lequel la concentration plasmatique est maximale, (b) du temps T50, moyenne du temps au bout duquel l'aire sous la courbe de concentration plasmatique atteint 50% de sa valeur maximale mesurée.
Dans le cas de cette formulation, les temps Tmax et T50 prennent les valeurs : Tmax≈ 48 heures, T50 = 54,2 heures .
Exemple 9 : Pharmacocinétique de l'IFN chez le chien après injection sous cutanée de diverses formulations d' IFN à base de polyaminoacides amphiphiles.
Les formulations suivantes sont préparées selon le mode opératoire décrit dans l'exemple 4.
TABLEAU 4
Figure imgf000032_0001
La formulation A a une concentration en polymère supérieure à la concentration de gélification Cl mesurée dans l'exemple 6. En d'autres termes, le temps de relaxation, mesuré dans le test GI est supérieur à 1 seconde. Cette formulation A appartient donc à la sélection selon l'invention. En revanche, les formulations B, C et D ont des concentrations inférieures à leurs concentrations de gélification et n'appartiennent pas à la sélection selon l'invention. Ces formulations sont injectées à la dose de 60 μg/ kg à des chiens Beagles . Des prélèvements de plasma sont effectués aux temps 1, 5, 11, 24, 36, 48, 72, 96, 120, 144, 168 et 240 heures. La concentration plasmatique en IFN est mesurée comme dans l'exemple précédent .
Les temps Tmax et T50 pour les formulations A, B, C et D sont reportés dans le tableau 5 ci-dessous. TABLEAU 5
Figure imgf000033_0001
Ainsi, la formulation A, qui appartient à la sélection selon l'invention, présente une durée de libération considérablement accrue par rapport aux formulations B, C, et D qui n'appartiennent pas à la sélection selon l'invention.
Exemple 10 : Observation de la gélification in vivo des formulations selon l'invention après injection sous -cutanée.
Le comportement sous cutané des formulations selon l'invention a été étudié chez le porc domestique. On a procédé à des injections sous la peau du ventre, à 4 mm de profondeur, de six porcs domestiques, avec 0,3 ml des formulations suivantes :
Formulation A : solution aqueuse isotomque à pH 7,3 du polymère P6 de l'exemple 2 concentré à 45 mg/ml .
Formulation B : solution aqueuse isotonique à pH 7,3 du polymère PI de l'exempl e 1 concentré à 20 mg/ml .
Les sites injectés ont été prélevés 72 heures après ao iinistration. L'examen histologique révèle la présence d'un dépôt gélifié de polymère pour la formulation B. Il se présente sous forme de plages uniformément colorées. Ce phénomène n'est en revanche pas observé pour la formulation A pour laquelle le polymère est infiltré entre les fibres de collagène.
On peut souligner que la matrice de polymère B est parfaitement biodégradable car le tissu est complètement revenu à son état n ormal après 21 jours.

Claims

REVENDICATIONS
- 1 - Formulation pharmaceutique liquide pour la libération prolongée d'interféron(s), cette formulation comprenant une suspension colloïdale, aqueuse, de basse viscosité, à base de particules submicroniques de polymère (PO) biodégradable, hydrosoluble et porteur de groupements hydrophobes (GH), lesdites particules étant associées de façon non covalente avec au moins une interleuMne et éventuellement avec au moins un autre principe actif (PA), caractérisée : 4 en ce que le milieu dispersif de la suspension est essentiellement constitué par de l'eau, 4 en ce qu'elle est apte à être injectée par voie parentérale et à former ensuite in vivo un dépôt gélifié, cette formation de dépôt gélifié : o étant, d'une part, au moins en partie provoquée par au moins une protéi ne physiologique présente in vivo, o et permettant, d'autre part, de prolonger et de contrôler la durée de libération du PA in vivo, au-delà de 24 h après l'administration, 4 en ce qu'elle est liquide dans les conditions d'injection , 4 et en ce qu'elle est également liquide à la température et/ou au pH physiologiques , et/ou en présence : * d'électrolyte physiologique en concentration physiologique , * et/ou d'au moins un tensioactif.
- 2 - Formulation selon la revendication 1, caractérisée en ce que sa concentratio n en [PO] est fixée à une valeur suffisamment élevée pour permettre la formation de dépôt gélifié in vivo, après injection parentérale, en présence d'au moins une protéine physiologique.
- 3 - Formulation pharmaceutique liquide pour la libération prolongé e d'interféron(s) et, éventuellement d'autre(s) principe(s) actifs) -PA-, cette formulation : o étant liquide en atmosphère ambiante , o étant également liquide à la température et/ou au pH physiologiques et/ou en présence: * d'électrolyte physiologique en con centration physiologique, * et/ou d'au moins un tensioactif, o et comprenant une suspension colloïdale, aqueuse, de basse viscosité, à base de particules submicroniques de polymère PO biodégradable, hydrosoluble et porteur de groupements hydrophobes GH, lesdit es particules étant associées de façon non covalente avec au moins un principe actif PA et le milieu dispersif de la suspension étant essentiellement constitué par de l'eau, caractérisée en ce que sa concentration en [PO] est fixée à une valeur suffisammen t élevée pour permettre la formation de dépôt gélifié in vitro, après injection parentérale, en présence d'au moins une protéine .
- 4 - Formulation selon l'une quelconque des revendications précédentes, caractérisée en ce que sa concentration en [PO] est telle que: - [PO] > 0,9.C1, - de préférence 20.C1 > [PO] > Cl, - et mieux encore 10.C1 > [PO] > Cl avec Cl représentant la concentration de " gélification induite " des particules de PO telle que mesurée dans un test GI.
- 5 - Formulation selon l'une quelconque des revendications précédentes, caractérisée en ce que sa viscosité à 25 °C est inférieure ou égale à 5 Pa.s.
- 6 - Formulation selon l'une quelconque des revendications précédentes, caractérisée en ce que le polymère PO est un polyaminoacide for mé par des unités aspartiques et/ou des unités glutamiques, au moins une partie de ces unités étant porteuses de greffons comportant au moins un groupement hydrophobe (GH).
- 7 ~ Formulation selon la revendication 6, caractérisée en ce que le (ou les) PO sont définis par la formule générale (I) suivante :
Figure imgf000035_0001
C0 dans laquelle : • R1 représente un H, un alkyle linéaire en C2 à CIO ou ramifié en C3 à CIO, benzyle, une unité acide aminé term inale ou -R4-[GH] ; " R2 représente un H, un groupe acyle linéaire en C2 à CIO ou ramifié en C3 à CIO, un pyroglutamate ou -R4-[GH] ; • R3 est un H ou une entité cationique, de préférence sélectionnée dans le groupe comprenant : - les cations métalliques avantageusement choisis dans le sous -groupe comprenant : le sodium, le potassium , le calcium, le magnésium, - les cations organiques avantageusement choisis dans le sous -groupe comprenant : • les cations à base d'aminé, • les cations à base d'oligoamine, • les cations à base de polyamine (la polyethylèneimine étant particulièrement préférée), • les cations à base d'acide(s) aminé(s) avantageusement choisis dans la classe comprenant les cations à base de lysine ou d'arginine, - ou les polyaminoacides cationiques avantageu sèment choisis dans le sous - groupe comprenant la polylysine ou l'oligolysine ; " R4 représente une liaison directe ou un "espaceur" à base de 1 à 4 unités acide aminé ; " A représente indépendamment un radical -CH2- (unité aspartique) ou -CH2- CH2- (unité glu tamique) ; " n/(n+m) est défini comme le taux de greffage molaire et varie de 0,5 à 100 % molaire ; " n/(n+m) est défini comme le taux de greffage molaire et sa valeur est suffisamment basse pour que PO mis en solution dans l'eau à pH 7 et à 25 °C, forme une suspension colloïdale de particules submicroniques de PO, de préférence n/(n + m) est compris entre 1 à 25 % molaire et mieux encore entre 1 et 15 % molaire; " n + m varie de 10 à 1000, de préférence entre 50 et 300 ; • GH représente un groupement hydrophobe .
- 8 - Formulation selon la revendication 6 , caractérisée en ce que le (ou les) PO répond à l'une des formules générales (II), (III) et (IV) suivantes :
Figure imgf000037_0001
dans lesquelles : » GH représente un groupement hydrophobe ; " R30 est un groupement alkyle linéaire en C2 à C6 ; " R3 ' est un H ou une entité cationique, de préférence sélect ionnée dans le groupe comprenant : - les cations métalliques avantageusement choisis dans le sous -groupe comprenant : le sodium, le potassium, le calcium, le magnésium, - les cations organiques avantageusement choisis dans le sous -groupe comprenant : • les cations à base d'aminé, • les cations à base d'oligoamine, • les cations à base de polyamine (la polyéthylèneimine étant particulièrement préférée), • les cations à base d'acide(s) aminé(s) avantageusement choisis dans la classe comprenant les cations à base de ly sine ou d'arginine, - ou les polyaminoacides cationiques avantageusement choisis dans le sous - groupe comprenant lapolylysine ou l'oligolysine, • R50 est un groupement alkyle, dialcoxy ou diamine en C2 à C6 ; • R4 représente une liaison directe ou un "espaceur" à base de 1 à 4 unités acide aminé ; • A représente indépendamment un radical -CH2- (unité aspartique) ou -CH2- CH2- (unité glutamique) ; " n' + m' ou n"est défini comme le degré de polymérisation et varie de 10 à 1000, de préférence entre 50 et 300.
- 9 - Formulation selon la revendication 7 ou 8, caractérisée en ce que les n groupements GH du PO représentent chacun mdépendamment les uns des autres un radical monovalent de formule suivante :
Figure imgf000038_0001
(GH)
dans laquelle - R5 représente un méthyle(alanine), isopropyle (valine), isobutyle (leucine), secbutyle (isoleucine), benzyle (phénylalanine) ; - R6 représente un radical hydrophobe comportant de 6 à 30 atomes de carbone - 1 varie de 0 à 6.
- 10 - Formulation selon la revendication 9, caractérisée en ce que tout ou partie des radicaux hydrophobes R6 des PO sont choisis de façon indépendante dans le groupe de radicaux comportant : " un alcoxy linéaire ou ramifié comportant de 6 à 30 atomes de carbon e et pouvant comporter au moins un hétéroatome (de préférence O et/ou N et/ou S) et/ou au moins une insaturation, " un alcoxy comportant 6 à 30 atomes de carbone et ayant un ou plusieurs carbocycles annelés et contenant éventuellement au moins une insatu -ration et/ou au moins un hétéroatome (de préférence O et ou N et/ou S), • un alcoxyaryle ou un aryloxyalkyle de 7 à 30 atomes de carbone et pouvant comporter au moins une insaturation et/ou au moins un hétéro -atome (de préférence O et ou N et ou S).
- 11 - Formulation selon la revendication 9 ou 10, caractérisée en ce que le radical hydrophobe R6 du greffon du PO est issu d'un précurseur alcoolique choisi dans le groupe comprenant: l'octanol, le dodécanol, le tétradécanol, l'hexadécanol, l'octadécanol, l'oleylalcool, le tocophérol ou le cholestérol.
- 12 - Formulation selon la revendication 6, caractérisée en ce que le PO est constitué d'un homopolymère d'alpha -L-glutamate ou d'alpha -L-glutamique.
- 13 - Formulation selon la revendication 6, caractérisée en ce que le PO est constitué d'un homopolymère d'alpha -L-aspartate ou d'alpha -L-aspartique.
- 14 - Formulation selon la revendication 6, caractérisée en ce que le PO est constitué d'un copolymère d'alpha -L-aspartate/alpha-L-glutamate ou d'alpha -L-aspartique/alpha-L- glutamique.
- 15 - Formulation selon la revendication 14, caractérisée en ce que dans le PO, la distribution des unités aspartiques et/ou glutamiques porteuses de greffons comportant au moins un motif GH est telle que le polymère ainsi constitué es t soit aléatoire, soit de type bloc, soit de type multibloc.
- 16 - Formulation selon la revendication 1 , caractérisée en ce que la masse molaire du PO se situe entre 2000 et 100000 g/mole, et de préférence entre 5 000 et 40000 g/mole.
- 17 - Formulation selon la revendication 7, caractérisée en ce que le radical hydrophobe R 6 du greffon du PO est issu d'un précurseur alcoolique formé par le tocophérol et en ce que : 4 1 % < [n/ (n+m)]x l00 < 10 % 4 de préférence 3,5 % < [n / (n+m)]x 100 < 7,5 % 4 n + m varie de 100 à 400, de préférence entre 120 et 300.
- 18 - Formulation selon la revendication 7, caractérisée en ce que le radical hydrophobe R 6 du greffon du PO es t issu d'un précurseur alcoolique formé par le cholestérol: 4 1 % < [n / (n+m)]x 100 < 10 % 4 de préférence 3,5 % < [n / (n+m)] x 100 < 6,5 % 4 n + m varie de 100 à 400, de préférence entre 120 et 300.
- 19 - Formulation selon la revendication 17 ou 18, caractérisée en ce que la concentration en polymère [PO] est comprise entre 15 et 50 mg/ml.
- 20 - Formulation selon l'une quelconque des revendications l à 19, caractérisée en ce que sa viscosité à 25 °C est inférieure ou égale à 5 Pa.s
- 21 - Formulation selon l'une quelconque des revendications 1 à 20, caractérisée en ce que les polymères modifiés hydrophobes PO sont sélectionnés dans le groupe comprenant: les polyaminoacides, les polysaccharides -de préférence dans le sous -groupe comprenant les pullulanes et/ou les chitosans et/ou les mue opolysaccharides-, les gélatines ou leurs mélanges.
- 22 - Formulation selon l'une quelconque des revendications 1 à 23, caractérisée en ce que sa fraction massique en inter féron(s) non associée(s) aux particules submicroniques [interféron(s) non associée(s)] en % en poids est telle que : o [interféron(s) non associée(s)] < 1 o de préférence [inter féron(s) non associée(s)] < 0,5.
- 23 - Formulation selon l'une quelconque des revendications 1 à 22, caractérisée en ce que l'interféron est l'interféron alpha.
- 24 - Formulation selon l'une quelconque des revendications 1 à 23, caractérisée en ce que le (ou les) principe(s) actif(s) supplémentaire(s) autre que l'(ou les)interleukine(s) est une protéine, une glycoprotéine, une protéine liée à une ou plusieurs chaînes polyalkylèneglycol [de préférence polyéthylèneglycol (PEG) : "protéine -PEGylée"], un polysaccharide, un liposaccharide, un oligonucléotide, un polynucléotide ou un peptide, ce (ou ces) principe(s) actifs) supplémentaire(s) étant de préférence sélectionné(s) parmi les hémoglobines, les cytochromes, les albumines, les interférons, les cytokines, les antigènes, les anticorps, l'érythropoïétine, l'insuline, les hormones de croissance, les facteurs NUI et IX, les facteurs stimulants de l'hématopoïèse ou leurs mélanges. - 25 - Formulation selon l'une quelconque des revendications 1 à 24, caractérisée en ce qu'elle est injectable par voie parentérale, sous -cutanée, intramusculaire, intradermique, intrapéritonéale, intracérébrale ou dans une tumeur.
- 26 - Formulation selon l'une quelconque des reven dications 1 à 25, caractérisée en ce qu'elle est destinée à la préparation de médicaments, en particulier pour administration parentérale, sous -cutanée, intramusculaire, intradermique, intrapéritonéale, intracérébrale ou dans une tumeur, voire par voie or aie, nasale, vaginale ou oculaire.
- 27 - Procédé de préparation de médicaments, en particulier pour administration parentérale, sous-cutanée, intramusculaire, intradermique, intrapéritonéale, intracérébrale ou dans une tumeur, voire par voie orale, nasal e, vaginale ou oculaire, caractérisé en ce qu'il consiste essentiellement à mettre en œuvre au moins une formulation selon l'une quelconque des revendications 1 à 26.
- 28 - Produit dérivé caractérisé en ce qu'il comprend des particules submicroniques, formées par des associations non covalentes PO/PA telles que définies dans la revendication 1 et en ce qu'il est obtenu à partir de la formulation selon l'une quelconque des revendications 1 à 26.
- 29 - Produit dérivé selon la revendication 28, caractérisé en ce qu'il est constitué par une poudre ou par un gel.
- 30 - Procédé de préparation de la formulation selon l'une quelconque des revendications 1 à 26, caractérisé en ce qu'il consiste essentiellement : 4 à mettre en œuvre une suspension colloïdal e de nanoparticules d'au moins un PO, 4 à mélanger cette suspension colloïdale de nanoparticules de PO avec au moins un interferon (et un ou plusieurs autres principe(s) actif(s) éventuels) , de préférence en solution aqueuse , 4 à ajouter éventuellement au moi ns un excipient, 4 au besoin à ajuster le pH et/ou l'osmolarité et, 4 éventuellement à filtrer la suspension ainsi obtenue. - 31 - Procédé selon la revendication 30, caractérisé en ce que le (ou les) PA(s) est sous forme de suspension ou de solution aqu euse pour le mélange avec la suspension colloïdale de nanoparticules de PO.
- 32 - Procédé de préparation de la formulation selon l'une quelconque des revendications 1 à 26, caractérisé en ce qu'il consiste essentiellement : 4 à mettre en œuvre une poudre d'au moins un polymère PO, 4 à mélanger cette poudre avec une suspension ou solution aqueuse d'au moins un interferon (et un ou plusieurs autres principe(s) actif(s) éventuels) , de préférence en solution aqueuse, 4 à ajouter éventuellement au moins un excipi ent, 4 au besoin à ajuster le pH et/ou l'osmolarité et, 4 éventuellement à filtrer la suspension ainsi obtenue.
- 33 - Procédé de préparation de la formulation selon l'une quelconque des revendications 1 à 26, caractérisé en ce qu'il consiste essentiellem ent : 4 à mettre en œuvre une poudre issue du séchage de la formulation liquide selon l'une quelconque des revendications 1 à 2 6, 4 à mélanger cette poudre avec un milieu liquide aqueux, préférence sous agitation, 4 à ajouter éventuellement au moins un excipie nt, 4 au besoin à ajuster le pH et/ou l'osmolarité et, 4 éventuellement à filtrer la suspension ainsi obtenue.
- 34 - Procédé de préparation d'une poudre dérivée de la formulation selon l'une quelconque des revendications 1 à 26, caractérisé en ce que ladite poudre est obtenue par séchage de la formulation selon l'une quelconque des revendications 1 à 2 6.
PCT/FR2004/050605 2003-11-21 2004-11-19 Formulations pharmaceutiques pour la liberation prolongee d'interferons et leurs applications therapeutiques WO2005051417A1 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
BRPI0416766-0A BRPI0416766A (pt) 2003-11-21 2004-11-19 formulações farmacêuticas para a liberação prolongada de interferons e suas aplicações terapêuticas
DE602004024920T DE602004024920D1 (de) 2003-11-21 2004-11-19 Pharmazeutische formulierungen für die verzögerte freisetzung von interferonen und ihre therapeutischen anwendungen
EP04805848A EP1689426B1 (fr) 2003-11-21 2004-11-19 Formulations pharmaceutiques pour la liberation prolongee d'interferons et leurs applications therapeutiques
DK04805848.1T DK1689426T3 (da) 2003-11-21 2004-11-19 Farmaceutiske formuleringer til langvarig frigivelse af interferoner og terapeutiske anvendelser deraf
AU2004292370A AU2004292370B2 (en) 2003-11-21 2004-11-19 Pharmaceutical formulations for the sustained release of interferons and therapeutic applications thereof
US10/580,037 US20070269517A1 (en) 2003-11-21 2004-11-19 Pharmaceutical Formulations for the Prolonged Release of Interferons and Their Therapeutic Applications
CA002546677A CA2546677A1 (fr) 2003-11-21 2004-11-19 Formulations pharmaceutiques pour la liberation prolongee d'interferons et leurs applications therapeutiques
MXPA06005716A MXPA06005716A (es) 2003-11-21 2004-11-19 Formulaciones farmaceuticas para la liberacion prolongada de interferones y sus aplicaciones terapeuticas.
JP2006540559A JP2007511587A (ja) 2003-11-21 2004-11-19 インターフェロンの放出の延長のための薬学的調製物およびその治療学的適用
SI200431373T SI1689426T1 (sl) 2003-11-21 2004-11-19 Farmacevtske formulacije za podaljšano sproščanje interferonov in njihove terapevtske uporabe
PL04805848T PL1689426T3 (pl) 2003-11-21 2004-11-19 Farmaceutyczne preparaty o przedłużonym uwalnianiu interferonów i ich zastosowania terapeutyczne
AT04805848T ATE453400T1 (de) 2003-11-21 2004-11-19 Pharmazeutische formulierungen für die verzögerte freisetzung von interferonen und ihre therapeutischen anwendungen
IL175805A IL175805A (en) 2003-11-21 2006-05-21 Pharmaceutical formulations for delayed release of interferons and their therapeutic applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350886A FR2862541B1 (fr) 2003-11-21 2003-11-21 Formulations pharmaceutiques pour la liberation prolongee d'interferons et leurs applications therapeutiques
FR0350886 2003-11-21

Publications (1)

Publication Number Publication Date
WO2005051417A1 true WO2005051417A1 (fr) 2005-06-09

Family

ID=34531383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050605 WO2005051417A1 (fr) 2003-11-21 2004-11-19 Formulations pharmaceutiques pour la liberation prolongee d'interferons et leurs applications therapeutiques

Country Status (22)

Country Link
US (1) US20070269517A1 (fr)
EP (1) EP1689426B1 (fr)
JP (1) JP2007511587A (fr)
KR (1) KR20060111594A (fr)
CN (1) CN1889971A (fr)
AT (1) ATE453400T1 (fr)
AU (1) AU2004292370B2 (fr)
BR (1) BRPI0416766A (fr)
CA (1) CA2546677A1 (fr)
CY (1) CY1110106T1 (fr)
DE (1) DE602004024920D1 (fr)
DK (1) DK1689426T3 (fr)
ES (1) ES2339119T3 (fr)
FR (1) FR2862541B1 (fr)
IL (1) IL175805A (fr)
MX (1) MXPA06005716A (fr)
PL (1) PL1689426T3 (fr)
PT (1) PT1689426E (fr)
SI (1) SI1689426T1 (fr)
TW (1) TW200517141A (fr)
WO (1) WO2005051417A1 (fr)
ZA (1) ZA200603959B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513407A (ja) * 2006-12-20 2010-04-30 フラメル・テクノロジーズ 連続脂質相中のポリアミノ酸の分散液
CN101893619A (zh) * 2010-02-10 2010-11-24 上海蓝怡科技有限公司 改进乳胶悬浊液稳定性的方法
FR2975301A1 (fr) * 2011-05-20 2012-11-23 Flamel Tech Sa Composition comprenant un interferon alpha

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862536B1 (fr) * 2003-11-21 2007-11-23 Flamel Tech Sa Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
FR2862535B1 (fr) * 2003-11-21 2007-11-23 Flamel Tech Sa Formulations pharmaceutiques pour la liberation prolongee d'interleukines et leurs applications therapeutiques
FR2904219B1 (fr) * 2006-07-28 2010-08-13 Flamel Tech Sa Microparticules a base de copolymere amphiphile et de principe(s) actif(s) a liberation modifiee et formulations pharmaceutiques en contenant
FR2915684B1 (fr) * 2007-05-03 2011-01-14 Flamel Tech Sa Particules a base de polyelectrolytes et de principe actif a liberation modifiee et formulations pharmaceutiques contenant ces particules
JP4829351B2 (ja) * 2010-02-05 2011-12-07 ナノキャリア株式会社 易崩壊型ポリマーミセル組成物
US9272020B2 (en) 2011-05-20 2016-03-01 Ares Trading S.A. IFN-beta compositions, preparation methods and uses thereof
TW201427681A (zh) * 2013-01-07 2014-07-16 Superlab Far East Ltd 用空間構象改變的重組干擾素治療腫瘤的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732218A1 (fr) * 1995-03-28 1996-10-04 Flamel Tech Sa Particules a base de polyaminoacide(s) et susceptibles d'etre utilisees comme vecteurs de principe(s) actif(s) et leurs procedes de preparation
WO1999018142A1 (fr) * 1997-10-03 1999-04-15 Macromed, Inc. Copolymeres trisequences de poly(lactide-co-glycolide) polyethylene-glycol, de faible poids moleculaire, biodegradables dotes de caracteristiques de gelification thermique inverses
FR2786098A1 (fr) * 1998-11-20 2000-05-26 Flamel Tech Sa Particules a base de polyaminoacide(s) et susceptibles d'etre utilisees comme vecteurs de principe(s) actif(s), suspension colloidale les comprenant et leurs procedes de fabrication
FR2801226A1 (fr) * 1999-11-23 2001-05-25 Flamel Tech Sa Suspension colloidale de particules submicroniques de vectorisation de principes actifs et son mode de preparation
FR2822834A1 (fr) * 2001-04-02 2002-10-04 Flamel Tech Sa Suspension colloidale de nanoparticules a base de copolymeres amphiphile pour la vectorisation de principes actifs et leur mode de preparation
FR2838964A1 (fr) * 2002-04-26 2003-10-31 Flamel Tech Sa Suspension colloidale de particules submicroniques de vectorisation de principes actifs et leur mode de preparation
WO2003104303A1 (fr) * 2002-06-07 2003-12-18 Flamel Technologies Polyaminoacides fonctionnalisés par de l'alpha-tocopherol et leurs applications notamment thérapeutiques
WO2004013206A2 (fr) * 2002-07-30 2004-02-12 Flamel Technologies Polyaminoacides fonctionnalises par au moins un groupement hydrophobe et leurs applications notamment therapeutiques

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX9203291A (es) * 1985-06-26 1992-08-01 Liposome Co Inc Metodo para acoplamiento de liposomas.
CA2150803C (fr) * 1992-12-02 2006-01-31 Henry Auer Hormone de croissance a liberation controlee qui contient des microspheres
US5939485A (en) * 1995-06-19 1999-08-17 Medlogic Global Corporation Responsive polymer networks and methods of their use
FR2738835B1 (fr) * 1995-09-18 1997-10-17 Oreal Composition epaissie en milieu aqueux, procede d'epaississement d'un milieu aqueux et utilisations en cosmetique
KR100195291B1 (ko) * 1997-07-12 1999-06-15 서경배 비이온성 비타민
US6143314A (en) * 1998-10-28 2000-11-07 Atrix Laboratories, Inc. Controlled release liquid delivery compositions with low initial drug burst
FR2814952B1 (fr) * 2000-10-06 2004-01-02 Flamel Tech Sa Suspension colloidale de particules submicromiques de vectorisation de principes actifs et leur mode de preparation
FR2814951B1 (fr) * 2000-10-06 2003-01-17 Flamel Tech Sa Suspension colloidale de particules submicroniques de vectorisation de principes actifs hydrophiles (insuline) et leur mode de preparation
JP2002371009A (ja) * 2001-04-10 2002-12-26 Kyowa Hakko Kogyo Co Ltd 顆粒球コロニー刺激因子の薬理効果の持続時間延長方法
AU2002343681B2 (en) * 2001-11-12 2006-07-06 Alkermes Controlled Therapeutics, Inc. Biocompatible polymer blends and uses thereof
AU2003294056A1 (en) * 2002-12-04 2004-07-29 Flamel Technologies Polyamino acids functionalized by at least one (oligo)amino acid group and therapeutic uses
FR2855521B1 (fr) * 2003-05-28 2005-08-05 Flamel Tech Sa Polyaminoacides fonctionnalises par au moins un groupement h ydrophobe et leurs applications notamment therapeutiques.
US7693172B2 (en) * 2003-05-29 2010-04-06 Lg Electronics Inc. Apparatus and method for determining public long code mask in a mobile communications system
US7311901B2 (en) * 2003-10-10 2007-12-25 Samyang Corporation Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery
FR2862536B1 (fr) * 2003-11-21 2007-11-23 Flamel Tech Sa Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732218A1 (fr) * 1995-03-28 1996-10-04 Flamel Tech Sa Particules a base de polyaminoacide(s) et susceptibles d'etre utilisees comme vecteurs de principe(s) actif(s) et leurs procedes de preparation
WO1999018142A1 (fr) * 1997-10-03 1999-04-15 Macromed, Inc. Copolymeres trisequences de poly(lactide-co-glycolide) polyethylene-glycol, de faible poids moleculaire, biodegradables dotes de caracteristiques de gelification thermique inverses
FR2786098A1 (fr) * 1998-11-20 2000-05-26 Flamel Tech Sa Particules a base de polyaminoacide(s) et susceptibles d'etre utilisees comme vecteurs de principe(s) actif(s), suspension colloidale les comprenant et leurs procedes de fabrication
FR2801226A1 (fr) * 1999-11-23 2001-05-25 Flamel Tech Sa Suspension colloidale de particules submicroniques de vectorisation de principes actifs et son mode de preparation
FR2822834A1 (fr) * 2001-04-02 2002-10-04 Flamel Tech Sa Suspension colloidale de nanoparticules a base de copolymeres amphiphile pour la vectorisation de principes actifs et leur mode de preparation
FR2838964A1 (fr) * 2002-04-26 2003-10-31 Flamel Tech Sa Suspension colloidale de particules submicroniques de vectorisation de principes actifs et leur mode de preparation
WO2003104303A1 (fr) * 2002-06-07 2003-12-18 Flamel Technologies Polyaminoacides fonctionnalisés par de l'alpha-tocopherol et leurs applications notamment thérapeutiques
WO2004013206A2 (fr) * 2002-07-30 2004-02-12 Flamel Technologies Polyaminoacides fonctionnalises par au moins un groupement hydrophobe et leurs applications notamment therapeutiques

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513407A (ja) * 2006-12-20 2010-04-30 フラメル・テクノロジーズ 連続脂質相中のポリアミノ酸の分散液
CN101893619A (zh) * 2010-02-10 2010-11-24 上海蓝怡科技有限公司 改进乳胶悬浊液稳定性的方法
CN101893619B (zh) * 2010-02-10 2013-11-13 上海蓝怡科技有限公司 改进乳胶悬浊液稳定性的方法
FR2975301A1 (fr) * 2011-05-20 2012-11-23 Flamel Tech Sa Composition comprenant un interferon alpha
WO2012160485A1 (fr) 2011-05-20 2012-11-29 Flamel Technologies Composition comprenant de l'interféron alpha

Also Published As

Publication number Publication date
FR2862541A1 (fr) 2005-05-27
KR20060111594A (ko) 2006-10-27
IL175805A (en) 2013-10-31
IL175805A0 (en) 2006-10-05
DK1689426T3 (da) 2010-05-10
AU2004292370A1 (en) 2005-06-09
PL1689426T3 (pl) 2010-06-30
AU2004292370B2 (en) 2010-12-02
SI1689426T1 (sl) 2010-05-31
DE602004024920D1 (de) 2010-02-11
ZA200603959B (en) 2008-03-26
ATE453400T1 (de) 2010-01-15
CN1889971A (zh) 2007-01-03
FR2862541B1 (fr) 2007-04-20
CY1110106T1 (el) 2015-01-14
PT1689426E (pt) 2010-03-30
US20070269517A1 (en) 2007-11-22
EP1689426B1 (fr) 2009-12-30
TW200517141A (en) 2005-06-01
MXPA06005716A (es) 2006-08-23
JP2007511587A (ja) 2007-05-10
CA2546677A1 (fr) 2005-06-09
BRPI0416766A (pt) 2007-02-27
EP1689426A1 (fr) 2006-08-16
ES2339119T3 (es) 2010-05-17

Similar Documents

Publication Publication Date Title
EP1689425B1 (fr) Formulations pharmaceutiques pour la libération prolongée de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
EP2043600B1 (fr) Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
IL175805A (en) Pharmaceutical formulations for delayed release of interferons and their therapeutic applications
ZA200603643B (en) Pharmaceutical formulations for the sustained release of interleukins and therapeutic applications thereof
WO2008135561A1 (fr) Particules a base de polyelectrolytes et de principe actif a liberation modifiee et formulations pharmaceutiques contenant ces particules
FR2975301A1 (fr) Composition comprenant un interferon alpha

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035975.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2546677

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/005716

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 175805

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2006540559

Country of ref document: JP

Ref document number: 2939/DELNP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006/03959

Country of ref document: ZA

Ref document number: 200603959

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2004805848

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004292370

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067012366

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004292370

Country of ref document: AU

Date of ref document: 20041119

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004292370

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004805848

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067012366

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0416766

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 10580037

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10580037

Country of ref document: US