WO2005048435A1 - Kompaktantrieb - Google Patents

Kompaktantrieb Download PDF

Info

Publication number
WO2005048435A1
WO2005048435A1 PCT/EP2004/011150 EP2004011150W WO2005048435A1 WO 2005048435 A1 WO2005048435 A1 WO 2005048435A1 EP 2004011150 W EP2004011150 W EP 2004011150W WO 2005048435 A1 WO2005048435 A1 WO 2005048435A1
Authority
WO
WIPO (PCT)
Prior art keywords
compact drive
drive according
brake
shaft
rotor shaft
Prior art date
Application number
PCT/EP2004/011150
Other languages
English (en)
French (fr)
Inventor
Josef Schmidt
Bernhard KÖHLER
Thomas Leichter
Jochen Mahlein
Original Assignee
Sew-Eurodrive Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sew-Eurodrive Gmbh & Co. Kg filed Critical Sew-Eurodrive Gmbh & Co. Kg
Priority to PCT/EP2004/012800 priority Critical patent/WO2005048436A2/de
Priority to EP10010185.6A priority patent/EP2264864B1/de
Priority to CN2004800333659A priority patent/CN1879278B/zh
Priority to AU2004310181A priority patent/AU2004310181B2/en
Priority to EP04797828.3A priority patent/EP1685639B1/de
Priority to BRPI0416511-0A priority patent/BRPI0416511B1/pt
Priority to EP10009701.3A priority patent/EP2264863B1/de
Priority to US10/577,588 priority patent/US7846054B2/en
Publication of WO2005048435A1 publication Critical patent/WO2005048435A1/de
Priority to US12/938,230 priority patent/US8079289B2/en
Priority to US13/299,900 priority patent/US8943673B2/en
Priority to US14/579,557 priority patent/US9184644B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/125Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising spiral gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/38Control circuits or drive circuits associated with geared commutator motors of the worm-and-wheel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • H02K15/125Heating or drying of machines in operational state, e.g. standstill heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes
    • H02K7/1021Magnetically influenced friction brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes
    • H02K7/1021Magnetically influenced friction brakes
    • H02K7/1023Magnetically influenced friction brakes using electromagnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/106Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric brakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/4984Retaining clearance for motion between assembled parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53143Motor or generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19023Plural power paths to and/or from gearing
    • Y10T74/19074Single drive plural driven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19642Directly cooperating gears
    • Y10T74/19679Spur
    • Y10T74/19684Motor and gearing

Definitions

  • the invention relates to a compact drive.
  • a compact drive is known from DE 197 14 784 A1, which comprises an electric motor, on the one end side of which a transmission is arranged and on the other end side of which a converter is arranged.
  • the electronics area or the motor area must be sealed against the gearbox.
  • the disadvantage here is that there is a large axial length and an output can only be provided on one end face of the compact drive.
  • the invention is therefore based on the object of developing a compact drive while avoiding the aforementioned disadvantages.
  • axial length should be saved and as many output variants as possible, that is to say single-sided and double-sided output, should be possible.
  • Essential features of the invention in the compact drive are that it comprises at least one electric motor, a brake, a gearbox and a converter, the output shaft of the gearbox and the rotor shaft being arranged parallel to one another, the center distance being determined by at least one gear stage, the first
  • Gear stage comprises a first toothed part connected to the rotor shaft and a second toothed part which engages with the latter, and is connected to an intermediate shaft, the brake, comprising at least one brake rotor shaft, being integrated in the housing of the compact drive, the brake rotor shaft being arranged parallel to the rotor shaft is, wherein the brake rotor shaft is connected to a toothing part which is in engagement with the second toothing part.
  • the advantage here is that the axial length can be saved and one-sided and double-sided output can be carried out.
  • no axial length is necessary for the braking function, but the brake can be arranged in parallel next to the motor. By means of the effect of the brake on the gear parts, it is also possible to increase or decrease the nominal braking torque.
  • the electric motor is a synchronous motor.
  • the advantage here is that highly dynamic positioning tasks can be carried out by the compact drive and / or high torque is available over the entire speed range.
  • the converter is arranged on the side of the rotor shaft.
  • the advantage here is that the overall length can be saved and both sides of the output shaft are accessible, that is, an output on both sides can be provided.
  • the transmission area is sealed against the environment and against the area of the motor and against the electronics area.
  • the gear unit area may include lubricating oil and the electronics as well as the stator and rotor parts remain protected from the lubricant.
  • the transmission area, the area of the motor and the electronics area are at approximately the same temperature level.
  • the advantage here is that no thermal insulation is necessary and thus material, mass and costs can be saved.
  • the motor comprises an encoder arranged at one end of the rotor shaft.
  • the compact drive can be used for positioning tasks and the encoder is protected by the housing of the compact drive.
  • a brake can be connected, which can also be protected by the housing of the compact drive.
  • the motor does not contain an encoder, but the position is determined using an estimation method, which saves axial installation space.
  • the rotor shaft remains completely inside the housing and therefore no seals from the rotor shaft to the surroundings are necessary. A single shaft sealing ring running on the rotor shaft is therefore sufficient. Since the rotor shaft can have a high speed, the heat production is therefore much smaller than in a motor that has two shaft seals, especially at its two axial ends of the rotor shaft.
  • the output shaft has, for example, three shaft sealing rings. However, since the speed is much lower than with the rotor shaft, the total heat production is smaller than with a drive solution in which both the rotor shaft and the output shaft have two shaft sealing rings.
  • At least one spur gear stage is used, as a result of which the axial length decreases and a cost-optimal solution is created.
  • the gear stage is designed as an adjusting gear with a variable transmission ratio, as a result of which the wear of the transmission stage from the speed range is minimized and the torque transmission is adapted to the load case. It is advantageous with the adjustment gear that even all seals to the engine compartment area can be omitted, since an adjustment gear, in particular a wide V-belt transmission, requires no or only insignificant amounts of lubricant. This means that only seals from the interior of the compact drive to the external environment are required.
  • the rotor shaft and at least one shaft of the transmission are mounted in the same housing part.
  • the advantage here is that an exact alignment of the shafts with respect to one another can already be achieved during the manufacture and machining of the housing part. This is because the housing part can be finished in just one clamping and the relative position of the bearing seats can thus be aligned very precisely with respect to one another.
  • a compact drive according to the invention is shown in an oblique view in FIG. 4, the gear 40 being indicated only symbolically.
  • a compact drive according to the invention is shown in section in FIG.
  • FIG. 3 A compact drive according to the invention is shown in section in FIG. 3, in which, in contrast to FIG. 2, the converter is arranged on the other side of the output shaft than the motor.
  • the symbolically indicated gear in FIG. 4 is designed differently in each case in the case of different design variants according to the invention.
  • it is designed as a spur gear, which is also illustrated in FIGS. 2 and 3.
  • the gear unit from FIG. 4 is designed as an adjusting gear unit.
  • This adjustment gearbox can either be designed as a VARIMOT gearbox from SEW-EURODRIVE, ie with two discs that rub against each other, or as a VARIBLOC gearbox from SEW-EURODRIVE, ie as
  • a chain can also advantageously be used instead of a V-belt.
  • the motor is arranged on the side of the output shaft.
  • the rotor shaft 13 and the output shaft 8 are thus arranged in parallel.
  • the center distance of these shafts is determined by the toothed parts of the spur gear stage, which consists of a pinion 14 which is positively and / or non-positively connected to the rotor shaft 13 and a gear 10 which is designed as a spur gear and which is connected to the output shaft 8.
  • the area of the transmission that is, the spur gear stage, is sealed off from the area of the electric motor.
  • the shaft sealing ring 15 seals these spatial areas on the rotor shaft, since the rotor shaft in the spatial area of the motor Permanent magnet 12 carries and in the area of the gearbox the pinion 14.
  • the shaft sealing ring 5 seals the area of the gearbox from the area of the motor on the output shaft 8, which is designed as a hollow shaft.
  • Spur gear stage another gear, comprising several gear stages, can be used.
  • the output shaft is not designed as a hollow shaft but as a solid shaft.
  • the output shaft is also the option of designing the output shaft in accordance with the standard for robot interfaces, which results in a very compact output with a small axial length.
  • the output shaft 8 is supported via the bearing 1 in the same housing part 21 in which the rotor shaft 13 is also supported via the bearing 18.
  • the housing parts 21 and 22 are provided with cooling devices 4 for dissipating the heat generated in the motor, transmission and converter.
  • the output shaft 8 is in turn supported by the other, axially opposite bearing (6, 9) in the same housing part 22 in which the rotor shaft 13 is also supported by the other bearing 20.
  • a major advantage of the compact drive is that no clutch is required between the engine and the gearbox, which means that additional parts are not required.
  • the engine and transmission even use the same housing parts together.
  • an exact alignment of the shafts with respect to one another can already be achieved during the manufacture and machining of the housing part, in that bearing seats for the engine and transmission, in particular the bearings 9 and 20 in particular, can be extremely precisely defined in their relative position to one another during manufacture. This is because the housing part can be finished in a single clamping in only one machine tool, and thus the relative position of the bearing seats can be aligned very precisely with respect to one another.
  • Another advantage is the shared use of a housing part is also that the compact drive not only requires a small construction volume in this way, but also has a particularly high stability, since the forces of the motor and the transmission are conducted to one another within the same housing part.
  • the stator 11 with the stator windings 16 is arranged around the rotor shaft 13.
  • This electric motor is designed as a multi-phase synchronous motor.
  • any other motors can be integrated into the compact drive instead of the synchronous motor.
  • the electronics room area 17 for the converter is not sealed off from the room area of the motor.
  • the motor carries a resolver at its one axial end, which comprises a resolver stator 19 and a resolver rotor 23.
  • angle sensors or angular velocity sensors can also be provided instead of the resolver.
  • a brake can also be integrated in the compact drive on the side opposite the angle sensor.
  • the converter is operated in such a way that the angle value is estimated by means of a method using a suitable motor model. This saves further axial length.
  • FIG. 2 Another variant of an exemplary embodiment according to the invention is shown in FIG. 2, in which the electronics area 31 is not directly to the area of the motor but the output shaft 8 is located in between.
  • the Shaft sealing ring 5 from the area of the gearbox against the electronics area 31, the shaft sealing ring 5 running on the output shaft 8 and seated in the housing part 21.
  • the gearbox area can be filled with lubricant, such as lubricating oil, grease or the like.
  • no particularly effective thermal insulation is provided between the room areas of the converter, that is to say the electronics room area, and the gearbox room area and the engine room area.
  • the room areas are therefore at approximately the same temperature level.
  • An approximately equal temperature level means a temperature difference of a maximum of 10 ° Celsius in continuous operation with nominal load.
  • a larger temperature difference between the room areas can be reached for a short time in the event of abrupt operation. It is advantageous and surprising in this embodiment that no special thermal insulation is necessary and thus material, mass and costs can be saved.
  • thermal insulation between two or more of the room areas can also be provided.
  • the motor is designed with multiple poles, in particular eight or ten poles.
  • the motor is advantageously designed in the manner of DE 100 49 883 or in the manner of DE 103 17 749.
  • a single gear stage together with such a multi-phase motor is sufficient to cover a wide range of gear ratios.
  • the hollow shaft is designed as an output shaft, not a hollow shaft, this output shaft being connectable to the device to be driven by means of a key connection.
  • the output shaft and the output-side housing part are designed in the manner of the robot interface EN-ISO 9402-1. This saves axial length and high torque can be transmitted. In addition, compatibility with corresponding devices to be driven and connected is achieved.
  • the electrical connection devices are provided on the back of the housing and are therefore not visible in FIGS. 1 to 4. In other exemplary embodiments according to the invention, however, other positions can also be provided for the connection devices.
  • connection devices are designed only as a power supply.
  • only power cables are led to the compact drive.
  • the transmission of data to or from the converter to another, in particular higher-level unit, which is necessary for data communication, takes place by means of modulation onto the power lines.
  • the modulation can be carried out in a known manner, in particular as is known from powerline communication or according to the FSK or according to the FH / PSK method, so do frequency hopping phase shift keying.
  • FIG. 5 shows a further exemplary embodiment according to the invention, in which the housing 60 has an area for the electric motor 51 which is separated by means of a housing wall 53.
  • the electric motor has a pinion which is connected to the rotor shaft of the electric motor 51 in a positive or non-positive manner and is in engagement with a second tooth part 54 of the first gear stage connected on an intermediate shaft.
  • This intermediate shaft is in turn connected to a further toothed part, namely the first toothed part 55 of the second gear stage, which engages with the second toothed part 56 of the second gear stage.
  • This toothed part 56 is connected to the output hollow shaft 57, which enables a compact connection to a device to be driven.
  • a brake 59 comprises a brake rotor which is connected to a pinion as toothing part 58 which is in engagement with the second toothing part of the first gear stage.
  • the electric motor 51 is therefore designed without a brake.
  • the brake 59 exerts its braking action via the pinion 58 on a toothed part. The braking effect is not direct, so to speak, but indirect.
  • the gear area is designed to be sealed with respect to the area of the electric motor and the brake.
  • the area of the brake and the motor do not have to be sealed off from one another.
  • the areas are arranged in corresponding housing pockets, the walls of which are the housing walls.
  • the electronics area that is to say the converter area, can also be sealed against the other areas, in particular against the gear area. No absolute seal is required from the electronics area to the engine area.
  • the cable bushings from the electronics area to the motor area and, if necessary, to the gearbox area are leakproof and have a high degree of protection.
  • the toothing parameters in FIG. 5 can be selected such that the braking torque of the brake transmitted to the rotor shaft is less than, greater than or equal to the nominal motor torque.
  • the brake can be made very small and compact. This saves construction volume.
  • an encoder is mechanically connected to the output shaft and electrically to the electronics area.
  • the encoder is an angular position encoder and / or a torque encoder. This means that the control software can be executed in the converter with particularly good control properties.
  • the compact drive has the same mechanical interface on the front and on the rear for connection to a device to be driven.
  • the output shaft is designed as a hollow shaft that runs from front to back. This means that the compact drive can be installed from both sides in a system or machine.
  • a series connection of compact drives can be carried out, whereby the torque can be increased overall.
  • the electric motor is designed as a synchronous motor. Slip losses can thus be reduced and the control accuracy can be improved.
  • the electric motor can be implemented as a reluctance motor in a cost-effective manner.
  • a gear stage in particular the most output side, is designed as an angular gear stage, in particular as a worm gear stage or spiroplan gear stage. This enables particularly compact designs.
  • the electronics area borders on the
  • Gearbox area and is separated from this only with a housing wall. Therefore, the heat generated by the electronics can be dissipated via the housing wall and the lubricant of the transmission.
  • the circulation of the lubricant which is increased by the movement of the toothed parts, is therefore a crucial means of dissipating the heat to the environment. Because the lubricant transports the heat to the other housing walls of the gear unit area and from there releases it to the environment. Heat can be removed in the same way if the motor area is adjacent to the transmission area via a housing wall.

Abstract

Kompaktantrieb, umfassend zumindest einen Elektromotor (51), eine Bremse (59), ein Getriebe (52-58) und einen Umrichter, wobei die Abtriebswelle (57) des Getriebes und die Rotorwelle (52) parallel zueinander angeordnet sind und der Achsabstand von zumindest einer Getriebestufe bestimmt ist, wobei die erste Getriebestufe ein erstes, mit der Rotorwelle verbundenes Verzahnungsteil (52) umfasst und ein mit diesem in Eingriff stehendes, zweites, mit einer Zwischenwelle verbundenes Verzahnungsteil (54), wobei die Bremse (59), umfassend zumindest eine Bremsrotorwelle, im Gehäuse des Kompaktantriebs integriert ist, wobei die Bremsrotorwelle (58) parallel zu der Rotorwelle (52) angeordnet ist, wobei die Bremsrotorwelle mit einem Verzahnungsteil (58) verbunden ist, das mit dem zweiten Verzahnungsteil (54) in Eingriff steht.

Description

Kompaktantrieb
Beschreibung:
Die Erfindung betrifft einen Kompaktantrieb.
Aus der DE 197 14 784 A1 ist ein Kompaktantrieb bekannt, der einen Elektromotor umfasst, an dessen einer Stirnseite ein Getriebe und an dessen anderer Stirnseite ein Umrichter angeordnet ist. Dabei muss der Elektronikbereich beziehungsweise der Motorbereich gegen das Getriebe abgedichtet werden. Nachteilig ist dabei, dass eine große axiale Länge vorhanden ist und nur an einer Stirnseite des Kompaktantriebs ein Abtrieb zur Verfügung gestellt werden kann.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Kompaktantrieb weiterzubilden unter Vermeidung der vorgenannten Nachteile. Insbesondere soll axiale Länge eingespart werden und möglichst viele Abtriebsvarianten, also einseitiger und doppelseitiger Abtrieb ausführbar sein.
Erfindungsgemäß wird die Aufgabe bei dem Kompaktantrieb nach den in Anspruch 1 angegebenen Merkmalen gelöst.
Wesentliche Merkmale der Erfindung bei dem Kompaktantrieb sind, dass er zumindest einen Elektromotor, eine Bremse, ein Getriebe und einen Umrichter umfasst, wobei die Abtriebswelle des Getriebes und die Rotorwelle parallel zueinander angeordnet sind, wobei der Achsabstand von zumindest einer Getriebestufe bestimmt ist, wobei die erste
Getriebestufe ein erstes, mit der Rotorwelle verbundenes Verzahnungsteil umfasst und ein mit diesem in Eingriff stehendes, zweites, mit einer Zwischenwelle verbundenes Verzahnungsteil, wobei die Bremse, umfassend zumindest eine Bremsrotorwelle, im Gehäuse des Kompaktantriebs integriert ist, wobei die Bremsrotorwelle parallel zu der Rotorwelle angeordnet ist, wobei die Bremsrotorwelle mit einem Verzahnungsteil verbunden ist, das mit dem zweiten Verzahnungsteil in Eingriff steht.
Von Vorteil ist dabei, dass axiale Baulänge einsparbar ist und einseitiger und doppelseitiger Abtrieb ausführbar ist. Außerdem ist für die Bremsfunktion keine axiale Baulänge notwendig, sondern die Bremse ist parallel anordenbar neben dem Motor. Mittels der Wirkung der Bremse über die Verzahnungsteile ist es weiter ermöglicht, das Nenn-Bremsmoment zu vergrößern oder zu verkleinern.
Bei einer vorteilhaften Ausgestaltung ist der Elektromotor ein Synchronmotor. Von Vorteil ist dabei, dass hochdynamische Positionieraufgaben vom Kompaktantrieb ausführbar sind und/oder ein hohes Drehmoment über den gesamten Drehzahlbereich verfügbar ist.
Bei einer vorteilhaften Ausgestaltung ist der Umrichter seitlich von der Rotorwelle angeordnet. Von Vorteil ist dabei, dass Baulänge einsparbar ist und beide Seiten der Abtriebswelle zugänglich sind, also ein beidseitiger Abtrieb vorsehbar ist.
Bei einer vorteilhaften Ausgestaltung ist der Getriebebereich gegen die Umgebung und gegen den Bereich des Motors sowie gegen den Elektronikraumbereich abgedichtet. Von Vorteil ist dabei, dass der Getriebebereich Schmieröl umfassen darf und die Elektronik sowie die Stator- und Rotorteile geschützt bleiben vor dem Schmiermittel.
Bei einer vorteilhaften Ausgestaltung befinden sich der Getriebebereich, der Bereich des Motors und der Elektronikraumbereich auf einem ungefähr gleichen Temperaturniveau. Von Vorteil ist dabei, dass keine Wärmedämmungen notwendig sind und somit Material, Masse und Kosten einsparbar sind.
Bei einer vorteilhaften Ausgestaltung umfasst der Motor einen an dem einen Ende der Rotorwelle angeordneten Geber. Von Vorteil ist dabei, dass der Kompaktantrieb für Positionieraufgaben verwendbar ist und der Geber vom Gehäuse des Kompaktantriebs geschützt ist. An dem anderen Ende der Rotorwelle ist eine Bremse verbindbar, die ebenfalls vom Gehäuse des Kompaktantriebs schützbar ist.
Bei einer weiteren vorteilhaften Ausführung enthält der Motor keinen Geber, sondern wird die Lage mit Hilfe eines Schätzverfahrens ermittelt wodurch axialer Bauraum eingespart wird.
Wesentlicher Vorteil ist bei der Erfindung auch, dass die Rotorwelle ganz im Inneren des Gehäuses bleibt und somit keine Dichtungen von der Rotorwelle zur Umgebung hin notwendig sind. Es genügt somit also ein einziger Wellendichtring, der auf der Rotorwelle läuft. Da die Rotorwelle eine hohe Drehzahl aufweisen kann, ist somit die Wärmeproduktion sehr viel kleiner als bei einem Motor, der zwei Wellendichtringe aufweist, insbesondere an seinen beiden axialen Enden der Rotorwelle.
Die Abtriebswelle weist beispielsweise drei Wellendichtringe auf. Da die Drehzahl aber viel geringer ist als bei der Rotorwelle ist die Gesamtproduktion an Wärme kleiner als bei einer Antriebs-Lösung, bei welcher sowohl die Rotorwelle als auch die Abtriebswelle zwei Wellendichtringe aufweist.
Bei einer vorteilhaften Ausgestaltung des Getriebes wird zumindest eine Stirnradstufe verwendet, wodurch die axiale Baulänge sinkt und eine kostenoptimale Lösung entsteht.
Bei einer vorteilhaften Ausgestaltung wird die Getriebestufe als Verstellgetriebe mit einem variablen Übersetzungsverhältnis ausgeführt, wodurch der Verschleiß der Getriebestufe vom Drehzahlbereich minimiert und die Drehmomentübersetzung an den Belastungsfall angepasst wird. Vorteilhaft ist bei dem Verstellgetriebe, dass sogar alle Dichtungen zum Motorraumbereich entfallen können, da ein Verstellgetriebe, insbesondere ein Breitkeilriemengetriebe, keinen oder nur unwesentliche Mengen von Schmierstoff benötigt. Somit sind nur Dichtungen vom Inneren des Kompaktantriebs zur äußeren Umgebung hin notwendig.
Bei einer vorteilhaften Ausgestaltung sind Rotorwelle und mindestens eine Welle des Getriebes im selben Gehäuseteil gelagert. Von Vorteil ist dabei, dass eine genaue Ausrichtung der Wellen zueinander schon bei der Fertigung und Bearbeitung des Gehäuseteils erreichbar ist. Denn das Gehäuseteil wird in nur einer Aufspannung endbearbeitbar und somit die relative Lage der Lagersitze sehr genau zueinander ausrichtbar.
Weitere Vorteile ergeben sich aus den Unteransprüchen. Bezugszeichenliste 1 Lager 2 Wellendichtring 5 3 Gehäusedeckel 4 Kühlvorrichtungen 5 Wellendichtring 6 Lager 7 Wellendichtring 10 8 Abtriebswelle 9 Lager 10 Zahnrad 11 Stator 12 Permanentmagnete 15 13 Rotorwelle 14 Ritzel 15 Wellendichtring 16 Statorwicklung 17 Elektronikraumbereich 20 18 Lager 19 Resolverstator 20 Lager 21 Gehäuseteil 22 Gehäuseteil 25 23 Resolverrotor 31 Elektronikraumbereich 40 Getriebe 51 Elektromotor 52 erstes Verzahnteil der ersten Getriebestufe 30 53 Motorgehäusewand 54 zweites Verzahnteil der ersten Getriebestufe 55 verbundenes erstes Verzahnteil der zweiten Getriebestufe 56 zweites Verzahnteil der zweiten Getriebestufe Abtriebs-Hohlwelle Verzahnungsteil Bremse Gehäuse Gehäusewand
Die Erfindung wird nun anhand von Abbildungen näher erläutert:
In der Figur 4 ist ein erfindungsgemäßer Kompaktantrieb in Schrägansicht gezeichnet, wobei das Getriebe 40 nur symbolisch angedeutet ist.
In der Figur 1 ist ein erfindungsgemäßer Kompaktantrieb in Schrägansicht gezeichnet.
In der Figur 2 ist ein erfindungsgemäßer Kompaktantrieb angeschnitten gezeigt.
In der Figur 3 ist ein erfindungsgemäßer Kompaktantrieb angeschnitten gezeigt, bei dem im Unterschied zu Figur 2 der Umrichter auf der anderen Seite von der Abtriebswelle als der Motor angeordnet ist.
Das symbolisch angedeutete Getriebe in Figur 4 ist bei verschiedenen erfindungsgemäßen Ausführungsvarianten jeweils verschiedenartig ausgeführt. In einer ersten Variante ist es als Stirnradgetriebe ausgeführt, was in den Figuren 2 und 3 auch verdeutlicht ist. In einer anderen Variante ist das Getriebe aus Figur 4 als Verstellgetriebe ausgeführt. Dieses Verstellgetriebe ist entweder in der Art eines VARIMOT-Getriebes der Firma SEW- EURODRIVE ausführbar, also mit zwei aneinander reibenden Scheiben, oder in der Art eines VARIBLOC-Getriebes der Firma SEW-EURODRIVE ausführbar, also als
Breitkeilriemengetriebe wobei der Abstand zweier kegeliger Verstellscheiben die Übersetzung bestimmen. Bei einem weiteren erfindungsgemäßen Ausführungsbeispiel ist auch statt eines Keilriemens eine Kette vorteiligerweise verwendbar.
Im erfindungsgemäßen Ausführungsbeispiel nach Figur 2 ist der Motor seitlich von der Abtriebswelle angeordnet. Die Rotorwelle 13 und die Abtriebswelle 8 sind also parallel angeordnet. Der Achsabstand dieser Wellen ist bestimmt durch die Verzahnungsteile der Stirnradgetriebestufe, die aus einem mit der Rotorwelle 13 formschlüssig und/oder kraftschlüssig verbundenen Ritzel 14 und einem als Stirnrad ausgeführten Zahnrad 10, das mit der Abtriebswelle 8 verbunden ist, besteht.
Der Raumbereich des Getriebes, also der Stirnradgetriebestufe, ist von dem Raumbereich des Elektromotors abgedichtet ausgeführt. Der Wellendichtring 15 dichtet diese Raumbereiche an der Rotorwelle ab, da die Rotorwelle im Raumbereich des Motors die Permanentmagnete 12 trägt und im Raumbereich des Getriebes das Ritzel 14. Der Wellendichtring 5 dichtet den Raumbereich des Getriebes vom Raumbereich des Motors an der Abtriebswelle 8 ab, die als Hohlwelle ausgeführt ist.
Bei einem weiteren erfindungsgemäßen Ausführungsbeispiel ist statt der gezeigten
Stirnradgetriebestufe ein anderes Getriebe, umfassend mehrere Getriebestufen, einsetzbar.
Bei einem weiteren erfindungsgemäßen Ausführungsbeispiel ist die Abtriebswelle nicht Hohlwelle sondern als Vollwelle ausgebildet. Des Weiteren besteht auch die Möglichkeit, die Abtriebswelle gemäß der Norm für Roboterschnittstellen auszubilden, wodurch ein sehr kompakter Abtrieb mit geringer axialer Baulänge entsteht.
Die Abtriebswelle 8 ist über das Lager 1 in demselben Gehäuseteil 21 gelagert, in welchem auch die Rotorwelle 13 über das Lager 18 gelagert ist.
Mittels des auf der Abtriebswelle 8 laufenden und in das Gehäusedeckels 3 eingesetzten Wellendichtrings 2 ist der Raumbereich des Motors gegen die Umgebung abgedichtet.
Die Gehäuseteile 21 und 22 sind mit Kühlvorrichtungen 4 versehen zur Abführung der im Motor, Getriebe und Umrichter entstehenden Wärme.
Die Abtriebswelle 8 ist über das andere, axial gegenüber liegende Lager (6,9) wiederum in dem selben Gehäuseteil 22 gelagert, in welchem auch die Rotorwelle 13 über das andere Lager 20 gelagert ist.
Wesentlicher Vorteil bei dem Kompaktantrieb ist, dass keine Kupplung zwischen Motor und Getriebe notwendig ist und somit zusätzliche Teile entfallen. Insbesondere verwenden Motor und Getriebe sogar gleiche Gehäuseteile gemeinsam. Darüber hinaus ist eine genaue Ausrichtung der Wellen zueinander schon bei der Fertigung und Bearbeitung des Gehäuseteils erreichbar, indem Lagersitze für Motor und Getriebe, insbesondere beispielhaft die Lager 9 und 20, in ihrer relativen Lage zueinander beim Herstellen äußerst genau festlegbar sind. Denn das Gehäuseteil wird in nur einer Werkzeugmaschine in einer einzigen Aufspannung endbearbeitbar und somit die relative Lage der Lagersitze sehr genau zueinander ausrichtbar. Weiter vorteilhaft an der gemeinsamen Nutzung eines Gehäuseteils ist auch, dass der Kompaktantrieb auf diese Weise nicht nur ein kleines Bauvolumen benötigt sondern auch eine besonders hohe Stabilität aufweist, da die Kräfte des Motors und des Getriebes innerhalb desselben Gehäuseteils zueinander geleitet werden.
Mittels des auf der Abtriebswelle 8 laufenden und in das Gehäuseteil 22 eingesetzten Wellendichtrings 7 ist der Raumbereich des Getriebes gegen die Umgebung abgedichtet.
Der Stator 11 mit den Statorwicklungen 16 ist um die Rotorwelle 13 herum angeordnet.
Dieser Elektromotor ist als Mehrphasen-Synchronmotor ausgeführt. Es sind jedoch bei anderen erfindungsgemäßen Ausführungsbeispielen auch beliebige andere Motoren statt des Synchronmotors integrierbar in den Kompaktantrieb.
Der auf der Rotorwelle laufende, in das Gehäuseteil 22 eingesetzte Wellendichtring 15 dichtet den Raumbereich des Getriebes vom Raumbereich des Motors ab.
Der Elektronikraumbereich 17 für den Umrichter ist zum Raumbereich des Motors nicht abgedichtet.
Der Motor trägt an seinem einen axialen Ende einen Resolver, der einen Resolverstator 19 und einen Resolverrotor 23 umfasst.
Bei anderen erfindungsgemäßen Ausführungsbeispielen sind statt des Resolvers auch andere Winkelsensoren oder Winkelgeschwindigkeitssensoren vorsehbar. Auch ist bei anderen erfindungsgemäßen Ausführungsbeispielen an der dem Winkelsensor gegenüberliegenden Seite eine Bremse in den Kompaktantrieb integrierbar.
Bei wiederum anderen erfindungsgemäßen Ausführungsbeispielen ist der Umrichter derart betrieben, dass mittels eines Verfahrens der Winkelwert geschätzt wird unter Verwendung eines geeigneten Motor-Modells. Somit ist weitere axiale Baulänge einsparbar.
In der Figur 2 ist eine andere Variante eines erfindungsgemäßen Ausführungsbeispiels gezeigt, bei dem der Elektronikraumbereich 31 nicht direkt zum Raumbereich des Motors ist sondern die Abtriebswelle 8 dazwischen liegt. In diesem Beispiel dichtet dann der Wellendichtring 5 den Raumbereich des Getriebes gegen den Elektronikraumbereich 31 ab, wobei der Wellendichtring 5 auf der Abtriebswelle 8 läuft und im Gehäuseteil 21 sitzt.
Der Getrieberaumbereich ist mit Schmierstoff, wie Schmieröl, Schmierfett oder dergleichen, befüllbar.
Bei den gezeigten erfindungsgemäßen Ausführungsbeispielen ist keine besonders wirkungsvolle Wärmedämmung zwischen den Raumbereichen des Umrichters, also dem Elektronikraumbereich, und dem Getriebe-Raumbereich sowie dem Motorraumbereich vorgesehen. Somit liegen die Raumbereiche auf ungefähr einem gleichen Temperaturniveau. Ein ungefähr gleiches Temperaturniveau bedeutet einen Temperaturunterschied von maximal 10 ° Celsius im Dauerbetrieb mit Nennlast. Selbstverständlich ist bei stoßartigem Betrieb kurzfristig eine größere Temperaturdifferenz der Raumbereiche erreichbar. Vorteilig und überraschend ist bei dieser Ausführung, dass keine spezielle Wärmedämmung nötig ist und somit Material, Masse und Kosten einsparbar sind.
Bei anderen erfindungsgemäßen Ausführungsbeispielen sind auch Wärmedämmungen zwischen zweien oder mehreren der Raumbereiche vorsehbar.
Bei weiteren erfindungsgemäßen Ausführungsbeispielen ist der Motor hochpolig ausgeführt, insbesondere acht- oder zehnpolig. Der Motor ist vorteiligerweise nach Art der DE 100 49 883 ausgeführt oder nach Art der DE 103 17 749. Somit ist im Kompaktantrieb eine einzige Getriebestufe zusammen mit einem solchen Mehrphasenmotor ausreichend, um einen weiten Bereich an Übersetzungszahlen zu überdecken.
Bei weiteren erfindungsgemäßen Ausführungsbeispielen ist als Abtriebswelle keine Hohlwelle sondern ein zylindrischer Wellenstumpf ausgeführt, wobei diese Abtriebswelle mittels Passfederverbindung mit der anzutreibenden Vorrichtung verbindbar ist.
Bei weiteren erfindungsgemäßen Ausführungsbeispielen ist die Abtriebswelle und das abtriebsseitige Gehäuseteil nach Art der Roboterschnittstelle EN-ISO 9402 - 1 ausgeführt. Somit ist axiale Baulänge einsparbar und ein hohes Drehmoment übertragbar. Außerdem ist Kompatibilität mit entsprechenden, anzutreibenden und anzuschließenden Vorrichtungen erreicht. Die elektrischen Anschlussvorrichtungen sind auf der Rückseite des Gehäuses vorgesehen und daher in den Figuren 1 bis 4 nicht sichtbar. Bei weiteren erfindungsgemäßen Ausführungsbeispielen sind jedoch auch andere Positionen für die Anschlussvorrichtungen vorsehbar.
Bei weiteren erfindungsgemäßen Ausführungsbeispielen sind die Anschlussvorrichtungen nur als Energieversorgung ausgeführt. Insbesondere sind nur Starkstromkabel zum Kompaktantrieb geführt. Die für die Datenkommunikation notwendige Übertragung von Daten zum oder vom Umrichter zu einer anderen, insbesondere übergeordneten Einheit, erfolgt dabei mittels Aufmodulation auf die Leistungsleitungen. Die Aufmodulation ist in bekannter Weise ausführbar, insbesondere wie aus der Powerline-Kommunikation oder nach dem FSK oder nach dem FH/PSK-Verfahren, also mache dem Frequency Hopping Phase Shift Keying, bekannt.
In der Figur 5 ist ein weiteres erfindungsgemäßes Ausführungsbeispiel gezeigt, bei dem das Gehäuse 60 einen mittels einer Gehäusewand 53 abgetrennten Bereich für den Elektromotor 51 aufweist. Der Elektromotor weist als erstes Verzahnteil 52 der ersten Getriebestufe ein Ritzel auf, das mit der Rotorwelle des Elektromotors 51 formschlüssig oder kraftschlüssig verbunden ist und mit einem auf einer Zwischenwelle verbundenen zweiten Verzahnteil 54 der ersten Getriebestufe im Eingriff steht. Diese Zwischenwelle ist wiederum mit einem weiteren Verzahnungsteil, nämlich dem ersten Verzahnteil 55 der zweiten Getriebestufe, verbunden, das mit dem zweiten Verzahnteil 56 der zweiten Getriebestufe im Eingriff steht. Dieses Verzahnteil 56 ist mit der Abtriebs-Hohlwelle 57 verbunden, die ein kompaktes Verbinden mit einer anzutreibenden Vorrichtung ermöglicht. Wesentlich ist nun, dass eine Bremse 59 einen Bremsrotor umfasst, der mit einem Ritzel als Verzahnungsteil 58 verbunden ist, das mit dem zweiten Verzahnungsteil der ersten Getriebestufe im Eingriff steht. Der Elektromotor 51 ist also ohne Bremse ausgeführt. Die Bremse 59 übt ihre Bremswirkung über das Ritzel 58 auf ein Verzahnungsteil aus. Die Bremswirkung ist sozusagen nicht direkt sondern indirekt ausgeführt.
Wesentlich bei der Ausführungsform nach Figur 5 ist auch, dass der Getriebebereich abgedichtet ausgebildet ist gegenüber dem Bereich des Elektromotors und der Bremse. Der Bereich der Bremse und des Motors müssen zueinander nicht abgedichtet sein. Die Bereiche sind in entsprechende Gehäusetaschen eingeordnet, deren Wände die Gehäusewände sind. Der Elektronikbereich, also der Umrichterbereich, ist auch abdichtbar gegen die anderen Bereiche, insbesondere gegen den Getriebebereich. Zum Motorbereich hin ist vom Elektronikbereich her keine absolute Abdichtung notwendig. Auch die Kabeldurchführungen vom Elektronikbereich zum Motorenbereich und gegebenenfalls zum Getriebebereich sind dicht und in hoher Schutzart ausgeführt.
Die Verzahnungsparameter in Figur 5 sind derart wählbar, dass das auf die Rotorwelle übertragene Bremsmoment der Bremse kleiner, größer oder gleich dem Motor-Nennmoment ist. Insbesondere bei einer Auslegung, bei der das übertragene Bremsmoment größer ist als das Motor-Nennmoment, ist die Bremse sehr klein und kompakt ausführbar. Somit wird Bauvolumen einsparbar.
Bei weiteren erfindungsgemäßen Ausführungsbeispielen ist ein Geber mechanisch mit der Abtriebswelle und elektrisch mit dem Elektronikbereich verbunden. Der Geber ist ein Winkellagegeber und/oder ein Drehmomentengeber. Somit ist die Regel-Software im Umrichter mit besonders guten Regeleigenschaften ausführbar.
Bei weiter vorteilhafter Ausgestaltung weist der Kompaktantrieb an der Vorderseite und an der Rückseite dieselbe mechanische Schnittstelle auf zur Verbindung mit einer anzutreibenden Vorrichtung. Dazu ist die Abtriebswelle als von Vorderseite bis Rückseite durchgehende Hohlwelle ausgeführt. Somit ist der Kompaktantrieb von beiden Seiten in eine Anlage oder Maschine einbaubar. Darüber hinaus ist auch eine Serienschaltung von Kompaktantrieben ausführbar, wodurch das Drehmoment insgesamt erhöhbar ist.
Bei weiter vorteilhafter Ausgestaltung ist der Elektromotor als Synchronmotor ausgeführt. Somit sind Schlupfverluste reduzierbar und die Regelgenauigkeit verbesserbar.
Bei anderer vorteilhafter Ausgestaltung ist der Elektromotor als Reluktanzmotor in kostengünstiger Weise ausführbar.
Bei anderen erfindungsgemäßen Ausführungsbeispielen ist die Bremse mit ihrem Ritzel statt mit dem zweiten mit dem ersten Verzahnungsteil im Eingriff und übt somit die Bremswirkung direkter aus. Bei anderen erfindungsgemäßen Ausführungsbeispielen ist eine Getriebestufe, insbesondere die abtriebsseitigste, als Winkelgetriebestufe, insbesondere als Schneckengetriebestufe oder Spiroplangetriebestufe, ausgeführt. Somit sind besonders kompakte Bauformen ermöglicht.
Bei vorteilhafter Ausgestaltung der Erfindung grenzt der Elektronikbereich an den
Getriebebereich und ist von diesem nur mit einer Gehäusewand getrennt. Daher ist die von der Elektronik erzeugte Wärme über die Gehäusewand and den Schmierstoff des Getriebes abführbar. Die Zirkulation des Schmierstoffes, die durch die Bewegung der Verzahnungsteile vergrößert wird, ist somit ein entscheidendes Mittel zum Abtransport der Wärme an die Umgebung. Denn vom Schmierstoff wird die Wärme zu den anderen Gehäusewänden des Getriebebereiches transportiert und von dort abgegeben an die Umgebung. Auf dieselbe Weise ist Wärme abtransportierbar, wenn der Motorbereich über eine Gehäusewand an den Getriebebereich angrenzt.

Claims

Patentansprüche:
1. Kompaktantrieb,
umfassend zumindest einen Elektromotor, eine Bremse, ein Getriebe und einen Umrichter,
dadurch gekennzeichnet, dass
die Abtriebswelle des Getriebes und die Rotorwelle parallel zueinander angeordnet sind
und der Achsabstand von zumindest einer Getriebestufe bestimmt ist,
wobei die erste Getriebestufe ein erstes, mit der Rotorwelle verbundenes Verzahnungsteil umfasst und ein mit diesem in Eingriff stehendes, zweites, mit einer Zwischenwelle verbundenes Verzahnungsteil,
wobei die Bremse, umfassend zumindest eine Bremsrotorwelle, im Gehäuse des Kompaktantriebs integriert ist,
wobei die Bremsrotorwelle parallel zu der Rotorwelle angeordnet ist,
wobei die Bremsrotorwelle mit einem Verzahnungsteil verbunden ist, das mit dem zweiten Verzahnungsteil in Eingriff steht.
2. Kompaktantrieb nach Anspruch 1 , dadurch gekennzeichnet, dass die Bremse eine elektromagnetisch betätigbare Bremse ist.
3. Kompaktantrieb nach Anspruch 1 , dadurch gekennzeichnet, dass als Bremse eine piezoelektrisch Bremse vorgesehen ist.
4. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass mindestens eine Getriebestufe als Stirnradgetriebestufe ausgeführt ist.
5. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Getriebestufe als Verstellgetriebe ausgeführt ist, insbesondere als Breitkeilriemengetriebe oder Kettenantrieb.
6. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Elektromotor ein Synchronmotor und/oder ein permanenterregter Motor ist.
7. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Umrichter seitlich von der Rotorwelle angeordnet ist.
8. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Getriebebereich gegen die Umgebung und gegen den Bereich des Motors sowie gegen den Elektronikraumbereich abgedichtet ist.
9. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Getriebebereich, der Bereich des Motors und der Elektronikraumbereich auf einem ungefähr gleichen Temperaturniveau sich befinden.
10. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Motor einen Geber, insbesondere umfassend einen Resolver-Stator und einen Resolver- Rotor, umfasst.
11. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass
Rotorwelle und mindestens eine Welle des Getriebes im selben Gehäuseteil gelagert sind.
12. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass nur ein einziger Wellendichtring auf der Rotorwelle läuft.
13. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass drei Wellendichtringe auf der Abtriebswelle laufen.
14. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Gehäuse aus Gehäuseteilen und Gehäusedeckeln zusammengesetzt ist, insbesondere zwei Gehäuseteilen und einem Gehäusedeckel.
15. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass ein Gehäusedeckel als Halterung für eine elektronische Schaltung vorgesehen ist oder eine elektronische Schaltung im Gehäusedeckel integriert ist.
16. Kompaktantrieb nach Anspruch 15, dadurch gekennzeichnet, dass der Gehäusedeckel mit der elektronischen Schaltung elektrisch mittels elektrischer Steckverbinder mit dem restlichen Kompaktantrieb verbunden ist, insbesondere zur schnellen und einfachen Austauschbarkeit des Gehäusedeckels bei Wartungsarbeiten oder Reparaturen.
17. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Gehäusedeckel mit seiner Normalenrichtung senkrecht zur Abtriebswelle ausgerichtet ist.
18. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass elektrische Anschlussvorrichtungen für Leistungsleitungen an einem Gehäuseteil des Kompaktantriebs vorgesehen sind.
19. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Kompaktantrieb zumindest eine elektronische Schaltung zur Aufmodulation oder Demodulation von Information auf die Leistungsleitungen umfasst.
20. Kompaktantrieb nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die abtriebsseitigste Getriebestufe als Winkelgetriebestufe, insbesondere als Schneckengetriebestufe oder Spiroplangetriebestufe, ausgeführt ist.
PCT/EP2004/011150 2003-11-13 2004-10-06 Kompaktantrieb WO2005048435A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BRPI0416511-0A BRPI0416511B1 (pt) 2003-11-13 2004-11-11 Device for a compact drive, drive unit with an axially displaced angular gear stage and process for manufacturing a driving device
EP10010185.6A EP2264864B1 (de) 2003-11-13 2004-11-11 Kompaktantrieb und Verfahren zur Fertigung eines Antriebs
CN2004800333659A CN1879278B (zh) 2003-11-13 2004-11-11 紧凑型驱动装置
AU2004310181A AU2004310181B2 (en) 2003-11-13 2004-11-11 Compact drive unit, axially displaced angular gear, and method for the production of a drive unit
EP04797828.3A EP1685639B1 (de) 2003-11-13 2004-11-11 Kompaktantrieb, achsversetztes winkelgetriebe und verfahren zur fertigung eines antriebs
PCT/EP2004/012800 WO2005048436A2 (de) 2003-11-13 2004-11-11 Kompaktantrieb, achsversetztes winkelgetriebe und verfahren zur fertigung eines antriebs
EP10009701.3A EP2264863B1 (de) 2003-11-13 2004-11-11 Kompaktantrieb, spiroplangetriebe und verfahren zur fertigung eines antriebs
US10/577,588 US7846054B2 (en) 2003-11-13 2004-11-11 Compact drive, spiroid gear unit, and method for manufacturing a drive unit
US12/938,230 US8079289B2 (en) 2003-11-13 2010-11-02 Compact drive, spiroid gear unit, and method for manufacturing a drive unit
US13/299,900 US8943673B2 (en) 2003-11-13 2011-11-18 Method for manufacturing a drive unit
US14/579,557 US9184644B2 (en) 2003-11-13 2014-12-22 Method for manufacturing a compact drive unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10353226.9 2003-11-13
DE10353226 2003-11-13

Publications (1)

Publication Number Publication Date
WO2005048435A1 true WO2005048435A1 (de) 2005-05-26

Family

ID=34585103

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2004/011150 WO2005048435A1 (de) 2003-11-13 2004-10-06 Kompaktantrieb
PCT/EP2004/012800 WO2005048436A2 (de) 2003-11-13 2004-11-11 Kompaktantrieb, achsversetztes winkelgetriebe und verfahren zur fertigung eines antriebs

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/012800 WO2005048436A2 (de) 2003-11-13 2004-11-11 Kompaktantrieb, achsversetztes winkelgetriebe und verfahren zur fertigung eines antriebs

Country Status (6)

Country Link
US (4) US7846054B2 (de)
CN (1) CN1879278B (de)
AU (1) AU2004310181B2 (de)
BR (1) BRPI0416511B1 (de)
DE (1) DE102004054601B4 (de)
WO (2) WO2005048435A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515001A (zh) * 2011-11-30 2012-06-27 日立电梯(中国)有限公司 一种电梯曳引机

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2527760T3 (es) * 1998-07-23 2015-01-29 Yeda Research And Development Co., Ltd. Tratamiento de enfermedad de Crohn con copolímero 1 y polipéptidos
US6800287B2 (en) 1998-09-25 2004-10-05 Yeda Research And Development Co., Ltd. Copolymer 1 related polypeptides for use as molecular weight markers and for therapeutic use
JP2007509981A (ja) * 2003-10-31 2007-04-19 テバ ファーマシューティカル インダストリーズ リミティド 薬物デリバリー用ナノ粒子
SI1797109T1 (sl) * 2004-09-09 2016-07-29 Yeda Research And Development Co., Ltd. Zmesi polipeptidov, sestavki, ki jih vsebujejo, in postopki za njihovo pripravo ter njihove uporabe
ZA200705874B (en) * 2005-02-02 2009-04-29 Teva Pharma Process for producing polypeptide mixtures using hydrogenolysis
DE102005025383A1 (de) 2005-05-31 2006-12-14 Wittenstein Ag Aktuator
US7342379B2 (en) * 2005-06-24 2008-03-11 Emerson Electric Co. Sensorless control systems and methods for permanent magnet rotating machines
US7208895B2 (en) * 2005-06-24 2007-04-24 Emerson Electric Co. Control systems and methods for permanent magnet rotating machines
DE102005042599A1 (de) * 2005-09-07 2007-04-12 Sew-Eurodrive Gmbh & Co. Kg System, Antrieb und Verfahren zur Herstellung und/oder Inbetriebnahme eines Antriebs
DE102005056295A1 (de) * 2005-11-24 2007-06-06 Sew-Eurodrive Gmbh & Co. Kg Anlage
DE102006017413A1 (de) * 2006-04-13 2007-10-25 Zf Friedrichshafen Ag Aktuator für ein zu betätigendes Bauteil eines Kraftfahrzeugs
DE102006025010A1 (de) * 2006-05-26 2007-11-29 Khs Ag Stellantrieb
EP2092265B1 (de) * 2006-11-13 2013-04-10 Raytheon Company Unbemanntes roboterbodenfahrzeug mit ausfahrbarer bzw. einziehbarer sensorhalterung
DE102008015686B4 (de) 2007-04-05 2023-05-17 Sew-Eurodrive Gmbh & Co Kg Antrieb und Vorrichtung
FI121102B (fi) * 2007-05-16 2010-06-30 Abb Oy Lämmitettävä taajuusmuuttajakokoonpano ja menetelmä taajuusmuuttajakokoonpanon lämmittämiseksi
DE102007038689B3 (de) * 2007-08-15 2009-03-05 Sew-Eurodrive Gmbh & Co. Kg Elektromagnetisch betätigbare Drehmomentsteuervorrichtung
DE102007052303B4 (de) * 2007-10-31 2015-01-22 Sew-Eurodrive Gmbh & Co Kg Elektrogerät
JP5240265B2 (ja) * 2010-09-22 2013-07-17 アイシン精機株式会社 動力伝達装置
DE102010046275A1 (de) * 2010-09-22 2012-03-22 Netstal-Maschinen Ag Universelle Hilfssteuerung für eine Spritzgießmaschine
DE102011109537B4 (de) * 2011-08-05 2021-12-30 Sew-Eurodrive Gmbh & Co Kg Umrichtersystem mit Überwachungseinrichtung, Antrieb und Fahrzeug
JP5434991B2 (ja) * 2011-09-01 2014-03-05 株式会社安川電機 ロボット
US20130305856A1 (en) * 2012-05-15 2013-11-21 Milan Klimes Actuator
US9812923B2 (en) * 2014-05-23 2017-11-07 Aero Industries, Inc. Gear motor
CN106469967A (zh) * 2015-08-14 2017-03-01 豪伟绿能制造股份有限公司 发电设备
CN109311150B (zh) * 2016-07-07 2020-09-01 Abb瑞士股份有限公司 用于并联运动机器人的基座
US10232701B2 (en) * 2017-02-08 2019-03-19 Asi Technologies, Inc. Drive for autonomous guided vehicle
DE102017204119A1 (de) * 2017-03-13 2018-09-13 Robert Bosch Gmbh Aktor mit einer Antriebseinheit und einer Getriebeeinheit
DE102018210130A1 (de) * 2018-06-21 2019-12-24 Mahle International Gmbh Stelleinrichtung und ein Verfahren zum Herstellen der Stelleinrichtung
GB2579358B (en) * 2018-11-28 2021-06-09 Jaguar Land Rover Ltd A stator and a stator housing for an electric machine
WO2020151911A1 (de) 2019-01-21 2020-07-30 Sew-Eurodrive Gmbh & Co. Kg Getriebemotor
US10965183B2 (en) * 2019-06-14 2021-03-30 Honeywell International Inc. Integrated traction drive system
FR3098453B1 (fr) * 2019-07-12 2021-07-02 Renault Sas Motorisation electrique pour vehicule automobile et procede d’usinage de carters
DE102019124149A1 (de) * 2019-09-09 2021-03-11 Auma Riester Gmbh & Co. Kg Stellantrieb und Verfahren zur Ansteuerung einer Bremse eines Stellantriebs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004796A1 (en) * 1984-04-19 1985-11-07 S. H. Svensk Handikappteknik Ab A method and a drive assembly for operating and locking component members of electrically operated prostheses, manipulators and like devices
US4652781A (en) * 1984-09-22 1987-03-24 Swf Auto-Electric Gmbh Drive unit for adjusting window panes, sunroofs, seats and similar motor vehicle parts
US4669578A (en) * 1986-03-13 1987-06-02 Rikuo Fukamachi Motor driven valve
US6097123A (en) * 1999-06-03 2000-08-01 Johnson Controls Technology Company Brake and stall detector for a motorized actuator
EP1049234A2 (de) * 1999-04-27 2000-11-02 Aisin Aw Co., Ltd. Antriebseinheit
US6169345B1 (en) * 1997-04-10 2001-01-02 Danfoss A/S Compact drive
DE20207519U1 (de) * 2002-05-13 2002-07-25 Rose & Krieger Gmbh Co Kg Elektromotorischer Stellantrieb

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US652781A (en) * 1899-08-31 1900-07-03 Henry De Barn Johnson Device for heating wheel-tires.
DE6922514U (de) 1968-06-07 1970-02-12 Anders Bertil Aberg Abstandhalter fuer armierungseisen
US3720863A (en) * 1969-08-27 1973-03-13 Allis Chalmers Electrically driven vehicle steered by control of power and speed of tractive elements
US4055094A (en) * 1976-10-04 1977-10-25 General Electric Company Method for protecting stator windings of dynamoelectric machine
EP0033353A1 (de) * 1980-02-05 1981-08-12 Black & Decker Inc. Verfahren zum Regeln der Drehzahl eines Bohrers, Schlagbohrers oder rotierenden Hammers und Apparat dafür
CA1215738A (en) * 1983-03-14 1986-12-23 Gert Nel Electrical machine having a quickly releasable stator
JPS6035937A (ja) 1983-08-08 1985-02-23 Mitsubishi Heavy Ind Ltd 捲線乾燥温度調節装置
EP0228007B1 (de) * 1985-12-28 1992-04-15 Paul Forkardt GmbH & Co. KG Werkzeugmaschine und deren Betriebsverfahren
GB2197827B (en) * 1986-11-28 1990-08-22 Trw Cam Gears Ltd Power assistance means for a steering gear and a steering gear assembly which includes such means
DE3642723A1 (de) * 1986-12-13 1988-06-23 Grundfos Int Statischer frequenzumrichter, insbesondere frequenzumrichter zur steuerung und/oder regelung von leistungsgroessen eines elektromotors
DE3642724A1 (de) * 1986-12-13 1988-06-23 Grundfos Int Elektromotor mit einem frequenzumrichter zur steuerung der motorbetriebsgroessen
DE3744488A1 (de) * 1987-12-30 1989-07-20 Kress Elektrik Gmbh & Co Elektrischer universalmotor
FR2629961B1 (fr) * 1988-04-11 1993-11-12 Acutronic France Sa Dispositif d'entrainement en rotation d'un bras de centrifugeuse et procede d'alimentation en energie d'un tel dispositif
JPH0713420Y2 (ja) * 1988-05-11 1995-03-29 マブチモーター株式会社 周波数発電機をそなえた小型モータ
CH676403A5 (de) * 1988-11-01 1991-01-15 Asea Brown Boveri
DE4014918A1 (de) * 1990-05-10 1991-11-14 Grundfos Int Elektromotor
JPH0498860U (de) 1991-01-24 1992-08-26
DE69225149T2 (de) * 1991-05-09 1998-08-06 Nu Tech And Engineering Inc Elektromotor, verfahren zur regelung und zum zusammenbau
US5372213A (en) * 1991-10-24 1994-12-13 Aisin Aw Co., Ltd. Oil circulating system for electric vehicle
DE4309599A1 (de) * 1993-03-22 1994-09-29 Borus Spezialverfahren Verfahren und Vorrichtung zum Nachweis eines unbelebten Objekts mit dynamischen Eigenschaften im Boden
DE4309559B4 (de) * 1993-03-24 2005-11-10 Sew-Eurodrive Gmbh & Co. Kg Achsversetztes Winkelgetriebe
IT1266360B1 (it) * 1993-05-20 1996-12-27 Bonfiglioli Riduttori Spa Riduttore angolare a piu' stadi.
JPH0775303A (ja) * 1993-07-09 1995-03-17 Tamron Co Ltd アクチュエータ装置及びアクチュエータ
US5691584A (en) * 1993-09-09 1997-11-25 Honda Giken Kogyo Kabushiki Kaisha Wheel motor for vehicles
MY115442A (en) 1994-08-04 2003-06-30 Honda Motor Co Ltd Motor with gear reducer
DE4434373C2 (de) * 1994-09-15 1999-04-01 Mannesmann Ag Elektrozug mit drehzahlgeregelter Geschwindigkeit
SE515130C2 (sv) * 1995-02-24 2001-06-11 Abb Ab Robotutrustning
GB9615316D0 (en) * 1995-11-16 1996-09-04 Lucas Ind Plc Improvements in electric actuators for vehicle powered steering systems
DE19622396A1 (de) 1996-06-04 1997-12-18 Alexander Dr Stoev Frequenzumrichter für eine Antriebsvorrichtung
US6766708B2 (en) * 1997-08-18 2004-07-27 Eddie L. Brooks Gear ratio multiplier
DE19742426B9 (de) * 1997-09-25 2004-09-09 Sew-Eurodrive Gmbh & Co Schaltungsanordnung
DE19817497A1 (de) * 1998-04-20 1999-10-28 Isad Electronic Sys Gmbh & Co Verfahren und Startersystem zum Starten eines Verbrennungsmotors
GB2347277B (en) * 1998-09-04 2003-08-27 Matsushita Electric Ind Co Ltd Geared motor
IT1302608B1 (it) 1998-10-06 2000-09-29 Adler Spa Dispositivo di regolazione di un generatore elettrico utilizzato suun veicolo
DE19848324B4 (de) * 1998-10-20 2007-03-22 Sew-Eurodrive Gmbh & Co. Kg Kupplung
US6164407A (en) * 1998-12-04 2000-12-26 Trw Inc. Electric power steering apparatus
US6700253B1 (en) * 1999-07-19 2004-03-02 Tokyo R & D Co., Ltd. Motor and production method of motor
DE19935196C1 (de) * 1999-07-27 2000-12-28 Abb Patent Gmbh Bremsbarer elektromotorischer Antrieb
ES2192022T3 (es) * 1999-09-01 2003-09-16 Ramachandran Ramarathnam Util electrico portatil.
DE10049883A1 (de) 2000-10-10 2002-04-25 Bob Boboloski Gmbh Mehrphasenmotoren mit Wicklungen ohne Spulenüberlappung
EP1231119B1 (de) * 2001-02-09 2005-05-04 TRW Automotive Electronics & Components GmbH & Co. KG Feststellbremssystem für Fahrzeuge
DE20107326U1 (de) * 2001-04-27 2001-06-28 Rose & Krieger Gmbh Co Kg Elektromotorische Verstelleinrichtung
JP2002336305A (ja) * 2001-05-17 2002-11-26 Moric Co Ltd ブレーキ付モータ装置
DE10130446A1 (de) * 2001-06-23 2003-01-09 Sauter Kg Feinmechanik Werkzeugrevolver
EP1461222B1 (de) * 2002-01-04 2005-04-27 Sascha Mantovani Elektrischer motor mit an das zu drehende element gekoppeltem rotor
DE10207760B4 (de) 2002-02-23 2019-10-31 Schaeffler Technologies AG & Co. KG Vorrichtung zum lösbaren Verbinden und Verstellen zweier zueinander drehwinkelverstellbarer Wellen
JP4132880B2 (ja) * 2002-03-07 2008-08-13 株式会社小糸製作所 車両用照明装置
JP3932177B2 (ja) * 2002-05-24 2007-06-20 株式会社ジェイテクト モータの製造装置
DE10317749A1 (de) 2002-07-05 2004-01-29 Sew-Eurodrive Gmbh & Co Kg Mehrphasenmotor
KR100689939B1 (ko) 2002-09-13 2007-03-09 아이신에이더블류 가부시키가이샤 구동 장치
JP3865702B2 (ja) * 2003-03-06 2007-01-10 株式会社デンソー バルブタイミング可変装置搭載車両のエンジン保護装置
EP1625651B1 (de) * 2003-05-09 2011-07-13 SEW-EURODRIVE GmbH & Co. KG Kompaktantrieb
DE10328228C5 (de) * 2003-05-09 2020-04-23 Sew-Eurodrive Gmbh & Co Kg Kompaktantrieb

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985004796A1 (en) * 1984-04-19 1985-11-07 S. H. Svensk Handikappteknik Ab A method and a drive assembly for operating and locking component members of electrically operated prostheses, manipulators and like devices
US4652781A (en) * 1984-09-22 1987-03-24 Swf Auto-Electric Gmbh Drive unit for adjusting window panes, sunroofs, seats and similar motor vehicle parts
US4669578A (en) * 1986-03-13 1987-06-02 Rikuo Fukamachi Motor driven valve
US6169345B1 (en) * 1997-04-10 2001-01-02 Danfoss A/S Compact drive
EP1049234A2 (de) * 1999-04-27 2000-11-02 Aisin Aw Co., Ltd. Antriebseinheit
US6097123A (en) * 1999-06-03 2000-08-01 Johnson Controls Technology Company Brake and stall detector for a motorized actuator
DE20207519U1 (de) * 2002-05-13 2002-07-25 Rose & Krieger Gmbh Co Kg Elektromotorischer Stellantrieb

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515001A (zh) * 2011-11-30 2012-06-27 日立电梯(中国)有限公司 一种电梯曳引机

Also Published As

Publication number Publication date
BRPI0416511A (pt) 2007-01-09
US7846054B2 (en) 2010-12-07
US20110041637A1 (en) 2011-02-24
US8943673B2 (en) 2015-02-03
DE102004054601B4 (de) 2020-10-29
DE102004054601A1 (de) 2005-06-23
US20150101179A1 (en) 2015-04-16
CN1879278A (zh) 2006-12-13
BRPI0416511B1 (pt) 2017-06-27
US8079289B2 (en) 2011-12-20
US9184644B2 (en) 2015-11-10
AU2004310181B2 (en) 2010-03-25
WO2005048436A3 (de) 2005-08-11
US20120060358A1 (en) 2012-03-15
US20070007055A1 (en) 2007-01-11
AU2004310181A1 (en) 2005-05-26
CN1879278B (zh) 2011-10-19
WO2005048436A2 (de) 2005-05-26

Similar Documents

Publication Publication Date Title
WO2005048435A1 (de) Kompaktantrieb
DE19841828C2 (de) Hybridantrieb, insbesondere für Fahrzeuge
EP1250748B1 (de) Elektrischer antrieb für ein fahrzeug
EP1715143A2 (de) Linearspannsystem
DE202010001318U1 (de) Elektrische Achsantriebsbaugruppe
DE102016112051A1 (de) Modulares System für motorbetriebene Förderrollen
EP2297485A2 (de) Getriebevorrichtung mit einem getriebegehäuse
DE10328228C5 (de) Kompaktantrieb
WO2019025100A1 (de) Ölpumpenantriebsvorrichtung
WO2004042891A1 (de) Permanentmagnetmaschine mit axialem luftspal
DE102008044959A1 (de) Kompaktantrieb
DE10028046A1 (de) Umlaufgetriebe und Baureihe von Umlaufgetrieben
EP1625651B1 (de) Kompaktantrieb
EP2285614B1 (de) Vorrichtung zur Erzeugung und Übertragung eines Antriebsdrehmoments
DE102019218768A1 (de) Antriebseinheit für ein Pumpensystem
DE102005026657B4 (de) Gehäuse, Getriebe und Getriebebaukasten
EP2264864B1 (de) Kompaktantrieb und Verfahren zur Fertigung eines Antriebs
WO2017207122A1 (de) Ölpumpenantrieb für ein getriebe eines kraftfahrzeugs
DE102012007623B4 (de) Motor-Getriebe-Einheit
DE102005063570B4 (de) Gehäuse, Getriebe und Getriebebaukasten
EP3625880B1 (de) Getriebemotoreinheit
DE10329035A1 (de) Antrieb für eine Plastifiziereinheit
DE102012001389B4 (de) Getriebe mit einem zentralen Gehäuseteil
DE102016105654A1 (de) System und Verfahren zur mechanischen Verbindung eines Umlaufgetriebes mit einem Motorgehäuse und Motor-Getriebe-Anordnung
WO2020148174A1 (de) Antrieb für eine karusselldrehtür

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase