WO2005046054A1 - 半導体装置、無線端末装置及び無線通信機器 - Google Patents

半導体装置、無線端末装置及び無線通信機器 Download PDF

Info

Publication number
WO2005046054A1
WO2005046054A1 PCT/JP2003/014289 JP0314289W WO2005046054A1 WO 2005046054 A1 WO2005046054 A1 WO 2005046054A1 JP 0314289 W JP0314289 W JP 0314289W WO 2005046054 A1 WO2005046054 A1 WO 2005046054A1
Authority
WO
WIPO (PCT)
Prior art keywords
analog circuit
performance
circuit
filter
converter
Prior art date
Application number
PCT/JP2003/014289
Other languages
English (en)
French (fr)
Inventor
Kenichi Minobe
Atsushi Matsuda
Masashi Okubo
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to AU2003277662A priority Critical patent/AU2003277662A1/en
Priority to CN2003801105388A priority patent/CN1860682B/zh
Priority to PCT/JP2003/014289 priority patent/WO2005046054A1/ja
Priority to EP03818967A priority patent/EP1684426A4/en
Priority to JP2005510458A priority patent/JPWO2005046054A1/ja
Publication of WO2005046054A1 publication Critical patent/WO2005046054A1/ja
Priority to US11/402,936 priority patent/US7684780B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1217Frequency selective two-port networks using amplifiers with feedback using a plurality of operational amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/04Frequency selective two-port networks
    • H03H11/12Frequency selective two-port networks using amplifiers with feedback
    • H03H11/1291Current or voltage controlled filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/004Reconfigurable analogue/digital or digital/analogue converters
    • H03M1/007Reconfigurable analogue/digital or digital/analogue converters among different resolutions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • H04B1/48Transmit/receive switching in circuits for connecting transmitter and receiver to a common transmission path, e.g. by energy of transmitter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2250/00Indexing scheme relating to dual- or multi-band filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/069Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
    • H03M1/0695Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal

Definitions

  • the present invention relates to a semiconductor device, a wireless terminal device, and a wireless communication device, and more particularly, to a semiconductor device, a wireless terminal device, and a wireless communication device capable of switching circuit characteristics.
  • a conventional digital wireless terminal generally includes an RF section 80, an AFE (Analog Front End) section 90, and a DBB (Digital Base Band) section 100, as shown in FIG.
  • the RF unit 80 includes an antenna 81, a transmission amplifier unit 82 and a reception amplifier unit 83 each including a mixer, a power amplifier, and the like, and a shared circuit 84.
  • the AFE section 90 which converts a signal between analog and digital, comprises a receiving section and a transmitting section.
  • the DBB unit 100 that performs digital signal processing has a signal processing unit 101.
  • an analog signal received by antenna 81 is amplified by reception amplifier section 83, and then subjected to filter processing by reception filter 91. Further, the filtered analog signal is converted into a digital signal by the ADC 92 and supplied to the signal processing unit 101.
  • the digital signal to be transmitted output from the signal processing unit 101 is converted into an analog signal by the DAC 93, and then subjected to filter processing by the transmission filter 94. Further, after predetermined processing such as amplification is performed by the transmission amplifier, the signal is transmitted via the antenna 81.
  • FIG. 9 the same reference numerals are given to blocks and the like having the same functions as the blocks and the like shown in FIG.
  • RF—A80 , AFE-A90, and AFE-A90 A signal processing unit 101 connected to one wireless system, and a signal processing unit connected to RF-B80, AFE-B90, and AFE-B90
  • the unit 101 corresponds to another wireless system.
  • a device that switches between a wide band filter and a low band filter according to the wireless system for example, see Japanese Patent Application Laid-Open No. H10-224243 (Patent Document 1)
  • Changing the bandwidth by changing the sampling frequency of a digital filter for example, see Japanese Patent Application Laid-Open No. 2002-500490 (Patent Document 2)
  • changing the filter width by changing software and changing the band width See, for example, JP-A-2000-13279 (Patent Document 3)).
  • the circuit will operate with more performance than necessary depending on the wireless system that actually operates, and power will be wasted. Also, the attenuation characteristics of the filter may be insufficient depending on the wireless system to be selected, and depending on the wireless system, further digital filter processing is required and power is wasted.
  • Patent Document 1
  • Patent Document 2
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to be able to appropriately switch circuit characteristics according to a communication environment while suppressing an increase in circuit scale. .
  • the semiconductor device of the present invention cooperates with the first analog circuit whose circuit characteristics are matched to the first performance and the second analog circuit to achieve the second performance higher than the first performance.
  • the first analog circuit is operated and the power supply to the second analog circuit is cut off to realize the first performance, and the first analog circuit and the second analog circuit are operated.
  • the second performance is realized by operating the two analog circuits together. Therefore, by sharing the first analog circuit, it is possible to appropriately switch circuit characteristics according to required performance while suppressing an increase in circuit scale.
  • power consumption can be reduced by shutting off power supply to analog circuits that do not need to operate according to the required performance.
  • the first analog circuit in the case of the first wireless system, the first analog circuit is operated and the power supply to the second analog circuit is shut off, and in the case of the second wireless system, May operate both the first analog circuit and the second analog circuit.
  • the circuit characteristics can be appropriately switched so as to meet the required performance according to the wireless system.
  • the first analog circuit is operated and the power supply to the second analog circuit is cut off, and the first analog circuit and the second analog circuit are turned off.
  • the state in which both analog circuits are operated may be switched. In such a case, the circuit characteristics can be appropriately switched, and the quality of the received signal can be improved.
  • FIG. 1 shows a wireless terminal device to which the semiconductor device according to the first embodiment of the present invention is applied.
  • FIG. 3 is a block diagram illustrating a configuration example.
  • FIG. 2 is a diagram illustrating an example of filter attenuation characteristics required in different wireless systems.
  • FIG. 3 is a block diagram illustrating a configuration example of a filter according to the first embodiment.
  • FIG. 4 is a diagram conceptually illustrating an operation principle of the filter illustrated in FIG.
  • FIG. 5 is a block diagram illustrating a configuration example of an AD converter according to the first embodiment.
  • FIG. 6 is a block diagram illustrating a configuration example of a DA converter according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of an attenuation characteristic of a filter according to the embodiment.
  • FIG. 8 is a block diagram illustrating a configuration of a conventional wireless terminal.
  • FIG. 9 is a block diagram showing a configuration of a conventional wireless terminal supporting two wireless systems.
  • FIG. 1 is a block diagram illustrating a configuration example of a wireless terminal device to which the semiconductor device according to the first embodiment of the present invention is applied.
  • the wireless terminal device according to the first embodiment supports a plurality of wireless systems (two in the following description) and switches circuit characteristics according to the operating wireless system.
  • the wireless terminal device includes an RF (Radio Frequency) unit (RF-A) 10 of the first wireless system, an RF unit (RF-B) of the second wireless system. ) 20, AFE (Analog Front End) section 30, DBB (Digital Base Band) section 40, and switches SW1 and SW2.
  • RF Radio Frequency
  • RF-B Radio Frequency unit
  • AFE Analog Front End
  • DBB Digital Base Band
  • RF—A 10 has an antenna 11, a transmission amplifier 12 and a reception amplifier 13, each of which includes a mixer, a power amplifier, etc., and amplifies signals, and has a shared circuit 14. To do.
  • the RF-B 20 is configured in the same manner as the RF-A 10 and includes an antenna 21, a transmission amplifier 22, a reception amplifier 23, and a shared circuit 24.
  • RF-A 10 and RF-B 20 perform high-frequency signal processing and the like.
  • the AFE unit 30 includes a receiving unit and a transmitting unit, and converts an input signal into an analog signal and a digital signal.
  • the receiving unit consists of a receiving filter 31 that filters analog signals input from the RF units 10 and 20, and a receiving AD converter (analog-to-digital) that converts the filtered analog signals into digital signals. Converter, ADC) 32.
  • the transmission unit is equipped with a transmission DA converter (digital-analog converter, DAC) 33 that converts a digital signal input from the DBB unit 40 into an analog signal, and an analog signal obtained by DA conversion. It has a transmission filter 34 for performing filter processing.
  • the reception filter 31, the ADC 32, the DAC 33, and the transmission filter 34 based on the control signal CTL supplied from the DBB unit 40, have circuit characteristics (filters 31, 34).
  • the attenuation characteristics of the ADC 32 and the resolution of the DAC 33, etc. can be switched to circuit characteristics suitable for the selected wireless system.
  • the DBB unit 40 has a signal processing unit 41 and performs digital signal processing such as baseband signal processing.
  • the signal processing unit 41 outputs a control signal CTL according to the selected wireless system. Further, the signal processing unit 41 performs predetermined digital signal processing using the input digital signal, or outputs a digital signal obtained by digital signal processing or the like.
  • the DB B 40 outputs a control signal CTL to the AFE unit 30 according to the selected wireless system. Further, when the first wireless system is selected, the DB B 40 controls the switches SW1 and SW2 so that signals can be input and output between the RF-A 10 and the AFE unit 30. . Similarly, when the second wireless system is selected, the DBB 40 controls the switches SW1 and SW2 so that signals can be input and output between the RF-B 20 and the AFE unit 30. .
  • the analog signal received by the antenna 11 is amplified by the reception amplifier 13 and supplied to the reception filter 31 via the switch SW1.
  • the analog signal supplied to the reception filter 31 is filtered by the reception filter 31, then converted from an analog signal to a digital signal by the ADC 32, and supplied to the signal processing unit 41. You.
  • the digital signal output from the signal processing unit 41 is supplied to the DAC 33.
  • the digital signal supplied to the DAC 33 is converted from a digital signal into an analog signal by the DAC 33 and then subjected to a filtering process by the transmission filter 34.
  • the filtered signal is supplied to the transmission amplifier 12 via the switch SW2, subjected to predetermined processing such as amplification by the transmission amplifier 12, and then transmitted via the antenna 11 .
  • the two wireless systems according to the present embodiment require filter attenuation characteristics as shown in FIG. That is, as shown by the solid line RA in the first radio system, a fifth-order filter (low-pass filter) with a cutoff frequency (Fc) of 7 MHz is required, and in the second radio system, the dotted line RB As shown in, a second-order filter (low-pass filter) with a cutoff frequency of 2.5 MHz is required.
  • the horizontal axis represents frequency
  • the vertical axis represents attenuation characteristics.
  • the secondary filter of the second wireless system is superior, but using the filter of the second wireless system blocks the signal of the frequency required by the first wireless system. Will be done.
  • the filters 31 and 34 are composed of a secondary characteristic filter and a tertiary characteristic filter.
  • Voutl (1 / (sRC)) X Vin
  • Vout2 (1 / (sRC)) X
  • Voutl ⁇ / (sRC)) X (1 / (sRC)) X Vin
  • the secondary characteristic is obtained.
  • FIG. 3 is a diagram illustrating a configuration example of the filter 31.
  • reference numeral 51 denotes an input node of the filter 31.
  • 52 is a part of the filter on the low specification side, and includes a second-order characteristic filter (analog filter) 53 and a cut-off frequency (Fc) adjusting circuit 54 for adjusting the cut-off frequency based on the control signal CTL.
  • Reference numeral 55 denotes a tertiary characteristic filter (analog filter), and reference numeral 56 denotes a power supply control circuit for switching whether or not to supply power to the tertiary characteristic filter 55 in accordance with the control signal CTL.
  • SW 3 is a switch controlled in accordance with the control signal CTL, and is for selectively supplying the filter output of the secondary characteristic filter 53 to the tertiary characteristic filter 55 or the bypass line BL.
  • SW 4 is a switch controlled according to the control signal CTL, and selectively outputs the filter output of the secondary characteristic filter 53 or the filter output of the tertiary characteristic filter 55 via the bypass line BL to the output node 57. It is for supply.
  • the second characteristic filter 53 may be configured by connecting two primary filters in series. 3rd order filter 5 5 It may be configured by connecting in a column, or may be configured by connecting a primary filter and a secondary filter in series. Further, the secondary characteristic filter 53 and the tertiary characteristic filter 55 may be an operational amplifier filter or a Gm-C filter.
  • FIG. 4 is a diagram for explaining the operation principle of the filter shown in FIG. In FIG. 4, the order of the filter is not considered in order to simplify the explanation.
  • the positive input of the differential amplifier AMP1 connected to the power supply VDD is connected to the other end of the variable resistor R1 whose one end is connected to the input terminal IN, and the positive output is connected to the first terminal of the switch SWA. Connected.
  • One end of the capacitor C1, one end of the variable resistor R2, and the first terminal of the switch SWC are connected to an interconnection point between the positive input of the differential amplifier AMP1 and the other end of the variable resistor R1.
  • the other end of the capacitor C1 and the other end of the variable resistor R2 are connected to an interconnection point between the positive output of the differential amplifier AMP1 and the first terminal of the switch SWA.
  • the differential amplifier AMP1, the capacitor C1, and the variable resistor R2 connected as described above constitute a previous filter circuit, and this corresponds to the secondary characteristic filter 53 shown in FIG. Further, the variable resistor R2 corresponds to the cutoff frequency adjusting circuit 54, and the cutoff frequency is adjusted by controlling the resistance value of the variable resistor R2.
  • the positive input of the differential amplifier AMP2 connected to the power supply VDD via the MOS transistor T1 (regardless of P-channel type or N-channel type) to which the control signal SC is supplied to the gate is connected to the switch SWA.
  • the positive output is connected to the third terminal of switch SWB.
  • One end of the capacitor C2 and one end of the resistor R3 are connected to the interconnection point between the positive input of the differential amplifier AMP2 and the third terminal of the switch SWA, and the positive output of the differential amplifier AMP2 and the switch SWB are connected.
  • the other end of the capacitor C2 and the other end of the resistor R3 are connected to an interconnection point with the third terminal.
  • a differential filter AMP 2, a capacitor C 2, and a resistor R 3 constitute a subsequent filter circuit, which corresponds to the tertiary filter 55 shown in FIG. T 1 corresponds to the power supply control circuit 56.
  • the second terminal of the switch SWA is connected to one end of the bypass line BL, and the second terminal of the switch SWB is connected to the other end of the bypass line BL.
  • the first terminal of switch SWB is connected to output terminal OUT.
  • One end of the resistor R4 is connected to the second terminal of the switch SWC, and the other end is connected to the first terminal of the switch SWB via the switch SWD.
  • FIG. 4 shows only the circuits on the positive input side and the positive output side of the differential amplifiers AMP1 and AMP2, the negative input side and the negative output side are similarly configured.
  • the transistor T1 is turned off by the control signal SC.
  • the control signal SC As a result, power is not supplied to the subsequent filter circuit including the differential amplifier AMP2, the capacitor C2, and the resistor R3, and power consumption can be prevented.
  • switches SWA and SWB are connected so that the first and third terminals are connected, and switches SWC and SWD are controlled to be closed.
  • the transistor T1 is turned on by the control signal SC, and power is supplied to the subsequent filter circuit.
  • the signal input from the input terminal V in is filtered by the preceding filter circuit, and then further filtered by the subsequent filter circuit.
  • the signal filtered by the subsequent filter circuit is output from the output terminal OUT and fed back to the preceding filter circuit via the resistor R4.
  • the filter's attenuation characteristic is the fifth-order characteristic
  • the output of the secondary characteristic filter 53 and the input of the tertiary characteristic filter 55 are connected via the switch SW 3 based on the control signal CTL supplied from the signal processing unit 41,
  • the output of the next characteristic filter 55 and the output node 57 are connected via the switch SW4.
  • the power supply control circuit 56 supplies power to the tertiary characteristic filter 55 in accordance with a control signal CTL indicating that the first wireless system has been selected.
  • the signal input from the input node 51 is sequentially filtered by the second-order characteristic filter 53 and the third-order characteristic filter 55, that is, the same filter processing as that of the fifth-order characteristic filter is performed.
  • the cut-off frequency adjusting circuit 54 appropriately controls the cut-off frequency.
  • the output of the secondary characteristic filter 53 is based on the control signal CTL supplied from the signal processing unit 41.
  • one end of the bypass line BL are connected via a switch SW3
  • the other end of the bypass line BL and the output node 57 are connected via a switch SW4.
  • the power supply control circuit 56 cuts off the power supply to the tertiary characteristic filter 55 in accordance with the control signal CTL indicating that the second wireless system has been selected.
  • the signal input from the input node 51 is filtered by the secondary characteristic filter 53, and then output from the output node 57 via the bypass line BL.
  • the cutoff frequency is appropriately controlled by the cutoff frequency adjusting circuit 54.
  • both the second-order characteristic filter 53 and the third-order characteristic filter 55 are operated, and a filter with a low second-order characteristic is required.
  • only the second characteristic filter 53 is operated, and the power supply to the third characteristic filter 55 is cut off. This makes it possible to suppress an increase in the circuit scale by sharing the second-order characteristic filter 53 with the two wireless systems, and to appropriately switch the filter attenuation characteristics according to the wireless systems. Further, by cutting off the power supply to the tertiary characteristic filter 55 according to the wireless system, it is possible to prevent waste of power and reduce power consumption.
  • the first wireless system requires 10-bit performance
  • the second wireless system requires 8-bit performance
  • FIG. 5 is a diagram showing a configuration example of the ADC 32 adopting the pipeline method.
  • j l, 2, "-, 9) and a power supply control circuit 62.
  • the AD conversion circuit 60_i is cascaded, compares the reference voltage with the input voltage to determine digital data (1 bit), outputs the digital data to the corresponding adder 61-j, and outputs the residual signal to the next adder.
  • a / D converter 6 connected to the stage Outputs to ⁇ -i.
  • the adder circuits 61-j are also cascaded, and the digital data from the preceding adder circuit 6 l_j is bit-shifted as appropriate, and the digital data supplied from the AD converter circuit 6 ⁇ -i is added. Output to the addition circuit 61 connected to the stage.
  • the power supply control circuit 62 a control signal in response to CTL AD converter 60- 9, 60 ⁇ . Switch whether or not to supply power.
  • the power supply control circuit 62 controls the control signal C supplied from the signal processing unit 41 and indicating that the first wireless system has been selected.
  • the A / D conversion circuit 60 ⁇ compares the voltage of the input analog signal A I with the reference voltage, determines the value of the most significant bit (MSB) of the digital data, and outputs the value to the addition circuit 6.
  • the AD conversion circuit 60! Outputs the residual signal to the AD conversion circuit 60-2.
  • the AD conversion circuit 6 0 the residual signal of the voltage and is compared with the reference voltage to determine the value of the second digit of the bit from the most significant digital data adding circuit from AD converter 6 and outputs the 6 1 _ t, it outputs a residual signal to the AD converter 60-2.
  • the determination of the digital data value by the AD conversion circuit 61-i and the addition operation by the addition circuit 61-j are sequentially performed up to the final stage.
  • the input analog signal AI is converted into 10-bit digital data, and the value is output as a digital signal DO 10 from the addition circuit 61-9.
  • the power supply control circuit 62 transmits a control signal indicating that the second wireless system supplied from the signal processing unit 41 has been selected.
  • the ADC 32 is configured using a 1.5-bit AD conversion circuit.
  • the configuration is not limited to the 1.5-bit AD conversion circuit.
  • a 2.5-bit AD conversion circuit or a 3.5-bit AD conversion circuit may be used.
  • the ADC 32 may be configured by mixing AD conversion circuits having different numbers of bits.
  • the first wireless system requires 13-bit performance
  • the second wireless system requires 11-bit performance
  • FIG. 6 is a diagram showing a configuration example of a current addition type DAC 33.
  • FIG. 6 is a diagram showing a configuration example of a current addition type DAC 33.
  • the current source 7 0_ k supplies a current of I a X — 01 " ⁇ respectively.
  • the switch 7 1 — k has one terminal connected to the current source 7. ⁇ And the other terminal connected to I / are commonly connected to the V converting circuit 7 3. 1 ⁇ converter 7 3, converts the current supplied from the current source 7 0- k via the switch 7 l k to the voltage. the I / V
  • the gain control of the conversion circuit 73 is performed by the gain control circuit 74 in accordance with the control signal CTL.
  • the input circuit 72 controls the opening and closing of the switches 71- k based on the input digital signal DI. .
  • the power supply control circuit 75 switches whether or not to supply power to the current sources 70_ 770-2. Specifically, when the first wireless system (13 bits) is selected, the power supply control circuit 75 indicates that the first wireless system supplied from the signal processing unit 41 has been selected. in response to the control signal CTL indicates the supply power to the current source 7 0 There 7 0_ 2. On the other hand, when the second wireless system (1 1 bit) is selected, the power supply control circuit 6 2 cuts off the power to the current source 7 0 There 7 0_ 2.
  • the switches 71- k are controlled to open and close based on the input digital signal DI, and a current corresponding to the digital signal DI is supplied to the I "V conversion circuit 73.
  • the current-to-voltage conversion is performed by the I / V conversion circuit 73, and an analog signal AO having a voltage corresponding to the value of the digital signal DI is output. Interrupting the power supply to the current source 7 0- had 7 0 2 in accordance with the-option wireless manner.
  • circuit characteristics can be appropriately switched according to the wireless system, and power consumption can be prevented and power consumption can be reduced.
  • a part of the analog circuit operated when performing communication in the second wireless system Is shared with the analog circuit that operates when communicating with the first wireless system, circuit characteristics can be switched appropriately according to the wireless system while suppressing an increase in circuit area.
  • the wireless terminal device can be easily reduced in size. Further, when communication is performed by the first wireless method, power consumption can be reduced by cutting off power supply to a circuit portion that is operated only when performing communication by the second wireless method.
  • the wireless system is selected by the user.
  • the communication environment can be checked without the user's awareness. It is possible to automatically switch the optimal wireless system according to the conditions.
  • the present invention is not limited to the two wireless systems, and can be applied to a case where a plurality of wireless systems are supported.
  • a wireless terminal device to which the semiconductor device according to the second embodiment of the present invention is applied switches circuit characteristics in accordance with a communication environment (quality of a received signal, etc.).
  • the overall configuration of the wireless terminal device according to the second embodiment of the present invention is the same as that of the wireless terminal device according to the first embodiment, except that only one RF unit is provided. Omitted.
  • the communication characteristics of the wireless terminal device change according to the placed communication environment. For example, there are areas where the radio wave environment is relatively good near the base station, while areas far from the base station There are areas where the radio wave environment is poor, such as areas. In an area where the radio wave environment is poor, the desired signal level related to communication is reduced, and compared to an area where the radio wave environment is good, the noise portion of the received signal becomes larger, and the quality of the received signal is reduced. In some situations, this can lead to channel disconnection.
  • the attenuation characteristic of the fourth-order characteristic filter as shown by a dotted line RB ′ in FIG. 7 is required for the wireless terminal device, and the resolution of the ADC 32 is required.
  • the filter 31 is constituted by the filter having the following characteristic
  • the ADC 32 is constituted by an ADC having a higher resolution (more bits) than 6 bits (for example, an ADC having a resolution of 8 bits).
  • the filter 31 and the ADC 32 may be configured in the same manner as in the first embodiment. That is, the filter 31 enables the fourth-order characteristic filter and the first-order characteristic filter to be connected in series, and the ADC 32 connects the 6-bit AD conversion circuit and the 2-bit AD conversion circuit in series. What is necessary is just to make it connectable.
  • the filter 31 operates the fourth-order characteristic filter
  • the ADC 32 operates only the 6-bit AD conversion circuit.
  • the primary filter corresponding to the fifth-order part in the filter 31 and the AD conversion circuit for two bits corresponding to the seventh and eighth bits in the ADC 32 have power consumption. The power supply is cut off to prevent waste.
  • the filter 131 operates both the fourth-order characteristic filter and the first-order characteristic filter.
  • the filter 31 is a filter having a fifth-order characteristic so that the attenuation characteristic of the filter is sharp. In this way, it is possible to improve the quality of a received signal by preventing interference by other signals, for example, signals of other users, and reducing noise.
  • the ADC 32 operates all the AD conversion circuits for 8 bits. As a result, the resolution of the ADC 32 is increased, and the information of the normally discarded part (the actual In this embodiment, the quality of the received signal can be improved by utilizing the information of the seventh and eighth bits.
  • a decrease in the quality of the received signal can be detected by measuring the signal level, BER (Bit Error Rate), or S ⁇ N ratio (Signal to Noise ratio) of the received signal.
  • the signal level of the received signal can be detected by the reception amplifier section of the RF section shown in Fig. 1, the BER can be detected by the DB B section having the error correction decoding function, and the S / N ratio must be detected by the RF section. Can be.
  • the order of the filter 31 (the attenuation characteristic of the filter) and the resolution of the ADC 32 are adaptively minimized according to the quality of the received signal.
  • the circuit characteristics are switched to improve the quality of the received signal, and stable communication can be performed even in a poor communication environment.
  • power consumption can be reduced by cutting off power supply to circuits in the filter 31 and the ADC 32 that do not need to be operated according to the quality of the received signal. For example, in the case of a wireless terminal device operating on a battery, the talk time and the standby time can be increased.
  • the configurations of the filters 31 and 34, the ADC 32, and the DAC 33 described in the first and second embodiments are merely examples, and the order of the filters 31 and 34, the ADC 32 and the D
  • the decomposition performance of AC33 is optional. These performance values are appropriately determined according to the wireless system to be supported, the communication environment, etc., and the filters 31, 34, ADC 32, and DAC 33 can be configured in the same manner as described above. good.
  • the first analog circuit adapted to the first performance is operated, and the first analog circuit is operated in cooperation with the first analog circuit.
  • Power supply to the second analog circuit that achieves the second higher performance is achieved, and the first performance is realized, and both the first analog circuit and the second analog circuit operate.
  • the second performance is realized.
  • the circuit characteristics can be appropriately switched according to the required performance while suppressing an increase in circuit scale, and the size can be easily reduced.
  • power consumption can be reduced by cutting off power supply to an analog circuit that does not need to operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)
  • Transceivers (AREA)
  • Networks Using Active Elements (AREA)

Abstract

 第1の性能に合わされた第1のアナログ回路(53)と、上記第1のアナログ回路と協働することで上記第1の性能より高い第2の性能を実現する第2のアナログ回路(55)とを有し、第1の性能が要求される場合には第1のアナログ回路を動作させるとともに第2のアナログ回路への電源供給を遮断し、第2の性能が要求される場合には第1のアナログ回路及び第2のアナログ回路をともに動作させるようにして、第1のアナログ回路を共有することにより回路規模の増大を抑制しながらも、要求される性能に応じて回路特性を適切に切り替えることができるようにする。

Description

明 細 書
半導体装置、 無線端末装置及び無線通信機器 技術分野
本発明は、 半導体装置、 無線端末装置及び無線通信機器に関し、 特に、 回路特 性が切り替え可能な半導体装置、 無線端末装置及び無線通信機器に関する。 背景技術
従来のデジタル無線端末は、 一般に図 8に示すように、 RF部 80、 AFE ( Analog Front End) 部 90、 及び D B B (Digital Base Band) 部 1 00で構成 される。 RF部 80は、 アンテナ 8 1と、 ミキサーやパワーアンプ等をそれぞれ 含む送信アンプ部 82及び受信アンプ部 83と、 共用回路 84とを有する。
また、 信号をアナログ一デジタルの相互に変換する AF E部 90は、 受信部と 送信部とからなり、 受信用フィルター 9 1と、 受信用の ADC (アナログ一デジ タル変換器) 92と、 送信用の D AC (デジタル—アナログ変換器) 9 3と、 送 信用フィルター 94とを有する。 デジタル信号処理を行う DB B部 1 00は信号 処理部 1 0 1を有する。
図 7に示した無線端末において、 アンテナ 8 1にて受信されたアナログ信号は 、 受信アンプ部 83で増幅等された後、 受信用フィルター 9 1にてフィルター処 理が施される。 さらに、 フィルター処理されたアナログ信号は、 ADC 92によ りデジタル信号に変換され、 信号処理部 1 0 1に供給される。
また、 信号処理部 1 0 1より出力された送信するデジタル信号は、 DAC 9 3 によりアナログ信号に変換された後、 送信用フィルター 94にてフィルター処理 が施される。 さらに、 送信アンプで増幅等の所定の処理が行われた後、 アンテナ 8 1を介して送信される。
ここで、 2つの無線方式に対応する無線端末を構成する場合、 1つの無線方式 に対応する図 8に示した回路を、 図 9に示すように 2つ並列に並べて構成するの が一般的である。 なお、 図 9において、 図 8に示したブロック等と同一の機能を 有するブロック等には同一の符号を付している。 図 9においては、 RF— A80 、 AFE— A9 0、 及ぴ AFE— A90に接続される信号処理部 10 1が 1つの 無線方式に対応し、 RF— B 80、 AFE— B 90、 及び AFE— B 90に接続 される信号処理部 1 0 1が他の 1つの無線方式に対応する。
また、 複数の無線方式に対応する無線端末の構成として、 無線方式に応じて広 帯域フィルターと低帯域フィルターを切り替えるもの (例えば、 特開平 1 0— 2 24243号公報 (特許文献 1) 参照) 、 デジタルフィルターのサンプリング周 波数を変更することでバンド幅を変更するもの (例えば、 特表 2002— 500 490号公報 (特許文献 2) 参照) 、 及びソフトウ ア切り替えによりフィルタ 一を変更しパンド幅を変更するもの (例えば、 特開 2000— 1 3 279号公報 (特許文献 3) 参照) 等があった。
しかしながら、 図 9に示したように構成した場合には、 無線端末を構成する部 品点数が非常に多くなり,、 部品実装に必要な面積が増大して無線端末の小型化が 困難になる。 また、 製造に要するコスト (部品コスト等) も高くなる。
上記図 9に示した構成に対し、 部品点数の削減及び無線端末の小型化を図る方 法として、 AFE部や DB B部を 2つの無線方式で共通化する構成が考えられる 。 しかしながら、 無線方式に応じて要求される特性 (送受信フィルターの減衰特 性、 AD C及び D ACの動作周波数や分解性能等) が異なるので、 AFE部を共 有する場合には、 無線方式の中で最も高い仕様に合わせたフィルター、 ADC、 及ぴ DA Cを用いる必要がある。
そのため、 回路を共有化した場合には、 実際に動作する無線方式によっては必 要以上の性能で動作することとなり、 電力を浪費してしまう。 また、 フィルター の減衰特性も選択する無線方式によっては不十分となる場合があり、 無線方式に よっては更なるデジタルフィルター処理が必要となり電力を浪費してしまう。
特許文献 1 ■
特開平 1 0— 224243号公報
特許文献 2
特表 2002— 500490号公報
特許文献 3
特開 2000— 1 3 279号公報 発明の開示
本発明は、 このような事情に鑑みてなされたものであり、 回路規模の増大を抑 制しながらも、 通信環境に応じて回路特性を適切に切り替えることができるよう にすることを目的とする。
本発明の半導体装置は、 回路特性が第 1の性能に合わされた第 1のアナログ回 路と、 上記第 1のアナログ回路と協働することで、 上記第 1の性能より高い第 2 の性能を実現する第 2のアナログ回路とを有し、 上記第 1の性能が要求される場 合には上記第 2のアナログ回路への電源供給を遮断する。
本発明によれば、 上記第 1のアナログ回路を動作させるとともに上記第 2のァ ナログ回路への電源供給を遮断して上記第 1の性能が実現され、 上記第 1のアナ 口グ回路及び第 2のアナログ回路をともに動作させることで上記第 2の性能が実 現される。 したがって、 第 1のアナログ回路を共有することにより、 回路規模の 増大を抑制しながらも、 要求される性能に応じて回路特性を適切に切り替えるこ とができる。 また、 要求される性能に応じて、 動作させる必要がないアナログ回 路への電源供給を遮断することにより消費電力を削減することができる。
また、 無線方式に応じて、 第 1の無線方式の場合には上記第 1のアナログ回路 を動作させるとともに上記第 2のアナログ回路への電源供給を遮断し、 第 2の無 線方式の場合には上記第 1のアナログ回路及び第 2のアナログ回路をともに動作 させるようにしても良い。 このようにした場合には、 無線方式に応じて要求され る性能に合うように回路特性を適切に切り替えることができる。
また、 無線通信における受信信号の品質に応じて、 上記第 1のアナログ回路を 動作させるとともに上記第 2のアナログ回路への電源供給を遮断する状態と、 上 記第 1のアナログ回路及ぴ第 2のアナログ回路をともに動作させる状態とを切り 替えるようにしても良い。 このようにした場合には、 回路特性を適切に切り替え 、 受信信号の品質を向上させることができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施形態による半導体装置を適用した無線端末装置の 構成例を示すプロック図である。
図 2は、 異なる無線方式にて要求されるフィルター減衰特性の一例を示す図で ある。
図 3は、 第 1の実施形態におけるフィルターの構成例を示すプロック図である 図 4は、 図 3に示したフィルターの動作原理を概念的に示す図である。
図 5は、 第 1の実施形態における AD変換器の構成例を示すプロック図である 図 6は、 第 1の実施形態における D A変換器の構成例を示すプロック図である 図 7は、 第 2の実施形態におけるフィルターの減衰特性の一例を示す図である 図 8は、 従来の無線端末の構成を示すブロック図である。
図 9は、 従来の 2つの無線方式に対応した無線端末の構成を示すプロック図で める。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて説明する。
(第 1の実施形態)
図 1は、 本癸明の第 1の実施形態による半導体装置を適用した無線端末装置の 構成例を示すブロック図である。 第 1の実施形態における無線端末装置は、 複数 の無線方式 (以下の説明では 2つとする) に対応し、 動作する無線方式に応じて 回路特性を切り替えるものである。
図 1に示すように、 第 1の実施形態における無線端末装置は、 第 1の無線方式 の RF (Radio Frequency) 部 (RF— A) 1 0、 第 2の無線方式の RF部 (R F - B ) 20、 AFE (Analog Front End) 部 30、 DB B (Digital Base Band) 部 40、 及びスィッチ SW1、 SW2を有する。
RF— A 1 0は、 アンテナ 1 1、 ミキサーやパワーアンプ等をそれぞれ含み信 号の増幅等を行う送信アンプ部 1 2と受信アンプ部 1 3、 及び共用回路 14を有 する。 RF— B 20は、 RF— A10と同様に構成され、 アンテナ 2 1、 送信ァ ンプ部 22、 受信アンプ部 2 3、 及び共用回路 24を有する。 R F— A 1 0、 R F— B 20は、 高周波信号処理等を行う。
AFE部 30は、 受信部と送信部とからなり、 入力される信号をアナログ信号 一デジタル信号の相互に変換する。 受信部は、 RF部 1 0、 20から入力される アナログ信号にフィルター処理を施す受信用フィルター 3 1と、 フィルター処理 されたアナログ信号をデジタル信号に変換する受信用の AD変換器 (アナログ一 デジタル変換器、 ADC) 3 2を有する。 また、 送信部は、 DBB部 40から入 力されるデジタル信号をアナログ信号に変換する送信用の D A変換器 (デジタル —アナログ変換器、 DAC) 33と、 DA変換して得られたアナログ信号にフィ ルター処理を施す送信用フィルター 34を有する。
ここで、 詳細は後述するが受信用フィルター 3 1、 ADC 32、 DAC 33、 及び送信用フィルター 34は、 DBB部 40から供給される制御信号 CTLに基 づいて、 回路特性 (フィルター 3 1、 34の減衰特性、 ADC 32や DAC 3 3 の分解性能等) が選択された無線方式に適した回路特性に切り替え可能なように 構成されている。
DB B部 40は、 信号処理部 4 1を有しており、 ベースバンド信号処理等のデ ジタル信号処理を行う。 信号処理部 4 1は、 選択された無線方式に応じて制御信 号 CTLを出力する。 また、 信号処理部 4 1は、 入力されるデジタル信号を用い て所定のデジタル信号処理を行ったり、 デジタル信号処理等により得られるデジ タル信号を出力したりする。
次に、 第 1の実施形態における無線端末装置の動作について説明する。
まず、 DB B 40は、 選択された無線方式に応じて制御信号 CTLを AFE部 30に出力する。 また、 DB B 40は、 第 1の無線方式を選択した場合には、 R F - A 10と AFE部 30との間で信号の入出力が可能となるようにスィツチ S Wl、 SW 2を制御する。 同様に、 DBB 40は、 第 2の無線方式を選択した場 合には、 RF— B 20と AF E部 30との間で信号の入出力が可能となるように スィッチ SW1、 SW2を制御する。
なお、 以下では第 1の無線方式が選択された場合を一例として説明するが、 第 2の'無線方式が選択された場合は、 RF— B 20が用いられる点が異なるだけで 同様である。
アンテナ 1 1にて受信されたアナログ信号は、 受信アンプ部 1 3で増幅され、 スィッチ SW 1を介して受信用フィルター 3 1に供給される。 受信用フィルター 3 1に供給されたアナログ信号は、 受信用フィルター 3 1にてフィルター処理が 施された後、 ADC 32にてアナログ信号からデジタル信号に変換され、 信号処 理部 4 1に供給される。
また、 信号処理部 4 1より出力されたデジタル信号は D AC 3 3に供給される 。 D AC 33に供給されたデジタル信号は、 D AC 33にてデジタル信号からァ ナログ信号に変換された後、 送信用フィルター 34にてフィルター処理が施され る。 フィルター処理された信号は、 スィ ッチ SW2を介して送信アンプ 1 2に供 給され、 送信アンプ 1 2で増幅等の所定の処理が行われた後、 アンテナ 1 1を介 して送信される。
次に、 AF E部 30が有するフィルター 31、 34、 ADC 3 2、 D AC 33 について具体的に説明する。
くフィルタ一 3 1、 34 >
まず、 フィルター 3 1、 34について説明する。
本実施形態における 2つの無線方式においては、 図 2に示すようなフィルター の減衰特性がそれぞれ要求されているとする。 すなわち、 第 1の無線方式では実 線 R Aにて示されるように、 カットオフ周波数 (F c) が 7MH zである 5次フ ィルター (ローパスフィルター) が要求され、 第 2の無線方式では点線 RBにて 示されるように、 カッ トオフ周波数が 2. 5MH zである 2次フィルター (ロー パスフィルター) が要求されている。 なお、 図 2において、 横軸は周波数であり 、 縦軸は減衰特性である。
ここで、 一般に高次のフィルタ一は、 低次のフィルターよりも消費電力が大き い。 消費電力を削減する点からすれば、 第 2の無線方式の 2次フィルターが優れ ているが、 第 2の無線方式のフィルターを用いると、 第 1の無線方式にて必要な 周波数の信号が遮断されてしまう。 一方、 第 1の無線方式の 5次フィルターを用 いると、 第 2の無線方式が選択された際に余分な電力を消費することになる。 そこで本実施形態では、 図 3に示すようにフィルター 3 1、 3 4を 2次特性フ ィルターと 3次特性フィルタ一とで構成する。 そして、 第 1の無線方式が選択さ れた場合には 2次特性フィルターと 3次特性フィルターとをともに使用するよう に制御し、 第 2の無線方式が選択された場合には 2次特性フィルターのみを使用 するように制御する。
ここで、 例えば 1次フィルターの入力を V i nとすると、 出力 V o u t 1は
Voutl = ( 1/ (sRC) ) X Vin
で表される。 さらに、 この出力を同じ 1次フィルターに入力すると、 その出力 V o u t 2は、
Vout2= ( 1/ ( sRC) ) X Voutl = { \/ ( sRC) ) X ( 1/ ( sRC) ) X Vin となり、 2次の特性が得られる。 つまり、 1次フィルターを n段直列に接続する ことで n次の特性のフィルターを構成することができる。 したがって、 直列に接 続された 2次特性フィルターと 3次特性フィルターをともに使用することで、 2 次 + 3次 = 5次特性のフィルターを実現することができる。
図 3は、 フィルター 3 1の構成例を示す図である。
図 3において、 5 1はフィルター 3 1の入力ノードである。 5 2は低スペック 側のフィルタ一部であり、 2次特性フィルター (アナログフィルター) 5 3と、 制御信号 C T Lに基づいて力ッ トオフ周波数を調整するカツ トオフ周波数 (F c ) 調整回路 5 4とを有する。 5 5は 3次特性フィルタ一 (アナログフィルター) であり、 5 6は制御信号 C T Lに応じて 3次特性フィルター 5 5に電源を供給す るか否かを切り替える電源制御回路である。
また、 S W 3は制御信号 C T Lに応じて制御されるスィッチであり、 2次特性 フィルター 5 3のフィルター出力を、 3次特性フィルター 5 5またはバイパスラ イン B Lに選択的に供給するためのものである。 S W 4は制御信号 C T Lに応じ て制御されるスィツチであり、 バイパスライン B Lを介した 2次特性フィルター 5 3のフィルター出力または 3次特性フィルター 5 5のフィルター出力を選択的 に出力ノード 5 7に供給するためのものである。
なお、 2次特性フィルター 5 3は、 2つの 1次フィルターを直列接続して構成 するようにしても良い。 3次特性フィルター 5 5は、 2つの 1次フィルターを直 列接続して構成するようにしても良いし、 1次フィルターと 2次フィルタ一とを 直列接続して構成するようにしても良い。 また、 2次特性フィルター 53及ぴ 3 次特性フィルター 55は、 オペアンプフィルターであっても良いし、 Gm—Cフ ィルターであっても良い。
図 4は、 図 3に示したフィルターの動作原理を説明するための図である。 なお 、 図 4においては、 説明を簡単にするためにフィルターの次数については考慮し ていない。
図 4において、 電源 VDDに接続された差動アンプ AMP 1の正入力は、 一端 が入力端子 I Nに接続された可変抵抗 R 1の他端に接続され、 正出力はスィツチ SWAの第 1端子に接続される。
差動アンプ AMP 1の正入力と可変抵抗 R 1の他端との相互接続点には、 容量 C 1の一端、 可変抵抗 R 2の一端、 及びスィッチ SWCの第 1端子が接続される 。 また、 差動アンプ AMP 1の正出力とスィッチ SWAの第 1端子との相互接続 点には、 容量 C 1の他端及び可変抵抗 R 2の他端が接続される。
上述のように接続された差動アンプ AMP 1、 容量 C l、 及び可変抵抗 R 2に より前段のフィルタ一回路が構成され、 これが図 3に示した 2次特性フィルター 5 3に相当する。 また、 可変抵抗 R 2がカッ トオフ周波数調整回路 54に相当し 、 可変抵抗 R 2の抵抗値を制御することでカツトオフ周波数が調整される。 また、 制御信号 S Cがゲートに供給される MOS トランジスタ T 1 (Pチヤネ ル型、 Nチャネル型は問わない。 ) を介して電源 VDDに接続された差動アンプ AMP 2の正入力は、 スィッチ SWAの第 3端子に接続され、 正出力はスィッチ SWBの第 3端子に接続される。
差動アンプ AMP 2の正入力とスィツチ SWAの第 3端子との相互接続点には 、 容量 C 2の一端及ぴ抵抗 R 3の一端が接続され、 差動アンプ AMP 2の正出力 とスィツチ SWBの第 3端子との相互接続点には、 容量 C 2の他端及び抵抗 R 3 の他端が接続される。
ここで、 上述したのと同様に差動アンプ AMP 2、 容量 C 2、 及び抵抗 R 3に より後段のフィルター回路が構成され、 これが図 3に示した 3次 性フィルター 5 5に相当し、 トランジスタ T 1が電源制御回路 56に相当する。 スィツチ SWAの第 2端子はバイパスライン B Lの一端に接続され、 スィッチ SWBの第 2端子はパイパスライン B Lの他端に接続される。 スィッチ SWBの 第 1端子は出力端子 OUTに接続される。 また、 抵抗 R 4の一端はスィッチ SW Cの第 2端子に接続され、 他端はスィツチ SWDを介してスィツチ SWBの第 1 端子に接続される。
なお、 図 4においては、 差動アンプ AMP 1、 AMP 2の正入力側及ぴ正出力 側の回路のみを図示しているが、 負入力側及び負出力側についても同様に構成さ れる。
図 4に示した回路において、 差動アンプ AMP 1、 容量 C l、 及び可変抵抗 R 2により構成される前段のフィルター回路のみを動作させる場合には、 スィッチ SWA、 SWBは第 1端子と第 2端子が接続されるようにし、 スィッチ SWC、 SWDは開くように制御する。 これにより、 入力端子 V i nより入力された信号 は、 前段のフィルター回路でフィルター処理が施された後、 バイパスライン B L を介して出力端子 OUTより出力される。
また、 このとき制御信号 S Cにより トランジスタ T 1をオフ状態にする。 これ により、 差動アンプ AMP 2、 容量 C 2、 及び抵抗 R 3により構成される後段の フィルター回路は、 電源が供給されなくなり、 電力の消費を防止することができ る。
一方、 前段のフィルター回路に加え、 後段のフィルター回路を動作させる場合 には、 スィッチ SWA、 SWBは第 1端子と第 3端子が接続されるようにし、 ス イッチ SWC、 SWDは閉じるように制御する。 また、 このとき制御信号 S Cに より トランジスタ T 1をオン状態にし、 後段のフィルター回路に電源を供給する 。 これにより、 入力端子 V i nより入力された信号は、 前段のフィルター回路で フィルター処理が施された後、 さらに後段のフィルター回路でフィルター処理が 施される。 そして、 後段のフィルター回路でフィルター処理された信号は、 出力 端子 OUTより出力されるとともに、 抵抗 R 4を介して前段のフィルター回路に 帰還される。
図 3に戻り、 図 3に示したフィルター 3 1の動作について説明する。
まず、 第 1の無線方式 (フィルターの減衰特性は 5次特性) が選択された場合 には、 信号処理部 4 1から供給される制御信号 C T Lに基づいて、 2次特性フィ ルター 5 3の出力と 3次特性フィルタ一 5 5の入力とがスィッチ S W 3を介して 接続され、 3次特性フィルター 5 5の出力と出力ノード 5 7とがスィッチ S W 4 を介して接続される。 また、 電源制御回路 5 6は、 第 1の無線方式が選択された 旨を示す制御信号 C T Lに応じて、 3次特性フィルター 5 5に電源を供給する。 これにより、 入力ノード 5 1から入力された信号は、 2次特性フィルター 5 3 及ぴ 3次特性フィルター 5 5により順次フィルタ処理が施され、 すなわち 5次特 性フィルターと同様のフィルター処理が施され出力ノード 5 7より出力される。 なお、 このときカツトオフ周波数調整回路 5 4によりカツトオフ周波数が適宜制 御される。
一方、 第 2の無線方式 (フィルターの減衰特性は 2次特性) が選択された場合 には、 信号処理部 4 1から供給される制御信号 C T Lに基づいて、 2次特性フィ ルター 5 3の出力とバイパスライン B Lの一端とがスィツチ S W 3を介して接続 され、 バイパスライン B Lの他端と出力ノード 5 7とがスィッチ S W 4を介して 接続される。 また、 電源制御回路 5 6は、 第 2の無線方式が選択された旨を示す 制御信号 C T Lに応じて、 3次特性フィルター 5 5への電源供給を遮断する。 これにより、 入力ノード 5 1から入力された信号は、 2次特性フィルター 5 3 によりフィルタ処理が施された後、 パイパスライン B Lを介して出力ノード 5 7 より出力される。 なお、 このときもカットオフ周波数調整回路 5 4によりカット オフ周波数が適宜制御される。
以上のように、 高い 5次特性のフィルターが要求される場合には、 2次特性フ ィルター 5 3及び 3次特性フィルター 5 5の双方を動作させ、 低い 2次特性のフ ィルターが要求される場合には、 2次特性フィルター 5 3のみを動作させ、 3次 特性フィルター 5 5への電源供給を遮断する。 これにより、 2つの無線方式で 2 次特性フィルター 5 3を共用することで回路規模の増大を抑制することができる とともに、 無線方式に応じてフィルターの減衰特性を適切に切り替えることがで きる。 また、 無線方式に応じて 3次特性フィルター 5 5への電源供給を遮断する ことで、 電力の浪費を防止することができ、 消費電力を削減することができる。 < A D C 3 2 > 次に、 AD C 32について説明する。
以下の説明では、 第 1の無線方式では 1 0ビッ トの性能が要求され、 第 2の無 線方式では 8ビットの性能が要求されているものとする。
図 5は、 パイプライン方式を採用した AD C 32の構成例を示す図である。 図 5に示すように、 AD C 32は、 1. 5ビッ トの AD変換回路 60—! ( iは 添え字であり、 i = l、 2、 …ゝ 10) と、 AD変換回路 60_i ( i = 2 ~ 9 ) にそれぞれ対応して設けられた加算回路 6 1-j (jは添え字であり、 j= l、 2、 "-、 9) と、 電源制御回路 6 2とを有する。
AD変換回路 60_iは従属接続され、 基準電圧と入力された入力電圧とを比較 してデジタルデータ (1ビット) を決定して対応する加算回路 6 1-jに出力する とともに、 残差信号を次段に接続された AD変換回路 6 Ο-iに出力する。 加算回 路 6 1-jも従属接続され、 前段の加算回路 6 l_jからのデジタルデータを適宜ビ ットシフトして A D変換回路 6 Ο-iから供給されたデジタルデータを加算し、 カロ 算結果を次段に接続された加算回路 6 1 に出力する。 また、 電源制御回路 62 は、 制御信号 CTLに応じて AD変換回路 60—9、 60^。に電源を供給するか否 かを切り替える。
次に、 AD C 32の動作について説明する。
第 1の無線方式 (1 0ビッ ト) が選択きれた場合には、 電源制御回路 6 2は、 信号処理部 4 1から供給される第 1の無線方式が選択された旨を示す制御信号 C TLに応じて、 AD変換回路 60-9、 6 Ο—i。に電源を供給する。 すなわち、,すべ ての AD変換回路 6 0—〜60 ^。に電源が供給される。
A D変換回路 60^は、 入力されるアナログ信号 A Iの電圧と基準電圧とを比 較してデジタルデータの最上位ビット (MS B) の値を決定し加算回路 6 に 出力する。 また、 AD変換回路 60—!は、 残差信号を AD変換回路 60—2に出力 する。
続いて、 AD変換回路 6 0-2は、 AD変換回路 6 からの残差信号の電圧と 基準電圧とを比較してデジタルデータの最上位側から 2桁目のビットの値を決定 し加算回路 6 1 _tに出力するとともに、 残差信号を AD変換回路 60—2に出力す る。 加算回路 6 1^は、 A D変換回路 60^からの出力をビットシフトし、 これ に AD変換回路 6 0-2からの出力を加算し、 演算結果を加算回路 6 1-2に出力す る。
以降、 同様にして AD変換回路 6 Ο-iによるデジタルデータ値の決定、 及ぴ加 算回路 6 1—jによる加算演算を最終段まで順次行う。 これにより、 入力されたァ ナログ信号 A Iは、 1 0ビットのデジタルデータに変換され、 その値が加算回路 6 1-9からデジタル信号 DO 1 0として出力される。
一方、 第 2の無線方式 (8 ビット) が選択された場合には、 電源制御回路 6 2 は、 信号処理部 4 1から供給される第 2の無線方式が選択された旨を示す制御信 号 CTLに応じて、 AD変換回路 6 0—9、 6 。への電源を遮断する。
そして、 上述した第 1の無線方式が選択された場合と同様にして、 AD変換回 路 6 0.!~ 6 0-8によるデジタルデータ値の決定、 及び加算回路 6 Ι^ θ 1_7に よる加算演算を順次行う。 これにより、 入力されたアナログ信号 A Iは、 8ビッ トのデジタルデータに変換され、 その値が加算回路 6 I-?からデジタル信号 DO 8として出力される。
以上のように、 高い分解性能 (1 0ビッ ト) が要求される場合には、 すべての AD変換回路 6 0—; (8ビッ ト分に対応する AD変換回路 6 0— !〜 6 0_8及びそ れに直列接続された 2 ビッ ト分に対応する AD変換回路 6 0-9、 6 0.10) を動作 させ、 低い分解性能 (8ビッ ト) が要求される場合には、 AD変換回路 e o^ 6 0-8を動作させ、 AD変換回路 6 0_9、 6 0^。への電源供給を遮断する。 これ により、 低い分解性能が要求された際に動作させる AD変換回路 6 Ο^ β 0_8 を 2つの無線方式で共用し回路規模の増大を抑制することができる。 また、 無線 方式に応じて分解性能を適切に切り替えることができるとともに、 電力の浪費を 防止し消費電力を削減することができる。
なお、 図 5においては、 1. 5ビッ トの AD変換回路を用いて AD C 3 2を構 成するようにしているが、 1. 5ビッ トの AD変換回路に限らず、 使用用途 (消 費電力、 変換時間等) に応じて 2. 5ビッ トの AD変換回路や 3. 5 ビッ トの A D変換回路を用いて構成するようにしても良い。 また、 ビット数の異なる AD変 換回路を混在させて AD C 3 2を構成するようにしても良い。
< D AC 3 3 > 次に、 D AC 3 2について説明する。
以下の説明では、 第 1の無線方式では 1 3ビッ トの性能が要求され、 第 2の無 線方式では 1 1ビットの性能が要求されているものとする。
図 6は、 電流加算型の D AC 3 3の構成例を示す図である。
図 6に示すように、 D AC 3 3は、 電流源 7 0_k (kは添え字であり、 k = 1 、 2、 ···、 1 3 ) と、 電流源 7 0-kにそれぞれ対応して設けられた 2端子スイツ チ 7 1 _kと、 I V (電流一電圧) 変換回路 7 3と、 ゲイン制御回路 7 4と、 入 力回路 7 2と、 電源制御回路 7 5とを有する。
電流?原 7 0_kは、 I a X —01"^の電流をそれぞれ供給する。 スィッチ 7 1— kは 、 一方の端子が電流源 7。^に対して接続され、 他方の端子が I /V変換回路 7 3に共通接続される。 1 ¥変換回路7 3は、 スィッチ 7 l kを介して電流源 7 0—kから供給される電流を電圧に変換して出力する。 この I /V変換回路 7 3の ゲイン制御は、 制御信号 C T Lに応じてゲイン制御回路 7 4により行われる。 入力回路 7 2は、 入力されるデジタル信号 D Iに基づいてスィツチ 7 l—kの開 閉制御を行う。 例えば、 入力されるデジタル信号の最下位ビット (L S B) の値 力 S " 1 " のときにはスィツチ 7 1 _13を閉じ、 " 0 " のときにはスィツチ 7 1.13 を開くように制御を行う。 同様に、 例えば入力されるデジタル信号の下位側から 1 0ビット目の値が " 1 " のときにはスィツチ 7 1 -4を閉じ、 " 0 " のときには スィッチ 7 1—4を開くように制御を行う。
また、 電源制御回路 7 5は、 電流源 7 0_ぃ 7 0-2に電源を供給するか否かを 切り替える。 具体的には、 第 1の無線方式 (1 3ビット) が選択された場合には 、 電源制御回路 7 5は、 信号処理部 4 1から供給される第 1の無線方式が選択さ れた旨を示す制御信号 C T Lに応じて、 電流源 7 0—い 7 0_2に電源を供給する 。 一方、 第 2の無線方式 (1 1 ビッ ト) が選択された場合には、 電源制御回路 6 2は、 電流源 7 0—い 7 0_2への電源を遮断する。
上述のように構成することで、 入力されるデジタル信号 D Iに基づいてスィッ チ 7 1— kが開閉制御され、 デジタル信号 D Iに応じた電流が I "V変換回路 7 3 に供給される。 そして、 I /V変換回路 7 3にて電流一電圧変換が行われ、 デジ タル信号 D Iの値に応じた電圧のアナログ信号 AOが出力される。 このとき、 選 択された無線方式に応じて電流源 7 0—い 7 0—2への電源供給を遮断する。
これにより、 低い性能 (8ビット) が要求され 際に動作させる電流源 7 0 _3 〜 7 0 _12を 2つの無線方式で共用し回路規模の増大を抑制することができる。 また、 無線方式に応じて回路特性を適切に切り替えることができるとともに、 電 力の浪費を防止し消費電力を削減することができる。
以上、 説明したように第 1の実施形態によれば、 フィルター 3 1 、 3 4 、 A D C 3 2、 及び D A C 3 3において、 第 2の無線方式で通信を行う際に動作させる アナログ回路の一部を、 第 1の無線方式で通信を行う際に動作させるアナログ回 路と共有することで、 回路面積の増大を抑制しながらも、 無線方式に応じて回路 特性を適切に切り替えることができ、 例えば無線端末装置を容易に小型化するこ とができる。 また、 第 1の無線方式で通信を行う際には、 第 2の無線方式で通信 を行う際にのみ動作させる回路部分への電源供給を遮断することで消費電力を削 減することができる。
なお、 上述した説明では、 ユーザにより無線方式が選択されるものとしている が、 例えば待ち受け時に自動的に無線方式を切り替えてそれぞれの通信環境を確 認することにより、 ユーザが意識しなくとも通信環境に応じて最適な無線方式を 自動的に切り替えることが可能である。
また、 上述した説明では、 2つの無線方式の場合を一例として説明したが、 本 発明は 2つの無線方式に限らず、 複数の無線方式に対応させる場合でも適用可能 である。
(第 2の実施形態)
次に、 第 2の実施形態について説明する。
本発明の第 2の実施形態による半導体装置を適用した無線端末装置は、 通信環 境 (受信信号の品質等) に応じて回路特性を切り替えるものである。 なお、 本発 明の第 2の実施形態における無線端末装置の全体構成は、 R F部を 1つだけ有す る点が異なるだけで第 1の実施形態における無線端末装置と同様であるので説明 は省略する。
無線端末装置は、 そのおかれた通信環境に応じて通信特性が変化する。 例えば 、 基地局から近い比較的電波環境が良好な地域もあれば、 逆に基地局から遠い地 域のように電波環境が悪い地域もある。 電波環境が悪い地域では、 通信に係る所 望の信号レベルが低下し、 電波環境が良好な地域と比較して受信信号におけるノ ィズの部分が大きくなり、 受信信号の品質が低下する。 状況によっては、 チヤネ ル切断という事態を招いてしまうこともある。
そこで、 本発明の第 2の実施形態では、 無線端末装置に対して、 例えば図 7に おいて点線 RB' で示すような 4次特性フィルターの減衰特性が要求され、 また AD C 32の分解能として 6ビットが要求される場合、 予め、 図 7において実線 RA' で示すようなカットオフ周波数 (F c) が変動しないように調整された 4 次よりも高次の減衰特性を有するフィルター (例えば 5次特性のフィルター) に よりフィルター 3 1を構成するとともに、 6ビットよりも分解能が高い (ビット 数が多い) ADC (例えば、 8ビッ トの分解能を有する ADC) により ADC 3 2を構成する。
なお、 フィルター 3 1及ぴ ADC 3 2は、 上述した第 1の実施形態と同様に構 成すれば良い。 すなわち、 フィルター 3 1は、 4次特性フィルターと 1次特性フ ィルターとを直列接続可能なようにし、 ADC 32は、 6ビット分の A D変換回 路と 2ビッ ト分の AD変換回路とを直列接続可能なようにすれば良い。
そして通常時には、 フィルター 3 1は 4次特性フィルターを動作させ、 ADC 3 2は 6ビッ ト分の AD変換回路のみを動作させる。 また、 このどき、 フィルタ 一 3 1において 5次目の部分に対応する 1次フィルター、 及び AD C 32におい て 7、 8ビッ ト目の部分に対応する 2ビッ ト分の A D変換回路は、 電力の浪費を 防止するために電源の供給が遮断される。
一方、 通信環境の悪化等により受信信号の品質が低下した場合には、 フィルタ 一 3 1は、 4次特性フィルターと 1次特性フィルターとをともに動作させる。 つ まり、 フィルター 3 1を 5次特性のフィルタ一とし、 フィルターの減衰特性が急 峻になるようにする。 このようにして、 その他の信号、 例えば他ユーザの信号等 による干渉を防止し、 ノイズを小さくすることにより、 受信信号の品質を向上さ せることができる。
また、 ADC 32は、 8ビット分のすべての AD変換回路を動作させる。 これ により、 AD C 32の分解能を高く し、 通常時は廃棄していた部分の情報 (本実 施形態では 7、 8ビット目の情報) を活用することにより、 受信信号の品質を向 上させることができる。
ここで、 受信信号の品質の低下は、 受信信号の信号レベル、 BER (Bit Error Rate) 、 あるいは S^N比 (Signal to Noise ratio) を測定することに より検出可能である。 なお、 受信信号の信号レベルは図 1に示した R F部の受信 アンプ部で検出でき、 B ERは誤り訂正復号機能を有する DB B部で検出でき、 S/N比は R F部で検出することができる。
以上、 説明したように第 2の実施形態によれば、 受信信号の品質に応じてブイ ルター 3 1の次数 (フィルターの減衰特性) 、 及ぴ AD C 32の分解能を必要最 小限に適応的に制御することで、 回路特性を切り替えて受信信号の品質を向上さ せ、 通信環境の悪い状態でも安定した通信を行うことができる。 また、 受信信号 の品質に応じて、 フィルター 31及び ADC 32内の動作させる必要がない回路 への電源供給を遮断することで消費電力を削減することができる。 例えば、 バッ テリで動作する無線端末装置の場合には、 通話時間や待ち受け時間を増大させる ことができる。
なお、 上述した第 1及び第 2の実施形態にて説明したフィルター 3 1、 34、 AD C 32、 及び D AC 33の構成は一例であり、 フィルター 3 1、 34の次数 や、 ADC 32及び D AC 3 3の分解性能は任意である。 これらの性能値は、 対 応させる無線方式や通信環境等に応じて適宜決定し、 それに合わせてフィルター 3 1、 34、 ADC 32、 及ぴ D AC 33を上述した説明と同様にして構成すれ ば良い。
また、 上記実施形態は、 何れも本発明を実施するにあたっての具体化のほんの 一例を示したものに過ぎず、 これらによつて本発明の技術的範囲が限定的に解釈 されてはならないものである。 すなわち、 本発明はその技術思想、 またはその主 要な特徴から逸脱することなく、 様々な形で実施することができる。 産業上の利用可能性
以上のように、 本発明によれば、 第 1·の性能に合わされた第 1のアナログ回路 を動作させるとともに、 上記第 1のアナログ回路と協働することで上記第 1の性 能より高い第 2の性能を実現する第 2のアナログ回路への電源供給を遮断して上 記第 1の性能を実現し、 上記第 1のアナログ回路及ぴ第 2のアナログ回路をとも に動作させることで上記第 2の性能を実現する。 これにより、 第 1のアナログ回 路を共有することで回路規模の増大を抑制しながらも、 要求される性能に応じて 回路特性を適切に切り替えることができ、 容易に小型化することができる。 また 、 動作させる必要がないアナログ回路への電源供給を遮断することで消費電力を 削減することができる。

Claims

請 求 の 範 囲
1 . 回路特性が第 1の性能に合わされた第 1のアナログ回路と、
上記第 1のアナログ回路と協働することで、 上記第 1の性能より高い第 2の性 能を実現するとともに、 上記第 1の性能が要求される場合には電源供給が遮断さ れる第 2のアナログ回路とを有することを特徴とする半導体装置。
2 . 第 1の性能が要求された場合には、 上記第 2のアナログ回路への電源供給を 遮断し、 上記第 2の性能が要求された場合には、 上記第 2のアナログ回路に電源 を供給する電源制御回路をさらに有することを特徴とする請求項 1記載の半導体
3 . 上記アナログ回路は、 フィルターであることを特徴とする請求項 1記載の半 導体装置。
4 . 上記第 1のアナログ回路は、 第 1のフィルターであり、
上記第 2のアナログ回路は、 上記第 1のフィルターの出力端子に入力端子が接 続可能な第 2のフィルターであるこどを特徴とする請求項 3に記載の半導体装置
5 . 要求される性能に応じて、 上記フィルターのカットオフ周波数を調整する力 ットオフ調整回路を有することを特徴とする請求項 3記載の半導体装置。
6 . 上記アナログ回路は、 A D変換器であることを特徴とする請求項 1記載の半
7 . 上記第 1のアナログ回路は、 第 1の A D変換器であり、
上記第 2のアナログ回路は、 上記第 1の A D変換器に直列接続された第 2の A D変換器であることを特徴とする請求項 6記載の半導体装置。
8 . 上記アナログ回路は、 D A変換器であることを特徴とする請求項 1記載の半 導体装置。
9 . 上記第 1のアナログ回路は、 第 1の D A変換器であり、
上記第 2のアナログ回路は、 上記第 1の D A変換器の出力に共通接続された第 2の D A変換器であることを特徴とする請求項 8記載の半導体装置。
1 0 . 上記アナログ回路は、 フィルター、 A D変換器及ぴ D A変換器を有し、 上記フィルターは、 直列接続可能な第 1のフィルターと第 2のフィルターとか らなり、
上記 A D変換器は、 直列接続された第 1の A D変換器と第 2の A D変換器とか らなり、
上記 D A変換器は、 出力が共通接続された第 1の D A変換器と第 2の D A変換 器とからなり、 ,
上記第 1の性能が要求される場合には、 上記第 2のアナログフィルター、 上記 第 2の A D変換器、 及び上記第 2の D A変換器への電源供給が遮断されることを 特徴とする請求項 1記載の半導体装置。
1 1 . 第 1の性能が要求される第 1の無線方式の信号と、 上記第 1の性能より高 い第 2の性能が要求される第 2の無線方式の信号との双方の信号の受信に使用さ れる半導体装置であって、
回路特性が上記第 1の性能に合わされた第 1のアナログ回路と、
上記第 1のアナログ回路と協働することで、 上記第 2の性能を実現する第 2の アナログ回路と、
上記第 1の無線方式の信号を受信する場合には、 上記第 2のアナログ回路への 電源供給を遮断し、 上記第 2の無線方式の信号を受信する場合には、 上記第 2の アナログ回路に電源を供給する電源制御回路とを有することを特徴とする半導体
1 2 . 上記アナログ回路は、 フィルター、 A D変換器及び D A変換器の少なくと も 1つを含むことを特徴とする請求項 1 1記載の半導体装置。 .
1 3 . 無線通信における受信側に使用される半導体装置であって、
第 1の性能を有する第 1のアナログ回路と、
上記第 1のアナログ回路と協働することで、 上記第 1の性能より高い性能を実 現する第 2のアナログ回路と、
上記無線通信における受信信号の品質に応じて、 上記第 1のアナログ回路に電 源を供給するとともに上記第 2のアナログ回路への電源供給を遮断する第' 1の状 態と、 上記第 1のアナログ回路及び上記第 2のアナログ回路の双方に電源を供給 する第 2の状態とを切り替え可能な電源制御回路とを有することを特徴とする半 導体装置。
1 4 . 上記アナログ回路は、 フィルター及 A D変換器の少なく とも 1つを含む ことを特徴とする請求項 1 3記載の半導体装置。 '
1 5 . 回路特性が第 1の性能に合わされ、 無線通信に係る信号処理を行う第 1の アナログ回路と、
上記第 1のアナログ回路と協働することで、 上記第 1の性能より高い第 2の性 能にて無線通信に係る信号処理を行うとともに、 上記第 1の性能が要求される場 合には電源供給が遮断される第 2のアナログ回路とを有することを特徴とする無 線端末装置。
1 6 . 高周波信号処理する高周波部と、 アナログ信号処理するアナログ処理部と 、 ベースバンド信号処理するベースパンド処理部とを有する無線通信機器であつ て、
上記アナログ処理部は、 回路特性が第 1の性能を有する第 1のアナログ回路と 上記第 1のアナログ回路と協働することで、 上記第 1の性能より高い第 2の性 能を実現するとともに、 上記第 1の性能が要求される場合には電源供給が遮断さ れる第 2のアナログ回路とを有することを特徴とする無線通信機器。
PCT/JP2003/014289 2003-11-11 2003-11-11 半導体装置、無線端末装置及び無線通信機器 WO2005046054A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003277662A AU2003277662A1 (en) 2003-11-11 2003-11-11 Semiconductor device, radio terminal and radio communication unit
CN2003801105388A CN1860682B (zh) 2003-11-11 2003-11-11 半导体装置、无线终端装置和无线通信设备
PCT/JP2003/014289 WO2005046054A1 (ja) 2003-11-11 2003-11-11 半導体装置、無線端末装置及び無線通信機器
EP03818967A EP1684426A4 (en) 2003-11-11 2003-11-11 SEMICONDUCTOR DEVICE, RADIO TERMINAL EQUIPMENT, AND RADIO COMMUNICATION APPARATUS
JP2005510458A JPWO2005046054A1 (ja) 2003-11-11 2003-11-11 半導体装置、無線端末装置及び無線通信機器
US11/402,936 US7684780B2 (en) 2003-11-11 2006-04-13 Semiconductor device, radio terminal device, and radio communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014289 WO2005046054A1 (ja) 2003-11-11 2003-11-11 半導体装置、無線端末装置及び無線通信機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/402,936 Continuation US7684780B2 (en) 2003-11-11 2006-04-13 Semiconductor device, radio terminal device, and radio communication equipment

Publications (1)

Publication Number Publication Date
WO2005046054A1 true WO2005046054A1 (ja) 2005-05-19

Family

ID=34566961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014289 WO2005046054A1 (ja) 2003-11-11 2003-11-11 半導体装置、無線端末装置及び無線通信機器

Country Status (6)

Country Link
US (1) US7684780B2 (ja)
EP (1) EP1684426A4 (ja)
JP (1) JPWO2005046054A1 (ja)
CN (1) CN1860682B (ja)
AU (1) AU2003277662A1 (ja)
WO (1) WO2005046054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124783A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd フィルタ回路とこれを用いた受信装置及び電子機器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965215B2 (en) * 2007-12-12 2011-06-21 Broadcom Corporation Method and system for variable resolution data conversion in a receiver
US20090154612A1 (en) * 2007-12-12 2009-06-18 Ahmadreza Rofougaran Method and system for dynamic filtering and data conversion resolution adjustments in a receiver
US8135367B2 (en) * 2008-05-06 2012-03-13 Broadcom Corporation Method and system for on-demand linearity in a receiver
US8417204B2 (en) * 2008-05-07 2013-04-09 Broadcom Corporation Method and system for on-demand signal notching in a receiver
US20090280765A1 (en) * 2008-05-07 2009-11-12 Ahmadreza Rofougaran Method And System For On-Demand Filtering In A Receiver
CN103885570B (zh) * 2012-11-15 2016-08-24 名硕电脑(苏州)有限公司 多功能输入系统
CN105099470B (zh) * 2015-06-15 2018-12-14 联想(北京)有限公司 电子设备及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231507A (ja) * 1986-03-31 1987-10-12 Sony Corp 積分回路
JPH0324729U (ja) * 1989-07-21 1991-03-14
JPH06140873A (ja) * 1992-10-27 1994-05-20 Hitachi Ltd フィルタ回路
JPH09511882A (ja) * 1994-07-21 1997-11-25 インターデジタル テクノロジー コーポレイション 通信システム加入者ユニットのための電力消費制御方法および装置
JPH11186952A (ja) * 1997-12-22 1999-07-09 Matsushita Electric Ind Co Ltd 携帯電話機用電源装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522275B2 (ja) 1986-12-27 1996-08-07 ソニー株式会社 フィルタ調整装置
AU604797B2 (en) * 1986-12-27 1991-01-03 Sony Corporation Filter adjustment apparatus and method
IT1237511B (it) * 1989-10-31 1993-06-08 Sgs Thomson Microelectronics Circuito di amplificazione audio ad alta efficenza, con commutazione dello stato di funzionamento in funzione del segnale d'ingresso
JPH06334463A (ja) * 1993-05-26 1994-12-02 Toshiba Corp 帯域切換回路
US5926513A (en) 1997-01-27 1999-07-20 Alcatel Alsthom Compagnie Generale D'electricite Receiver with analog and digital channel selectivity
JPH1174792A (ja) 1997-08-29 1999-03-16 Toshiba Microelectron Corp デジタル・アナログ変換回路
SE521035C2 (sv) 1997-12-29 2003-09-23 Ericsson Telefon Ab L M En mottagare och en metod för mobilradio, där mottagaren anpassas för olika radiokommunikationsnät, t ex GSM, AMPS
JP4059569B2 (ja) 1998-06-24 2008-03-12 株式会社ケンウッド 無線通信装置
US6154165A (en) 1998-09-16 2000-11-28 Lucent Technologies Inc. Variable clock rate, variable bit-depth analog-to-digital converter
US6498927B2 (en) * 2001-03-28 2002-12-24 Gct Semiconductor, Inc. Automatic gain control method for highly integrated communication receiver
JP2003133981A (ja) 2001-10-25 2003-05-09 Matsushita Electric Ind Co Ltd デュアルモード受信装置及び受信方法
US6931267B2 (en) * 2002-11-25 2005-08-16 Broadcom Corporation Bias filtering module including MOS capacitors
US7295819B2 (en) * 2003-03-11 2007-11-13 Andrew Corporation Signal sample acquisition techniques

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231507A (ja) * 1986-03-31 1987-10-12 Sony Corp 積分回路
JPH0324729U (ja) * 1989-07-21 1991-03-14
JPH06140873A (ja) * 1992-10-27 1994-05-20 Hitachi Ltd フィルタ回路
JPH09511882A (ja) * 1994-07-21 1997-11-25 インターデジタル テクノロジー コーポレイション 通信システム加入者ユニットのための電力消費制御方法および装置
JPH11186952A (ja) * 1997-12-22 1999-07-09 Matsushita Electric Ind Co Ltd 携帯電話機用電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1684426A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124783A (ja) * 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd フィルタ回路とこれを用いた受信装置及び電子機器
US8208590B2 (en) 2006-11-13 2012-06-26 Panasonic Corporation Filter circuit, and receiver and electronic device using the same filter circuit

Also Published As

Publication number Publication date
CN1860682A (zh) 2006-11-08
AU2003277662A1 (en) 2005-05-26
CN1860682B (zh) 2010-05-12
EP1684426A4 (en) 2009-12-02
EP1684426A1 (en) 2006-07-26
JPWO2005046054A1 (ja) 2007-05-24
US20060183456A1 (en) 2006-08-17
US7684780B2 (en) 2010-03-23

Similar Documents

Publication Publication Date Title
US7459988B1 (en) High linearity wide dynamic range radio frequency antenna switch
US6924761B2 (en) Differential digital-to-analog converter
US6577258B2 (en) Adaptive sigma-delta data converter for mobile terminals
US7684780B2 (en) Semiconductor device, radio terminal device, and radio communication equipment
US7262724B2 (en) System and method for adjusting dynamic range of analog-to-digital converter
US7982533B2 (en) Transceiving system and compound filter
EP2266208B1 (en) Output stage for a digital rf transmitter, method for providing an rf output signal in a digital rf transmitter, and digital rf transmitter
WO2000051253A1 (fr) Unite de poste de radio
EP1557943B1 (en) System and method for adjusting power amplifier output power in linear dB steps
JP4677492B2 (ja) 無線装置の受信機および併合adcフィルタ回路
JP2000183749A (ja) ベ―スバンド伝送システム用のディジタル/アナログ変換電子回路
WO2004004146A1 (en) Offset compensation in a direct-conversion receiver
EP1612951B1 (en) System and method for simplifying analog processing in a transmitter incorporating a randomization circuit
EP1687905B1 (en) Low-noise filter for a wireless receiver
US20050201494A1 (en) Apparatus and method for digital down-conversion in a multi-mode wireless terminal
KR100779478B1 (ko) 반도체 장치, 무선 단말 장치 및 무선 통신 기기
US7049882B2 (en) Transmitter IF section and method enabling IF output signal amplitude that is less sensitive to process, voltage, and temperature
JP2006060673A (ja) A/d変換回路を内蔵した通信用半導体集積回路
US20070194854A1 (en) Transconductance filtering circuit
KR0147489B1 (ko) 단일 입력을 차동 출력으로 변환시키는 전압이득 증폭기
JP2001168716A (ja) 電流ドレインを最小限に抑えた切換電流d/a変換器
US20230412181A1 (en) Tri-level digital-to-analog converter element with mismatch suppression and associated method
JP2007096958A (ja) Agc回路およびそれを備えた高周波受信装置
US20030112168A1 (en) Analog to digital converter using a programmable interpolator and method thereof
US20050163255A1 (en) System and method for simplifying analog processing in a transmitter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200380110538.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003818967

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067006955

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11402936

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005510458

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003818967

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11402936

Country of ref document: US