WO2005045049A1 - 有機酸アンモニウム溶液の製造方法 - Google Patents

有機酸アンモニウム溶液の製造方法 Download PDF

Info

Publication number
WO2005045049A1
WO2005045049A1 PCT/JP2004/016437 JP2004016437W WO2005045049A1 WO 2005045049 A1 WO2005045049 A1 WO 2005045049A1 JP 2004016437 W JP2004016437 W JP 2004016437W WO 2005045049 A1 WO2005045049 A1 WO 2005045049A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
organic acid
ammonium
ammonia
carbonate
Prior art date
Application number
PCT/JP2004/016437
Other languages
English (en)
French (fr)
Inventor
Atsushi Isotani
Hideo Ikeda
Kenji Yamagishi
Ryusuke Aoyama
Original Assignee
Mitsubishi Chemical Corporation
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Ajinomoto Co., Inc. filed Critical Mitsubishi Chemical Corporation
Priority to BRPI0416274-9A priority Critical patent/BRPI0416274A/pt
Priority to EP04818202A priority patent/EP1686183A1/en
Publication of WO2005045049A1 publication Critical patent/WO2005045049A1/ja
Priority to US11/429,049 priority patent/US20070015264A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • C12P7/46Dicarboxylic acids having four or less carbon atoms, e.g. fumaric acid, maleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing an organic acid ammonium solution such as an ammonium succinate solution. More specifically, the present invention relates to a method for producing an organic acid ammonia solution, which is suitable for producing an organic acid by microbial conversion using biologically-derived glucose, glucose, cellulose, or the like as a raw material.
  • Organic acids include fumaric acid, maleic acid, malic acid, succinic acid, etc.
  • succinic acid or its derivatives are used as raw materials for polymers such as biodegradable polyesters and polyamides, or as foods and pharmaceuticals.
  • Patent Document 1 As a method of separating and purifying an organic acid from an organic acid salt produced by fermentation, a method using electrodialysis (for example, see Patent Document 1), an ion exchange resin is used. (See, for example, Patent Document 2), a method of decomposing calcium succinate obtained by fermentation production while neutralizing with calcium hydroxide (see, for example, Patent Document 3) Salt using sulfuric acid (For example, refer to Patent Documents 4 and 5).
  • An adaptive extraction method Patent Document 6 has been proposed!
  • the neutralizing agent In the method using electrodialysis, the neutralizing agent must be a monovalent cation. Divalent cations precipitate as gypsum in electrodialysis membranes and significantly impair their membrane performance. Therefore, ammonia, sodium and potassium are preferred as neutralizing agents.
  • the neutralizing agent In the method using the reaction extraction with amine, the neutralizing agent remains as a carbonate in the aqueous phase. If the solubility of the neutralizing agent in the water is too small, the neutralizing agent precipitates in situ, resulting in high pressure. The extraction tower cannot be operated. Therefore, ammonia, sodium and potassium are preferred as neutralizing agents.
  • Patent Documents 4 and 5 disclose a method in which ammonium sulfate is thermally decomposed at a temperature of 300 ° C or more, reused as monoammonium sulfate, and ammonia is used as a neutralizing agent. Propose. To that end, we propose a method to convert sodium neutralization to ammonia neutralization.
  • ammonia neutralization is a neutralizing agent that has the advantage that the most diverse purification methods can be applied and that the application of the method described in Patent Document 4 or 5 does not generate by-product salts. It can be said that.
  • Sodium can be converted to ammonia by the method described in Patent Document 4 or 5, and various purifications can be used as they are depending on the environment.
  • Calcium is a neutralizer with relatively good economic rationality as shown in Patent Document 3. Based on the above, magnesium, which is extremely limited and cannot be purified, is rarely considered to be used as a neutralizing agent, even though it is one of the metal ions required for cell reaction. Was.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2-283289
  • Patent Document 2 U.S. Patent No. 6,284,904
  • Patent Document 3 Japanese Patent Application Laid-Open No. 3-030685
  • Patent Document 4 JP 2001-514900 A
  • Patent Document 5 U.S. Patent No. 5,958,744
  • Patent Document 6 International Publication No.98Z01413 pamphlet
  • An object of the present invention is to provide an efficient method for producing an organic acid ammonium solution.
  • the present inventors have proposed the use of an ammonium salt of an organic acid in order to select the most suitable method for purifying an organic acid in various economic environments. We thought that it would be good if it could be converted to salt, and we studied diligently. As a result, they found that by adding a magnesium compound to a fermentation medium, culturing microorganisms, and replacing the generated magnesium salt of an organic acid with an ammonia compound, an organic acid ammonium solution can be efficiently produced. .
  • magnesium carbonate containing almost no ammonia can be obtained by heating the by-produced magnesium carbonate 'ammonia-carbonate double salt.
  • magnesium compounds can be recycled and ammonia salts of organic acids can be produced without producing waste.
  • the present invention is as follows.
  • a method for producing an organic acid ammonium solution A method for producing an organic acid ammonium solution.
  • an ammonium carbonate produced by supplying carbon dioxide and ammonia to the fermentation liquor is used as an ammonia compound.
  • a method for producing a solution of an organic acid ammonium is used.
  • the separated magnesium carbonate is thermally decomposed into carbon dioxide and magnesium oxide, and water is added to the magnesium oxide to generate magnesium hydroxide.
  • the organic acid ammonium salt of (1), wherein the magnesium compound is magnesium hydroxide or a mixture of magnesium hydroxide and magnesium carbonate, and ammonia is used in the salt exchange step. Method for producing a solution.
  • FIG. 1 shows a procedure for constructing plasmid pKMB1 and a restriction enzyme map.
  • FIG. 2 is a diagram showing a procedure for constructing a plasmid ⁇ LDH.
  • FIG. 3 is a view showing a procedure for constructing a plasmid pTZ4.
  • FIG. 4 is a view showing a procedure for constructing a plasmid pMJPCl.
  • FIG. 5 is a view showing a procedure for constructing a plasmid pFRPCl.
  • the production method of the present invention comprises a fermentation step of obtaining a fermentation solution containing an organic acid magnesium using a microorganism capable of producing an organic acid in the presence of a magnesium compound, and converting the organic acid magnesium contained in the fermentation solution into an ammonia compound.
  • the type of organic acid ammonium is not particularly limited as long as it is an ammonium salt of an organic acid fermented and produced by a microorganism, but is preferably an ammonium salt of a dicarboxylic acid or a tricarboxylic acid.
  • dicarboxylic acids include succinic acid, fumaric acid, maleic acid, malic acid, tartaric acid, aspartic acid, daltaric acid, glutamic acid, adipic acid, suberic acid, itaconic acid, and terephthalic acid, and tricarboxylic acids such as citric acid. Examples can be given.
  • the “organic acid ammonium” includes an organic acid monoammonium and an organic acid polyvalent ammonium.
  • a microorganism having organic acid-producing ability is used in the presence of a magnesium compound to obtain a fermentation liquid containing the organic acid magnesium.
  • the microorganism used is "a microorganism capable of producing an organic acid".
  • the term "organism capable of producing an organic acid” refers to a microorganism capable of producing and accumulating an organic acid in a medium when the microorganism is cultured in a medium containing a carbon source as described below.
  • Examples of such microorganisms include bacteria belonging to the genus Anaerobiospirillum (US Pat. No. 5,143,833), bacteria belonging to the genus Actinobacillus (US Pat. No. 5,504,004), and Escherichia. Facultative anaerobic bacteria such as bacteria belonging to the genus Genus (US Pat. No.
  • Corynebacterium glutamicunU (Brebinocterium)
  • Brevibacterium flavum Brevibacterium flavum
  • Brevibacterium ammoniagenes Brevibacterium 'lactofermentum
  • Brevibacterium lactofermentum Brevibacterium lactofermentum
  • Examples of the coryneform bacterium capable of producing succinic acid include the following. Brevibataterium 'Flavam MJ233 strain with reduced ratate dehydrogenase activity (JP-A-11 206385), or Brevibatatellium flavum MJ233 with enhanced pyruvate carboxylase or phosphoenol pyruvate carboxylase activity / pPCPYC strain (WO 01/27258 pamphlet), Brevibacterium 'Flavum MJ-233 (FERM BP-1497), MJ-233 AB-41 (FERM BP-1 498), Brevibataterimium' ammonia Genes ATCC6872, Corynebataterum 'Glutamicum ATCC31831, and Brevibataterim' Rat
  • Brevibataterum 'Flavum MJ-233 was established on April 28, 1975, by the Research Institute of Microorganisms and Industrial Technology of the Ministry of International Trade and Industry (now the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology) ( 305-8566 Deposited at 1-1-1 Tsukuba-Higashi, Ibaraki Pref., Japan No. 1 under the accession number FERM P-3068, transferred to an international deposit based on the Budapest Treaty on May 1, 1981, and transferred to FERM Deposited under accession number BP-1497.
  • Brevibacterium 'Ammoniagenes ATCC6872' etc. can be obtained from the American 'Type' Cultureya 'Collection (address 12301 Parklawn Drive, Rockville, Maryland 20852, United States of America).
  • the microorganism used in the fermentation step may be a microorganism that has been modified so as to enhance the organic acid-producing ability.
  • Microorganisms modified to enhance succinic acid-producing ability include, for example, microorganisms with enhanced pyruvate carboxylase gene expression (JP-A-11-196888) and microorganisms with lactate dehydrogenase gene disrupted (see Kaihei 11-206385).
  • a microorganism having an enhanced expression of a fumarate reductase gene as described in Reference Examples below can also be used.
  • microorganisms having an organic acid-producing ability that can be used in the present invention are not limited to those described above, and other succinic acid-producing bacteria, malic acid-producing bacteria obtained by known methods, fumaric acid-producing bacteria, and quencher Acid producing bacteria, isocunic acid producing bacteria and the like can be used.
  • microorganisms having an organic acid-producing ability that can be used in the present invention are used. It may have the above organic acid producing ability.
  • the liquid medium used for culturing microorganisms contains a carbon source.
  • the carbon source is not particularly limited as long as it is a carbon source that can be assimilated by microorganisms, but carbohydrates such as galactose, ratatose, gnoleose, manoletose, funolectose, glycerolone, sucrose, saccharose, starch, and cellulose; Examples thereof include fermentable sugars such as polyalcohols such as mannitol, xylitol, and ribitol. Of these, glucose, fructose, and glycerol can be preferably used, and glucose can be particularly preferably used.
  • cellulose which is a main component of paper
  • starch syrup, molasses and the like containing the above-mentioned fermentable saccharide are also used. These carbon sources may be used alone or in combination of two or more.
  • the concentration of the carbon source used is not particularly limited !, but it is advantageous not to inhibit the production of organic acids! It is advantageous to use as high as possible within the range, usually 5 to 30% (WZV). , Preferably within the range of 10-20% (WZV). Further, in accordance with the decrease of the carbon source with the progress of the reaction, the addition of the carbon source may be performed.
  • the liquid medium preferably contains a nitrogen source, an inorganic salt, and the like in addition to the carbon source.
  • the nitrogen source is not particularly limited as long as the microorganism can assimilate and produce an organic acid, but specifically, ammonium salt, nitrate, urea, soybean hydrolyzate, casein hydrolyzate , Peptone, yeast extract, meat extract, corn steep liquor and the like.
  • the inorganic salts various phosphates, sulfates, and metal salts such as magnesium, potassium, manganese, iron, and zinc are used.
  • a microorganism cultivated on a slant in a solid medium such as an agar medium may be directly used, but the microorganism is preliminarily cultured (seed culture) in a liquid medium. It is preferable to use the cells obtained by the method. In this case, the cells used for the reaction Although the amount is not particularly limited, it is usually 11 to 700 gZL, preferably 10 to 500 gZL, more preferably 20 to 400 gZL.
  • a neutralizing agent is added to the culture solution.
  • a compound of an alkaline earth metal preferably a magnesium compound is used.
  • Magnesium compounds are advantageous because they increase succinic acid production and have a small range of pH fluctuations.
  • the magnesium compound those which show alkalinity when ionized in an aqueous solution are preferable.
  • magnesium hydroxide (Mg (Mg) magnesium hydroxide
  • magnesium hydroxide is particularly preferable.
  • two or more magnesium compounds may be used.
  • the method of adding the magnesium compound is not particularly limited as long as it can be controlled to an appropriate pH.
  • these magnesium compounds can be added as a powder.
  • the magnesium compound may be added to the medium at the start of the culture, or may be added during the culture. Further, it may be added to the medium at the start of the culture, and further added during the culture as needed.
  • the pH value adjusted by these magnesium compounds is adjusted to a range in which the organic acid generating activity is most effectively exerted, depending on the type of microorganism used. Generally, the pH value is adjusted to pH 4-10, preferably pH 6-10. Adjusted to about 9.
  • Culture conditions such as temperature and pressure in the fermentation step vary depending on the microorganism used, but suitable conditions for obtaining an organic acid may be selected according to each case.
  • the temperature during the cultivation is usually 25 ° C to 40 ° C, preferably 30 ° C to 37 ° C.
  • the reaction time is preferably 1 hour to 168 hours, more preferably 3 hours to 72 hours.
  • the fermented broth after completion of the cultivation contains an organic acid produced by a microorganism and an organic acid magnesium formed by magnesium contained in a neutralizing agent (the organic acid may be ionized into an organic acid ion and magnesium ion). ) Is included.
  • the fermented liquid is preferably used in a salt exchange step after removing microbial cells and the like by centrifugation or the like.
  • the fermented liquid from which the cells have been separated may be used in a salt exchange step after further purification.
  • it after performing the concentration operation, it may be used in the salt exchange step.
  • a conventional method can be used, for example, a kettle reboiler or an evaporator can be used. Energy consumption is important for large-scale production Then, a multi-effect can may be used.
  • the organic acid magnesium contained in the fermentation liquor is subjected to salt exchange using an ammonia compound to produce an organic acid ammonium salt.
  • This is a step of forming and depositing a magnesium compound such as magnesium.
  • the organic acid ammonium produced in this step may be ionized into an organic acid ion and an ammonium ion.
  • ammonia compound examples include ammonia and ammonium carbonate. Both ammonia and ammonium carbonate may be added.
  • a device used in the salt exchange step for example, a commonly used crystallization tank such as a stirring tank, a draft tube, a crystal oslo-type crystallization tank, and a double propeller can be used. However, as long as the device can obtain crystals by the solid-liquid equilibrium phenomenon, its shape, method, and number of crystallization stages are not limited.
  • the salt exchange using ammonium carbonate may be carried out by adding ammonium carbonate! (The following reaction formula (I)), and adding ammonia and carbon dioxide. (Reaction formula (II) below).
  • the amount of ammonium carbonate is 0.3 times and 10 times, preferably 0.5 times and 5 moles of magnesium in the fermentation liquor supplied to the reaction tank. It is desirable to add so that the amount becomes 1 times, more preferably 1 to 4 times.
  • magnesium in the fermentation broth means the total of magnesium and magnesium ions contained in the magnesium succinate and the magnesium compound in the fermentation broth.
  • the amount of carbon dioxide supplied to the reaction tank is 0.3 times as much as 10 mol times, preferably 0.3 mol, of magnesium in the fermentation liquor supplied to the reaction tank. It is preferable that the five forces are also 5 times, more preferably 1 to 4 times.
  • Ammonia is in a pH range such that the carbon dioxide can maintain a predetermined solubility, that is, the pH is 7-12. It is preferable to reduce the amount to be alkaline. More preferably, the pH is adjusted to 7.5 to 11, particularly preferably to 8 to 10.
  • the time of the salt exchange reaction varies depending on the amount of the magnesium succinate reaction solution and is not particularly limited, but is preferably 0.1 to 14 hours.
  • the salt exchange is preferably performed at a pH of 7 to 12, more preferably at a pH of 7.5 to 11, and even more preferably at a pH of 8 to 10, and is preferably performed with stirring.
  • ammonium succinate and magnesium hydroxide are formed by the following reaction formula (III).
  • the amount of ammonia to be added is preferably 2 to 15 times the amount of magnesium in the fermentation broth.
  • the salt exchange time varies depending on the amount of the fermentation broth containing magnesium succinate and is not particularly limited, but is preferably 0.1 to 14 hours.
  • the salt exchange is preferably carried out at a pH of 7 to 12, more preferably at a pH of 7.5 to 11, and even more preferably at a pH of 8 to 10.
  • magnesium hydroxide is produced. Therefore, it is preferable to use magnesium hydroxide or a mixture of magnesium hydroxide and magnesium carbonate as the magnesium compound that can be added to the fermentation liquid.
  • the concentration of magnesium dissolved in the aqueous solution of ammonium succinate is about 0.5 wt%.
  • an ammonium carbonate is further added to the filtrate after the salt exchange of the reaction formula (III), and the reaction solution of the reaction formula (I) or (II) is further added.
  • the produced magnesium carbonate, a double salt of magnesium carbonate This is a step of separating a magnesium compound such as magnesium hydroxide and obtaining an organic acid ammonium solution. Since these magnesium compounds are hardly soluble in water, they can be removed by a conventional method such as filtration. For complete filtration, pressure filtration, reduced pressure filtration, centrifugal filtration and the like can be used. Alternatively, it may be settled and separated and pumped as a supernatant and a highly concentrated slurry. By removing the magnesium compound in this way, an aqueous solution of an organic acid ammonium can be obtained.
  • the removed magnesium compound can be recycled to the fermenter as a neutralizing agent. That is, it is economically preferable that the magnesium compound obtained in the magnesium separation step be reused as a magnesium compound in the fermentation step.
  • heat sterilization is generally performed to prevent contamination by various bacteria.However, especially when transferred as a high-concentration slurry, heating with a normal heat exchanger, for example, a multi-tube heat exchanger or a plate-type heat exchanger is used. Sterilization becomes possible. Filtration may be performed after heat sterilization, or it may be directly supplied to the fermenter. Even when the filtration is complete, the steam can be sterilized by direct steam.
  • Magnesium carbonate can also be reused in the form of carbon dioxide and magnesium hydroxide. That is, first, magnesium carbonate is thermally decomposed into diacid carbon and oxidized magnesium. The obtained carbon dioxide can be reused for the salt exchange of the above reaction formula (II). On the other hand, magnesium oxide can be reacted with water to obtain magnesium hydroxide, and can be reused as a magnesium-based neutralizing agent in the first step.
  • Magnesium carbonate is known to be a double salt under conditions of high carbon dioxide, as shown in Japanese Patent Publication No. 1-133919 or reveu de Chimie minera let: 22, 1985, p. 692-698. I have. Therefore, when ammonium carbonate is used as the ammonium compound, part of the magnesium compound produced in the salt exchange step exists as magnesium carbonate and a double salt of ammonium carbonate. In this step, it is preferable to recover ammonium succinate in which magnesium has been reduced as much as possible, but it is clear from the solubility product that the amount of dissolved magnesium increases when the amount of carbon dioxide is reduced. Therefore, generation of double salts is inevitable. On the other hand, it is difficult to recycle magnesium as double salts. Therefore, the slurry containing the double salt is separated and heated or dried. By doing so, it is preferable to remove the double salt ammonium carbonate to obtain magnesium carbonate, and to circulate the magnesium carbonate to the fermentation step.
  • the magnesium compound containing a double salt is separated by an ordinary method. In the case of complete filtration, pressure filtration, reduced pressure filtration, centrifugal filtration and the like are used. Alternatively, it may be settled and separated and pumped as a supernatant and a high-concentration slurry. Generally, it is preferable that the thus obtained crystals and slurries are washed with ammonia or the like to remove organic substances, and then supplied to a heating device for the next heating operation.
  • Caro heat temperature is preferably 108 ° C-210 ° C, more preferably 120 ° C-180 ° C.
  • the heating time varies depending on the amount of the double salt and the heating device and is not particularly limited. However, a 15-minute force is preferably 2 hours, and more preferably 30 minutes to 1 hour.
  • Magnesium carbonate obtained by heating the double salt may not have to have a purity of 100% and a trace amount of ammonium carbonate may remain. In this case, it is preferable that the ammonia in the double salt is 1Z10 mol or less of magnesium, and it is more preferable that the ammonia in the double salt is 1Z30 mol or less of magnesium.
  • the heating device to be used may be of any type as long as it can heat the crystal to a temperature exceeding a predetermined temperature. Kilns, dryers, heaters and the like can be mentioned. If the crystals may be in the form of flakes, a heating machine or baking machine such as a hot plate or belt type may be used. Generally, when used as a neutralizing agent, powder is easier to handle because it has better dispersibility. In such a case, it is preferable to use a rotary kiln or a fluid dryer.
  • the efficiency of organic acid fermentation production can be improved by recycling the magnesium carbonate recovered after heating the double salt to remove the ammonium carbonate. That is,
  • the shim may be reused as a neutralizing agent in the fermentation process, or may be converted into hydroxide and magnesium nitrate as described above, and magnesium hydroxide may be converted into carbon dioxide in the fermentation process. May be reused in the salt exchange step.
  • Moyua may be contained, in which case it is easily evaporated and vaporized by heating to separate it, utilizing the property that the solubility of carbon dioxide and ammonia has a strong temperature dependence. be able to.
  • carbon dioxide and ammonia are vaporized at the same time, when cooled, they are precipitated as ammonium carbonate, and the reaction tank may be blocked. Therefore, the temperature of the vaporized gas is more desirably higher than the melting point of ammonium carbonate, 108 ° C. However, even if the temperature is lower than 108 ° C, for example, at 80 ° C or higher, preferably 90 ° C at normal pressure, the ammonium carbonate can be sufficiently removed.
  • the water is absorbed as an ammonium carbonate using a sufficient amount of water to dissolve the whole amount, and is stored in a buffer tank.
  • a method such as supplying to a reaction tank is safe.
  • the water required to dissolve the ammonium carbonate is simultaneously supplied to the salt exchange reactor. Therefore, from the viewpoint of energy saving, it is preferable to supply and reuse the gas as it is in the salt exchange reaction tank.
  • Carbonic acid and ammonia, separated from the aqueous solution of the organic acid ammonium at a temperature of 108 ° C or higher, are supplied to the salt exchange reactor as gases under slightly pressurized conditions.
  • An organic acid can be obtained by using the organic acid ammonium obtained by the method of the present invention.
  • the method for obtaining an organic acid is not particularly limited also for the organic acid ammonia mud, but for example, a method using electrodialysis (JP-A-2-283289), a method using an ion-exchange resin (US Pat. No. 6,284,904 or WO01Z66508), a method in which calcium organic acid obtained by fermentative production while neutralizing with calcium hydroxide is decomposed with sulfuric acid. (Kaihei 3-030685) A method of performing reaction crystallization by salt exchange reaction using sulfuric acid (see Japanese Patent Application Laid-Open No. 2001-514900 or US Pat. No. 5,958,744), a reaction extraction method (WO98Z01413), a method using acetic acid (WO03Z95409), and the like.
  • Example 2 shows the steps after the salt exchange step.
  • aqueous ammonia (Wako reagent) was mixed with an aqueous solution of magnesium succinate (30 kg) to carry out salt exchange.
  • 15 kg of aqueous ammonia (25%) was added over about 1 hour, and after the addition was completed, stirring was further performed for 60 minutes to complete the salt exchange reaction.
  • a slurry liquid (45 kg) on which magnesium hydroxide was precipitated was obtained.
  • a small amount of this slurry was collected and filtered through a 0.2 m membrane filter (Millipore).
  • the Mg concentration in the filtrate containing the obtained ammonium succinate was analyzed by ion chromatography (electrical conductivity detector). As a result, the Mg concentration was 0.39 wt%.
  • the slurry liquid obtained by the above operation was subjected to solid-liquid separation.
  • a screw decanter (Sharpless Super Decanter Model P-660) manufactured by Tomoe Kogyo was used.
  • the inner and outer cylinders of the decanter were set to 3900 and 5100 rpm. Under these conditions, the slurry was circulated at a rate of 30 L / h to continuously perform solid-liquid separation.
  • the liquid coming out of the liquid outlet showed some powder.
  • a portion of this solution was sampled, and a small amount of tartaric acid was added to dissolve the powder, and the Mg concentration was analyzed. The result was 0.49 wt%.
  • the solids discharged were analyzed for Mg concentration.
  • the solid was diluted 50-fold with distilled water and further made into a homogeneous solution by adding tartaric acid until the solid was completely dissolved.
  • the Mg concentration was 14.6 wt%.
  • Analysis of the succinic acid concentration for the recovered liquid and the recovered solid showed 6.79% and 7.89%, respectively.
  • the final liquid recovered by solid-liquid separation was 42 kg and the solid was 3 kg.
  • ammonium succinate aqueous solution (10 kg) was added to ammonium carbonate (10 kg).
  • (Wako reagent) was mixed to perform salt exchange.
  • 2.1 kg of ammonium carbonate was charged over about 1 hour, and after the addition was completed, stirring was further performed for 60 minutes to complete the salt exchange reaction.
  • a small amount of the slurry was collected and filtered through a 0.2 m membrane filter (Millipore).
  • the Mg concentration in the obtained filtrate containing ammonium succinate was analyzed by ion chromatography (electric conductivity detector). As a result, the Mg concentration was 0.01 wt%.
  • the slurry liquid obtained by the above operation was subjected to solid-liquid separation.
  • a 10 L pressure filter manufactured by Advantech was used for the filter paper.
  • Advantech high-purity filter paper No. 5C was used for the filter paper. Filtration was performed twice in succession. The filtration pressure was 4 kg gauge pressure. When the liquid stopped flowing, the pressure was returned to normal pressure, and the next slurry liquid was charged. Under these conditions, solid-liquid separation of one slurry was performed. Solids were not found in the recovered filtrate. Mg analysis of the filtrate showed that the Mg concentration was 0.01 wt%. Similarly, the solids recovered were analyzed for Mg concentration.
  • the solid was diluted 50-fold with distilled water and made into a homogeneous solution by adding tartaric acid until the solid was completely dissolved.
  • the Mg concentration was 7.48 wt%.
  • the succinic acid concentration of the recovered liquid and the recovered solid was 10.1% and 4.4%, respectively.
  • the final liquid recovered by filtration was 9. lkg and the solid was 2.8 kg.
  • Example 3 shows a step of obtaining magnesium carbonate 'ammonium-carbonate double salt strength magnesium carbonate obtained in the fermentation step, the salt exchange step, the magnesium separation step, and the magnesium separation step.
  • Example 4 also shows the reuse of magnesium carbonate obtained from the double salt in the fermentation process.
  • Urea 4 g, ammonium sulfate: 14 g, 1 potassium phosphate: 0.5 g, 2 potassium phosphate. 5 g, magnesium sulfate ⁇ heptahydrate: 0.5 g, ferrous sulfate ⁇ heptahydrate: 20 mg, manganese sulfate ⁇ hydrate: 20 mg, D-piotin: 200 ⁇ g, thiamine hydrochloride: 200 ⁇ g , Yeast extract: lg, power zamino acid: lg, and distilled water: lOOOOmL of medium lOOmL was placed in a 500mL Erlenmeyer flask and sterilized by heating at 120 ° C for 20 minutes.
  • the LDH strain was inoculated and seed-cultured at 30 ° C for 24 hours. This strain is a strain in which the expression of the fumarate reductase and pyruvate carboxylase genes has been enhanced, and the ratate dehydrogenase gene has been disrupted.
  • Urea 12 g, ammonium sulfate: 42 g, potassium monophosphate: 1.5 g, potassium diphosphate 1.5 g, magnesium sulfate ⁇ heptahydrate: 1.5 g, ferrous sulfate ⁇ 7 Hydrate: 60mg, manganese sulfate ⁇ Hydrate: 60mg, D-Piotin: 600 ⁇ g, Thiamine hydrochloride: 600 ⁇ g, Yeast extract 3g, casamino acid 3g, defoamer (Adekinol LG294: Asahi Denka ): 1 mL and distilled water: 2500 mL of the medium was placed in a 5 L fermentor, and sterilized by heating at 120 ° C for 20 minutes.
  • Potassium phosphate 0.36g
  • Potassium phosphate 0.36g
  • magnesium sulfate ⁇ heptahydrate 1.8g
  • ferrous sulfate ⁇ heptahydrate 72mg
  • manganese sulfate 'hydrate 72mg
  • a medium of D-Piotin: 720 g, thiamine hydrochloride: 720 g and distilled water: 2600 mL was put in a 5 L JAR, and sterilized by heating at 120 ° C. for 20 minutes. After cooling to room temperature, the cells harvested by the above culture were added to the cells and resuspended so that the OD (660 nm) became 60.
  • the double salt obtained above was fractionated and used, and washing and heating operations were performed as follows. The study was performed by changing the number of washings, the heating temperature, and the heating time. Table 1 shows the conditions such as temperature, time, and number of washings in each experimental example.
  • the magnesium carbonate and ammonium carbonate double salt obtained by the above-mentioned Solvay method salt exchange are separated into beakers, and 25% of industrial ammonia water (manufactured by Mitsubishi Chemical Corporation) of the same weight as the double salt is added. I washed it. The obtained suspension is subjected to suction filtration with a notch to separate solid and liquid. And the solid was collected. This washing and filtration operation was performed once or twice.
  • the solid obtained by the washing operation was put into a 500 mL eggplant-shaped flask, and heated at a predetermined temperature and time using a rotary evaporator.
  • the content of Mg, ammonia and succinic acid in the obtained heated solid was analyzed.
  • Table 1 shows the analysis results of the obtained heated solid. From Experiment No.l-6, when the double salt was heated in the range of 120-180 ° C, the proportion of ammonia in the double salt decreased significantly and the proportion of magnesium increased. From this, it was evident that the double salt ammonium carbonate was efficiently removed and high purity magnesium carbonate was obtained. On the other hand, when heated at 90 ° C (Experiment No. 7), a considerable amount of ammonia remained in the double salt and could not be sufficiently removed. Also, succinic acid attached to the double salt could be removed by washing with 25% aqueous ammonia, but it is clear that succinic acid can be more removed by performing the washing twice in this example. Helped.
  • Example 4 To fermentation process of magnesium carbonate obtained by double salt decomposition First, the cells to be used in the fermentation reaction were obtained by the method (1) described in Example 3. Next, a fermentation reaction was performed using magnesium carbonate obtained in the double salt decomposition step of Example 3 as a neutralizing agent. Potassium phosphate: 0.04 g, dipotassium phosphate.
  • Reagents 1 and 2 show the experimental results when the above-mentioned succinic acid fermentation production was performed using commercially available magnesium carbonate. As can be seen from the column of reaction results, fermentative production of succinic acid using gnesium carbonate obtained by heating the double salt was similar to that using commercially available magnesium carbonate. Succinic acid was obtained. From this, it was proved that the magnesium carbonate obtained by heating the double salt can be efficiently reused.
  • Bacillus subtilis ISW1214 was cultured in 10 mL of LB medium [composition: 10 g of tryptone, 5 g of yeast extratato, and 5 g of NaCl dissolved in 1 L of distilled water] until the late logarithmic growth phase, and the cells were collected. The obtained cells were suspended in 0.15 mL of 10 mM NaCl—20 mM Tris buffer (pH 8.0) —lmM EDTA ′ 2Na solution containing lysozyme at a concentration of 10 mgZmL. . Next, proteinase K was added to the above suspension so that the final concentration became 100 gZmL, and the mixture was kept at 37 ° C for 1 hour.
  • sodium dodecyl sulfate was added to a final concentration of 0.5%, and the cells were lysed by keeping the temperature at 50 ° C for 6 hours.
  • To this lysate add an equal volume of the phenol Z chloroform solution, gently shake at room temperature for 10 minutes, then centrifuge the whole (5,000 X g, 20 minutes, 10-12 ° C) and remove the supernatant. The fractions were collected, and sodium acetate was added thereto to a concentration of 0.3 M, and then twice the amount of ethanol was added to the mixture. The precipitate collected by centrifugation (15,000 ⁇ g, 2 minutes) was washed with 70% ethanol and air-dried.
  • the Bacillus subtilis SacB gene was obtained by converting the DNA prepared in the above (A) into type II and designing a synthetic DNA (SEQ ID NO: 2) designed based on the previously reported nucleotide sequence of the gene (GenBank Database Accession No. X02730). This was performed by PCR using 1 and SEQ ID NO: 2). Reaction solution composition: Type 1 DNA 1 ⁇ L, Pfx DNA polymerase (Invitrogen) 0.2 ⁇ 1x concentration attached buffer, 0. Each primer, ImM MgSO, 0.25
  • Reaction temperature conditions Using a DNA Thermal Cycler-PTC-200 (manufactured by MJ Research), a cycle consisting of 94 ° C for 20 seconds and 68 ° C for 2 minutes was repeated 35 times. However, the heat retention at 94 ° C in the first cycle was 1 minute and 20 seconds, and the heat retention at 68 ° C in the final cycle was 5 minutes.
  • the amplification products were confirmed by separation by gel electrophoresis of 0.75% agarose (SeaKem GTG agarose: manufactured by FMC BioProducts), and visualization by thidium bromide staining to detect a fragment of about 2 kb.
  • the target DNA fragment was recovered from the gel using a QIAQuick Gel Extraction Kit (QIAGEN).
  • the recovered DNA fragment was phosphorylated at the 5 'end with T4 polynucleotide kinase (T4 Polynucleotide Kinase: manufactured by Takara Shuzo), and then was ligated to an E. coli vector (pBluescriptll: Ligation Kit ver. 2 (Takara Shuzo)).
  • Escherichia coli DH5a strain
  • the recombinant Escherichia coli obtained in this manner was LB agar medium containing 50 ⁇ g ZmL ampicillin and 50 ⁇ g ZmL X-Gal [10 g tryptone, 5 g yeast extratato, 5 g NaCl and 15 g agar. Dissolved in 1 L of distilled water].
  • the clone that formed a white colony on this medium was then transferred to an LB agar medium containing 50 ⁇ g ZmL ampicillin and 10% sucrose and cultured at 37 ° C. for 24 hours.
  • those that could not grow on a medium containing sucrose were subjected to liquid culture by a conventional method, and then the plasmid DNA was purified.
  • SacB gene in which the SacB gene is functionally expressed in E. coli should be unable to grow on sucrose-containing media.
  • restriction enzymes Sail and Pstl an inserted fragment of about 2 kb was recognized, and the plasmid was named pBSZSacB.
  • Escherichia coli plasmid vector PHSG396 (Takara Shuzo: chloramuecole resistance marker) 500 ng of the restriction enzyme PshBI 1 Ounits was reacted at 37 ° C for 1 hour, and then recovered by phenol Z chloroform extraction and ethanol precipitation. After blunting both ends with a tarenow fragment (K1 enow Fragment: manufactured by Takara Shuzo), Mlul linker (Takara Shuzo) was ligated and cyclized using a ligation kit ver. 2 (manufactured by Takara Shuzo), E. coli (DH5a strain) was transformed.
  • K1 enow Fragment manufactured by Takara Shuzo
  • Mlul linker (Takara Shuzo) was ligated and cyclized using a ligation kit ver. 2 (manufactured by Takara Shuzo), E. coli (DH5a strain) was transformed.
  • the recombinant Escherichia coli thus obtained was spread on an LB agar medium containing 34 ⁇ g ZmL of chloramphene.
  • Plasmid DNA was prepared from the obtained clones by a conventional method, and a clone having a restriction enzyme Mlul cleavage site was selected and named pHSG396 Mlu.
  • the pBSZSacB constructed in the above was cut with restriction enzymes Sail and Pstl, and the ends were blunt-ended with a tarenow fragment. After ligation of the Mlul linker using Ligation Kit ver. 2 (Takara Shuzo), a DNA fragment of about 2.
  • the colonies thus obtained were then transferred to a LB agar medium containing 34 / z gZmL Kualamu-Facol and 10% sucrose and cultured at 37 ° C for 24 hours.
  • a medium containing sucrose were purified for plasmid DNA by a conventional method.
  • the plasmid DNA thus obtained was digested with Mlul. As a result of analysis, it was confirmed that it had an insert fragment of about 2. Okb, which was named pCMBl.
  • the kanamycin resistance gene was obtained by PCR using the DNA of Escherichia coli plasmid vector PHSG299 (Takara Shuzo: kanamycin resistance marker) as type III and the synthetic DNAs shown in SEQ ID NO: 3 and SEQ ID NO: 4 as primers.
  • Reaction solution composition ⁇ type DNAlng, Pyrobest DNA polymerase (Takara Shuzo) 0.1 ⁇ l 1x concentration attached buffer, 0.5 ⁇ each primer and 0.25 ⁇ MdNTPs were mixed to make a total volume of 20 ⁇ L.
  • Reaction temperature conditions Using a DNA Thermal Cycler PTC-200 (manufactured by MJ Research), a cycle consisting of 94 ° C for 20 seconds, 62 ° C for 15 seconds, and 72 ° C for 1 minute and 20 seconds was repeated 20 times. . However, the heat retention at 94 ° C in the first cycle was 1 minute and 20 seconds, and the heat retention at 72 ° C in the final cycle was 5 minutes.
  • the amplified product was confirmed by separation by gel electrophoresis of 0.75% agarose (SeaKem GTG agarose: manufactured by FMC BioProducts), followed by visualization by bromide staining, and a fragment of about 1. 1 kb was detected.
  • the target DNA fragment was recovered from the gel using a QIAQuick Gel Extraction Kit (QIAGEN).
  • QIAGEN QIAQuick Gel Extraction Kit
  • the recovered DNA fragment was phosphorylated at its 5 ′ end with T4 Polynucleotide Kinase (Takara Shuzo).
  • the approximately 3.5 kb DNA fragment obtained by cleaving the pCMBl constructed in the above (C) with restriction enzymes Van91I and Seal was separated and recovered by 0.75% agarose gel electrophoresis. This was mixed with the kanamycin resistance gene prepared in (D) above, ligated using Ligation Kit ver. 2 (Takara Shuzo), and Escherichia coli (DH5a strain) was transformed with the obtained plasmid DNA. .
  • the recombinant E. coli thus obtained was spread on an LB agar medium containing 50 gZmL kanamycin. It was confirmed that the strain grown on the kanamycin-containing medium was unable to grow on the sucrose-containing medium.
  • plasmid DNA prepared with the same strain was not mistaken for the structure shown in Fig. 1 because of the fact that fragments of 354, 473, 1807, and 1997 bp were generated by the IJ restriction enzyme Hindlll digestion!
  • the plasmid was named pKMBl.
  • Brevibataterum 'Flavum MJ-233 strain (FERM BP-1497) was obtained by a conventional method (Wolf H et al "J. Bacteriol. 1983, 156 (3) 1165-1170, Kurusu Y et al, Agric Biol Chem. 1990 The endogenous plasmid was removed (cured) according to the method described in J., 54 (2) 443-7), and the resulting plasmid-clearing strain Brevibataterium 'Flavam MJ233-ES strain was used for subsequent transformation.
  • a medium (urea 2g, (NH) SO 7g, KH PO 0.5g, K HPO 0.5g, MgSO-7
  • Genomic DNA was prepared from the cells by the method shown in (A) of Reference Example 1 above.
  • the MJ233 strain ratatate dehydrogenase gene was obtained by using the DNA prepared in (A) above as a type III and synthesizing DNA (SEQ ID NO: 5 and SEQ ID NO: 5) designed based on the nucleotide sequence of the gene described in JP-A-11-206385. PCR was performed using No. 6). Reaction solution composition: Type I DNA1 / zL, Taq DNA polymerase (Takara Shuzo) 0.2 l 1x concentration attached buffer, 0.2 M each primer, 0.25 ⁇ M dNTPs were mixed to make a total volume of 20 ⁇ L.
  • Reaction temperature conditions Using DNA Thermal Cycler PTC-200 (manufactured by MJ Research), a cycle of 94 ° C for 20 seconds, 55 ° C for 20 seconds, and 72 ° C for 1 minute was repeated 30 times. However, the heat retention at 94 ° C in the first cycle was 1 minute and 20 seconds, and the heat retention at 72 ° C in the final cycle was 5 minutes.
  • the amplified product was confirmed by separation by gel electrophoresis of 0.75% agarose (SeaKem GTG agarose: manufactured by FMC BioProducts), and visualization by titanium bromide staining to detect a fragment of about 0.95 kb.
  • the target DNA fragment was recovered from the gel using a QIAQuick Gel Extraction Kit (QIAGEN).
  • the recovered DNA fragment was mixed with the PCR product closing vector pGEM-TEasy (Promega), ligated using Ligation Kit ver. 2 (Takara Shuzo), and the resulting plasmid DNA was used for E. coli (DH5a strain). ) Was transformed.
  • the recombinant Escherichia coli obtained in this way is weighed at 50 gZml. And LB agar medium containing 50 ⁇ g ZmLX-Gal. Clones that formed a white colony on this medium were subjected to liquid culture by a conventional method, and then plasmid DNA was purified. By cutting the obtained plasmid DNA with restriction enzymes Sacl and Sphl, an inserted fragment of about 1. Ok b was recognized and named pGEMTZCgLDH.
  • the resulting plasmid DNA was cut with restriction enzymes Sacl and Sphl to select a clone in which an inserted fragment of about 0.75 kb was recognized, and this was named pGEMEM / ⁇ LDH.
  • pGEMEM / ⁇ LDH a DNA fragment of about 0.75 kb generated by cutting the above pGEMTZ ⁇ LDH with restriction enzymes Sacl and Sphl was separated and recovered by 0.75% agarose gel electrophoresis, and the ratate dehydrogenase gene containing the defective region was recovered. Fragments were prepared. This DNA fragment was mixed with pKMB1 constructed in Reference Example 1 digested with restriction enzymes Sacl and Sphl, and ligated using Ligation Kit ver. 2 (Takara Shuzo).
  • E. coli (DH5a strain) was transformed.
  • the recombinant E. coli thus obtained was spread on an LB agar medium containing 50 ⁇ g ZmL kanamycin and 50 ⁇ g ZmL X-Gal. Clones that formed white colonies on this medium were subjected to liquid culture by a conventional method, and then plasmid DNA was purified.
  • the obtained plasmid DNA was digested with restriction enzymes Sacl and Sphl to select those having an inserted fragment of about 0.75 kb, which was named ⁇ 1 / ⁇ LDH (FIG. 2).
  • Plasmid DNA used for the transformation of Brevibataterium 'Flavum MJ-233 strain was prepared by the calcium chloride method using pKMBlZ ALDH (Journal of Molecular Biology, 53, 159, 1970) was also prepared.
  • LBG agar medium 10 g of tryptone, 5 g of yeast extratato, 5 g of NaCl, 20 g of glucose, and 15 g of agar dissolved in 1 L of distilled water] was smeared.
  • the strain grown on this medium was a plasmid in which pKMBlZ ALDH was not replicable in the strain Brevibataterum 'Flavum MJ233-ES, and the ratate dehydrogenase gene and Brevibatatellium' flavum
  • the kanamycin resistance gene and the SacB gene derived from the plasmid should have been inserted into the same genome.
  • the homologous recombinant strain was liquid-cultured in an LBG medium containing 50 ⁇ g ZmL of kanamycin. An equivalent of about 100,000 bacterial cells in this culture was smeared on an LBG medium containing 10% sucrose. As a result, about 10 strains that were considered to be insensitive to sucrose due to the loss of the SacB gene by the second homologous recombination were obtained.
  • the strains obtained in this manner include those that have been replaced with a mutant derived from the ratate dehydrogenase gene 3 ⁇ 410 ⁇ 1 ZALDH and those that have returned to the wild type.
  • ratate dehydrogenase gene is a mutant or wild type
  • directly detect the ratate dehydrogenase gene by subjecting the cells obtained by liquid culture in LBG medium to a PCR reaction. This can be easily confirmed.
  • Analysis using the primers (SEQ ID NO: 7 and SEQ ID NO: 8) for PCR amplification of the ratate dehydrogenase gene should reveal a DNA fragment of 720 bp for the wild type and 47 lbp for the mutant having the deletion region. It is.
  • a strain having only the mutant gene was selected, and the strain was named Brevibataterium 'Flavam MJ233Z ALDH.
  • This promoter fragment was obtained using the Brevi battery technology prepared in (A) of Reference Example 2.
  • Flavum MJ233 genomic DNA was type III, and PCR was performed using synthetic DNA (SEQ ID NO: 9 and SEQ ID NO: 10) designed based on the sequence described in SEQ ID NO: 4 of JP-A-7-95891.
  • Reaction solution composition Type 1 DNA 1 ⁇ L, Pfx DNA polymerase (Invitrogen) 0.2 L, 1x concentration attached buffer, 0.3 M each primer, ImM MgSO
  • Reaction temperature conditions Using DNA Thermal Cycler PTC-200 (manufactured by MJ Research), a cycle of 20 cereals at 94 ° C, 20 cereals at 60 ° C, and 30 seconds of power at 72 ° C was repeated 35 times. However, the heat retention at 94 ° C in the first cycle was 1 minute and 20 seconds, and the heat retention at 72 ° C in the final cycle was 2 minutes.
  • the amplification products were confirmed by separation by gel electrophoresis on 2.0% agarose (SeaKem GTG agarose: manufactured by FMC BioProducts) and visualization by chidium bromide staining to detect a fragment of about 0.25 kb.
  • the target DNA fragment was recovered from the gel using a QIAQuick Gel Extraction Kit (manufactured by QIAGEN).
  • the recovered DNA fragment was phosphorylated at the 5 ′ end with T4 Polynucleotide Kinase (Takara Shuzo) and then ligated with E. coli vector PUC19 (Takara Shuzo) using Ligation Kit ver. 2 (Takara Shuzo).
  • Escherichia coli (DH5 ⁇ strain) was transformed with the obtained plasmid DNA after binding to the Smal site.
  • the recombinant Escherichia coli thus obtained was spread on an LB agar medium containing 50 ⁇ g ZmL ampicillin and 50 ⁇ g ZmL X-Gal.
  • Six clones that formed white colonies on this medium were subjected to liquid culture by a conventional method, and then the plasmid DNA was purified and the nucleotide sequence was determined.
  • a clone in which the TZ4 promoter was inserted so as to have transcriptional activity in the reverse direction to the lac promoter of pUC19 was selected and named PUCZTZ4.
  • a DNA fragment prepared by cleaving pUCZTZ4 with restriction enzymes BamHI and Pstl was added to a synthetic DNA (SEQ ID NO: 11 and SEQ ID NO: 12) whose 5 'end was phosphorylated.
  • BamHI and a DNA linker having a sticky end to Pstl were mixed and ligated using a ligation kit ver. 2 (Takara Shuzo), and Escherichia coli (DH5 ⁇ strain) was transformed with the obtained plasmid DNA.
  • This DNA linker contains a ribosome binding sequence (AGGAGG) and a clawing site located downstream thereof (Pad, NotI, Apal, in order from the upstream).
  • pHSG298par-rep described in JP-A-12-93183 As a plasmid capable of autonomously replicating stably in coryneform bacteria, pHSG298par-rep described in JP-A-12-93183 is used.
  • This plasmid contains the replication region and stabilizing function of the natural plasmid pBY503 carried by Brevibacterium 'statis IFO 12144 strain, the kanamycin resistance gene derived from the E. coli vector PHSG298 (Takara Shuzo) and the replication of E. coli. With an area.
  • the amplification product was confirmed by separation by gel electrophoresis of 0.75% agarose (SeaKem GTG agarose: manufactured by FMCB Products) and visualization by chidium bromide staining to detect a fragment of about 3.7 kb.
  • the target DNA fragment was recovered from the gel using a QIAQuick Gel Extraction Kit (manufactured by QIAGEN).
  • the recovered DNA fragment was mixed with the PCR product closing vector pGEM-TEasy (Promega) and ligated using Ligation Kit ver. 2 (Takara Shuzo). Strain).
  • the recombinant Escherichia coli thus obtained was spread on an LB agar medium containing 50 ⁇ g ZmL ampicillin and 50 ⁇ g ZmL X-Gal. Clones that formed white colonies on this medium were subjected to liquid culture by a conventional method, and then plasmid DNA was purified. By cutting the obtained plasmid DNA with the restriction enzymes Pacl and Apal, an inserted fragment of about 3.7 kb was recognized and named pGEMZMJPC.
  • the nucleotide sequence of the inserted fragment of pGEMZMJPC was determined using a nucleotide sequence decoding device (Model 377XL) manufactured by Applied Biosystems and a Big Dye Terminator One Cycle Sequence Kit ver3.
  • the resulting DNA base sequence is set forth in SEQ ID NO: 15.
  • the amino acid sequence predicted from this sequence shows extremely high homology (99.4%) with that derived from Corynebacterium 'daltamicum ATCC13032 strain, so that the inserted fragment of pGEMZMJPC contains the pill from Brevibataterimu' flavum MJ233 strain. It was determined to be a basic carboxylase gene.
  • a pyruvate carboxylase gene fragment having a power of about 3.7 kb generated by cleaving pGEMZMJPC prepared in (A) above with restriction enzymes Pacl and Apal was separated and collected by 0.75% agarose gel electrophoresis.
  • This DNA fragment was mixed with pTZ4 constructed in Reference Example 3 digested with restriction enzymes Pacl and Apal, and ligated using Ligation Kit ver.2 (Takara Shuzo). Was used to transform Escherichia coli (DH5 ⁇ strain). The recombinant Escherichia coli thus obtained was reconstituted with 50 gZmL kanamycin.
  • MM A LB agar medium was smeared.
  • the strain grown on this medium was subjected to liquid culture by a conventional method, and then the plasmid DNA was purified.
  • the plasmid DNA enzymes Pacl and Apal By cutting with restriction resulting plasmid DNA enzymes Pacl and Apal, and clone having an insert of about 3. 7 kb was observed, and was named P MJ PC I ( Figure 4).
  • Plasmid DNA for transformation with pMJPCl capable of replication in Brevibatadium 'Flavum MJ233 strain was prepared from E. coli (DH5a strain) transformed in the above (B).
  • Brevibacterium flavum strain MJ233Z ⁇ LDH was transformed by the electric pulse method (Res.Microbiol., Vol. 144, p. 181-185, 1993), and the resulting transformant was transformed into 50 ⁇ g ZmL Was spread on a LBG agar medium containing 10 g of tryptone, 5 g of yeast extratato, 5 g of NaCl, 20 g of glucose, and 15 g of agar in 1 L of distilled water.
  • Escherichia coli JM109 strain was cultivated in 10 mL of LB medium until the late logarithmic growth phase, and genomic DNA was prepared from the obtained cells by the method shown in (A) of Reference Example 1 above.
  • the Escherichia coli fumarate reductase gene was obtained using the DNA prepared in (A) above as type III and based on the sequence of the gene of Escherichia coli K12-MG1655 (GenBank Database Accession No. U00096), for which the entire genome sequence was reported. PCR was performed using the synthetic DNA (SEQ ID NO: 16 and SEQ ID NO: 17) designed in the above. Reaction solution composition: Type DN Al / zL, Pfx DNA polymerase (Invitrogen) 0.2 L, buffer attached at 1-fold concentration, 0.3 ⁇ Mix each primer, ImM MgSO, 0.25 ⁇ MdNTPs , Full amount
  • the amplification products were confirmed by separating them by 0.75% agarose (SeaKem GTG agarose: manufactured by FMC BioProducts) gel electrophoresis and visualizing them by chidium bromide staining to detect a fragment of about 3.8 kb.
  • the target DNA fragment was recovered from the gel using a QIAQuick Gel Extraction Kit (QIAGEN).
  • QIAGEN QIAQuick Gel Extraction Kit
  • the recovered DNA fragment was mixed with the PCR product closing vector pT7Blue T—Vector (Novagene) and ligated using Ligation Kit ver. 2 (Takara Shuzo). (DH5a strain).
  • the recombinant Escherichia coli thus obtained was spread on an LB agar medium containing 50 ⁇ g ZmL ampicillin and 50 ⁇ g ZmL X-Gal. Clones that formed white colonies on this medium were subjected to liquid culture by a conventional method, and then the plasmid DNA was purified. By cutting the obtained plasmid DNA with restriction enzymes Hindlll and Kpnl, an inserted fragment of about 3.9 kb was observed, which was named pFRD6.0.
  • the nucleotide sequence of the inserted fragment of pFRD6.0 was determined using a nucleotide sequence decoding device (Model 377XL) manufactured by Applied Biosystems and a Big Dye Terminator One-Cycle Sequence Kit ver3.
  • the resulting DNA base sequence is set forth in SEQ ID NO: 18.
  • PMJPC1 constructed in Reference Example 3 was completely digested with the restriction enzyme Kpnl, and then reacted with alkaline phosphatase (Alkaline Phosphatase Calf intestine: Takara Shuzo). The fragments were mixed with a DNA linker that also had the ability to synthesize synthetic DNA (SEQ ID NO: 19 and SEQ ID NO: 20) with phosphorylated ends, and ligated using Ligation Kit ver. 2 (Takara Shuzo). Escherichia coli (DH5 ⁇ strain) was transformed with the DNA. The recombinant E. coli thus obtained was spread on an LB agar medium containing 50 ⁇ g ZmL kanamycin.
  • the strain grown on this medium was subjected to liquid culture by a conventional method, and then the plasmid DNA was purified. From the obtained plasmid DNAs, those cleaved by the restriction enzyme Ndel were selected and named pMJPCl.1.
  • the fragment containing the Escherichia coli fumarate reductase gene prepared in this manner was digested with the restriction enzyme Ndel of the pMJPCl.1 prepared in (A) above, the ends were blunted with a tarenow fragment, and then the restriction enzyme Kpnl
  • the DNA was mixed with the DNA prepared by cleavage in step 1 and ligated using Ligation Kit ver. 2 (Takara Shuzo), and Escherichia coli (DH5a strain) was transformed with the obtained plasmid DNA.
  • the recombinant E. coli thus obtained was spread on an LB agar medium containing 50 gZmL kanamycin.
  • the strain grown on this medium was subjected to liquid culture by a conventional method, and then the plasmid DNA was purified. Based on the fact that fragments of 505, 2132, 2675, 3775, and 4193 bp were generated from the obtained plasmid DNA by digestion with the Hindlll restriction enzyme, it was judged that there was no mistake in the structure shown in FIG. 5, and the plasmid was converted into pFRPCl. Named 1.
  • the present invention provides a method for producing a novel organic acid ammonia solution.
  • a neutralizing agent and carbonic acid and ammonia used for salt exchange are reused.
  • an organic acid ammonium solution such as an ammonium succinate solution can be efficiently produced.
  • the succinic acid produced by the present invention which also provides an aqueous solution of ammonium succinate, is useful as a raw material for polymers such as biodegradable polyesters and polyamides, foods, pharmaceuticals, and cosmetics.

Abstract

 マグネシウム化合物の存在下に有機酸生産能を有する微生物を用いて有機酸マグネシウムを含む発酵液を得る工程、該発酵液に含まれる有機酸マグネシウムをアンモニア化合物を用いて塩交換することにより、有機酸アンモニウムを生成させるとともにマグネシウム化合物を生成させる工程、及び、生成したマグネシウム化合物を分離すると共に、有機酸アンモニウム溶液を得る工程を行うことにより、有機酸アンモニウム溶液を製造する。              

Description

明 細 書
有機酸アンモニゥム溶液の製造方法
技術分野
[0001] 本発明は、琥珀酸アンモ-ゥム溶液などの有機酸アンモ-ゥム溶液の製造方法に 関する。更に詳しくは、生物由来のグルコース、ブドウ糖、セルロースなどを原料とし て、微生物変換により有機酸を製造する場合に好適な、有機酸アンモ-ゥム溶液の 製造方法に関する。
背景技術
[0002] 有機酸にはフマル酸、マレイン酸、リンゴ酸、琥珀酸などが含まれ、その中でも琥珀 酸又はその誘導体は、生分解性ポリエステル、ポリアミドなどのポリマーの原料、また は、食品、医薬品、及びィ匕粧品などの原料として広く用いられている。
[0003] 琥珀酸などの有機酸は、従来、石油由来の原料であるマレイン酸を水添することに より工業的に製造されてきた。しかし、近年では、発酵操作を利用した技術により、植 物由来の原料力 有機酸を製造することも検討されて 、る。
[0004] 発酵による有機酸の製造においては、有機酸の生成とともに培地の pHが低下する が、発酵に用いられる微生物は一般に低い pH条件下では十分な活性を示さないこ とから、発酵液を中和する必要があり、一般には、中和剤として、水酸ィ匕ナトリウム、 炭酸水素ナトリウム、炭酸ナトリウム、アンモニア、炭酸アンモ-ゥム、炭酸水素アンモ ユウム、尿素、水酸ィ匕カルシウム、炭酸カルシウム、水酸化マグネシウム、炭酸マグネ シゥムなどが用いられてきた。しかし、このような中和剤を用いた場合、発酵槽から得 られる有機酸はアルカリとの塩を形成しているため、一般的な分離 ·精製手法である 蒸留操作を用いることができな力つた。
[0005] このような状況のもと、発酵により生成した有機酸塩から有機酸を分離'精製する方 法としては、電気透析を用いる方法 (例えば、特許文献 1参照)、イオン交換榭脂を用 いる方法 (例えば、特許文献 2参照)、水酸ィ匕カルシウムで中和しながら発酵生産し て得られた琥珀酸カルシウムを硫酸で分解する方法 (例えば、特許文献 3参照)硫酸 を用いる塩の交換反応で反応晶析を行う方法 (例えば、特許文献 4又は 5参照)、反 応抽出法 (特許文献 6)などが提案されて!ヽる。
[0006] 発酵においては、菌の性質によって特に好ましい中和剤が制約される。一方で、上 記の精製方法はどのような中和剤に対しても汎用的に用いる事が出来るとは限らず、 それぞれ使える中和剤が限定されている。そのため、発酵における中和剤の選定と 精製における中和剤の制約とを合致させるの力 絶対的に必要である。
[0007] 電気透析を用いる方法では、中和剤は 1価のカチオンでなければならない。 2価の カチオンは電気透析膜において、石膏として析出し、著しくその膜性能を損なう。した がって、アンモニア、ナトリウム、及びカリウムが中和剤として好ましい。
[0008] イオン交換榭脂を用いる方法では、副生塩が発生するため、中和剤が安定的に供 給され、市場価格が安価なものを選ばなければなければならない。したがって、アン モニァ及びナトリウムが好ましぐ次いで、カリウム及びカルシウム、そしてマグネシゥ ムの順となる。それでも、副生塩の発生は処理費用を発生させるため、あまり好ましい 方法とは言えない。
[0009] ァミンによる反応抽出を用いる方法では、水相に中和剤が炭酸塩として残るため、 中和剤の炭酸塩の水への溶解度があまり小さいと、その場で析出してしまい、高圧抽 出塔の操作ができなくなる。したがって、アンモニア、ナトリウム及びカリウムが中和剤 として好ましい。
[0010] 硫酸による酸析を用いる方法では、硫酸塩が副生する(石膏法:特許文献 3)。従つ て、通常は、中和剤が安定的に供給され、イオン交換榭脂を用いる方法と同様に、 市場価格が安価なものを選ばなければなければならない。また、副生塩の発生は処 理費用を発生させるため、あまり好ま 、方法とは言えな 、。
これの問題に対して、特許文献 4又は 5においては 300°C以上で硫酸アンモ-ゥム の熱分解を行い、硫酸モノアンモ-ゥム塩として再利用し、アンモニアを中和剤として 用いる方法を提案して 、る。そのためにはナトリウム中和であってもアンモニア中和に 変換する方法を提案して ヽる。
[0011] 即ち、硫安の形であれば、アンモニアを中和剤とすると副生塩を発生させないという 利点を持って 、ると 、う事であり、これはイオン交換榭脂法であっても硫酸モノアンモ 二ゥム塩を榭脂再生に用いれば、同様の事が可能になる。 [0012] これらより、アンモニア中和が最も多様な精製法を適用可能であり、特許文献 4又は 5に記載の方法を応用すれば、副生塩を発生させないという利点を持つ中和剤であ ると言える。
ナトリウムは特許文献 4又は 5に記載の方法により、アンモニアに変換する事が出来 、また、そのままでも多様な精製をその環境に応じて用いる事が可能である。
即ち、発酵液として、アンモニア塩 ·ナトリウム塩であれば、世界の多様な経済的環 境、気候的環境に最も適した精製法を選択する事が可能になる事を示して!/ヽる。
[0013] また、カルシウムは特許文献 3に示されるように経済合理性の比較的良い中和剤で ある。以上より、極めて限定された精製し力行う事ができないマグネシウムは、菌体反 応に必修の金属イオンの一つであるにも関わらず、中和剤として用いる検討がされる 事は少、なかった。
特許文献 1:特開平 2 - 283289号公報
特許文献 2 :米国特許第 6, 284, 904号明細書
特許文献 3:特開平 3 - 030685号公報
特許文献 4:特表 2001—514900号公報
特許文献 5 :米国特許第 5, 958, 744号明細書
特許文献 6 :国際公開第 98Z01413号パンフレット
発明の開示
[0014] 本発明は有機酸アンモ-ゥム溶液の効率的な製造方法を提供することを課題とす る。
上述したような状況の下、本発明者らは、多様な経済的な環境において、最も適し た有機酸の精製法を選択できるようにするためには、有機酸のマグネシウム塩をアン モ-ァ塩に変換する事ができればよいと考え、鋭意検討した。その結果、マグネシゥ ム化合物を発酵培地に添加して微生物を培養し、生成した有機酸マグネシウム塩を アンモニア化合物で塩置換することにより、有機酸アンモ-ゥム溶液を効率的に製造 できることを見出した。
更に検討を続けた結果、副生する炭酸マグネシウム '炭酸アンモ-ゥム複塩を加熱 することにより、アンモニアをほとんど含まない炭酸マグネシウムを得ることができ、こ れによりマグネシウム化合物をリサイクルし、廃棄物を出さずに有機酸のアンモニア 塩を製造できることを見出した。
以上により、本発明を成すに至った。
すなわち、本発明は以下のとおりである。
(1)マグネシウム化合物の存在下に有機酸生産能を有する微生物を用いて有機酸 マグネシウムを含む発酵液を得る発酵工程、該発酵液に含まれる有機酸マグネシゥ ムをアンモニア化合物を用いて塩交換することにより、有機酸アンモ-ゥムを生成さ せるとともにマグネシウム化合物を生成させる塩交換工程、及び、生成したマグネシ ゥム化合物を分離すると共に、有機酸アンモ-ゥム溶液を得るマグネシウム分離工程 を含む、有機酸アンモ-ゥム溶液の製造方法。
(2)マグネシウム分離工程で得られたマグネシウム化合物を発酵工程にぉ ヽてマグ ネシゥム化合物として再利用する、 (1)の有機酸アンモ-ゥム溶液の製造方法。
(3)前記マグネシウム化合物が炭酸マグネシウムであり、かつ、前記アンモニア化合 物が炭酸アンモ-ゥムである、(1)または(2)の有機酸アンモ-ゥム溶液の製造方法
(4)前記塩交換工程にぉ 、て、発酵液に二酸化炭素及びアンモニアを供給すること により生成した炭酸アンモ-ゥムをアンモニア化合物として用いることを特徴とする、 ( 1)一 (3)の 、ずれかの有機酸アンモ-ゥム溶液の製造方法。
(5)二酸化炭素を、発酵液中のマグネシウムに対し 0. 3— 10モル倍量の量で供給 する、(4)の有機酸アンモ-ゥム溶液の製造方法。
(6)さらに、前記マグネシウム分離工程で得られた有機酸アンモ-ゥム溶液を加熱し 、該溶液中に存在する過剰のアンモニアと二酸化炭素を気化して分離し、分離され たアンモニア及び二酸ィ匕炭素を前記塩交換工程に再利用する、(4)の有機酸アンモ ニゥム溶液の製造方法。
(7)前記マグネシウム分離工程にぉ 、て分離された炭酸マグネシウムを二酸化炭素 と酸化マグネシウムに熱分解し、該酸化マグネシウムに水を加えて水酸化マグネシゥ ムを生成させ、該水酸ィ匕マグネシウムをマグネシウム化合物として発酵工程に再利用 することを特徴とする、 (1)の有機酸アンモ-ゥム溶液の製造方法。 (8)前記マグネシウム化合物が水酸ィ匕マグネシウム、又は水酸ィ匕マグネシウム及び 炭酸マグネシウムの混合物であり、前記塩交換工程においてアンモニアを用いること を特徴とする、(1)の有機酸アンモ-ゥム溶液の製造方法。
(9)前記マグネシウム分離工程で得られた有機酸アンモ-ゥム溶液に炭酸アンモ- ゥムを添加して、有機酸アンモ-ゥムおよび炭酸マグネシウムを生成させ、該炭酸マ グネシゥムを分離して有機酸アンモ-ゥム溶液を得る工程をさらに含む、(8)の製造 方法。
(10)前記塩交換工程を pH7— 12の範囲で行うことを特徴とする、(1)一(9)のいず れかの有機酸アンモ-ゥム溶液の製造方法。
( 11 )有機酸が琥珀酸であり、かつ有機酸アンモニゥムが琥珀酸アンモニゥムである 、(1)一(10)のいずれかの有機酸アンモニゥム溶液の製造方法。
( 12)マグネシウム分離工程によって得られたマグネシウム化合物に含まれる炭酸マ グネシゥム及び炭酸アンモ-ゥムの複塩を加熱または乾燥することによって、該複塩 力 炭酸アンモ-ゥムを除去して炭酸マグネシウムを得、該炭酸マグネシウムを発酵 工程に循環させる、 (1)の有機酸アンモ-ゥム溶液の製造方法。
(13)該複塩中のアンモニア含量がマグネシウムに対してモル比で 10分の 1以下にな るように炭酸アンモ-ゥムを除去する、(12)の有機酸アンモ-ゥム溶液の製造方法。
(14)該複塩中のアンモニア含量がマグネシウムに対してモル比で 30分の 1以下にな るように炭酸アンモ-ゥムを除去する、(12)の有機酸アンモ-ゥム溶液の製造方法。
(15)複塩を 160°C以上で加熱する、 ( 12)の有機酸アンモニゥム溶液の製造方法。 図面の簡単な説明
[0016] [図 1]プラスミド pKMBlの構築手順と制限酵素地図を示す図。
[図 2]プラスミド ρΚΜΒΐΖ Δ LDHの構築手順を示す図。
[図 3]プラスミド pTZ4の構築手順を示す図。
[図 4]プラスミド pMJPClの構築手順を示す図。
[図 5]プラスミド pFRPCl. 1の構築手順を示す図。
発明を実施するための最良の形態
[0017] 以下、本発明を詳細に説明する。 本発明の製造方法は、マグネシウム化合物の存在下に有機酸生産能を有する微 生物を用いて有機酸マグネシウムを含む発酵液を得る発酵工程、該発酵液に含まれ る有機酸マグネシウムをアンモニア化合物を用いて塩交換することにより、有機酸ァ ンモ-ゥムを生成させるとともにマグネシウム化合物を生成させる塩交換工程、及び、 生成したマグネシウム化合物を分離すると共に、有機酸アンモ-ゥム溶液を得るマグ ネシゥム分離工程を含む、有機酸アンモ-ゥム溶液の製造方法である。
[0018] 有機酸アンモ-ゥムの種類は、微生物によって発酵生産される有機酸のアンモ-ゥ ム塩であれば特に限定されないが、ジカルボン酸、トリカルボン酸のアンモニゥム塩 が好ましい。ジカルボン酸としては、琥珀酸、フマル酸、マレイン酸、リンゴ酸、酒石酸 、ァスパラギン酸、ダルタル酸、グルタミン酸、アジピン酸、スベリン酸、ィタコン酸、テ レフタル酸などを、トリカルボン酸としてはクェン酸などを例示することができる。
なお、本発明において「有機酸アンモ-ゥム」は、有機酸モノアンモ-ゥム、有機酸 多価アンモ-ゥムを含む。
[0019] 発酵工程では、マグネシウム化合物の存在下、有機酸生産能を有する微生物を用 V、て有機酸マグネシウムを含む発酵液を得る。
[0020] 用いる微生物は、「有機酸生産能を有する微生物」である。「有機酸生産能を有す る微生物」とは、微生物を後述するような炭素源を含む培地で培養したときに、培地 中に有機酸を生成蓄積する能力を有する微生物である。このような微生物としては、 例えば、アナエロビォスピリラム(Anaerobiospirillum)属細菌(米国特許第 5143833号 明細書)、ァクチノバチルス (Actinobacillus)属細菌(米国特許第 5504004号明細書) 、エシ リヒア(Escherichia)属細菌(米国特許第 5770435号明細書)等の通性嫌気性 細菌、ブレビバタテリゥム(Brevibacterium)属、コリネバタテリゥム(Corynebacterium) 属、アースロバクタ一(Arthrobacter)属等に属するコリネ型細菌(特開平 11 11358 8号公報)などの好気性細菌が挙げられる。更に好ましくは、コリネバクテリウム'ダル タミカム(Corynebacterium glutamicunU、ブレビノ クテリゥム 'フラノくム
Brevibacterium flavum)、ブレビバタテリゥム ·アンモニアゲネス (Brevibacterium ammoniagenes)又はブレビノ クテリゥム 'ラクトフアーメンタム (Brevibacterium lactofermentum)に分類される微生物が挙げられる。 [0021] 琥珀酸生産能を有するコリネ型細菌の例として、具体的には、以下のようなものが 挙げられる。ラタテートデヒドロゲナーゼ活性が低下したブレビバタテリゥム 'フラバム MJ233 Δ ldh株(特開平 11 206385号公報)や、ピルビン酸カルボキシラーゼ又はホ スホェノールピルビン酸カルボキシラーゼ活性が強化されたブレビバタテリゥム ·フラ バム MJ233/pPCPYC株(国際公開第 01/27258号パンフレット)、またブレビバクテリウ ム'フラバム MJ— 233 (FERM BP— 1497)、同 MJ— 233 AB— 41 (FERM BP— 1 498)、ブレビバタテリゥム 'アンモニアゲネス ATCC6872、コリネバタテリゥム'グルタ ミカム ATCC31831、及びブレビバタテリゥム'ラタトフアーメンタム ATCC13869等が挙 げられる。
[0022] なお、ブレビバタテリゥム 'フラバム MJ— 233は、 1975年 4月 28日に通商産業省工業 技術院微生物工業技術研究所 (現独立行政法人産業技術総合研究所特許生物 寄託センター)(干 305-8566 日本国茨城県つくば巿東 1丁目 1番地 1中央第 6)に受 託番号 FERM P-3068として寄託され、 1981年 5月 1日にブダペスト条約に基づく国際 寄託に移管され、 FERM BP-1497の受託番号で寄託されている。また、ブレビバクテ リウム 'アンモニアゲネス ATCC6872等は、アメリカン'タイプ'カルチヤ一'コレクショ ン(住所 12301 Parklawn Drive, Rockville, Maryland 20852, United States of America)より分譲を受けることが出来る。
[0023] 発酵工程に用いる微生物は、有機酸生産能が増強するように改変された微生物で あってもよい。琥珀酸生産能が増強するように改変された微生物としては、例えば、ピ ルビン酸カルボキシラーゼ遺伝子の発現が増強された微生物(特開平 11-196888 号公報)、乳酸デヒドロゲナーゼ遺伝子が破壊された微生物(特開平 11— 206385号 公報)等が挙げられる。また、後述の参考例に示すようなフマレートレダクターゼ遺伝 子の発現が増強された微生物を用いることもできる。
なお、本発明において用いることのできる有機酸生産能を有する微生物は上記の ものには限定されず、その他の琥珀酸生産菌、公知の方法によって得られるリンゴ酸 生産菌、フマル酸生産菌、クェン酸生産菌、イソクェン酸生産菌などを使用すること ができる。
また、本発明において用いることのできる有機酸生産能を有する微生物は 2種類以 上の有機酸の生産能を有するものであってもよ 、。
[0024] 微生物の培養に用いる液体培地は炭素源を含むものである。ここで、炭素源は、微 生物が資化しうる炭素源であれば特に限定されないが、ガラクトース、ラタトース、グ ノレコース、マノレトース、フノレクトース、グリセローノレ、シユークロース、サッカロース、デ ンプン、セルロース等の炭水化物;グリセリン、マン-トール、キシリトール、リビトール 等のポリアルコール類等の発酵性糖質を挙げることができる。このうち好ましくは、グ ルコース、フルクトース、グリセロールを用いることができ、特に好ましくはグルコース を用いることができる。また、より広義の植物由来原料としては、紙の主成分であるセ ルロースを好ましく用いることができる。さらに、上記発酵性糖質を含有する澱粉糖ィ匕 液、糖蜜なども使用される。これらの炭素源は、単独で用いても 2種以上を組み合わ せて用いても良い。
[0025] 上記炭素源の使用濃度は特に限定されな!、が、有機酸の生成を阻害しな!、範囲 で可能な限り高くするのが有利であり、通常、 5— 30% (WZV)、好ましくは 10— 20 % (WZV)の範囲内で用いることができる。また、反応の進行に伴う上記炭素源の減 少にあわせ、炭素源の追カ卩添カ卩を行っても良い。
[0026] 液体培地は、上記炭素源に加えて、窒素源や無機塩などを含むものであることが 好ましい。ここで、窒素源としては、本微生物が資化して有機酸を生成させうる窒素 源であれば特に限定されないが、具体的には、アンモニゥム塩、硝酸塩、尿素、大豆 加水分解物、カゼイン分解物、ペプトン、酵母エキス、肉エキス、コーンスティープリカ 一などの各種の有機、無機の窒素化合物が挙げられる。無機塩としては各種リン酸 塩、硫酸塩、マグネシウム、カリウム、マンガン、鉄、亜鉛等の金属塩が用いられる。ま た、ピオチン、パントテン酸、イノシトール、ニコチン酸等のビタミン類、ヌクレオチド、 アミノ酸などの生育を促進する因子を必要に応じて添加するとよい。また、反応時の 発泡を抑えるために、反応水溶液には市販の消泡剤を適量添加しておくことが望ま しい。
[0027] このような液体培地中で上記微生物を培養するに当たっては、寒天培地等の固体 培地で斜面培養した微生物を直接用いても良いが、上記微生物を予め液体培地で 培養 (種培養)して得た菌体を用いるのが好ましい。この場合、反応に用いる菌体の 量は、特に規定されないが、通常、 1一 700gZL、好ましくは 10— 500gZL、さらに 好ましくは 20— 400gZLが用いられる。
[0028] 発酵反応が進行するにしたがって、有機酸が生成するため培養液の pHは低下する 。そのために、培養液には中和剤をカ卩える。中和剤にはアルカリ土類金属の化合物 、好ましくはマグネシウム化合物を用いる。マグネシウム化合物は琥珀酸の生産量を 増加させ、 pHの変動幅が少ないため有利である。マグネシウム化合物としては、水溶 液中で電離してアルカリ性を示すものが好ましぐ例えば、水酸ィ匕マグネシウム (Mg (
OH) )、炭酸マグネシウム(MgCO )、重炭酸マグネシウム(Mg (HCO ) )などが挙
2 3 3 2 げられる力 pH調整の容易さの点においては、水酸ィ匕マグネシウムが特に好ましい。 なお、マグネシウム化合物は 2種類以上用いてもょ 、。
[0029] マグネシウム化合物を添加する方法は、適切な pHに制御できる限り特に限定され ないが、例えば、これらのマグネシウム化合物を粉末で添加することができる。マグネ シゥム化合物は、培養開始時に培地に添加しておいてもよいし、培養中にカ卩えてもよ い。また、培養開始時に培地に添加しておき、必要に応じてさらに培養中に加えても よい。これらのマグネシウム化合物による調整 pH値は、用いる微生物の種類に応じ て、その有機酸生成活性が最も有効に発揮される範囲に調整されるが、一般的には 、 pH4— 10、好ましくは 6— 9程度に調整される。
[0030] 発酵工程における温度、圧力等の培養条件は、用いる微生物によって異なるが、 有機酸を得るための好適な条件を各々の場合に応じて選択すれば良い。例えば、培 養時の温度は、通常、 25°C— 40°C、好ましくは 30°C— 37°Cである。反応時間は 1時 間一 168時間が好ましぐ 3時間一 72時間がより好ましい。
[0031] 培養終了後の発酵液には微生物によって生産された有機酸と中和剤に含まれるマ グネシゥムによって形成される有機酸マグネシウム (有機酸イオンとマグネシウムィォ ンに電離していてもよい)が含まれる。該発酵液は、遠心分離等により微生物菌体等 を除去した後に、塩交換工程に用いることが好ましい。菌体を分離した発酵液につい ては、さらに精製操作を行った後に、塩交換工程に用いてもよい。また、濃縮操作を 行った後に、塩交換工程に用いてもよい。濃縮は、常法を用いれば良ぐ例えば、ケ トル式リボイラや蒸発缶が用いることができる。大規模生産でエネルギー消費が重要 となれば、多重効用缶を用いても良い。
[0032] 塩交換工程は、発酵液に含まれる有機酸マグネシウムをアンモニア化合物を用い て塩交換することにより、有機酸アンモ-ゥムを生成させるとともに、炭酸マグネシウム 、炭酸マグネシウムの複塩、水酸ィ匕マグネシウムなどのマグネシウム化合物を生成析 出させる工程である。なお、この工程で生成する有機酸アンモ-ゥムは有機酸イオン とアンモ-ゥムイオンに電離して 、てもよ 、。
[0033] アンモニア化合物としては、アンモニアや炭酸アンモ-ゥムなどが挙げられる。アン モユアと炭酸アンモ-ゥムの両方を添加してもよい。塩交換工程に用いる装置は、例 えば、攪拌槽、ドラフトチューブ、クリスタルオスロ型晶析槽、ダブルプロペラなどの一 般的に用いられる晶析槽を用いることが出来る。ただし、固液平衡現象により結晶を 得る事ができる装置であれば、その形状、手法、晶析段数は問わない。
[0034] 以下、琥珀酸マグネシウムの塩交換にっ 、て説明するが、他の有機酸マグネシゥ ムについても同様にして塩交換を行うことができる。また、当業者の知識の範囲内で 反応条件を適宜変更してもよ ヽ。
まず、炭酸アンモ-ゥムを用いた塩交換について説明する。炭酸アンモ-ゥムを用 Vヽた塩交換は、炭酸アンモ-ゥムを添加することによって行ってもよ!、し(下記反応式 (I) )、アンモニアと二酸ィ匕炭素を添加することにより行ってもょ 、(下記反応式 (II) )。
[0035] Succinate— Mg+ (NH ) CO→Succinate(NH ) +Mg CO
4 2 3 4 2 3 i (I)
Succinate— Mg + 2NH +CO +H 0→Succinate(NH ) +Mg CO
3 2 2 4 2 3 i (II)
[0036] 炭酸アンモ-ゥムを添加する場合、炭酸アンモ-ゥムは、反応槽に供給される発酵 液中のマグネシウムに対し、 0. 3力も 10モル倍、好ましくは 0. 5力も 5モル倍、更に 好ましくは 1から 4モル倍となるように添加することが望ましい。ここで、「発酵液中のマ グネシゥム」とは、発酵液中の琥珀酸マグネシウム及びマグネシウム化合物に含まれ るマグネシウム、並びにマグネシウムイオンの総和を意味する。アンモニアと二酸ィ匕 炭素を添加する場合、反応槽に供給される二酸化炭素の量は、反応槽に供給される 発酵液中のマグネシウムに対し、 0. 3力も 10モル倍、好ましくは 0. 5力も 5モル倍、 更に好ましくは 1から 4モル倍となるようにすることが好ましい。また、アンモニアは、二 酸ィ匕炭素が所定の溶解度を維持できるような pHの範囲、すなわち、 pHが 7— 12の アルカリ性になるような量をカ卩えることが好ましい。より好ましくは pHが 7. 5— 11、特 に好ましくは pHが 8— 10となるような量をカ卩える。塩交換反応の時間は琥珀酸マグ ネシゥム反応液の量によって異なり特に制限されないが、 0. 1一 4時間が好ましい。 塩交換は、好ましくは pHが 7から 12、より好ましくは pHが 7. 5から 11、更に好ましくは pHが 8から 10の範囲で行い、攪拌しながら行うことが好ましい。
[0037] なお、炭酸アンモ-ゥムを用いた塩交換 (反応式 (I)又は (II) )においては、マグネ シゥムの回収率は 90%以上であり、琥珀酸の収率もこの値にほぼ相当する。したが つて、琥珀酸マグネシウムを含む溶液力 効率よく琥珀酸アンモ-ゥムの生成、及び マグネシウムの回収を行うことができる。
[0038] 次に、アンモニアを用いた塩交換にっ 、て説明する。この場合、以下の反応式 (III) で琥珀酸アンモニゥム及び水酸ィ匕マグネシウムが生成する。
[0039] Succinate— Mg + 2NH +2H 0→Succinate(NH ) +Mg(OH) 丄 (III)
3 2 4 2 2
[0040] 加えるアンモニアの量は発酵液中のマグネシウムに対して 2— 15モル倍が好ましい 。塩交換の時間は琥珀酸マグネシウムを含む発酵液の量によって異なり特に制限さ れないが、 0. 1一 4時間が好ましい。塩交換は、好ましくは pHが 7から 12、より好まし くは pHが 7. 5から 11、更に好ましくは pHが 8から 10の範囲で行う。アンモニアを用い た塩交換では、水酸ィ匕マグネシウムが生成する。したがって、発酵液にカ卩えるマグネ シゥム化合物としては、水酸化マグネシウム、又は水酸ィ匕マグネシウム及び炭酸マグ ネシゥムの混合物を用いることが好まし 、。
[0041] なお、アンモニアを用いた塩交換 (反応式 (III) )においては、琥珀酸アンモ-ゥム 水溶液中に溶存するマグネシウムの濃度はおよそ 0. 5wt%程度である。更に回収 率を上げるには、溶媒である水を少なくする必要があるが、琥珀酸アンモ-ゥムの溶 解度以上に濃縮をすることはできない。よりマグネシウムの少ない琥珀酸アンモ-ゥ ム水溶液を得るには、さらに、反応式 (III)の塩交換後の濾液に、炭酸アンモ-ゥムを 加えてさらに反応式 (I)又は(II)の塩交換を行 、、炭酸マグネシウムを生成析出させ 、該炭酸マグネシウムを除去することにより、溶液中のマグネシウム濃度を 0. 01wt% 程度にまで減らすことができる。
[0042] マグネシウム分離工程は、生成した炭酸マグネシウム、炭酸マグネシウムの複塩、 水酸ィ匕マグネシウムなどのマグネシウム化合物を分離すると共に、有機酸アンモ-ゥ ム溶液を得る工程である。これらのマグネシウム化合物は水にほとんど溶けな 、ため 、ろ過等の常法によって除去することができる。完全にろ過する場合は、加圧濾過、 減圧濾過、遠心ろ過などが用いることができる。また、沈降分離し、上澄み液と高濃 度スラリーとしてポンプ移送しても良い。このようにしてマグネシウム化合物を除去す ることにより、有機酸アンモ-ゥム水溶液を得ることができる。
[0043] 除去されたマグネシウム化合物は、発酵槽に中和剤としてリサイクル利用することも できる。すなわち、マグネシウム分離工程で得られたマグネシウム化合物は、発酵ェ 程にお 、てマグネシウム化合物として再利用することが経済的で好ま 、。この場合 には雑菌による汚染を防ぐために一般には加熱殺菌を行っているが、特に高濃度ス ラリーとして移送すれば通常の熱交換器、例えば多管式熱交換器やプレート式熱交 による加熱で殺菌が可能となる。加熱殺菌の後にろ過をしても良いし、直接発酵 槽に供給しても良い。完全にろ過をした場合であっても蒸気を直蒸して殺菌すること ができる。
[0044] また、炭酸マグネシウムは二酸ィ匕炭素と水酸ィ匕マグネシウムの形で再利用すること もできる。すなわち、まず、炭酸マグネシウムを熱分解して二酸ィ匕炭素と酸ィ匕マグネ シゥムにする。得られた二酸ィ匕炭素は、上記反応式 (II)の塩交換に再利用することが できる。一方、酸ィ匕マグネシウムについては、水を反応させて水酸ィ匕マグネシウムに し、第 1の工程にマグネシウム系中和剤として再利用することができる。
[0045] なお、炭酸マグネシウムは特公平 1—133919或いは reveu de Chimie minera le t : 22, 1985, p. 692— 698に示されるように二酸化炭素が多い条件では複塩 となる事が知られている。したがって、炭酸アンモ-ゥムをアンモ-ゥム化合物として 用いた場合、塩交換工程によって生成するマグネシウム化合物の一部は炭酸マグネ シゥム及び炭酸アンモ-ゥムの複塩として存在する。この工程ではマグネシウムを出 来るだけ少なくした琥珀酸アンモ-ゥムを回収する事が好ましいが、二酸化炭素の量 を少なくすると、溶解度積から、マグネシウムの溶解量が増加することは明らかである 。そのため、複塩の生成は不可避である。一方で、マグネシウムは、複塩のままリサィ クルすることは困難である。そこで、該複塩を含むスラリーを分離し、加熱または乾燥 することによって、該複塩力 炭酸アンモ-ゥムを除去して炭酸マグネシウムを得、該 炭酸マグネシウムを発酵工程に循環させることが好ましい。
[0046] 複塩を含むマグネシウム化合物は定法によって分離される。完全に濾過する場合 は、加圧濾過、減圧濾過、遠心濾過などが用いられる。また、沈降分離し、上澄み液 と高濃度スラリーとしてポンプ移送しても良い。こうして得られる結晶やスラリーは、一 般に、アンモニア等で洗浄して有機物を除去したのち、次の加熱操作のために加熱 装置に供給する事が好ましい。
[0047] 炭酸マグネシウム及び炭酸アンモ-ゥムを含む複塩を加熱することにより、炭酸ァ ンモ-ゥムが選択的に分解され、高純度の炭酸マグネシウムを得ることができる。カロ 熱温度は 108°C— 210°Cが好ましぐ 120°C— 180°Cがより好ましい。加熱時間は複 塩の量、加熱装置によって異なり特に制限されないが、 15分力も 2時間が好ましぐ 3 0分から 1時間がより好ましい。複塩を加熱して得られる炭酸マグネシウムは純度 100 %である必要はなぐ微量の炭酸アンモ-ゥムが残存していてもよい。この場合、複 塩中のアンモニアがマグネシウムの 1Z10モル以下であることが好ましぐ複塩中の アンモニアがマグネシウムの 1Z30モル以下であることがより好ましい。
[0048] 使用する加熱装置は、結晶を所定の温度を越える温度にまで加熱できるものであ れば、どのような形式のものであってもよい。キルン、乾燥機、加熱機などが挙げられ る。結晶がフレーク状になっても良い場合、ホットプレートやベルト型のような加熱機、 焼成機を用いても良い。通常、中和剤として用いる場合、粉体である方が分散性が 良ぐ扱いやすい。このような場合、ロータリーキルンや流動乾燥機を用いるのが好ま しい。
[0049] なお、有機酸マグネシウムを炭酸アンモ-ゥムで塩交換することによって生成する 複塩を加熱する場合は、複塩力 有機酸を除くためにアンモニア水で洗浄した後に 加熱することが好ましい。アンモニア水の濃度は特に制限されず、例えば、 25%のェ 業用アンモニア水などを使用することができる。このような洗浄は 1回でもよいし、複数 回行ってもよい。
[0050] 複塩を加熱して炭酸アンモ-ゥムを除去した後に回収される炭酸マグネシウムを再 利用することで有機酸発酵生産の効率ィ匕を図ることができる。すなわち、炭酸マグネ シゥムを発酵工程に中和剤として再利用してもよいし、又は上述のように水酸ィ匕マグ ネシゥムとニ酸ィ匕炭素に変換し、水酸ィ匕マグネシウムを発酵工程に、二酸化炭素を 塩交換工程に再利用してもよい。
[0051] 一方、マグネシウム分離工程により得られた有機酸アンモ-ゥム溶液には、過剰に 加えられた未反応の二酸化炭素 (溶液中では炭酸イオン (HCO ")として存在)とアン
3
モユアが含まれている場合があるが、その場合は、二酸ィ匕炭素とアンモニアの溶解 度が温度依存性の強いという性質を利用して、加熱により容易に蒸発,気化させて分 離することができる。この場合、二酸ィ匕炭素とアンモニアが同時に気化するため、冷 却されると炭酸アンモ-ゥムとして析出し、反応槽が閉塞を起こしてしまうおそれがあ る。そのため気化したガスの温度は、炭酸アンモ-ゥムの融点 108°Cよりも高いことが より望ましい。ただし、 108°Cよりも低くても、例えば、常圧であれば 80°C以上、好まし くは 90°Cで、炭酸アンモ-ゥムは十分に除去できる。 80°Cの場合、常圧では十分な 量の水蒸気が得られな 、事が多く、放冷の度合 、によっては閉塞を起こすことがある 力 この場合でも、圧力を制御して幾らかの水蒸気を同伴させることができれば、閉 塞する事は無い。従って、 108°C以下の場合には、同伴される水の量を圧力によつ て制御することが必要である。特に好ましい条件としては、気化した時点で 108°C以 上、即ち 108°C以上に有機酸アンモ-ゥム水溶液を加熱して炭酸とアンモニアを気 化させ、若干の水を同伴させるのが良い。
[0052] 気化した炭酸とアンモニアを回収し、リサイクルする方法としては、炭酸アンモ-ゥ ムとして全量を溶解するのに十分な水を用いて吸収させ、ノ ッファタンクに保存し、バ ッファタンク力 塩交換反応槽に供給するなどの方法が安全である。しかし、この方法 では炭酸アンモ-ゥムを溶解するのに必要とされる水が同時に塩交換反応槽に供給 されてしまう。したがって、省エネルギーの観点からはガスのまま塩交換反応槽に供 給'再利用するのが好ましい。 108°C以上で有機酸アンモ-ゥム水溶液力も分離した 炭酸とアンモニアは若干の加圧条件のガスとして塩交換反応槽に供給される。
[0053] 本発明の方法によって得られた有機酸アンモニゥムを用いることにより、有機酸を 得ることができる。有機酸アンモニゥムカも有機酸を得る方法は特に制限されないが 、例えば、電気透析を用いる方法 (特開平 2— 283289号公報)、イオン交換榭脂を用 いる方法 (米国特許第 6, 284, 904号明細書、又は WO01Z66508号)、水酸ィ匕カ ルシゥムで中和しながら発酵生産して得られた有機酸カルシウムを、硫酸で分解する 方法 (特開平 3 - 030685号公報)硫酸を用いる塩の交換反応で反応晶析を行う方 法 (特表 2001-514900号公報又は米国特許第 5, 958, 744号明細書参照、)、反 応抽出法 (WO98Z01413号)、酢酸を用いる方法 (WO03Z95409号)などを採 用することができる。
実施例
[0054] 以下、実施例を挙げて本発明を具体的に説明する。ここでは、琥珀酸アンモ-ゥム 溶液の製造について示す力 他の有機酸マグネシウムについても同様にして行うこと ができる。
まず、実施例 2では塩交換工程以降を示す。
<実施例 1:アンモニアを用 、た塩交換 >
(1)琥珀酸 Mg液の合成 (琥珀酸 Mg濃度 12. 3wt%、 30kg)
100Lの撹拌容器に蒸留水 25. 35kgを仕込み、アンカー翼で 30rpmで撹拌を行つ た。この撹拌容器はジャケットに水を流通させることで常温に制御した。水酸化マグネ シゥム (和光試薬) 1. 54kgを撹拌槽に投入し懸濁溶液とした。この懸濁液に琥珀酸 (和光試薬) 3. 12kgを液温を監視しながら少しずつ添加した。この中和反応にて琥 珀酸マグネシウム水溶液 30kgを得た。
[0055] (2)アンモニア水による塩交換反応
上記操作に引き続いて、琥珀酸マグネシウム水溶液(30kg)に 25%アンモニア水( 和光試薬)を混合し塩交換を行った。混合方法は、アンモニア水(25%) 15kgを約 1時 間かけて投入し、投入終了後更に 60分撹拌を行い、塩交換反応を完了させた。これ により、水酸ィ匕マグネシウムが析出したスラリー液 (45kg)を得た。このスラリー液を少 量採取し、 0. 2 mのメンブランフィルタ(ミリポア社製)で濾過を行った。得られた琥 珀酸アンモ-ゥムを含む濾液中の Mg濃度をイオンクロマトグラフィー(電気伝導度検 出器)で分析した。その結果、 Mg濃度は 0. 39wt%であった。
[0056] (仕込み Mg量) 2. 14 (wt%) /100 X 30 (kg) =0. 642 (kg)
(上澄み液 Mg量) 0. 39 (wt%) /100 X 45 (kg) =0. 176 (kg) (Mg除去率) (1-0. 176/0. 642) X 100 = 72. 6 (%)
[0057] (3)スクリューデカンターによるスラリーの固液分離
上記操作で得られたスラリー液を固液分離した。固液分離には、巴工業社製のスク リューデカンター(シャープレススーパーデカンター 型式 P— 660)を使用した。デカ ンターの内筒、外筒は 3900、 5100rpmに設定した。この条件でスラリー液を毎時 30 Lで流通させ連続的に固液分離を実施した。液排出口からは出てくる液には若干の 粉が見られた。この液を一部サンプリングし、粉を溶解させる為に酒石酸を少量添カロ した上で Mg濃度の分析を行った。その結果は 0. 49wt%であった。同様に排出され る固体についても Mg濃度の分析を実施した。固体を蒸留水で 50倍に希釈し、更に 、固体が完全に溶解するまで酒石酸を添加することで均一溶液にした。この溶液を 分析した結果、 Mg濃度は 14. 6wt%であった。また、琥珀酸濃度の分析を回収液 及び回収固体について行ったところ、それぞれ、 6. 79%及び 7. 89%であった。最 終的に固液分離で回収された液は 42kg、固体は 3kgであった。
[0058] (回収液の Mg量) 0. 49 (wt%) /100 X 42 (kg) =0. 206 (kg)
(回収固体の Mg量) 14. 6 (wt%) /100 X 3 (kg) =0. 438 (kg)
(仕込み Mg基準の Mg回収率) (1-0. 206/0. 642) X 100 = 67. 9 (%)
(回収液の琥珀酸量) 6. 79 (wt%) /100 X 42 (kg) = 2. 85 (kg)
(回収固体の琥珀酸量) 7. 89 (wt%) /100 X 3 (kg) =0. 24 (kg)
(仕込み琥珀酸基準の琥珀酸回収率) 2. 85/3. 12 X 100 = 91. 5%
[0059] <実施例 2:炭酸アンモ-ゥムを用いた塩交換 >
(1)琥珀酸 Mg液の合成 (琥珀酸 Mg濃度 12. 3wt%、 10kg)
15Lの撹拌容器に蒸留水 8. 45kgを仕込み、傾斜パドル翼で 200rpmで撹拌を行 つた。この撹拌容器はジャケットに水を流通させることで常温に制御した。水酸化マグ ネシゥム (和光試薬) 0. 5 lkgを撹拌槽に投入し懸濁溶液とした。この懸濁液に琥珀 酸 (和光試薬) 1. 04kgを液温を監視しながら少しずつ添加した。この中和反応にて 琥珀酸マグネシウム水溶液 10kgを得た。
[0060] (2)炭酸アンモニゥムによる塩交換反応
上記操作に引き続いて、琥珀酸マグネシウム水溶液(10kg)に炭酸アンモ-ゥム( 和光試薬)を混合し塩交換を行った。混合方法は、炭酸アンモ-ゥム 2. 1kgを約 1時 間かけて投入し、投入終了後更に 60分撹拌を行い、塩交換反応を完了させた。これ により、水酸ィ匕マグネシウムが析出したスラリー液(12.1kg)を得た。このスラリー液 を少量採取し、 0.2 mのメンブランフィルタ (ミリポア社製)で濾過を行った。得られ た琥珀酸アンモ-ゥムを含む濾液中の Mg濃度をイオンクロマトグラフィー(電気伝導 度検出器)で分析した。その結果、 Mg濃度は 0.01wt%であった。
[0061] (仕込み Mg量) 2.14(wt%)Zl00X10(kg)=0.214(kg) (上澄み液 Mg量)
0.01(wt%)/100X12. l(kg)=0.0012 (kg)
(Mg除去率) (1-0.0012/0.214) X 100 = 99.4(%)
[0062] (3)加圧濾過機によるスラリーの固液分離
上記操作で得られたスラリー液を固液分離した。固液分離には、アドバンテック社 製の 10L加圧濾過機を使用した。濾紙にはアドバンテック社製の高純度濾紙 No.5 Cを使用した。濾過は 2回に分けて連続して実施した。濾過圧はゲージ圧 4kgで行い 、液が出なくなったところで常圧に戻し、次のスラリー液を仕込んだ。この条件でスラリ 一液の固液分離を実施した。回収される濾液には固形分は確認できな力つた。この 濾液を Mg分析したところ Mg濃度は 0.01wt% あった。同様に回収される固体に ついても Mg濃度の分析を実施した。固体を蒸留水で 50倍に希釈し、固体が完全に 溶解するまで酒石酸を添加することで均一溶液にした。この溶液を分析した結果、 M g濃度は 7.48wt%であった。また、琥珀酸濃度の分析を回収液及び回収固体につ いて行ったところ、それぞれ、 10. 1%及び 4.4%であった。最終的に濾過で回収さ れた液は 9. lkg、固体は 2.8kgであった。
[0063] (回収液の Mg量) 0.01(wt%)/100X9. l(kg)=0.00091 (kg)
(回収固体の Mg量)
Figure imgf000018_0001
(kg)
(仕込み Mg基準の Mg回収率) (1-0.00091/0.214) X 100 = 99.6(%) (回収液の琥珀酸量) 10. l(wt%)/100X9. l(kg)=0.919 (kg)
(回収固体の琥珀酸量)
Figure imgf000018_0002
(kg)
(仕込み琥珀酸基準の琥珀酸回収率) 0.919/1.04X100 = 88.4%
[0064] アンモニアを用いた塩交換及び炭酸アンモ-ゥムを用いた塩交換の 、ずれによつ ても琥珀酸マグネシウム力 マグネシウムを回収して、琥珀酸アンモニゥム溶液を得 ることができた。アンモニアを用いた塩交換に比べて、炭酸アンモ-ゥムを用いた塩 交換の方が、より効率よぐほぼ完全にマグネシウムを回収することができた。
[0065] 以下、実施例 3では、発酵工程、塩交換工程、マグネシウム分離工程、及びマグネ シゥム分離工程で得られた炭酸マグネシウム '炭酸アンモ-ゥム複塩力 炭酸マグネ シゥムを得る工程について示す。実施例 4ではさらに、複塩から得られた炭酸マグネ シゥムの発酵工程への再利用につ 、ても示す。
<実施例 3:発酵による琥珀酸マグネシウム溶液の調製及び複塩の調製 >
(1)菌体調製
尿素: 4g、硫酸アンモ-ゥム: 14g、リン酸 1カリウム:0. 5g、リン酸 2カリウム。. 5g、 硫酸マグネシウム · 7水和物: 0. 5g、硫酸第一鉄 · 7水和物: 20mg、硫酸マンガン · 水和物: 20mg、 D—ピオチン: 200 μ g、塩酸チアミン: 200 μ g、酵母エキス: lg、力 ザミノ酸: lg、及び蒸留水: lOOOmLの培地 lOOmLを 500mLの三角フラスコにいれ 、 120°C、 20分加熱滅菌した。これを室温まで冷やし、あら力じめ滅菌した 50%ダル コース水溶液を 4mL、無菌濾過した 5%カナマイシン水溶液を 50 L添カ卩し、後述 の参考例に従って作製したブレビバタテリゥム.フラバム MJ233ZFRDZPCZ Δ L DH株を接種して 24時間 30°Cにて種培養した。なお、この株はフマレートレダクター ゼ及びピルべ一トカルボキシラーゼ遺伝子の発現が増強され、かつ、ラタテートデヒド ロゲナーゼ遺伝子が破壊された株である。
[0066] 尿素: 12g、硫酸アンモ-ゥム: 42g、リン酸 1カリウム: 1. 5g、リン酸 2カリウム 1. 5g 、硫酸マグネシウム · 7水和物: 1. 5g、硫酸第一鉄 · 7水和物: 60mg、硫酸マンガン · 水和物: 60mg、 D—ピオチン: 600 μ g、塩酸チアミン: 600 μ g、酵母エキス 3g、カザ ミノ酸 3g、消泡剤(アデ力ノール LG294:旭電化製): lmL及び蒸留水: 2500mLの 培地を 5Lの発酵糟に入れ、 120°C、 20分加熱滅菌した。これを室温まで冷やした後 、あらかじめ滅菌した 12%グルコース水溶液を 500mL添カ卩し、これに前述の種培養 液を全量カ卩えて、 30°Cに保温した。通気は毎分 500mL、攪拌は毎分 500回転で培 養を行った。 12時間後にグルコースがほぼ消費されていた。この液を 8000rpm、 5 分の遠心分離し、上澄みを破棄し、発酵反応に用いる菌体を得た。 [0067] (2)発酵反応
リン酸 1カリウム: 0. 36g、リン酸 2カリウム 0. 36g、硫酸マグネシウム · 7水和物: 1. 8g、硫酸第一鉄 · 7水和物: 72mg、硫酸マンガン '水和物: 72mg、 D -ピオチン: 72 0 g、塩酸チアミン: 720 g及び蒸留水: 2600mLの培地を 5Lの JARに入れ、 12 0°C、 20分加熱滅菌した。室温まで冷やした後、上記の培養により集菌した菌体に添 カロして、 O. D. (660nm)が 60になるように再懸濁した。この懸濁液 2600mLとあら かじめ滅菌した 36%グルコース溶液 lOOOmLを 5Lの JARに入れ、 4炭酸マグネシゥ ム 1水酸化マグネシウム 5水和物: 349g、琥珀酸アンモ-ゥム 27gを添カ卩して混合し た。この反応用懸濁液を 35°Cに保温し、毎分 300回転で攪拌しながら反応を行った 。発酵終了後、培養液を 8000rpm、 5分の遠心分離し、上澄みを発酵液として残し、 沈降した菌体を回収した。この回収した菌体を用いて、同様の発酵反応操作、分離 操作を 6回行い、 20Lの上澄み液を得た。 6回の平均で琥珀酸蓄積は 89.5g/L、収率 は 82%であった。更に、分子分画量 20000の UF膜を用いてろ過し、琥珀酸マグネ シゥムを含む発酵液 (ブロス)を得た。
[0068] (3)塩交換
上記、発酵法によって得られた琥珀酸マグネシウム水溶液 20Lを 50Lの攪拌槽に 入れ、常温常圧の条件下、炭酸アンモ-ゥム (和光純薬社製特級試薬)を 4. Okg入 れた。攪拌を行うと直ちに結晶が析出した。 120分攪拌を行った後、巴社製スクリュ 一デカンター(3000G)を用いて遠心分離した。 19. 9kgの琥珀酸アンモ-ゥム溶液 と 4. 1kgの炭酸マグネシウム '炭酸アンモ-ゥム複塩を得た。
[0069] (4)複塩分解
上記で得られた複塩を分取して使用し、以下のようにして洗浄、加熱操作を行った 。洗浄回数、加熱温度、加熱時間を変えて検討を行った。各実験例における温度 · 時間 ·洗浄回数等の条件は表 1のとおりである。
[0070] (洗浄)
上記ソルべィ法塩交換によって得られた炭酸マグネシウム '炭酸アンモ-ゥム複塩 をビーカーに分取し、この複塩と同じ重量の 25%の工業用アンモニア水(三菱化学 社製)を加え懸洗した。得られた懸濁液はヌッチ で吸引濾過を行う事で固液を分離 し、固体を回収した。この洗浄と濾過操作を 1回もしくは 2回行った。
[0071] (加熱)
洗浄操作によって得られた固体を全量 500mLのナス型フラスコに投入し、ロータリ 一エバポレータを用いて所定の温度、時間にて加熱を行った。得られた加熱固体中 の Mg、アンモニアと琥珀酸の含有量を分析した。
[0072] 得られた加熱固体の分析結果を表 1に示す。実験 No.l— 6より、 120— 180°Cの範 囲で複塩を加熱した場合、複塩中のアンモニアの割合が著しく減少し、マグネシウム の割合が増加した。このことから、複塩力 炭酸アンモ-ゥムが効率的に除去され、 純度の高い炭酸マグネシウムが得られたことがわ力つた。一方、 90°Cで加熱した場 合 (実験 No. 7)は、アンモニアは複塩中にかなりの量が残存しており、十分除去する ことはできなかった。また、 25%アンモニア水で洗浄することによって複塩に付着した 琥珀酸を除去することができたが、洗浄回数は、本実施例においては 2回行ったほう が琥珀酸をより除去できることがわ力つた。
[0073] [表 1]
実験 No. 原料 1 2 3 4 5 6 7 塩交換ケーキ (g) 300 300 300 300 300 300 300 300
25%アンモニア水(g) 0 300 300 300 300 300 300 300 洗浄回数 0 1 2 1 2 1 2 2 加熱温度 CC) - 140 140 160 160 180 120 90 加熱時間 (min) 0 42 60 60 60 60 60 60
Mg濃度 (wt%) 10.39 17.73 24.26 25.94 28.02 30.78 18.07 10.89
NH3濃度 (wt%) 11.35 0.53 0.22 0.23 0.23 0.23 0.16 7.15 琥珀酸濃度 (wt%) 1.55 0.97 0.59 1.33 0.65 1.44 0.38 0.22 酢酸濃度 (wt%) 0.151 0.084 0.037 0.136 0.047 0.126 0.02 0.002 回収量 (g) 300 168.7 104 107.6 102.8 90.8 170.8 255.8
Mg (mol) 1.28 1.23 1.04 1.15 1.19 1.15 1.27 1.15
NH3 (raol) 2.00 0.05 0.01 0.01 0.01 0.01 0.02 1.08 琥珀酸 (mol) 0.04 0.014 0.01 0.012 0.006 0.011 0.01 0.005 酢酸 (mol) 0.0075 0.0024 0.0006 0.0024 0.0008 0.0019 0.0006 0.0001
NH3/Mg (mol/mol) 1.56 0.04 0.01 0.01 0.01 0.01 0.01 0.94 琥珀酸/ Mgdnol/mol) 0.031 0.011 0.005 0.011 0.005 0.010 0.004 0.004 <実施例 4:複塩分解によって得られた炭酸マグネシウムの発酵工程への再利用 > まず、実施例 3に記載の(1)の方法によって発酵反応に用いる菌体を得た。次に、 上記実施例 3の複塩分解工程で得られた炭酸マグネシウムを中和剤として発酵反応 を行った。リン酸 1カリウム:0.04g、リン酸 2カリウム。.0.04g、硫酸マグネシウム.7 水和物: 0.2g、硫酸第一鉄 ·7水和物: 8mg、硫酸マンガン '水和物: 8mg、 D -ピオ チン: 80 g、塩酸チアミン: 80 g及び蒸留水: 200mLの培地を 500の三角フラス コに入れ、 120°C、 20分加熱滅菌した。室温まで冷やした後、上記の培養により集菌 した菌体に添カ卩して、 O. D. (660nm)が 60になるように再懸濁した。この懸濁液 20 OmLとあらかじめ滅菌した 20%グルコース溶液 200mLを 1Lの JARに入れ、炭酸マ グネシゥム(実施例 1 (4)にて得られたもの、又は市販のもの) 42g、琥珀酸アンモ- ゥム 3gを添加して混合した。この反応用懸濁液を 35°Cに保温し、毎分 400回転で攪 拌しながら反応を行った。反応開始後 9時間でグルコースはほぼ消費され、琥珀酸 は 91gZL蓄積されていた。収率は 83%であった。 [0075] 結果を表 2に示す。表 2における実験 No. 1, 2, 4, 5は、表 1の対応する実験 No. の実験にぉ 、て得られた炭酸マグネシウムを中和剤としてリサイクル使用して、上記 琥珀酸発酵生産を行ったときの実験結果を示している。また試薬 1、 2は、市販の炭 酸マグネシウムを使用して上記琥珀酸発酵生産を行ったときの実験結果を示してい る。反応結果の欄を見るとわ力るように、複塩を加熱することによって得られた炭酸 グネシゥムを用いて琥珀酸発酵生産を行った場合も、市販の炭酸マグネシウムを用 いた場合と同程度の琥珀酸を得ることができた。このことから、複塩を加熱することに よって得られた炭酸マグネシウムを効率的に再利用できることがわ力つた。
[0076] [表 2]
Figure imgf000023_0001
[0077] [参考例]
ここでは、実施例 3, 4の発酵反応に使用した微生物の構築方法について示す。
[参考例 1 ]遺伝子破壊用ベクターの構築
(A)枯草菌ゲノム DNAの抽出
LB培地 [組成:トリプトン 10g、イーストエキストラタト 5g、 NaCl 5gを蒸留水 1Lに溶 解] 10mLに、枯草菌(Bacillus subtilis ISW1214)を対数増殖期後期まで培養 し、菌体を集めた。得られた菌体を lOmgZmLの濃度にリゾチームを含む 10mM N aCl— 20mMトリス緩衝液(pH8. 0)—lmM EDTA' 2Na溶液 0. 15mLに懸濁した 。次に、上記懸濁液にプロテナーゼ Kを、最終濃度が 100 gZmLになるように添 加し、 37°Cで 1時間保温した。さらにドデシル硫酸ナトリウムを最終濃度が 0. 5%に なるように添加し、 50°Cで 6時間保温して溶菌した。この溶菌液に、等量のフエノール Zクロロフオルム溶液を添加し、室温で 10分間ゆるやかに振盪した後、全量を遠心 分離(5, 000 X g、 20分間、 10— 12°C)し、上清画分を分取し、酢酸ナトリウムを 0. 3Mとなるように添カ卩した後、 2倍量のエタノールをカ卩ぇ混合した。遠心分離(15, 00 0 X g、 2分)により回収した沈殿物を 70%エタノールで洗浄した後、風乾した。得られ た DNAに 10mMトリス緩衝液(pH7. 5)— ImM EDTA' 2Na溶液 5mLをカ卩え、 4 °Cでー晚静置し、以後の PCRの铸型 DNAに使用した。
(B) PCRによる SacB遺伝子の増幅およびクローユング
枯草菌 SacB遺伝子の取得は、上記 (A)で調製した DNAを铸型とし、既に報告さ れている該遺伝子の塩基配列(GenBank Database Accession No. X02730 )を基に設計した合成 DNA (配列番号 1および配列番号 2)を用いた PCRによって行 つた。反応液組成:铸型 DNA1 μ L、 PfxDNAポリメラーゼ (インビトロジェン社製) 0 . 2 レ 1倍濃度添付バッファー、 0. 各々プライマー、 ImM MgSO、 0. 25
4 μ MdNTPsを混合し、全量を 20 Lとした。反応温度条件: DNAサーマルサイクラ 一 PTC— 200 (MJResearch社製)を用い、 94°Cで 20秒、 68°Cで 2分からなるサイ クルを 35回繰り返した。但し、 1サイクル目の 94°Cでの保温は 1分 20秒、最終サイク ルの 68°Cでの保温は 5分とした。増幅産物の確認は、 0. 75%ァガロース(SeaKem GTG agarose :FMCBioProducts製)ゲル電気泳動により分離後、臭化工チジゥ ム染色により可視化することにより行い、約 2kbの断片を検出した。ゲルからの目的 D NA断片の回収は、 QIAQuick Gel Extraction Kit (QIAGEN製)を用いて行つ た。回収した DNA断片は、 T4ポリヌクレオチドキナーゼ(T4 Polynucleotide Kin ase :宝酒造製)により 5'末端をリン酸ィ匕した後、ライゲーシヨンキット ver. 2 (宝酒造製 )を用いて大腸菌ベクター(pBluescriptll: STRATEGENE製)の EcoRV部位に 結合し、得られたプラスミド DNAで大腸菌(DH5 a株)を形質転換した。この様にし て得られた組換え大腸菌を 50 μ gZmLアンピシリンおよび 50 μ gZmLX- Galを含 む LB寒天培地 [トリプトン 10g、イーストエキストラタト 5g、 NaCl 5g及び寒天 15gを蒸 留水 1Lに溶解]に塗抹した。この培地上で白色のコロニーを形成したクローンを、次 に 50 μ gZmLアンピシリンおよび 10%ショ糖を含む LB寒天培地に移し 37°C 24時 間培養した。これらのクローンのうち、ショ糖を含む培地で生育できな力つたものにつ いて、常法により液体培養した後、プラスミド DNAを精製した。 SacB遺伝子が大腸 菌内で機能的に発現する株は、ショ糖含有培地にて生育不能となるはずである。得 られたプラスミド DNAを制限酵素 Sailおよび Pstlで切断することにより、約 2kbの揷 入断片が認められ、該プラスミドを pBSZSacBと命名した。
(C)クロラムフエ-コール而性 SacBベクターの構築
大腸菌プラスミドベクター PHSG396 (宝酒造:クロラムフエ-コール耐性マーカー) 500ngに制限酵素 PshBI 1 Ounitsを 37°Cで一時間反応させた後、フエノール Zクロ ロフオルム抽出およびエタノール沈殿により回収した。これを、タレノウフラグメント (K1 enow Fragment :宝酒造製)により両末端を平滑化した後、ライゲーシヨンキット ver . 2 (宝酒造製)を用いて Mlulリンカ一(宝酒造)を連結、環状化させ、大腸菌 (DH5 a株)を形質転換した。この様にして得られた組換え大腸菌を 34 μ gZmLクロラムフ ェ-コールを含む LB寒天培地に塗抹した。得られたクローンから常法によりプラスミ ド DNAを調製し、制限酵素 Mlulの切断部位を有するクローンを選抜し、 pHSG396 Mluと命名した。一方、上記 )にて構築した pBSZSacBを制限酵素 Sailおよび Ps tlで切断した後、タレノウフラグメントにて末端を平滑ィ匕した。これにライゲーシヨンキッ ト ver. 2 (宝酒造製)を用いて Mlulリンカ一を連結したのち、 0. 75%ァガロースゲル 電気泳動により SacB遺伝子を含む約 2. Okbの DNA断片を分離、回収した。この Sa cB遺伝子断片を、制限酵素 Mlul切断後、アルカリフォスファターゼ (Alkaline Pho sphatase Calf intestine:宝酒造)にて末端を脱リン酸化した pHSG396Mlu断 片とライゲーシヨンキット ver. 2 (宝酒造製)を用いて連結させ、大腸菌 (DH5 a株)を 形質転換した。この様にして得られた組換え大腸菌を 34 gZmLクロラムフエニコー ルを含む LB寒天培地に塗抹した。こうして得られたコロニーを、次に 34 /z gZmLク 口ラムフエ-コールおよび 10%ショ糖を含む LB寒天培地に移し 37°C 24時間培養し た。これらのクローンのうち、ショ糖を含む培地で生育できな力つたものについて、常 法によりプラスミド DNAを精製した。こうして得られたプラスミド DNAを Mlul切断によ り解析した結果、約 2. Okbの挿入断片を持つことが確認され、これを pCMBlと命名 した。
[0080] (D)カナマイシン耐性遺伝子の取得
カナマイシン耐性遺伝子の取得は、大腸菌プラスミドベクター PHSG299 (宝酒造: カナマイシン耐性マーカー)の DNAを铸型とし、配列番号 3および配列番号 4で示し た合成 DNAをプライマーとした PCR法によって行った。反応液組成:铸型 DNAlng 、 PyrobestDNAポリメラーゼ(宝酒造) 0. l μ 1倍濃度添付バッファー、 0. 5 μ Μ各々プライマー、 0. 25 μ MdNTPsを混合し、全量を 20 μ Lとした。反応温度条 件: DNAサーマルサイクラ一 PTC— 200 (MJResearch社製)を用い、 94°Cで 20 秒、 62°Cで 15秒、 72°Cで 1分 20秒からなるサイクルを 20回繰り返した。但し、 1サイ クル目の 94°Cでの保温は 1分 20秒、最終サイクルの 72°Cでの保温は 5分とした。増 幅産物の確認は、 0. 75%ァガロース(SeaKem GTG agarose: FMCBioProduct s製)ゲル電気泳動により分離後、臭化工チジゥム染色により可視化することにより行 い、約 1. lkbの断片を検出した。ゲルからの目的 DNA断片の回収は、 QIAQuick Gel Extraction Kit (QIAGEN製)を用いて行った。回収した DNA断片は、 T4ポ リヌクレオチドキナーゼ (T4 Polynucleotide Kinase :宝酒造製)により 5'末端をリン 酸化した。
[0081] (E)カナマイシン而性 SacBベクターの構築
上記 (C)で構築した pCMBlを制限酵素 Van91Iおよび Sealで切断して得られた 約 3. 5kbの DNA断片を 0. 75%ァガロースゲル電気泳動により分離、回収した。こ れを上記 (D)で調製したカナマイシン耐性遺伝子と混合し、ライゲーシヨンキット ver. 2 (宝酒造製)を用いて連結し、得られたプラスミド DNAで大腸菌 (DH5 a株)を形質 転換した。この様にして得られた組換え大腸菌を 50 gZmLカナマイシンを含む L B寒天培地に塗抹した。このカナマイシン含有培地上で生育した株は、ショ糖含有培 地にて生育不能であることが確認された。また、同株力も調製したプラスミド DNAは、 帘 IJ限酵素 Hindlll消ィ匕により 354、 473、 1807、 1997bpの断片を生じたこと力ら、図 1に示した構造に間違 ヽがな!ヽと判断し、該プラスミドを pKMBlと命名した。
[0082] [参考例 2] LDH遺伝子破壊株の作製 (A)ブレビバタテリゥム 'フラバム MJ233— ES株ゲノム DNAの抽出
ブレビバタテリゥム 'フラバム MJ— 233株(FERM BP— 1497)は、常法 (Wolf H et al" J. Bacteriol. 1983, 156(3) 1165—1170、 Kurusu Y et al, Agric Biol Chem. 1990, 54(2) 443-7)に従って内在性プラスミドを除去 (キュアリング)し、得られたプラスミドキ ユアリング株ブレビバタテリゥム 'フラバム MJ233— ES株を以後の形質転換に用いた
A培地 [尿素 2g、 (NH ) SO 7g、 KH PO 0. 5g、 K HPO 0. 5g、 MgSO - 7
4 2 4 2 4 2 4 4
H O 0. 5g、 FeSO - 7H O 6mg、 MnSO - 4-5H 06mg、ビォチン 200 g、チ
2 4 2 4 2
ァミン 100 g、イーストエキストラタト lg、カザミノ酸 lg、グルコース 20g、蒸留水 1 Lに溶解] 10mLに、ブレビバタテリゥム 'フラバム MJ-233-ES株を対数増殖期後期 まで培養し、得られた菌体を上記参考例 1の (A)に示す方法にてゲノム DNAを調製 した。
(B)ラタテートデヒドロゲナーゼ遺伝子のクローユング
MJ233株ラタテートデヒドロゲナーゼ遺伝子の取得は、上記 (A)で調製した DNA を铸型とし、特開平 11—206385に記載の該遺伝子の塩基配列を基に設計した合 成 DNA (配列番号 5および配列番号 6)を用いた PCRによって行った。反応液組成: 铸型 DNAl /z L、TaqDNAポリメラーゼ(宝酒造) 0. 2 レ 1倍濃度添付バッファー 、 0. 2 M各々プライマー、 0. 25 μ MdNTPsを混合し、全量を 20 μ Lとした。反応 温度条件: DNAサーマルサイクラ一 PTC— 200 (MJResearch社製)を用い、 94°C で 20秒、 55°Cで 20秒、 72°Cで 1分力 なるサイクルを 30回繰り返した。但し、 1サイ クル目の 94°Cでの保温は 1分 20秒、最終サイクルの 72°Cでの保温は 5分とした。増 幅産物の確認は、 0. 75%ァガロース(SeaKem GTG agarose: FMCBioProduct s製)ゲル電気泳動により分離後、臭化工チジゥム染色により可視化することにより行 い、約 0. 95kbの断片を検出した。ゲルからの目的 DNA断片の回収は、 QIAQuick Gel Extraction Kit (QIAGEN製)を用いて行った。回収した DNA断片を、 PCR 産物クロー-ングベクター pGEM— TEasy (Promega製)と混合し、ライゲーシヨンキ ット ver. 2 (宝酒造製)を用いて連結後、得られたプラスミド DNAで大腸菌(DH5 a 株)を形質転換した。この様にして得られた組換え大腸菌を 50 gZml ァソ 、ンリ および 50 μ gZmLX- Galを含む LB寒天培地に塗抹した。この培地上で白色のコロ ニーを形成したクローンを、常法により液体培養した後、プラスミド DNAを精製した。 得られたプラスミド DNAを制限酵素 Saclおよび Sphlで切断することにより、約 1. Ok bの挿入断片が認められ、これを pGEMTZCgLDHと命名した。
[0084] (C)ラタテートデヒドロゲナーゼ遺伝子破壊用プラスミドの構築
上記(B)で作製した pGEMTZCgLDHを制限酵素 EcoRVおよび Xbalで切断す ることにより約 0. 25kbからなるラタテートデヒドロゲナーゼのコーディング領域を切り 出した。残った約 3. 7kbの DNA断片の末端をタレノウフラグメントにて平滑ィ匕し、ライ ゲーシヨンキット ver. 2 (宝酒造製)を用いて環状化させ、大腸菌 (DH5 a株)を形質 転換した。この様にして得られた組換え大腸菌を 50 gZmLアンピシリンを含む LB 寒天培地に塗抹した。この培地上で生育した株を、常法により液体培養した後、ブラ スミド DNAを精製した。得られたプラスミド DNAを制限酵素 Saclおよび Sphlで切断 することにより、約 0. 75kbの挿入断片が認められたクローンを選抜し、これを pGEM Ύ/ Δ LDHと命名した。次に、上記 pGEMTZ Δ LDHを制限酵素 Saclおよび Sphl にて切断して生じる約 0. 75kbの DNA断片を、 0. 75%ァガロースゲル電気泳動に より分離、回収し、欠損領域を含むラタテートデヒドロゲナーゼ遺伝子断片を調製した 。この DNA断片を、制限酵素 Saclおよび Sphlにて切断した参考例 1にて構築した p KMB1と混合し、ライゲーシヨンキット ver. 2 (宝酒造製)を用いて連結後、得られた プラスミド DNAで大腸菌(DH5 a株)を形質転換した。この様にして得られた組換え 大腸菌を 50 μ gZmLカナマイシンおよび 50 μ gZmLX- Galを含む LB寒天培地に 塗抹した。この培地上で白色のコロニーを形成したクローンを、常法により液体培養 した後、プラスミド DNAを精製した。得られたプラスミド DNAを制限酵素 Saclおよび Sphlで切断することにより、約 0. 75kbの挿入断片が認められたものを選抜し、これ を ρΚΜΒ 1/ Δ LDHと命名した(図 2)。
[0085] (D)ブレビバタテリゥム ·フラバム MJ233— ES株由来ラタテートデヒドロゲナーゼ遺伝 子破壊株の作製
ブレビバタテリゥム 'フラバム MJ— 233株の形質転換に用いるプラスミド DNAは、 p KMBlZ A LDHを用いて塩化カルシウム法 (Journal of Molecular Biology, 53, 159, 1970)により形質転換した大腸菌 JM110株力も調製した。ブレビバタテリ ゥム ·フラバム MJ233— ES株の形質転換は、電気パルス法 (Res. Microbiol.、 Vol.144, p.181-185, 1993)によって行い、得られた形質転換体をカナマイシン 50 gZmLを含む LBG寒天培地 [トリプトン 10g、イーストエキストラタト 5g、 NaCl 5g、グ ルコース 20g、及び寒天 15gを蒸留水 1Lに溶解]に塗抹した。この培地上に生育し た株は、 pKMBlZ A LDHがブレビバタテリゥム 'フラバム MJ233— ES株菌体内で 複製不可能なプラスミドであるため、該プラスミドのラタテートデヒドロゲナーゼ遺伝子 とブレビバタテリゥム 'フラバム MJ— 233株ゲノム上の同遺伝子との間で相同組み換 えを起こした結果、同ゲノム上に該プラスミドに由来するカナマイシン耐性遺伝子お よび SacB遺伝子が挿入されているはずである。次に、上記相同組み換え株をカナ マイシン 50 μ gZmLを含む LBG培地にて液体培養した。この培養液の菌体数約 10 0万相当分を 10%ショ糖含有 LBG培地に塗抹にした。結果、 2回目の相同組み換え により SacB遺伝子が脱落しショ糖非感受性となったと考えられる株約 10個得た。こ の様にして得られた株の中には、そのラタテートデヒドロゲナーゼ遺伝子カ¾10^ 1 Z A LDHに由来する変異型に置き換わったものと野生型に戻ったものが含まれる。 ラタテートデヒドロゲナーゼ遺伝子が変異型であるか野生型であるかの確認は、 LBG 培地にて液体培養して得られた菌体を直接 PCR反応に供し、ラタテートデヒドロゲナ ーゼ遺伝子の検出を行うことによって容易に確認できる。ラタテートデヒドロゲナーゼ 遺伝子を PCR増幅するためのプライマー(配列番号 7および配列番号 8)を用いて分 析すると、野生型では 720bp、欠失領域を持つ変異型では 47 lbpの DNA断片を認 めるはずである。上記方法にてショ糖非感受性となった菌株を分析した結果、変異型 遺伝子のみを有する株を選抜し、該株をブレビバタテリゥム 'フラバム MJ233Z A LD Hと命名した。
[参考例 3] コリネ型細菌発現ベクターの構築
(A)コリネ型細菌用プロモーター断片の調製
コリネ型細菌で強力なプロモーター活性を有することが報告された特開平 7— 9589 1の配列番号 4に記載の DNA断片(以降 TZ4プロモーターと称する)を利用すること とした。本プロモーター断片の取得は、参考例 2の (A)で調製したブレビバタテリゥム •フラバム MJ233ゲノム DNAを铸型とし、特開平 7— 95891の配列番号 4に記載の 配列を基に設計した合成 DNA (配列番号 9および配列番号 10)を用いた PCRによ つて行った。反応液組成:铸型 DNA1 μ L、 PfxDNAポリメラーゼ (インビトロジェン社 製) 0. 2 L、 1倍濃度添付バッファー、 0. 3 M各々プライマー、 ImM MgSO
4、
0. 25 μ MdNTPsを混合し、全量を 20 μ Lとした。反応温度条件: DNAサーマルサ イクラ一 PTC— 200 (MJResearch社製)を用い、 94°Cで 20禾少、 60°Cで 20禾少、 72 °Cで 30秒力もなるサイクルを 35回繰り返した。但し、 1サイクル目の 94°Cでの保温は 1分 20秒、最終サイクルの 72°Cでの保温は 2分とした。増幅産物の確認は、 2. 0% ァガロース(SeaKem GTG agarose :FMCBioProducts製)ゲル電気泳動により 分離後、臭化工チジゥム染色により可視化することにより行い、約 0. 25kbの断片を 検出した。ゲルからの目的 DNA断片の回収は、 QIAQuick Gel Extraction Kit ( QIAGEN製)を用いて行った。回収した DNA断片は、 T4ポリヌクレオチドキナーゼ (T4 Polynucleotide Kinase :宝酒造製)により 5'末端をリン酸ィ匕した後、ライゲー シヨンキット ver. 2 (宝酒造製)を用いて大腸菌ベクター PUC19 (宝酒造)の Smal部 位に結合し、得られたプラスミド DNAで大腸菌(DH5 α株)を形質転換した。この様 にして得られた組換え大腸菌を 50 μ gZmLアンピシリンおよび 50 μ gZmLX- Galを 含む LB寒天培地に塗抹した。この培地上で白色のコロニーを形成した 6クローンに ついて、常法により液体培養した後、プラスミド DNAを精製し、塩基配列を決定した 。これ中で TZ4プロモーターが pUC19の lacプロモーターと逆方向に転写活性を有 するように挿入されたクローンを選抜し、これを PUCZTZ4と命名した。次に、 pUC ZTZ4を制限酵素 BamHIおよび Pstlで切断して調製した DNA断片に、 5'末端がリ ン酸化された合成 DNA (配列番号 11および配列番号 12)から成り、両末端にそれ ぞれ BamHIと Pstlに対する粘着末端を有する DNAリンカ一を混合し、ライゲーショ ンキット ver. 2 (宝酒造製)を用いて連結後、得られたプラスミド DNAで大腸菌(DH5 α株)を形質転換した。本 DNAリンカ一には、リボソーム結合配列 (AGGAGG)およ びその下流に配したクローユングサイト(上流から順に、 Pad, NotI、 Apal)が含ま れている。この培地上で白色のコロニーを形成したクローンを、常法により液体培養 した後、プラスミド DNAを精製した。得られたプラスミド DNAの中から制限酵素 Notl によって切断されるものを選抜し、これを PUCZTZ4— SDと命名した。この様にして 構築した PUCZTZ4— SDを制限酵素 Pstlで切断後、タレノウフラグメントにて末端を 平滑化し、次いで制限酵素 Kpnlで切断することにより生じた約 0. 3kbのプロモータ 一断片を、 2. 0%ァガロースゲル電気泳動により分離、回収した。
[0087] (B)コリネ型細菌発現ベクターの組み立て
コリネ型細菌にて安定的に自立複製可能なプラスミドとして、特開平 12-93183記 載の pHSG298par— repを利用する。本プラスミドは、ブレビバタテリゥム 'スタチォ- ス IFO 12144株が保有する天然型プラスミド pBY503の複製領域および安定化機 能を有する領域と大腸菌ベクター PHSG298 (宝酒造)に由来するカナマイシン耐性 遺伝子および大腸菌の複製領域を備える。 pHSG298par— repを制限酵素 Sselで 切断後、タレノウフラグメントにて末端を平滑ィ匕し、次いで制限酵素 Kpnlで切断する ことによって調製した DNAを、上記 (A)で調製した TZ4プロモーター断片と混合し、 ライゲーシヨンキット ver. 2 (宝酒造製)を用いて連結後、得られたプラスミド DNAで 大腸菌(DH5 a株)を形質転換した。この様にして得られた組換え大腸菌を 50 μ g ZmLカナマイシンを含む LB寒天培地に塗抹した。この培地上で生育した株を、常 法により液体培養した後、プラスミド DNAを精製した。得られたプラスミド DNAの中 力も制限酵素 Notlによって切断されるものを選抜し、該プラスミドを pTZ4と命名した (図 3に構築手順を示した)。
[0088] [参考例 4] ピルべ一トカルボキシラーゼ活性増強株の作製
(Α)ピルべ一トカルボキシラーゼ遺伝子の取得
ブレビバタテリゥム 'フラバム MJ233株由来ピルべ一トカルボキシラーゼ遺伝子の 取得は、参考例 2の (Α)で調製した DNAを铸型とし、全ゲノム配列が報告されている コリネバタテリゥム 'グルタミカム ATCC13032株の該遺伝子の配列(GenBank D atabase Accession No. AP005276)を基に設計した合成 DNA (配列番号 13 および配列番号 14)を用いた PCRによって行った。反応液組成:铸型 DNA1 L、 P fxDNAポリメラーゼ (インビトロジェン社製) 0. 2 μ 1倍濃度添付バッファー、 0. 3 μ Μ各々プライマー、 ImM MgSO
4、 0. 25 μ MdNTPsを混合し、全量を 20 μ と した。反応温度条件: DNAサーマルサイクラ一 PTC—200 (MJResearch社製)を 用い、 94°Cで 20秒、 68°Cで 4分からなるサイクルを 35回繰り返した。但し、 1サイク ル目の 94°Cでの保温は 1分 20秒、最終サイクルの 68°Cでの保温は 10分とした。 PC R反応終了後、 Takara Ex Taq (宝酒造)を 0. 1 L加え、さらに 72°Cで 30分保 温した。増幅産物の確認は、 0. 75%ァガロース(SeaKem GTG agarose : FMCBi ◦Products製)ゲル電気泳動により分離後、臭化工チジゥム染色により可視化するこ とにより行い、約 3. 7kbの断片を検出した。ゲルからの目的 DNA断片の回収は、 QI AQuick Gel Extraction Kit (QIAGEN製)を用いて行った。回収した DNA断片 を、 PCR産物クロー-ングベクター pGEM— TEasy (Promega製)と混合し、ライゲー シヨンキット ver. 2 (宝酒造製)を用いて連結後、得られたプラスミド DNAで大腸菌(D H5 a株)を形質転換した。この様にして得られた組換え大腸菌を 50 μ gZmLアンピ シリンおよび 50 μ gZmLX- Galを含む LB寒天培地に塗抹した。この培地上で白色 のコロニーを形成したクローンを、常法により液体培養した後、プラスミド DNAを精製 した。得られたプラスミド DNAを制限酵素 Paclおよび Apalで切断することにより、約 3. 7kbの挿入断片が認められ、これを pGEMZMJPCと命名した。 pGEMZMJPC の挿入断片の塩基配列は、アプライドバイォシステム社製塩基配列解読装置 (モデ ル 377XL)およびビックダイターミネータ一サイクルシークェンスキット ver3を用いて 決定した。その結果得られた DNA塩基配列を配列番号 15に記載する。本配列から 予想されるアミノ酸配列はコリネバクテリウム'ダルタミカム ATCC13032株由来のそ れと極めて高い相同性(99. 4%)を示すことから、 pGEMZMJPCの挿入断片がブ レビバタテリゥム 'フラバム MJ233株由来のピルべ一トカルボキシラーゼ遺伝子であ ること断定した。
(B)ピルべ一トカルボキシラーゼ活性増強用プラスミドの構築
上記 (A)で作製した pGEMZMJPCを制限酵素 Paclおよび Apalで切断すること により生じる約 3. 7kb力もなるピルべ一トカルボキシラーゼ遺伝子断片を、 0. 75% ァガロースゲル電気泳動により分離、回収した。この DNA断片を、制限酵素 Paclお よび Apalにて切断した参考例 3にて構築した pTZ4と混合し、ライゲーシヨンキット ve r. 2 (宝酒造製)を用いて連結後、得られたプラスミド DNAで大腸菌 (DH5 α株)を 形質転換した。この様にして得られた組換え大腸菌を 50 gZmLカナマイシンを含 む LB寒天培地に塗抹した。この培地上で生育した株を、常法により液体培養した後 、プラスミド DNAを精製した。得られたプラスミド DNAを制限酵素 Paclおよび Apal で切断することにより、約 3. 7kbの挿入断片が認められたものを選抜し、これを PMJ PC Iと命名した(図 4)。
[0090] (C)ブレビバタテリゥム.フラバム MJ233Z A LDH株への形質転換
ブレビバタテリゥム 'フラバム MJ233株内で複製可能な pMJPC lによる形質転換用 のプラスミド DNAは、上記 (B)で形質転換した大腸菌 (DH5 a株)から調製した。ブ レビバタテリゥム ·フラバム MJ233Z Δ LDH株への形質転換は、電気パルス法 (Res . Microbiol.、 Vol.144, p.181- 185, 1993)によって行い、得られた形質転換体を力 ナマイシン 50 μ gZmLを含む LBG寒天培地 [トリプトン 10g、イーストエキストラタト 5 g、 NaCl 5g、グルコース 20g、及び寒天 15gを蒸留水 1Lに溶解]に塗抹した。この 培地上に生育した株から、常法により液体培養した後、プラスミド DNAを抽出、制限 酵素切断による解析を行った結果、同株力 ¾MJPC1を保持していることを確認し、該 株をブレビバタテリゥム ·フラバム MJ233/PC/ Δ LDH株と命名した。
[0091] [参考例 5] 大腸菌フマレートレダクターゼ遺伝子のクローユング
(A)大腸菌 DNA抽出
LB培地 10mLに、大腸菌(Eschericia coli)JM109株を対数増殖期後期まで培 養し、得られた菌体を上記参考例 1の (A)に示す方法にてゲノム DNAを調製した。
[0092] (B)大腸菌フマレートレダクターゼ遺伝子のクロー-ング
大腸菌フマレートレダクターゼ遺伝子の取得は、上記 (A)で調製した DNAを铸型 とし、全ゲノム配列が報告されている大腸菌 K12— MG1655株の該遺伝子の配列( GenBank Database Accession No. U00096)を基に設計した合成 DNA (配 列番号 16および配列番号 17)を用いた PCRによって行った。反応液組成:铸型 DN Al /z L、 PfxDNAポリメラーゼ (インビトロジェン社製) 0. 2 L、 1倍濃度添付バッフ ァー、 0. 3 Μ各々プライマー、 ImM MgSO、 0. 25 μ MdNTPsを混合し、全量
4
を 20 μ Lとした。反応温度条件: DNAサーマルサイクラ一 MJResearch社製 PTC —200を用い、 94°Cで 20秒、 68°Cで 4分からなるサイクルを 35回繰り返した。但し、 1 サイクル目の 94°Cでの保温は 1分 20秒、最終サイクルの 68°Cでの保温は 10分とし た。 PCR反応終了後、 Takara Ex Taq (宝酒造)を 0. 1 Lカロえ、さらに 72°Cで 3 0分保温した。増幅産物の確認は、 0. 75%ァガロース(SeaKem GTG agarose : F MCBioProducts製)ゲル電気泳動により分離後、臭化工チジゥム染色により可視化 することにより行い、約 3. 8kbの断片を検出した。ゲルからの目的 DNA断片の回収 は、 QIAQuick Gel Extraction Kit (QIAGEN製)を用いて行った。回収した DN A断片を、 PCR産物クロー-ングベクター pT7Blue T— Vector (Novagene製)と 混合し、ライゲーシヨンキット ver. 2 (宝酒造製)を用いて連結後、得られたプラスミド D NAで大腸菌(DH5 a株)を形質転換した。この様にして得られた組換え大腸菌を 5 0 μ gZmLアンピシリンおよび 50 μ gZmLX- Galを含む LB寒天培地に塗抹した。こ の培地上で白色のコロニーを形成したクローンを、常法により液体培養した後、ブラ スミド DNAを精製した。得られたプラスミド DNAを制限酵素 Hindlllおよび Kpnlで切 断することにより、約 3. 9kbの挿入断片が認められ、これを pFRD6. 0と命名した。 p FRD6. 0の挿入断片の塩基配列は、アプライドバイォシステム社製塩基配列解読装 置(モデル 377XL)およびビッグダイターミネータ一サイクルシークェンスキット ver3 を用いて決定した。その結果得られた DNA塩基配列を配列番号 18に記載する。
[0093] [参考例 6] ピルべ一トカルボキシラーゼ.フマレートレダクターゼ活性増強株の作製
(A) pMJPC 1の制限酵素部位改変
参考例 3にて構築した pMJPC 1を制限酵素 Kpnlにて完全に切断した後、アル力リ フォスファターゼ(Alkaline Phosphatase Calf intestine:宝酒造)を反応させて 5,末端を脱リン酸化処理して調製した DNA断片に、 5,末端がリン酸化された合成 DNA (配列番号 19および配列番号 20)力も成る DNAリンカ一を混合し、ライゲーシ ヨンキット ver. 2 (宝酒造製)を用いて連結後、得られたプラスミド DNAで大腸菌(DH 5 α株)を形質転換した。この様にして得られた組換え大腸菌を 50 μ gZmLカナマ イシンを含む LB寒天培地に塗抹した。この培地上で生育した株を、常法により液体 培養した後、プラスミド DNAを精製した。得られたプラスミド DNAから制限酵素 Ndel によって切断されるものを選抜し、これを pMJPCl . 1と命名した。
[0094] (B)ピルべ一トカルボキシラーゼおよびフマレートレダクターゼ活性増強用プラスミド の構築 参考例 5にて作製した pFRD6. 0を制限酵素 Hindlllで切断後、タレノウフラグメント にて末端を平滑ィ匕し、次いで制限酵素 Kpnlで切断して生じた約 3. 9kbの DNA断 片を 0. 75%ァガロースゲル電気泳動により分離、回収した。この様にして調製した 大腸菌フマレートレダクターゼ遺伝子を含む断片を、上記 (A)で作製した pMJPCl . 1を制限酵素 Ndelで切断後、タレノウフラグメントにて末端を平滑ィ匕し、次いで制限 酵素 Kpnlで切断することによって調製した DNAと混合し、ライゲーシヨンキット ver. 2 (宝酒造製)を用いて連結後、得られたプラスミド DNAで大腸菌 (DH5 a株)を形 質転換した。この様にして得られた組換え大腸菌を 50 gZmLカナマイシンを含む LB寒天培地に塗抹した。この培地上で生育した株を、常法により液体培養した後、 プラスミド DNAを精製した。得られたプラスミド DNAを制限酵素 Hindlll消化により 5 05、 2132、 2675、 3775、 4193bpの断片を生じたこと力ら、図 5に示した構造に間 違いがないと判断し、該プラスミドを pFRPCl . 1と命名した。
[0095] (B)ブレビバタテリゥム .フラバム MJ233Z Δ LDH株の形質転換
pFRPCl . 1を用いたブレビバタテリゥム ·フラバム MJ233/ Δ LDH株の形質転換 は、参考例 4の(C)に記載の方法にて行い、プラスミド pFRPCl . 1を保持することが 確認された株を得、これをブレビノ クテリゥム ·フラバム MJ233/FRD/PC/ Δ LD H株と命名した。
産業上の利用の可能性
[0096] 本発明は新規な有機酸アンモ-ゥム溶液の製造方法を提供するものであり、本発 明の方法によれば、中和剤や塩交換に用いる炭酸、アンモニア等を再利用して、効 率よく琥珀酸アンモニゥム溶液などの有機酸アンモニゥム溶液を製造することができ る。本発明によって製造される琥珀酸アンモ-ゥム溶液力も得られる琥珀酸は、生分 解性ポリエステル、ポリアミドなどのポリマー、食品、医薬品、及びィ匕粧品などの原料 として有用である。

Claims

請求の範囲
[1] マグネシウム化合物の存在下に有機酸生産能を有する微生物を用いて有機酸マグ ネシゥムを含む発酵液を得る発酵工程、該発酵液に含まれる有機酸マグネシウムを アンモニア化合物を用いて塩交換することにより、有機酸アンモ-ゥムを生成させると ともにマグネシウム化合物を生成させる塩交換工程、及び、生成したマグネシウムィ匕 合物を分離すると共に、有機酸アンモ-ゥム溶液を得るマグネシウム分離工程を含 む、有機酸アンモ-ゥム溶液の製造方法。
[2] マグネシウム分離工程で得られたマグネシウム化合物を発酵工程にぉ ヽてマグネシ ゥム化合物として再利用する、請求項 1に記載の有機酸アンモニゥム溶液の製造方 法。
[3] 前記マグネシウム化合物が炭酸マグネシウムであり、かつ、前記アンモニア化合物が 炭酸アンモ-ゥムである、請求項 1又は 2に記載の有機酸アンモ-ゥム溶液の製造方 法。
[4] 前記塩交換工程において、発酵液に二酸ィ匕炭素及びアンモニアを供給することによ り生成した炭酸アンモ-ゥムをアンモニア化合物として用いることを特徴とする、請求 項 1一 3のいずれか一項に記載の有機酸アンモ -ゥム溶液の製造方法。
[5] 二酸ィ匕炭素を、発酵液中のマグネシウムに対し 0. 3— 10モル倍量の量で供給する、 請求項 4に記載の有機酸アンモ-ゥム溶液の製造方法。
[6] さら〖こ、前記マグネシウム分離工程で得られた有機酸アンモ-ゥム溶液を加熱し、該 溶液中に存在する過剰のアンモニアと二酸化炭素を気化して分離し、分離されたァ ンモユア及び二酸ィ匕炭素を前記塩交換工程に再利用する、請求項 4に記載の有機 酸アンモ-ゥム溶液の製造方法。
[7] 前記マグネシウム分離工程において分離された炭酸マグネシウムを二酸ィ匕炭素と酸 化マグネシウムに熱分解し、該酸ィ匕マグネシウムに水を加えて水酸ィ匕マグネシウムを 生成させ、該水酸ィ匕マグネシウムをマグネシウム化合物として発酵工程に再利用す ることを特徴とする、請求項 1に記載の有機酸アンモ-ゥム溶液の製造方法。
[8] 前記マグネシウム化合物が水酸ィ匕マグネシウム、又は水酸ィ匕マグネシウム及び炭酸 マグネシウムの混合物であり、前記塩交換工程においてアンモニアを用いることを特 徴とする、請求項 1に記載の有機酸アンモニゥム溶液の製造方法。
[9] 前記マグネシウム分離工程で得られた有機酸アンモ-ゥム溶液に炭酸アンモ-ゥム を添加して、有機酸アンモ-ゥムおよび炭酸マグネシウムを生成させ、該炭酸マグネ シゥムを分離して有機酸アンモ-ゥム溶液を得る工程をさらに含む、請求項 8に記載 の製造方法。
[10] 前記塩交換工程を PH7— 12の範囲で行うことを特徴とする、請求項 1一 9のいずれ か一項に記載の有機酸アンモ-ゥム溶液の製造方法。
[11] 有機酸が琥珀酸であり、かつ有機酸アンモニゥムが琥珀酸アンモニゥムである、請求 項 1一 10のいずれか一項に記載の有機酸アンモ -ゥム溶液の製造方法。
[12] マグネシウム分離工程によって得られたマグネシウム化合物に含まれる炭酸マグネシ ゥム及び炭酸アンモ-ゥムの複塩を加熱または乾燥することによって、該複塩力 炭 酸アンモ-ゥムを除去して炭酸マグネシウムを得、該炭酸マグネシウムを発酵工程に 循環させる、請求項 1に記載の有機酸アンモ-ゥム溶液の製造方法。
[13] 該複塩中のアンモニア含量がマグネシウムに対してモル比で 10分の 1以下になるよう に炭酸アンモ-ゥムを除去する、請求項 12に記載の有機酸アンモ-ゥム溶液の製造 方法。
[14] 該複塩中のアンモニア含量がマグネシウムに対してモル比で 30分の 1以下になるよう に炭酸アンモ-ゥムを除去する、請求項 12に記載の有機酸アンモ-ゥム溶液の製造 方法。
[15] 複塩を 160°C以上で加熱する、請求項 12に記載の有機酸アンモ-ゥム溶液の製造 方法。
PCT/JP2004/016437 2003-11-07 2004-11-05 有機酸アンモニウム溶液の製造方法 WO2005045049A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0416274-9A BRPI0416274A (pt) 2003-11-07 2004-11-05 método para produzir solução de amÈnio de ácido orgánico
EP04818202A EP1686183A1 (en) 2003-11-07 2004-11-05 Method for producing organic acid ammonium solution
US11/429,049 US20070015264A1 (en) 2003-11-07 2006-05-08 Method for producing organic acid ammonium solution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003378732 2003-11-07
JP2003-378732 2003-11-07
JP2004079488 2004-03-19
JP2004-079488 2004-03-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/429,049 Continuation US20070015264A1 (en) 2003-11-07 2006-05-08 Method for producing organic acid ammonium solution

Publications (1)

Publication Number Publication Date
WO2005045049A1 true WO2005045049A1 (ja) 2005-05-19

Family

ID=34575935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/016437 WO2005045049A1 (ja) 2003-11-07 2004-11-05 有機酸アンモニウム溶液の製造方法

Country Status (4)

Country Link
US (1) US20070015264A1 (ja)
EP (1) EP1686183A1 (ja)
BR (1) BRPI0416274A (ja)
WO (1) WO2005045049A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143015A1 (ja) 2007-05-18 2008-11-27 Ajinomoto Co., Inc. コハク酸およびコハク酸アンモニウム溶液の製造方法
KR101767034B1 (ko) * 2008-12-02 2017-08-10 푸락 바이오켐 비.브이. 1가 숙신산 염의 제조방법
WO2011087062A1 (ja) 2010-01-15 2011-07-21 三菱化学株式会社 含窒素組成物およびその製造方法
ES2432642T3 (es) * 2010-02-12 2013-12-04 Purac Biochem Bv Proceso de producción de ácido succínico
CA2807102C (en) * 2010-07-31 2018-08-21 Myriant Corporation Improved fermentation process for the production of organic acids
US8829237B2 (en) 2011-03-03 2014-09-09 The Michigan Biotechnology Institute Production of carboxylic acid and salt co-products
WO2012133772A1 (ja) * 2011-03-31 2012-10-04 アイシン・エィ・ダブリュ株式会社 変速機の制御装置および変速機の制動トルク発生判定方法
BR112014001382B1 (pt) 2011-07-21 2020-11-10 Archer Daniels Midland Company método de produção de composto derivado do ácido c4
AU2012295627B2 (en) 2011-08-16 2016-05-12 Purac Biochem B.V. Recovery of carboxylic acid from their magnesium salts by precipitation using hydrochloric acid, useful for fermentation broth work-up

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194387A (ja) * 1993-12-08 1995-08-01 Basf Ag 乳酸塩の製法
WO1998033930A1 (en) * 1997-01-31 1998-08-06 Lockheed Martin Energy Research Corporation A method for the production of dicarboxylic acids
JP2001514900A (ja) * 1997-08-18 2001-09-18 アプライド カーボケミカルズ コハク酸の製造方法および精製方法
JP2004196768A (ja) * 2002-05-10 2004-07-15 Mitsubishi Chemicals Corp 有機酸の製造方法及びアンモニウム塩の分解方法、並びに有機酸及びポリマー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143834A (en) * 1986-06-11 1992-09-01 Glassner David A Process for the production and purification of succinic acid
US5168055A (en) * 1986-06-11 1992-12-01 Rathin Datta Fermentation and purification process for succinic acid
US5766439A (en) * 1996-10-10 1998-06-16 A. E. Staley Manufacturing Co. Production and recovery of organic acids
US6667417B2 (en) * 1997-02-21 2003-12-23 Yissum Research Development Company Of The Hebrew University Of Jerusalem Process for the recovery of lactic acid
EP1059975A4 (en) * 1998-03-02 2003-04-23 Michigan Biotech Inst PURIFICATION OF ORGANIC ACIDS WITH ANIONIC REPLACEMENT CHROMATOGRAPHY
MY137537A (en) * 2002-05-10 2009-02-27 Mitsubishi Chem Corp Method for producing organic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194387A (ja) * 1993-12-08 1995-08-01 Basf Ag 乳酸塩の製法
WO1998033930A1 (en) * 1997-01-31 1998-08-06 Lockheed Martin Energy Research Corporation A method for the production of dicarboxylic acids
JP2001514900A (ja) * 1997-08-18 2001-09-18 アプライド カーボケミカルズ コハク酸の製造方法および精製方法
JP2004196768A (ja) * 2002-05-10 2004-07-15 Mitsubishi Chemicals Corp 有機酸の製造方法及びアンモニウム塩の分解方法、並びに有機酸及びポリマー

Also Published As

Publication number Publication date
EP1686183A1 (en) 2006-08-02
US20070015264A1 (en) 2007-01-18
BRPI0416274A (pt) 2007-01-09

Similar Documents

Publication Publication Date Title
JP4575086B2 (ja) コハク酸の製造方法
JP4619291B2 (ja) 非アミノ有機酸の製造方法
JP4582228B2 (ja) ポリエステル
JP5088136B2 (ja) コハク酸の製造方法
JP5180060B2 (ja) 有機酸生産菌及び有機酸の製造法
EP1672077B1 (en) Process for producing succinic acid
JP4760121B2 (ja) コハク酸の製造方法
US20070015264A1 (en) Method for producing organic acid ammonium solution
JP4469568B2 (ja) 有機酸の製造方法
JP5991400B2 (ja) コハク酸の製造方法
CN116083329A (zh) 发酵生产γ-丁内酯或1,4-丁二醇的方法
JP5602982B2 (ja) コハク酸の製造方法
JP2005295998A (ja) 有機酸アンモニウム溶液の製造方法
JP4032765B2 (ja) 有機酸の製造方法
JP2003235592A (ja) 有機酸の製造方法
JP4428999B2 (ja) 非アミノ有機酸の製造方法
JP6032198B2 (ja) ポリマーの製造方法、有機酸の製造方法及び有機酸生産菌
WO2014017469A1 (ja) D-乳酸の生産方法、ポリマーの生産方法およびポリマー
WO2013069786A1 (ja) コハク酸の製造方法
JP5663859B2 (ja) 非アミノ有機酸生産菌および非アミノ有機酸の製造方法
JP2011207812A (ja) N−アルキルコハク酸イミドの製造方法
JP2008067627A (ja) 非アミノ有機酸生産菌および非アミノ有機酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480032790.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11429049

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004818202

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004818202

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0416274

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 11429049

Country of ref document: US