WO2005042942A1 - 原動機 - Google Patents

原動機 Download PDF

Info

Publication number
WO2005042942A1
WO2005042942A1 PCT/JP2003/014017 JP0314017W WO2005042942A1 WO 2005042942 A1 WO2005042942 A1 WO 2005042942A1 JP 0314017 W JP0314017 W JP 0314017W WO 2005042942 A1 WO2005042942 A1 WO 2005042942A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
combustion chamber
combustion
engine
fuel
Prior art date
Application number
PCT/JP2003/014017
Other languages
English (en)
French (fr)
Inventor
Masahiko Ibamoto
Hiroshi Kuroiwa
Minoru Oosuga
Kouzou Katogi
Takanobu Ichihara
Syuuichi Shimizu
Motoyuki Abe
Takuya Shiraishi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2005510144A priority Critical patent/JPWO2005042942A1/ja
Priority to PCT/JP2003/014017 priority patent/WO2005042942A1/ja
Priority to AU2003304524A priority patent/AU2003304524A1/en
Publication of WO2005042942A1 publication Critical patent/WO2005042942A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/02Engines with reciprocating-piston pumps; Engines with crankcase pumps
    • F02B33/06Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps
    • F02B33/18Engines with reciprocating-piston pumps; Engines with crankcase pumps with reciprocating-piston pumps other than simple crankcase pumps with crankshaft being arranged between working and pumping cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine (an internal combustion engine or a prime mover) that causes a reciprocating motion or a rotational motion of an actuator by explosively burning gas or liquid fuel in a combustion chamber, and can be used as a prime mover of an automobile, a ship, and the like. In general, it can be used for a wide range of applications as a prime mover that generates rotational motion and reciprocating motion.
  • an engine an internal combustion engine or a prime mover
  • a prime mover that causes a reciprocating motion or a rotational motion of an actuator by explosively burning gas or liquid fuel in a combustion chamber
  • the conventional four-stroke gasoline engine consists of four strokes, “intake—compression—explosion—exhaust”, and repeats the “compressor” function and “motor” function every other revolution.
  • An object of the present invention is to solve this problem and to obtain an engine (an internal combustion engine or a prime mover) having substantially no suction and compression processes.
  • the engine does not require an intake passage. Since the combustion gas is supplied to the combustion chamber in an amount required for combustion, the intake loss in the intake passage as in a conventional engine is eliminated. Engine efficiency can be improved.
  • FIG. 1 is an engine configuration diagram showing a first embodiment of the present invention
  • FIG. 2 is an explanatory diagram of the operation of the engine in the first embodiment of the present invention
  • FIG. 3 is used for an engine system of the present invention.
  • Drawing showing a structural example of an air injector FIG. 4 is a graph showing torque characteristics of an engine in a first embodiment of the present invention
  • FIG. 5 is an engine system configuration diagram showing a second embodiment of the present invention
  • FIG. 7 is a diagram showing the torque characteristics of the engine according to the second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating the configuration and operation of the engine according to the third embodiment of the present invention.
  • FIG. 8 is the fourth embodiment of the present invention.
  • FIG. 9 is a configuration diagram of an engine cylinder head portion showing an example
  • FIG. 9 is a configuration diagram of an engine cylinder head portion showing a fifth embodiment of the present invention
  • FIG. 10 is a sixth embodiment of the present invention.
  • FIG. 11 is an explanatory diagram of the configuration and operation of an engine, showing a seventh embodiment of the present invention.
  • FIG. 12 is an explanatory diagram of an engine configuration and operation showing an example.
  • FIG. 12 is a torque characteristic diagram of an engine according to a seventh embodiment of the present invention.
  • FIG. 13 is an engine system configuration diagram showing an eighth embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of the configuration and operation of an engine showing an eighth embodiment of the present invention, and FIG.
  • FIG. 15 is an explanatory diagram of the configuration and operation of an engine showing a ninth embodiment of the present invention.
  • FIG. 16 is an engine configuration diagram showing a tenth embodiment of the present invention
  • FIG. 17 is a control block diagram showing an eleventh embodiment of the present invention
  • FIG. 18 is an eleventh embodiment of the present invention.
  • FIG. 19 is a control block diagram showing the contents of the air-fuel mixture creating unit in the eleventh embodiment of the present invention
  • FIG. 20 is a control block diagram showing the contents of the air-fuel mixture creating unit in the eleventh embodiment of the present invention.
  • FIG. 21 is a control block diagram showing the contents of the fuel injector valve opening control section in the eleventh embodiment of the present invention.
  • FIG. 21 is a control block showing the contents of the air injector valve opening control section in the eleventh embodiment of the present invention.
  • Lock diagram FIG. 22 is an engine configuration diagram showing a twelfth embodiment of the present invention
  • FIG. 23 is a control block diagram showing contents of an air-fuel mixture creating section in the twelfth embodiment of the present invention
  • FIG. 24 is an engine configuration diagram showing a thirteenth embodiment of the present invention
  • FIG. 25 is a thirteenth embodiment of the present invention. Illustrates an operation state of the engine in ⁇
  • second FIG. 6 is an engine configuration diagram showing a fourteenth embodiment of the present invention.
  • the term “motor” is used as a device that generates a force to move an object in a broad sense. In a narrow sense, it may mean an internal combustion engine such as an automobile or a ship or a limited prime mover called an engine. In a broad sense, a prime mover may also include an aerodynamic prime mover that has no effect such as fuel supply or combustion explosion.
  • Electric motors hydraulic motors, air motors, steam engines, etc. can rotate forward and reverse, but the engine cannot rotate backwards.
  • the jet engine can perform reverse injection, but this is not reversal because the direction of the injected gas is changed by the reflector.
  • the electric motor and air motor can also perform regenerative braking, and can perform so-called four-quadrant operation (forward power running, reverse power running, reverse regeneration, forward regeneration).
  • power sources other than the engine can operate at least in the first and third quadrants, while the engine (internal combustion engine) can operate only in a part of the first quadrant.
  • the present embodiment is configured as follows.
  • the engine (the prime mover) according to the present embodiment substantially executes only the explosion process and the exhaust process, and as a result, has an explosion process once per reciprocating or one revolution of the actuator.
  • the present invention When the present invention is applied to a rotary engine, it is characterized in that the explosion process arrives twice in one combustion chamber during one rotation of the actuator. In this embodiment, since there are two combustion chambers and the mover has three faces, six explosions occur per rotation of the actuator.
  • an air-fuel mixture chamber is provided adjacent to the combustion chamber at the top of the cylinder, so that the two can be isolated by an isolation piston.
  • Air injector in mixture chamber And a fuel injector to create a mixture with a specified air-fuel ratio at a specified pressure.
  • the “intake and compression” process is separated and specialized, the high-pressure air is stored in the tank by the “compressor”, and the high-pressure air is directly injected into the cylinder by the air injector. Eliminate the process of “intake-compression” and specialize in “explosion-exhaust”.
  • the engine itself can be stopped when the device (for example, a car or a prime mover for lawn mowing) is at rest.
  • Eliminating idling eliminates the need for ISC valves in cars. Also, by controlling the torque from zero rotation speed, the starting clutch and torque converter can be omitted. The reverse rotation can be started by selecting the cylinder that injects high-pressure air and fuel when the motor is started from a stopped state.
  • the output can be improved while suppressing the occurrence of knocking.
  • the energy stored as air pressure is increased, and a low-cost regenerative function is provided without using a battery or generator. can do.
  • the concept of intake negative pressure is eliminated, and the pressure source is unified to positive pressure by high-pressure compressed gas. Therefore, when the actuator is operated by the gas pressure, it is operated by the positive pressure from this pressure source.
  • the combustion gas itself may be flammable.
  • a fuel such as gasoline may be separately mixed with air, or air and fuel may be injected or injected into the combustion chamber and mixed in the combustion chamber.
  • an igniter such as a spark plug or a heater may be used, or spontaneous ignition called compression ignition may be used. Alternatively, laser heating or microwave heating may be used.
  • a flat torque characteristic can be obtained from a stop to a high rotation speed.
  • the engine itself has a regenerative function.
  • the compressor can be disconnected and all engine output can be used for driving power.
  • the term “operator” refers to a piston or a plunger as long as it is a reciprocating motor. In the case of a one-tally type prime mover, it refers to a rotary rotor or an eccentric orifice.
  • combustion chamber or “cylinder” is sometimes used interchangeably with engine cylinder.
  • high-pressure combustion fluid may refer to high-pressure air itself or to a high-pressure mixture obtained by mixing fuel with the high-pressure air. Naturally, natural gas and similar combustion gases are also treated as high-pressure combustion fluids.
  • FIG. 1 is a configuration diagram showing a first embodiment of the present invention. In order to clarify the difference in configuration, it is displayed in comparison with the conventional engine.
  • the conventional four-stroke engine is composed of four con- rods 2 connected to the crankshaft 1, four pistons 3 provided at the tip of the con- rod, and the pistons. It consists of four cylinders 4 to be stored, an intake valve 5, an exhaust valve 6, a fuel injector 7, and a spark plug 8 provided at the top of each cylinder.
  • the operation of each cylinder consists of four strokes, "intake, compression-explosion-exhaust," and the four cylinders operate one stroke at a time. Therefore, looking sideways, one explosion occurred in any cylinder every half revolution, and one compression occurred in any cylinder every half rotation.
  • the “suction, compression” stage is a “compressor” that does not generate energy
  • the “explosion-exhaust” process is a “motor” that generates energy. Focusing on a certain cylinder, the “compressor” and “motor” are repeated every other rotation. In other words, it can be said that this is a “dispersed processing” system in which the compressed air required for the motor stroke is self-sufficient for each cylinder in one rotation before it.
  • FIG. 1 (b) shows a configuration example.
  • two cylinders are dedicated to the “compressor” and two cylinders are dedicated to the “motor”.
  • the conventional cylinder No. 1 and cylinder No. 2 are dedicated cylinders for the compressor, The fuel injector and spark plug are eliminated because the rotation and “suction and compression” are repeated, and the intake-side check valve 9 is provided in place of the intake valve 5 and the exhaust-side check valve 10 is provided in place of the exhaust valve 6. It is.
  • the output pipe 11 is connected to the air tank 12, and collects high-pressure air produced by the cylinder No. 1 and the cylinder No. 2 and sends it to the air tank 12.
  • the compressed air stored in the air tank 12 is distributed to a cylinder No. 4 on the prime mover side and an air injector 14 provided in each of the cylinders No. 3 via an intake pipe 13.
  • Cylinders No. 4 and No. 3 on the prime mover side are provided with an exhaust valve 6, a fuel injector 7, and a spark plug 8, respectively.
  • Fig. 2 shows the operation of the cylinder on the prime mover side.
  • the exhaust valve When the "explosion-one exhaust” is completed, the exhaust valve is closed at an angle c (for example, 40 degrees before the top dead center), high-pressure air is injected from the air injector 14 in a short period up to the angle a, and the fuel injector 7 Inject fuel. That is, as soon as the exhaust valve 6 is closed, the state becomes the same as the state where the compression stroke is completed in the conventional engine, and one revolution of the, "suction, compression" stroke can be omitted.
  • an angle c for example, 40 degrees before the top dead center
  • these cylinders repeat "explosion and exhaust” every revolution, so they have a two-cycle engine, but the appearance is the same as a four-cycle engine even with two cycles.
  • the capacity of one cylinder is 500 cc
  • the compression ratio is 10
  • the cylinder capacity near top dead center is 500 cc. Therefore, if 50 cc of air at 10 atmospheres is injected after the exhaust valve is closed, the state becomes the same as the state where the compression stroke was completed in the conventional engine, meaning that four strokes were executed in one revolution.
  • this motor has one explosion in one of the cylinders every half revolution, and one compression in one of the cylinders every half revolution. Occur. That is, since the operation is the same as that of the conventional four-cylinder four-stroke engine shown in Fig. 1 (a), the same output as the conventional four-cylinder can be obtained with two cylinders.
  • FIG. 3 shows a structural example of the air injector 14.
  • Outer opening valve 15 and balance piston 16 are connected. If the area of the balance piston 16 is slightly larger than the area of the valve 15, a thrust is applied in the direction in which the valve 15 closes by the air pressure entering from the common rail 17.
  • the plunger 19 When the plunger 19 generates a force greater than the sum of the thrust and the force of the panel 18, the valve is opened to inject air.
  • the plunger 19 generates a leftward force in FIG. 3 by passing a current through the coil 20.
  • an electric motor and cam, piezo element, magnetostrictive element, hydraulic pressure, etc. may be used.
  • the maximum engine speed is 600 Omiir 1
  • the time from 30 degrees before top dead center to top dead center is about lms, so the injection time of the air injector 14 at this time is less than lms.
  • the minimum injection time is set to zero, and duty control equivalent to the throttle opening is performed. That is, the amount of injected air is controlled by the valve opening time.
  • the flow velocity is the same as that of the conventional intake valve 5. For example, with a conventional engine of 2000 Occ and 4 cylinders, the intake time at 600 min- 1 is 5 ms and the intake air volume is
  • the unit time flow rate is 0.1 m 3 / s.
  • the diameter of the intake valve 5 is ⁇ 30 and the lift amount is 9 mm
  • the cross-sectional area of intake is 0.017 m2 for two valves
  • the flow velocity is 58.8 mZ s.
  • the unit time flow rate from the injection quantity Ru 5 0 cc der is also 0. 1 m 3 / s, the diameter of the valve 1 5 intake If the diameter is the same as that of the valve 5, the flow velocity is the same.
  • the conventional engine has a pressure difference of only 1 atm
  • the pressure of the air tank 12 is set to 10 atm
  • the pressure difference is 9 atm
  • the flow velocity is three times the square root of the pressure difference, and can be increased to 176 m / s.
  • the diameter of the air injector 14 becomes 1/3 of the diameter of the intake valve 5, and only one having a diameter of ⁇ 20 is required. If you want to reduce the amount of lift, increase the caliber or use twin injection.
  • the fuel injector 7 and the spark plug 8 are basically the same as the conventional one. However, the fuel injector 7 has a large flow rate in order to inject in a short time.
  • Fig. 4 shows the engine torque characteristics.
  • the torque changes according to the rotational speed as shown in Fig. 4 (a). This is because the intake efficiency changes due to the inertia of the intake as described above.
  • the method of the present invention since high-pressure air is injected, there is no shortage of intake air at the time of high-speed rotation, and a flat torque characteristic without torque fluctuation due to the number of rotations is obtained as shown in FIG. 4 (b).
  • FIG. 4 (b) shows a flat torque characteristic without torque fluctuation due to the number of rotations.
  • the conventional engine there was a phenomenon in which the output decreased at high altitude where the atmospheric pressure was low.
  • the air supply was always stable, the output did not decrease at altitude.
  • FIG. 5 is a configuration diagram showing a second embodiment of the present invention.
  • three cylinders with a capacity of 3333 cc are provided.
  • the output is equivalent to the conventional 2000 cc because it is two cycles.
  • the crankshaft 1 has a phase difference of 120 degrees. In this way, the rotation becomes smooth, and at the time of stoppage, one of the cylinders has passed the top dead center. If air and fuel are injected into the cylinder and ignited, a torque is generated and the cylinder starts rotating. In other words, since it can be started by itself, not only is the star unnecessary, but also torque is generated smoothly from zero rotation speed This eliminates the need for a starting clutch or torque converter.
  • the compressor 21 does not need to be a piston type, and it is sufficient to use a screw type or scroll type that is efficient.
  • the compressor is connected to the engine and the compressor gear 22 is inserted to operate in the optimum rotation speed range.
  • a compressor coupling clutch 23 is provided on the compressor input shaft.
  • the compressor can be temporarily disconnected and all engine output can be directed to driving force. In other words, the same effect can be obtained as in a hybrid vehicle that accelerates over time.
  • a relief valve 24 for discharging compressed air to the atmosphere may be provided in the compressor output pipe 11.
  • an engine disconnecting clutch 26 is provided between the engine and the input shaft of the transmission 25, and if the compressor is connected to the input shaft of the transmission, the engine is disconnected during braking and the compressor 21 is driven by the kinetic energy of the vehicle body. By turning, energy can be stored in the air tank 12 in the form of air pressure. You That is, this system has a regenerative function.
  • the air tank 12 When the system is started for the first time, or when the pressure in the air tank 12 drops after being left for a long time, the air tank 12 is filled with compressed air by the electric auxiliary compressor 27 before starting. .
  • the air tank 12 In order to produce high-pressure air in a short time even with a small auxiliary compressor, instead of filling the entire air tank 12, it is sufficient to fill the small room partitioned by the partition wall 12 a.
  • FIG. 6 shows the torque characteristics of the engine, in which (a) shows the conventional engine torque characteristics and (b) shows the engine torque characteristics in the present embodiment.
  • (b) a torque is generated from the rotation speed 0 and the motor starts by itself, and a flat torque characteristic can be maintained up to high speed.
  • the region where the engine torque is negative, that is, (b ′) is the characteristic of the compressor.
  • regenerative braking can be performed by generating a load torque even in the regenerative region.
  • the main features of the present embodiment are that, compared to the first embodiment, a region that is equal to or lower than the idle speed can be used, and that a regenerative braking torque is provided.
  • FIG. 7 shows the configuration and operation of a cylinder according to a third embodiment of the present invention. 2 is different from FIG. 2 in that an air-fuel mixture chamber 28 is provided.
  • the air injector 14 and the fuel injector 7 are provided not in the cylinder 4 but directly in the air-fuel mixture chamber 28.
  • a mixture injection valve 29 is provided between the mixture chamber 28 and the cylinder 4.
  • high-pressure air and fuel are injected into the cylinder in a short time of 0.5 ms, for example, between crank angles c and a, so the fuel injector 7 must have a larger flow rate than before. .
  • the air injector 14 and the fuel injector 7 inject high-pressure air and fuel into the air-fuel mixture chamber 28 to create an air-fuel mixture from near the top dead center until the exhaust valve 6 closes. Evaporate enough.
  • the fuel-air mixture creation time is 8 ms or more even at the maximum rotational speed of 600 lin " 1 , so there is no need for a special fuel injector 7 and conventional products can be used as is.
  • Exhaust at crank angle c When the valve 6 is closed, the air-fuel mixture injection valve 29 is opened, and the air-fuel mixture is injected into the cylinder 4 at, for example, 0.5 ms up to the crank angle a.
  • the capacity of one cylinder is 33.3 cc. If the compression ratio is 10, the cylinder volume near the top dead center is 33 cc, so the volume of the mixture chamber 28 is 33 cc. At the maximum output, a mixture of 10 atmospheres and 33 cc only has to enter cylinder 4 .Therefore, a mixture of 19 atmospheres is created in advance in the mixture chamber 28, and the mixture injection valve 29 is opened. Equilibrate the pressure in a short time of about 5 ms. Then, the pressure of the mixture chamber 28 drops from 19 atm to 10 atm, the pressure of the cylinder 4 rises from 1 atm to 10 atm, and the mixture can be injected as desired.
  • the pressure of the air tank 12 may be set to 19 atm or more, or a booster pump 46 may be provided in the intake pipe 13. '
  • EGR exhaust gas recirculation control
  • the air-fuel ratio is not affected, the air-fuel ratio is not affected, and the air-fuel ratio of the air-fuel mixture may be set as the stoichiometric air-fuel ratio.
  • the cylinder is filled with fresh air when the exhaust valve 6 is closed by performing scavenging described later, oxygen is contained, so the air-fuel ratio of the air-fuel mixture is reduced accordingly and the fuel Should be included.
  • a pressure sensor 102 is provided in the air-fuel mixture chamber 28, and fuel is injected according to the pressure of the air-fuel mixture. The fuel injection amount is adjusted by the injection time of the fuel injector 7 as in the conventional case.
  • FIG. 8 shows a configuration of a cylinder according to a fourth embodiment of the present invention.
  • the difference from FIG. 7 is that a piston 31 is provided in a mixture chamber 28.
  • the push-in piston 31 is connected to the lifter 32, and there is a spring 33 between them, so that the push-in piston 31 and the lifter 32 always move in the direction of the figure.
  • the camshaft 34 rotates, the cam 35 pushes the lifter 32, and the pushing piston 31 moves leftward in the figure to push the mixture into the cylinder 4.
  • the mixture injection valve 29 is opened at the timing.
  • the air-fuel mixture injection valve 29 is connected to the lifter 36, and since there is a spring 37 between them, the air-fuel mixture injection valve 29 and the lifter 36 are always shifted upward in the figure.
  • the camshaft 38 rotates, the cam 39 pushes the lifter 36, and the lifter 36 moves downward in the figure to open the mixture injection valve 29.
  • the following points are advantageous as compared with the case of FIG. 7, and the method of FIG. 7 uses the pressure difference between the cylinder 4 and the mixture chamber 28 to inject the mixture. It is necessary to increase the pressure in the mixture chamber 28 to about twice the equilibrium pressure.Therefore, it is necessary to increase the pressure in the air tank 12 or install a booster pump 46. There is. The injection time is the time required to reach equilibrium, but the pressure difference gradually decreases as the injection progresses, so the inflow speed decreases. Need to be designed larger. According to this method, the pressure of the air-fuel mixture chamber 28 may be almost equal to the final cylinder pressure, so it is necessary to increase the pressure of the air tank 12 to about twice or to set up a booth pump 46 It is not necessary to provide.
  • FIG. 9 shows the configuration of a cylinder according to the fifth embodiment of the present invention. ⁇ A difference from FIG. 8 is that the mixture injection valve 29 is pushed in and provided coaxially with the piston 31.
  • the mixture injection valve 29 opens the side to inject the mixture into the cylinder 4.
  • the position of the spring 37 is different from that of FIG. 8, the operation is the same, and the air-fuel mixture injection valve 29 and the lifter 36 are normally moved rightward in the figure.
  • the cam 39 is attached to the same cam shaft 34 as the push-in piston 31, and just before the push-in piston 31 moves to the left, the cam 39 pushes the lifter 36 to the left to inject the mixture. Open valve 29.
  • the cam 39 has a cam shape that closes the mixture injection valve 29 in a short time.
  • FIG. 10 shows a configuration of a cylinder according to a sixth embodiment of the present invention.
  • an isolation piston 45 is provided between the mixture chamber 28 and the cylinder 4 instead of the mixture injection valve 29.
  • the mixed air injection valve 29 is lifted by the spring 37 and pressed from the inside of the cylinder 4 to the outside.
  • the isolation piston 45 is pushed down by the panel 37 to near the inner wall surface of the cylinder 4. Therefore, the side of the isolation piston 45 blocks the air-fuel mixture chamber 28, thereby isolating the cylinder 4 from the air-fuel mixture chamber 28. cam
  • Ignition timing a — 20 °
  • the reason why the ignition timing was set to 120 ° was that the ignition was advanced in consideration of the combustion speed, but instead of a fixed value, it was in the range of ⁇ 20 ° to + 10 °, and in one example under certain conditions is there. Since this engine injects the air-fuel mixture all at once just before ignition, the airflow in the cylinder is disturbed and the combustion speed is high, so there is no need to make the advance angle too large.
  • the exhaust valve closing end timing shall be 140 ° assuming that it is 20 ° earlier than the ignition timing. Air and fuel injection should start at 140 °.
  • the cylinder volume when the piston is at the top dead center is 33 cc.
  • a so-called squish is formed by matching the top of the piston 3 to the top of the cylinder 4, and the cylinder volume when the piston 3 is at the top dead center is 11 cc.
  • the volume of the mixture chamber 28 was 22 cc, and the total volume of the cylinder and the volume of the mixture chamber 28 was 33 cc.
  • Mixing before isolation piston 45 opens to bring cylinder pressure to 10 bar before ignition at top dead center
  • the pressure in the air chamber 28 is kept at about 14.5 atm.
  • the pressure when the isolation piston 45 is opened to expand the volume to 33 cc will be about 10 atmospheres.
  • a pressure of about 14.5 atmosphere in the mixture chamber 28 is applied to the side of the isolation piston 45, but the upper and lower surfaces of the isolation piston 45 are closed and injected into the cylinder 4.
  • the lever 37 lifts the lifter 36 by the cam 39
  • the lower end of the isolation biston 45 opens, and a high-pressure mixture is injected into the cylinder 4.
  • the pressure in the cylinder 4 increases, so that the isolation piston 45 is pushed up, and the mixture is injected into the cylinder 4 at a stretch.
  • the cylinder 4 and the air-fuel mixture chamber 28 can be rapidly communicated by the pressure difference of the air-fuel mixture only by slightly raising the isolation piston 45.
  • the isolation piston 45 is pushed up at a higher speed. That is, the cam 39 only needs to lift the lifter 36 with a small force, and does not need to provide a large driving force for moving the isolation piston 45 at high speed.
  • the isolation piston 45 When the isolation piston 45 is lifted up and the mixture chamber 28 and the cylinder 4 are connected, the mixture chamber 28 functions as a combustion chamber.
  • EGR exhaust gas recirculation
  • FIG. 11 shows a configuration of a cylinder according to a seventh embodiment of the present invention.
  • a camshaft 40 and a cam 41 for opening and closing the exhaust valve 6, which have not been shown, are shown.
  • the camshaft 40 is connected to the crankshaft 1 by a timing chain (not shown), and opens and closes the exhaust valve 6 according to the angle of the crankshaft 1. Assuming that the camshaft 40 rotates at half the speed of the crankshaft 1, the cam 41 is shaped to open and close the exhaust valve 6 every 180 °.
  • the crank angles b and c shown in FIGS. 2 and 7 are the opening and closing angles of the exhaust valve during forward rotation. In this embodiment, a mechanism capable of coping with reverse rotation is shown. In Fig.
  • crank angles b 'and c' are the opening and closing angles of the exhaust valve at the time of reverse rotation.
  • the positions are set symmetrically to the crank angles b and c with respect to the top and bottom dead center, respectively. That is, the exhaust valve 6 starts to open at the forward rotation crank angle b, but at this time, the angle of the cam 41 is the angle at which the cam 41 ends closing at the reverse rotation. This corresponds to the reverse rotation crank angle c ′. Therefore, the relationship between the camshaft 40 and the camshaft 41 during forward rotation and reverse rotation is shifted by b-c 'in terms of crank angle.
  • Figure 11 (b) shows the mechanism that opens exhaust valve 6 at crank angle b 'and closes exhaust valve .6 at crank angle c' during reverse rotation.
  • a sprocket 42 for winding a timing chain (not shown) is rotatably mounted on the camshaft 40.
  • the key 44 is fitted into the key groove 43 provided on the sprocket 42, and the key 44 is fixed to the cam shaft 40.
  • b— c ′ With the play of the angle of Z2, they will be joined. Since the camshaft 40 rotates at half the speed of the crankshaft 1, the actual crank angle is shifted by b--c '. When the engine rotates in reverse, the exhaust valve 6 is opened at the crank angle b' and the crank angle is increased.
  • To close exhaust valve 6. Provide a reverse rotation function (not shown), and forcibly press the key 44 to the left end of the groove 43 during forward rotation and to the right end during reverse rotation to ensure more reliable switching between forward and reverse rotation. Can be.
  • FIG. 12 (a) shows the torque characteristics of the engine in this embodiment. Compared to the characteristics shown in Fig. 6, power and regenerative operation at the time of reverse rotation, that is, operations in the second and third quadrants are added, and four-quadrant operation becomes possible.
  • the broken line shows the conventional engine torque characteristics.
  • the torque characteristics of the motor are shown in Fig. 12 (b).
  • the characteristics of the motor regeneration region are also the same as those of the motor region, but in the case of an engine, the characteristics are different from the regeneration region because the regeneration region has the compressor characteristics as described above. However, if the control is devised, it is a characteristic that can be fully utilized practically.
  • FIG. 13 is a system configuration diagram showing an eighth embodiment of the present invention.
  • the difference from Fig. 5 is that the clutch 26 for disconnecting the engine is abolished and an exhaust valve opening mechanism 48 is provided.
  • the system on the intake side is of the type shown in Fig. 10, it may be of the mixture-chamber type shown in Fig. 7 or of the push-in piston type shown in Figs.
  • the air-fuel injection valve was driven by the camshaft 38 or 34 in Figs. 8 and 9, but the plunger used in the air injector in Fig. 3 may be used. Indicated as mixture injection valve or isolation piston drive 49.
  • FIG. 14 shows the structure of the exhaust valve opening mechanism 48 in the system shown in FIG. 13.
  • An exhaust valve opening lever 50 is provided adjacent to the exhaust valve cam 41. This is rotatably attached to the exhaust valve cam shaft 40, and the exhaust valve 6 is opened by operating the exhaust valve opening function 51.
  • an air piston using high-pressure air in the air tank 12 may be convenient, but an electric solenoid or electric motor may be used.
  • FIG. 15 is an explanatory diagram of the operation of the scavenging control according to the ninth embodiment of the present invention.
  • FIG. 15 shows an example based on the engine with the isolation piston of FIG.
  • the air-chamber system may be based on the engine with a push-in piston shown in Figs. 8 and 9, or based on the engine with a reversing function shown in Fig. 11.
  • the exhaust gas is pushed out first, and most of the remaining 26 cc when the exhaust valve 6 is closed is air.
  • the pressure in the air tank 12 is 15 atm, if the second air injector 52 injects 1.7 cc or more, it means that more than 26 cc of air has been injected at 1 atm. Can be wiped out.
  • Air injection system can be realized without an air pump.
  • the catalyst activity during operation of the engine can be controlled by the injection amount of the air injector.
  • the pressure in the cylinder 4 is almost 1 atm.
  • FIG. 10 A tenth embodiment of the present invention is shown in FIG.
  • the configuration is almost the same as in Fig. 10, but the radius of the crankshaft 1 is increased, the length of the cylinder 4 is increased, and the stroke of the biston 3 is increased to increase the compression ratio.
  • the method shown in Fig. 10 using the isolation biston 45 was adopted, the method shown in Fig. 7 using the mixture chamber 28, the method shown in Fig. 8 or 9 using the pushing piston, and the method shown in Fig. 11
  • the volume of the air-fuel mixture chamber 28 was set to 11 cc to create a 30-atmosphere air-fuel mixture.
  • the isolation piston 45 is opened after the exhaust valve 6 is closed and the air-fuel mixture is injected into the cylinder 4, the volume is doubled and the pressure becomes about 15 atm. Since the pressure in the cylinder is initially 1 atm, the injected high-pressure mixture is adiabatically expanded and its temperature drops.
  • air tank Before that, when creating the air-fuel mixture, air tank The fuel is injected while blowing the high-pressure air from 1 into the mixture chamber 28, but the high-pressure air of 30 atm or more is blown into the mixture chamber 28 at 1 atm. The temperature drops below the temperature of the air tank 12.
  • FIG. This is a block diagram of the control system that controls the system described so far. Only the main signals are described for the input signals of each block, and the signals used for detailed correction calculations are omitted.
  • the mode discriminating unit 201 inputs the absolute position signal of the crank angle and the forward / reverse rotation signal based on the reverse signal from the selector lever (not shown), determines which mode each of the three cylinders is in, and controls each control block. To the discrimination signal.
  • the rotation direction controller 202 operates the reverse rotation function based on the forward / reverse rotation signal.
  • the fuel injector valve opening control unit 204 controls the energization time of the fuel injector 7 according to the fuel injection amount calculated in 203.
  • the air I Njekuta valve opening control section 2 0 5 in a predetermined at c thus predetermined air-fuel ratio to perform the valve opening control of the air injector 1 4 A pressure mixture is created.
  • the isolation piston 45 opens, and the air-fuel mixture is injected into the cylinder.
  • the ignition control unit 206 sparks the spark plug 8 at a commanded crank angle, for example, a ( ⁇ 20 °).
  • the air-fuel mixture chamber scavenging control unit 208 calculates the air injector opening according to the engine speed. In response to this, the air injector valve opening control section 205 performs valve opening control of the air injector 14.
  • the second air injector valve opening controller 21 1 ⁇ controls the valve opening of the second air injector 52 based on the air injector opening command calculated by the cylinder scavenging controller 209. Do.
  • the second air injector valve opening control unit 210 When performing cylinder scavenging, the second air injector valve opening control unit 210 performs valve opening control of the second air injector 52 based on the air injector opening command calculated by the cylinder scavenging control unit 209. Do.
  • control Since the above control is required for each cylinder, the control is performed with a phase angle of 120 ° by three sets of control blocks.
  • FIG. 18 is a logic diagram showing the contents of the mode discrimination control section 201 in more detail.
  • Crank angle is input from input terminal 1 and forward / reverse rotation signal is input from input terminal 2.
  • forward rotation the crank angle passes through the switch as it is, and during reverse rotation, a value subtracted from 360 ° appears in the switch output. If this switch output is defined as “deemed crank angle” and is controlled based on deemed crank angle, the same logic can be used for both forward and reverse rotation.
  • the injection permission signal of the air injector 14 is output from the output terminal 1.
  • the injection permission signal of the fuel injector 7 is output from the output terminal 2.
  • the injection permission signal of the second air injector 52 is output from the output terminal 3.
  • the ignition permission signal of the spark plug 8 is output from the output terminal 4.
  • each permission signal of the second cylinder can be obtained.
  • Each permission signal for the third cylinder is calculated using a value obtained by adding 240 ° to the assumed crank angle. If the value obtained by adding 120 ° to the assumed crank angle is sent to the No. 2 cylinder control unit in FIG. 16, control can be performed with exactly the same logic as the No. 1 cylinder control unit. Similarly, the value obtained by adding 240 ° to the assumed crank angle is sent to the No. 3 cylinder control unit in FIG.
  • FIG. 19 is a logic diagram showing the air-fuel mixture creation control unit 203 of FIG. 17 in more detail.
  • a torque command signal corresponding to the accelerator pedal depression angle and the engine speed are given to the engine torque calculation section 2 13, the engine torque command value is calculated.
  • the fuel injection amount calculation unit 2 1 4 calculates this engine torque The fuel amount required to generate the fuel is calculated and a fuel injection amount command is output.
  • the required air amount calculation unit 215 calculates the air amount required to completely burn the fuel injection amount based on the required air-fuel ratio.
  • the air pressure converter 216 converts the calculated amount of air into a pressure when the air volume is compressed to the volume of the air-fuel mixture chamber 28, and outputs the air-fuel mixture chamber pressure command. In that case, input the actual measurement location because the temperature of high-pressure air has a great effect.
  • the difference from the actually detected pressure sensor detection value is calculated, and the control compensation is performed to output the air injection amount command value. That is, the feedback control is performed so that the detected value of the pressure sensor becomes equal to the air-fuel mixture chamber pressure command.
  • FIG. 20 is a logic diagram showing the fuel injector valve opening control section 204 of FIG. 17 in more detail.
  • the valve opening timing calculator 218 calculates the crank angle to start / end driving of the fuel injector.
  • the condition match determination unit 219 compares the start Z end signal with the assumed crank angle and the fuel injection permission signal coming from the mode determination unit 201, and drives the fuel injector during all conditions are satisfied. Output a signal.
  • FIG. 21 is a logic diagram showing the air injector valve opening control section 205 of FIG. 17 in more detail.
  • the valve opening timing calculation unit 220 calculates the crank angle at which the driving of the air injector should start and the Z end should be completed.
  • the condition match determination unit 221 compares this start / end signal with the assumed crank angle and the air injection permission signal coming from the mode determination unit 201, and during the time when all the conditions are satisfied, the air injector drive signal Is output.
  • FIG. Fig. 10 A twelfth embodiment of the present invention is shown in FIG. Fig. 10, Fig. 15, Fig.
  • the difference from FIG. 16 is that the pressure sensor 102 is abolished and an air flow meter 103 is provided in the middle of the intake pipe 13 instead.
  • the logic for controlling this engine may be the same as that in FIG. 17 except for the pressure sensor detection signal input.
  • the content of the air-fuel mixture creation control unit 203 is the same as that shown in Fig. 23 except that the high-pressure air conversion unit 222 is used instead of the air pressure conversion unit 216. That was.
  • the required air amount calculated by the required air amount calculation unit 215 is converted to a high-pressure air amount by the high-pressure air amount conversion unit 218. At this time, the temperature of the high-pressure air remains important.
  • the deviation between the calculated high-pressure air injection amount command value and the air flow meter detection signal is control-compensated to output the air injection amount command. That is, the feedback control is performed so that the air flow meter detection value becomes equal to the high pressure air injection amount command value.
  • the amount of air flowing into the air-fuel mixture chamber 28 is directly measured, so that the pressure sensor method described in FIGS. 10, 15 and 16 is used.
  • the air-fuel ratio of the air-fuel mixture can be controlled more accurately.
  • FIG. 24 shows a thirteenth embodiment of the present invention.
  • the embodiments described so far relate to a reciprocating piston engine
  • this embodiment shows a case where the invention is applied to a rotary engine.
  • the rotary engine 53 turns around the stationary gear 54 and the mouth 55 turns.
  • the conventional mouth-to-mouth engine is the upper half
  • the working chamber has an intake port and the lower half of the working chamber has an exhaust port
  • the upper half of the working chamber is the first cylinder of the reciprocating piston engine
  • the lower half of the working chamber is It corresponds to the second cylinder of a reciprocating piston engine, and has an intake port 56 and an exhaust port 57 respectively.
  • the operation is shown in Fig. 25.
  • the state shown in Fig. 25 (a) corresponds to the bottom dead center of the first cylinder.
  • the A side of the rotor 55 is in the exhaust stroke.
  • the operation of injecting the air injector 14 and the fuel injector 7 to create the air-fuel mixture continues until the state (c).
  • the isolation piston 45 of the upper working chamber is opened, and the mixture is injected into the B side to ignite.
  • States (e) to (g) are the explosion and expansion strokes of the B-side in the upper working chamber.
  • Fig. 25 shows the operation of one-third rotation of the mouth-to-mouth 55, and if the same repetition is displayed, it is represented by the diagram of Fig. 24. If the C plane is read as the B plane and the A plane is read as the C plane, the result will be the same as that in Fig. 25 (a), and the following explanation is omitted.
  • the avex seal at the tip of the mouth is opened by itself as it passes through the exhaust port, which has the effect of eliminating the need for an exhaust valve, making the structure simple and inexpensive.
  • FIG. 26 shows a fourteenth embodiment of the present invention, which has a symmetrical structure with respect to the top and bottom of the engine, and has an air supply port 56 provided at the boundary between the upper and lower working chambers.
  • a reverse exhaust port 57a is additionally provided in the upper and lower working chambers, and an exhaust valve is provided for each exhaust port to switch the exhaust port used. If the exhaust valve for the reverse rotation port 57 a is closed and the exhaust valve for the exhaust port 57 is opened, the exhaust port for the reverse rotation is closed by closing the exhaust valve for the exhaust port 57 and the reverse. If the exhaust valve is open, operation can be performed in the reverse direction.
  • Embodiment 1 Embodiment 1
  • Embodiment 4 An engine that operates a compressor during braking to regenerate and store the kinetic energy of the vehicle body in the form of air pressure. Embodiment 4
  • An engine that can self-start by injecting compressed air and fuel into cylinders that are in the expansion stroke when they stop, causing them to explode and exhaust.
  • An engine that injects compressed air and fuel, which provides stable combustion even at high revolutions, into cylinders and explodes them, generating stable torque independent of the rotational speed.
  • An engine that can generate the required torque by injecting compressed air and fuel that can provide stable combustion even at high altitudes into cylinders and exploding them.
  • An engine that can inject fresh air into the exhaust pipe without using a secondary air pump to purify the exhaust.
  • Embodiment 1 1 is a diagrammatic representation of Embodiment 1 1
  • This invention can be used for the motor (explosion and combustion of flammable gas which generate

Abstract

圧縮行程を分離することにより、四象限運転できるエンジンを提供する。従来の内燃機関は、スタータが必要、アイドルスピード制御バルブが必要、発進クラッチまたはトルクコンバータが必要であった。また逆回転できない、トルク特性が平坦でない、ノッキングが生じやすいので圧縮比を上げられない、回生が出来ない、等の問題があった。コンプレッサで蓄圧した高圧空気を用い、燃料と空気を強制的に気筒に注入して毎回転爆発させることで、上記課題を全て解決する。

Description

明 細 書
原動機 技術分野
本発明は燃焼室内で気体あるいは液体燃料を爆発燃焼させて作動子の 往復運動あるいは回転運動を引き起こすエンジン (内燃機関あるいは原 動機) に関し、 例えば自動車, 船舶等の原動機として用いることができ 'る。 また、 一般的に回転運動や往復運動を発生する原動機として広い用 途に供することができるものである。 背景技術
従来の 4サイクルガソリンエンジンは 「吸気—圧縮一爆発一排気」 の 4行程から成っており、 1回転おきに 「コンプレッサ」 機能と 「原動機」 機能を繰り返している。
この従来技術では爆発に必要な圧縮気体を、 爆発の直前の 1回転で作 つているために、 1回転おきにしか爆発できない。
本発明はこの問題を解決し、 実質的に吸入, 圧縮工程を持たないェン ジン (内燃機関あるいは原動機) を得ることを目的とする。
圧縮を行わずに高圧空気を気筒に注入するエンジンが特表平 1 1一 5 0 2 0 0 3号公報に記載されているが、 通常のエンジンとして動作し た後、 燃焼室の余熱で高圧空気を膨張させてエンジンを回すもので、 燃 料噴射 (燃料の供給) を行わないためエネルギ源がなく、 いわゆる永久 機関と思われる。 発明の開示 本発明は上記目的を達成するために、 高圧に圧縮しておいた燃焼用気 体を、 機関の排気工程の後半の特定の時期に燃焼室内に供給し、 その後 当該燃焼用気体を燃焼爆発させて燃焼室内に位置する作動子を往復運動 あるいは回転運動させるものである。
このように構成した本発明によればエンジンに吸気通路が不要となり . 燃焼用気体を燃焼に必要な量だけ燃焼室に供給するので従来のエンジン に見られるような吸気通路における吸気損失がなくなり、 エンジンの効 率を向上できる。 図面の簡単な説明
第 1図は本発明の第一の実施例を示すエンジン構成図、 第 2図は本発 明の第一の実施例におけるエンジンの動作説明図、 第 3図は本発明のェ ンジンシステムに用いる空気ィンジェクタの構造例を示す図面、 第 4図 は本発明の第一の実施例におけるエンジンのトルク特性を示すグラフ、 第 5図は発明の第二の実施例を示すエンジンシステム構成図、 第 6図は 本発明の第二の実施例におけるエンジンのトルク特性図、 第 7図は本発 明の第三の実施例におけるエンジンの構成および動作説明図、 第 8図は 本発明の第四の実施例を示すエンジン気筒へッ ド部の構成図、 第 9図は 本発明の第五の実施例を示すエンジン気筒へッ ド部の構成図、 第 1 0図 は本発明の第六の実施例を示すエンジンの構成および動作説明図、 第 1 1図は本発明の第七の実施例を示すエンジンの構成および動作説明図. 第 1 2図は本発明の第七の実施例におけるエンジンのトルク特性図、 第 1 3図は本発明の第八の実施例を示すエンジンシステム構成図、 第 1 4 図は本発明の第八の実施例を示すエンジンの構成および動作説明図、 第 1 5図は本発明の第九の実施例を示すエンジンの構成および動作説明図. 第 1 6図は本発明の第十の実施例を示すエンジン構成図、 第 1 7図は本 発明の第十一の実施例を示す制御ブロック図、 第 1 8図は本発明の第 十一の実施例におけるモード判別部の内容を示す制御プロック図、 第 1 9図は本発明の第十一の実施例における混合気作成部の内容を示す制 御ブロック図、 第 2 0図は本発明の第十一の実施例における燃料ィンジ ェクタ開弁制御部の内容を示す制御ブロック図、 第 2 1図は本発明の第 十一の実施例における空気ィンジェクタ開弁制御部の内容を示す制御ブ ロック図、 第 2 2図は本発明の第十二の実施例を示すエンジン構成図、 第 2 3図は本発明の第十二の実施例における混合気作成部の内容を示す 制御ブロック図、 第 2 4図は本発明の第十三の実施例を示すエンジン構 成図、 第 2 5図は本発明の第十三の実施例におけるエンジンの動作状態 を示す説明図、 第 2 6図は本発明の第十四の実施例を示すエンジン構成 図である。 発明を実施するための最良の形態
本実施例の原動機の更なる特徴 (機能, 動作, 作用効果) を以下、 従 来の原動機と比較して説明する。 なお、 本明細書で 「原動機」 とは広義 の意味で物を動かす力を発生する装置として使用する。 狭義には自動車 や船舶などの内燃機関あるいはエンジンと呼称される限定的な原動機を 意味することもある。 広義の意味での原動機は、 燃料の供給や燃焼爆発 といった作用を伴わない空気力式の原動機も含む場合がある。
従来の原動機 (エンジン, 内燃機関) は、 ガソリンエンジンであれデ イーゼルエンジンであれ、 スター夕で始動する必要があり、 アイ ドル回 転数以上の領域でしか使用できない。 エンジン以外の動力源として電動 機, 油圧モータ, 空気モータ, 蒸気機関等があるが、 これらはいずれも 停止状態から トルクを発生して自分で回転し、アイ ドリングは必要ない。 また電動機, 油圧モ一夕, 空気モ一夕, 蒸気機関等は正転 · 逆転自在 であるが、 エンジンは逆転できない。 ジェッ トエンジンはリバース噴射 出来るが、 これは反射板により噴射ガスを方向転換しているのであって 逆転ではない。
さらに電動機と空気モータは回生制動も可能であり、 いわゆる四象限 運転 (前進力行, 後退カ行, 後退回生, 前進回生) を行うことができる。
このように、 ェンジ.ン以外の動力源は少なく とも第一 ·第三象限運転 が出来るのに対して、 エンジン (内燃機関) は第一象限の一部でしか運 転できない。
スター夕を使わずエンジンを独りでに始動させる方法は特開 2 0 0 2
- 3 9 0 3 8号公報に記載されているが、 停止エンジンの吸気弁を開い て空気を取り入れ、 気筒内に燃料を噴射して点火するもので、 混合気圧 力が 1気圧しかないので爆発力が弱く、無負荷でなければ始動できない。 また一度回り出してもアイ ドル回転数以下に回転数を下げることは出来 ない。 (実施例の課題 1 )
このため、 停車時にもエンジンは回転し続けるアイ ドリング運転が必 須であるので、 アイ ドリングを安定に保っためのアイ ドルスピ一ド制御 バルブ ( I S C ) が必要である。 (実施例の課題 2 )
またエンジンを切り離す発進クラツチや回転差を吸収する トルクコン バー夕も必要である。 (実施例の課題 3 )
昔の単純なエンジンは逆方向に始動すれば逆回転動作したが、 それは あくまで異常動作であって逆方向の動力を取り出すための運転ではなか つた。 最近のエンジンは電子制御化されており、 アイ ドリングが前提の 制御を行っているので逆転することが出来ない。 (実施例の課題 4 ) エンジントルクは中速回転域で高くなり、 高速域では低下する。 これ は中速回転域で吸気速度が共鳴するように吸気管が設計してあり、 吸気 の慣性により 1気圧以上の空気がシリンダに流入するので、 燃料量も多 くなり トルクが高くなるのである。 高速回転域では吸気が追いつかなく なってトルクが低下する。 このようにトルク特性がフラッ 卜にならない という問題があった。 (実施例の課題 5 )
圧縮比を上げて出力を増大させようとすると、 圧縮空気が高温になり 過ぎて、 点火プラグ以外のホッ トスポッ 卜で爆発するいわゆるノッキン グが生じ易くなり、 あまり圧縮比を上げられないという問題があった。 (実施例の課題 6 )
最近エンジンと電動機を組合わせたハイプリッ ドシステムが実用化さ れ、 制動時に運動エネルギを回収して燃費向上に有効であるが、 現在の ハイプリッ ドシステムでは回生エネルギを蓄積するパッテリが必要であ り、 インパータを含めると大幅なコス ト上昇を余儀なくされるという問 題があった。 (実施例の課題 7 )
以上の課題を解決するため本実施例は以下のように構成される。
本実施例になるエンジン (原動機) は実質的に爆発工程と排気工程だ けを実行し、 その結果、 作動子の 1往復、 あるいは 1回転に 1回爆発ェ 程を有する。
本発明がロータリーエンジンに適用された場合は作動子が 1回転する 間に一つの燃焼室で 2回爆発工程が到来することが特徴となる。 本実施 例では燃焼室が 2つで可動子が 3つの面を持つので作動子 1回転に対し て 6回の爆発が起こることになる。
具体的には、 気筒頂部の燃焼室に隣接して混合気室を設け、 両者の間 を隔離ピストンで隔離できるようにする。 混合気室に空気ィンジェクタ および燃料インジェクタを設け、 所定圧で所定空燃比の混合気を作成し ておく。 エンジンのピストンが上死点の手前に来たとき排気弁を閉じ、 隔離ビス トンを開いて混合気を気筒に導くと共に点火する。 爆発膨張行 程が終ったら隔離ピストンを閉じ、 再び所定圧で所定空燃比の混合気を 作成しておく。 これを繰り返すとエンジンは吸入, 圧縮行程なしに動作 する。 この具体的構成, 作動方法は実施例 6に記載する。 また口一タリ —エンジンについては、 実施例 1 3, 1 4で説明する。
さらに具体的には、 「吸気一圧縮」 行程を分離, 専業化して 「コンプ レッサ」 で高圧空気をタンクに蓄圧し、 空気インジェクタにより高圧空 気を直接シリンダに注入することで 「原動機」 部分から 「吸気一圧縮」 行程をなく し、 「爆発—排気」 に専業化して、 停止状態からいきなり爆 発できるようにしてスター夕を不要にする。
尤も、 これは停止時の気筒の一つが、 膨張工程、 つまり作動子が下死 点方向へ移動する途中の位置に停止している場合に、 この気筒に燃焼空 気を供給して燃焼爆発させることで達成できる。
もし、 気筒が一つの場合か、 あるいは複数気筒でも都合よくどの気筒 も下死点に向かう気筒がない場合はエンジンの停止時、 あるいはェンジ ンの始動に先立って作動子を下死点に向かう位置まで移動させる補助装 置を設ければスター夕なしにエンジンを始動できる。
このように構成すれば装置の休止時に原動機をアイ ドル運転しておく 必要がなくなる。 つまり、 装置 (例えば自動車や芝刈り用の原動機等) が休止状態の時、 エンジン自体も停止しておく ことができる。
自動車の場合、 アイ ドリングがなくなることで I S Cバルブが不要に なる。 また回転数ゼロから トルクを制御することで、 発進クラッチゃト ルクコンバ一夕を不要にすることができる。 原動機の停止状態からの始動時に高圧空気と燃料を噴射する気筒を選 択することで逆転始動させることができる。
また圧縮済みの空気をシリンダに直接注入するので、 高速時にも吸気 が追いつかない問題を解決し、 トルク特性をフラッ 卜にすることができ る。
さらに比較的温度の低い圧縮済み空気をシリンダに注入することで、 ノッキングの発生を抑えながら出力を向上させることができる。 .
ハイプリッ ドシステムを構成する代わりに、 空気を蓄える空気タンク の圧力および容積を大きくすることで、 空気圧として蓄積するエネルギ を増大させ、 バッテリや発電機を用いることなく、 コストの低い回生機 能を付与することができる。
本実施例では吸気負圧と言う概念がなくなり、 圧力源は高圧圧縮気体 による正圧に統一される。 従って気体圧力によってァクチユエ一夕を作 動させるときはこの圧力源からの正圧により作動させられることになる, 本実施例において、 燃焼用気体はそれ自体が可燃性のものであっても 良いし、 別途例えばガソリンのような燃料を空気に混合しておく ことも できるし、 また燃焼室内に空気と燃料とを噴射あるいは注入して燃焼室 内で混合しても良い。
着火は、点火プラグやヒータのような着火器を用いることもできるし、 圧縮着火と呼ばれる自然着火であっても良い。 また、 レーザ加熱やマイ クロウェーブによる加熱でも良い。
実施例の特徴に関連する従来技術として以下のものが知られている。 本実施例に記述されている後述の空気ィンジェクタに関しては、 特許 第 3 2 5 4 0 8 6号公報, 特開 2 0 0 2 — 3 6 4 3 6 5号公報, 特表 2 0 0 2 - 5 2 3 6 6 8号公報に記載されているが、 いずれも燃料の注 入気化を補助するもので、 エンジンの圧縮行程を省略してこの空気だけ で高圧混合気を作るものではない。
本実施例によれば以下のような作用効果が得られる。
1 )停止状態から トルクを発生して自分で回りだし、ス夕一夕が不要。
2 ) アイ ドリングがないのでアイ ドルスピード制御バルブが不要。
3 )アイ ドリングがないので発進クラッチゃトルクコンバ一夕が不要。
4 ) 停止時から高い回転数までフラッ トなトルク特性が得られる。
5 ) 正転 ·逆転自在なので後退ギアが不要。
6 ) 高地においても出力が低下しない。
7 ) エンジン自体で回生機能がある。
8 ) コンプレッサの負圧損がない。
9 ) コンプレッサ容量を小さく出来る。
1 0 ) 加速時にはコンプレッサを切り離して、 全エンジン出力を駆動 力に利用できる。
1 1 ) エアポンプなしに排気清浄制御 ·触媒活性制御ができる。
1 2 ) インタークーラ効果が得られる。
1 3 ) ノッキングの心配なしに圧縮比を上げることができる。
1 4 ) 燃料の供給を停止し、 着火制御を停止すると空気モータとして 用いることができる。
1 5 ) 四象限で運転できるので、 四象限エンジンを提供できる。
なお、 当該明細書では、 「作動子」 とは往復動型の原動機であれば、 ピ ストンとかプランジャと呼ばれるものを指す。 また口一タリー型の原動 機であれば回転ロータあるいは偏心口一夕と呼ばれるものを指す。
「燃焼室」 あるいは 「気筒」 とはエンジンのシリンダと同意で用いて いる場合がある。 「高圧燃焼流体」 とは一つは高圧空気そのものを指す場合、 当該高圧 空気に燃料を混合した高圧の混合気を指す場合もある。 当然天然ガスと か、 それに類する燃焼ガスも高圧燃焼流体として取り扱う。
以下図面に基づき本発明の実施例を詳細に説明する。
【実施例 1】
第 1図は本発明の第一の実施例を示す構成図である。 構成の違いを明 確化するために、 従来エンジンと比較して表示する。 従来の 4サイクル エンジンは第 1図 ( a ) のように、 クランクシャフト 1に接続された 4 個のコンロッ ド 2, 該コンロッ ドの先に設けられた 4個のピス トン 3, 該ピス トンを収納する 4個の気筒 4, 該各気筒の頂部に設けられた吸気 弁 5, 排気弁 6, 燃料インジェク夕 7, 点火プラグ 8より構成される。 各気筒の動作は第 1図 ( a ) に示したように、 「吸入, 圧縮—爆発ー排 気」 の 4行程からなり、 4つの気筒は 1行程ずつずれて動作する。 この ため動作を横並びに見ると、 半回転ごとにいずれかの気筒で 1回の爆発 が起こり、 半回転ごとにいずれかの気筒で 1回の圧縮が起こっている。
これらの動作のうち 「吸入, 圧縮」 佇程はエネルギを発生しない 「コ ンプレッサ」 であり、 「爆発一排気」 行程がエネルギを発生する 「原動 機」 である。 ある気筒に着目すると一回転おきに 「コンプレッサ」 と 「原 動機」 を繰り返していることになる。 すなわち原動機行程に必要な圧縮 空気を、 その前の一回転で気筒毎に自給自足している 「分散処理」 方式 であると言える。
これを集中処理方式に変えるのが本発明の構想であり、 第 1図 (b ) に構成例を示す。 4気筒エンジンのうち 2気筒を 「コンプレッサ」 専用 とし、 2気筒を 「原動機」 専用とするものである。
従来の気筒 N o . 1 と気筒 N o . 2をコンプレッサ専用の気筒として、 毎 回転ひたすら 「吸入, 圧縮」 を繰り返すので、 燃料インジェクタと点火 プラグは廃止して、 吸気弁 5の代わりに吸気側逆流防止弁 9と、 排気弁 6の代わりに排気側逆流防止弁 1 0を設けてある。 出力パイプ 1 1は空 気タンク 1 2に接続され、 気筒 N o. 1 と気筒 N o . 2で作られる高圧の空 気を集めて空気タンク 1 2に送り込む。
空気タンク 1 2に蓄えられた圧縮空気は、 吸気パイプ 1 3により原動 機側の気筒 N o . 4と気筒 N o . 3にそれぞれ設けられた空気ィンジェクタ 1 4に配られる。 原動機側の気筒 N o. 4と気筒 N o . 3にはそれぞれ排気 弁 6, 燃料インジェク夕 7 , 点火プラグ 8を設けてある。 第 2図に原動 機側気筒の動作を示す。 クランク軸 1の角度が aになったとき点火する と、 角度 bまで爆発行程, 角度 bから角度 cまで排気行程となる。 「爆 発一排気」 が終わると角度 c (例えば上死点の手前 4 0度) で排気弁を 閉じ、 角度 aまでの短期間で空気インジェクタ 1 4から高圧空気を噴射 し、 燃料インジェクタ 7から燃料を噴射する。 すなわち排気弁 6が閉じ るとすぐに、 従来エンジンにおいて圧縮行程が終了した状態と同じ状態 になり、 , 「吸入, 圧縮」 行程の 1回転を省略することが出来る。
言い換えるとこれらの気筒は毎回転 「爆発一排気」 を繰り返すので 2 サイクルエンジンとなるが、 見かけは 2サイクルでも中味は 4サイクル エンジンと変わらない。 例えば従来の 2 0 0 0 c c;、 4気筒のエンジンで は 1気筒の容積は 5 0 0 c cであり、圧縮比 = 1 0だとすると上死点付近 におけるシリンダ容積は 5 0 c cになっている。 そこで排気弁が閉じてか ら 1 0気圧の空気を 5 0 c c注入すれば、従来エンジンにおいて圧縮行程 が終わったのと同じ状態になり、 1回転で 4行程を実行したことになる。
この原動機は第 1図 (b ) に示すように、 半回転ごとにいずれかの気 筒で 1回の爆発が起こり、 半回転ごとにいずれかの気筒で 1回の圧縮が 起こる。 すなわち第 1図 ( a) に示す従来の 4気筒 4サイクルエンジン と同じ動作なので、 2気筒で従来の 4気筒と同じ出力が得られる。
第 3図に空気インジェクタ 1 4の構造例を示す。 外開きの弁 1 5とパ ランスピストン 1 6が接続されている。 バランスピストン 1 6の面積を 弁 1 5の面積より若干大きくしておくと、 コモンレール 1 7から入る空 気圧により弁 1 5が閉じる方向に推力が与えられる。 この推力とパネ 1 8の力を合わせた以上の力をプランジャ 1 9が発生すると弁が開いて 空気を噴射する。 プランジャ 1 9はコイル 2 0に電流を流すことにより 第 3図の左向きの力を発生する。 プランジャ 1 9の代わりに電気モータ とカム, ピエゾ素子, 磁歪素子, 油圧等を使っても良い。
エンジンの最高回転数を 6 0 0 Omiir1とすると、上死点の手前 3 0度 から上死点までの時間は約 l m sであるから、 このときの空気インジェ クタ 1 4の噴射時間は l m s以下とする。 回転数が低いときはゆつく り 噴射しても良い。 最小噴射時間はゼロとし、 スロッ トル開度に相当する デュ一ティ制御を行う。 すなわち注入空気量を開弁時間で制御する。 流速は従来の吸気弁 5 と同じである。 例えば 2 0 0 O cc、 4気筒の従 来エンジンでは、 6 0 0 0 mi n—1時の吸気時間は 5 m sで吸入空気量は
5 0 0 ccなので単位時間流量は 0. 1 m3/ s になる。 吸気弁 5の直径を φ 3 0、 リフ ト量を 9 mm とすると吸気断面積は 2バルブで 0. 0 0 1 7 m2であるから、 流速は 5 8.8 mZ sである。 第 1図 ( b) の方式では
6 0 0 0 miiT1時の噴射時間を 0. 5 m s とすると、 噴射量は 5 0 ccであ るから単位時間流量は同じく 0. 1 m3/ sであり、 弁 1 5の口径が吸気 弁 5の口径と同じなら流速も同じである。
しかし従来エンジンは圧力差がせいぜい 1気圧しかないのに対し、 第 1図 ( b ) の方式では空気夕ンク 1 2の圧力を 1 0気圧にしておけば、 圧力差が 9気圧なので流速は圧力差の平方根すなわち 3倍に速くなり、 1 7 6 m / s まで高められる。 そうすると空気ィンジェクタ 1 4の口径 は吸気弁 5の口径の 1ノ 3となり、 口径 Φ 2 0のもの 1本で済む。 リフ ト量を減らしたいなら口径を大きくするかツインインジェク夕とすれば よい。
燃料ィンジェクタ 7, 点火プラグ 8は従来のものと基本的には同じで ある。 ただし燃料インジェクタ 7は短時間で噴射するために流量の大き な物とする。
第 4図にエンジントルク特性を示す。 従来エンジンは回転数によって 第 4図 ( a ) のようにトルクが変化するが、 これは前述したように吸気 の慣性により吸気効率が変わるためである。 本発明の方式では高圧の空 気を注入するので高速回転時の吸気不足は起こらず、 第 4図 (b ) のよ うに回転数による トルク変動のないフラッ トなトルク特性が得られる。 また従来エンジンでは気圧の低い高地において出力が低下する現象が あつたが、 本発明の方式では常に安定した空気供給が行われるので、 高 地における出力低下がない。
【実施例 2】
第 5図は本発明の第二の実施例を示す構成図である。 例えば 2 0 0 0 c c相当のエンジンとするには容積 3 3 3 c cの気筒を 3本設ける。 3気筒 で合計 1 0 0 0 cc しかないが 2サイクルなので従来の 2 0 0 0 c c 相当 の出力となる。 クランクシャフト 1は 1 2 0度位相差とする。 このよう にすると回転が滑らかになるとともに、 停止時にどれかの気筒が上死点 を通り過ぎたところにあるから、 その気筒に空気と燃料を噴射して点火 すればトルクを発生して回り出す。 すなわち自分で起動できるのでスタ 一夕が不要であるばかりでなく、 回転数ゼロから滑らかにトルクを発生 すれば、 発進クラッチやトルクコンバ一夕も不要になる。
コンプレッサ 2 1はピストン形式である必要はなく、 スクリユー型で もスクロール型でも効率の良いものを使えばよい。 エンジンとの間にコ ンプレッサ結合歯車 2 2を挿入して最適な回転数領域で運転する。
コンプレッサ 2 1は常に全開吸気するから負圧損失が無い。 従来ェン ジンの場合、低開度では空気量を減らすためにスロッ トル弁を絞るから、 「吸入, 圧縮」 行程は能力以下でしか運転されていない。 コンプレッサ を分離すれば能力一杯で運転できるから空気タンク 1 2に余裕を持って 蓄圧できる。 逆に言うと小さなコンプレッサでもよいことになる。
コンプレッサ容量を小さくしても、 低開度走行時に能力一杯で運転す れば空気タンクに充分蓄圧できる。 このときエンジンは従来より出力を 出す必要があるが、 エンジンとしては最適燃費線に近付いてかえって効 率が向上する。高開度で加速するときはコンプレッサ能力が不足するが、 蓄積しておいた空気でまかなえる。
またコンプレッサ入力軸にコンプレッサ結合クラッチ 2 3を設けてお き、 加速時には一時的にコンプレッサを切り離して、 エンジン出力をす ベて駆動力に振り向けることもできる。 すなわちハイブリツ ド車におい てモ一夕で加速アシス卜するのと同じ効果が得られる。 コンプレッサ結 合クラッチ 2 2でコンプレッサ 2 1を切り離す代わりに、 コンプレッサ 出力パイプ 1 1に圧縮空気を大気に放出するリ リーフバルブ 2 4を設け てもよい。
さらに、 エンジンと変速機 2 5の入力軸の間にエンジン切り離しクラ ツチ 2 6を設け、 コンプレッサを変速機入力軸に接続しておけば、 制動 時にはエンジンを切り離して車体の運動エネルギによりコンプレッサ 2 1 を回し、 空気タンク 1 2に空気圧の形でエネルギを蓄積できる。 す なわちこのシステムは回生機能を持っていることになる。
なお、 このシステムを最初に始動するとき、 あるいは長期間放置して 空気タンク 1 2の圧力が低下したときは、 電動補助コンプレッサ 2 7に より空気タンク 1 2に圧縮空気を充填してから始動する。 小さな補助コ ンプレッサでも短時間で高圧空気を作れるようにするには、 空気タンク 1 2全体に充填するのではなく、 隔壁 1 2 aで仕切られた小部屋に充填 ,すればよい。
第 6図はエンジンのトルク特性を示すもので、 ( a ) は従来のェンジ ントルク特性、 (b ) は本実施例におけるエンジントルク特性である。 ( b ) は回転数 0から トルクを発生して自分で始動し、 高速までフラッ トなトルク特性を保つことが出来る。 また、 エンジントルクが負の領域 すなわち (b ' ) はコンプレッサの特性である。 空気タンク 1 2の圧力 に打ち勝つだけのオフセッ ト (― T c ) があり、 回転数に比例した負荷 トルクとなる。 第 5図のシステムにおいて変速機 2 5以外を広い意味で エンジンと見れば、 回生領域においても負荷トルクを発生して回生制動 が可能である。
本実施例においては、 第一の実施形態に比べてアイ ドル回転数以下の 領域を使えること、 および回生制動トルクを有することが大きな特徴で ある。
【実施例 3】
第 7図は本発明の第三の実施例における気筒の構成と動作を示すもの である。 第 2図と異なるのは混合気室 2 8を設けたことであり、 空気ィ ンジェクタ 1 4および燃料ィンジェクタ 7は気筒 4に直接付くのではな く混合気室 2 8に設けられている。 混合気室 2 8 と気筒 4の間には混合 気注入弁 2 9を設けてある。 第 2図の方式ではクランク角 cから aの間の例えば 0. 5 m s という 短時間に高圧空気と燃料を気筒に注入するので、 燃料インジェクタ 7は 従来に比べて大流量のものが必要である。また 0. 5 m s という短時間で は燃料が充分に気化しにくい問題があった。 本実施例では、 上死点付近 から排気弁 6が閉じるまでの間に、 空気ィンジェクタ 1 4と燃料ィンジ ェクタ 7が混合気室 2 8に高圧空気と燃料を噴射して混合気を作成して 充分気化させておく。混合気作成時間は最高回転数 6 0 0 0 lin"1におい ても 8 m s以上あるので、 燃料インジェクタ 7 として特別なものは必要 なく、 従来の製品をそのまま使うことができる。 クランク角 cで排気弁 6が閉じたら混合気注入弁 2 9を開いてクランク角 aまでの例えば 0. 5 m sで気筒 4に混合気を注入する。
エンジン全体は第 5図の構成とし、 その気筒が第 7図の構成であると すれば、 1気筒の容積は 3 3 3 ccである。 圧縮比を 1 0とすれば上死点 付近の気筒容積は 3 3 ccであるから、混合気室 2 8の容積を 3 3 cc とし ておく。 出力最大時には気筒 4に 1 0気圧 3 3 ccの混合気が入ればよい から、 混合気室 2 8にあらかじめ 1 9気圧の混合気を作っておき、 混合 気注入弁 2 9を開いて 0. 5 m s程度の短時間で圧力を平衡させる。そう すると混合気室 2 8の圧力は 1 9気圧から 1 0気圧に降下し、 気筒 4の 圧力は 1気圧から 1 0気圧に上昇して、 目標通りの混合気を注入するこ とが出来る。
1 9気圧の混合気を作るためには空気夕ンク 1 2の圧力を 1 9気圧以 上にしておいてもよいし、 吸気パイプ 1 3の途中にブースターポンプ 4 6を設けてもよい。 '
排気弁 6が閉じたときに気筒内に排気ガスが充満していると排気ガス 還流制御 (E G R) を行ったことになるが、 排気ガスには酸素が含まれ ていないので混じりあったときにも空燃比に影響を与えることはなく、 混合気の空燃比は理論空燃比としておけばよい。後述する掃気を行って、 排気弁 6が閉じたときに気筒内に新鮮空気が充満している場合には酸素 が含まれているので、 その分混合気の空燃比をあらかじめ小さく して燃 料を多く含むようにすればよい。 空燃比を正確に調整するために、 混合 気室 2 8には圧力センサ 1 0 2を設けてあり、 混合気の圧力に応じた燃 料を噴射する。 燃料の噴射量は従来と同様に燃料ィンジェクタ 7の噴射 時間により調整する。
【実施例 4】
第 8図は本発明の第四の実施例における気筒の構成を示すものである, 第 7図と異なるのは混合気室 2 8に押し込みピストン 3 1を設けたこと である。 押し込みビストン 3 1はリフタ 3 2と接続されており、 間にバ ネ 3 3があるので常時は押し込みピストン 3 1 とリフ夕 3 2は図のお方 向に寄っている。カム軸 3 4が回転するとカム 3 5がリフタ 3 2を押し、 押し込みピス トン 3 1が図の左方向に移動して混合気を気筒 4に押し込 む。 そのタイミングに合わせて混合気注入弁 2 9を開く。
混合気注入弁 2 9も同様にしてリフタ 3 6 と接続されており、 間にバ ネ 3 7があるので常時は混合気注入弁 2 9とリフタ 3 6は図の上方向に 寄っている。 カム軸 3 8が回転するとカム 3 9がリフタ 3 6を押し、 リ フタ 3 6が図の下方向に移動して混合気注入弁 2 9を開く。
本実施例の方法によれば第 7図の場合に比べて下記の点で有利である, 第 7図の方法は、 気筒 4と混合気室 2 8の圧力差を利用して混合気注 入を行う方式であり、 混合気室 2 8の圧力を平衡圧力の 2倍程度に大き くしておく必要があるため、 空気タンク 1 2の圧力を高くするか、 また はブースターポンプ 4 6を設ける必要がある。 また注入時間は平衡に達するまでの時間ということになるが、 注入が 進行するに連れ圧力差が次第に低下するので流入速度が低下し、 短時間 で注入するには混合気注入弁 2 9の口径を大きく設計する必要がある。 本方式によれば混合気室 2 8の圧力は最終的な気筒圧とほぼ等しくて よいので、 空気タンク 1 2の圧力を 2倍程度に高くする必要も、 あるい はブース夕一ポンプ 4 6を設ける必要もない。
【実施例 5】
第 9図は本発明の第五の実施例における気筒の構成を示すものである < 第 8図と異なるのは混合気注入弁 2 9を押し込みピストン 3 1 と同軸に 設けたことである。
混合気注入弁 2 9は側面が開いて混合気を気筒 4に注入する。 バネ 3 7の位置が第 8図と異なるが動作は同じであり、 常時は混合気注入弁 2 9とリフタ 3 6を図の右方向に寄せている。 カム 3 9は押し込みピス トン 3 1 と同じカム軸 3 4に付いており、 押し込みピストン 3 1が左方 向に移動する直前にカム 3 9がリフタ 3 6を左方向に押して、 混合気注 入弁 2 9を開かせる。 なお、 カム 3 9は短時間で混合気注入弁 2 9を閉 じるようなカム形状にしてある。
本実施例の方法によれば、 一つのカム軸 3 4で混合気注入弁 2 9 と押 し込みピス トン 3 1の両方を駆動できるので、 シリンダヘッ ド周りの構 成が簡単になるという効果がある。
【実施例 6】
第 1 0図は本発明の第六の実施例における気筒の構成を示すものであ る。 第 7図と異なるのは混合気室 2 8と気筒 4の間に混合気注入弁 2 9 の代りに隔離ピス トン 4 5を設けたことである。 混令気注入弁 2 9はバ ネ 3 7により引き上げられて気筒 4の内側から外側に向って押し付けら れているが、 隔離ピストン 4 5はパネ 3 7により気筒 4の内壁面近くま で押し下げられている。 このため隔離ピストン 4 5の側面で混合気室 2 8を塞いでおり、 気筒 4と混合気室 2 8を隔離するのである。 カム
3 9が回るとレバ一 4 7がリフタ 3 6を引き上げ、 この隔離ピストン
4 5はわずかに下端部が開口するようにしてある。
各動作の位置をクランク角を上死点を基準として次のように定義する t 隔離ピストン開期間 c =— 4 0 ° 〜 d = l 8 0 °
点火時期 a =— 2 0 °
排気弁開き始め時期 b = 1 3 0 °
燃料噴射混合気作成開始時期 : d = 1 8 0 °
排気弁閉じ終わり時期 c =- 4 0 °
点火時期を一 2 0 ° としたのは燃焼速度を考慮して点火進角したから であるが、 固定値ではなく— 2 0 ° から + 1 0 ° の範囲で、 ある条件下 での一例である。 このエンジンは点火の直前に混合気を一気に注入する ので、 気筒内の気流が乱れて燃焼速度が速く、 進角をあまり大きくする 必要はない。
排気弁閉じ終わり時期は点火時期より 2 0 ° 早いものとして一 4 0 ° とする。 空気 · 燃料の注入は一 4 0 ° から開始する。
一般的な容積 3 3 3 cc 圧縮率 1 0の気筒の場合、 ピス トンが上死点 (クランク角 0 ° ) にあるときの気筒容積は 3 3 ccである。 本実施形態 においてはピストン 3の頂部を気筒 4の頂部形状に合わせていわゆるス キッシュを形成し、 ピストン 3が上死点にあるときの気筒容積を 1 1 cc とする。 混合気室 2 8の容積を 2 2 cc として、 気筒容積と混合気室 2 8 の容積を合わせた容積が 3 3 ccになるようにした。 上死点における点火 前の気筒圧を 1 0気圧にするために、 隔離ピス トン 4 5が開く前の混合 気室 2 8の圧力を約 1 4 . 5気圧にしておく。 こうすると隔離ピス トン 4 5を開いて容積が 3 3 c c に拡大したときの圧力は約 1 0気圧になる。 隔離ピストン 4 5が開く前は混合気室 2 8の圧力約 1 4 . 5気圧は隔 離ビストン 4 5の側面に掛かるが、 隔離ピストン 4 5の上下面は閉じて いるので気筒 4に注入されることはない。 カム 3 9によりレバー 4 7が リフタ 3 6を引き上げ隔離ビス トン 4 5下端部が開口すると、 高圧の混 合気が気筒 4の中に注入される。 そうすると気筒 4の圧力が上昇するの で、 隔離ピストン 4 5は押し上げられ混合気は一気に気筒 4に注入され る。 すなわち隔離ピストン 4 5をちょっと引き上げてやるだけで、 混合 気の圧力差により急速に気筒 4と混合気室 2 8を連通させることが出来 る。 また混合気が気筒 4に注入された時点で点火すると、 ガス圧だけで なく爆発による膨張圧が加わって、 隔離ピストン 4 5はさらに高速で押 し上げられる。 すなわちカム 3 9はわずかな力でリフタ 3 6を引き上げ るだけで、 隔離ピストン 4 5を高速に移動させるための大きな駆動力を 与える必要はない。
隔離ピストン 4 5が上まで引き上げられて混合気室 2 8 と気筒 4がつ ながると、 混合気室 2 8は燃焼室として機能する。 膨張行程が終わり、 クランク角 b = 1 4 0 ° で排気弁 6が開く と気筒 4の圧力が 1気圧にな るから、 隔離ピストン 4 5はバネ 3 7により押し下げられるが、 まだ力 ム 3 9がレバー 4 9を押し下げているからリフタ 3 6は下端まで下がら ず、 隔離ピストン 4 5の下部は少し開いたままである。 したがってここ で空気インジェクタ 1 4から 1. 5気圧 1 . 5 c c の空気を噴射すると、 混 合気室 2 8の中から燃焼ガスが追い出されて清浄空気で満たされて、 次 の混合気を作る準備が出来る。
下死点で隔離ピストン 4 5が閉じると混合気室 2 8の空気圧が上がる と共に、燃料インジェクタ 7から燃料が噴射されて混合気が作成される。 空気圧は圧力センサ 1 0 2で検出しながら調整され、 燃料量に見合った 空気圧になるまで噴射される。 下死点からクランク角— 4 0 ° までは、 従来エンジンで燃料を噴射して気化させる時間と同じで、 最高エンジン 回転数 6 0 0 O miiT1の時でさえ 3 . 8 m s掛かるので充分気化できる。
クランク角 c =— 4 0 ° で排気弁 6が閉じる。 コンロッ ドの長さをク ランク軸半径の三倍程度とすると、 上死点における気筒容積は 1 l cc、 下死点における容積は 3 3 3 cc であるからクランク角— 4 0 ° におけ る気筒容積は 2 6 ccである。排気弁を閉じたときに 1気圧 2 6 ccの排気 ガスが残っているので、 圧力 1 0気圧に上がった時の排気ガス量は 2. 6 ccになり、 気筒容積 3 3 ccに対して 8 %の排気還流 ( E G R) をしたこ とになる。
第 7図, 第 8図, 第 9図の方法では混合気注入弁 2 9が 0 . 5 m s程度 の短時間で開閉する必要があつたが、 本実施形態の方法では隔離ビスト ン 4 5をクランク角— 4 0〜 1 8 0 ° の間開いておけば良いので、 高速 に駆動するためにァクチユエ一夕出力を大きくする必要がない。
【実施例 7】
第 1 1図は本発明の第七の実施例における気筒の構成を示すものであ る。 これまで図示していなかった、 排気弁 6を開閉するためのカム軸 4 0 とカム 4 1を示してある。 カム軸 4 0は図示しないタイミングチェ —ンによりクランク軸 1 と接続されており、 クランク軸 1の角度に合わ せて排気弁 6を開閉する。 カム軸 4 0はクランク軸 1の半分の速度で回 るものとすれば、 カム 4 1は 1 8 0 ° ごとに排気弁 6を開閉するような 形状にしてある。 第 2図および第 7図に示したクランク角 bおよび cは 正転時の排気弁開閉角である。 本実施例においては逆回転にも対応できる機構を示す。 第 1 1図 ( a) においてクランク角 b ' および c ' は逆転時の排気弁開閉角である。 そ れぞれ上下死点に対してクランク角 bおよび c と対称的な位置に設定し てある。すなわち正転時クランク角 bにおいて排気弁 6が開き始めるが、 この時のカム 4 1の角度は逆転時においては閉じ終わる角度であるので. 逆転時クランク角 c ' に相当する。 したがって正転時と逆転時はカム軸 4 0とカム軸 4 1の関係は、 クランク角にして b— c ' だけずれている ことになる。
逆転時にクランク角 b ' で排気弁 6を開き、 クランク角 c ' で排気弁 .6を閉じる機構を第 1 1図 (b) に示す。 図示しないタイミングチェ一 ンを巻きつけるスプロケッ ト 4 2はカム軸 4 0上に回転自在に取り付け られている。 スプロケッ ト 4 2に設けたキ一溝 4 3にキー 44が嵌めこ まれており、 キ一 44はカム軸 4 0に固定されているので、 スプロケッ ト 4 2はカム軸 4 0に対して (b— c ' ) Z 2の角度だけ遊びを有して 結合することになる。 カム軸 4 0はクランク軸 1の半分の速度で回るの で、 実際のクランク角にして b— c ' だけずれていることになり、 逆転 時にはクランク角 b ' で排気弁 6を開き、 クランク角 で排気弁 6を 閉じる。 図示しない逆転ァクチユエ一夕を設け、 正転時はキー 44がキ —溝 4 3の左端に、逆転時は右端に当たるように強制的に押し付ければ、 正転逆転の切換えをより確実にすることができる。
一方隔離ピス トン 4 5の作動範囲は、 正転時は cから dであり逆転時 はじ ' から dであるから、 カム 3 9を回すスプロケッ トはカム軸に対し て (d— c ' ) / 2の角度だけ遊びを有して結合させることになる。 し たがつてカム 3 9を回すスプロケッ トには ( d— c ' ) / 2の幅のキ一 溝をつければよい。 第 1 2図 ( a ) は本実施例におけるエンジンのトルク特性である。 第 6図の特性に比べてさらに逆転時のカ行および回生すなわち第二 · 第三 象限の動作が加わり、 四象限運転が可能になる。 破線で示したのが従来 のエンジントルク特性である。 比較のため電動機のトルク特性を第 1 2 図 (b ) に示す。 電動機の塲合回生領域の特性もカ行領域と同じになる が、 エンジンの場合回生領域は前述のようにコンプレッサ特性であるの で、 カ行領域と特性が異なる。 しかし制御を工夫すれば実用的には充分 活用できる特性である。
【実施例 8】
第 1 3図は本発明の第八の実施例を示すシステム構成図である。 第 5 図と異なるのはエンジン切り離し用クラッチ 2 6を廃止して排気弁開放 機構 4 8を設けたことである。 なお吸気側は第 1 0図の方式としたが、 第 7図の混合気室方式あるいは第 8図, 第 9図の押し込みピストン方式 としてもよい。 その場合混合気注入弁は第 8図, 第 9図においてはカム 軸 3 8または 3 4で駆動したが、 第 3図の空気インジェクタで用いたプ ランジャを利用してもよく、 これらを含めて混合気注入弁あるいは隔離 ピストン駆動部 4 9 として表示した。
第 1 4図は第 1 3図のシステムにおける排気弁開放機構 4 8の構造を 示すもので、 排気弁用カム 4 1に隣接して排気弁開放レバ一 5 0を設け た。 これは排気弁用カム軸 4 0に回転自在に取り付けられ、 排気弁開放 ァクチユエ一夕 5 1を動作させることで排気弁 6を開放状態にする。 排 気弁開放ァクチユエ一夕 5 1は空気タンク 1 2の高圧空気を使った空気 ピストンが便利であろうが、 電気式のソレノィ ドあるいは電動機でもよ い。
本実施例の方法によれば回生時には空気も燃料も噴射せず、 隔離ビス トン 4 5 も開かず、 排気弁開放レバ一 5 0だけを動作させて気筒圧を 1 気圧に保つのでピストン 3が動いてもボンピンダロスがなくなり、 回生 時にエンジンを切り離す必要がなくなるのでクラッチ 2 6を廃止して機 構が簡単で安価になるという効果がある。
【実施例 9】
第 1 5図は本発明の第九の実施例である掃気制御の動作説明図である, 第 1 0図の隔離ピストン付きのエンジンを基にした例を示してあるが、 第 7図の混合気室方式、 さらに第 8図, 第 9図の押し込みピストン付き エンジンを基にしても良いし、 第 1 1図の逆転機能付きエンジンを基に しても良い。
容積 3 3 3 c c、 圧縮率 1 0の気筒の場合、 前述のように排気弁 6が閉 じるクランク角 c =一 4 0 ° における気筒容積は 2 6 c cであるから、 こ のまま混合気を注入して運転すれば 8 %の排気還流 (E G R ) を行った ことになる。 排気還流したくない場合は掃気制御を行うことにする。 そ のために第二空気インジェク夕 5 2を設けた。
排気弁が閉じる前、 第 1 5図の場合はクランク角 e =— 8 0 ° から第 二空気インジェクタ 5 2の噴射を開始する。 排気弁 6が閉じるクランク 角 c =一 4 0 ° までの間に、 矢印で示すように排気弁 6 と反対側の気筒 内壁に向かって新鮮空気を噴射する。 そうすると排気ガスが先に押し出 されて、 排気弁 6が閉じたときに残っている 2 6 c cはほとんどが空気と なっている。 空気タンク 1 2の圧力が 1 5気圧だとすると、 第二空気ィ ンジェクタ 5 2が 1 . 7 c c以上噴射すれば、 1気圧 2 6 c c以上の空気が 注入されたことになり、.排気ガスを完全に一掃することが出来る。
さらに噴射量を増やして、 排気清浄化のために排気管に新鮮空気を強 制注入することもできる。 すなわち排気管に二次空気を注入するいわゆ るエアインジェクション方式がエアポンプなしで実現できる。 これによ り暧機運転時の触媒活性も空気インジェクタの噴射量で制御できる。 また排気弁が閉じるまでは気筒 4の圧力はほぼ 1気圧であり、 噴射し たときに断熱膨張でシリンダが冷却されるから、 インタ一クーラを付け たのと同じ効果も得られる。
【実施例 1 0】
本発明の第十の実施例を第 1 6図に示す。 構成は第 1 0図とほとんど 同じであるが、 クランク軸 1の半径を大きく し、 気筒 4を長く してビス トン 3のス トロークを大きく して圧縮比を高めてある。 隔離ビストン 4 5を用いる第 1 0図の方式としたが、 混合気室 2 8 を用いる第 7図、 押し込みピストンを用いた第 8図あるいは第 9図の方式、 逆転可能な第 1 1図の方式、 さらに掃気可能な第 1 5図の方式としてもよい。 点火進 角を 2 0 ° として排気弁 6の閉じ角を c =一 4 0 ° とした。 '
従来の 1 0 0 0 c cエンジンで圧縮比を 1 5にした場合は、 下死点に置 ける気筒容量が 3 3 3 c cなので上死点における気筒容積は 2 2 c cで、点 火直前には 1 5気圧の混合気が詰まっていることになる。 本実施例の場 合、 上死点において気筒と混合気室を合わせた容積に 1 5気圧の混合気 を注入すれば、 従来エンジンで圧縮比を 1 5にした場合と同じ状態にな る。
前述のように上死点における気筒容積は 1 1 c c としたから、 混合気室 2 8の容積を 1 1 c c とし 3 0気圧の混合気を作成する。排気弁 6が閉じ てから隔離ピストン 4 5を開き混合気を気筒 4に注入すると、 容積が倍 になって圧力は約 1 5気圧となる。 気筒内の圧力は当初は 1気圧である から、 注入された高圧の混合気は断熱膨張して温度が下がる。
その前に、 混合気作成時は空気ィンジェ,クタ 1 4により空気タンク 1 2からの高圧空気を混合気室 2 8に吹き込みながら燃料を噴射するの であるが、 3 0気圧以上の高圧空気を 1気圧の混合気室 2 8に吹き込む ので、 混合気室 2 8の温度は空気タンク 1 2の温度より下がる。
したがって空気タンク 1 2の温度より下がった混合気を、 気筒 4に注 入するとさらに温度が下がることになる。 すなわち従来のエンジンでは 圧縮比を上げると断熱圧縮のため、 圧縮行程の終わりで気筒内温度が非 常に高くなつてノッキングが生じ易いが、 この方式では逆に空気タンク の温度より下がるのでノッキングが起こりにくい。
また前述したように点火直前に混合気を短時間で注入するので、 ガス 流の乱れが大きく燃焼時間が短いこともノッキングを生じにく くする。
なお、 気筒 4から高温の熱が伝わってくると混合気室 2 8の温度が上 昇し、 気筒側から見ると冷却損が発生するので、 気筒 4と混合気室 2 8 は適度に断熱してものとする。
[実施例 1 1】
本発明の第十一の実施例を第 1 7図に示す。 これはこれまで述べてき たシステムを制御する制御系のブロック図である。 各ブロックの入力信 号は主な信号だけを記載してあり、 細かい補正計算に用いる信号は省略 してある。
モード判別部 2 0 1はクランク角の絶対位置信号と、 図示しないセレ ク トレバ一からの後退信号に基づく正逆転信号を入力し、 3つの気筒が それぞれどのモードにあるか判別し、各制御プロックに判別信号を送る。 回転方向制御部 2 0 2は正逆転信号に基づき逆転ァクチユエ一夕を動作 させる。
混合気作成から排気まで順を追って説明する。 下死点 (こおいて隔離ピ ス トン 4 5が閉じたところから混合気作成が始まる。 混合気作成制御部 2 0 3において算出された燃料噴射量に応じて、 燃料ィンジェクタ開弁 制御部 2 0 4は燃料ィンジェクタ 7の通電時間を制御する。 一方混合気 作成制御部 2 0 3において算出された空気噴射量指令に基づき、 空気ィ ンジェクタ開弁制御部 2 0 5は空気インジェクタ 1 4の開弁制御を行う c こうして所定の空燃比で所定の圧力の混合気が作成される。
クランク角 c (— 4 0 ° ) で排気弁 6が閉じると隔離ピストン 4 5が 開き、 混合気が気筒に注入される。 点火時期制御部 2 0 6で算出された 最適な点火時期に基づいて、 点火制御部 2 0 7は指令されたクランク角 例えば a (— 2 0 ° ) で点火プラグ 8をスパークさせる。
爆発して膨張行程になり、 クランク角 b ( 1 4 0 ° ) で排気弁 6が開 くと、 混合気室掃気制御部 2 0 8はエンジン回転数に応じた空気ィンジ ェクタ開度を算出して、 これに応じて空気ィンジェクタ開弁制御部 2 0 5 は空気ィンジェクタ 1 4の開弁制御を行う。
気筒掃気を行う場合は、 気筒掃気制御部 2 0 9で算出された空気イン ジェクタ開度指令に基づき、 第二空気インジェクタ開弁制御部 2 1 ◦が 第二空気ィンジェクタ 5 2の開弁制御を行う。
気筒掃気を行う場合は、 気筒掃気制御部 2 0 9で算出された空気イン ジェクタ開度指令に基づき、 第二空気インジェクタ開弁制御部 2 1 0が 第二空気ィンジェクタ 5 2の開弁制御を行う。
以上の制御は各気筒ごとに必要なので、 それぞれ三組の制御プロック で位相角 1 2 0 ° ずつずれて行われる。
なお回生時は、フル回生判定部 2 1 1からフル回生信号が出されると、 気筒開放制御部 2 1 2は排気弁開放ァクチユエ一夕 5 1 を作動させる。 これは全気筒いっせいに行うので、 一つのァクチユエ一夕で三気筒全部 の排気弁を開放する。 第 1 8図は上記モード判別制御部 2 0 1 の内容をもう少し詳しく示す 論理図である。 入力端子 1よりクランク角が、 入力端子 2より正転 Z逆 転信号が入力する。 正転時はクランク角はそのままスィッチを通り、 逆 転時は 3 6 0 ° から引いた値がスィツチ出力に現れる。 このスィツチ出 力を 「見なしクランク角」 と定義し、 見なしクランク角に基づいて制御 すれば、 正転時でも逆転時でも同じロジックで制御が出来る。
第一気筒のモード判定について説明する。見なしクランク角が 1 4 0 ° 以上 3 2 0 ° 未満の場合に、 空気インジェクタ 1 4の噴射許可信号が出 力端子 1から出力される。 見なしクランク角が 1 8 0 ° 以上 3 2 0 ° 未 満の場合に、 燃料インジェクタ 7の噴射許可信号が出力端子 2から出力 される。 見なしクランク角が 2 8 0 ° 以上 3 2 0 ° 未満の場合に、 第二 空気インジェク夕 5 2の噴射許可信号が出力端子 3から出力される。 見 なしクランク角が 3 3 0 ° 以上 1 0 ° 未満の場合に、 点火プラグ 8の点 火許可信号が出力端子 4から出力される。
見なしクランク角に 1 2 0 ° を加えた値を用いて同様に計算すると、 第二気筒の各許可信号を求めることが出来る。 また見なしクランク角に 2 4 0 ° を加えた値を用いて、第三気筒の各許可信号を算出する。なお、 見なしクランク角に 1 2 0 ° を加えた値を第 1 6図の N o. 2気筒制御部 に送れば、 N o. 1気筒制御部とまったく同じロジックで制御が出来る。 同様にして見なしクランク角に 2 4 0 ° を加えた値を第 1 6図の N o. 3 気筒制御部に送る。
第 1 9図は第 1 7図の混合気作成制御部 2 0 3をもう少し詳しく示す 論理図である。 アクセルペダル踏み角に応じたトルク指令信号とェンジ ン回転数をエンジントルク算出部 2 1 3に与えるとエンジントルク指令 値が算出される。 燃料噴射量算出部 2 1 4では、 このエンジントルクを 発生するのに必要な燃料量を計算して燃料噴射量指令を出力する。
必要空気量計算部 2 1 5では、 要求された空燃比に基づいて、 燃料噴 射量を完全燃焼させるのに必要な空気量を計算する。 空気圧変換部 2 1 6 では、 算出された空気量を混合気室 2 8の容積まで圧縮した場合の圧力 に換算して、 混合気室圧力指令を出力する。 その場合高圧空気の温度は 大きく影響するので実測地を入力しておく。
実際に検出された圧力センサ検出値との差を求'め、 制御補償して空気 噴射量指令値を出力する。 すなわち圧力センサ検出値が混合気室圧力指 令に等しくなるようにフィードバック制御を行うものである。
第 2 0図は第 1 7図の燃料インジェクタ開弁制御部 2 0 4をもう少し 詳しく示す論理図である。 混合気作成制御部. 2 0 3から来た燃料噴射量 指令に基づき、 開弁タイミング計算部 2 1 8は燃料インジェクタの駆動 開始/終了すべきクランク角を算出する。 条件一致判定部 2 1 9は、 こ の開始 Z終了信号とモード判別部 2 0 1から来た見なしクランク角およ び燃料噴射許可信号とを比較し、 すべての条件が整う期間燃料ィンジェ クタ駆動信号を出力する。
第 2 1図は第 1 7図の空気ィンジェクタ開弁制御部 2 0 5をもう少し 詳しく示す論理図である。 混合気作成制御部 2 0 3から来た空気噴射量 指令に基づき、 開弁タイミング計算部 2 2 0は空気インジェクタの駆動 開始 Z終了すべきクランク角を算出する。 条件一致判定部 2 2 1は、 こ の開始 終了信号とモード判別部 2 0 1から来た見なしクランク角およ び空気噴射許可信号とを比較し、 すべての条件が整う期間空気ィンジェ クタ駆動信号を出力する。
[実施例 1 2】
本発明の第十二の実施例を第 2 2図に示す。 第 1 0図, 第 1 5図, 第 1 6図と異なるのは、 圧力センサ 1 0 2を廃止し、 代わりに吸気パイプ 1 3の途中にエア一フローメータ 1 0 3を設けたことである。 このェン ジンを制御するロジックは、 圧力センサ検出信号入力以外は第 1 7図と 同じでよい。 ただし混合気作成制御部 2 0 3の内容は第 2 3図に示す口 ジック構成となり、 第 1 9図と異なるのは空気圧換算部 2 1 6の代わり に高圧空気量換算部 2 2 2を用いたことである。 必要空気量計算部 2 1 5 で算出された必要空気量を、 高圧空気量換算部 2 1 8において高圧の空 気量に換算する。 このとき高圧空気の温度が重要であることは変わりな い。 算出された高圧空気噴射量指令値とエアーフローメータ検出信号と の偏差を制御補償して空気噴射量指令を出力する。 すなわちエア一フロ —メータ検出値が高圧空気噴射量指令値に等しくなるようにフィードバ ック制御を行うものである。
本実施例の方法によれば混合気室 2 8に流入する空気量を直接計測す るので、 第 1 0図, 第 1 5図, 第 1 6図で述べた圧力センサの方式に比 ベてより精度良く混合気の空燃比を制御することが出来る。
また例え混合気室に排気ガスが残っていたとしても、 燃料量に見合つ ただけの空気量を正確に混合することが出来るので、 例えば実施例 6で 述べた混合気室掃気制御は必要なくなり、 制御がより簡単になる。 その 場合混合気室にあった 1気圧の燃焼ガスに上乗せして空気が噴射される から混合気室の圧力はその分高くなる。
【実施例 1 3】
本発明の第十三の実施例を第 2 4図に示す。 これまでの実施例は往復 動ピストンエンジンについて述べたが、 本実施例はロータリ一エンジン に適用した場合を示す。 ロータリ一エンジン 5 3はステーショナルギア 5 4の回りを口一夕 5 5が回る。 従来の口一夕リ一エンジンは上半分の 作動室に吸気口、 下半分の作動室に排気口があるが、 本実施例では吸気 圧縮行程がないので、 上半分の作動室が往復動ピストンエンジンの第一 気筒、 下半分の作動室が往復動ピストンエンジンの第二気筒に相当し、 それぞれに給気口 5 6 と排気口 5 7を設ける。
動作を第 2 5図に示す。 第 2 5図 ( a) の状態が第一気筒の下死点に 当たる。 ロータ 5 5の A面は排気行程にある。 B面にとっては排気が行 われると同時に上側作動室に接続する混合気室 2 8では空気インジェク タ 1 4と燃料インジェクタ 7が噴射して混合気を作成する作業が状態 ( c ) まで続く。 状態 ( d) で上側作動室の隔離ピストン 4 5が開いて B面に対する混合気注入を行い点火する。 状態 ( e ) 〜 ( g ) が上側作 動室における B面の爆発膨張行程である。 状態 (h) で上側作動室の排 気口 5 7が開き、 上側作動室の隔離ピストン 4 5はまだ開いたままなの で、 上側作動室の空気ィンジェクタ 1 4が噴射して排気ガスを上側作動 室の混合気室 2 8内から追い出す掃気行程となる。 このあと B面は第 2 5図 (a) の A面と同じ状態になって排気行程を続ける。 一方、 下側 作動室では状態 ( a) から状態 (c ) の間 C面が爆発膨張行程にあり、 状態 ( d) で排気ガスを下側作動室の混合気室 2 8内から追い出す掃気 行程となる。 状態 ( e ) 〜 (h) は C面の排気行程であるが、 この間下 側作動室の隔離ビストン 4 5が閉じて次の燃焼を行う A面に対する混合 気作成が行われる。
第 2 5図は口一夕 5 5の 1ノ 3回転の動作を示したものであり、 同様 の繰り返しで表示すると 2 4の図で表されるが、次の図は B面を A面に、 C面を B面に、 A面を C面に読み替えると第 2 5図 ( a) と同じ図とな るので、 以後の説明図は省略した。
第 2 5図から分かるように上側作動室と下側作動室は時期がずれて動 作しており、 ロータ 5 5が 1 / 3回転する間に 2回の爆発がある。 従来 の口一タリーエンジンでは口一夕 1回転で 3回の爆発があるが、 このェ ンジンではロー夕 1回転で 6回爆発することになり、 同じ作動室容積な ら 2倍の出力が得られることになる。
口一夕リーエンジンに適用した場合、 口一夕先端のアベックスシール が排気口を通過することによりひとりでに開口するので、 排気弁が必要 なく構造が簡単で安価になるという効果がある。
【実施例 1 4】
第 2 6図は本発明の第十四の実施例を示すもので、 エンジンの上下に 関して対称的な構造とし、 給気口 5 6を上下作動室の境目に設けたもの である。 排気口 5 7の他に逆転用排気口 5 7 aを上下作動室に追加して 設け、 各排気口に排気弁を設けて使う排気口を切り替える方式とした。 逆転用排気口 5 7 aの排気弁を閉じて排気口 5 7の排気弁を開いた状態 とすれば正転、 逆に排気口 5 7の排気弁を閉じて逆転用排気口 5 7 aの 排気弁を開いた状態とすれば逆転方向に運転できる。
以下上記実施例の実施態様の特徴を整理すると以下の通りである。 実施態様 1
圧縮空気と燃料を気筒に注入して爆発排気させ、 圧縮行程を持たない エンジン。
実施態様 2
排気弁および吸気側の弁の動作位相を所定位相だけずらし、 逆転する 気筒に燃料と圧縮空気を供給して爆発'排気させ、逆転可能なエンジン。 実施態様 3
制動時にコンプレッサを動作させて、 車体の持つ運動エネルギを空気 圧の形で回生蓄積できるエンジン。 実施態様 4
停止時に膨張行程にある気筒に圧縮空気と燃料を注入して爆発排気さ せ、 自起動できるエンジン。
実施態様 5
低回転においても安定した燃焼が得られる圧縮空気と燃料を、 気筒に 注入して爆発排気させ、 従来のアイ ドル回転以下の領域で必要なトルク を発生できるエンジン。
実施態様 6
高回転においても安定した燃焼が得られる圧縮空気と燃料を、 気筒に 注入して爆発排気させ、 回転数に依存しない安定なトルクを発生できる エンジン。
実施態様 7
高地においても安定した燃焼が得られる圧縮空気と燃料を、 気筒に注 入して爆発排気させ、 必要なトルクを発生できるエンジン。
実施態様 8
コンプレッサを切り離し可能にして、 要求出力が大きいときはコンプ レッサ負荷を駆動力に振り向けることに出来るエンジン。
実施態様 9
排気浄化のため、 二次空気ポンプを用いることなく排気管に新鮮空気 を注入できるエンジン。
実施態様 1 0
圧縮比を高く設計してもノッキングの心配ないエンジン。
実施態様 1 1
圧縮空気と燃料を混合した混合気を注入して爆発させる、 圧縮行程を 持たないロータリーエンジン。 実施態様 1 2
上下作動室にそれぞれ給気口, 排気口を設けたロータリーエンジン。 実施態様 1 3
上下作動室にそれぞれ給気口, 排気口および逆転用排気口を設けた口 一タリーエンジン。 産業上の利用可能性
本発明は、自動車や船舶あるいは芝刈り機等々に使用される原動機(可 燃性気体を爆発, 燃焼させ、出力を発生する)に使用することができる。 燃料を混合しないで、 且つ燃焼を伴わない場合は、 空気圧ァクチユエ 一夕として利用できる。

Claims

請 求 の 範 囲
1 . 燃焼室と、
燃焼室に作動的に関係付けられた作動子と、
燃焼室を排気通路と連通したり、 遮断したりする排気弁と、
前記作動子が排気工程の上死点前における特定の位置に到達したとき 高圧燃焼流体を前記燃焼室に供給する燃焼流体供給装置とを備え、 前記燃焼室に供給された燃焼流体を爆発, 燃焼させて前記作動子を動 作させることを特徴とする原動機。
2 . 請求項 1において、 前記燃焼流体供給装置が前記燃焼室の外で圧縮 空気と燃料とを混合して燃焼流体を準備するものであることを特徴とす る原動機。
3 . 請求項 1において、 前記燃焼流体供給装置が圧縮空気を燃焼室に供 給する部分と燃料を前記燃焼室に供給する部分とから構成されているこ とを特徴とする原動機。
4 . 請求項 1において、 当該原動機の停止期間の特定時期に前記作動子 を上死点後の特定のスタート位置に移動させる作動子移動装置を備えた ことを特徴とする原動機。
5 . 請求項 1において、 前記燃焼室を複数個設け、 各々の燃焼室の作動 子が特定の夕イミングだけずれて上死点位置を通過するよう構成し、 始 動時には前記作動子が前記上死点後に位置する燃焼室に前記燃焼流体を 供給して爆発燃焼させ、 始動後は各燃焼室とも上死点前の特定位置で前 記燃焼流体を供給し、 その後の特定のタイミングで前記混合気を爆発燃 焼させることを特徴とする原動機。
6 . 燃焼室内で動作するピストンが排気工程の上死点前で特定の位置に 差し掛かるとき、 高圧空気と燃料とから成る混合気を前記燃焼室に供給 し、 その後の特定位置で当該混合気を爆発燃焼させて前記ビストンを特 定の方向に動作させる原動機。
7 . 請求項 6に記載のものにおいて、 前記燃焼室が 3気筒若しくはその 倍数だけ設けられており、 前記ビス トンの位置が各燃焼室で 1 2 0度ず つずれて配置されていることを特徴とする原動機。
8 . 請求項 6に記載のものにおいて、 機関の始動時には前記気筒の内、 上死点後の特定位置に停止している気筒に前記混合気を供給し、 その後 の特定時期に当該混合気を爆発燃焼させて機関を始動させ、 機関始動後 は各気筒の上死点前の特定の位置において前記混合気を各燃焼室に供給 し、 その後の特定時期に当該混合気を爆発燃焼させることを特徴とする 原動機。
9 . 請求項 1に記載のものにおいて、 正転時に上死点前であった気筒に 前記燃焼流体を供給し、 正転時と逆転時で排気タイミングと、 前記燃焼 流体供給タイミングを切換えることを特徴とする原動機。
1 0 . 圧縮空気と燃料を燃焼室に供給して爆発排気させ、 燃焼室に関連 付けて設けられた作動子を駆動して往復運動又は回転運動出力を得る原 動機において、
前記原動機の惰性運転時に当該原動機の作動子に連結されるコンプレ ッサを備え、 当該コンプレッサによって前記圧縮空気を得るように構成 した原動機。
1 1 ., 請求項 1 0において、 前記コンプレッサは前記原動機の作動子に 連結された別の作動子と、 当該別の作動子と関連付けられた圧縮室とを 有する原動機。
1 2 . 請求項 1 0に記載のものにおいて、 前記圧縮空気を貯留するタン クを備えた原動機。
1 3 . 圧縮空気と燃料を燃焼室に供給して爆発排気させ、 燃焼室に関連 付けて設けられた作動子を駆動して往復運動出力又は回転運動出力を得 る原動機において、
前記燃焼室に隣接して設けられた高圧流体作動室と、
当該高圧作動流体室にあって、 前記燃焼室と混合気室とを連通遮断す る開閉部材と、
当該開閉部材を前記作動子の位置に応じて開閉する開閉機構とを 備えた原動機。
1 4 . 請求項 1 3において、 前記開閉機構が前記作動子の動きに関連し て動作するカムにより構成され、
前記開閉部材が前記カムで駆動される内開きの流体供給弁である 原動機。
1 5 . 請求項 1 3において、 前記開閉機構が前記作動子の動きに関連し て動作するカムにより構成され、
前記開閉部材が前記カムで駆動される内開きの流体供給弁で構成され. さらに、 前記高圧作動流体室には前記作動子の動きに関連して動作す る別のカム機構で駆動されるピストンが設けられており 、 前記高圧作動 流体室の高圧作動流体が当該ピストンにより、 前記流体供給弁の開弁タ ィミングに同期して前記燃焼室に押し出す原動機。
1 6 . 請求項 1 3において、 前記開閉部材が前記高圧作動流体室に供給 される前記高圧作動流体によって開位置に付勢されると共に、 ばねによ つて閉位置に付勢されるピストンから構成されており、
前記開閉機構が前記ビストンを始動初期に開位置に付勢するパイ口ッ ト機構として動作するカムを備えている
原動機。
1 7 . 圧縮空気と燃料を燃焼室に供給して爆発燃焼させて燃焼室に関連 付けて設けられた作動子を上死点位置から下死点位置に駆動して往復運 動出力又は回転運動出力を得ると共に、
前記可動子が下死点位置から上死点位置に向けて移動するタイミング に同期して開く排気弁を備えた原動機において、 .
特定の運転状態において、 前記排気弁を開いた状態で前記高圧作動流 体を前記燃焼室に供給する
ことを特徴とする原動機。
1 8 . 圧縮空気と燃料を燃焼室に供給して爆発燃焼させて燃焼室に関連 付けて設けられた作動子を上死点位置から下死点位置に駆動して往復運 動出力又は回転運動出力を得る原動機において、
前記燃焼室に供給される圧縮空気の圧力を調整するか若しくは、 前記 燃焼室に供給される前記圧縮空気の供給タイミングを調整して圧縮比を 制御する原動機。
1 9 . 空気と燃料を燃焼室に供給して爆発燃焼させて燃焼室に関連付け て設けられた作動子を回転駆動して出力を得るロータリ一エンジンにお いて、
前記作動子が 1回転する間に一つの燃焼室で 2 回爆発工程が到来する よう構成した口一タリーエンジン。
2 0 . 空気と燃料を燃焼室に供給して爆発燃焼させて燃焼室に関連付け て設けられた作動子を回転駆動して出力を得るロータリーエンジンにお いて、
前記作動子の回転方向を切換える切換え機構を設けたことを特徴とす るたロータリーエンジン。
PCT/JP2003/014017 2003-10-31 2003-10-31 原動機 WO2005042942A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005510144A JPWO2005042942A1 (ja) 2003-10-31 2003-10-31 原動機
PCT/JP2003/014017 WO2005042942A1 (ja) 2003-10-31 2003-10-31 原動機
AU2003304524A AU2003304524A1 (en) 2003-10-31 2003-10-31 Prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014017 WO2005042942A1 (ja) 2003-10-31 2003-10-31 原動機

Publications (1)

Publication Number Publication Date
WO2005042942A1 true WO2005042942A1 (ja) 2005-05-12

Family

ID=34532061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014017 WO2005042942A1 (ja) 2003-10-31 2003-10-31 原動機

Country Status (3)

Country Link
JP (1) JPWO2005042942A1 (ja)
AU (1) AU2003304524A1 (ja)
WO (1) WO2005042942A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085218A (ja) * 2007-09-29 2009-04-23 Dr Ing Hcf Porsche Ag 直接噴射式内燃機関を始動する方法および装置、ならびに自動車
JP2010523883A (ja) * 2007-04-05 2010-07-15 レイセオン・サルコス・エルエルシー 迅速点火迅速応答動力変換システム
JP2011506833A (ja) * 2007-12-21 2011-03-03 メタ モトーレン− ウント エネルギー−テクニック ゲーエムベーハー 内燃機関の運転方法、及び内燃機関
JP2012514159A (ja) * 2008-12-30 2012-06-21 劉,邦健 圧縮行程のない独立したガス供給系を有する内燃機関
JP2013502534A (ja) * 2010-03-15 2013-01-24 スクデリ グループ リミテッド ライアビリティ カンパニー 負荷制御用のクロスオーバー膨張バルブを有する分割サイクルエンジン
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
KR20160149575A (ko) * 2015-06-18 2016-12-28 현대중공업 주식회사 노킹 제어 시스템이 구비된 엔진 및 엔진의 노킹 제어 방법
US11773765B2 (en) 2014-12-29 2023-10-03 Douglas David Bunjes Internal combustion engine, combustion systems, and related methods and control methods and systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723091B2 (ja) * 1975-08-21 1982-05-17
JPS5960034A (ja) * 1982-09-30 1984-04-05 Nec Home Electronics Ltd 内燃機関
US4715326A (en) * 1986-09-08 1987-12-29 Southwest Research Institute Multicylinder catalytic engine
JPH04209933A (ja) * 1990-09-04 1992-07-31 Jinichi Nishiwaki ピストン型エンジン
JPH10246116A (ja) * 1997-02-28 1998-09-14 Shigeru Kawakami 圧縮行程をシリンダー外で行う2サイクルエンジン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723091B2 (ja) * 1975-08-21 1982-05-17
JPS5960034A (ja) * 1982-09-30 1984-04-05 Nec Home Electronics Ltd 内燃機関
US4715326A (en) * 1986-09-08 1987-12-29 Southwest Research Institute Multicylinder catalytic engine
JPH04209933A (ja) * 1990-09-04 1992-07-31 Jinichi Nishiwaki ピストン型エンジン
JPH10246116A (ja) * 1997-02-28 1998-09-14 Shigeru Kawakami 圧縮行程をシリンダー外で行う2サイクルエンジン

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523883A (ja) * 2007-04-05 2010-07-15 レイセオン・サルコス・エルエルシー 迅速点火迅速応答動力変換システム
JP2009085218A (ja) * 2007-09-29 2009-04-23 Dr Ing Hcf Porsche Ag 直接噴射式内燃機関を始動する方法および装置、ならびに自動車
US8347840B2 (en) 2007-09-29 2013-01-08 Dr. Ing. H.C.F. Porsche Aktiengesellschaft Process and system for starting a direct-injecting internal-combustion engine as well as motor vehicle
JP2011506833A (ja) * 2007-12-21 2011-03-03 メタ モトーレン− ウント エネルギー−テクニック ゲーエムベーハー 内燃機関の運転方法、及び内燃機関
JP2012514159A (ja) * 2008-12-30 2012-06-21 劉,邦健 圧縮行程のない独立したガス供給系を有する内燃機関
JP2013502534A (ja) * 2010-03-15 2013-01-24 スクデリ グループ リミテッド ライアビリティ カンパニー 負荷制御用のクロスオーバー膨張バルブを有する分割サイクルエンジン
US8833315B2 (en) 2010-09-29 2014-09-16 Scuderi Group, Inc. Crossover passage sizing for split-cycle engine
US11773765B2 (en) 2014-12-29 2023-10-03 Douglas David Bunjes Internal combustion engine, combustion systems, and related methods and control methods and systems
KR20160149575A (ko) * 2015-06-18 2016-12-28 현대중공업 주식회사 노킹 제어 시스템이 구비된 엔진 및 엔진의 노킹 제어 방법
KR102172165B1 (ko) 2015-06-18 2020-10-30 한국조선해양 주식회사 노킹 제어 시스템이 구비된 엔진 및 엔진의 노킹 제어 방법

Also Published As

Publication number Publication date
AU2003304524A1 (en) 2005-05-19
JPWO2005042942A1 (ja) 2007-04-12

Similar Documents

Publication Publication Date Title
US8596230B2 (en) Hydraulic internal combustion engines
US8997488B2 (en) Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine
US6202416B1 (en) Dual-cylinder expander engine and combustion method with two expansion strokes per cycle
US7954472B1 (en) High performance, low emission engines, multiple cylinder engines and operating methods
JP2008180235A (ja) 圧縮比給気可変高効率エンジン
KR20140024390A (ko) 분할주기 가변위상 왕복피스톤 불꽃점화엔진
CN103328775B (zh) 具有可变气门正时的四冲程内燃机和方法
CN104684778B (zh) 车辆用驱动装置的控制装置
US8613269B2 (en) Internal combustion engine with direct air injection
JPH05179986A (ja) 内燃機関の運転方法
KR20140035876A (ko) 완전 팽창 내연 기관
US20070199299A1 (en) Combustion Engine
JP7288433B2 (ja) ガスエンジンの作動方法
US11136916B1 (en) Direct torque control, piston engine
WO1987004493A1 (en) Operating cycles for turbocompounded two-stroke piston engines
WO2005042942A1 (ja) 原動機
JP2019100292A (ja) ディーゼルスチームエンジンシステム
JPH07500648A (ja) 内燃機関
CN111386393B (zh) 机动车尤其是汽车的内燃机的运行方法
JP2008291847A (ja) 原動機
WO2008018845A1 (en) Operating method for pneumatic hybrid engine (working with compressed air)
US10393011B1 (en) Method of operating an internal combustion engine utilizing heat in engine cycles
JP5846298B2 (ja) 車両用エンジン始動制御装置
RU2243386C2 (ru) Двигатель внутреннего сгорания (варианты)
RU2244138C2 (ru) Двигатель внутреннего сгорания (варианты)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BR BZ CA CN CO CR CU DM DZ EC GD GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MA MG MK MN MX NO NZ OM PH PL RO SC SG TN TT TZ UA US UZ VC VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005510144

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase