WO2005036182A1 - キャピラリチップにおける流体の流通方法 - Google Patents

キャピラリチップにおける流体の流通方法 Download PDF

Info

Publication number
WO2005036182A1
WO2005036182A1 PCT/JP2004/015453 JP2004015453W WO2005036182A1 WO 2005036182 A1 WO2005036182 A1 WO 2005036182A1 JP 2004015453 W JP2004015453 W JP 2004015453W WO 2005036182 A1 WO2005036182 A1 WO 2005036182A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
polymer composition
capillary
closing
flow
Prior art date
Application number
PCT/JP2004/015453
Other languages
English (en)
French (fr)
Inventor
Hiroaki Oka
Tetsuo Yukimasa
Maki Katagiri
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2004800119250A priority Critical patent/CN1784605B/zh
Priority to JP2005514686A priority patent/JP3798011B2/ja
Publication of WO2005036182A1 publication Critical patent/WO2005036182A1/ja
Priority to US11/195,649 priority patent/US7055540B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0017Capillary or surface tension valves, e.g. using electro-wetting or electro-capillarity effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0036Operating means specially adapted for microvalves operated by temperature variations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0661Valves, specific forms thereof with moving parts shape memory polymer valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0074Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0084Chemistry or biology, e.g. "lab-on-a-chip" technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2191By non-fluid energy field affecting input [e.g., transducer]
    • Y10T137/2196Acoustical or thermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2224Structure of body of device

Definitions

  • the present invention relates to a capillary chip, particularly a capillary chip having a useful capillary for easily analyzing a small amount of sample.
  • Micro TAS Micro Total Analysis Systems
  • Micro TAS is a system in which cavities, reaction spaces, and detection spaces, which serve as flow paths for liquids, which are samples and reagents, are usually formed on a single cavity chip of about 1 to 2 cm square. This system is expected to be able to save samples, speed up analysis, automate measurement including preprocessing, make equipment portable, disposable equipment, and reduce equipment costs. ing.
  • micro TAS which can be used easily even on the patient's bedside, etc., and which can dispose of the cabillary chip touched by the sample are extremely Useful.
  • a micro-flow valve such as a microphone port valve that controls the opening and closing of the flow path in the capillary chip and a liquid feed drive element that flows the fluid in the flow path will be required.
  • control elements is essential.
  • a valve that blocks a flow path with wax is known (for example, see Japanese Patent Application Laid-Open No. 2000-51428).
  • a valve using wax has problems such as that it can be used only for a flow path having a certain thickness, that a component in a liquid is adsorbed on the wax, and that it is difficult to control opening and closing quickly.
  • a valve using a coupler As another microvalve, a valve using a coupler is known (see, for example, Japanese Patent Application Laid-Open No. 2001-16939). Such a valve stops the flow of liquid that flows into or out of the reservoir by contacting the power coupler with the part of the reservoir that supplies liquid to the flow path that communicates with the atmosphere. Having. Fluid flow can be restored by removing the coupler from close contact ; however, this valve requires that the coupler be in close contact with the reservoir in a gas-tight manner, and its fabrication and operation Is complicated. Furthermore, there is a problem that the open / close portion of the flow channel cannot be arbitrarily selected.
  • Tashiro et al, '"A Particles and Biomolecules sorting micro flow system using thermal gelation of methyl cellulose solution contain a solution that gels by laser irradiation.
  • a method of closing the flow channel by preparing and gelling the solution in the flow channel is disclosed. However, in this method, a solution that meets specific conditions must be prepared. Also, This method can be used to close the flow path, but it is difficult to use it multiple times as an on-off valve because the open state becomes liquid.
  • Japanese Patent Application Publication No. 2003-50370316 discloses that a plug made of a polymer material is provided in a flow path, and the flow path is opened and closed by utilizing a change in volume of the polymer material. A method for doing so is disclosed. However, in this method, it is necessary to provide the plug at an arbitrary position, and there is a problem that opening and closing cannot be performed unless the plug is provided.
  • An object of the present invention is to provide a distribution method for distributing a fluid in a capillary by a simple method without changing the composition of a sample or a reagent in a capillary chip, and a distribution control device capable of performing the distribution method.
  • the present invention provides a method for manufacturing a chip, comprising: a layer made of a polymer composition; and a capillary chip having a capillary formed on the surface or inside of the layer made of the polymer composition.
  • a flow method for flowing a fluid in the container wherein the cabillary includes a flow control unit, the flow control unit includes a plurality of continuous opening / closing units, and the opening / closing unit has a volume of the polymer composition.
  • the flow control unit changes the temperature of the polymer composition so that the plurality of opening / closing units are sequentially opened from the open state in the flow direction.
  • the fluid in the cavities can be passed by the simple step (a) of merely changing the temperature of the polymer composition.
  • step (a) may be repeated a plurality of times.
  • the distribution control Is repeatedly extruded.
  • the following steps namely, in the flow control section, while keeping one or a plurality of opening / closing sections closed from the downstream end in the flow direction, the temperature of the polymer composition is reduced.
  • the next step (a) is started substantially simultaneously with step (c).
  • the flow control unit can function as a pump.
  • the following steps may be further included: a step of changing the temperature of the polymer composition in the opening / closing section to close the opening / closing section to thereby prevent the flow of the fluid flowing through the capillary.
  • the opening / closing section may include a step (e) of changing the temperature of the polymer composition to open the opening / closing section to allow the flow of the fluid flowing through the cabilli.
  • the flow of the fluid on the capillary chip can be more complicatedly controlled by combining the circulation in step (a) and the opening and closing in steps (d) and (e).
  • the polymer composition for example, a polymer composition whose volume increases with increasing temperature and decreases with decreasing temperature can be used.
  • a polymer composition can be used in which the volume decreases with increasing temperature and increases with decreasing temperature. Furthermore, the combination of the two enables simultaneous control of the open state and the closed state in a complicated flow path.
  • the polymer composition examples include a side-chain crystalline repeating unit derived from acrylate or methacrylate ester, and a side-chain amorphous repeating unit derived from acrylate or methyl acrylate ester. And a polymer composition containing the same.
  • the capillary chip there is a configuration in which the capillary is formed on the surface of the layer, and a lid plate is in close contact with the surface of the layer.
  • the capillary tip may further include a fluid inlet and a fluid outlet connected to the capillary.
  • Step (a) is preferably a step of heating the opening / closing section of the flow control section sequentially in the flow direction, for example, by irradiating a laser.
  • the heating can be performed, for example, by irradiating a laser.
  • the opening / closing section may be switched from a closed state to an open state by air-cooling the opening / closing section.
  • the polymer composition that changes in volume due to the transition is used. More preferably, the first melt transition of the polymer composition occurs at 80 ° C. or less.
  • Cross-sectional area of the Kiyabirari may be, for example, 1 0 0 0 0 xm 2 or more and 2 5 0 0 0 0 m 2 or less.
  • the capillary chip may further include a plurality of fluid inlets connected to the capillary, and the capillary may include a plurality of opening / closing portions corresponding to each fluid inlet. .
  • the present invention is a distribution control device including a cabillary chip mounting section, a laser irradiating section, and a laser control section, wherein the cabillary chip mounting section can mount a cabillary chip,
  • the capillary chip has a layer made of a polymer composition, and a capillary formed on the surface or inside of the layer made of the polymer composition, wherein the capillary has a flow control section, and the flow control section has a plurality of flow control sections.
  • the opening / closing section is closed when the volume of the polymer composition increases, and blocks the flow of the fluid flowing through the capillary, and the volume of the polymer composition decreases.
  • the laser irradiating section allows the fluid to flow, and the laser irradiating section can irradiate the laser to the capillary chip mounted on the capillary mounting section, and the laser control section can control the laser chip to be mounted on the capillary mounting section by the laser irradiation section.
  • the position of the laser irradiation on the opening / closing section can be controlled, and by sequentially irradiating the opening / closing section with the laser in the flow direction, the opening / closing section is sequentially switched from the open state to the closed state in the flow direction, and the fluid flows through the inside of the capillary. It is a distribution control device.
  • FIG. 1 is a (a) perspective view, (b) a cross-sectional view showing an Ib-Ib cross-section, and (c) a cross-sectional view showing an Ic-Ic cross-section, schematically showing the appearance of a capillary chip used in the first embodiment. .
  • FIG. 2 is a cross-sectional view schematically illustrating a method of controlling the opening and closing of the opening and closing unit.
  • FIG. 3 is a cross-sectional view schematically illustrating a flow control method of the flow control unit.
  • FIG. 4 is a diagram showing a first method for producing a capillary chip.
  • FIG. 5 is a diagram showing a second method for producing a capillary chip.
  • FIG. 6 is a diagram showing a third method for producing a capillary chip.
  • FIG. 7 is a perspective view schematically showing the appearance of the capillary chip used in the second embodiment.
  • FIGS. 8A and 8B are (a) a perspective view, (b) a cross-sectional view showing a Vllb-VIIb cross section, and (c) a cross-sectional view showing a Vnc-VIIc cross section, schematically showing the appearance of a capillary chip used in the third embodiment. .
  • FIG. 9 is a block diagram illustrating a configuration of the distribution control device according to the first embodiment.
  • FIG. 10 is a block diagram showing a configuration of a distribution control device having a form different from that of FIG. [Best mode for carrying out the invention]
  • FIG. 1A is a perspective view schematically illustrating the appearance of the capillary chip 1 used in the present embodiment.
  • FIG. 1 (b) is a cross-sectional view showing the Ib-Ib cross section of FIG. 1 (a)
  • FIG. 1 (c) is a cross-sectional view showing the Ic-Ic cross section of FIG. 1 (b).
  • the capillary chip 1 is composed of a main channel 31, branch channels 32, 33, a sample inlet 21, a reagent inlet 22, 23, and an outlet. It has a substrate 11 having a rectangular planar shape on which an outlet 24 is formed.
  • Each of the flow paths 31, 32, and 33 is composed of a capillary.
  • the branch channel 32 merges at the junction P 1
  • the branch channel 33 merges at the junction P 2.
  • the substrate 11 is preferably placed horizontally with respect to the ground. ′
  • the sample inlet 21 is constituted by a hole having a circular cross section, and extends from the surface of the substrate 11 to the upstream end of the main channel 31.
  • the reagent inlet 22 is formed by a hole having a circular cross section, and extends from the surface of the substrate 11 to the upstream end of the branch channel 32.
  • the reagent inlet 23 is formed by a hole having a circular cross section, and extends from the surface of the substrate 11 to the upstream end of the branch channel 33.
  • the discharge port 24 is constituted by a hole having a circular cross section, and extends from the surface of the substrate 11 to the downstream end of the main channel 31.
  • the sample inlet 21, the reagent inlets 22, 23, and the outlet 24 make each of the channels 31, 32, 33 an open system, allowing the flow of fluid.
  • the main flow path 31 is provided with an opening / closing section VI for controlling opening and closing of the main flow path 31 downstream of the junction P2.
  • the main flow path 31 has a function of moving the fluid by pushing out the fluid in the flow path to the vicinity of the upstream end, and a function of starting the flow of the fluid by applying a downstream force to the fluid in the flow path.
  • a distribution control unit C1 having the following.
  • the cross-sectional shape of the flow channels 3 1, 3 2, 3 3 is a polygon such as a square or a triangle.
  • the shape, circle, semicircle, semi-ellipse and the like can be used, and there is no particular limitation.
  • the fluid circulated in the capillary chip 1 is a liquid.
  • Cross-sectional area of the flow path 3 1, 3 2, 3 3 depending on the atmospheric of the particles of the viscosity of the liquid to be circulated and the liquid, there is and in 1 0 0 0 0 0 0 m 2 or less 1 m 2 or more it is preferable, 1 0 0 0 0 xm 2 or more and 2 5 0 0 0 0 m and more preferably 2 or less.
  • the size of the substrate 11 is determined by the flow path pattern to be formed.For example, the thickness is 5 mm or more and 50 mm or less, the long side is 5 mm or more and 50 mm or less, and the short side is 3 mm or more. And less than 50 mm.
  • the size of the sample inlet 21 and the reagent inlets 22 and 23 is not particularly limited as long as the sample or the reagent can be injected by an injection means such as a pipette or a syringe. Depending on the size, the sample inlet 21 and the reagent inlets 22 and 23 function as sample or reagent reservoirs. When the size of the sample inlet 21 and the reagent inlets 22 and 23 is not sufficient for the liquid reservoir, a liquid reservoir may be formed by connecting, for example, a cylindrical member thereto.
  • the cross-sectional shape of the sample inlet 21 and the reagent inlets 22 and 23 is not limited to a circle, but may be a polygon or the like.
  • the opening / closing portion V1 is constituted by a peripheral portion 11a of the main channel 31 (hereinafter, referred to as a channel peripheral portion 11a).
  • the flow channel peripheral portion 11a is configured by a portion surrounding the main flow channel 31 of the substrate 11 with a predetermined length over the entire circumference.
  • the peripheral portion 11a of the flow path is made of a polymer composition.
  • the peripheral part 11 a of the flow path constituting the opening / closing part V 1 is a part surrounding the entire circumference of the main flow path 31, but the peripheral part 11 a of the flow path is the entirety of the main flow path 31. JP2004 / 015453
  • the opening / closing part VI takes an open state or a closed state according to the volume of the polymer composition.
  • the opening / closing section VI changes from an open state to a closed state due to an increase in volume due to a change in temperature of the polymer composition. Further, the opening / closing section VI changes from a closed state to an open state due to a decrease in volume due to a change in temperature of the polymer composition.
  • the opening / closing section VI allows the flow of liquid in the open state and blocks the flow of liquid in the closed state.
  • the increase in volume and decrease in volume of the polymer composition are irreversible changes. When the volume change of the polymer composition is a reversible change, opening and closing can be controlled not limited to the number of times.
  • the polymer composition it is possible to use either a polymer composition that increases in volume due to a rise in temperature and decreases in volume due to a decrease in temperature, or a polymer composition that increases in volume due to a decrease in temperature and decreases in volume due to a rise in temperature. it can.
  • a polymer composition such as the former is available as a cool-off type Intellima® from Niyu Corporation.
  • a polymer composition such as the latter is available as a warm-off type Intelimer (registered trademark) from Nitta Corporation. Both are plate-shaped polymer compositions.
  • a polymer composition that undergoes a first-order melting transition in a specific temperature range is preferably used.
  • the change in volume due to the first melting transition is used for opening and closing control.
  • the volume change due to the first melting transfer is preferable because the volume change with respect to the temperature change is large and the binary control of opening and closing of the opening and closing section VI is easy.
  • a temperature region where the polymer composition undergoes the first melting transition is referred to as a melting temperature region.
  • the temperature must be changed from a temperature lower than the melting temperature range to a temperature higher than the melting temperature range, or from a temperature higher than the melting temperature range to a temperature lower than the melting temperature range. Controls the opening and closing of the opening and closing unit V1.
  • the narrower the melting temperature range of the polymer composition the better. This is because the temperature change required to control the opening and closing is small, and quick control of the opening and closing is possible.
  • the difference between the highest and lowest temperature in the melting temperature range is 15 ° C
  • the following polymer composition is used.
  • a polymer composition that undergoes a first-order melt transition in a temperature range where the fluid is not denatured is preferable.
  • a polymer composition in which the temperature within the melting temperature range is higher than the freezing point of the fluid and lower than the boiling point is used. This is because the temperature of the fluid near the switching unit V1 is affected by the temperature of the switching unit VI.
  • the preferred melting temperature range varies depending on the type of fluid to be circulated. For example, a polymer composition having a temperature in the melting temperature range of 30 to 80 ° C. can be used.
  • Japanese Patent Application Laid-Open No. 2002-32224 U.S. Patent No. 5,156,911, U.S. Patent No. 5,387,450
  • the temperature-sensitive polymer composition described in Japanese Patent Application Laid-Open Publication No. H10-260 can be used.
  • a temperature-sensitive polymer composition comprising a side-chain crystalline repeating unit derived from an acrylate or methacrylate ester and a side-chain amorphous repeating unit derived from an acrylate or methacrylate ester Things can be used.
  • a temperature-sensitive polymer composition containing hexadecyl acrylate as a side-chain crystalline repeating unit and hexyl acrylate as a side-chain non-crystalline repeating unit is used.
  • the polymer composition increases in volume when changed from a temperature lower than the melting temperature region to a temperature higher than the melting temperature region, and decreases in volume when changed from a temperature higher than the melting temperature region to a temperature lower than the melting temperature region.
  • a polymer composition having a temperature in the melting temperature range higher than room temperature (25 ° C.) is used.
  • the opening / closing portion VI is open at room temperature, is closed by heating, and is left open, that is, opened by air cooling. Normally, switching from the open state to the closed state is required to be quicker than switching from the closed state to the open state. For example, laser heating can quickly achieve local temperature changes and is suitable for controlling from an open state to a closed state.
  • a laser When a laser is used as the heating means, it has the necessary heating capacity If this is the case, there is no need to select a type such as a gas laser, solid laser, or semiconductor laser.
  • the laser is not limited as long as it emits light having a wavelength suitable for heating the peripheral portion 11a of the flow channel made of the polymer composition to be heated.
  • a laser that emits light having a wavelength of 1450 nm to 1490 nm by an IR laser can be used.
  • the heating temperature is controlled by the power of the laser and the irradiation time.
  • An opening / closing control method of the opening / closing section V1 will be described.
  • the opening / closing unit V1 that is open at a temperature lower than T a and closed at a temperature higher than T b will be described.
  • a laser is used as a heating unit and air cooling is used as a cooling unit.
  • FIG. 2 is a cross-sectional view schematically showing the open state (a) and the closed state (b) of the opening / closing section VI in the same cross section as FIG. 1 (c).
  • the opening / closing part VI is open as shown in FIG. 2 (a).
  • a beam-shaped laser beam hereinafter, also referred to as “laser beam” L is applied to the opening / closing portion VI.
  • the switching unit VI is locally heated, and its temperature rises from room temperature to a temperature higher than Tb.
  • the volume of the polymer composition in the peripheral portion 11 a of the flow channel increases, but the volume of the portion other than the peripheral portion 11 a of the substrate 11 does not change.
  • the channel expands in a direction to narrow the flow path, whereby the opening / closing portion V1 changes from the open state shown in FIG. 2A to the closed state shown in FIG. 2B.
  • the closed state is maintained.
  • the switching unit VI is stopped and left, the switching unit V1 is cooled from the temperature higher than Tb to room temperature, which is lower than Ta, and the volume decreases, as shown in Fig. 2 (b). From the closed state, it changes to the open state shown in Fig. 2 (a).
  • the volume of the polymer composition in the peripheral portion 11 a of the flow channel increases, but the volume of the portion other than the peripheral portion 11 a of the substrate 11 does not change. Then, the flow path expands in a direction to narrow the flow path, whereby the opening / closing portion V1 changes from the open state shown in FIG. 2A to the closed state shown in FIG. 2B. If the cooling of the switching unit VI is continued and the switching unit V1 is maintained at a temperature lower than Td, the closed state is maintained. On the other hand, when the cooling of the switching unit V1 is stopped and left, the switching unit VI is heated from a temperature lower than Td to room temperature, which is higher than Tc, and its volume decreases. From this state, it will be in the open state as shown in Fig. 2 (a).
  • FIGS. 3 (&) to 3 () are partial cross sections schematically showing the control procedure of the flow control section C1 in the same cross section as FIG. 1 (j).
  • the flow control unit C1 includes a peripheral portion 1 lb of the main flow channel 31 (hereinafter, referred to as a flow channel peripheral portion 11b).
  • the flow path peripheral portion 11b is configured by a portion surrounding the main flow path 31 of the substrate 11 with a predetermined length over the entire circumference.
  • the flow path peripheral portion ib is made of a polymer composition, and has a configuration in which a plurality of flow control opening / closing portions V2 capable of performing the same control as the opening / closing control in the opening / closing portion V1 are adjacent to each other.
  • the channel peripheral portion 1 1b is a portion surrounding the entire circumference of the main channel 31, but the channel peripheral portion 1 1b is a portion surrounding a part of the entire circumference of the main channel 31. It doesn't matter.
  • Preferred materials for the polymer composition forming the flow control section C 1 are the same as those described in the description of the opening / closing section V 1.
  • each flow control opening / closing section V 2 of the flow control section C 1 in a state of being filled with liquid is connected to the upstream side in the flow direction (the sample injection port 21 side).
  • discharge port 24 To the downstream side in the distribution direction (discharge port 24 (see Fig. 1) side) to irradiate the laser beam L sequentially and heat it to the closed state.
  • the liquid can be pushed out from the upstream side to the downstream side, and the liquid can be circulated in the flow path 31.
  • each flow control opening / closing unit V2 is assumed to be open at a temperature lower than Ta and closed at a temperature higher than Tb.
  • Ta is larger than Tb, and Ta> room temperature (25 ° C.).
  • a laser is used as a heating unit and air cooling is used as a cooling unit.
  • each of the flow control opening / closing portions V2 in the flow control portion C1 may be independently controlled to open and close to function as an opening / closing portion for switching between blocking and permitting fluid flow.
  • the capillary chip 1 can be used, for example, as follows.
  • the sample is injected into the sample inlet 21, and the first reagent is injected into the reagent inlet 22.
  • the reagent flow flowing through the branch flow path 32 and the sample flow flowing through the main flow path 31 join together to form a mixed flow.
  • the sample and the first reagent are mixed, and a reaction occurs.
  • the second reagent is injected into the reagent inlet 23 at an appropriate timing.
  • the reagent flow flowing through the branch channel 33 joins the mixed flow.
  • the sample and the second reagent are mixed, and a reaction occurs.
  • An arbitrary analysis is performed at the position P3 of the main channel 31 where the reaction is completed.
  • the sample can be analyzed by detecting the reaction solution using an optical detection method such as a photothermal conversion method, a fluorescence method, an absorbance method, and a chemiluminescence method.
  • the sample can be analyzed by observing the reaction solution under a microscope.
  • the reaction time between the sample and the first and second reagents can be adjusted by closing the opening / closing section V 1. Further, by performing the above-described flow control in the flow control unit C1, the flow of the liquid in the flow path can be promoted.
  • Samples used in the present embodiment include biological samples such as blood, cerebrospinal fluid, saliva, and urine.
  • biological samples such as blood, cerebrospinal fluid, saliva, and urine.
  • biological components contained in blood, cerebrospinal fluid, saliva, and urine biological components derived from organs, tissues, and mucous membranes, and proteins, DNA, RNA, and allergens such as bacteria and viruses that cause infection
  • various antigens and the like can be detection target substances.
  • the flow path in the capillary chip 1 is mainly used for transferring reagents and samples (from the upstream end of the main flow path 31 to the junction P 1, branch paths 32, 33), and mixing of reagents and samples.
  • the main flow path (from the junction P1 to the junction P2 of the main flow path 31), the main flow path for mixing reagents and samples and detecting the reaction solution (the main flow path 31 From the junction P2 to the downstream end).
  • the configuration of the flow path is not limited to that shown in the present embodiment, and can be designed according to the application.
  • the flow path in the capillary chip 1 may consist of only the flow path portion whose main purpose is one operation (for example, a certain amount of sampling, transfer of a sample or a reagent, etc.). It may be a combination of flow paths mainly for different operations. This makes it possible to construct a device that can perform advanced analysis that involves not only qualitative analysis but also quantitative analysis.
  • the configuration of the flow path is, for example, the shape of a flow path mainly for mixing or diluting a sample or a reagent, and the shape where one flow path is combined with another flow path (see Fig. 1). Shape) and a shape in which a plurality of flow paths are merged into one flow path at a single point.
  • planar shape of the flow path portion for homogenizing the liquid examples include a linear shape, a meandering shape and a spirally bent shape.
  • a reaction part having a larger volume per unit length in the flow direction than the other part in the flow path second embodiment described later
  • An easy configuration can be provided.
  • it is possible to divide the flow by forming a flow path in which one flow path is divided into many (branch the flow path).
  • each of the flow paths 31, 32, and 33 is formed on the substrate 11 is used.
  • the capillary chip to which the present invention can be applied is limited to this configuration.
  • each flow path 31, 32, 33 may be formed in a columnar base.
  • the above-described opening / closing control and flow control can be performed by using a cavity chip having a flow path configured by a groove having an open upper surface. However, as in the present embodiment, the entirety of each flow path is controlled. It is preferable to use a capillary chip whose periphery is formed of a capillary made of a polymer composition, since the above-described opening / closing control and flow control are effectively performed.
  • the area around the through hole 21 constituting the sample inlet is heated to reduce the volume of the through hole 21, and the sample consisting of the through hole 21 is formed.
  • the fluid may flow so as to be pushed out of the inlet into the main flow path 31.
  • the volume of the through hole 21 is naturally reduced by cooling around the through hole 21 constituting the sample inlet.
  • FIG. 9 is a block diagram of the distribution control device 51.
  • the distribution control device 51 includes a detachable chip mounting portion 52, a laser generator 54, an optical system 55, and a laser control portion 56.
  • the laser generator 54 and the optical system 55 together are also referred to as a laser irradiation section.
  • the flow control device 51 is used by attaching the capillary chip 1 to the capillary chip mounting section 52.
  • the capillary chip mounting portion 52 has a guide member 53 for mounting the capillary chip 1, for example.
  • the laser beam L emitted from the laser generator 54 and narrowed down by the optical system 55 is irradiated on the capillary chip 1, the laser controller 56 controls the optical system 55, and the optical system 55.
  • the irradiation position of the laser beam L is controlled by deflecting the laser beam L internally.
  • the laser controller 56 controls the laser beam L so as to irradiate the opening / closing section V1 and the opening / closing section V2 of the flow control section C1. Also, under the control of the laser control unit 56, it is possible to irradiate the laser beam L while scanning it, and by adjusting the aperture of the laser beam L in the optical system 55, a plurality of open / close units V 2 can be irradiated simultaneously.
  • the flow control method of the flow control unit 51 can be implemented by the flow control device 51.
  • the flow control device may be configured to include a laser capable of simultaneously irradiating a plurality of laser beams L. Further, the laser beam L may be irradiated at an arbitrary position on the capillary chip 1 so as to have a driving means for driving the capillary chip 1.
  • FIG. 10 is a block diagram of a flow control device 57 having a form different from that of FIG. 10, the same components as those in FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted.
  • the flow control device 57 shown in FIG. 10 is a flow control device 51 shown in FIG. 9, which is an injection means capable of injecting a sample or a reagent into the sample inlet 21 and the reagent inlets 22, 23. 5 8, Drainage means that can discharge liquid from discharge port 2 4 5 9,
  • This configuration is provided with an analysis means 60 such as a microscope capable of performing the above-described analysis. With such a configuration, injection and opening / closing control, flow control, and analysis of a sample and a reagent can be performed by one apparatus.
  • the reaction of different capillary chips 1 can be analyzed simply by replacing the capillary chips 1 mounted on the capillary chip mounting section 52.
  • the cavity chip 1 is manufactured by bonding a main flat plate (a flat plate for forming a groove) and a lid flat plate.
  • Fig. 4 (a) is a top view of the lid flat plate 2a
  • Fig. 4 (b) is a top view of the main flat plate 3a
  • Fig. 4 (c) is a cross-sectional view of a longitudinal section of the capillary chip 1 manufactured by this manufacturing method. is there.
  • the vertical cross section is a cross section that cuts the flow channel 31 in the vertical direction.
  • grooves 31a, 32a and 33a serving as flow paths are formed on the surface of the main flat plate 3a.
  • Fig. 4 (a) four through holes 21a, 22a, 3a, 24a serving as sample inlet, reagent inlet, and outlet are formed on plate 2a, respectively.
  • FIG. 4 (c) the main flat plate 3a and the lid flat plate 2a are connected to the main flat plate 3a with the surfaces on which the grooves 31a, 32a, and 33a are formed inward. Then, the capillary chip 1 is manufactured.
  • a main plate in which a layer made of a specific polymer composition (hereinafter, referred to as a polymer composition layer) is formed on the surface of the substrate is used.
  • the details of the polymer composition are the same as those described above as the polymer composition forming the opening / closing portion V1.
  • the method for forming the polymer composition layer on the substrate is not limited, and can be performed by many methods such as, for example, spray deposition, painting, immersion, gravure printing, and rolling.
  • a cool-off type Intellima® which is a temperature-sensitive adhesive tape in which a layer made of a polymer composition that undergoes a first melt transfer is formed on the surface of a substrate made of a PET film, Nitta Corporation
  • Cool-off type Intelimer® increases its volume by heating from a temperature lower than the melting temperature range to a higher temperature, and decreases its volume by cooling from a temperature higher than the melting temperature range to a lower temperature.
  • an Intellima registered trademark having a melting temperature range of about 30 ° C or more and 40 ° C or less
  • -(Registered trademark) is suitable as the material of the main flat plate 3a.
  • the grooves 31a, 32a, 33a are formed on the surface of the polymer composition layer.
  • the thickness of the polymer composition layer is not particularly limited as long as it is larger than the depths of the grooves 31a, 32a, and 33a, and the entire main plate 3a is formed of a specific polymer composition. There may be.
  • an arbitrary part in the flow path can be used as the opening / closing part or the flow control part.
  • the above-mentioned polymer composition layer is also formed inside the lid plate 2a.
  • the entire circumference of the flow paths 31, 32, 33 formed by laminating the main flat plate 3a and the lid flat plate 2a is formed of the polymer composition.
  • the present invention is not limited to this configuration, and the lid plate 2a may have a configuration in which the polymer composition is not formed. In this case, the flow paths 31, 32, and 33 have a part of the entire circumference formed of a polymer composition.
  • the substrate of the main plate 3a (that is, the portion other than the polymer composition layer) and the lid plate 2a (the portion other than the polymer composition layer) can be made of an inorganic material such as silicon or glass, or an organic polymer. it can.
  • At least one of the substrate of the main flat plate 3a and the lid flat plate 2a uses a material having transparency with respect to the wavelength of light emitted by the heating means. For example, when the opening / closing section V1 or the flow control section C1 is heated by a laser, the laser is irradiated from the outside of the kyabili- ty chip 1, so that the laser is irradiated from the outside to the opening / closing section V1 and the flow control section C1. This is because it is necessary to reach the light, and it is necessary to ensure transparency in the optical path of the laser light.
  • the grooves 31a, 32a, and 33a on the surface of the main flat plate 3a are formed by a method such as etching with a cutting laser.
  • the through holes 21a, 22a, 23a, 24a of the cover plate 2a are formed by a method such as ultrasonic processing.
  • the through holes 21a, 22a, 23a of the lid plate 2a are formed at positions substantially corresponding to the most upstream positions of the grooves 31a, 32a, 33a of the main plate 3a. .
  • the through hole 24a is formed at a position substantially corresponding to the most downstream position of the groove 31a.
  • the main plate 3a having the grooves 31a, 32a and 33a formed therein, and the cover plate 2a having the through holes 2la, 22a, 23a and 24a formed therein. Are bonded together with the grooves 31 a, 32 a, and 33 a inside, whereby the cavity chip 1 is formed.
  • the main flat plate 3a and the lid flat plate 2a are bonded together by, for example, ultrasonic fusion, bonding with an adhesive such as a hot melt adhesive or a UV adhesive, adhesion with an adhesive, double-sided tape, or the like. Method such as pressure welding.
  • the grooves 31a, 32a, 33a are the flow paths 31, 33, 33, and the through hole 21a is the sample inlet 21.
  • the through holes 22a and 23a become the reagent inlets 22 and 23, and the through hole 24a becomes the outlet 24.
  • the capillary chip 1 is manufactured by bonding a main flat plate (a flat plate for forming a groove) and a lid flat plate.
  • Fig. 5 (a) is a top view of the lid flat plate 2b
  • Fig. 5 (b) is a top view of the main flat plate 3b
  • Fig. 5 (c) is a vertical cross section of the capillary chip 1 manufactured by this manufacturing method. It is sectional drawing. The vertical section is a section that cuts the main channel 31 in the vertical direction.
  • grooves 31b, 32b, 33b to be flow paths are formed on the surface of the main flat plate 3b. Further, through holes 21b, 22b, 23, 24b are formed in the main plate 3b. The through holes 21b, 22b, and 23b are formed at the most upstream positions of the grooves 31b, 32b, and 33b. The through hole 2 4 b is It is formed at the most downstream position of the groove 31b.
  • the main plate 3b and the cover plate 2b are attached with the grooves 31b, 32b, and 33b formed in the main plate 3b inside.
  • the capillary chip 1 is formed.
  • This manufacturing method is the first manufacturing method except that the grooves 31, 32, 33 and the through holes 21, 22, 23, 24 are formed on the same main plate 3 b. Is the same as Further, as the main plate 3b and the cover plate 2b, those made of the same material as the main plate 3a and the cover plate 2a used in the first manufacturing method can be used. Therefore, also in this method, since the entire groove is formed of the polymer composition, an arbitrary part in the flow path can be used as the opening / closing part or the flow control part.
  • the grooves 31b, 32b, and 33b become the flow paths 31, 32, and 33, and the through hole 21b is the sample inlet 21.
  • the through holes 22 b and 23 b become the reagent inlets 22 and 23, and the through hole 24 b becomes the outlet 24.
  • the capillary chip 1 is manufactured by bonding a main flat plate (a flat plate for forming a slit) and two lid flat plates.
  • Fig. 6 (a) is a top view of the first cover plate 2c
  • Fig. 6 (b) is a top view of the main cover plate 3c
  • Fig. 6 (c) is a top view of the second cover plate 2d.
  • FIG. 6D is a cross-sectional view of the longitudinal section of the capillary chip 1 manufactured by the present manufacturing method.
  • the longitudinal section is a section that cuts the main channel 31 in the longitudinal direction.
  • slits 31c, 32c and 33c to be flow paths are formed in the main flat plate 3c.
  • the slits 31c, 32c, and 33c pass through the front and back surfaces of the main flat plate 3c.
  • four through-holes 21c, 22c, 23c and 24c, which serve as a sample inlet, reagent inlet and outlet, respectively, are formed in the first lid plate 2c. Form c. Then, as shown in FIG.
  • the capillary chip 1 is manufactured.
  • a plate made of a polymer composition is used as the main plate 3b.
  • the polymer composition is the same as that described above as the polymer composition forming the opening / closing portion V1. Except that the main flat plate 3c and the second lid flat plate 2d are bonded to each other, a flat plate similar to the main flat plate 3a in the first manufacturing method is formed. Same as the method. Therefore, also in this method, since the entire slit is formed of the polymer composition, an arbitrary part in the flow path can be used as the opening / closing part or the flow control part. If the polymer composition layer is formed on the inner surfaces of the two lid plates 2c and 2d, the entire circumference of the flow paths 31, 32, and 33 is preferably made of the polymer composition. It is not limited to this.
  • the slits 31 c, 32 c, and 33 c become the flow paths 31, 32, and 33, and the through hole 21 c is the sample inlet 2.
  • the through holes 22 c and 23 c become the reagent inlets 22 and 23, and the through hole 24 c becomes the outlet 24.
  • FIG. 7 is a perspective view schematically showing the appearance of the capillary chip 1 'used in the present embodiment.
  • the capillary tip 1 ′ is provided with an opening / closing section near the upstream end of each of the channels 31, 32, 33 corresponding to the sample inlet 21 and the reagent inlets 22, 23. Opening / closing sections V 2, V 4, V 5 having the same configuration as V 1 are provided. Note that the opening / closing section V2 also functions as the opening / closing section of the flow control section C1.
  • the other configuration is the same as that of the capillary chip 1 of the first embodiment. Therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.
  • the capillary chip 1 ′ can be used in the same manner as the capillary chip 1 of the first embodiment. And, furthermore, opening and closing part V 2, By controlling the opening and closing of V 4 and V 5, the timing to start, stop and flow the flow of the sample injected into the sample inlet 21 and the reagent injected into the reagent inlets 22 and 23 are controlled. can do.
  • the capillaries 1 'of the present embodiment can also perform opening / closing control, flow control, analysis, and the like using the flow control device shown in the first embodiment.
  • FIG. 8A is a perspective view schematically showing the appearance of the capillary chip 13 used in the present embodiment.
  • FIG. 8 (b) is a cross-sectional view showing a Vllb-VIIb cross section of FIG. 8 (a)
  • FIG. 1 (c) is a cross-sectional view showing a VIIc-VIIc cross section of FIG. 1 (b).
  • the capillary chip 13 is composed of the main channel 34, branch channels 35, 36, 37, 38, 39, inlet 41, and outlet. It consists of a substrate 14 with a rectangular top surface on which 25, 26, 27, 28, 29 are formed.
  • Each of the flow paths 34, 35, 36, 37, 38, 39 is made up of a capillary.
  • the main flow path 34 branches into five branch flow paths 35, 36, 37, 38, and 39 at a branch point 34a.
  • the configuration and control method of the switching unit V3 are the same as those of the switching unit VI of the first embodiment.
  • the configuration and control method of the flow control unit C2 are the same as those of the flow control unit C1 of the first embodiment.
  • the cell suspension containing the culture medium is injected from the inlet 41, and the reaction section of each of the branch channels 35, 36, 37, 38, and 39 is made using the pump function of the flow control section C2.
  • the suspension is fed up to 35a, 36a, 37a, 38a, and 39a.
  • each reaction section 35a, 36a, 37a, 38a, 39a is filled with the suspension, each branch 35, 36, 37, 38, 3
  • the opening / closing part V3 provided in 9 is closed.
  • the cells are left for 2 days, and the cells are cultured in the reaction layers 35a, 36a, 37a, 38a, and 39a.
  • the opening / closing portion V3 of each of the branch channels 35, 36, 37, 38, 39 is opened, and the reagent solution in which the first drug candidate compound is dissolved is injected from the inlet 41.
  • the reagent solution is sent to each of the reaction units 35a, 36a, 37a, 38a, and 39a.
  • the opening / closing section V3 is closed at the timing when each of the reaction sections 35a, 36a, 37a, 38a, 39a is filled with the reagent.
  • the cytotoxicity of the first drug candidate compound and the effect on cells To analyze.
  • adherent cells it is preferable to use adherent cells as the cells. Since adherent cells adhere to the reaction layer, most of them can flow out of the reaction layer 35 a, 36 a, 37 a, 37 a, 38 a, or 39 a even if the reagent is sent after culturing. Because there is no.
  • an opening / closing section is provided at the upstream end of each of the branched branch channels 35, 36, 37, 38, 39 so that the reaction layers 35a, 36a, 37a, Reagent solutions of different drug candidate compounds may be sent to 38a and 39a to simultaneously analyze the cytotoxicity and the like of a plurality of reagents.
  • the capillaries 13 of the present embodiment can also perform opening / closing control, flow control, analysis, and the like using the flow control device described in the first embodiment.
  • the flow control and the opening / closing control of the capillaries can be achieved by a simple method of changing the temperature of the opening / closing section in the capillaries. Furthermore, since cavities are formed on the surface or inside of the layer composed of the polymer composition, any part can be selected as the opening / closing part.
  • the properties of the sample and the reagent are not affected during the flow control and the opening / closing control.
  • the means necessary for performing the above control can be configured with a small device capable of maintaining quietness.
  • the distribution method according to the present invention is useful for distributing a liquid such as a reagent or a sample in a microchip for medical diagnosis or a microchip for detecting drug responsiveness.
  • the distribution method according to the present invention can be used for micro TAS which performs analysis using a microchip.
  • it can be used for micro TAS for analyzing biological samples such as blood, cerebrospinal fluid, saliva, urine and the like.
  • desired opening / closing control and distribution control can be performed in a microchip having a simple configuration, and therefore, it is particularly useful as a method applied to disposable cabillary chips.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本発明は、ポリマー組成物からなる層と、前記ポリマー組成物からなる層の表面又は内部に形成されたキャピラリとを有するキャピラリチップを用いて、前記キャピラリ内の流体を流通させる流通方法であって、前記キャピラリは、流通制御部を備え、前記流通制御部は、複数の連続した開閉部からなり、前記開閉部は、前記ポリマー組成物の体積が増加することにより閉状態となって前記キャピラリを流れる流体の流通を阻止し、前記ポリマー組成物の体積が減少することにより開状態となって前記キャピラリを流れる流体の流通を許容し、前記流通方法は、前記流通制御部において、前記ポリマー組成物の温度を変化させることにより前記複数の開閉部を流通方向に順次開状態から閉状態に切り替え、前記キャピラリ内の流体を流通させるステップ(a)、を有する。

Description

明 細 書
キヤビラリチップにおける流体の流通方法
〔技術分野〕 .
本発明は、 キヤビラリチップ、 特に微量試料の分析を簡便に行うため の有用なキヤビラリを備えたキヤビラリチップに関する。
〔技術背景〕
マイクロマシン技術の応用として、 化学分析システムの微小化、 集 積化は最も有望な分野の一つである。 微小化、 集積化した化学分析シス テムは、 マイクロ T A S ( Micro Total Analysis Systems) といわれる。 マイクロ T A Sは、 試料及び試薬である液体の流路となるキヤビラリ、 反応スペース、 検出スペースが、 通常約 1〜 2 c m角程度の 1枚のキヤ ビラリチップに形成されているシステムである。 このシステムは、 試料 の節減、 分析の高速化、 前処理を含めた測定の自動化、 装置のボ一タブ ル化、 装置のディスポ一ザブル化、 装置の低コス ト化などが図れるとし て期待されている。
例えば、 血液等を試料とする医療診断用途の分析装置においては、 患 者のベッ ドサイ ド等でも簡便に使用することができ、 また試料が触れる キヤビラリチップを使い捨てにすることができるマイクロ T A Sは非常 に有用である。
今後、 マイクロ T A Sを用いた高度なシステムを構築するためには、 キヤビラリチップ中の流路の開閉を制御するマイク口バルブや、 流路に おいて流体を流通させる送液駆動素子などの微小な流通制御素子の開発 が不可欠である。
流路において、 液体を流通させる方法としては、 キヤビラリチップ外 の送液ポンプまたは吸引ポンプを用いる方法が一般的である。 この方法 では、 外部ポンプが必要となるため、 制御の応答性、 連続的な変化、 耐 久性、 医療現場において重要な静粛性、 等の点で問題がある。 また、 装 置全体が大きくなることや、 キヤビラリチップと外部ポンプとの接続部 分での洩れの恐れもある。
その他に、 流路中の液体に泳動電圧を印加することにより生じる電気 浸透流を利用して流路中の流体を流通させる方法も知られている (例え ば、 特開平 8 — 2 6 1 9 8 6号公報参照) 。 この方法によると、 流路内 の液体に電極を介して電圧をかけるため、 電極表面で測定試料や試薬の 電気分解が生じて、 試料組成や試薬組成が変化してしまうことがある。
また、 前記マイクロバルブとして、 ワックスで流路を塞ぐバルブが知 られている (例えば、 特表 2 0 0 0— 5 1 4 9 2 8号公報参照) 。 しか しながら、 ワックスを用いたバルブは、 ある程度太い流路にしか採用で きない、 液体中の成分がワックスに吸着する、 開閉の迅速な制御が困難 である、 等の問題がある。
また、 その他のマイクロバルブとして、 カップラーを用いたバルブが 知られている (例えば、 特開 2 0 0 1 — 1 6 5 9 3 9号公報参照) 。 か かるバルブは、 流路に液体を供給する液溜めの大気に通じる部分に、 力 ップラ一を密着させることにより、 その液溜めへ流入する、 或いはその 液溜めから流出する液体の流れを止める機能を有する。 流体の流通は、 カップラ—を密着状態から取り外すことにより回復させることができる ; しかしながら、 このバルブによると、 カップラーを液溜めと気密性が保 たれる形で密着させる必要があり、 その作製及び操作が煩雑となる。 さ らに、 流路の開閉部を任意に選択できないという問題がある。
また、 .Tashiro et al, '"A Particles and Biomolecules sorting micro flow system using thermal gelation of methyl cellulose solution", Micro Total Analysis System 2001, p .471 -473には、 レーザ での照射によりゲル化する溶液を調製し、 流路中の溶液をゲル化させる ことにより流路を塞ぐ方法が開示されている。 しかしながら、 この方法 においては、特定の条件をみたす溶液を調製しなければならない。また、 この方法は、 流路を塞ぐために利用することはできるが、 開閉用バルブ としての複数回の利用は、 開状態が液状となるため困難である。
また、 特表 2 0 0 3— 5 0 3 7 1 6号公報には、 ポリマ一材料からな るプラグを流路内に設け、 このポリマ一材料の体積変化を利用して、 流 路を開閉する方法が開示されている。 しかしながら、 この方法において は、 前記プラグを任意の位置に設ける必要があり、 さらにプラグを設け た位置でないと、 開閉を行うことができないという問題点がある。
〔発明の開示〕
本発明は、 キヤビラリチップにおいて、 試料や試薬の組成を変化させ ることなく、 簡単な方法でキヤピラリ内の流体を流通させる流通方法及 び当該流通方法を実施可能な流通制御装置を提供することを目的とする, 上記目的を達成するために、本発明は、ポリマー組成物からなる層と、 前記ポリマ一組成物からなる層の表面又は内部に形成されたキヤピラリ とを有するキヤビラリチップを用いて、 前記キヤビラリ内の流体を流通 させる流通方法であって、 前記キヤビラリは、 流通制御部を備え、 前記 流通制御部は、 複数の連続した開閉部からなり、 前記開閉部は、 前記ポ リマー組成物の体積が増加することにより閉状態となって前記キヤビラ リを流れる流体の流通を阻止し、 前記ポリマー組成物の体積が減少する ことにより開状態となって前記キヤピラリを流れる流体の流通を許容し. 前記流通方法は、 前記流通制御部において、 前記ポリマー組成物の温度 を変化させることにより前記複数の開閉部を流通方向に順次開状態から 閉状態に切り替え、前記キヤビラリ内の流体を流通させるステツプ( a )、 を有する。 この方法においては、 ポリマ一組成物の温度を変化させるだ けという簡単なステップ ( a ) によって、 前記キヤビラリ内の流体を流 通させることができる。
さらに、 上記流通方法において、 ステップ ( a ) を繰り返して複数回 行ってもよい。 ステップ ( a ) を繰り返すことによって、 流通制御部内 の流体が繰り返し押し出されることになる。 また、 各ステップ ( a ) の 後に、 以下のステップ、 すなわち、 前記流通制御部において、 流通方向 下流端から 1個または複数個の開閉部を閉状態にしたまま、 前記ポリマ 一組成物の温度を変化させることにより他の開閉部を閉状態から開状態 に切り替えるステップ (b ) 、 ステップ (b ) の後、 ステップ (b ) に おいて閉状態である前記開閉部を開状態に切り替えるステップ ( c ) 、 を有してもよい。 この場合、 ステップ ( c ) と実質的同時に、 次のステ ップ ( a ) を開始させる。 この方法により、 前記流通制御部をポンプと して機能させることができる。
また、 上記流通方法において、 さらに以下のステップ、 すなわち、 前 記開閉部において、 前記ポリマー組成物の温度を変化させることにより 前記開閉部を閉状態として前記キヤピラリを流れる流体の流通を阻止す るステップ (d ) 、 前記開閉部において、 前記ポリマー組成物の温度を 変化させることにより前記開閉部を開状態として前記キヤビラリを流れ る流体の流通を許容するステップ ( e ) 、 を有してもよい。 この場合、 ステップ ( a ) による流通と、 ステップ ( d ) 、 ( e ) による開閉を組 み合わせて、 キヤビラリチップ上の流体の流通をより複雑に制御するこ とができる。
前記ポリマー組成物としては、 例えば、 温度上昇によって体積が増加 し、 温度下降によって体積が減少するポリマー組成物を用いることがで きる。 あるいは、 温度上昇によって体積が減少し、 温度下降によって体 積が増加するポリマ一組成物を用いることができる。 さらには、 両者の 組み合わせにより、 複雑な流路において開状態と閉状態を同時に制御す ることも可能である。
前記ポリマ一組成物の具体例として、 ァクリ レートまたはメタクリレ 一卜エステルから誘導される側鎖結晶性繰り返しュニッ トと、 ァクリレ ―トまたはメ夕クリレ一トエステルから誘導される側鎖非結晶性繰り返 しュニッ トとを含むポリマー組成物を挙げることができる。 前記キヤビラリチップの一形態として、 前記キヤピラリが前記層の表 面に形成されており、 前記層の表面には蓋平板が密着している構成が挙 げられる。
前記キヤビラリチップは、 前記キヤピラリに接続している流体注入口 および流体排出口をさらに備えていてもよい。
ステップ ( a ) は、 好適には、 前記流通制御部の前記開閉部を流通方 向に順次、 例えばレーザーを照射することにより加熱するステツプであ る。 この場合、 前記加熱を、 例えばレーザーを照射することにより行う ことができる。
ステップ ( b ) 及びステップ ( c ) において、 例えば、 前記開閉部を 空冷することにより前記開閉部を閉状態から開状態に切り替えてもよい, 前記ポリマー組成物として、 好ましくは、 その第 1次溶融転移により 前記体積変化するポリマー組成物が用いられる。 さらに好ましくは、 前 記ポリマ一組成物の第 1次溶融転移は、 8 0 °C以下で起こるものとする。 前記キヤビラリの断面積は、 例えば、 1 0 0 0 0 x m 2以上でかつ 2 5 0 0 0 0 m 2以下でありうる。
前記キヤビラリチップは、 さらに前記キヤビラリに接続している流体 注入口を複数有し、 前記キヤピラリは各流体注入口に対応するように複 数の開閉部を有する構成であっても良い。 .
また、 本発明は、 キヤビラリチップ装着部と、 レ一ザ一照射部と、 レ —ザ一制御部とを備えた流通制御装置であって、 前記キヤビラリチップ 装着部は、 キヤビラリチップを装着可能であり、 前記キヤビラリチップ は、 ポリマー組成物からなる層と、 前記ポリマー組成物からなる層の表 面又は内部に形成されたキヤビラリ とを有し、 前記キヤビラリは、 流通 制御部を備え、 前記流通制御部は、 複数の連続した開閉部からなり、 前 記開閉部は、 前記ポリマー組成物の体積が増加することにより閉状態と なって前記キヤピラリを流れる流体の流通を阻止し、 前記ポリマー組成 物の体積が減少することにより開状態となって前記キヤビラリを流れる 流体の流通を許容し、 前記レーザー照射部は、 前記キヤビラリ装着部に 装着されたキヤビラリチップにレーザー照射可能であり、 前記レーザー 制御部は、 前記レーザ一照射部による前記キヤピラリ装着部に装着され たキヤビラリチップへのレーザー照射位置を制御可能であり、 前記開閉 部を流通方向に順次レーザー照射することによって、 前記開閉部が流通 方向に順次開状態から閉状態に切り替わり、 前記キヤビラリ内を流体が 流通する、 流通制御装置である。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、 以下の好適な実施態様の詳細な説明から明らかにされる。
〔図面の簡単な説明〕
図 1は、 第 1の実施形態で用いるキヤビラリチップの外観を模式的に 示す ( a ) 斜視図、 (b ) Ib-Ib断面を示す断面図、 ( c ) Ic-Ic断面を 示す断面図である。
図 2は、 開閉部の開閉制御方法を模式的に示す断面図である。
図 3は、 流通制御部の流通制御方法を模式的に示す断面図である。 図 4は、 キヤビラリチップの第 1の作製方法を示す図である。
図 5は、 キヤビラリチップの第 2の作製方法を示す図である。
図 6は、 キヤビラリチップの第 3の作製方法を示す図である。
図 7は、 第 2の実施形態で用いるキヤビラリチップの外観を模式的に 示す斜視図である。
図 8は、 第 3の実施形態で用いるキヤピラリチップの外観を模式的に 示す ( a ) 斜視図、 ( b ) Vllb-VIIb断面を示す断面図、 ( c ) Vnc-VIIc 断面を示す断面図である。
図 9は、 第 1の実施形態における流通制御装置の構成を示すブロック 図である。
図 1 0は、 図 9とは異なる形態の流通制御装置の構成を示すブロック 図である。 〔発明を実施するための最良の形態〕
以下、 図面を用いて本発明をより詳細に説明する。
(第 1の実施形態)
[キヤビラリチップの構成]
図 1 ( a) は、 本実施形態で用いるキヤビラリチップ 1の外観を模式 的に示す斜視図である。 図 1 (b) は、 図 1 ( a) の Ib-Ib断面を示す 断面図、 図 1 ( c ) は図 1 (b) の Ic-Ic 断面を示す断面図である。 図 1 ( a) 〜図 1 ( c ) に示すように、 キヤビラリチップ 1は、 本流路 3 1、 支流路 3 2 , 3 3、 試料注入口 2 1、 試薬注入口 2 2, 2 3、 及び 排出口 2 4が形成された矩形の平面形状を有する基板 1 1を備える。 各 流路 3 1 , 3 2 , 3 3は、 キヤビラリで構成されている。 本流路 3 1に は、 合流点 P 1で支流路 3 2が合流し、 合流点 P 2で支流路 3 3が合流 する。 基板 1 1は、 好ましくは地面に対して水平に置かれる。 ' 試料注入口 2 1は、 断面円形の孔で構成され、 基板 1 1表面から本流 路 3 1の上流端部まで延びる。 試薬注入口 2 2は、 断面円形の孔で構成 され、 基板 1 1表面から支流路 3 2の上流端部まで延びる。 試薬注入口 2 3は、 断面円形の孔で構成され、 基板 1 1表面から支流路 3 3の上流 端部まで延びる。 排出口 24は、 断面円形の孔で構成され、 基板 1 1表 面から本流路 3 1の下流端部まで延びる。 試料注入口 2 1、 試薬注入口 2 2, 2 3、 排出口 2 4により、 各流路 3 1 , 3 2, 3 3が開放系とな り、 流体の流通を許容できるようになる。
本流路 3 1は、 合流点 P 2より下流側に本流路 3 1の開閉を制御する 開閉部 V I を備える。 また、 本流路 3 1は、 上流端部近傍に流路中の流 体を押し出すことにより流体を移動させる機能、 及び流路中の流体に下 流方向の力を与え流体の流通を開始させる機能を有する流通制御部 C 1を備える。
流路 3 1 , 3 2 , 3 3の横断面形状は、 四角形、 三角形等の多角形の 形状、 円形、 半円形、半楕円形等とすることができ、特に制限されない。 キヤビラリチップ 1 において流通させる流体は液体とする。 流路 3 1, 3 2 , 3 3の断面積は、 流通させる液体の粘度及び液体中の微粒子の大 きさによるが、 1 m2以上でかつ 1 0 0 0 0 0 0 m2以下であること が好ましく、 1 0 0 0 0 xm2以上でかつ 2 5 0 0 0 0 m 2以下である ことがより好ましい。 1 /im2より小さいと、 微粒子により流通が乱さ れる原因となり、 また生じる表面張力に抗して流体を流通させることが 困難となる。 一方、 l O O O O O O m2以上であると、 マイクロチッ プ 1 の用途に適した大きさの基板 1 1 に複数の流路を形成することが 困難となる。
基板 1 1の大きさは、 形成する流路パターンによって決まるが、 例え ば厚みは 5 mm以上でかつ 5 0 mm以下、 長辺は 5 mm以上でかつ 5 0 mm以下、 短辺は 3 mm以上でかつ 5 0 mm以下で有り得る。
試料注入口 2 1、 試薬注入口 2 2, 2 3の大きさは、 ピペッ ト、 シリ ンジ等の注入手段による試料又は試薬の注入が可能な大きさであれば 特に限定されることはない。 試料注入口 2 1、 試薬注入口 2 2 , 2 3は 大きさによって、 試料又は試薬の液溜めとして機能する。 試料注入口 2 1、 試薬注入口 2 2 , 2 3の大きさが液溜めとして十分でない場合は、 これに例えば円筒状部材を接続し、 液溜めを構成しても良い。 尚、 試料 注入口 2 1、 試薬注入口 2 2 , 2 3の断面形状は、 円形に限定されるこ とはなく、 多角形等であっても良い。
[開閉部の構成]
図 1 ( a) 〜図 1 ( c ) に示すように、 開閉部 V 1は、 本流路 3 1の 周辺部 1 1 a (以下、 流路周辺部 1 1 aという) から構成されている。 流路周辺部 1 1 aは、 基板 1 1の本流路 3 1を所定の長さでかつ全周に 渡って囲む部分で構成されている。 流路周辺部 1 1 aは、 ポリマー組成 物よりなる。 ここでは、 開閉部 V 1 を構成する流路周辺部 1 1 aを本流 路 3 1の全周を囲む部分としたが、 流路周辺部 1 1 aは本流路 3 1の全 JP2004/015453
周の一部を囲む部分であってもかまわない。 開閉部 V Iは、 ポリマ一組 成物の体積に応じて開状態あるいは閉状態をとる。 開閉部 V Iは、 ポリ マ一組成物の温度変化による体積増加により、 開状態から閉状態となり . また、 ポリマー組成物の温度変化による体積減少により、 閉状態から開 状態となる。 開閉部 V Iは、 開状態で液体の流通を許容し、 閉状態で液 体の流通を阻止する。 ポリマー組成物の前記体積増加、 体積減少は、 可 逆変化である。 ポリマー組成物の体積変化が可逆変化であることにより. 回数に限定されない開閉の制御が可能となる。
ポリマー組成物としては、 温度上昇により体積増加し、 温度下降によ り体積減少するポリマー組成物、 あるいは温度下降により体積増加し、 温度上昇により体積減少するポリマー組成物、 いずれをも使用すること ができる。 前者のようなポリマー組成物は、 ニッ夕 (株) より、 クール オフタイプのインテリマ一 (登録商標) として入手可能である。 後者の ようなポリマ一組成物は、 ニッタ (株) より、 ウォームオフタイプのィ ンテリマー (登録商標) として入手可能である。 いずれも、 板状のポリ マー組成物である。 前記ポリマー組成物として、 好ましくは、 特定の温 度領域において、第 Ί次溶融転移するポリマー組成物を用いる。そして、 第 1次溶融転移による体積変化を開閉の制御に利用する。 第 1次溶融転 移による体積変化は、 温度変化に対する体積変化が大きく、 開閉部 V I の開閉の 2値制御が容易となるので好ましい。 本明細書において、 前記 ポリマ一組成物が第 1次溶融転移する温度領域を溶融温度領域という。 第 1次溶融転移するポリマ一組成物を用いた場合、 溶融温度領域より低 い温度から溶融温度領域より高い温度へ、 あるいは溶融温度領域より高 い温度から溶融温度領域より低い温度へ変化させることにより、 開閉部 V 1の開閉を制御する。
ポリマー組成物の溶融温度領域は、 狭い程好ましい。 開閉を制御する ために必要な温度変化が小さく、 開閉の迅速な制御が可能となるからで ある。 好ましくは、 溶融温度領域内の最高温度と最低温度の差が 1 5 °C 以下のポリマー組成物を使用する。 さらに、 流体が変性することがない 温度領域において第 1次溶融転移するポリマー組成物が好ましい。 また 溶融温度領域内の温度が、 流体の凝固点より高く、 沸点より低いポリマ 一組成物を使用する。 開閉部 V 1付近の流体の温度は、 開閉部 V Iの温 度の影響を受けるからである。 好ましい溶融温度領域は、 流通させる流 体の種類によって異なるが、 例えば、 溶融温度領域内の温度が 3 0 以 上 8 0 °C以下のポリマー組成物を使用することができる。
上記ポリマー組成物として、 特開 2 0 0 2— 3 2 2 4 4 8号公報、 米 国特許第 5, 1 5 6 , 9 1 1号公報、 米国特許第 5 , 3 8 7 , 4 5 0号 公報に記載されている温度感応性ポリマ一組成物を用いることができ る。 具体的には、 ァクリレートまたはメタクリ レートエステルから誘導 される側鎖結晶性繰り返しユニッ トと、 ァクリ レートまたはメタクリレ 一トエステルから誘導される側鎖非結晶性繰り返しュニッ トとを含有 する温度感応性ポリマー組成物を用いることができる。 より具体的には. 側鎖結晶性繰り返しユニッ トとしてへキサデシルァクリレー卜を、 側鎖 非結晶性繰り返しュニッ トとしてへキシルァクリ レ一トを含有する温 度感応性ポリマー組成物を用いることができる。
また、 好ましくは、 溶融温度領域より低い温度から溶融温度領域より 高い温度へ変化させると体積増加し、 溶融温度領域より高い温度から溶 融温度領域より低い温度へ変化させると体積減少するポリマー組成物 であって、 溶融温度領域内の温度が室温 ( 2 5 °C ) より高いポリマ一組 成物を使用する。 このようなポリマー組成物を使用すると、 開閉部 V I は、 室温では開状態であり、 加熱によって閉状態となり、 また放置する ことにより、 すなわち空冷により開状態となる。 通常、 開状態から閉状 態への切り替えの方が、 閉状態から開状態への切り替えより迅速性を要 求される。 例えば、 レーザーによる加熱は、 局所的な温度変化を迅速に 達成することができ、 開状態から閉状態への制御に適している。
加熱手段としてレーザ一を用いる場合、 必要な加熱能力を有するもの であれば、 ガスレーザ一、 固体レーザー、 半導体レーザーなど種類を選 ばない。 レーザ一は、 加熱対象であるポリマー組成物からなる流路周辺 部 1 1 aの加熱に適した波長の光を発するものであれば限定されない。 例えば、 I Rレーザ一により 1 4 5 0 nm〜 l 4 9 0 nmの波長の光を 発するものを用いることができる。 加熱温度は、 レーザーの出力及び照 射時間によって制御する。
[開閉部の開閉制御方法]
開閉部 V 1の開閉制御方法について説明する。 ここでは、 T aより低 い温度では開状態であり、 T bより高い温度では閉状態である開閉部 V 1について説明する。 尚、 T aぐ T bであり、 T a〉室温 ( 2 5 °C) で ある。 以下においては、 加熱手段としてレーザーを、 冷却手段として空 冷を用いる場合について説明する。
図 2は、 開閉部 V Iの開状態 ( a) と閉状態 (b) を図 1 ( c ) と同 一の断面において模式的に示す断面図である。 室温では、 図 2 ( a) に 示すように開閉部 V Iは、 開状態である。 この状態で、 開閉部 V Iにビ —ム状のレーザー光 (以下、 「レーザービーム」 ともいう) Lを照射す る。 すると、 開閉部 V Iは、 局部的に加熱されて、 その温度が室温から T bより高い温度まで上昇する。 すると、 流路周辺部 1 1 aのポリマ一 組成物の体積が増加するが、 基板 1 1の流路周辺部 1 1 a以外の部分の 体積は変化しないので、 流路周辺部 1 1 aは、 流路を狭める方向に膨張 し、 それにより開閉部 V 1が図 2 ( a) に示す開状態から、 図 2 (b) に示す閉状態となる。 開閉部 V 1の加熱を継続し、 開閉部 V I を T bよ り高い温度に維持すると、 閉状態が維持される。 一方、 開閉部 V Iの加 熱を停止し、 放置すると、 開閉部 V 1は T bより高い温度から T aより 低い温度である室温まで冷却され、 体積が減少し、 図 2 ( b ) に示す閉 状態から、 図 2 ( a) に示す開状態となる。
次に、 加熱により体積が減少し、 冷却により体積が増加するポリマ一 組成物を用いる場合について説明する。 ここでは、 T cより高い温度で は開状態であり、 T dより低い温度では閉状態である開閉部 V 1 につい て説明する。 尚、 T d<T cであり、 T c <室温 ( 2 5 °C) である。 室 温では、 図 2 ( a) に示すように開閉部 V 1は、 開状態である。 この状 態で、 開閉部 V I を冷却する。 すると、 開閉部 V Iは、 局部的に冷却さ れて、 その温度が室温から T dより低い温度まで下降する。 このとき、 流路周辺部 1 1 aのポリマー組成物の体積が増加するが、 基板 1 1の流 路周辺部 1 1 a以外の部分の体積は変化しないので、 流路周辺部 1 1 a は、 流路を狭める方向に膨張し、 それにより開閉部 V 1が図 2 ( a) に 示す開状態から、 図 2 (b) に示す閉状態となる。 開閉部 V Iの冷却を 継続し、 開閉部 V 1を T dより低い温度に維持すると、 閉状態が維持さ れる。 一方、 開閉部 V 1の冷却を停止し、 放置すると、 開閉部 V Iは T dより低い温度から T cより高い温度である室温まで加熱され、 体積が 減少し、 図 2 (b) に示す閉状態から、 図 2 ( a) に示す開状態となる。
[流通制御部の構成]
図 3 ( &) 〜図 3 ( ) は、 図 1 (じ) と同一の断面において流通制 御部 C 1の制御手順を模式的に示す部分断面部である。
図 3 ( a) に示すように、 流通制御部 C 1は、 本流路 3 1の周辺部 1 l b (以下、 流路周辺部 1 1 bという) から構成されている。 流路周辺 部 1 1 bは、 基板 1 1の本流路 3 1 を所定の長さでかつ全周に渡って囲 む部分で構成されている。 前記流路周辺部 l i bは、 ポリマ一組成物よ りなり、 上記開閉部 V 1における開閉制御と同様の制御が可能な流通制 御用開閉部 V 2が複数隣接してなる構成である。 ここでは、 流路周辺部 1 1 bを本流路 3 1の全周を囲む部分としたが、 流路周辺部 1 1 bは本 流路 3 1の全周の一部を囲む部分であってもかまわない。 流通制御部 C 1 を形成するポリマー組成物として好ましい材料は開閉部 V 1の説明 において記載した材料と同様である。
[流通制御部の制御方法]
まず、 流通制御部 C 1を用いて流路 3 1内の液体を送液する方法につ いて説明する。 各流通制御用開閉部 V 2の開閉制御方法は、 前記開閉部 V 1の制御方法と同様であるので、 説明を省略する。 図 3 ( a) 〜図 3 ( c ) に示すように、 液体で満たされた状態の流通制御部 C 1の各流通 制御用開閉部 V 2を流通方向の上流側 (試料注入口 2 1側) から流通方 向の下流側 (排出口 2 4 (図 1参照) 側) に順次レ一ザ一ビーム Lを照 射して加熱することにより閉状態にする。 これにより、 上流側から下流 側に液体を押し出し、 流路 3 1内で液体を流通させることができる。 ま た、 液体の粘度等によるが、 上記押し出しにより液体に下流方向の力を 与え、 流通を開始させることも可能である。 また、 押し出す速度を調節 することにより流速を制御することも可能である。 さらに、 上記押し出 しを繰り返すことにより流通制御部 C 1がポンプとして機能し、 本流路 3 1中の液体を流通させることができる。
以下、 流通制御部 C 1 をポンプとして機能させる制御方法を図 3
( a) 〜図 3 ( f ) を用いて説明する。 流通制御部 C 1において、 各流 通制御用開閉部 V 2は、 T aより低い温度では開状態であり、 T bより 高い温度では閉状態であるとする。 尚、 T aく T bであり、 T a>室温 ( 2 5 °C) である。 以下においては、 加熱手段としてレーザーを、 冷却 手段として空冷を用いる場合について説明する。
試料注入口 2 1から注入された液体で満たされている本流路 3 1 に おいて、 全ての流通制御用開閉部 V 2が開状態である状態 (図 3 ( a) ) から、 各流通制御用開閉部 V 2を上流側から下流側に順次レーザービー ム Lを照射して加熱することにより、 閉状態とし (図 3 (b) ) 、 最後 に最下流の流通制御用開閉部 V 2を閉状態とする (図 3 ( c ) ) 。 図 3
(b) 、 ( c ) に示すステップにおいて、 流通制御部 C 1内の液体が押 し出される。 その後、 最下流の流通制御用開閉部 V 2を閉状態としたま ま、 他の流通制御用開閉部 V 2を開状態とすることにより、 流通制御部 C 1は、 液体で満たされる (図 3 (d ) ) 。 その後、 最下流の流通制御 用開閉部 V 2を開状態にすると同時に、 流通制御部 C 1の各流通制御用 開閉部 V 2を上流側から下流側に順次レーザー光 Lを照射して加熱す ることにより閉状態とし (図 3 ( e ) ) 、 最後に最下流の流通制御用開 閉部 V 2を閉状態とする (図 3 ( f ) ) 。 図 3 ( e ) 、 ( f ) に示すス テツプにおいて、 流通制御部 C 1内の液体が押し出される。 上記制御を 繰り返すことにより、 流通制御部 C 1がポンプとして機能する。
尚、 流通制御部 C 1内の各流通制御用開閉部 V 2を、 単独で開閉制御 して、 流体の流通の阻止/許容を切り替える開閉部として機能させても 良いことは勿論である。
[キヤピラリチップの使用方法]
図 1 ( a ) 〜図 1 ( c ) において、 キヤビラリチップ 1は、 例えば、 次のように使用することができる。 試料注入口 2 1に試料を注入し、 試 薬注入口 2 2に第 1の試薬を注入する。 合流点 P 1で、 本流路 3 1を流 通する試料流に、 支流路 3 2を流通する試薬流が合流し混合流となる。 そして、合流点 P 1より下流において、試料と第 1の試薬とが混合され、 反応が起こる。
また、適当なタイミングで、試薬注入口 2 3に第 2の試薬を注入する。 合流点 P 2で、 前記混合流に支流路 3 3を流通する試薬流が合流する。 合流点 P 2より下流において、 試料と第 2の試薬とが混合され、 反応が 起こる。 反応が完了する本流路 3 1の位置 P 3において、 任意の分析を 行う。 例えば、 光熱変換法、 蛍光法、 吸光度法、 化学発光法などの光学 的検出方法などを用いて、 反応溶液の検出を行うことにより、 試料の分 析を行うことができる。 または、 顕微鏡で反応溶液を観察することによ り、 試料の分析を行うことができる。
尚、 開閉部 V 1 を閉状態とすることにより試料と第 1の試薬、 第 2の 試薬との反応時間を調整することができる。 また、 流通制御部 C 1にお いて、 上述の流通制御を行うことにより、 流路中の液体の流通を促進す ることができる。
生化学検査項目のように、 試料と試薬とを反応させ、 分離することな く必要な検出ができる場合は、 キヤビラリチップ 1を用いることにより . 混合から反応、 検出まで一貫した流路で連続的に処理が可能である。 本実施形態で用いる試料としては、 血液、 髄液、 唾液、 尿等の生体試 料が挙げられる。 これらの生体試料を用いた場合、 血液、 髄液、 唾液や 尿中に含まれる生体成分、 臓器 · 組織 ·粘膜由来の生体成分、 感染源と なる菌ゃウィルスなどの蛋白、 D N A、 R N A、 アレルゲン、 種々の抗 原等が検出対象物質となりうる。
[その他の構成]
キヤビラリチップ 1における流路は、 試薬や試料の移送を主な目的と した流路 (本流路 3 1の上流端部から合流点 P 1まで, 支流路 3 2 , 3 3 ) 、 試薬や試料の混合を主な目的とした流路 (本流路 3 1の合流点 P 1から合流点 P 2まで) 、 試薬や試料の混合及び反応液の検出を主な目 的とした流路 (本流路 3 1の合流点 P 2から下流端部まで) からなる。 流路の構成は、 本実施形態に示すものに限定されることはなく、 用途に 応じて設計しうる。
キヤビラリチップ 1における流路は、 一つの操作 (例えば、 一定量の サンプリングや試料、 試薬の移送等) を主な目的とした流路部分のみか らなっていてもよいが、 上記のように複数の各々異なった操作を主な目 的とした流路を組み合わせてなるものであっても良い。 このことにより 単なる定性分析ではなく、 定量分析を伴うような高度な分析が可能な装 置を構成することができる。
また、 流路の構成としては、 例えば試料や試薬の混合や希釈を主な目 的とした流路の形状として、 1本の流路に他の流路を合流させた形状 (図 1 に示す形状) や、 1本の流路に複数本の流路を一力所で合流させ た形状などを挙げることができる。 1本の流路に他の流路または複数の 流路を合流させ 1本の流路とすることにより、 流路形状のみで、 混合操 作や希釈操作を行うことができる。 また、 合流する流路からの液体の流 量を変えることにより、 異なった比率での試料、 試薬の混合や希釈も可 能である。
液体を均一化する流路部分の平面視形状としては、 直線状の形状、 蛇 行状や渦巻き状に曲げられた形状などの形状が挙げられる。 また、 流路 中に他の部分より流通方向の単位長さに対する体積が大きい反応部を 設ける構成 (後述する第 2の実施形態) とすることにより、 試料と試薬 との混合及び反応が進行しやすい構成とすることができる。 さらに、 上 記とは逆に、 1本の流路が多数本に別れる流路を構成する (流路を分岐 する) ことにより、 分流を行うことも可能である。
また、 流路の設計以外に、 開閉部や流通制御部を所望の位置に備える 構成とすることにより、 希釈や他の試薬との反応のタイミング等の制御 を行うことができる。
尚、 本実施形態においては、 各流路 3 1, 3 2 , 3 3が基板 1 1に形 成されているキヤビラリチップを用いたが、 本発明を適用しうるキヤピ ラリチップはこの構成に限定されることはなく、 例えば、 各流路 3 1, 3 2 , 3 3が円柱状の基体に形成されているものであっても良い。
上面が開放された溝で構成されている流路を有するキヤビラリチッ プを用いても、上述のような開閉制御、流通制御を行うことができるが、 本実施形態のように、 各流路の全周がポリマー組成物からなるキヤピラ リで構成されているキヤビラリチップを用いる方が、 上述の開閉制御、 流通制御を効果的に行う点から好ましい。
この他、 試料や試薬に悪影響を与えないことを条件として、 試料注入 口を構成する貫通孔 2 1 の周囲を加熱して貫通孔 2 1 の体積を小さく して、 貫通孔 2 1からなる試料注入口から本流路 3 1に押し出すように 流体を流してもよい。 なお、 冷却により体積が大きくなるポリマー組成 物を使う場合には、 当然、 試料注入口を構成する貫通孔 2 1の周囲を冷 却して貫通孔 2 1の体積を小さくする。
[キヤビラリチップの流通制御装置]
次に、 キヤビラリチップ 1の流路 3 1内における液体の流通を制御す るための、 流通制御装置の一形態について説明する。 図 9は、 流通制御 装置 5 1のブロック図である。 流通制御装置 5 1は、 キヤビラリチップ 装着部 5 2 と、 レーザ一発生器 5 4、 光学系 5 5及びレーザー制御部 5 6を備える。 本明細書においては、 レーザ一発生器 5 4及と光学系 5 5 とをあわせてレーザー照射部ともいう。 流通制御装置 5 1は、 キヤピラ リチップ装着部 5 2にキヤビラリチップ 1を装着して使用する。 キヤピ ラリチップ装着部 5 2は、 例えばキヤピラリチップ 1を装着するための ガイ ド部材 5 3を有する。 レーザー発生器 5 4から発され、 光学系 5 5 で細く絞られたレーザービーム Lは、 キヤピラリチップ 1に照射される, レーザ一制御部 5 6は、 光学系 5 5を制御し、 光学系 5 5内部でレーザ 一ビーム Lを偏向させることにより レーザ一ビーム Lの照射位置を制 御する。 レ一ザ一制御部 5 6は、 レーザ一ビーム Lが開閉部 V 1、 流通 制御部 C 1の開閉部 V 2に照射されるように制御する。 また、 レーザー 制御部 5 6の制御により、 レーザ一ビーム Lを走査しながら照射するこ ともでき、 さらには光学系 5 5におけるレーザービーム Lの絞り具合を 調整して、 隣接する複数の開閉部 V 2を同時に照射することもできる。
したがって、 流通制御装置 5 1 により上述の開閉部 V 1 , V 2の開閉 制御方法や、 流通制御部 C 1の流通制御方法を実施することができる。 なお、 流通制御装置は、 複数のレーザービーム Lを同時に照射するこ とができるレ一ザ一を備えている構成であってもよい。 また、 レーザー ビーム Lの照射が、 キヤビラリチップ 1の任意の位置になされるように キヤビラリチップ 1を駆動する駆動手段を有する構成であつてもよい。
図 1 0は、 図 9 とは異なる形態の流通制御装置 5 7のブロック図であ る。 図 1 0において、 図 9と同じ構成要素については、 同一の符号を付 して説明を省略する。
図 1 0に示す流通制御装置 5 7は、 図 9に示す流通制御装置 5 1にお いて、 試料注入口 2 1、 試薬注入口 2 2, 2 3に試料又は試薬を注入可 能な注入手段 5 8、 排出口 2 4から排出液を排出可能な排出手段 5 9、 上述した分析が可能な例えば顕微鏡などの分析手段 6 0を備えている 構成である。 このような構成により、 一つの装置において、 試料及び試 薬の注入、 開閉制御、 流通制御、 分析を行うことができる。
また、 図 9、 .図 1 0に示す流通制御装置においては、 キヤビラリチッ プ装着部 5 2に装着するキヤビラリチップ 1を取り替えるだけで、 異な るキヤビラリチップ 1の反応を分析することができる。
[キヤビラリチップの第 1の作製方法]
本方法において、 キヤビラリチップ 1は主平板 (溝形成用平板) と、 蓋平板を貼り合わせて作製される。 図 4 ( a) は蓋平板 2 aの上面図、 図 4 (b) は主平板 3 aの上面図、 図 4 ( c ) は本作製方法により作製 されたキヤビラリチップ 1の縦断面の断面図である。 前記縦断面は、 本 流路 3 1 を縦方向に切断する断面である。
図 4 ( b ) に示すように、 主平板 3 aの表面に流路となる溝 3 1 a , 3 2 a , 3 3 aを形成する。 図 4 ( a) に示すように、 篕平板 2 aに、 それぞれ試料注入口、 試薬注入口、 排出口となる四つの貫通孔 2 1 a , 2 2 a, 3 a, 2 4 aを形成する。 そして、 図 4 ( c ) に示すように、 主平板 3 aと、 蓋平板 2 aとを、 主平板 3 aの溝 3 1 a , 3 2 a , 3 3 aが形成されている面を内側にして貼り合わせることにより、 キヤピラ リチップ 1を作製する。
主平板 3 aとして、 基板上の表面に特定のポリマー組成物からなる層 (以下、 ポリマー組成物層と称す) が形成されたものが用いられる。 か かるポリマー組成物の詳細については、 開閉部 V 1を形成するポリマー 組成物として上述したものと同様である。 基板上へのポリマー組成物層 の形成方法は、 限定されることはなく、 例えばスプレー堆積、 塗装、 浸 漬、 グラビア印刷、 圧延などの多くの方法により行うことができる。
より具体的には、 P E Tフィルムからなる基板の表面に第 1次溶融転 移するポリマー組成物からなる層が形成された感温性粘着テープであ るクールオフタイプのインテリマ一 (登録商標) (二ッタ株式会社製) を主平板 3 aの材料として用いることができる。 クールオフタイプのィ ンテリマー (登録商標) は、 溶融温度領域より低い温度から高い温度に 加熱することにより体積が増加し、 溶融温度領域より高い温度から低い 温度に冷却することにより体積が減少する。 前記クールオフタイプのィ ンテリマー (登録商標) として、 溶融温度領域が略 3 0 °C以上 4 0 °C以 下のインテリマ一 (登録商標) 、 略 4 0 °C以上 5 0 °C以下のインテリマ ― (登録商標) 等が、 主平板 3 aの材料として適している。
溝 3 1 a , 3 2 a , 3 3 aは、ポリマ一組成物層の表面に形成される。 ポリマ一組成物層の厚みは、 溝 3 1 a, 3 2 a , 3 3 aの深さよりも厚 ければ特に限定されず、 主平板 3 a全体が特定のポリマー組成物で形成 されたものであっても良い。 本方法においては、 溝全体がポリマー組成 物で形成されるので、 流路中の任意の部位を開閉部又は流通制御部とす ることができる。 この場合、 加熱手段として、 任意の部位を照射可能な 例えば移動式レーザーのような加熱手段を用いることが好ましい。
また、 ここでは、 蓋平板 2 aの内部にも、 前記のポリマー組成物層が 形成されている。 このような構成により、 主平板 3 aと蓋平板 2 aとを 貼り合わせることにより形成される流路 3 1 , 3 2 , 3 3の全周が、 ポ リマー組成物で形成される。ただし、 この構成に限定されることはなく、 蓋平板 2 aには、 前記ポリマー組成物が形成されていない構成であって も良い。 この場合、 流路 3 1, 3 2 , 3 3は、 その全周の一部がポリマ 一組成物で形成されることになる。
主平板 3 aの基板 (すなわちポリマー組成物層以外の部分) 、 及び蓋 平板 2 a (ポリマ一組成物層以外の部分) は、 シリコンやガラス等の無 機材料や有機ポリマーで作製することができる。 主平板 3 aの基板、 及 び蓋平板 2 aの少なくとも一方は、 加熱手段が発する光の波長に対して 透明性を有する材料を使用する。 例えばレーザーにより開閉部 V 1又は 流通制御部 C 1を加熱する場合、 キヤビラリチップ 1の外部からレーザ —光を照射するので、 外部から開閉部 V 1及び流通制御部 C 1 までレー ザ一光を到達させる必要があり、 レーザー光の光路において透明性を確 保する必要があるからである。
主平板 3 aの表面の溝 3 1 a, 3 2 a, 3 3 aは、 切削加工ゃレ一ザ 一によるエッチング加工等の方法により形成する。 蓋平板 2 aの貫通孔 2 1 a , 2 2 a, 2 3 a , 2 4 aは、 超音波加工等の方法により形成す る。 蓋平板 2 aの貫通孔 2 1 a, 2 2 a, 2 3 aは、 主平板 3 aの各溝 3 1 a , 3 2 a, 3 3 aの最上流位置に略対応する位置に形成する。 貫 通孔 2 4 aは、 溝 3 1 aの最下流位置に略対応する位置に形成する。 そ して、 溝 3 1 a, 3 2 a, 3 3 aが形成された主平板 3 aと、 貫通孔 2 l a , 2 2 a , 2 3 a , 2 4 aが形成された盖平板 2 aとを溝 3 1 a, 3 2 a , 3 3 aを内側にして貼り合わせることにより、 キヤビラリチッ プ 1が形成される。 主平板 3 aと、 蓋平板 2 aとの貼り合わせは、 例え ば、 超音波融着、 ホッ トメルト接着剤や UV接着剤等の接着剤による接 着、 粘着剤による粘着、 両面テープ等を介しての圧接等の方法による。
図 4 ( c ) に示すように、 キヤビラリチップ 1において、 溝 3 1 a、 3 2 a、 3 3 aは流路 3 1、 3 2、 3 3となり、 貫通孔 2 1 aは試料注 入口 2 1 となり、貫通孔 2 2 a , 2 3 aは試薬注入口 2 2、 2 3 となり、 貫通孔 24 aは排出口 2 4となる。
[キヤビラリチップの第 2の作製方法]
本方法において、 キヤビラリチップ 1は、 主平板 (溝形成用平板) と 蓋平板を貼り合わせて作製される。図 5 ( a)は盖平板 2 bの上面図を、 図 5 (b) は主平板 3 bの上面図を、 図 5 ( c ) は本作製方法により作 製されたキヤピラリチップ 1の縦断面の断面図である。 前記縦断面は、 本流路 3 1を縦方向に切断する断面である。
図 5 (b) に示すように、 主平板 3 bの表面に流路となる溝 3 1 b , 3 2 b , 3 3 bを形成する。 また、 主平板 3 bに、 貫通孔 2 1 b , 2 2 b, 2 3 , 2 4 bを形成する。 貫通孔 2 1 b , 2 2 b, 2 3 bは、 各 溝 3 1 b, 3 2 b , 3 3 bの最上流位置に形成する。 貫通孔 2 4 bは、 溝 3 1 bの最下流位置に形成する。
そして、 図 5 ( c ) に示すように、 主平板 3 bと、 蓋平板 2 bとを、 主平板 3 bに形成された溝 3 1 b , 3 2 b , 3 3 bを内側にして貼り合 わせることにより、 キヤビラリチップ 1が形成される。
本作製方法は、 溝 3 1 , 3 2 , 3 3及び貫通孔 2 1 , 2 2 , 2 3 , 2 4が同一の主平板 3 bに形成されている点を除いては第 1の作製方法 と同様である。 また、 主平板 3 b、 盖平板 2 bとして、 第 1の作製方法 で用いた主平板 3 a、 蓋平板 2 aと同様の材料からなるものを用いるこ とができる。 従って、 本方法においても、 溝全体がポリマー組成物で形 成されるので、 流路中の任意の部位を開閉部又は流通制御部とすること ができる。
図 5 ( c ) に示すように、 キヤビラリチップ 1 において、 溝 3 1 b, 3 2 b , 3 3 bは流路 3 1 , 3 2 , 3 3となり、 貫通孔 2 1 bは試料注 入口 2 1 となり、貫通孔 2 2 b , 2 3 bは試薬注入口 2 2, 2 3 となり、 貫通孔 2 4 bは排出口 2 4となる。
[キヤビラリチップの第 3の作製方法]
本方法において、 キヤビラリチップ 1は、 主平板 (スリッ ト形成用平 板) と 2枚の蓋平板を貼り合わせて作製される。 図 6 ( a) は第 1の盖 平板 2 cの上面図を、 図 6 ( b ) は主平板 3 cの上面図を、 図 6 ( c ) は第 2の蓋平板 2 dの上面図を、 図 6 (d) は本作製方法により作製さ れたキヤビラリチップ 1の縦断面の断面図である。 前記縦断面は、 本流 路 3 1 を縦方向に切断する断面である。
図 6 ( b ) に示すように、 主平板 3 cに流路となるスリッ ト 3 1 c, 3 2 c , 3 3 cを形成する。 スリッ ト 3 1 c , 3 2 c , 3 3 cは、 主平 板 3 cの表裏面を貫通する。 図 6 ( a) に示すように、 第 1の蓋平板 2 cに、 それぞれ試料注入口、 試薬注入口、 排出口となる四つの貫通孔 2 1 c , 2 2 c , 2 3 c , 2 4 cを形成する。 そして、 図 6 ( d ) に示す ように、 主平板 3 c と、 第 1 の蓋平板 2 c と、 第 2の蓋平板 2 dとを、 主平板 3 aを二枚の蓋平板 2 c、 2 dで挟むようにして貼り合わせるこ とにより、 キヤビラリチップ 1を作製する。
主平板 3 bとして、 ポリマー組成物からなる板を用いる。 ここでいう ポリマー組成物とは、 開閉部 V 1を形成するポリマー組成物として上述 したものと同様である。 主平板 3 c と、 第 2の蓋平板 2 dとを貼り合わ せることにより、 第 1の作製方法における主平板 3 aと同様の平板が形 成される点を除いては、 第 1の作製方法と同様である。 従って、 本方法 においても、 スリッ ト全体がポリマ一組成物で形成されるので、 流路中 の任意の部位を開閉部又は流通制御部とすることができる。 尚、 二枚の 蓋平板 2 c、 2 dの内面にポリマー組成物層が形成されていると、 流路 3 1 , 3 2 , 3 3の全周がポリマー組成物からなり好ましいが、 この構 成に限定されることはない。
図 6 ( d ) に示すように、 キヤビラリチップ 1 において、 スリッ ト 3 1 c , 3 2 c , 3 3 cは流路 3 1 , 3 2 , 3 3 となり、 貫通孔 2 1 cは 試料注入口 2 1となり、 貫通孔 2 2 c , 2 3 cは試薬注入口 2 2 , 2 3 となり、 貫通孔 2 4 cは排出口 2 4となる。
(第 2の実施形態)
[キヤピラリチップの構成]
図 7は、 本実施形態で用いるキヤビラリチップ 1 ' の外観を模式的に 示す斜視図である。 図 7に示すように、 キヤビラリチップ 1 ' は、 各流 路 3 1 , 3 2 , 3 3の上流端近傍に、 試料注入口 2 1及び試薬注入口 2 2, 2 3に対応させて、 開閉部 V 1 と同じ構成の開閉部 V 2 , V 4 , V 5を備える。 尚、 開閉部 V 2は、 流通制御部 C 1の開閉部を兼ねる。 そ の他の構成は、 第 1の実施形態のキヤビラリチップ 1 と同じ構成なので, 同一の要素には同一の符号を付して、 説明を省略する。
[キヤピラリチップの使用方法]
キヤビラリチップ 1 ' は、 第 1の実施形態のキヤビラリチップ 1 と同 様の使用方法で使用することができる。 そして、 さらに、 開閉部 V 2 , V 4 , V 5の開閉制御によって、 試料注入口 2 1に注入された試料及び 試薬注入口 2 2, 2 3に注入された試薬の流通開始のタイミング、 流通 停止のタイミング、 及び流通量を制御することができる。
本実施形態のキヤビラリチップ 1 ' も第 1の実施形態に示す流通制御 装置を用いて、 開閉制御、 流通制御、 分析等を行うことができる。
(第 3の実施形態)
[キヤピラリチップの構成]
図 8 ( a) は、 本実施形態で用いるキヤビラリチップ 1 3の外観を模 式的に示す斜視図である。 図 8 ( b ) は、 図 8 ( a) の Vllb-VIIb断面 を示す断面図、 図 1 ( c ) は図 1 (b) の VIIc-VIIc断面を示す断面図 である。 図 8 ( a) 〜図 8 ( c ) に示すように、 キヤビラリチップ 1 3 は、 本流路 3 4、 支流路 3 5 , 3 6 , 3 7 , 3 8 , 3 9、 注入口 4 1、 排出口 2 5, 2 6 , 2 7, 2 8 , 2 9が形成された上面矩形の基板 1 4 からなる。 各流路 3 4, 3 5 , 3 6, 3 7, 3 8 , 3 9は、 キヤビラリ で構成されている。 本流路 3 4は、 分岐点 3 4 aで 5本の支流路 3 5 , 3 6 , 3 7 , 3 8 , 3 9に分岐する。
本流路 3 4は、上流端近傍に流通制御部 C 2を備える。各支流路 3 5 , 3 6 , 3 7 , 3 8, 3 9は、 他の部分より流通方向の単位長さに対する 体積が大きい平面視円形の反応部 3 5 a , 3 6 a , 3 7 a , 3 8 a , 3 9 aと、 各反応部 3 5 a , 3 6 a, 3 7 a, 3 8 a , 3 9 aの近傍下流 側に開閉部 V 3を備える。各開閉部 V 3は、各排出口 2 5, 2 6 , 2 7 , 2 8, 2 9に対応する。
本実施形態のキヤビラリチップ 1 3は、 第 1の実施形態のキヤピラリ チップ 1 とは、 その流路設計が異なるのみなので、 各要素の詳細な説明 は省略する。 開閉部 V 3の構成及び制御方法は、 第 1の実施形態の開閉 部 V I と同様である。 流通制御部 C 2の構成及び制御方法は、 第 1の実 施形態の流通制御部 C 1 と同様である。
[キヤビラリチップの使用方法] 以下、 キヤビラリチップ 1 3の使用方法を説明する。注入口 4 1 から、 培地入りの細胞の懸濁液を注入し、 流通制御部 C 2によるポンプ機能を 利用して各支流路 3 5 , 3 6 , 3 7, 3 8, 3 9の反応部 3 5 a , 3 6 a , 3 7 a , 3 8 a , 3 9 aまで、 前記懸濁液を送液する。 各反応部 3 5 a , 3 6 a , 3 7 a , 3 8 a, 3 9 aが、 前記懸濁液で満たされた後、 各支流路 3 5 , 3 6, 3 7 , 3 8, 3 9に設けられた開閉部 V 3を閉状 態とする。
この状態で、 2 日放置し、 反応層 3 5 a , 3 6 a , 3 7 a , 3 8 a , 3 9 aにおいて、 細胞を培養する。 その後、 各支流路 3 5, 3 6, 3 7, 3 8, 3 9の開閉部 V 3を開状態とし、 注入口 4 1から第 1の医薬品候 補化合物が溶解された試薬溶液を注入し、 流通制御部 C 2のポンプ機能 を利用して、 各反応部 3 5 a , 3 6 a , 3 7 a , 3 8 a , 3 9 aに上記 試薬溶液を送液する。 そして、 各反応部 3 5 a , 3 6 a , 3 7 a , 3 8 a , 3 9 aが上記試薬で満たされたタイミングで開閉部 V 3を閉状態と する。
その後、 キヤビラリチップ 1 3の反応部 3 5 a, 3 6 a , 3 7 a , 3 8 a , 3 9 aを顕微鏡で観察することにより、 第 1の医薬候補化合物の 細胞毒性や、 細胞に与える影響を分析する。 尚、 上記細胞として付着細 胞を用いることが好ましい。 付着細胞は、 反応層に付着するため、 培養 後、 試薬を送液しても大部分は反応層 3 5 a , 3 6 a , 3 7 a , 3 8 a , 3 9 aから流出することがないからである。
尚、 上記において、 分岐した各支流路 3 5 , 3 6 , 3 7 , 3 8, 3 9 の上流端部に開閉部を設けて、 各反応層 3 5 a , 3 6 a , 3 7 a , 3 8 a , 3 9 aに異なる医薬品候補化合物の試薬溶液を送液し、 複数の試薬 の細胞毒性等を同時に分析するようにしてもよい。 この場合、 例えば各 試薬に対して上流端部のバルブが開状態となっている流路を一つのみ とし、 他の流路の開閉部は閉状態とすることにより、 各反応部 3 5 a, 3 6 a , 3 7 a , 3 8 a , 3 9 aに送液する試薬の種類を制御する。 本実施形態のキヤビラリチップ 1 3 も第 1 の実施形態に示す流通制 御装置を用いて、 開閉制御、 流通制御、 分析等を行うことができる。 第 1から第 3の実施形態では、 キヤビラリチップにおいて、 開閉部の 温度を変化させるという簡単な方法で、 キヤビラリの流通制御、 開閉制 御を達成することが可能となる。 さらに、 ポリマー組成物からなる層の 表面または内部にキヤビラリを形成するので、 任意の部位を開閉部とし て選択できる。
また、 上記実施形態の方法では、 流通制御、 開閉制御に際して、 試料 や試薬の性質に影響を及ぼすことがない。 さらに、 上記制御を行うため に必要な手段は、 静粛性を維持できる小型なもので構成可能である。 上記説明から、 当業者にとっては、 本発明の多くの改良や他の実施形 態が明らかである。 従って、 上記説明は、 例示としてのみ解釈されるべ きであり、 本発明を実行する最良の態様を当業者に教示する目的で提供 されたものである。 本発明の精神を逸脱することなく、 その構造及び/ 又は機能の詳細を実質的に変更できる。
〔産業上の利用の可能性〕
本発明に係る流通方法は、 医療診断用のマイクロチップや、 薬品応答 性検出用のマイクロチップにおいて、 試薬や試料等の液体を流通させる ために有用である。
また、 本発明に係る流通方法は、 マイクロチップを用いて分析を行う マイクロ T A Sに使用することができる。 例えば、 血液、 髄液、 唾液、 尿等の生体試料の分析用マイクロ T A Sに使用することができる。
本発明に係る流通方法によると、 簡易な構成のマイクロチップにおい て、 所望の開閉制御、 流通制御を行うことができるので、 特に使い捨て 用のキヤビラリチップに適用する方法として有用である。

Claims

請 求 の 範 囲
1. ポリマー組成物からなる層と、 前記ポリマー組成物からなる層の 表面又は内部に形成されたキヤピラリ とを有するキヤビラリチップを用 いて、 前記キヤビラリ内の流体を流通させる流通方法であって、 前記キヤビラリは、 流通制御部を備え、 前記流通制御部は、 複数の連 続した開閉部からなり、
前記開閉部は、 前記ポリマー組成物の体積が増加することにより閉状 態となつて前記キヤビラリを流れる流体の流通を阻止し、 前記ポリマ一 組成物の体積が減少することにより開状態となって前記キヤピラリを流 れる流体の流通を許容し、
前記流通方法は、
( a) 前記流通制御部において、 前記ポリマー組成物の温度を変化さ せることにより前記複数の開閉部を流通方向に順次開状態から閉状態に 切り替え、 前記キヤビラリ内の流体を流通させるステップ、
を有するキヤビラリチップにおける流体の流通方法。
2. ステップ ( a) を繰り返して複数回行う、 請求の範囲第 1項に記 載の流通方法。
3. 各ステップ ( a) の後に、 以下のステップ、 すなわち、
(b) 前記流通制御部において、 流通方向下流端から 1個または複数 個の開閉部を閉状態にしたまま、 前記ポリマ一組成物の温度を変化させ ることにより他の開閉部を閉状態から開状態に切り替えるステップ、
( c ) ステップ ( b) の後、 ステップ (b) において閉状態である前 記開閉部を開状態に切り替えるステップ、
を有し、 ステップ (c ) と実質的同時に、 次のステップ ( a) を開始 する、 請求の範囲第 2項に記載の流通方法。
4 . さらに以下のステップ、 すなわち、
( d ) 前記開閉部において、 前記ポリマー組成物の温度を変化させる ことにより前記開閉部を閉状態として前記キヤビラリを流れる流体の流 通を阻止するステツプ、
( e ) 前記開閉部において、 前記ポリマ一組成物の温度を変化させる ことにより前記開閉部を開状態として前記キヤピラリを流れる流体の流 通を許容するステツプ、
を有する、 請求の範囲第 1項に記載の流通方法。
5 . 前記ポリマー組成物は、 温度上昇によって体積が増加し、 温度下 降によって体積が減少する、 請求の範囲第 1項に記載の流通方法。
6 . 前記ポリマ一組成物は、 温度上昇によって体積が減少し、 温度下 降によって体積が増加する、 請求の範囲第 1項に記載の流通方法。
7 . 前記ポリマー組成物は、 ァク リ レートまたはメタクリ レートエス テルから誘導される側鎖結晶性繰り返しユニッ トと、 ァクリ レ一トまた はメタクリ レ一トエステルから誘導される側鎖非結晶性繰り返しュニッ 卜とを含む、 請求の範囲第 1項に記載の流通方法。
8 . 前記キヤビラリチップにおいて、 前記キヤビラリが前記層の表面 に形成されており、 前記層の表面には蓋平板が密着している、 請求の範 囲第 1項に記載の流通方法。
9 . 前記キヤビラリチップは、 前記キヤビラリに接続している流体注 入口および流体排出口をさらに備えている、 請求の範囲第 1項に記載の 流通方法。
1 0. ステップ ( a) において、 前記流通制御部の前記開閉部を流通 方向に順次加熱し、 前記開閉部を流通方向に順次開状態から閉状態に切 り替える、 請求の範囲第 1項に記載の流通方法。
1 1. ステップ ( a) において、 前記加熱はレーザーを照射すること による、 請求の範囲第 1 0項に記載の流通方法。
1 2. ステップ ( b) 及びステップ ( c ) において、 前記開閉部を空 冷することにより前記開閉部を閉状態から開状態に切り替える、 請求の 範囲第 3項に記載の流通方法。
1 3. 前記ポリマー組成物は、 その第 1次溶融転移により前記体積変 化する、 請求の範囲第 1項に記載の流通方法。
1 4. 前記ポリマー組成物の第 1次溶融転移は、 8 0 °C以下で起こる、 請求の範囲第 1 2項に記載の流通方法。
1 5. 前記キヤビラリの断面積が、 1 0 0 0 0 ^ m2以上でかつ 2 5 Ο Ο Ο Ο μπι2以下である、 請求の範囲第 1項に記載の流通方法。
1 6. 前記キヤビラリチップは、 さらに前記キヤビラリに接続してい る流体注入口を複数有し、 前記キヤビラリは各流体注入口に対応するよ うに複数の開閉部を有する、 請求の範囲第 1項に記載の流通方法。
1 7. キヤビラリチップ装着部と、 レーザー照射部と、 レーザー制御部 とを備えた流通制御装置であって、 前記キヤビラリチップ装着部は、キヤピラリチップを装着可能であ り、 前記キヤビラリチップは、 ポリマー組成物からなる層と、 前記ポリマ —組成物からなる層の表面又は内部に形成されたキヤビラリ とを有し、 前記キヤビラリは、 流通制御部を備え、 前記流通制御部は、 複数の連 続した開閉部からなり、
前記開閉部は、 前記ポリマー組成物の体積が増加することにより閉状 態となつて前記キヤピラリを流れる流体の流通を阻止し、 前記ポリマ一 組成物の体積が減少することにより開状態となって前記キヤビラリを流 れる流体の流通を許容し、
前記レーザ一照射部は、 前記キヤビラリ装着部に装着されたキヤピラ リチップにレーザー照射可能であり、
前記レーザー制御部は、 前記レーザー照射部による前記キヤピラ ' J装 着部に装着されたキヤビラリチップへのレーザー照射位置を制御可能で あり、 前記開閉部を流通方向に順次レーザー照射することによって、 前 記開閉部が流通方向に順次開状態から閉状態に切り替わり、 前記キヤピ ラリ内を流体が流通する、 流通制御装置。
PCT/JP2004/015453 2003-10-15 2004-10-13 キャピラリチップにおける流体の流通方法 WO2005036182A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2004800119250A CN1784605B (zh) 2003-10-15 2004-10-13 毛细管芯片中流体的流通方法、使用该方法的流通控制装置
JP2005514686A JP3798011B2 (ja) 2003-10-15 2004-10-13 キャピラリチップにおける流体の流通方法
US11/195,649 US7055540B2 (en) 2003-10-15 2005-08-03 Method of moving fluid in capillary chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-354655 2003-10-15
JP2003354655 2003-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/195,649 Continuation US7055540B2 (en) 2003-10-15 2005-08-03 Method of moving fluid in capillary chip

Publications (1)

Publication Number Publication Date
WO2005036182A1 true WO2005036182A1 (ja) 2005-04-21

Family

ID=34431192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015453 WO2005036182A1 (ja) 2003-10-15 2004-10-13 キャピラリチップにおける流体の流通方法

Country Status (4)

Country Link
US (1) US7055540B2 (ja)
JP (1) JP3798011B2 (ja)
CN (1) CN1784605B (ja)
WO (1) WO2005036182A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024551A (ja) * 2005-07-12 2007-02-01 Ngk Spark Plug Co Ltd 中継基板、及びマイクロチップ搭載装置
JP2007278502A (ja) * 2006-04-04 2007-10-25 Samsung Electronics Co Ltd 弁ユニット及びこれを備えた装置
JP2008045745A (ja) * 2006-08-16 2008-02-28 Samsung Electronics Co Ltd バルブユニット、これを備えた反応装置、及びチャンネルにバルブを形成する方法
JP2008121890A (ja) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd 弁ユニット、弁ユニットを備えた微細流動装置、及び微細流動基板
JP2008197097A (ja) * 2007-02-12 2008-08-28 Samsung Electronics Co Ltd 希釈のための遠心力基盤の微細流動装置及びそれを備える微細流動システム
JP2009517655A (ja) * 2005-11-25 2009-04-30 ボンセンス アクティエボラーグ マイクロ流体システム
JP2009539091A (ja) * 2006-05-29 2009-11-12 デビオテック ソシエテ アノニム 体積可変材料を備えるマイクロ流体デバイス
JP2010540905A (ja) * 2007-09-21 2010-12-24 アプライド バイオシステムズ インコーポレーティッド 分析カードのチャンバを熱的に隔離するためのデバイスおよび方法
WO2014207857A1 (ja) * 2013-06-26 2014-12-31 株式会社日立製作所 細胞毒性試験装置、及び細胞毒性試験方法
JP2015511181A (ja) * 2012-02-24 2015-04-16 フォンズ エスピシ ジョルジュ シャルパクFonds Espci Georges Charpak 開放及び/または閉鎖及び/またはポンプ装置を有するマイクロチャネル
WO2021193281A1 (ja) * 2020-03-24 2021-09-30 京セラ株式会社 流路デバイス

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE370338T1 (de) * 2002-03-23 2007-09-15 Starbridge Systems Ltd Mikromechanische bauelemente
TWI256905B (en) * 2005-06-29 2006-06-21 Univ Nat Cheng Kung Method of forming micro-droplets and chips thereof
US8021582B2 (en) * 2006-01-23 2011-09-20 National Cheng Kung University Method for producing microparticles in a continuous phase liquid
TW201000901A (en) * 2006-07-17 2010-01-01 Ind Tech Res Inst Fluidic device and controlling method thereof
US7696437B2 (en) * 2006-09-21 2010-04-13 Belden Technologies, Inc. Telecommunications cable
KR20080073934A (ko) * 2007-02-07 2008-08-12 삼성전자주식회사 밸브 충전물 및 이를 구비한 밸브 유닛
WO2009098314A1 (fr) * 2008-02-09 2009-08-13 Debiotech S.A. Regulateur de flux passif pour infusion de medicaments
US20090326517A1 (en) * 2008-06-27 2009-12-31 Toralf Bork Fluidic capillary chip for regulating drug flow rates of infusion pumps
EP2409204A2 (en) * 2009-03-20 2012-01-25 Avantium Holding B.v. Flow controller assembly for microfluidic applications and system for performing a plurality of experiments in parallel
US20130157251A1 (en) * 2010-01-13 2013-06-20 John Gerard Quinn In situ-dilution method and system for measuring molecular and chemical interactions
US20120275929A1 (en) * 2011-04-27 2012-11-01 Aptina Imaging Corporation Ferrofluid control and sample collection for microfluidic application
WO2014094062A1 (en) * 2012-12-21 2014-06-26 Leica Biosystems Melbourne Pty Ltd Method of producing a reagent on-board an instrument
US10317962B2 (en) 2016-08-16 2019-06-11 International Business Machines Corporation Inducing heterogeneous microprocessor behavior using non-uniform cooling
US10558249B2 (en) 2016-09-27 2020-02-11 International Business Machines Corporation Sensor-based non-uniform cooling
CN109355178B (zh) * 2018-10-24 2022-04-26 四川大学华西医院 一种连续体积梯度毛细管数字pcr装置及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036196A (ja) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology 光駆動型集積化学システム
JP2002066999A (ja) * 2000-08-30 2002-03-05 Kawamura Inst Of Chem Res 微小バルブ機構及びその製造方法
JP2002282682A (ja) * 2001-03-26 2002-10-02 National Institute Of Advanced Industrial & Technology 微小化学反応装置
JP2003503716A (ja) * 1999-06-30 2003-01-28 ユィロス・アクチボラグ ポリマ・バルブ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568692A (en) * 1967-11-27 1971-03-09 Bowles Eng Corp Optical machining process
DE69530669T2 (de) 1995-02-18 2003-11-27 Agilent Technologies Deutschla Vermischen von Flüssigkeiten mittels Elektroosmose
JP3469585B2 (ja) 1997-05-23 2003-11-25 ガメラ バイオサイエンス コーポレイション ミクロ流体工学システムでの流動運動を駆動するために向心的加速を使用するための装置および方法
JP2000108340A (ja) * 1998-10-01 2000-04-18 Seiko Epson Corp マイクロアクチュエータ
JP2001165939A (ja) 1999-12-10 2001-06-22 Asahi Kasei Corp キャピラリー分析装置
US6616825B1 (en) * 2000-08-23 2003-09-09 The Regents Of The University Of California Electrochromatographic device for use in enantioselective separation, and enantioselective separation medium for use therein
JP4362987B2 (ja) * 2001-04-09 2009-11-11 株式会社島津製作所 マイクロチップ電気泳動におけるサンプル導入方法
US6418968B1 (en) * 2001-04-20 2002-07-16 Nanostream, Inc. Porous microfluidic valves
US6887384B1 (en) * 2001-09-21 2005-05-03 The Regents Of The University Of California Monolithic microfluidic concentrators and mixers
JP4221184B2 (ja) * 2002-02-19 2009-02-12 日本碍子株式会社 マイクロ化学チップ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503716A (ja) * 1999-06-30 2003-01-28 ユィロス・アクチボラグ ポリマ・バルブ
JP2002036196A (ja) * 2000-07-24 2002-02-05 National Institute Of Advanced Industrial & Technology 光駆動型集積化学システム
JP2002066999A (ja) * 2000-08-30 2002-03-05 Kawamura Inst Of Chem Res 微小バルブ機構及びその製造方法
JP2002282682A (ja) * 2001-03-26 2002-10-02 National Institute Of Advanced Industrial & Technology 微小化学反応装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024551A (ja) * 2005-07-12 2007-02-01 Ngk Spark Plug Co Ltd 中継基板、及びマイクロチップ搭載装置
JP2009517655A (ja) * 2005-11-25 2009-04-30 ボンセンス アクティエボラーグ マイクロ流体システム
US8506906B2 (en) 2005-11-25 2013-08-13 Bonsens S.A. Microfluidic device
US8920753B2 (en) 2006-04-04 2014-12-30 Samsung Electronics Co., Ltd. Valve unit and apparatus having the same
JP2007278502A (ja) * 2006-04-04 2007-10-25 Samsung Electronics Co Ltd 弁ユニット及びこれを備えた装置
JP2009539091A (ja) * 2006-05-29 2009-11-12 デビオテック ソシエテ アノニム 体積可変材料を備えるマイクロ流体デバイス
JP2008045745A (ja) * 2006-08-16 2008-02-28 Samsung Electronics Co Ltd バルブユニット、これを備えた反応装置、及びチャンネルにバルブを形成する方法
US8464760B2 (en) 2006-08-16 2013-06-18 Samsung Electronic Co., Ltd. Valve unit, reaction apparatus with the same, and method of forming valve in channel
JP2008121890A (ja) * 2006-11-09 2008-05-29 Samsung Electronics Co Ltd 弁ユニット、弁ユニットを備えた微細流動装置、及び微細流動基板
US9011795B2 (en) 2006-11-09 2015-04-21 Samsung Electronics Co., Ltd. Valve unit, microfluidic device with the valve unit, and microfluidic substrate
JP2008197097A (ja) * 2007-02-12 2008-08-28 Samsung Electronics Co Ltd 希釈のための遠心力基盤の微細流動装置及びそれを備える微細流動システム
JP2010540905A (ja) * 2007-09-21 2010-12-24 アプライド バイオシステムズ インコーポレーティッド 分析カードのチャンバを熱的に隔離するためのデバイスおよび方法
JP2015511181A (ja) * 2012-02-24 2015-04-16 フォンズ エスピシ ジョルジュ シャルパクFonds Espci Georges Charpak 開放及び/または閉鎖及び/またはポンプ装置を有するマイクロチャネル
WO2014207857A1 (ja) * 2013-06-26 2014-12-31 株式会社日立製作所 細胞毒性試験装置、及び細胞毒性試験方法
WO2021193281A1 (ja) * 2020-03-24 2021-09-30 京セラ株式会社 流路デバイス
JP6991408B1 (ja) * 2020-03-24 2022-01-13 京セラ株式会社 流路デバイス

Also Published As

Publication number Publication date
CN1784605B (zh) 2011-11-23
US7055540B2 (en) 2006-06-06
US20050274423A1 (en) 2005-12-15
JP3798011B2 (ja) 2006-07-19
JPWO2005036182A1 (ja) 2006-12-21
CN1784605A (zh) 2006-06-07

Similar Documents

Publication Publication Date Title
WO2005036182A1 (ja) キャピラリチップにおける流体の流通方法
US11938710B2 (en) Microfluidic assay assemblies and methods of manufacture
JP7023312B2 (ja) 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
US10209250B2 (en) PDMS membrane-confined nucleic acid and antibody/antigen-functionalized microlength tube capture elements, and systems employing them, and methods of their use
US10786800B2 (en) Methods and systems for epi-fluorescent monitoring and scanning for microfluidic assays
CA2479452C (en) Method and device for determining analytes in a liquid
JP4766046B2 (ja) マイクロ総合分析システム、検査用チップ、及び検査方法
US10076752B2 (en) Methods and systems for manufacture of microarray assay systems, conducting microfluidic assays, and monitoring and scanning to obtain microfluidic assay results
US10220385B2 (en) Micro-tube particles for microfluidic assays and methods of manufacture
US20140377146A1 (en) Microfluidic Assay Operating System and Methods of Use
US20150346147A1 (en) Pipettes, methods of use, and methods of stimulating an object of interest
JP2008542743A (ja) 流体のプログラム可能な微小スケール操作のための計量計
JP2003043052A (ja) マイクロチャネルチップ,マイクロチャネルシステム及びマイクロチャネルチップにおける流通制御方法
JP2007083191A (ja) マイクロリアクタ
US9855735B2 (en) Portable microfluidic assay devices and methods of manufacture and use
JP2007136379A (ja) マイクロリアクタおよびその製造方法
Kenis et al. Materials for micro-and nanofluidics
JP2006284451A (ja) 検体中の標的物質を分析するためのマイクロ総合分析システム
JP2003047832A (ja) 流通型微小混合器及び混合装置並びに液体混合方法
Severini Centrifugal microfluidic platform for optical monitoring of bacterial biofilms
Wilhelm et al. Conference 9320: Microfluidics, BioMEMS, and Medical Microsystems XIII

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005514686

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11195649

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048119250

Country of ref document: CN

122 Ep: pct application non-entry in european phase