WO2005028125A1 - Korrosionsschutzbeschichtung - Google Patents

Korrosionsschutzbeschichtung Download PDF

Info

Publication number
WO2005028125A1
WO2005028125A1 PCT/EP2004/052115 EP2004052115W WO2005028125A1 WO 2005028125 A1 WO2005028125 A1 WO 2005028125A1 EP 2004052115 W EP2004052115 W EP 2004052115W WO 2005028125 A1 WO2005028125 A1 WO 2005028125A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion inhibitor
matrix material
corrosion
component according
atomic percent
Prior art date
Application number
PCT/EP2004/052115
Other languages
English (en)
French (fr)
Inventor
Ralph Wilken
Jörg IHDE
Stefan Dieckhoff
Jost Degenhardt
Dirk Salz
Andreas Seiler
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2005028125A1 publication Critical patent/WO2005028125A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/06Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase

Definitions

  • the invention relates to a component comprising a metallic substrate and a corrosion protection coating which contains a matrix material and embedded therein a corrosion inhibitor, the matrix material being separable from the gas phase.
  • a corrosion protection coating serves to protect a metallic substrate from corrosion.
  • Corrosion is understood to mean the reaction of a metallic substrate with a corrosive medium, which changes the metallic substrate and can impair the function of the component.
  • the reaction is in most cases of an electrochemical nature, but it can also be of a chemical or metal-physical nature.
  • the latter like tin pest, is based on transformations of the crystal lattice and only plays a subordinate role in practice.
  • the most common type of corrosion is reaction with atmospheric oxygen, such as rusting iron. The damage caused by corrosion in Germany alone is estimated at several billion euros.
  • Passive corrosion protection consists in coating the metallic substrate with a corrosion protection coating. In this way, the metallic substrate is shielded from its surroundings, so that no corrosion-triggering substances can reach its surface.
  • a disadvantage of passive corrosion protection coatings is that the protective effect is only developed at those locations that are completely covered by the corrosion protection coating. If this is injured, corrosive substances can appear on the surface of the metallic substrate and damage the metallic substrate.
  • Such violations of the anti-corrosion coating can be, for example, hairline cracks, expansion cracks, flaking, abrasions or porosities. These injuries have in common that the corrosion protection coating tears open locally when they occur and that a direct path leads from the metallic substrate into the environment. For each injury, previously connected volume elements of the anti-corrosion coating are separated and a new surface is created locally.
  • active corrosion protection on the other hand, if parts of the surface of the metallic substrate for the corrosive substances are exposed, there is an interaction (e.g. a reaction) between the agent used for protection (corrosion inhibitor) and the metallic substrate to be protected. Active anti-corrosion coatings usually also impart a passive protective effect.
  • Corrosion inhibitors are substances that actively delay or prevent corrosion caused by a corrosive medium when they come into contact with a metal.
  • “active” means that the corrosion inhibitors react with substances involved in the corrosion process and thereby inhibit it. This inhibiting effect can be based, for example, on the fact that corrosion inhibitors form a poorly soluble compound with the metallic substrate or a substance formed during the corrosion process, which (passively) protects against the surface of the metallic substrate exposed to the corrosion attack.
  • paints and coatings are often used for corrosion protection. These are usually passive anti-corrosion coatings. They therefore have the disadvantage that the metallic substrate to be protected is exposed to a corrosion attack if the lacquer or the coating is damaged, as described above.
  • coatings which also act as active corrosion protection.
  • coatings based on a matrix material that can be separated from the gas phase for example plasma coatings.
  • the published patent application DE 198 07 086 A1 discloses a method for coating surfaces with an anti-corrosion coating by means of a plasma jet at atmospheric pressure.
  • a second gas phase is introduced into the plasma jet (first gas phase), which can also contain a powdery solid or an aerosol.
  • the second gas phase reacts with the first gas phase. This reaction produces a particle species that is suitable for layer deposition and is deposited on the substrate surface.
  • a disadvantage of such a layer is that if the corrosion protection coating is damaged in the vicinity of the injury site, it cannot develop an increased corrosion protection effect for the metallic substrate.
  • the published patent application DE 197 37 748 A1 discloses a corrosion protection coating made of a plasma polymer that forms a matrix into which corrosion sion inhibitors are stored.
  • a vapor phase deposition is proposed, for example, for producing the anti-corrosion coating.
  • the corrosion inhibitor be in the plasma during deposition.
  • the published patent application DE 197 48 240 A1 describes a corrosion protection coating based on a plasma polymer, wherein a corrosion inhibitor, which can be conductive polymers such as polyanilines, is introduced into the plasma polymer.
  • a corrosion protection coating is thus disclosed which first has its effect in the same manner at every point on the coated surface.
  • a violation of the anti-corrosion coating is accompanied by a local decrease in its thickness.
  • the corrosion protection coatings according to the prior art have a remote effect, this remote effect decreases with the distance to the site of the injury.
  • the inhibiting effect of the corrosion protection coating is consequently particularly low, especially in the places where it is injured. However, an increased protective effect would be desirable in these locations.
  • a component according to claim 1 that is to say by a component comprising a metallic substrate and a corrosion protection coating which contains a matrix material and a corrosion inhibitor embedded therein, the matrix material generally being separable from the gas phase and separate matrix material and corrosion inhibitor Form phases.
  • the matrix material can be deposited in particular by thermal, plasma, photon, flame, hot filament or laser activated gas phase layer deposition at low pressure, atmospheric pressure or excess pressure.
  • the matrix material forms a continuous phase and the corrosion inhibitor a dispersed phase.
  • dispersed phase if there are two volume elements that consist of the same substance and there is no path between these two volume elements that does not pass through a volume element that consists of a different substance.
  • the partial volumes forming the dispersed phase are referred to below as elements of the dispersed phase.
  • Fig. 1 is a schematic representation of a component with a metallic. Substrate and a corrosion protection coating with a continuous matrix phase and a dispersed corrosion inhibitor phase
  • Fig. 2 is a schematic representation of the component of FIG. 1, in which the anti-corrosion coating is damaged at one point and Fig. 3 is a schematic representation of the component of FIG. 2, in which the rinsing out of the corrosion inhibitor is indicated.
  • the anti-corrosion coating 12 comprises two phases: a matrix material and a corrosion inhibitor.
  • the matrix material forms a continuous matrix material phase 14 and the corrosion inhibitor forms a dispersed corrosion inhibitor phase 16, which consists of a multiplicity of elements 17a, 17b, 17c, ... which are dispersed in the matrix material.
  • the corrosion protection coating 12 represents a difficult to penetrate barrier for a corrosive medium 20 (for example a corrosive aqueous liquid), so that the corrosive medium 20 remains on the surface 22 of the corrosion protection coating 12.
  • a corrosive medium 20 for example a corrosive aqueous liquid
  • FIG. 2 shows a situation in which the anti-corrosion coating 12 is damaged.
  • a new surface 24 of the corrosion protection coating 12 is formed. This new surface 24 runs through two elements 17a and 17b on both sides of the slit-like damage to the corrosion protection coating.
  • the corrosive medium 20 can penetrate the slit-like injury and thus come into contact with the surface of the metallic substrate 10 or the metal oxide layer 18 (if present).
  • the corrosive medium 20 releases the corrosion inhibitor of the elements 17a and 17b from the matrix, so that an increased concentration of the corrosion inhibitor on the metal surface or the Metal oxide surface. It is therefore advantageous in a component according to the invention that the corrosion inhibitor is released in increased concentrations, in particular, where the metallic substrate is particularly susceptible and sensitive due to a violation of the (passive) corrosion protection coating.
  • the corrosion inhibitor is preferably selected and embedded in the matrix material in such a way that it comes into contact with the corrosion inhibitor phase through water or an aqueous liquid (e.g. if the corrosion protection coating is damaged) , can be removed from the matrix material.
  • this corrosion inhibitor is preferably selected and embedded in the matrix material in such a way that the corrosion inhibitor can be essentially completely removed from the corrosion inhibitor phase when it comes into contact with water or an aqueous one (for example if the corrosion protection coating is damaged) Liquid arrives.
  • the corrosion inhibitor and matrix material must be coordinated with one another in such a way that the proportion of the corrosion inhibitor which is bound in the interface phase is small compared to the total amount.
  • The can be achieved by a spherical shape and by a large expansion of the elements.
  • the corrosion inhibitor forms a dispersed phase (corrosion inhibitor phase) consisting of a large number of elements and the mean maximum spatial expansion (mean Length) of the elements is between 10 nm and 50 ⁇ m, preferably between 100 nm and 10 ⁇ m.
  • the spatial extent of an element in one direction is the minimum distance between two planes that run perpendicular to the direction and do not intersect the element.
  • the maximum spatial extent is the maximum of the spatial extent (in all directions) and represents the length of the element.
  • the corrosion inhibitor is preferably selected and embedded in the matrix material such that it is essentially completely detachable by water or an aqueous liquid which comes into contact with elements of the dispersed phase (corrosion inhibitor phase).
  • Substances are preferably used as corrosion inhibitors which, when washed out by an aqueous liquid, buffer to a pH value at which the existing oxide layer on the metal is stable, i.e. the aqueous liquid does not dissolve the oxide. In this case there is no significant further oxidation of the metallic substrate, so that the progress of the corrosion is inhibited.
  • substances are preferably used as the corrosion inhibitor which react with the oxide of the metallic substrate to form a mixed oxide which is sparingly water-soluble.
  • the corresponding mixed oxide forms on the metallic substrate or the already existing oxide layer, so that the entry of corrosive medium is prevented. The corrosion progress is inhibited.
  • a corrosion inhibitor is preferably used whose solubility in water at 25 ° C. and 1013 hPa (standard conditions) is greater than 1 mg / l.
  • its solubility in water is preferably below 100 g / l.
  • a corrosion protection coating An important prerequisite for the effectiveness of a corrosion protection coating is that it has good adhesion to the substrate. However, the risk of detachment would exist, for example, if the corrosion inhibitor outgassed, so that the gases released accumulate between the metallic substrate and the corrosion protection coating. To prevent this, the vapor pressure of the corrosion inhibitor is preferably below 1 hPa under standard conditions. A corrosion inhibitor that fulfills this condition evaporates sufficiently slowly even if it has been released due to a violation of the corrosion protection coating. A particularly good corrosion-inhibiting effect has been found for corrosion inhibitors which contain salts from an organic acid and an organic or inorganic base.
  • a particularly good corrosion-inhibiting effect was achieved in our own investigations if the corrosion inhibitor phosphates, silicates, borates, chromates, titanates, vanadates, tungstates or phosphonates, and / or potassium, sodium, zinc, barium, strontium, Contained calcium, magnesium, manganese, cobalt, nickel, tin, zirconium, aluminum or rare earth cations.
  • a matrix material is preferred whose water solubility is below 1 mg / l under standard conditions.
  • the matrix material is preferably selected so that it is swollen by water by a maximum of 5% by volume (based on the mass in the dry state), since otherwise tensions can arise in the corrosion protection coating, which would lead to the latter becoming detached.
  • shrinkage cracks could occur during drying due to the shrinkage that then sets in.
  • a matrix material is therefore preferred in which the saturation values of the water absorption of the matrix material under standard conditions (23 ° C., 50% relative atmospheric humidity, 1013 hPa) are below 5% by weight, preferably below 2% by weight, based on the mass of the matrix material in the dry state.
  • Corrosion protection coatings are often used not only because of their corrosion-inhibiting effect, but also to fulfill other functions at the same time.
  • the specific electrical resistance of the matrix material is greater than under standard conditions according to DIN 53482 10 10 ⁇ cm, preferably greater than 10 12 ⁇ cm, particularly preferably greater than 10 14 ⁇ cm.
  • a corrosion protection coating must not be too thin for the protection of technical components, as it can otherwise be easily rubbed off. On the other hand, a coating that is too thick is cost-intensive and tends to come off.
  • the layer thickness preferred for the present invention is between 10 nm and 80 ⁇ m, in particular between 100 nm and 50 ⁇ m.
  • Components according to the invention provided with a corrosion protection coating should often be cleaned of dirt with organic solvents.
  • the matrix material In order to prevent the coating from being damaged during such cleaning operations or when applying solvent-containing paints, it is preferred that the matrix material have a solubility of at most 1 mg / l in acetone, cyclohexane, ethanol and toluene.
  • the anti-corrosion coating shows particularly good properties with regard to the adhesive strength if the matrix material deposited from the gas phase is a polymer material, in particular a plasma polymer material.
  • composition has a significant influence on the properties of the plasma polymer material, which is particularly advantageous for use on components according to the invention if it is either a) deposited using organosilicon starting materials / precursors and therefore comprises silicon, oxygen, carbon and hydrogen, preferably in the following atomic number shares:
  • Hydrogen between 0 atomic percent and 65 atomic percent. or b) is deposited using hydrocarbon-containing starting materials and therefore comprises carbon, hydrogen and oxygen, particularly preferably in the following atomic number proportions:
  • atomic percentages are the respective percentage of the atoms of a certain chemical element in the total number of all atoms (here: the plasma polymer material).
  • oxygen, carbon and hydrogen, nitrogen and / or halogens, in particular fluorine can also be present in the plasma polymer matrix material his.
  • a method according to the invention is preferably used, in which the matrix material and the corrosion inhibitor are applied to the metallic substrate in such a way that the corrosion inhibitor is embedded in the matrix material and the matrix material and corrosion inhibitor form separate phases.
  • Preferred processes are gas phase deposition processes such as, for example, plasma deposition processes.
  • the corrosion inhibitor a) in the form of a possibly electrostatically charged powder or b) by atomizing and drying a solution (if appropriate within a reaction chamber) and separating the particles formed or c) by atomizing and separating a solution and evaporating the Solvent from the separated drops or d) by the reaction of a gaseous acid with a gaseous base and separation of the resulting particles into the corrosion protection coating.
  • the methods mentioned are preferably carried out at atmospheric pressure. As a result, complex vacuum technology can be dispensed with.
  • a further feature of the gas phase deposition processes described, in particular the plasma polymer deposition of the matrix material, is that the surface energy and thus the wetting properties can be controlled in a targeted manner by suitable choice of the process parameters.
  • a hydrophobic corrosion protection coating is achieved by producing non-polar functional groups, such as methyl groups, on the surface of the corrosion protection coating.
  • Preferred components have corrosion protection coatings with a surface energy below 35 mN / m, in particular below 30 mN / m (at 23 ° C., 50% relative air humidity, 1013 hPa).
  • a hydrophilic surface of the matrix material is favorable. Hydrophilic surfaces of the matrix material are achieved if polar functional groups, such as OH groups, are present there.
  • Preferred components have matrix materials with a surface energy above 60 mN / m, especially above 65 mN / m (at 23 ° C, 50% relative air humidity, 1013 hPa).
  • a coating according to the invention can in particular protect components whose metallic substrates consist of iron, steel, magnesium, aluminum or an alloy of the respective material.
  • a particularly preferred area of application is components whose substrates consist of copper-containing aluminum alloys.
  • corrosion protection coatings according to the invention can also be used as an adhesion-promoting layer by setting a suitable surface tension. Through pigmentation or a suitable choice of a colored matrix material or corrosion inhibitor, they can also serve as an optical functional layer.
  • corrosion protection coatings according to the invention are components of layer systems.
  • Layer systems of this type can also comprise a plurality of corrosion protection coatings according to the invention.
  • the suitability of the present invention was examined on the basis of four exemplary components according to the invention (example components) and two comparison components to which corrosion protection coatings were applied.
  • Two comparative samples on which coatings were applied which did not contain a corrosion inhibitor served as a comparison.
  • the aluminum alloy AA2024 was used as the metallic substrate that was pickled before the coating.
  • the corrosion protection coating for the four sample components was deposited in several successive layers on this substrate. First, a first layer of the matrix material was deposited using an atmospheric pressure or a low-pressure plasma deposition process. Both types of processes are explained in more detail below.
  • the corrosion inhibitor as described below, was applied to the layer of the matrix material in such a way that separate particles are present on the surface of the first layer.
  • a further layer of matrix material was applied using the same plasma deposition process, which layer covers the position of the corrosion inhibitor particles and fills the spaces between the corrosion inhibitor particles. This process was repeated several times. The corrosion protection coating was thus built up on the metallic substrate from the subsequent layers.
  • the atmospheric pressure plasma deposition process was carried out as described in WO 01/32949.
  • a plasma source from Plasmatreat was used, which consists of a plasma generator PFW10 and a power supply unit type FG1001.
  • the power supply was operated with a discharge voltage of 280 V and a discharge current of 9.3 A.
  • Compressed air with a volume flow of 1200 l / h was used as ionization gas.
  • Hexamethyldisiloxane in aerosol form was generated as a precursor in the plasma generator and introduced into the plasma zone by an atomizer. Nitrogen served as the carrier gas. At a distance of 5 mm from the The substrate was swept under the plasma generator at a speed of 5 m / min.
  • the atomic number shares for layers deposited in this way for hydrogen are between 40 and 60 atom percent, carbon between 15 and 25 atom percent, silicon between 8 and 15 atom percent oxygen between 8 and 15 atom percent and nitrogen below 2 atom percent.
  • the low-pressure plasma deposition process was carried out as described in patent EP 102 7169.
  • Hexamethyldisiloxane was introduced as a precursor into the vacuum container of a conventional plasma polymerization system and stimulated to form plasma by high-frequency alternating current at 13.56 MHz.
  • the substrate was exposed to a hydrogen and oxygen plasma for 180 s at a pressure of 0.5 hPa and a power of 1400 W, then for 120 s at a pressure of 0.3 hPa and a power of 1400 W a hydrogen plasma.
  • the hydrogen was admixed with hexamethyldisiloxane and then a layer of 100 nm thickness was deposited on the substrate within 600 s at a pressure of 0.2 hPa and an output of 800 W.
  • the atomic number shares in layers deposited in this way for hydrogen are between 40 and 60 atom percent, carbon between 15 and 25 atom percent, silicon between 8 and 15 atom percent and oxygen between 15 and 25 atom percent.
  • Barium chromate was introduced into the anti-corrosion coating by grinding the barium chromate in a mortar so that the mean maximum spatial expansion of the barium chromate particles is approx. 3 ⁇ m. This powder was slurried in water and converted into an aerosol using an atomizer. This aerosol was guided along the substrate by means of an air stream, so that small drops with an average diameter of approx. 50 ⁇ m separated on the substrate. These drops were dried up.
  • Benzotriazole was applied as follows: First the benzotriazole was dissolved in water and converted into an aerosol using an atomizer. This aerosol was guided along the substrate by means of an air stream, so that small drops with an average diameter of approx. 50 ⁇ m separated on the substrate. These drops were dried up. This gave rise to benzotriazole crystals with an average maximum spatial expansion of approx. 4 ⁇ m.
  • the corrosion-inhibiting properties were determined in a subsequent corrosion test.
  • the coated surface of the metallic substrate was injured in a defined manner with the aid of a mechanical milling cutter (removal approx. 0.2 mm) and then drizzled with an aqueous solution and for a period of 6 h for the comparison components and 72 h for the Example components at 23 ° C and 50% rel. Humidity stored.
  • the test solution consisted of 3% sodium chloride as a corrosive substance in the purest water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Die Erfindung betrifft ein Bauteil, umfassend ein metallisches Substrat und eine Korrosionsschutzbeschichtung, die ein Matrixmaterial und darin eingebettet einen Korrosionsinhibitor enthält, wobei das Matrixmaterial aus der Gasphase abscheidbar ist. Erfindungsgemäss ist vorgesehen, dass Matrixmaterial und Korrosionsinhibitor separate Phasen bilden

Description

Korrosionsschutzbeschichtung
Die Erfindung betrifft ein Bauteil, umfassend ein metallisches Substrat und eine Korrosionsschutzbeschichtung, die ein Matrixmaterial und darin eingebettet einen Korrosionsinhibitor enthält, wobei das Matrixmaterial aus der Gasphase abscheidbar ist.
Eine Korrosionsschutzbeschichtung dient dem Schutz eines metallischen Substrats vor Korrosion. Unter Korrosion wird die Reaktion eines metallischen Substrats mit einem korrosiven Medium verstanden, die das metallische Substrat verändert und die Funktion des Bauteils beeinträchtigen kann. Die Reaktion ist in den meisten Fällen elektrochemischer Natur, sie kann aber auch chemischer oder metallphysikalischer Art sein. Letztere beruht, wie beispielsweise die Zinnpest, auf Umwandlungen des Kristallgitters und spielt in der Praxis lediglich eine untergeordnete Rolle. Die häufigste Art von Korrosion ist die Reaktion mit Luftsauerstoff, wie beispielsweise das Rosten von Eisen. Der allein in Deutschland durch Korrosion verursachte Schaden wird auf etliche Milliarden Euro geschätzt.
Beim Schutz gegen Korrosion wird zwischen dem aktiven und dem passiven Korrosionsschutz unterschieden. Der passive Korrosionsschutz besteht darin, dass das metallische Substrat mit einer Korrosionsschutzbeschichtung überzogen wird. Auf diese Art und Weise wird das metallische Substrat von seiner Umgebung abgeschirmt, so dass keine korrosionsauslösenden Stoffe zu seiner Oberfläche gelangen können. Nachteilig an passiven Korrosionsschutzbe- schichtungen ist, dass die Schutzwirkung nur an den Stellen entfaltet wird, die vollständig von der Korrosionsschutzbeschichtung bedeckt sind. Wird diese verletzt, so können korrosionsauslösende Stoffe an die Oberfläche des metal- tischen Substrats treten und das metallische Substrat schädigen.
Derartige Verletzungen der Korrosionsschutzbeschichtung können beispielsweise Haarrisse, Dehnungsrisse, Abplatzungen, Abschürfungen oder Porositäten sein. Diesen Verletzungen ist gemein, dass bei ihrer Entstehung die Korrosionsschutzbeschichtung lokal aufreißt und ein direkter Weg vom metalli- sehen Substrat in die Umgebung führt. Daher werden bei jeder Verletzung vorher verbundene Volumenelemente der Korrosionsschutzbeschichtung getrennt und es entsteht lokal eine neue Oberfläche.
Beim aktiven Korrosionsschutz hingegen kommt es dann, wenn Teile der O- berfläche des metallischen Substrats für die korrosiv wirkenden Substanzen frei liegen, zu einer Wechselwirkung (z.B. einer Reaktion) zwischen dem zum Schutz eingesetzten Mittel (Korrosionsinhibitor) und dem zu schützenden metallischen Substrat. Aktive Korrosionsschutzbeschichtungen vermitteln in der Regel auch eine passive Schutzwirkung.
Korrosionsinhibitoren sind Substanzen, die bei Kontakt mit einem Metall des- sen durch ein korrosives Medium verursachte Korrosion aktiv verzögern oder verhindern. „Aktiv" bedeutet in diesem Zusammenhang, dass die Korrosionsinhibitoren mit am Korrosionsprozess beteiligten Substanzen reagieren und diesen dadurch hemmen. Diese hemmende Wirkung kann beispielsweise darauf beruhen, dass Korrosionsinhibitoren mit dem metallischen Substrat oder einer beim Korrosionspro- zess entstanden Substanz eine schwer lösliche Verbindung bilden, die sich (passiv) schützend auf der dem Korrosionsangriff ausgesetzte Oberfläche des metallischen Substrats anlagert.
Aufgrund ihrer vergleichsweise geringen Kosten und ihrer einfachen Aufbringungsart werden häufig Lacke und Beschichtungen zum Korrosionsschutz eingesetzt. Dabei handelt es sich in der Regel um passive Korrosionsschutz- beschichtungen. Sie haben daher den Nachteil, dass das zu schützende me- tallische Substrat bei Verletzung des Lacks oder der Beschichtung, wie oben beschrieben, einem Korrosionsangriff ausgesetzt ist.
Es wird daher versucht, Beschichtungen zu entwickeln, die auch als aktiver Korrosionsschutz wirken. Von besonderem Interesse sind dabei Beschichtungen auf der Basis eines aus der Gasphase abscheidbaren Matrixmaterials, beispielsweise Plasmabeschichtungen.
Die Offenlegungsschrift DE 198 07 086 A1 offenbart ein Verfahren zum Beschichten von Oberflächen mit einer Korrosionsschutzbeschichtung mittels eines Plasmastrahls bei Atmosphärendruck. Dabei wird in den Plasmastrahl (erste Gasphase) eine zweite Gasphase eingebracht, die auch einen pulver- förmigen Feststoff oder ein Aerosol enthalten kann. Die zweite Gasphase reagiert mit der ersten Gasphase. Aus dieser Reaktion entsteht eine zur Schicht- abscheidung geeignete Teilchenspezies, die auf der Substratoberfläche abgeschieden wird.
Nachteilig bei einer derartigen Schicht ist, dass sie bei Verletzung der Korrosi- onsschutzbeschichtung in der Umgebung der Verletzungsstelle keine verstärkte Korrosionsschutzwirkung für das metallische Substrat entfalten kann.
Die Offenlegungsschrift DE 197 37 748 A1 offenbart eine Korrosionsschutzbeschichtung aus einem Plasmapolymer, das eine Matrix bildet, in die Korro- sionsinhibitoren eingelagert sind. Zur Herstellung der Korrosionsschutzbeschichtung wird beispielsweise eine Dampfphasenabscheidung vorgeschlagen. Alternativ wird vorgeschlagen, dass sich der Korrosionsinhibitor beim Abscheiden im Plasma befindet.
Die Offenlegungsschrift DE 197 48 240 A1 beschreibt eine Korrosionsschutzbeschichtung auf Basis eines Plasmapolymers, wobei ein Korrosionsinhibitor, bei dem es sich um leitfähige Polymere, wie Polyaniline, handeln kann, in das Plasmapolymer eingebracht wird. Es wird damit eine Korrosionsschutzbeschichtung offenbart, die ihre Wirkung zunächst an jedem Punkt der beschich- teten Oberfläche in gleicher Art und Weise entfaltet. Eine Verletzung der Korrosionsschutzbeschichtung geht einher mit einer lokalen Abnahme ihrer Dicke. Es befindet sich in der Umgebung der Verletzungsstelle weniger Beschich- tungsmaterial als an unverletzten Stellen. Zwar entfalten die Korrosions- schutzbeschichtungen nach dem Stand der Technik eine Femwirkung, diese Fernwirkung nimmt jedoch mit dem Abstand zum Ort der Verletzung ab. Die inhibierende Wirkung der Korrosionsschutzbeschichtung ist folglich gerade an den Orten besonders gering, an denen sie verletzt ist. An diesen Orten wäre jedoch eine erhöhte Schutzwirkung wünschenswert.
Es war die Aufgabe der vorliegende Erfindung, ein aus einem metallischen Substrat bestehendes Bauteil mit einer Korrosionsschutzbeschichtung vorzuschlagen, bei der eine die Korrosion hemmende Wirkung auch an den Stellen des Bauteils auftritt, an denen die Korrosionsschutzbeschichtung verletzt ist.
Diese Aufgabe wird erfindungsgemäß durch ein Bauteil gemäß Anspruch 1 gelöst, also durch ein Bauteil, umfassend ein metallisches Substrat und eine Korrosionsschutzbeschichtung, die ein Matrixmaterial und darin eingebettet einen Korrosionsinhibitor enthält, wobei das Matrixmaterial im Allgemeinen aus der Gasphase abscheidbar ist und Matrixmaterial und Korrosionsinhibitor separate Phasen bilden. Das Matrixmaterial kann dabei insbesondere durch thermische, plasma-, pho- tonen-, flammen-, hot-filament- oder laseraktivierte Gasphasenschicht- abscheidung bei Niederdruck, Atmosphärendruck oder Überdruck abgeschieden werden.
Das Matrixmaterial bildet dabei eine kontinuierliche Phase und der Korrosionsinhibitor eine dispergierte Phase.
Werden zwei unterschiedliche Stoffe innerhalb eines vorgegebenen Gesamtvolumens gemischt, so spricht man dann von separaten Phasen, wenn Teilvolumina existieren, in denen lediglich einer der Stoffe vorliegt. Ist es möglich, von einem beliebigen Volumenelement der Mischung, das ausschließlich aus einem Stoff besteht, zu einem beliebigen anderen Volumenelement zu gelangen, das ebenfalls ausschließlich aus dem selben Stoff besteht, ohne dass der Weg durch ein Volumenelement verläuft, das aus dem anderen Stoff besteht, so wird davon gesprochen, dass dieser Stoff eine kontinuierliche Phase bildet.
Entsprechend wird von einer dispergierten Phase gesprochen, wenn zwei Volumenelemente existieren, die aus dem gleichen Stoffe bestehen, und keinen Weg zwischen diesen beiden Volumenelement besteht, der nicht durch ein Volumenelement verläuft, dass aus einem anderen Stoff besteht. Die die dispergierte Phase bildenden Teilvolumina werden im Folgenden Elemente der dispergierten Phase genannt.
Die Erfindung wird anhand von Beispielen und der Bezugnahme auf die der beigefügten Figuren näher erläutert. Dabei zeigt
Fig. 1 eine schematische Darstellung eines Bauteils mit einem metallischen . Substrat und eine Korrosionsschutzbeschichtung mit einer kontinuierlichen Matrixphase und einer dispergierten Korrosionsinhibitorphase
Fig. 2 eine schematische Darstellung des Bauteils nach Fig. 1 , bei dem die Korrosionsschutzbeschichtung an einer Stelle verletzt ist und Fig. 3 eine schematische Darstellung des Bauteils nach Fig. 2, bei dem das Ausspülen des Korrosionsinhibitors angedeutet ist.
In Fig. 1 ist ein metallisches Substrat 10 dargestellt, auf das eine Korrosionsschutzbeschichtung 12 aufgebracht ist. Die Korrosionsschutzbeschichtung 12 umfasst zwei Phasen: ein Matrixmaterial und einen Korrosionsinhibitor. Das Matrixmaterial bildet eine kontinuierliche Matrixmaterialphase 14 und der Korrosionsinhibitor bildet eine dispergierte Korrosionsinhibitorphase 16, die aus einer Vielzahl von Elementen 17a, 17b, 17c,... besteht, die im Matrixmaterial dispergiert sind.
Zwischen dem metallischen Substrat 10 und der Korrosionsschutzbeschichtung 12 befindet sich eine Metalloxidschicht 18, die aber nicht in jedem Fall vorhanden sein muss. Die Korrosionsschutzbeschichtung 12 stellt im unverletzten Zustand gemäß Fig. 1 für ein korrosives Medium 20 (z. B. eine korrosive wässrige Flüssigkeit) eine schwer durchdringliche Barriere dar, so dass das korrosive Medium 20 auf der Oberfläche 22 der Korrosionsschutzbeschichtung 12 verbleibt.
Fig. 2 zeigt eine Situation, in der die Korrosionsschutzbeschichtung 12 verletzt ist. Es bildet sich eine neue Oberfläche 24 der Korrosionsschutzbeschichtung 12. Diese neue Oberfläche 24 verläuft durch zwei Elemente 17a und 17b zu beiden Seiten der schlitzartigen Verletzung der Korrosionsschutzbeschichtung. Das korrosive Medium 20 kann in die schlitzartige Verletzung eindringen und so in Kontakt mit der Oberfläche des metallischen Substrats 10 bzw. der Metalloxidschicht 18 (falls vorhanden) treten.
Wie in Fig. 3 gezeigt, löst das korrosive Medium 20 in diesem Fall den Korro- sionsinhibitor der Elemente 17a und 17b aus der Matrix heraus, so dass sich am Ort der Verletzung der Korrosionsschutzbeschichtung 12 eine erhöhte Konzentration des Korrosionsinhibitors auf der Metalloberfläche bzw. der Metalloxidoberfläche einstellt. Vorteilhaft an einem erfindungsgemäßen Bauteil ist folglich, dass der Korrosionsinhibitor insbesondere dort in erhöhter Konzentrationen freigesetzt wird, wo das metallische Substrat aufgrund einer Verletzung der (passiven) Korrosionsschutzbeschichtung besonders anfällig und empfindlich ist.
Da Wasser als Korrosion auslösendes Medium eine überragende Rolle spielt, ist der Korrosionsinhibitor vorzugsweise so ausgewählt und so in das Matrixmaterial eingebettet, dass er durch Wasser oder eine wässrige Flüssigkeit, das bzw. die in Kontakt mit der Korrosionsinhibitorphase gelangt (z.B. bei Verletzung der Korrosionsschutzbeschichtung), aus dem Matrixmaterial heraus- lösbar ist.
Um eine möglichst große Menge Korrosionsinhibitor verfügbar zu machen, ist dieser Korrosionsinhibitor vorzugsweise so ausgewählt und in das Matrixmaterial eingebettet, dass der Korrosionsinhibitor aus der Korrosionsinhibitorphase im Wesentlichen vollständig herauslösbar ist, wenn er (z.B. bei Verletzung der Korrosionsschutzbeschichtung) in Kontakt mit Wasser oder einer wässrigen Flüssigkeit gelangt .
Am Rand der Elemente 17a, 17b, 17c der dispergierten Phase und damit an der Grenzfläche zwischen der dispergierten und der kontinuierlichen Phase kann eine Grenzflächenphase oder dergleichen vorliegen, in der sich die die Phasen bildenden Stoffe miteinander umgesetzt haben. Die sich an der Grenzfläche ausbildende Grenzflächenphase kann dann in der Regel nicht durch Wasser herausgelöst werden. Um zu gewährleisten, dass ein großer Anteil des Korrosionsinhibitors zum Herauslösen verfügbar ist, müssen Korrosionsinhibitor und Matrixmaterial so aufeinander abgestimmt werden, dass der Anteil des Korrosionsinhibitors, der in der Grenzflächenphase gebunden ist, im Vergleich zur Gesamtmenge gering ist. Dies kann vorzugsweise dadurch erreicht werden, dass Matrixmaterial und Korrosionsinhibitor so auf einander abgestimmt werden, dass sie nur eine sehr dünne Grenzflächenphase ausbilden, oder dadurch, dass die die Korrosionsinhibitorphase bildenden Elemente ein hinreichend kleines Verhältnis von Oberfläche zu Volumen aufweisen. Das kann durch eine kugelähnliche Gestalt und durch eine große Ausdehnung der Elemente erreicht werden.
Es wurde in eigenen Untersuchungen eine besonders gute Auswaschbarkeit gefunden, wenn das Matrixmaterial eine kontinuierliche Phase bildet, der Kor- rosionsinhibitor eine aus einer Vielzahl von Elementen bestehende, in die kontinuierliche Phase eingebettete dispergierte Phase (Korrosionsinhibitorphase) bildet und die mittlere maximale räumliche Ausdehnung (mittlere Länge) der Elemente zwischen 10 nm und 50 μm, vorzugsweise zwischen 100 nm und 10 μm beträgt. Die räumliche Ausdehnung eines Elements in eine Richtung ist der minimale Abstand zweier senkrecht zur Richtung verlaufender Ebenen, die das Element nicht schneiden. Die maximale räumliche Ausdehnung ist das Maximum der räumlichen Ausdehnungen (in alle Richtungen) und stellt die Länge des Elements dar.
Wie oben beschrieben, ist der Korrosionsinhibitor bevorzugt so ausgewählt und so in das Matrixmaterial eingebettet, dass er durch Wasser oder eine wässrige Flüssigkeit, das bzw. die in Kontakt mit Elementen der dispergierten Phase (Korrosionsinhibitorphase) gelangt, im Wesentlichen vollständig herauslösbar ist.
Als Korrosionsinhibitoren werden bevorzugt Substanzen eingesetzt, die, wenn sie von einer wässrigen Flüssigkeit ausgewaschen werden, auf einen pH-Wert puffern, bei dem die bestehende Oxidschicht auf dem Metall stabil ist, d.h. die wässrige Flüssigkeit das Oxid nicht auflöst. In diesem Fall kommt es zu keiner nennenswerten weiteren Oxidation des metallischen Substrats, so dass der Fortschritt der Korrosion gehemmt ist.
Alternativ werden bevorzugt Substanzen als Korrosionsinhibitor verwendet, die mit dem Oxid des metallischen Substrats unter Bildung eines Mischoxids reagieren, das schwer wasserlöslich ist. In diesem Fall bildet sich das entsprechende Mischoxid auf dem metallischen Substrat bzw. der bereits vor- handenen Oxidschicht, so dass der Zutritt von korrosivem Medium verhindert wird. Der Korrosionsfortschritt wird so gehemmt.
Alternativ werden bevorzugt Substanzen verwendet, die a) an das Oxid des metallischen Substrats so (z.B. kovalent) anbindbar sind und/oder b) elektrochemische Potenzialdifferenzen im Bereich der Oberfläche des metallischen Substrats verringern und/oder c) Komplexe mit Bestandteilen des metallischen Substrats oder des Oxids eingehen, so dass eine weitere Korrosion gehemmt wird. Die Wirkung besonders bevorzugter Korrosionsinhibitoren beruht auf mehreren der genannten Wirkmechanismen.
Um zu erreichen, dass bei Verletzung der Korrosionsschutzbeschichtung der Korrosionsinhibitor hinreichend schnell herausgelöst wird, wird vorzugsweise ein Korrosionsinhibitor eingesetzt, dessen Löslichkeit in Wasser bei 25°C und 1013 hPa (Standardbedingungen) größer ist als 1 mg/l. Um zu verhindern, dass er ausgewaschen wird, bevor er seine korrosionsinhibierende Wirkung entfalten konnte, liegt seine Löslichkeit in Wasser bevorzugt unter 100 g/l.
Eine wichtige Voraussetzung für die Wirksamkeit einer Korrosionsschutz- beschichtung ist, dass diese eine gute Haftung auf dem Substrat aufweist. Die Gefahr des Enthaftens wäre jedoch beispielsweise dann gegeben, wenn der Korrosionsinhibitor ausgasen würde, so dass sich die freigesetzten Gase zwischen dem metallischen Substrat und der Korrosionsschutzbeschichtung ansammeln. Um das zu verhindern, liegt der Dampfdruck des Korrosionsinhibi- tors vorzugsweise bei Standardbedingungen unter 1 hPa. Ein Korrosionsinhibitor, der diese Bedingung erfüllt, verdampft auch dann, wenn er aufgrund einer Verletzung der Korrosionsschutzbeschichtung freigesetzt wurde, ausreichend langsam. Eine besonders gute korrosionsinhibierende Wirkung wurde für Korrosionsinhibitoren festgestellt, die Salze aus einer organischen Säure und einer organischen oder anorganischen Base enthalten.
Eine besonders gute korrosionsinhibierende Wirkung wurde in eigenen Unter- suchungen erreicht, wenn der Korrosionsinhibitor Phosphate, Silikate, Borate, Chromate, Titanate, Vanadate, Wolframate oder Phosphonate, und/oder Kalium-, Natrium-, Zink-, Barium-, Strontium-, Calcium-, Magnesium-, Mangan-, Kobalt-, Nickel-, Zinn-, Zirkonium-, Aluminium- oder Seltenerdkationen enthielt. Um zu verhindern, dass die Korrosionsschutzbeschichtung eines erfindungsgemäßen Bauteils selbst durch Wasser aufgelöst wird, und dadurch auf lange Sicht ihre schützende Wirkung verliert, wird ein Matrixmaterial bevorzugt, dessen Wasserlöslichkeit bei Standardbedingungen unter 1 mg/l liegt.
Des Weiteren wird das Matrixmaterial bevorzugt so gewählt, dass es durch Wasser maximal um 5 Vol.-% (bezogen auf die Masse im Trockenzustand) aufgequollen wird, da anderenfalls Spannungen in der Korrosionsschutzbeschichtung entstehen können, die zu einer Ablösung derselben führen würden. Zusätzlich könnte es beim Trocknen aufgrund der dann einsetzenden Schrumpfung zu Schrumpfungsrissen kommen. Es wird daher ein Matrixmate- rial bevorzugt, bei dem die Sättigungswerte der Wasseraufnahme des Matrixmaterials bei Standardbedingungen (23°C, 50 % relative Luftfeuchte, 1013 hPa) unter 5 Gew.-%, bevorzugt unter 2 Gew.-% liegt, bezogen auf die Masse des Matrixmaterials im Trockenzustand.
Korrosionsschutzbeschichtungen werden oftmals nicht nur wegen ihrer korro- sionshemmenden Wirkung verwendet, sondern auch, um gleichzeitig weitere Funktionen zu erfüllen. Um ein erfindungsgemäßes Bauteil auch an spannungsführenden Stellen einsetzen zu können, ist gemäß einer bevorzugten Ausführungsform vorgesehen, dass der spezifische elektrische Widerstand des Matrixmaterials bei Standardbedingungen nach DIN 53482 größer ist als 1010 Ω cm, bevorzugt größer als 1012 Ω cm, besonders bevorzugt größer als 1014 Ω cm.
Für den Schutz technischer Bauteile darf eine Korrosionsschutzbeschichtung nicht zu dünn sein, da sie ansonsten leicht abgerieben werden kann. Anderer- seits ist eine zu dicke Beschichtung kostenintensiv und neigt dazu, sich abzulösen. Die für die vorliegende Erfindung bevorzugte Schichtdicke liegt zwischen 10 nm und 80 μm, insbesondere zwischen 100 nm und 50 μm.
Mit einer Korrosionsschutzbeschichtung versehene erfindungsgemäße Bauteile sollen häufig mit organischen Lösungsmitteln von Schmutz gereinigt wer- den. Um zu verhindern, dass bei derartigen Reinigungsoperationen oder beim Auftragen von lösungsmittelhaltigen Farben die Beschichtung geschädigt wird, ist es bevorzugt, dass das Matrixmaterial in Aceton, Cyclohexan, Ethanol und Toluol eine Löslichkeit von höchstens 1 mg/l besitzt.
Die Korrosionsschutzbeschichtung zeigt besonders gute Eigenschaften hin- sichtlich der Haftfestigkeit, wenn das aus der Gasphase abgeschiedene Matrixmaterial ein Polymermaterial, insbesondere ein Plasmapolymermaterial ist.
Einen maßgeblichen Einfluss auf die Eigenschaften des Plasmapolymermaterials hat dessen Zusammensetzung, das für den Einsatz auf erfindungsgemäßen Bauteilen dann besonders vorteilhaft ist, wenn es entweder a) mittels siliziumorganischer Ausgangsstoffe/Precursoren abgeschieden wird und deshalb Silizium, Sauerstoff, Kohlenstoff und Wasserstoff umfasst, bevorzugt in den folgenden Atomzahlanteilen:
- Silizium zwischen 10 Atomprozent und 35 Atomprozent,
- Sauerstoff zwischen 5 Atomprozent und 67 Atomprozent, - Kohlenstoff zwischen 5 Atomprozent und 60 Atomprozent und
- Wasserstoff zwischen 0 Atomprozent und 65 Atomprozent. oder b) mittels kohlenwasserstoffhaltiger Ausgangsstoffe abgeschieden wird und deshalb Kohlenstoff, Wasserstoff und Sauerstoff umfasst, besonders bevorzugt in den folgenden Atomzahlanteilen:
- Kohlenstoff zwischen 33 Atomprozent und 99 Atomprozent, - Wasserstoff zwischen 1 Atomprozent und 67 Atomprozent und
- Sauerstoff zwischen 0 Atomprozent und 30 Atomprozent.
Hierbei sind „Atomprozente" der jeweilige prozentuale Anteil der Atome eines bestimmten chemischen Elements an der Gesamtzahl aller Atome (hier: des Plasmapolymermaterials). Zusätzlich zu Silizium, Sauerstoff, Kohlenstoff und Wasserstoff können auch Stickstoff und/oder Halogene, insbesondere Fluor im plasmapolymeren Matrixmaterial enthalten sein.
Zur Herstellung erfindungsgemäßer Bauteile wird vorzugsweise ein erfindungsgemäßes Verfahren eingesetzt, bei dem das Matrixmaterial und der Korrosionsinhibitor so auf das metallische Substrat aufgebracht werden, dass der Korrosionsinhibitor in das Matrixmaterial eingebettet wird und Matrixmaterial und Korrosionsinhibitor separate Phasen bilden.
Bevorzugte Verfahren sind Gasphasenabscheideverfahren wie zum Beispiel Plasma- Abscheideverfahren.
Um die Größe der die dispergierte Phase bildenden Elemente gut kontrollieren zu können, hat es sich als vorteilhaft herausgestellt, den Korrosionsinhibitor mittels einer Aerosolabscheidung in die Matrixphase einzubetten (einzubringen).
Insoweit vorteilhaft ist es, den Korrosionsinhibitor a) in Form eines ggf. elektrostatisch aufgeladenen Pulvers oder b) durch Zerstäuben und Trocknen einer Lösung (ggf. innerhalb einer Reaktionskammer) und Abscheiden der entstehenden Partikel oder c) durch Zerstäuben und Abscheiden einer Lösung und Verdampfen des Lösungsmittels aus den abgeschiedenen Tropfen oder d) durch die Reaktion einer gasförmigen Säure mit einer gasförmigen Base und Abscheiden der entstehenden Partikel in die Korrosionsschutzbeschichtung einzubringen (einzubetten).
Die genannten Verfahren werden dabei, um sie kostengünstig zu gestalten, vorzugsweise bei Atmosphärendruck durchgeführt. Hierdurch kann auf aufwändige Vakuumtechnik verzichtet werden.
Ein weiteres Merkmal der beschriebenen Gasphasenabscheidungsprozesse, insbesondere der plasmapolymeren Abscheidung des Matrixmaterials, ist, dass durch geeignete Wahl der Prozessparameter die Oberflächenenergie und somit die Benetzungseigenschaften gezielt gesteuert werden kann.
So hat es sich z.B. als günstig erwiesen, die Oberfläche der Korrosionsschutzbeschichtung hydrophob zu gestalten, wenn auf die Korrosionsschutzbeschichtung keine weitere Schicht mehr aufgetragen wird und sie damit direkt der Umgebung ausgesetzt ist. Durch die hydrophoben Eigenschaften per- len wässrige Flüssigkeiten leichter ab, wodurch der Kontakt mit etwaigen Verletzungsstellen der Korrosionsschutzbeschichtung reduziert wird.
Eine hydrophobe Korrosionsschutzbeschichtung wird erreicht, indem unpolare funktionelle Gruppen, wie beispielsweise Methylgruppen, an der Oberfläche der Korrosionsschutzbeschichtung erzeugt werden. Bevorzugte Bauteile wei- sen Korrosionsschutzbeschichtungen mit einer Oberflächenenergie unter 35 mN/m, insbesondere unter 30 mN/m (bei 23°C, 50 % relative Luftfeuchte, 1013 hPa) auf.
Wenn auf die Korrosionsschutzbeschichtung Lack oder Klebstoff aufgebracht werden soll, ist hingegen eine hydrophile Oberfläche des Matrixmaterials günstig. Hydrophile Oberflächen des Matrixmaterials werden erreicht, wenn dort polare funktioneile Gruppen, wie beispielsweise OH-Gruppen, vorhanden sind. Bevorzugte Bauteile weisen Matrixmaterialien mit einer Oberflächen- energie über 60 mN/m, insbesondere über 65 mN/m (bei 23°C, 50 % relative Luftfeuchte, 1013 hPa) auf.
Durch eine erfindungsgemäße Beschichtung können insbesondere Bauteile geschützt werden, deren metallische Substrate aus Eisen, Stahl, Magnesium, Aluminium oder einer Legierung des jeweiligen Materials bestehen. Ein besonders bevorzugtes Einsatzgebiet sind Bauteile, deren Substrate aus kupfer- haltigen Aluminiumlegierungen bestehen.
Letztere werden aufgrund ihrer hohen Festigkeit oft im Flugzeug- und Automobilbau eingesetzt. Hier ist Korrosionsschutz besonders bedeutsam, da es sich zumeist um sicherheitsrelevante Teile handelt. Erfindungsgemäße Bauteile sind daher häufig Bauteile aus den Bereichen Flugzeugbau und Automobilbau. Hier steht neben dem Sicherheitsaspekt der hohe Wert der erzeugten Produkte im Vordergrund.
Erfindungsgemäße Korrosionsschutzbeschichtungen können, neben ihrer Funktion, Korrosion zu verhindern, zusätzlich durch Einstellen einer geeigneten Oberflächenspannung als haftvermittelnde Schicht eingesetzt werden. Durch Pigmentierung oder eine geeignete Wahl eines farbigen Matrixmaterials bzw. Korrosionsinhibitors können sie zudem als optische Funktionsschicht dienen.
In diesen Fällen sind erfindungsgemäße Korrosionsschutzbeschichtungen Bestandteile von Schichtsystemen. Derartige Schichtsysteme können auch mehrere erfindungsgemäße Korrosionsschutzbeschichtungen umfassen.
Die vorliegende Erfindung wurde anhand von vier beispielhaften, erfindungsgemäßen Bauteilen (Beispiel-Bauteile) und zwei Vergleichs-Bauteilen, auf die Korrosionsschutzbeschichtungen aufgebracht wurden, auf ihre Eignung hin untersucht. Als Vergleich dienten zwei Vergleichsproben, auf die Beschichtungen aufgebracht wurden, die keinen Korrosionsinhibitor enthalten. Als metallisches Substrat, das vor der Beschichtung gebeizt wurde, wurde jeweils die Aluminiumlegierung AA2024 verwendet. Auf diesem Substrat wurde für die vier Beispiel-Bauteile die Korrosionsschutzbeschichtung jeweils in mehreren, sukzessive aufgetragenen Lagen abgeschieden. Zunächst wurde dabei jeweils eine erste Lage des Matrixmaterials mittels eines Atmosphärendruck- oder eines Niederdruck-Plasmaabscheideverfahren abgeschieden. Beide Verfahrenstypen werden weiter unten näher erläutert. In einem nächsten Schritt wurde der Korrosionsinhibitor, wie unten beschrieben, auf eine Art und Weise auf die Lage des Matrixmaterials aufgebracht, dass separate Parti- kel auf der Oberfläche der ersten Lage vorliegen. In einem weiteren Schritt wurde mit dem gleichen Plasmaabscheideverfahren eine weitere Lage Matrixmaterial aufgebracht, die die Lage der Korrosionsinhibitor-Partikel überdeckt und die Zwischenräume zwischen den Korrosionsinhibitor-Partikeln ausfüllt. Dieser Vorgang wurde mehrere Male wiederholt. Aus den abfolgenden Lagen wurde so die Korrosionsschutzbeschichtung auf dem metallischen Substrat aufgebaut.
Es wurden zwei unterschiedliche Plasmaabscheideverfahren eingesetzt, ein Atmosphärendruck-Plasmaabscheideverfahren und ein Niederdruck- Plasmaabscheideverfahren.
Beim Atmosphärendruck-Plasmaabscheideverfahren wurde wie in der WO 01/32949 beschrieben vorgegangen. Es wurde eine Plasmaquelle der Fa. Plasmatreat verwendet, die aus einem Plasmaerzeuger PFW10 und einem Netzgerät Typ FG1001 besteht. Das Netzgerät wurde mit einer Entladungsspannung von 280 V und einem Entladestrom von 9,3 A betrieben. Als lonisationsgas wurde Druckluft mit einem Volumenstrom von 1200 l/h eingesetzt.
In dem Plasmaerzeuger wurde dabei Hexamethyldisiloxan in Aerosolform als Precursor erzeugt und durch einen Zerstäuber in die Plasmazone eingebracht. Als Trägergas diente hierbei Stickstoff. In einem Abstand von 5 mm vom Zer- stäuber wurde das Substrat mit einer Geschwindigkeit von 5 m/min unter dem Plasmaerzeuger hindurch gefahren.
Die Atomzahlanteile liegen bei so abgeschiedenen Schichten für Wasserstoff zwischen 40 und 60 Atomprozenten, Kohlenstoff zwischen 15 und 25 Atomprozenten, Silizium zwischen 8 und 15 Atomprozenten Sauerstoff zwischen 8 und 15 Atomprozenten und Stickstoff unter 2 Atomprozenten.
Beim Niederdruck-Plasmaabscheideverfahren wurde wie im Patent EP 102 7169 beschrieben vorgegangen. In den Unterdruckbehälter einer üblichen Plasmapolymerisationsanlage wurde Hexamethyldisiloxan als Precursor eingeführt und durch hochfrequenten Wechselstrom bei 13,56 MHz zur Plasmabildung angeregt. Zunächst wurde das Substrat für 180 s bei einem Druck von 0,5 hPa und einer Leistung von 1400 W mit einem Wasserstoff- und Sau- erstoffplasma beaufschlagt, anschließend für 120 s bei einem Druck von 0,3 hPa und einer Leistung von 1400 W mit einem Wasserstoffplasma. Nachfolgend wurde dem Wasserstoff Hexamethyldisiloxan beigemengt und dann innerhalb von 600 s bei einem Druck von 0,2 hPa und einer Leistung von 800 W eine Schicht von 100 nm Dicke auf dem Substrat abgeschieden.
Die Atomzahlanteile liegen bei so abgeschiedenen Schichten für Wasserstoff zwischen 40 und 60 Atomprozenten, Kohlenstoff zwischen 15 und 25 Atomprozenten, Silizium zwischen 8 und 15 Atomprozenten und Sauerstoff zwischen 15 und 25 Atomprozenten.
Als Korrosionsinhibitoren wurden Bariumchromat und Benzotriazol eingesetzt:
Dabei wurde Bariumchromat in die Korrosionsschutzbeschichtung eingebracht, indem das Bariumchromat in einem Mörser gemahlen wurde, sodass die mittlere maximale räumliche Ausdehnung der Bariumchromat-Partikel ca. 3 μm beträgt. Dieses Pulver wurde in Wasser aufgeschlämmt und mit Hilfe eines Zerstäubers in ein Aerosol überführt. Dieses Aerosol wurde mittels eines Luftstroms an dem Substrat entlang geführt, sodass sich kleine Tropfen mit einem mittleren Durchmesser von ca. 50 μm auf dem Substrat abschieden. Diese Tropfen wurden eingetrocknet.
Benzotriazol wurde wie folgt aufgebracht: Zunächst wurde das Benzotriazol in Wasser gelöst und mit Hilfe eines Zerstäubers in ein Aerosol überführt. Dieses Aerosol wurde mittels eines Luftstroms an dem Substrat entlang geführt, sodass sich kleine Tropfen mit einem mittleren Durchmesser von ca. 50 μm auf dem Substrat abschieden. Diese Tropfen wurden eingetrocknet. Dabei entstanden Benzotriazolkristalle mit einer mittleren maximalen räumlichen Ausdehnung von ca. 4 μm.
Beide oben beschriebenen Plasmaabscheideverfahren wurden mit beiden Korrosionsinhibitoren kombiniert, so dass sich vier Beispiel-Bauteile ergaben. Zum Vergleich wurden zwei Vergleichs-Bauteile betrachtet, bei denen die beiden oben beschriebenen Plasmaabscheideverfahren eingesetzt wurden, ohne einen Korrosionsinhibitor hinzuzufügen.
Bei einem anschließenden Korrosionstest wurden die korrosionsinhibierenden Eigenschaften ermittelt. Dazu wurde die beschichtete Oberfläche des metalli- sehen Substrats mit Hilfe eines mechanischen Fräsers definiert verletzt (Abtrag ca. 0,2 mm) und anschließend mit einer wässrigen Lösung beträufelt und für eine Dauer von 6 h bei den Vergleichs-Bauteilen und 72 h bei den Beispiel- Bauteilen bei 23° C und 50 % rel. Luftfeuchte gelagert. Die Prüflösung bestand aus 3%- Natriumchlorid als korrodierend wirkender Substanz in reinstem Wasser.
Ein visueller Test ergab die in der folgenden Tabelle wiedergegebenen Ergebnisse im Ritzbereich.
Figure imgf000020_0001
Die Ergebnisse zeigen, dass mit erfindungsgemäßen Beschichtungen gemäß den Beispielen 1 bis 4 die Aluminiumlegierung AA2024 weitestgehend gegen Korrosion geschützt werden kann. Während bereits nach einer Versuchsdauer von 6 h eine starke Oxidation im Ritzbereich festzustellen war, wenn das Bauteil mit einer Beschichtung ohne Korrosionsinhibitor versehen war (Vergleichs- Bauteile 1 und 2), konnten selbst nach 72 h Versuchsdauer an den Beispiel- Bauteilen 3 und 4, die mit einer erfindungsgemäßen Beschichtung überzogen waren, nur schwache Korrosionsschäden im Ritzbereich festgestellt werden. Die Beispiel-Bauteile 1 und 2, die ebenfalls mit einer erfindungsgemäßen Beschichtung überzogen waren, zeigten sogar keinerlei Korrosionsschäden im Ritzbereich.

Claims

Patentansprüche
1. Bauteil, umfassend ein metallisches Substrat und eine Korrosionsschutzbeschichtung, die ein Matrixmaterial und darin eingebettet einen Korrosionsin- hibitor enthält, wobei das Matrixmaterial aus der Gasphase abscheidbar ist, dadurch gekennzeichnet, dass Matrixmaterial und Korrosionsinhibitor separate Phasen bilden.
2. Bauteil nach Anspruch 1 , wobei der Korrosionsinhibitor so ausgewählt und so in das Matrixmaterial eingebettet ist, dass er durch Wasser oder eine wäss- rige Flüssigkeit, das bzw. die in Kontakt mit der Korrosions inhibitorphase gelangt, aus dem Matrixmaterial herauslösbar ist.
3. Bauteil nach Anspruch 2, bei dem der Korrosionsinhibitor so ausgewählt und in das Matrixmaterial eingebettet ist, dass der Korrosionsinhibitor aus der Korrosionsinhibitorphase im Wesentlichen vollständig herauslösbar ist.
4. Bauteil nach einem der vorstehenden Ansprüche, bei der das Matrixmaterial eine kontinuierliche Phase und der Korrosionsinhibitor eine aus einer Vielzahl von Elementen bestehende, in die kontinuierliche Phase eingebettete dispergierte Phase bildet und die mittlere maximale räumliche Ausdehnung der Elemente zwischen 10 nm und 50 μm, vorzugsweise zwischen 100 nm und 10 μm beträgt.
5. Bauteil nach einem der vorstehenden Ansprüche, bei dem der Korrosionsinhibitor
- ein pH- Puffer ist, der in wässriger Lösung auf einen pH-Wert puffert, bei dem die bestehende Oxidschicht auf dem metallischen Substrat stabil ist und/oder
- mit dem Oxid des metallischen Substrats unter Bildung eines schwer wasserlöslichen Mischoxids so umsetzbar ist, dass dadurch eine weitere Korrosi- on des metallischen Substrats inhibiert wird und/oder
- so an das Oxid des metallischen Substrats anbindbar ist, dass eine weitere Korrosion des metallischen Substrats inhibiert wird und/oder
- elektrochemische Potentialdifferenzen im Bereich der Substratoberfläche so verringert, dass eine weitere Korrosion gehemmt wird und/oder
- Komplexe mit Bestandteilen des metallischen Substrats oder dessen Oxid eingeht, so dass der Korrosionsfortschritt gehemmt wird.
6. Bauteil nach einem der vorstehenden Ansprüche, bei dem die Wasserlöslichkeit des Korrosionsinhibitors bei 25°C und 1013 hPa (Standardbedingungen) größer ist als 1 mg/l und/oder kleiner ist als 100 g/l.
7. Bauteil nach einem der vorstehenden Ansprüche, bei dem der Dampf- druck des Korrosionsinhibitors bei (Standardbedingungen) kleiner ist als 1 hPa.
8. Bauteil nach einem der vorstehenden Ansprüche, bei dem der Korrosionsinhibitor Salze aus einer organischen Säure und einer organischen oder anorganischen Base enthält.
9. Bauteil nach einem der vorstehenden Ansprüche, bei dem der Korrosionsinhibitor Phosphate, Silikate, Borate, Chromate, Titanate, Vanadate, Wolfra- mate oder Phosphonate enthält.
10. Bauteil nach einem der vorstehenden Ansprüche, bei dem der Korrosionsinhibitor Kalium-, Natrium-, Zink-, Barium-, Strontium-, Calcium-, Magnesium- , Mangan-, Kobalt-, Nickel-, Zinn-, Zirkonium-, Aluminium- oder Seltenerdkationen enthält.
11. Bauteil nach einem der vorstehenden Ansprüche, bei dem die Wasserlöslichkeit des Matrixmaterials bei Standardbedingungen unter 1 mg/l liegt.
12. Bauteil nach einem der vorstehenden Ansprüche, bei dem der Sättigungswert der Wasseraufnahme des Matrixmaterials bei Stan- dardbedingungen (23°C, 50 % relative Luftfeuchte, 1013 hPa) unter 5 Gew.- %, bevorzugt unter 2 Gew.-% liegt.
13. Bauteil nach einem der vorstehenden Ansprüche, bei dem der spezifische elektrische Widerstand des Matrixmaterials bei Standardbedingungen (DIN 53482) größer ist als 1010Ω cm, bevorzugt größer als 1012Ω cm, besonders bevorzugt größer als 1014 Ω cm.
14. Bauteil nach einem der vorstehenden Ansprüche, bei dem die Schichtdicke der Korrosionsschutzbeschichtung zwischen 10 nm und 80 μm, vorzugsweise zwischen 100 nm und 50 μm beträgt.
15. Bauteil nach einem der vorstehenden Ansprüche, bei dem die Löslichkeit des Matrixmaterials in Aceton, Cyclohexan, Ethanol und Toluol kleiner ist als 1 mg/l ist.
16. Bauteil nach einem der vorstehenden Ansprüche, bei dem das Matrixmaterial ein Polymermaterial ist.
17. Bauteil nach Anspruch 16, bei dem das Matrixmaterial ein Plasmapoly- mermaterial ist.
18. Bauteil nach Anspruch 17, bei dem das Plasmapolymermaterial entweder a)
- zwischen 10 Atomprozent und 35 Atomprozent Silizium,
- zwischen 5 Atomprozent und 67 Atomprozent Sauerstoff, - zwischen 5 Atomprozent und 60 Atomprozent Kohlenstoff und
- zwischen 0 Atomprozent und 65 Atomprozent Wasserstoff oder b)
- zwischen 33 Atomprozent und 99 Atomprozent Kohlenstoff,
- zwischen 1 Atomprozent und 67 Atomprozent Wasserstoff und - zwischen 0 Atomprozent und 30 Atomprozent Sauerstoff enthält.
19. Verfahren zum Herstellen eines Bauteils nach einem der vorstehenden Ansprüche mit folgenden Schritten:
Aufbringen des Matrixmaterials und des Korrosionsinhibitors auf das metalli- sehe Substrat , so dass
- der Korrosionsinhibitor in das Matrixmaterial eingebettet wird und
- Matrixmaterial und Korrosionsinhibitor separate Phasen bilden.
20. Verfahren nach Anspruch 19, bei dem die Matrixmaterialphase durch ein Gasphasenabscheideverfahren aufgebracht wird.
21. Verfahren nach Anspruch 19 oder 20, bei dem die Matrixmaterialphase durch ein thermisch aktiviertes, plasmaaktiviertes, photonenaktiviertes, flammenaktiviertes, hot-filament-aktiviertes oder laseraktiviertes Abscheideverfahren aufgebracht wird.
22. Verfahren nach einem der Ansprüche 19 bis 21, bei dem der die Korrosi- onsinhibitorphase bildende Korrosionsinhibitor mittels einer Aero- solabscheidung in die Matrixphase eingebettet wird.
23. Verfahren nach einem der Ansprüche 19 bis 22, bei dem der Korrosionsinhibitor
- in Form eines ggf. elektrostatisch aufgeladenen Pulvers oder
- durch Zerstäuben und Trocknen einer Lösung und Abscheiden der entstehenden Partikel oder - durch Zerstäuben und Abscheiden einer Lösung und Verdampfen des Lösungsmittels aus den abgeschiedenen Tropfen oder
- durch die Reaktion einer gasförmigen Säure mit einer gasförmigen Base und Abscheiden der entstehenden Partikel in die Korrosionsschutzbeschichtung eingebracht wird.
24. Verfahren nach einem der Ansprüche 19-23, das bei Atmosphärendruck durchgeführt wird.
PCT/EP2004/052115 2003-09-13 2004-09-09 Korrosionsschutzbeschichtung WO2005028125A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10342448.2 2003-09-13
DE2003142448 DE10342448A1 (de) 2003-09-13 2003-09-13 Korrosionsschutzbeschichtung

Publications (1)

Publication Number Publication Date
WO2005028125A1 true WO2005028125A1 (de) 2005-03-31

Family

ID=34258675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052115 WO2005028125A1 (de) 2003-09-13 2004-09-09 Korrosionsschutzbeschichtung

Country Status (2)

Country Link
DE (1) DE10342448A1 (de)
WO (1) WO2005028125A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089960A1 (de) * 2004-03-17 2005-09-29 Behr Gmbh & Co. Kg Beschichtungsverfahren
WO2013167596A1 (en) * 2012-05-07 2013-11-14 Vrije Universiteit Brussel Active corrosion protection coatings
CN113969077A (zh) * 2021-11-17 2022-01-25 武汉傲林环保科技股份有限公司 一种铝钛粉防锈颜料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216282B4 (de) * 2013-08-16 2020-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisches Bauteil mit einer elektrisch zu kontaktierenden Stelle sowie Verfahren zur Vorbereitung eines elektrischen Bauteils für einen Lötprozess und Verwendung einer entsprechenden Matrix
DE102015219055A1 (de) * 2015-10-01 2017-04-06 Volkswagen Aktiengesellschaft Verfahren und Beschichtung zum Schutz eines Bauteils vor Korrosion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737748A1 (de) * 1997-08-29 1999-03-04 Ilf Forschungs Und Entwicklung Korrosionsschutzschicht aus mindestens einer Plasmapolymerschicht und Verfahren zu ihrer Herstellung
DE19748240A1 (de) * 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten mittels Plasmapolymerisation
DE19807086A1 (de) * 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE19924108A1 (de) * 1999-05-26 2000-11-30 Bosch Gmbh Robert Plasmapolymerbeschichtung und Verfahren zu deren Herstellung
WO2001055489A2 (de) * 2000-01-27 2001-08-02 Incoat Gmbh Schutz- und/oder diffusionssperrschicht

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2718064A1 (de) * 1977-04-22 1978-10-26 Ruoff Schaefer Rudolf Korrosionsinhibitorgemisch, damit ausgeruesteter rohrisolierschlauch und verfahren zu dessen herstellung
BR9804821A (pt) * 1997-04-09 1999-08-24 Kawasaki Steel Co Placas de a-o para tanque de combust¡vel com resist-ncia aperfei-oada - corrosÆo
FR2816641B1 (fr) * 2000-11-13 2003-08-01 Dacral Sa UTILISATION DE MoO3, COMME AGENT ANTICORROSION, ET COMPOSITION DE REVETEMENT CONTENANT UN TEL AGENT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737748A1 (de) * 1997-08-29 1999-03-04 Ilf Forschungs Und Entwicklung Korrosionsschutzschicht aus mindestens einer Plasmapolymerschicht und Verfahren zu ihrer Herstellung
DE19748240A1 (de) * 1997-10-31 1999-05-06 Fraunhofer Ges Forschung Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten mittels Plasmapolymerisation
DE19807086A1 (de) * 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE19924108A1 (de) * 1999-05-26 2000-11-30 Bosch Gmbh Robert Plasmapolymerbeschichtung und Verfahren zu deren Herstellung
WO2001055489A2 (de) * 2000-01-27 2001-08-02 Incoat Gmbh Schutz- und/oder diffusionssperrschicht

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089960A1 (de) * 2004-03-17 2005-09-29 Behr Gmbh & Co. Kg Beschichtungsverfahren
WO2013167596A1 (en) * 2012-05-07 2013-11-14 Vrije Universiteit Brussel Active corrosion protection coatings
CN113969077A (zh) * 2021-11-17 2022-01-25 武汉傲林环保科技股份有限公司 一种铝钛粉防锈颜料及其制备方法

Also Published As

Publication number Publication date
DE10342448A1 (de) 2005-04-07

Similar Documents

Publication Publication Date Title
DE69823164T2 (de) Zusammensetzung und Verfahren für die chromatfreie Oberflächenbehandlung metallischer Materialien
US11814543B2 (en) Corrosion protection for metallic substrates
EP0656958B1 (de) Verfahren zur herstellung korrosionsgeschützter metallischer werkstoffe
EP2499205B1 (de) Korrosionsschutzbeschichtungen, insbesondere für metalle ausgewählt aus der gruppe bestehend aus aluminium, aluminiumlegierungen, stahl und mit einem zinkhaltigen überzug versehenem stahl, und mischungen zu ihrer herstellung
WO2006045570A1 (de) Verfahren zum herstellen eines korrosionsgeschützten stahlblechs
EP3856952A1 (de) Verfahren zur modifikation von feuerverzinkten oberflächen
WO2021116318A1 (de) Verfahren zum herstellen eines stahlflachprodukts mit einer metallischen schutzschicht auf basis von zink und einer auf einer oberfläche der metallischen schutzschicht erzeugten phosphatierschicht und derartiges stahlflachprodukt
DE112011102835T5 (de) Wasserreaktives, Al-basiertes Verbundsmaterial, wasserreaktiver, Al-basierter,thermisch gespritzter Film, Verfahren für die Herstellung eines solchen Al-basierten, thermisch gespritzten Films und Bestandteil für eine Filmbildungskammer
EP2215285B1 (de) Zirconiumphosphatierung von metallischen bauteilen, insbesondere eisen
EP0922123B1 (de) Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen
EP0261519A1 (de) Schichtbildende Passivierung bei Multimetall-Verfahren
EP3947777A1 (de) Verfahren zur neukonditionierung von feuerverzinkten oberflächen
WO2005028125A1 (de) Korrosionsschutzbeschichtung
WO2017153036A1 (de) Verfahren zur passivierung einer oberfläche eines metallbauteils
DE3009931C2 (de) Mittel zum Schützen von Stahloberflächen
WO1999024638A1 (de) Korrosionsschutz von verzinkten und legierungsverzinkten stahlbändern
DE2516842A1 (de) Mit einer keramischen beschichtung versehener gegenstand mit einer fuer eine elektrophoretische beschichtung elektrochemisch nicht genuegend aktiven metallischen oberflaeche und verfahren zu seiner herstellung
DE10327365B4 (de) Gegenstand mit einer Korrosionsschutzschicht und dessen Verwendung
DE202007007303U1 (de) Korrosionsbeständiges Substrat
DE19639597C2 (de) Verfahren zur Phosphatierung von laufenden Bändern aus kalt- oder warmgewalztem Stahl in schnellaufenden Bandanlagen
DE19745801A1 (de) Verfahren zum Beschichten von Metallen und hiermit beschichtetes Metall
EP0590594B1 (de) Behandlung von Metalloberflächen zur Verbesserung der Haftung und deren Korrosionseigenschaften
WO2001032798A1 (de) Technisches klebeband für den korrosionsschutz
DE3433483A1 (de) Aluminiumlegierungs-pigment
EP3284843A1 (de) Langzeitstabiler, lagerfähiger schlicker für umweltfreundliche diffusionsbeschichtungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase