WO2005025849A1 - 加圧加熱装置 - Google Patents

加圧加熱装置 Download PDF

Info

Publication number
WO2005025849A1
WO2005025849A1 PCT/JP2004/013632 JP2004013632W WO2005025849A1 WO 2005025849 A1 WO2005025849 A1 WO 2005025849A1 JP 2004013632 W JP2004013632 W JP 2004013632W WO 2005025849 A1 WO2005025849 A1 WO 2005025849A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressurizing
pressure
intermediate movable
heating
load
Prior art date
Application number
PCT/JP2004/013632
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Takagi
Tsuyoshi Takeshita
Nariyuki Okanami
Shogo Nakajima
Original Assignee
Sintokogio, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio, Ltd. filed Critical Sintokogio, Ltd.
Priority to JP2005513979A priority Critical patent/JPWO2005025849A1/ja
Publication of WO2005025849A1 publication Critical patent/WO2005025849A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/02Dies; Inserts therefor; Mounting thereof; Moulds
    • B30B15/026Mounting of dies, platens or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/003Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by an elastic bag or diaphragm expanded by fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates
    • B30B15/064Press plates with heating or cooling means

Definitions

  • the present invention relates to a pressurizing and heating apparatus for uniformly pressurizing and heating a work, and more particularly to an apparatus for pressurizing and heating a laminated body in which a plurality of thin films or sheets are laminated to form a work.
  • a so-called hot press device that heats and presses such a work in an oven is known.
  • this hot press apparatus a sheet-like work is placed on a lower platen in an oven, hot air is sent into the oven to heat the work, and the press is lowered from above in the oven to lower the temperature. The work between the board and the press is pressed.
  • the disadvantage of such a device is that while the device is housed in an oven, the height of one device becomes bulky, and in particular, a plurality of devices are arranged in an overlapping manner. In some cases, a large space is required.
  • a non-contact method for example, Japanese Patent Publication No. Hei 5-332764 (hereinafter, '764)
  • a contact method A measuring method and apparatus by a method (for example, Japanese Patent Publication No. 2002-213903 (hereinafter, referred to as 903 publication)) are known.
  • These contact methods and contact methods are selectively used depending on the material and shape of the work (thin film or sheet).
  • the thickness of the work is measured by a non-contact method while applying force, for example, as described in the '764 publication, the thickness of the work is not directly measured. A correction term that takes into account the lifting of the workpiece during measurement is calculated, and the approximate thickness of the workpiece is measured indirectly.
  • the thickness of the work changes in accordance with the magnitude of the load applied to the work from the measurement probe that comes into contact with the work. Measurement values are not constant. Further, when a load is applied to the work, the frame of the thickness measuring device may be deformed, and there is a problem that accurate measurement cannot be performed.
  • an object of the present invention is to provide a pressurizing and heating apparatus capable of uniformly pressurizing and heating a work even when a surface plate is radiused.
  • a pressurizing and heating apparatus for pressurizing and heating a work includes a lower fixed plate on which a plurality of columns are erected, and a plurality of columns arranged above the lower fixed plate. And an intermediate movable plate that can be moved up and down.
  • the pressurizing and heating device further includes a driving means provided between the intermediate movable platen and the lower fixed platen for raising and lowering the intermediate movable platen, and located above the intermediate movable platen and fixed to upper ends of the plurality of columns.
  • the pressurizing and heating device may further include buffer means for buffering the pressure applied to the upper or lower pressurizing and heating means upper fixed platen or the intermediate movable platen!
  • the upper fixed plate, the intermediate movable plate and the lower fixed plate are made of the same material, for example, aluminum.
  • the driving means may be a spring operated by a pressure fluid, for example, compressed air.
  • the spring can also serve as buffer means for buffering the pressure applied from the lower pressurizing and heating means to the intermediate movable platen.
  • the buffer means may include a surrounding means for elastically surrounding a buffer medium (for example, gas or liquid) for buffering the pressure.
  • the buffer medium can be supplied via a passage penetrating the intermediate movable plate or the upper fixed plate, and a measuring means for measuring the pressure of the buffer medium may be provided in the middle of the passage.
  • pressurized heating of multiple units The devices may be arranged (e.g., multiple devices stacked) and the gas or liquid to be supplied to each device may also be supplied with one common source power.
  • the drive means for raising and lowering the intermediate movable plate may further include load detection means for detecting a load applied to the work, which may also be a servomotor.
  • load detection means for detecting a load applied to the work
  • One embodiment of the present invention further includes control means for controlling the servomotor based on the detected value of the load detecting means so that the detected value becomes a predetermined value.
  • the apparatus further comprises position detecting means for detecting a height position of the lower pressurizing and heating means, and the control means further controls the servomotor based on a value detected by the position detecting means so that the detected value becomes a predetermined value.
  • Control includes a storage means, and the storage means stores a height position of the lower pressurizing and heating means when the lower pressurizing and heating means contacts the upper pressurizing and heating means as a reference reference point by the position detecting means. You can do it.
  • the work is a laminate in which a plurality of thin films or sheets are laminated.
  • Such a measuring device for measuring the thickness of a thin film or sheet includes a surface plate on which the thin film or sheet as an object is placed, and a load applied by applying pressure to the object on the surface plate.
  • Distance measuring means for measuring the distance between the surface plate and the pressure probe is provided.
  • FIG. 1 is a first embodiment of the present invention, and is a front view schematically showing a pressurizing and heating device employing a ball screw and a motor as an actuator.
  • FIG. 2 is a view similar to FIG. 1, showing a pressurizing and heating apparatus according to a second embodiment of the present invention employing an air spring as an actuator.
  • FIG. 3 is a view similar to FIG. 1, showing a third embodiment of the present invention which does not employ a load cell. 3 shows a pressure heating device.
  • FIG. 4 is a schematic front view showing a fourth embodiment of the present invention, in which a plurality of stacked rows of the pressurized calorie heating devices according to any of the first to third embodiments are provided. is there.
  • FIG. 5 is a schematic front view of a thickness measuring device according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic side view of the apparatus of FIG.
  • FIG. 7 is an enlarged view showing a sheet pressurizing portion of the apparatus of FIG. 5.
  • FIG. 8 is a schematic front view showing a pressure heating device according to another embodiment of the present invention, partially cut away.
  • FIG. 9 is a schematic front view showing a pressure heating device according to still another embodiment of the present invention, partially cut away.
  • FIG. 1 is an elevational view showing a partial cross section of a pressure heating device according to a first embodiment of the present invention.
  • the aluminum rectangular base 1 lower fixed platen
  • columns 2 are set up (only two of the four columns 2 are shown).
  • An intermediate movable plate 3 made of aluminum is supported on the column 2 via a sliding bearing 4 so as to be able to move up and down along the column 2.
  • the intermediate movable platen 3 at the location is not shown.
  • the lower surface of the intermediate movable platen 3 is supported by the upper end of a ball screw 5a, and the lower end of the ball screw 5a is driven and supported by a motor 5b. That is, the ball screw 5a and the motor 5b constitute an actuator (drive means) 5 for moving the intermediate movable platen 3 up and down along the column 2.
  • an aluminum roof (upper fixed plate) 6 is fixed above the column 2.
  • a lower pressurized heater (lower pressurizing and heating means) 7 and an upper pressurized heater, each having a built-in heater to maintain a predetermined temperature, are provided on the upper surface of the intermediate movable platen 3 and the lower surface of the top plate 6, a lower pressurized heater (lower pressurizing and heating means) 7 and an upper pressurized heater, each having a built-in heater to maintain a predetermined temperature, are provided. (Upper pressurized heating means) are mounted so as to face each other.
  • the lower pressurized heater 7 can be moved up and down integrally with the intermediate movable platen 3 by driving the actuator 5. Since the top pressurizing heater 8 and the lower pressurizing heater 7 are provided on the top board 6 and the intermediate movable board 3 as described above, it is not necessary to house this apparatus in an oven.
  • Base The intermediate movable platen 3 and the top plate 6 can be composed of the same material.
  • the material As described in the present embodiment, aluminum is preferable because of its light weight, but is not limited thereto.
  • an upper pressure buffer is provided on the mounting surface between the lower surface of the top plate 6 and the upper pressurizing heater 8 and on the mounting surface between the upper surface of the intermediate movable platen 3 and the lower pressurizing heater 7, respectively.
  • (Buffer means) 9 and lower pressure buffer (buffer means) 10 interposed, and direct contact between top plate 6 and upper pressurized heater 8 and intermediate movable platen 3 and lower pressurized heater 7 Do not let it.
  • the lower pressure buffer 10 can also be moved up and down integrally with the intermediate movable platen 3 and the lower pressure heater 7 by driving the actuator 5.
  • the upper pressure buffer 9 and the lower pressure buffer 10 each have a hermetically sealed structure, and the inside of these buffers is provided with a fluid introduced into the roof 6 and the intermediate movable plate 3, respectively.
  • a pressure fluid (compressed air in this embodiment) from 1 lb of pressure fluid source (compressed air source in this embodiment) can be introduced via passage 11a
  • a pressure that is higher than the final press pressure for example, 0.4 MPa compressed air is introduced from the compressed air source lib into the upper pressure buffer 9 and the lower pressure buffer 10 via the introduction path 11a. I do. Then, the upper pressurizing heater 8 and the lower pressurizing heater 7 are separated from the top plate 6 and the intermediate movable platen 3 by the air pressure of the upper pressure buffer 9 and the lower pressure buffer 10, respectively, and do not contact with them. .
  • a thin or sheet-like work 12 is set between the upper pressurized heater 8 and the lower pressurized heater 7.
  • the actuator 5 When the actuator 5 is driven, the intermediate movable platen 3, the lower pressure buffer 10 and the lower pressurizing heater 7 rise physically, and the lower pressurizing heater 7 contacts the work 12.
  • the pressing force is detected by a load cell (not shown), the pressing force applied to the work 12 is adjusted, pressurized and heated, and held for a required time.
  • the upper pressure heater 8 and the lower pressure heater 7 Since they are separated from the top board 6 and the intermediate movable board 3, respectively, and are in a non-contact state with them, high-precision pressurization becomes possible without being affected by their radius.
  • the actuator 5 is reversely driven to lower the intermediate movable platen 3, the lower pressure buffer 10 and the lower pressure heater 7 integrally, take out the work 12, and complete a series of processing.
  • FIG. 2 shows a second embodiment of the pressurizing and heating apparatus according to the present invention.
  • the difference between the first embodiment and the first embodiment is that a spring that operates with a pressure fluid instead of the ball screw 5a and the motor 5b of the first embodiment (air spring in this embodiment) is used as an actuator for moving the intermediate movable platen 3 up and down.
  • the structure adopts a structure in which the lower pressurizing and heating device 7 is stressed by the air spring 21 via the intermediate movable platen 3.
  • the air spring 21 is driven by compressed air supplied from a compressed air source lid via an air introduction passage 11c formed in the base 1.
  • a work 12 is set between the upper pressurized heater 8 and the lower pressurized heater 7, and a pressure set lower than the pressure finally required for the air spring 21, for example, 0.
  • Compressed air is introduced from a compressed air source lid through an introduction passage 11c to drive the air spring 21.
  • the intermediate movable platen 3 the lower pressure buffer 10 and the lower pressure heater 7 rise physically, and the lower pressure heater 7 comes into contact with the workpiece 12.
  • the pressure receiving areas of the air spring 21, the upper pressure buffer 9, and the lower pressure buffer 10 are the same.
  • compressed air having a pressure higher than that applied to the air spring 21, for example, 0.15 MPa is introduced from the compressed air source lib into the upper pressure buffer 9 and the lower pressure buffer 10 via the introduction path 11 a.
  • the upper pressurized heater 8 and the lower pressurized heater 7 are separated from the top plate 6 and the intermediate movable platen 3 by the air pressure in the upper pressure buffer 9 and the lower pressure buffer 10, respectively, so that they do not come into contact with them. .
  • the pressure receiving areas of the air spring 21, the upper pressure buffer 9, and the lower pressure buffer 10 are the same.
  • the pressure receiving area of the upper pressure buffer 9 and the lower pressure buffer 10 are made the same, and the pressure receiving area of the air spring 21 is made smaller than that of the upper pressure buffer 9 and the lower pressure buffer 10.
  • the pressure of the compressed air introduced into the air spring 21, the upper pressure buffer 9, and the lower pressure buffer 10 may be the same.
  • the air spring 21 as an actuator itself functions as a pressure buffer, it is possible to omit one or both of the upper pressure buffer 9 and the lower pressure buffer 10 as desired. In this case, the installation height of the heating and pressing device can be further reduced, and the manufacturing cost can be reduced because the device is simple.
  • a mouth cell is employed as a means for detecting the load on the work.
  • load cells are expensive, are vulnerable to impact, and tend to fail. Therefore, there may be a case where an apparatus configuration without using a load cell is desired.
  • FIG. 3 shows a third embodiment of the present invention, which shows a pressurizing and heating device that does not use a load cell.
  • Embodiment 2 The difference of the present embodiment from Embodiment 2 is that the lower pressure buffer 10 (and its compressed air introduction mechanism) of the intermediate movable platen 3 is omitted, and the upper pressure buffer 9 has a pressure liquid instead of compressed air. (Hydraulic oil in this embodiment) and a pressure measuring device 32 for measuring the pressure in the upper pressure buffer 9 is provided.
  • the upper pressure heater 8 is separated from the roof 6 by the hydraulic oil in the upper pressure buffer 9, and is not affected by the deformation of the roof 6.
  • a work 12 is set between the upper pressurized heater 8 and the lower pressurized heater 7, and a predetermined pressure, for example, 0.3 MPa compressed air is compressed into the air spring 21 via the introduction path 11c.
  • the air spring 21 is driven by being introduced from the air source lid.
  • the intermediate movable platen 3 and the lower pressurized heater 7 move up integrally, and the lower pressurized heater 7 comes into contact with the work 12.
  • the upper pressurizing heater 7 comes into contact with the roof 6 due to the hydraulic oil filled in the upper pressure absorbing body 9.
  • the pressure of the pressurized hydraulic oil is measured by the pressure measuring device 32, it is possible to verify whether a predetermined pressure is applied.
  • the compressed air of the air spring 21 The air is released, the intermediate movable platen 3 and the lower pressure heater 7 are lowered, the work 12 is taken out, and a series of processing is completed.
  • the pressing force of the air spring 21 as an actuator can be calculated by the pressure measuring device 32 that measures the oil pressure in the upper pressure buffer 9, and the pressing force can be detected. Expensive and fragile load cells can be eliminated. Therefore, an economical and highly reliable heating and pressing apparatus can be constructed.
  • FIG. 4 shows a fourth embodiment of the pressurizing and heating device according to the present invention.
  • a plurality of rows (e.g., three rows) of the pressurizing and heating devices (indicated by reference numeral 41 in the present embodiment) of any of the above-described first to third embodiments are stacked in a plurality of rows (e.g., three rows).
  • Each of the pressurizing and heating devices 41 is stacked and mounted in a tower-like rack 42 in three stages, and each of the compressed air driving elements of the pressurizing and heating device 41 includes a plurality of compressed air sources l ib (FIG. 1), Supplied from a common source (not shown) instead of lid ( Figures 2 and 3).
  • the upper pressure buffer 9 and the lower pressure buffer 10 when the device of the first embodiment is used as the pressurizing and heating device 41, and when the device of the second embodiment is used.
  • a pressure reducing valve (not shown) is provided in the middle of a piping path (not shown) connecting the common supply source and each compressed air drive element so that the pressure of each compressed air drive element can be individually controlled. ) Is provided.
  • the oil to the pressurized liquid drive element ie, the upper pressure buffer 9 is also supplied to one common source (not shown). Supplied from
  • a plurality of pressurizing and heating devices can be intensively operated at one location, so that a plurality of compressed air driving elements are supplied with compressed air from one common supply source. Since the pressure liquid drive element can be supplied from one supply source as well, the running cost can be reduced and the economy is excellent.
  • FIGS. 5 to 7 show a thickness measuring device for measuring the thickness of a sheet of a work to be pressed and heated by the pressurizing and heating devices of the above-described first to fourth embodiments.
  • the thickness measurement device A section A, a sheet pressing section B, and a distance measuring device (ranging means) D and preferably also includes a parallel adjusting mechanism C.
  • the base portion A has a strong structure so as not to generate distortion due to pressure, and has a surface plate 51 whose surface is polished, and a relatively light weight which does not require surface accuracy due to the bending force of a steel plate. It consists of a large platen frame 52. Although the surface plate 51 is heavy in structure, the base portion A can be lightened by making the surface plate 51 as small as possible.
  • the sheet pressing portion B applies a constant load to the sheet 53 placed on the surface plate 51 on the upper surface of the base portion A, and its structure is shown in FIG.
  • a rotating rod of a servo motor 54 that generates a load applied to a sheet 53 on a surface plate 51 is supported by a first bearing 55, and is connected to a shaft 57 via a coupling 56 that transmits rotational motion.
  • the shaft 57 is constrained by a bearing 59 fixed by a bearing nut 58 and a linear bush 60 that converts the rotational motion of the shaft 57 into a linear motion.
  • a screw is cut into the lower end of the shaft 57, and a nut 61 is screwed into the screw to prevent the linear bush 60 from dropping.
  • the load cell 62 fixed to the first bearing 55 and located at a middle position in the longitudinal direction of the shaft 57 has a hole at the center thereof for allowing the shaft 57 to pass therethrough.
  • the diameter of this hole is slightly larger than the shaft diameter of the shaft 57, and the inner wall of the hole is separated from the shaft 57 so that the rotational movement of the shaft 57 is not transmitted to the load cell 62. Therefore, the transmission of the rotational movement from the shaft 57 is cut off to the load cell 62, and only the load is transmitted by the thrust bearing 63A. Also on the upper surface of the load cell 62, the transmission of the rotational movement of the shaft 57 is blocked by the collar 64 and the thrust bearing 63B.
  • the above-described linear bush 60 is fixed to a second bearing 65.
  • the second bearing 65 has a probe bracket (attachment / removal means) 66, a pressure probe 67, and a pressure probe 67 removably attached to the bracket 66.
  • Probe nut 68 is fixed.
  • the second bearing 65 is fixed to the linear guide 69 and performs only a linear motion along the vertical direction.
  • the linear guide 69 and the first bearing 55 are also attached to a pressurizing frame 70 that stands vertically on the surface plate 51 with the upper surface force of the base portion A as well.
  • FIG. 7 also shows the structure of the distance measuring device D for measuring the thickness of the sheet.
  • the distance measuring device D includes a linear scale 71, the head of which is fixed to the second bearing 65 described above.
  • the scale portion is fixed to the surface plate 1 via a linear scale bracket (mounting means) 72.
  • the load cell 62 is usually disposed below the platen 1.
  • the load cell itself is pressurized, a slight displacement occurs. Therefore, an error occurs in the measured value of the load cell due to a change in the pressure applied to the surface plate 1.
  • L m the minute distortion caused by pressurization affects the measurement.
  • the load cell 62 is arranged between the pressurizing probe 67 and the rotating rod of the servomotor 54. According to this arrangement, even if the load cell 62 is reduced by pressurization, the distance measuring device D measures the distance between the pressurizing probe 67 and the surface plate 51, and thus does not affect the thickness measurement.
  • the load cell 62 is incorporated into the shaft 57, and the rotating rod of the servomotor 54, the load cell 62 and the pressure probe 67 are arranged in a straight line to minimize the loss of force. Detection is possible, and the accuracy of the load applied to the seat can be increased.
  • the platen 51 also causes a slight distortion due to the pressurization, which affects the measurement. If the platen 51 is strengthened so that this effect is ignored, the platen 1 becomes extremely large and heavy. However, the strength of the platen 51 is required at a portion from the mounting portion of the pressurizing frame 70 to a portion to be pressurized by the pressurizing probe 67. Therefore, by giving strength only to the relevant portion of the surface plate 51, the weight can be suppressed to about 1 Z4 as compared with the case where the entire surface plate 51 has strength. Therefore, even when high accuracy is required for the measurement of the thickness of the sheet, the weight of the thickness measuring device can be easily reduced by making the surface plate 51 the minimum necessary size.
  • the pressurizing frame 70 also generates a slight distortion due to pressurization, an error may occur in the measurement depending on the mounting position of the distance measuring device D.
  • the scale portion of the distance measuring device D linear scale 71 is arranged via a bracket 72 from a strong base separately from the pressing frame 70.
  • the sheet 53 to be measured is placed on the upper surface of the platen 1.
  • the rotation is cut. Is transmitted to the shaft 57 via the ring 56.
  • the linear bush 60 installed on the threaded portion at the lower end of the shaft 57 moves vertically, so that the second bearing 65, the probe bracket 66 fixed thereto, and the pressure probe 67 descend, and the load on the seat 53 is reduced. give.
  • the pressure probe 67 is prevented from rotating undesirably by the linear guide 69 to which the second bearing 65 is attached, so that only a linear motion can be obtained.
  • a compressive load is generated on the shaft 57.
  • This compressive load is detected by a load cell 62 fixed together with a force bar 73 to the first bearing 55 at an intermediate position in the longitudinal direction of the shaft 57.
  • a controller (not shown) such as a computer feedback-controls the lifting and lowering of the pressure probe 67, and a constant load is constantly applied to the sheet 53 via the pressure probe 67.
  • a value several seconds after the compression load enters a steady state is adopted. Instead of this, depending on the type of the sheet to be measured, an average value may be adopted for several seconds after the compressive load enters a steady state.
  • the load applied to the seat 53 can be applied with a constant inclination without overshoot by the PID control. Therefore, the time required to reach the predetermined load is usually several seconds. However, if desired, a period of about several minutes may be expected.
  • the distance between the platen 51 and the tip of the pressure probe 67 is measured by the linear scale 71. This distance is regarded as the thickness of the sheet.
  • a constant load can always be applied to the sheet 53, so that the measurement can always be performed at the same measurement pressure.
  • the true thickness of the sheet 53 can be measured.
  • the load is controlled by the servomotor 54 and the load cell 62, the load value can be freely changed, and the accuracy and reproducibility are high.
  • the pressure probe 67 and the surface plate 1 are not parallel to each other, the pressure will not be uniform, so that not only a measurement error will occur but also the pressure probe 67 and the surface plate 1 will be pressurized. As a result, the sheet 53 is damaged. Therefore, the pressure probe 67 is parallel to the platen 51. Need to be When the pressure probe 67 is replaced (for example, when the pressure probe 67 is replaced with one having a different diameter according to the type of the sheet to be measured), the pressure probe 67 and the platen 1 are replaced. May be lost.
  • the level adjustment bolt 74 is attached to the mounting surface of the probe bracket 66, and the parallelism between the probe bracket 66 and the pressure probe 67 is adjusted within the range of the machined intersection. I have to do it. Thus, even when the pressure probe 67 is replaced, the parallel adjustment between the pressure probe 67 and the surface plate 1 can be easily performed.
  • parallel adjustment is not limited to this method! / ,.
  • FIG. 8 shows another embodiment of the pressure heating device according to the present invention.
  • a rectangular base (lower fixed plate) 102 made of aluminum is mounted on the upper part of a base frame 101 having an inverted U-shaped cross section.
  • An electric actuator (driving means) 104 is attached to the center of the base 102 via a mounting plate 103, and the electric actuator 104 is disposed from the inner space of the base frame 101 through the upper part of the base frame 101 and the base 102. It has been.
  • the electric actuator 104 is driven by an electric servomotor 104a, and the rotational movement of the electric servomotor 104a raises and lowers the press shaft 104b via a transmission mechanism 104c.
  • a plurality of guide rods 105 (four at the four corners of the base 102 in the present embodiment) are erected.
  • a lower intermediate movable plate 108 made of aluminum is connected to an end of the press shaft 104b of the electric actuator 104 via a connecting member 106 and a load transmitting plate 107.
  • the lower intermediate movable plate 108 includes a plurality of sleeves 108a (four corners of the lower intermediate movable plate 108 in this embodiment) which are slidably fitted to the plurality of guide rods 105, respectively. And move up and down along the guide rod 105.
  • a load detector or load cell (load detecting means) 109 is connected to the lower intermediate movable plate 108.
  • An upper intermediate movable plate 111 made of aluminum is connected to a distal end of the load cell 109 via a connecting member 110. Similarly to the lower intermediate movable plate 108, the upper intermediate movable plate 111 moves up and down along the guide rod 105 via a plurality of sleeves 11 la slidably fitted to the plurality of guide rods 105.
  • the upper intermediate movable plate 111 and the lower intermediate movable plate 108 Constitutes an intermediate movable platen.
  • An aluminum ceiling board (upper fixed board) 114 is attached to the upper end of the guide rod 105.
  • a pressing plate or a lower pressing heater (lower pressing heater) 112 heated by a built-in heater 112a is mounted on the upper intermediate movable plate 111.
  • a pressure receiving plate or an upper pressurized heater (upper pressurized heater) 113 heated by a built-in heater 113a is mounted on the lower surface of the roof 114 so as to face the lower pressurized heater 112. Being done.
  • the base 102, the upper intermediate movable plate 111, the lower intermediate movable plate 108, and the roof 114 can be made of the same material.
  • aluminum is preferably used in a small amount as in the present embodiment, but is not limited thereto.
  • the load cell 109 and the electric servomotor 104a are electrically connected to a controller, for example, a microcomputer (control means) 115.
  • a controller for example, a microcomputer (control means) 115.
  • a press bonding step using the apparatus shown in Fig. 8 will be described.
  • a work (not shown) to be pressed for example, a laminated body formed by laminating thin films or sheets is used.
  • thermocouple (not shown).
  • the work is carried between the upper pressurized heater 113 and the lower pressurized heater 112 by an appropriate transfer means (not shown).
  • the electric servomotor 114a is rotated in the forward direction to raise the lower pressure heater 112, and the work is pressed and pressed for a desired time.
  • the load cell 109 detects the magnitude of the load applied to the work during the above-described press bonding step, and inputs the detected load value to the microcomputer 115.
  • the microcomputer 115 outputs a control command to the electric servomotor 114a when the input load detection value is out of the desired load setting range stored in advance. This control command corrects the magnitude of the load applied to the work so that the input load detection value falls within the load setting range by rotating the electric servomotor 114a in the forward or reverse direction. Therefore, the magnitude of the load applied to the workpiece during the pressing step can be kept within a desired load setting range, so that high press accuracy can be obtained.
  • the electric servomotor 114a is rotated in the reverse direction to lower the lower pressure heater 112 to release the crimping. Then, the finished product after the crimping press process is taken out by the transporting means.
  • the magnitude of the load applied to the work and the time of each step are displayed on a monitor (not shown) of the microcomputer 115, and a storage medium inside or outside the microcomputer 115 is displayed. It can be stored in a device (not shown).
  • a force for pressing one work in one press-bonding press step may be such that a plurality of works are stacked and pressed simultaneously.
  • a plurality of works may be arranged on a plane (for example, in a grid) and pressed simultaneously.
  • FIG. 9 shows still another embodiment of the pressure heating device of the present invention.
  • Components that are the same as the components of the device in FIG. 8 are given the same reference numerals, and descriptions thereof will be omitted.
  • a position detector or a linear scale (position detecting means) 120 for detecting the position of the lower pressurized heater 112 also serves as a force with the main scale 120 a and the slider 120 b, and electrically connects to the microcomputer 115.
  • the main scale 120a is connected to the roof 114 via a connecting member 121
  • the slider 120b is connected to the upper intermediate movable plate 111 via a connecting member 122.
  • the linear scale 120 is preferably capable of measuring a distance smaller than 0.1 m.
  • the operation of the pressurizing and heating device in FIG. 9 will be described.
  • power is supplied to the heater 112a of the lower pressure heater 112 and the heater 113a of the upper pressure heater 113 to heat the lower pressure heater 112 and the upper pressure heater 113 to desired temperatures.
  • the electric servomotor 114a is rotated in the forward direction, and the lower pressurized heater 112 is raised until it contacts the upper pressurized heater 113.
  • the position of the lower pressurized heater 112 when the lower pressurized heater 112 contacts the upper pressurized calorie heater 113 is used as a reference point for the linear scale 120, and a storage medium device inside or outside the microcomputer 115 (not shown). ).
  • the reference point of the linear scale 120 allows for deformation due to thermal expansion of the upper pressurized heater 113 and the lower pressurized heater 112, so that high press accuracy can be obtained.
  • a work (not shown) (for example, used in the embodiment of FIG. 8) is carried out by a conveying means (not shown).
  • a laminate formed by laminating thin films or sheets is carried between the lower pressure heater 112 and the upper pressure heater 113.
  • the electric servomotor 104a is rotated in the forward direction to raise the lower pressure heater 112, and the work is pressed and pressed for a desired time.
  • the load cell 109 detects the magnitude of the load applied to the work
  • the linear scale 120 detects the position of the lower pressure heater 112
  • the load cell 109 and the linear scale 120 Is input to the microcomputer 115.
  • the microcomputer 115 determines whether the position detection value from the linear scale 120 is out of the pre-stored position set value. Determine whether or not. If not, the microcomputer 115 outputs a control command to the electric servomotor 104a and rotates the electric servomotor 104a in the forward or reverse direction so that the position detection value becomes equal to the position set value. The position of the lower pressure heater 112 is corrected.
  • the position of the lower pressurizing heater 112 can be maintained at the set position value during the press-pressing step, higher press accuracy can be obtained as compared with, for example, a hydraulic press.
  • the electric servomotor 104a is rotated in the reverse direction to lower the lower pressure heater 112 to release the crimping.
  • the joined workpiece is taken out by the transporting means.
  • the magnitude of the load applied to the work, each process time, and the position of the lower pressure heater 112 are displayed on a monitor (not shown) attached to the microcomputer 115, and A storage medium device (not shown) inside or outside 115 can be stored.
  • the thin film or sheet constituting the work or the laminate to be molded by applying pressure and heat is, for example, a flexible EL, a film, a plastic sheet, and a force capable of forming paper. It is not limited to these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Press Drives And Press Lines (AREA)
  • Presses And Accessory Devices Thereof (AREA)

Abstract

 ワークを加圧及び加熱して成型する装置であって、アルミニウム製基盤1には複数のコラム2が立設されている。コラム2には、それに沿って昇降可能なように、アルミニウム製中間可動盤3が摺動自在に支持されている。コラム2の上方にはアルミニウム製天盤6が固定されている。中間可動盤3の上面と天盤6の下面とには、それぞれヒータを内蔵した下部加圧加熱器7と上部加圧加熱器8とが互いに対向するように装着されている。中間可動盤3と下部加圧加熱器7とは、アクチュエータ5の駆動により一体的に昇降する。

Description

明 細 書
加圧加熱装置
発明の技術分野
[0001] 本発明は、ワークを均一に加圧加熱する加圧加熱装置に関し、特に複数の薄膜又 はシートを積層した積層体を加圧及び加熱して成型する装置に関する。
発明の背景
[0002] プレス対象のワーク、特に軟質な薄膜又はシート状のワーク、例えばフレキシブル E L、プラスチックシート又はフィルム、紙などを加圧する各種の方法及び装置が公知 である。
[0003] このようなワークをオーブン内で加熱加圧する所謂ホットプレス装置は公知である。
このホットプレス装置においては、オーブン内の下方の定盤上にシート状ワークを載 置して、オーブン内へ熱風を送ってワークを加熱しながら、オーブン内上方からプレ スを下降させて、定盤とプレスとの間のワークを加圧する。
[0004] し力しながら、このような装置の不都合は、装置がオーブン内に収容されて 、るので 、一台の装置の高さが嵩高になり、特に複数台の装置を重ねて配置する場合には大 きなスペースを必要とすることである。
[0005] 一方、少しでも装置高さを低くするために定盤を薄くすると、圧縮力により定盤が橈 むという問題がある。
[0006] また、薄膜又はシート状ワークを加圧するに際し、その厚みを測定するためには、 非接触方式 (例えば日本国特許公開平成 5— 332764号公報 (以下、 ' 764号公報)) 又は接触方式 (例えば日本国特許公開第 2002-213903号公報(以下、, 903号公 報))による測定方法及び装置が公知である。ワーク (薄膜又はシート)の材質や形状 などに応じて、これら接触方式と接触方式とが選択的に用いられている。
[0007] し力しながら、ワークの厚みを非接触方式、例えば、 ' 764号公報に記載されたよう に光学的に測定する場合には、ワークの厚みを直接に測定するわけではないので、 測定中のワークの浮き上がりを考慮した補正項をカ卩えてワークの近似的な厚みを間 接的に測定することになる。 [0008] 一方、例えば' 903号公報に記載された接触方式では、ワークに接触する測定プロ ーブからワークに負荷される荷重の大きさに応じてワークの厚みが変化してしまうた め、測定値が一定しない。更に、ワークに荷重を負荷すると、厚み測定装置のフレー ム等も変形することがあり、正確な測定ができないという問題がある。
発明の概要
[0009] 従って本発明の目的は、定盤が橈んでもワークを均一に加圧及び加熱ができる加 圧加熱装置を提供することにある。
[0010] 更に、このような加圧加熱装置において、ワークを構成する薄膜又はシートの厚さ を測定する装置を提供することも本発明の目的の一部である。
[0011] 本発明のワークを加圧及び加熱して成型する加圧加熱装置は、複数のコラムが立 設された下部固定盤と、この下部固定盤の上方に位置し、複数のコラムに沿って昇 降可能な中間可動盤とを備える。この加圧加熱装置は更に、中間可動盤と下部固定 盤との間に設けられ中間可動盤を昇降させる駆動手段と、前記中間可動盤の上方に 位置し、前記複数のコラムの上端に固定された上部固定盤と、この上部固定盤の下 面に設けられ、成型すべきワークを加圧及び加熱する上部加圧加熱手段と、この上 部加圧加熱手段に対向するように、且つ中間可動盤と一体的に昇降するように、中 間可動盤の上面に設けられ、成型すべきワークを加圧及び加熱する下部加圧加熱 手段とを備える。
[0012] 加圧加熱装置は、上部又は下部加圧加熱手段力 上部固定盤又は中間可動盤へ 加わる圧力を緩衝する緩衝手段を更に備えてもよ!ヽ。
[0013] 好ましくは、上部固定盤、中間可動盤及び下部固定盤は同じ材料、例えばアルミ- ゥム力 構成される。
[0014] 駆動手段は、圧力流体、例えば圧縮空気により作動するばねとしてもよい。この場 合、ばねは、下部加圧加熱手段から中間可動盤へ加わる圧力を緩衝する緩衝手段 を兼ねることができる。緩衝手段は、圧力を緩衝する緩衝媒体 (例えば気体又は液体 )を弾性的に包囲する包囲手段を含んでもよい。この場合、緩衝媒体は中間可動盤 又は上部固定盤を貫通する通路を介して供給することができ、その通路の中間に前 記緩衝媒体の圧力を計測する計測手段を設けてもよい。更に、複数台の加圧加熱 装置を配列し (例えば装置を複数段重ね)、各々の装置へ供給すべき気体又は液体 を 1つの共通の供給源力も供給してもよい。
[0015] 中間可動板を昇降させる駆動手段は、サーボモータとしてもよぐワークに加わる荷 重を検出する荷重検出手段を更に備えてもよい。本発明の一つの実施形態におい ては、荷重検出手段の検出値に基づいて、この検出値が所定の値になるようにサー ボモータを制御する制御手段を更に備える。また下部加圧加熱手段の高さ位置を検 出する位置検出手段を更に備え、制御手段は更に、位置検出手段による検出値に 基づいて、この検出値が所定の値になるようにサーボモータを制御する。制御手段 に記憶手段を含ませ、この記憶手段は、下部加圧加熱手段が上部加圧加熱手段に 接触したときの下部加圧加熱手段の高さ位置を前記位置検出手段による参照基準 点として記憶するようにしてもょ 、。
[0016] ワークは、複数の薄膜又はシートを積層した積層体である。
[0017] このような薄膜又はシートの厚さを測定する測定装置は、被検体としての前記薄膜 又はシートを載置する定盤と、この定盤上の被検体に接触して加圧して荷重を与え る昇降可能な加圧プローブと、この加圧プローブを昇降させるように、加圧プローブ に結合された駆動伝達軸を有するサーボモータと、加圧プローブと駆動伝達軸との 間に配置され、加圧プローブによる荷重を検出する検出手段と、検出手段により検出 された荷重検出値に基づいて、加圧プローブ力 被検体に加わる荷重が一定になる ようにサーボモータを制御する制御手段と、定盤と加圧プローブとの間の距離を測定 する測距手段とを備える。
[0018] 本発明の上述及び他の目的及び特徴は、添付図面を参照してなす以下の実施形 態を参照することにより一層明らかになる。
図面の簡単な説明
[0019] [図 1]図 1は本発明の第 1実施形態であり、ァクチユエータとしてボールねじ及びモー タを採用した加圧加熱装置を概略的に示す正面図である。
[図 2]図 2は図 1と同様な図であり、ァクチユエータとして空気ばねを採用した本発明 の第 2実施形態の加圧加熱装置を示す。
[図 3]図 3は図 1と同様な図であり、ロードセルを採用しない本発明の第 3実施形態の 加圧加熱装置を示す。
[図 4]図 4は本発明の第 4実施形態であり、第 1乃至第 3実施形態の何れかの加圧カロ 熱装置を複数段積層した列を複数列設けた概略的な正面図である。
[図 5]図 5は本発明の第 5実施形態に係る厚み測定装置の概略的な正面図である。
[図 6]図 6は図 5の装置の概略的な側面図である。
[図 7]図 7は図 5の装置のシート加圧部分を拡大して示す図である。
[図 8]図 8は本発明の他の実施形態に係る加圧加熱装置を一部破断して示す概略的 な正面図である。
[図 9]図 9は本発明の更に他の実施形態に係る加圧加熱装置を一部破断して示す概 略的な正面図である。
最良の実施形態の説明
[0020] 図 1は本発明の第 1の実施形態に係る加圧加熱装置を一部断面で示す立面図で ある。アルミニウム製の矩形の基盤 1 (下部固定盤)の四隅には、コラム 2が立設され ている(四本のコラム 2のうち、 2本のみが図示されている)。コラム 2には、それに沿つ て昇降可能なように、アルミニウム製の中間可動盤 3が滑り軸受け 4を介して摺動自 在に支持されている。尚、軸受け 4の取り付け個所を示すために、当該個所の中間 可動盤 3は、その図示を省略してある。
[0021] 中間可動盤 3の下面は、ボールねじ 5aの上端で支承されており、このボールねじ 5 aの下端はモータ 5bにより駆動支持されている。即ち、ボールねじ 5aとモータ 5bとで 、中間可動盤 3をコラム 2に沿って昇降させるァクチユエータ (駆動手段) 5を構成して いる。コラム 2の上方にはアルミニウム製の天盤 (上部固定盤) 6が固定されている。中 間可動盤 3の上面と天盤 6の下面とには、それぞれヒータを内蔵して所定の温度に保 たれるべき下部加圧加熱器 (下部加圧加熱手段) 7と上部加圧加熱器 (上部加圧カロ 熱手段) 8とが互いに対向するように装着されている。下部加圧加熱器 7は、ァクチュ エータ 5の駆動により中間可動盤 3と一体的に昇降可能である。このように天盤 6及び 中間可動盤 3に上部加圧加熱器 8及び下部加圧加熱器 7が設けられているので、こ の装置はオーブン内に収容する必要がな 、。
[0022] 基盤 中間可動盤 3、及び天盤 6は同一の材料カゝら構成できる。その材料としては 、本実施形態におけるようにアルミニウムが軽量で好ましいが、これに限定されるもの ではない。
[0023] 好ましくは、天盤 6の下面と上部加圧加熱器 8との間、及び中間可動盤 3の上面と 下部加圧加熱器 7との間の装着面には、それぞれ上部圧力緩衝体 (緩衝手段) 9と 下部圧力緩衝体 (緩衝手段) 10とを介在させ、天盤 6と上部加圧加熱器 8とを、及び 中間可動盤 3と下部加圧加熱器 7とを直接に接触させないようにする。この場合、下 部圧力緩衝体 10もァクチユエータ 5の駆動により中間可動盤 3及び下部加圧加熱器 7と一体的に昇降可能である。上部圧力緩衝体 9及び下部圧力緩衝体 10はそれぞ れ密閉構造をなしているが、これら緩衝体の内部へは天盤 6の内部及び中間可動盤 3の内部にそれぞれ穿設された流体導入路 11aを介して圧力流体源 (本実施形態で は圧縮空気源) 1 lbからの圧力流体 (本実施形態では圧縮空気)を導入可能である
[0024] これら上部圧力緩衝体 9の内部及び下部圧力緩衝体 10の内部へ圧縮空気が導入 されると、上部加圧加熱器 8及び下部加圧加熱器 7は、それらが支持されている天盤 6の下面及び中間可動盤 3の上面力 離間するので、天盤 6及び中間可動盤 3の変 形の影響を受けない。
[0025] 第 1実施形態に係る加圧加熱装置の動作について説明する。
[0026] 先ず、最終プレス圧力よりも高くなるような圧力、例えば 0. 4MPaの圧縮空気を導 入路 11aを介して圧縮空気源 l ibから上部圧力緩衝体 9及び下部圧力緩衝体 10へ 導入する。すると、上部加圧加熱器 8及び下部加圧加熱器 7は、上部圧力緩衝体 9 及び下部圧力緩衝体 10の空気圧によりそれぞれ天盤 6及び中間可動盤 3から離間 するので、それらとは接触しない。
[0027] 次に、上部加圧加熱器 8と下部加圧加熱器 7との間に薄膜又はシート状のワーク 1 2を設定する。
[0028] ァクチユエータ 5を駆動させると、中間可動盤 3、下部圧力緩衝体 10及び下部加圧 加熱器 7がー体的に上昇し、下部加圧加熱器 7がワーク 12に接触する。ロードセル( 図示せず)により加圧力を検出して、ワーク 12に加わる加圧力を調整して加圧及び 加熱して、必要な時間保持する。この時、上部加圧加熱器 8及び下部加圧加熱器 7 は、それぞれ天盤 6及び中間可動盤 3から離間して、それらとは非接触状態にあるの で、それらの橈みの影響を受けず、高精度な加圧が可能となる。その後、ァクチユエ ータ 5を逆駆動させて、中間可動盤 3、下部圧力緩衝体 10及び下部加圧加熱器 7を 一体的に降下させて、ワーク 12を取り出して一連の処理が完了する。
[0029] 図 2は本発明に係る加圧加熱装置の第 2の実施形態を示す。本実施形態の実施 形態 1に対する差異は、中間可動盤 3を昇降させるァクチユエータとして、実施形態 1 のボールねじ 5aとモータ 5bに代えて、圧力流体で作動するばね (本実施形態では空 気ばね) 21を採用し、下加圧加熱機器 7が中間可動盤 3を介して空気ばね 21により 応力を受ける構造としたことである。空気ばね 21は、基盤 1の内部に穿設された空気 導入路 11cを介して圧縮空気源 l idから供給される圧縮空気により駆動される。
[0030] 次 、で、第 2実施形態の加圧加熱装置の動作につ 、て説明する。
[0031] 上部加圧加熱器 8と下部加圧加熱器 7との間にワーク 12を設定し、空気ばね 21に 最終的に必要とされる圧力よりも低く設定した圧力、例えば 0. IMPaの圧縮空気を 導入路 11cを介して圧縮空気源 l idから導入して、空気ばね 21を駆動する。すると、 中間可動盤 3、下部圧力緩衝体 10及び下部加圧加熱器 7がー体的に上昇し、下部 加圧加熱器 7がワーク 12に接触する。ここで空気ばね 21と上部圧力緩衝体 9及び下 部圧力緩衝体 10の受圧面積は同じであるとする。
[0032] 次に、空気ばね 21に対するよりも高い圧力、例えば 0. 15MPaの圧縮空気を導入 路 11aを介して圧縮空気源 l ibから上部圧力緩衝体 9及び下部圧力緩衝体 10へ導 入する。すると、上部圧力緩衝体 9及び下部圧力緩衝体 10内の空気圧により上部加 圧加熱器 8及び下部加圧加熱器 7がそれぞれ天盤 6及び中間可動盤 3から離間する ので、それらとは接触しない。
[0033] その後、上部及び下部圧力緩衝体 9, 10と圧力ばね 21との間の圧力差を保持しつ つ、所定の圧力になるまで空気ばね 21、上部圧力緩衝体 9及び下部圧力緩衝体 10 の空気圧を徐々に上昇させて、所定の圧力、例えば 0. 3MPaを加え、ワーク 12をカロ 圧及び加熱して必要な時間保持する。その後、空気ばね 21、上部圧力緩衝体 9及 び下部圧力緩衝体 10の圧縮空気を抜いて、中間可動盤 3、下部圧力緩衝体 10及 び下部加圧加熱器 7を一体的に降下させて、ワーク 12を取り出して一連の処理が完 了する。
[0034] ここでは空気ばね 21と上部圧力緩衝体 9及び下部圧力緩衝体 10の受圧面積は同 じであるとした。これに代えて、上部圧力緩衝体 9と下部圧力緩衝体 10との受圧面積 を同じにして、空気ばね 21の受圧面積を上部圧力緩衝体 9及び下部圧力緩衝体 10 のそれよりも小さくして、空気ばね 21と上部圧力緩衝体 9及び下部圧力緩衝体 10へ 導入する圧縮空気の圧力が同じになるようにしてもよい。
[0035] また、ァクチユエータとしての空気ばね 21は、それ自身が圧力緩衝体として働くた め、所望により上部圧力緩衝体 9及び下部圧力緩衝体 10の一方又は両方を省くこと も可能であろう。この場合、加熱加圧装置の設置高さを一層に低減でき、且つ装置が 単純ィ匕するので製造コスト削減も図れる。
[0036] 第 1及び第 2実施形態においては、ワークに対する荷重を検出する手段として、口 ードセルを採用した。しかしながら、ロードセルは高価であり、また衝撃に弱く故障し 易 、。従ってロードセルを用いな 、装置構成が望まれる場合もあろう。
[0037] 図 3は本発明の第 3の実施形態であり、ロードセルを用いない加圧加熱装置を示す
[0038] 本実施形態の実施形態 2に対する差異は、中間可動盤 3の下部圧力緩衝体 10 (及 びその圧縮空気導入機構)を省略し、上部圧力緩衝体 9には圧縮空気に代えて圧力 液体 (本実施形態では作動油)を充填し、この上部圧力緩衝体 9内の圧力を測定す るための圧力測定器 32を設けたことである。上部加圧加熱器 8は、上部圧力緩衝体 9内の作動油により天盤 6から離間するので、この天盤 6の変形の影響を受けない。
[0039] 次 、で、第 3実施形態の加圧加熱装置の動作につ 、て説明する。
[0040] 上部加圧加熱器 8と下部加圧加熱器 7との間にワーク 12を設定し、空気ばね 21に所 定の圧力、例えば 0. 3MPaの圧縮空気を導入路 11cを介して圧縮空気源 l idから 導入して、空気ばね 21を駆動する。すると、中間可動盤 3及び下部加圧加熱器 7が 一体的に上昇し、下部加圧加熱器 7がワーク 12に接触する。このとき、上部圧力緩 衝体 9内に満たされた作動油により上部加圧加熱器 7は天盤 6とは接触して 、な 、。 また加圧された作動油の圧力は圧力測定器 32により測定されるので、所定の圧力が 加えられているか否かを検証可能である。所定時間経過後、空気ばね 21の圧縮空 気を抜いて、中間可動盤 3及び下部加圧加熱器 7を降下させて、ワーク 12を取り出し て一連の処理が完了する。
[0041] 本実施形態によれば、上部圧力緩衝体 9内の油圧を測定する圧力測定器 32により ァクチユエータとしての空気ばね 21の加圧力を計算して加圧力を検出することができ るので、高価で壊れやすいロードセルを省くことができる。従って経済的で信頼性に 優れる加熱加圧装置を構成できる。
[0042] 尚、圧力測定器 32により測定された圧力によって、空気ばね 21側の圧縮空気圧を フィードバック制御して更に精密な圧力制御を実行することも可能である。
[0043] 図 4は本発明に係る加圧加熱装置の第 4の実施形態を示す。本実施形態では、上 述の第 1乃至第 3実施形態の何れかの加圧加熱装置 (本実施形態では符号 41で示 す)を複数段 (例えば 3段)積層した列を複数列 (例えば 2列)配置して用いる。各々 の加圧加熱装置 41はタワー状のラック 42内に 3段積層して載置され、加圧加熱装置 41のそれぞれの圧縮空気駆動要素は、複数の圧縮空気源 l ib (図 1) , l id (図 2及 び図 3)に代えて、共通の一つの供給源(図示せず)から供給される。ここで圧縮空気 駆動要素は、加圧加熱装置 41として第 1実施形態のものを用いた場合には上部圧 力緩衝体 9及び下部圧力緩衝体 10、第 2実施形態のものを用いた場合には上部圧 力緩衝体 9、下部圧力緩衝体 10及び空気ばね 21、第 3実施形態のものを用いた場 合には空気ばね 21である。共通供給源とそれぞれの圧縮空気駆動要素とを連結す る配管経路(図示せず)の途中には、各々の圧縮空気駆動要素の圧力を個々に制 御可能なように、減圧弁(図示せず)を設けてある。加圧加熱装置 41として第 3実施 形態のものを複数台用いた場合には、圧力液体駆動要素 (即ち上部圧力緩衝体 9) への油も同様に共通の一つの供給源(図示せず)から供給される。
[0044] このような構成では、複数の加圧加熱装置を 1箇所で集中的に操業させることがで きるので、複数の圧縮空気駆動要素に対し、圧縮空気を一つの共通の供給源より供 給でき、また圧力液体駆動要素も同様に一つの供給源より供給できるため、ランニン グコストの軽減が図られ経済性に優れる。
[0045] 図 5乃至図 7は、上述の第 1乃至第 4実施形態の加圧加熱装置で加圧及び加熱さ れるワークのシートの厚みを測定する厚み測定装置を示す。厚み測定装置は、ベー ス部分 Aと、シート加圧部分 Bと、距離測定器 (測距手段) Dとを含み、好ましくは平行 調整機構 Cも含む。
[0046] ベース部分 Aは、加圧による歪みを生じないように強固な構造をもち、表面に研磨 加工を施した定盤 51と、鋼板の折り曲げ力もなり、表面精度を必要としない比較的軽 量な定盤フレーム 52とからなる。定盤 51は構造上重くなるが、定盤 51を必要最小限 の大きさにすることで、ベース部分 Aを軽量ィ匕できる。
[0047] シート加圧部分 Bは、ベース部分 Aの上面の定盤 51に載置されたシート 53に一定 の荷重を与えるものであり、その構造を図 7に示す。定盤 51上のシート 53に与える荷 重を発生するサーボモータ 54の回転ロッドは、第 1軸受け 55に支承されており、回 転運動を伝達するカップリング 56を介してシャフト 57に連結されている。シャフト 57 は、ベアリングナット 58により固定されたベアリング 59と、シャフト 57の回転運動を直 線運動に変換するリニアブッシュ 60とにより拘束されている。シャフト 57の下端には、 ねじが刻設されており、ここにナット 61を螺合することにより、リニアブッシュ 60の落下 を防止するようにしてある。第 1軸受け 55に固定されて、シャフト 57の縦方向中間位 置に位置するロードセル 62は、その中央部にシャフト 57を揷通させる孔を有している 。この孔の径は、シャフト 57の軸径より若干大きくして、孔の内壁をシャフト 57から離 間させることにより、シャフト 57の回転運動をロードセル 62に伝達させないようにして ある。従って、ロードセル 62には、シャフト 57からの回転運動の伝達は遮断され、スラ ストベアリング 63Aにより荷重のみが伝達される。またロードセル 62の上面について も、カラー 64及びスラストベアリング 63Bにより、シャフト 57の回転運動の伝達が遮断 される。上述のリニアブッシュ 60は、第 2軸受け 65に固定され、この第 2軸受け 65に は、プローブ用ブラケット(着脱手段) 66及び加圧プローブ 67と、加圧プローブ 67を ブラケット 66に着脱自在に取り付けるプローブナット 68が固定されている。第 2軸受 け 65は、リニアガイド 69に固定されて、上下方向に沿った直線運動のみをなす。リニ ァガイド 69及び第 1軸受け 55は、ベース部分 Aの上面力も定盤 51上に垂直に立設 する加圧フレーム 70に取り付けられて!/、る。
[0048] シートの厚みを測定する距離測定器 Dの構造も図 7に示されている。距離測定器 D は、リニアスケール 71を含み、そのヘッド部は上述の第 2軸受け 65に固定され、その スケール部分はリニアスケール用ブラケット (装着手段) 72を介して定盤 1に固定され ている。
[0049] 本実施形態に係るシートの厚みの測定装置の設計について説明する。従来はロー ドセル 62は定盤 1の下方に配置されるのが通例である力 ロードセル自身が加圧を 受けると微少な変位を生じる。従って、定盤 1に対する加圧力の変化に伴いロードセ ルの測定値に誤差を生じてしまう。特に 0.: L m程度の分解能で厚みを測定しようと すると、加圧により生じる微少な歪みが測定に影響を与える。
[0050] そこで本実施形態では、ロードセル 62を加圧プローブ 67とサーボモータ 54の回転 ロッドとの間に配置してある。この配置によれば、例えロードセル 62が加圧により縮小 しても、距離測定器 Dは加圧プローブ 67と定盤 51間を測定しているので、厚みの測 定には影響しない。また、ロードセル 62をシャフト 57に組み込み、サーボモータ 54の 回転ロッド、ロードセル 62及び加圧プローブ 67を一直線上に配置して、力の損失を 極力に抑えることで、ロードセル 62による正確な荷重値の検出が可能となり、シート に与える荷重の精度を高められる。
[0051] また、定盤 51も加圧により微少な歪みを生じるので、測定に影響を与える。この影 響が無視ように定盤 51を強固にすると、定盤 1が極端に大きぐ重くなつてしまう。し かし、定盤 51に強度が要求されるのは、加圧フレーム 70の取り付け部から加圧プロ ーブ 67で加圧される部分までの個所である。そこで、定盤 51の当該個所のみに強 度を持たせることにより、定盤 51全体に強度を持たせる場合に比べて、その重量を 1 Z4程度に抑えることができる。従ってシートの厚みの測定に高精度が要求される場 合でも、定盤 51を必要最小限の大きさにすることで、厚み測定装置の軽量化を容易 に実現できる。
[0052] 更に、加圧フレーム 70も加圧により微少な歪みを生じるので、距離測定器 Dの取り 付け位置によっては、測定に誤差を生じさせる。この測定誤差を防ぐために、距離測 定器 Dリニアスケール 71のスケール部分は、加圧フレーム 70とは別個に、強固なベ ースからブラケット 72を介して配置してある。
[0053] このような厚み測定装置の動作について説明する。先ず定盤 1上面に被測定物で あるシート 53を載置する。次に、サーボモータ 54を駆動すると、その回転がカツプリ ング 56を介してシャフト 57に伝達される。すると、シャフト 57の下端のねじ部に設置さ れたリニアブッシュ 60が垂直移動するので、第 2軸受け 65及びそれに固定されたプ ローブブラケット 66及び加圧プローブ 67が下降して、シート 53に荷重を与える。この とき加圧プローブ 67は、第 2軸受け 65が取り付けられたリニアガイド 69によって、そ の不所望な回転運動を防止されるので、直線運動のみが得られる。
[0054] 加圧プローブ 67がシート 53に接触した後、なおも下降を続けるとシャフト 57に圧縮 荷重が生じる。この圧縮荷重を、シャフト 57の縦方向中間位置の第 1軸受け 55に力 バー 73と共に固定されたロードセル 62により検出する。ロードセル 62により検出した 圧縮荷重に基づいて、コンピュータ等の制御器(図示せず)により加圧プローブ 67の 昇降をフィードバック制御して、常に一定の荷重が加圧プローブ 67を介してシート 53 に加えられるようにする。フィードバック制御のためにロードセル 62により検出された 圧縮荷重は、通常は、この圧縮荷重が定常状態に入って力 数秒後の値を採用する 。これに代えて、被測定シートの種類に応じては、圧縮荷重が定常状態に入ってから 数秒間につ 、ての平均値を採用してもょ 、。
[0055] また、シート 53に加えられる荷重は、 PID制御により、オーバーシュートすることなく 一定の傾きで荷重を加えることができるので、所定荷重に到達するまでに要する時聞 は通常は数秒間であるが、所望によっては数分間程度を見込こんでもよい。
[0056] 以上のように、加圧プローブ 67を介してシート 53に一定の荷重を与えているときに、 定盤 51と加圧プローブ 67の先端との間の距離をリニアスケール 71にて測定し、この 距離をシートの厚みとみなす。
[0057] このような厚み測定装置によれば、軟質のシート 53の厚みを測定する際に、シート 53に常に一定の荷重を負荷することができるので、常に同じ測定圧力にて測定が可 能となり、シート 53の真の厚みを測定できる。また、サーボモータ 54及びロードセル 6 2により荷重を制御しているので、荷重値を自由に変更でき、また正確で再現性があ る。
[0058] 尚、加圧プローブ 67と定盤 1と平行でなければ、加圧が均一になされないために、 測定誤差が発生するのみならず、加圧プローブ 67と定盤 1とが加圧により片当たりし て、シート 53へ損傷を与えることになる。そこで加圧プローブ 67は定盤 51と平行をな す必要がある。し力しながら、加圧プローブ 67の交換 (例えば、被測定シートの種類 に応じて加圧プローブ 67を径の異なるものと交換する場合)に際して、交換後の加 圧プローブ 67と定盤 1との平行関係が損なわれることがある。
[0059] この問題を解決するためには、平行調整機構 Cを設けることが好ましい。本実施形 態の平行調整機構 Cにおいては、プローブ用ブラケット 66の取り付け面にレベル調 整ボルト 74を取り付けて、プローブ用ブラケット 66と加圧プローブ 67との平行を機械 加工交差の範囲内で調整するようにしてある。これにより、加圧プローブ 67を交換す る際にも、加圧プローブ 67と定盤 1との平行の調整を容易に実行できる。但し、平行 調整はこの手法に限定されるものではな!/、。
[0060] 図 8は本発明に係る加圧加熱装置の他の実施形態を示す。図 8において、断面逆 U状の基礎フレーム 101の上部にはアルミニウム製の矩形状の基盤(下部固定盤) 1 02が装着されている。基盤 102の中央には取付板 103を介して電動ァクチユエータ (駆動手段) 104が取り付けられており、この電動ァクチユエータ 104は基礎フレーム 101の内部スペースから基礎フレーム 101の上部及び基盤 102を貫通して配置され ている。この電動ァクチユエータ 104は電動サーボモータ 104aにより駆動され、電動 サーボモータ 104aの回転運動が伝達機構 104cを介してプレス軸 104bを昇降させ る。
[0061] 基盤 102上には複数のガイドロッド 105(本実施形態では基盤 102の四隅の 4本)が 立設されて 、る。電動ァクチユエータ 104のプレス軸 104b先端には連結部材 106及 び荷重伝達板 107を介してアルミニウム製の下側中間可動盤 108が連結されている 。この下側中間可動盤 108は、上述の複数のガイドロッド 105の各々にそれぞれ摺 動自在に嵌合された複数のスリーブ 108a (本実施形態では下側中間可動盤 108の 四隅の 4個)を有し、ガイドロッド 105に沿って昇降する。下側中間可動盤 108上には 荷重検出器又はロードセル (荷重検出手段) 109が連結されている。このロードセル 1 09の先端には連結部材 110を介してアルミニウム製の上側中間可動盤 111が連結 されている。上側中間可動盤 111も下側中間可動盤 108と同様に、複数のガイドロッ ド 105に摺動自在に嵌合された複数のスリーブ 11 laを介してガイドロッド 105に沿つ て昇降する。本実施形態においては、上側中間可動盤 111と下側中間可動盤 108と で中間可動盤を構成している。ガイドロッド 105の上端にはアルミニウム製の天盤 (上 部固定盤) 114が取り付けられている。
[0062] 上側中間可動盤 111上には、内蔵されたヒータ 112aによって加熱される加圧板又 は下部加圧加熱器 (下部加圧加熱器) 112が装着されている。一方、天盤 114の下 面には、内蔵されたヒータ 113aによって加熱される受圧板又は上部加圧加熱器 (上 部加圧加熱器) 113が下部加圧加熱器 112に対向するように装着されて ヽる。
[0063] 基盤 102、上側中間可動盤 111、下側中間可動盤 108、及び天盤 114は同一の 材料から構成できる。その材料としては、本実施形態におけるようにアルミニウムが軽 量で好まし 、が、これに限定されるものではな 、。
[0064] ロードセル 109及び電動サーボモータ 104aは、制御器、例えばマイクロコンピュー タ(制御手段) 115に電気的に接続されて!ヽる。
[0065] 図 8の装置による圧着プレス工程について説明する。プレス対象のワーク(図示せ ず)としては、例えば薄膜又はシートを積層してなる積層体を用いる。
[0066] 先ず下部加圧加熱器 112のヒータ 112a及び上部加圧加熱器 113のヒータ 113aに 通電して、下部加圧加熱器 112及び上部加圧加熱器 113を所望の温度になるまで 加熱する。その際、下部加圧加熱器 112及び上部加圧加熱器 113の温度は、例え ば熱電対 (図示せず)によって装置の作動期間中に常時測定可能である。
[0067] 次に、ワークを適宜な搬送手段(図示せず)により上部加圧加熱器 113と下部加圧 加熱器 112との間に搬入する。次いで電動サーボモータ 114aを順方向回転させて 下部加圧加熱器 112を上昇させ、所望の時間、ワークを圧着してプレスする。
[0068] 上述の圧着プレス工程中に、ロードセル 109はワークに加わる荷重の大きさを検出 して、その荷重検出値をマイクロコンピュータ 115へ入力する。マイクロコンピュータ 1 15は、それに予め記憶された所望の荷重設定範囲から入力荷重検出値が外れてい る場合には、電動サーボモータ 114aへ制御指令を出力する。この制御指令は電動 サーボモータ 114aを順方向又は逆方向回転させることにより、入力荷重検出値を荷 重設定範囲に収まるようにワークに加わる荷重の大きさを補正する。従って、圧着プ レス工程中においてワークに加わる荷重の大きさを所望の荷重設定範囲内に保つこ とができるので、高いプレス精度が得られる。 [0069] 圧着プレス終了後は、電動サーボモータ 114aを逆方向回転させて下部加圧加熱 器 112を下降させ、圧着を解除する。そして、圧着プレス工程を終えた完成品のヮー クを搬送手段で取り出す。
[0070] ワークの圧着プレス工程において、それに加えられる荷重の大きさ、各工程時間は 、マイクロコンピュータ 115のモニタ(図示せず)に表示させると共に、マイクロコンピュ ータ 115の内部又は外部の記憶媒体装置(図示せず)に記憶させることができる。
[0071] この実施形態においては、 1回の圧着プレス工程において 1個のワークをプレスす るようにした力 複数のワークを積層して同時にプレスするようにしてもよい。また複数 のワークを平面上に (例えば格子状に)配置して同時にプレスするようにしてもよい。
[0072] 図 9は本発明の加圧加熱装置の更に他の実施形態を示す。図 8の装置の構成要 素と同様な構成要素については同様な符号を付して示し、その説明は省略する。
[0073] 図 9において、下部加圧加熱器 112の位置を検出する位置検出器又はリニアスケ ール (位置検出手段) 120は、メインスケール 120aとスライダー 120bと力もなり、マイ クロコンピュータ 115に電気的に接続されて!ヽる。メインスケール 120aは連結部材 1 21を介して天盤 114に連結されており、スライダー 120bは連結部材 122を介して上 側中間可動盤 111に連結されている。リニアスケール 120は 0. 1 mよりも小さな距 離を測定可能なものが好まし 、。
[0074] 図 9の加圧加熱装置の操作について説明する。先ず下部加圧加熱器 112のヒータ 112aと上部加圧加熱器 113のヒータ 113aとに通電して、下部加圧加熱器 112及び 上部加圧加熱器 113を所望の温度になるまで加熱し、この状態を所望時間維持した 後、電動サーボモータ 114aを順方向回転させて、下部加圧加熱器 112を上部加圧 加熱器 113に接触するまで上昇させる。そして下部加圧加熱器 112が上部加圧カロ 熱器 113に接触したときの下部加圧加熱器 112の位置をリニアスケール 120の基準 点としてマイクロコンピュータ 115の内部又は外部の記憶媒体装置(図示せず)に記 憶させる。換言すれば、リニアスケール 120の基準点は、上部加圧加熱器 113と下部 加圧加熱器 112の熱膨張による変形を見込んだものとなるので、高 、プレス精度を 得ることができる。
[0075] 下部加圧加熱器 112が上部加圧加熱器 113がいつ接触したかについては、この 接触が生じると、ロードセル 109により検出している荷重検出値が変化するので、容 易に判定できる。この判定はマイクロコンピュータ 115が自動的に実行するようにプロ グラム可能である。
[0076] 次に電動サーボモータ 104aを逆方向回転させて下部加圧加熱器 112を下降させ た後、搬送手段(図示せず)により、図示しないワーク (例えば、図 8の実施形態に用 いたのと同様に、薄膜又はシートを積層してなる積層体)を下部加圧加熱器 112と上 部加圧加熱器 113との間に搬入する。次いで電動サーボモータ 104aを順方向回転 させて下部加圧加熱器 112を上昇させ、所望の時間に亘つてワークを圧着してプレ スする。
[0077] この圧着プレス工程中には、ロードセル 109がワークに加わる荷重の大きさを検出 し、且つリニアスケール 120が下部加圧加熱器 112の位置を検出すると共に、これら ロードセル 109及びリニアスケール 120の検出値はマイクロコンピュータ 115へ入力 される。マイクロコンピュータ 115は、ロードセル 109からの荷重検出値が予め記憶さ れた荷重設定値に達した後、リニアスケール 120からの位置検出値が予め記憶され た位置設定値カゝら外れているカゝ否かを判定する。外れている場合には、マイクロコン ピュータ 115は電動サーボモータ 104aへ制御指令を出力し、電動サーボモータ 10 4aを順方向又は逆方向回転させることにより、位置検出値が位置設定値と等しくなる ように下部加圧加熱器 112の位置を補正する。従って圧着プレス工程中に下部加圧 加熱器 112の位置を位置設定値に保つことができるため、例えば油圧プレスに比べ て高いプレス精度を得ることができる。圧着プレス終了後、電動サーボモータ 104aを 逆方向回転させて下部加圧加熱器 112を下降させて、圧着を解除する。次いで搬送 手段で接合後のワークを取り出す。
[0078] 圧着プレス工程において、ワークに加えられる荷重の大きさ、各工程時間及び下部 加圧加熱器 112の位置は、マイクロコンピュータ 115に付属するモニタ(図示せず)に 表示させると共に、マイクロコンピュータ 115の内部又は外部の記憶媒体装置(図示 せず)〖こ記憶させることができる。
[0079] この実施形態においても図 8の実施形態と同様に、複数のワーク (積層体)を更に 積層又は平面状に配列して、同時に圧着プレス工程をなしてもよい。 [0080] 当業者には本発明は添付の請求項に記載された目的及び要旨を逸脱することなく 様々な変更や変形をなせることが明らかである。
[0081] 例えば上述した実施形態において、加圧及び加熱して成型すべきワーク又は積層 体を構成する薄膜又はシートは、例えばフレキシブル EL、フィルム、プラスチックシ ート、紙とすることができる力 特にこれらに限定されるものではない。

Claims

請求の範囲
[1] ワークを加圧及び加熱して成型する装置であって、
複数のコラムが立設された下部固定盤と、
この下部固定盤の上方に位置し、前記複数のコラムに沿って昇降可能な中間可動 盤と、
この中間可動盤と前記下部固定盤との間に設けられ前記中間可動盤を昇降させる 駆動手段と、
前記中間可動盤の上方に位置し、前記複数のコラムの上端に固定された上部固定 盤と、
この上部固定盤の下面に設けられ、成型すべきワークを加圧及び加熱する上部加 圧加熱手段と、
この上部加圧加熱手段に対向するように、且つ前記中間可動盤と一体的に昇降す るように、前記中間可動盤の上面に設けられ、前記成型すべきワークを加圧及びカロ 熱する下部加圧加熱手段とを備える装置。
[2] 請求項 1記載の装置において、前記上部又は下部加圧加熱手段から前記上部固定 盤又は中間可動盤へ加わる圧力を緩衝する緩衝手段を更に備える装置。
[3] 請求項 1又は 2に記載の装置において、前記上部固定盤、前記中間可動盤及び前 記下部固定盤が同じ材料カゝら構成されている装置。
[4] 請求項 3記載の装置において、前記材料がアルミニウムである装置。
[5] 請求項 1乃至 4の何れか一項に記載の装置において、前記駆動手段が、圧力流体 により作動するばねである装置。
[6] 請求項 5記載の装置において、前記圧力流体が圧縮空気である装置。
[7] 請求項 5又は 6記載の装置において、前記ばねが前記下部加圧加熱手段から前記 中間可動盤へ加わる圧力を緩衝する前記緩衝手段を兼ねる装置。
[8] 請求項 2乃至 7の何れか一項に記載の装置にお 、て、前記緩衝手段が、圧力を緩衝 する緩衝媒体を弾性的に包囲する包囲手段を含む装置。
[9] 請求項 8記載の装置にお 、て、前記緩衝媒体が気体又は液体である装置。
[10] 請求項 8又は 9記載の装置において、前記緩衝媒体が前記中間可動盤又は前記上 部固定盤を貫通する通路を介して供給される装置。
[11] 請求項 10記載の装置において、前記通路の中間に前記緩衝媒体の圧力を計測す る計測手段を設けた装置。
[12] 請求項 9乃至 11の何れか一項に記載の装置において、複数台の前記装置を配列し 、各々の前記装置へ供給すべき前記気体又は液体を 1つの共通の供給源から供給 する装置。
[13] 請求項 12記載の装置において、前記配列は、前記装置を複数段重ねた配列を含む
[14] 請求項 1記載の装置において、前記中間可動板を昇降させる前記駆動手段が、サ ーボモータである装置。
[15] 請求項 14記載の装置において、前記ワークに加わる荷重を検出する荷重検出手段 を更に備える装置。
[16] 請求項 15記載の装置において、前記荷重検出手段の検出値に基づいて、この検出 値が所定の値になるように前記サーボモータを制御する制御手段を更に備える装置
[17] 請求項 16記載の装置において、前記下部加圧加熱手段の高さ位置を検出する位 置検出手段を更に備えると共に、前記制御手段は更に、前記位置検出手段による検 出値に基づいて、この検出値が所定の値になるように前記サーボモータを制御する
[18] 請求項 17記載の装置において、前記制御手段が記憶手段を含み、この記憶手段は 、前記下部加圧加熱手段が前記上部加圧加熱手段に接触したときの前記下部加圧 加熱手段の高さ位置を前記位置検出手段による参照基準点として記憶する装置。
[19] 請求項 1乃至 18の何れか一項に記載の装置において、前記ワークが、複数の薄膜 又はシートを積層した積層体である装置。
[20] 請求項 19に記載の前記薄膜又はシートの厚さを測定する測定装置であって、 被検体としての前記薄膜又はシートを載置する定盤と、
この定盤上の前記被検体に接触して加圧して荷重を与える昇降可能な加圧プロ一 ブと、 この加圧プローブを昇降させるように、前記加圧プローブに結合された駆動伝達軸 を有するサーボモータと、
前記加圧プローブと前記駆動伝達軸との間に配置され、前記加圧プローブによる 荷重を検出する検出手段と、
前記検出手段により検出された荷重検出値に基づいて、前記加圧プローブから前 記被検体に加わる荷重が一定になるように前記サーボモータを制御する制御手段と 前記定盤と前記加圧プローブとの間の距離を測定する測距手段とを備える測定装
[21] 請求項 20に記載の測定装置において、前記駆動伝達軸と前記検出手段と前記カロ 圧プローブとが、前記加圧プローブの昇降方向に沿って直線状に配置されている測
[22] 請求項 20又は 21に記載の測定装置において、前記測距手段を前記測定装置に装 着する装着手段を更に備え、この装着手段は、前記加圧手段による不所望な歪を前 記測距手段へ与えな!/、ように剛である測定装置。
[23] 請求項 20乃至 22の何れか一項に記載の測定装置において、前記加圧プローブを 着脱自在に取り付ける着脱手段を更に備えることにより、前記加圧プローブをその径 が異なる他の加圧プローブと交換可能である測定装置。
[24] 請求項 23に記載の測定装置において、前記着脱手段と前記定盤とを平行にする手 段を更に備える測定装置。
[25] 複数の薄膜又はシートを積層した積層体を加圧及び加熱して成型する装置であって 複数のコラムが立設された下部固定盤と、
この下部固定盤の上方に位置し、前記複数のコラムに沿って昇降可能な中間可動 盤と、
この中間可動盤と前記下部固定盤との間に設けられ前記中間可動盤を昇降させる サーボモータと、
前記中間可動盤の上方に位置し、前記複数のコラムの上端に固定された上部固定 盤と、
この上部固定盤の下面に設けられ、成型すべき積層体を加圧及び加熱する上部 加圧加熱手段と、
この上部加圧加熱手段に対向するように、且つ前記中間可動盤と一体的に昇降す るように、前記中間可動盤の上面に設けられ、前記成型すべき積層体を加圧及びカロ 熱する下部加圧加熱手段と
前記積層体に加わる荷重を検出する荷重検出手段と、
この荷重検出手段の検出値に基づいて、この検出値が所定の値になるように前記サ ーボモータを制御する制御手段とを備える装置。
[26] 請求項 25記載の装置において、前記下部加圧加熱手段の高さ位置を検出する位 置検出手段を更に備えると共に、前記制御手段は更に、前記位置検出手段による検 出値に基づいて、この検出値が所定の値になるように前記サーボモータを制御する
[27] 請求項 25又は 26記載の装置において、前記制御手段が記憶手段を含み、この記 憶手段は、前記下部加圧加熱手段が前記上部加圧加熱手段に接触したときの前記 下部加圧加熱手段の高さ位置を前記位置検出手段による参照基準点として記憶す
PCT/JP2004/013632 2003-09-18 2004-09-17 加圧加熱装置 WO2005025849A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513979A JPWO2005025849A1 (ja) 2003-09-18 2004-09-17 加圧加熱装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003325898 2003-09-18
JP2003-325898 2003-09-18
JP2003347924 2003-10-07
JP2003-347924 2003-10-07
JP2003-360075 2003-10-21
JP2003360075 2003-10-21

Publications (1)

Publication Number Publication Date
WO2005025849A1 true WO2005025849A1 (ja) 2005-03-24

Family

ID=34317229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013632 WO2005025849A1 (ja) 2003-09-18 2004-09-17 加圧加熱装置

Country Status (2)

Country Link
JP (1) JPWO2005025849A1 (ja)
WO (1) WO2005025849A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104454684A (zh) * 2014-12-10 2015-03-25 南京工程学院 薄膜式小行程压力发生器
CN105455972A (zh) * 2014-07-06 2016-04-06 储诚浩 一种提高医用理疗贴药性的方法
CN108274812A (zh) * 2018-03-13 2018-07-13 梁兆臣 一种双模刻花秸秆育苗盘生产装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550482B2 (ja) * 2010-07-29 2014-07-16 北川精機株式会社 プレス装置システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246201A (ja) * 1987-03-31 1988-10-13 株式会社 太平製作所 多段プレスの熱圧制御方法
JP2001047288A (ja) * 1999-08-03 2001-02-20 Mikado Technos Kk 複数シリンダによる均等加圧方法とその装置
JP2001205500A (ja) * 2000-01-28 2001-07-31 Meiki Co Ltd ホットプレス装置
JP2002192400A (ja) * 2000-12-20 2002-07-10 Kosei Gakuin 可変圧力式積層成形用プレス及び積層成形方法
JP2003200300A (ja) * 2001-12-28 2003-07-15 Meiki Co Ltd ホットプレスの成形方法およびその装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246201A (ja) * 1987-03-31 1988-10-13 株式会社 太平製作所 多段プレスの熱圧制御方法
JP2001047288A (ja) * 1999-08-03 2001-02-20 Mikado Technos Kk 複数シリンダによる均等加圧方法とその装置
JP2001205500A (ja) * 2000-01-28 2001-07-31 Meiki Co Ltd ホットプレス装置
JP2002192400A (ja) * 2000-12-20 2002-07-10 Kosei Gakuin 可変圧力式積層成形用プレス及び積層成形方法
JP2003200300A (ja) * 2001-12-28 2003-07-15 Meiki Co Ltd ホットプレスの成形方法およびその装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105455972A (zh) * 2014-07-06 2016-04-06 储诚浩 一种提高医用理疗贴药性的方法
CN105455972B (zh) * 2014-07-06 2019-05-24 白汝梅 一种提高医用理疗贴药性的方法
CN104454684A (zh) * 2014-12-10 2015-03-25 南京工程学院 薄膜式小行程压力发生器
CN108274812A (zh) * 2018-03-13 2018-07-13 梁兆臣 一种双模刻花秸秆育苗盘生产装置

Also Published As

Publication number Publication date
JPWO2005025849A1 (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
US10933616B2 (en) Roll press method and roll press system
JP4849901B2 (ja) プレス成形装置
US7195476B2 (en) Heating-type vacuum press apparatus
EP2174774A2 (en) Precision press device and press load control method thereof
EP2910892B1 (en) System and method for testing compression panels
JP5297465B2 (ja) 貼合装置及び貼合方法
JP4778725B2 (ja) 樹脂モールド装置
JP4729338B2 (ja) 転写装置
WO2013065175A1 (ja) 通電拡散接合装置及び方法
JP2021100802A (ja) 積層システムおよび積層システムの制御方法
US20100000428A1 (en) Non-contact screen printing method and printing device thereof
JP4890633B2 (ja) 通電拡散接合装置及び方法
WO2005025849A1 (ja) 加圧加熱装置
JP4725853B2 (ja) 平行調整機構および該平行調整機構を用いる加圧成型装置、ならびに該加圧成型装置の平行調整法
US20130337102A1 (en) Embossing Press
JP2019133962A (ja) ラミネート装置、ラミネート方法および太陽電池モジュールの製造方法
KR102151415B1 (ko) 센서가 구비된 3d 프린터용 홀더, 이를 포함하는 3d 프린터 장치, 및 이를 이용한 조형물 제조방법
JP7106242B1 (ja) 積層成形システムの制御方法および積層成形システム
KR101494317B1 (ko) 압착 장치 및 이를 이용한 플렉시블 디스플레이 장치의 제조 방법
JPH06238696A (ja) 樹脂成形プレスのスライド制御方法及びその装置
JP6291275B2 (ja) 貼付方法
JP7097520B1 (ja) 積層成形システム、積層成形システムの制御方法、および積層成形品の製造方法
JP7401485B2 (ja) プレス装置およびプレス装置の制御方法
KR20230111733A (ko) 가변 가압 시스템을 갖는 3d 프린터
WO2021131219A1 (ja) 太陽電池パネル製造装置、太陽電池パネル製造方法及び太陽電池パネル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513979

Country of ref document: JP

122 Ep: pct application non-entry in european phase