WO2005022516A1 - 光記録ディスク - Google Patents

光記録ディスク Download PDF

Info

Publication number
WO2005022516A1
WO2005022516A1 PCT/JP2004/012198 JP2004012198W WO2005022516A1 WO 2005022516 A1 WO2005022516 A1 WO 2005022516A1 JP 2004012198 W JP2004012198 W JP 2004012198W WO 2005022516 A1 WO2005022516 A1 WO 2005022516A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
data
pulse
layer
pulse train
Prior art date
Application number
PCT/JP2004/012198
Other languages
English (en)
French (fr)
Inventor
Hiroshi Shingai
Tatsuya Kato
Hideki Hirata
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2005022516A1 publication Critical patent/WO2005022516A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/006Overwriting
    • G11B7/0062Overwriting strategies, e.g. recording pulse sequences with erasing level used for phase-change media
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/258Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
    • G11B7/259Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver

Definitions

  • the present invention relates to a method for recording data on an optical recording disk having a recording layer containing a phase-change material and a data recording apparatus for recording data on the optical recording disk.
  • Optical recording that can greatly reduce the jitter of the reproduced signal even when data is recorded at a low recording linear velocity on the recording layer of an optical recording disc designed to be suitable for recording data
  • the present invention relates to a method for recording data on a disc and a device for recording data on an optical recording disc.
  • optical recording discs such as CDs and DVDs have been widely used as recording media for recording digital data.
  • larger capacity and higher data transfer rates have been used.
  • a next-generation optical recording disk having the following has been proposed.
  • optical recording discs like CD-R and DVD-R, allow data to be added, but cannot rewrite data, and write-once optical recording discs, and CD-RW and DVD-RW As described above, it can be roughly classified into a rewritable optical recording disk in which data can be rewritten.
  • a phase change material is used as a material of a recording layer, and the reflectance when the phase change material is in a crystalline state and the amorphous state are different.
  • the data is recorded by utilizing the difference in the reflectance in the case of (1).
  • a laser beam whose power has been modulated according to the recording mark to be formed is applied to the recording layer.
  • a power modulation method of a laser beam irradiated for recording data is called a recording strategy.
  • the recording power is set to the recording power set to the recording power Pw.
  • a predetermined area of the recording layer With a laser beam whose power is modulated according to a pulse train pattern including a unit pulse train pattern whose power is combined with a base noise set to a base power Pb.
  • a predetermined region of the recording layer is heated to a temperature equal to or higher than the melting point, it is rapidly cooled to form an amorphous region, thereby forming a recording mark.
  • the erasure is performed by erasing pulse power S set to erasing power Pe and pulse train pattern including the inserted unit pulse train pattern. Therefore, by irradiating the area of the recording layer where the recording mark is formed with the laser beam whose power has been modulated, the area of the recording layer irradiated with the laser beam is heated to a temperature equal to or higher than the crystallization temperature. When the crystalline region is crystallized, the recording mark is erased.
  • optical recording disk capable of recording data at a low recording linear velocity of about lOmZs or less.
  • an object of the present invention is to provide a method for recording data at a low recording linear velocity on a recording layer of an optical recording disc designed to be suitable for recording data at a high recording linear velocity.
  • Another object of the present invention is to provide a method of recording data on an optical recording disk and a device for recording data on the optical recording disk, which can greatly reduce the jitter of a reproduction signal.
  • An object of the present invention is to provide a recording medium comprising: a substrate; and a recording layer formed on the substrate and containing a phase-change material as a main component. At least a recording pulse having a recording power level and a base pulse having a base power level are applied to an optical recording disk configured to be capable of recording data and erasing the recorded data by irradiating a beam.
  • a recording method for irradiating a laser beam whose power has been modulated according to a pulse train pattern including a unit pulse train pattern, forming at least one recording mark on the recording layer, and recording data comprising: The unit pulse train pattern force for forming a mark The base pulse whose pulse width is determined according to the panel width of the recording pulse included at the end is applied to the end pulse. This is achieved by a method of recording data on an optical recording disk, characterized in that the data is included after the recording pulse.
  • the optical recording disk includes at least a substrate and a recording layer formed on the substrate.
  • the recording layer contains a phase change material as a main component, and utilizes the difference between the reflectance when the phase change material is in a crystalline state and the reflectance when the phase change material is in an amorphous state. Then, data is recorded on the recording layer, and data is reproduced from the recording layer.
  • a pulse train pattern including a unit pulse train pattern including at least a recording pulse having a recording power level and a base pulse having a base power level is used.
  • Power-modulated laser The recording layer was irradiated with the beam, and the laser beam was heated to a temperature equal to or higher than the melting point of the irradiated recording layer, and then the laser beam was irradiated by setting the laser beam power to the base power. The area of the recording layer is quenched, an amorphous area is formed, and a recording mark is formed.
  • the erasing power is reduced in addition to the recording power and the base power.
  • a pulse train pattern including a unit pulse train pattern a laser beam whose power is set to the erasing power is applied to the area of the recording layer where the recording mark is formed, and the area of the recording layer irradiated with the laser beam is irradiated.
  • the recording mark is erased by heating the region to a temperature higher than the crystallization temperature and crystallizing the region of the recording layer in the amorphous state.
  • a unit pulse train pattern for forming one recording mark on a recording layer of an optical recording disk is a base pulse having a pulse width determined according to a pulse width of a recording pulse included at the end. After the last recording pulse.
  • a unit pulse train pattern including a base pulse whose pulse width is determined according to the pulse width of a recording pulse included at the end, after the recording pulse at the end is formed.
  • a laser beam whose power has been modulated according to the pulse train pattern included is irradiated onto the recording layer of an optical recording disc to form a recording mark and record data
  • a recording linear velocity of about 10 m / s or less is required. It has been found that even when data is recorded on the recording layer of an optical recording disc at a low recording linear velocity, the jitter of a reproduced signal can be significantly reduced.
  • the unit pulse train pattern for forming one recording mark on the recording layer of the optical recording disk has a pulse width determined according to the pulse width of the recording pulse included at the end.
  • the base pulse is included after the last recording pulse
  • the base pulse inserted after the last recording pulse is not detected. Since the unit pulse train pattern is configured so that the pulse width becomes longer, the recording layer of the optical recording disc is irradiated with a laser beam whose pattern is modulated according to the pulse train pattern including the unit pulse train pattern, and recording is performed.
  • the area of the recording layer irradiated with the laser beam of the recording power is large.
  • the power of the laser beam applied to the area is maintained at the base power for a long period of time, so that the cooling efficiency is improved and the excessively heated part is quickly cooled.
  • the optical recording designed to effectively prevent the phase change material from recrystallizing after melting and therefore suitable for recording data at high recording linear velocity It is presumed that even when data is recorded on the recording layer of the disc at a low recording linear velocity, the jitter of the reproduced signal can be greatly reduced.
  • the base pulse whose pulse width is determined is included after the last recording pulse in accordance with the pulse width of the recording pulse included at the end of the unit pulse train pattern power.
  • a recording mark having a length of 2n (n is a positive integer) times or a length of (2n + l) times of the clock period T, It is configured to include pulse train pattern recording pulses.
  • the unit pulse train pattern force S the base pulse whose pulse width is determined according to the pulse width of the recording pulse included at the end is included after the recording pulse at the end,
  • the unit pulse train pattern force includes ⁇ recording pulses. In such a case, even if data is recorded on an optical recording disk using a pulse train pattern including the same unit pulse train pattern, regardless of the recording linear velocity, a reproduced signal with low jitter can be obtained. It has been found that it can be obtained.
  • the unit pulse train pattern force S includes n recording pulses.
  • the amount of heat applied to the area of the recording layer of the optical recording disk where recording marks are to be formed is insufficient.
  • the amount of heat applied to the area of the recording layer of the optical recording disk where recording marks are to be formed is excessive. It is presumed that data can be recorded that does not become
  • the present invention it is not necessary to change the number of recording pulses included in the unit pulse train pattern in accordance with the recording linear velocity. Even when the recording linear velocity varies greatly depending on the position where the laser beam is irradiated, such as when rotating with CAV (Constant Angular Velocity), the number of recording pulses included in the unit noise train pattern can be reduced. Since there is no need to change, it is possible to omit the processing for changing the number of recording pulses included in the unit pulse train pattern, and therefore, it is possible to simplify the configuration of the circuit that controls the pulse train pattern.
  • CAV Constant Angular Velocity
  • the laser beam whose power has been modulated can be applied to the recording layer of the optical recording disc to record data.
  • the heat can be efficiently applied to the area of the recording layer of the disc where the recording marks are to be formed. Therefore, when recording data on the recording layer of an optical recording disc at a low recording linear velocity, the recording power is low. Power can be set to a low level.
  • the phase change material for forming the recording layer of the optical recording disk is not particularly limited, but the recording layer force Sb, Te, Ge, Tb, Ag And a phase change material containing In as a main component, and at least a phase change material containing Sb, Te, Ge and Tb as a main component.
  • the elements contained in the recording layer of the optical recording disk are represented by the general formula: Sb Te Ge Tb, 63 ⁇ a ⁇ 78, 2 ⁇ c ⁇ 10, 3 ⁇ d ⁇ 15, 75 ⁇ a + d ⁇ 82, with a power of 3.3 ⁇ a / b ⁇ 4.9.
  • phase change material represented by the general formula: Sb Te Ge Tb changes from an amorphous state to a crystalline state.
  • the crystallization speed is extremely high
  • data is recorded on the recording layer at an extremely high recording linear velocity, for example, at a recording linear velocity of 19 m / s or more.
  • the data recorded on the recording layer can be erased.
  • phase change material represented by the general formula: Sb Te Ge Tb is converted from an amorphous state to a crystalline state.
  • phase change material represented by the general formula: Sb Te Ge Tb has such properties.
  • Tb has the effect of increasing the crystallization rate as well as the crystallization rate.By replacing part of Sb with Tb, the crystallization rate of the phase change material is increased and the crystallization temperature is increased. That can be S.
  • the recording layer of the optical recording disk is preferably formed to a thickness of 2 nm to 40 nm, more preferably, to a thickness of 4 nm to 30 nm, and Preferably, it is formed to have a thickness of 5 nm and a thickness of 20 nm.
  • the thickness of the recording layer of the optical recording disk is less than 2 nm, the difference in optical characteristics before and after recording is reduced, and it becomes impossible to obtain a reproduced signal having a high C / N ratio during data reproduction.
  • the thickness of the recording layer of the optical recording disk is greater than 40 nm, the heat capacity required for data recording increases, the recording sensitivity deteriorates, and it becomes difficult to form recording marks, which is not preferable.
  • the optical recording disk is provided with a laser beam having a recording power having a wavelength ⁇ through an objective lens having a numerical aperture NA at an extremely high recording linear velocity of about 19 mZs or more.
  • a recording mark having a length of ⁇ ⁇ ⁇ ⁇ or more is formed in a predetermined area of the recording layer, the reflectance Ri of the area where the recording mark is formed and the reflectance Ri formed in the predetermined area of the recording layer
  • the reflectance Re of the area when the recording mark is erased satisfies the relationship of Re ⁇ 0.95'Ri. It has good properties.
  • the recording layer of the optical recording disk is irradiated with a laser beam having a wavelength of 350 nm to 450 nm to record data on the optical recording disk. Let's do it.
  • the recording of the optical recording disc is performed via an objective lens having an objective lens having a numerical aperture ⁇ ⁇ ⁇ ⁇ satisfying ⁇ ⁇ 640 ⁇ and a laser beam having a wavelength ⁇ .
  • the layer is configured to irradiate a laser beam to record data.
  • the object of the present invention also includes a substrate, and a recording layer formed on the substrate and containing a phase change material as a main component, wherein the recording layer is provided with a laser beam at a high speed equal to or higher than a predetermined linear velocity.
  • a recording device for recording data on an optical recording disk configured to be capable of recording data and erasing the recorded data, comprising: at least a recording pulse having a recording power level; Laser irradiation means for irradiating a laser beam whose power has been modulated in accordance with a pulse train pattern including a unit pulse train pattern including a base pulse having a base power level, wherein the laser irradiation means is included at the end.
  • is a positive integer
  • ⁇ + 1 times the clock period ⁇
  • It is configured to include a unit pulse train pattern force of the recording pulses.
  • the reproduction is also possible.
  • a method of recording data on an optical recording disc that can significantly reduce signal jitter, And an apparatus for recording data on an optical recording disk.
  • FIG. 1 is a schematic cross-sectional view of an optical recording disk according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic enlarged cross-sectional view of a portion indicated by A in FIG. FIG.
  • FIG. 3 is a diagram showing a unit pulse train pattern when data is recorded in a data recording method according to a preferred embodiment of the present invention.
  • FIG. 4 is a diagram showing a unit pulse train pattern when data is recorded in a data recording method according to a preferred embodiment of the present invention.
  • FIG. 5 is a diagram showing a unit pulse train pattern when recording data in a data recording method according to a preferred embodiment of the present invention.
  • FIG. 6 is a diagram showing a unit pulse train pattern when recording data in a data recording method according to a preferred embodiment of the present invention.
  • FIG. 7 is a block diagram of a data recording device according to a preferred embodiment of the present invention.
  • FIG. 8 data was recorded on an optical recording disk at a recording linear velocity of 31.8 m / s using a pulse train pattern including the unit pulse train pattern shown in FIGS. 3 and 4.
  • 5 is a graph showing jitter of a reproduced signal when data is reproduced.
  • FIG. 9 data was recorded on an optical recording disk using a pulse train pattern including a unit pulse train pattern shown in FIGS. 5 and 6 at a recording linear velocity of 5.3 m / s.
  • 5 is a graph showing jitter of a reproduced signal when data is reproduced.
  • FIG. 10 shows a reproduction signal C obtained by recording data on an optical recording disk at a recording linear velocity of 5.3 m / s and reproducing the recorded data according to the comparative example.
  • FIG. 1 is a schematic perspective view of an optical recording disk according to a preferred embodiment of the present invention.
  • FIG. 2 is a substantially enlarged cross-sectional view of a portion indicated by ⁇ in FIG.
  • the optical recording disk 1 has a disk shape, and has a wavelength ⁇ of 350 nm to 450 nm in the directions indicated by arrows in FIGS. 1 and 2. Yes
  • the laser beam to be emitted is irradiated to the optical recording disk 1 via an objective lens having a numerical aperture NA satisfying a condition of / NA ⁇ 640.
  • an optical recording disk 1 includes a substrate 2, a reflective layer 3 formed on the surface of the substrate 2, and a reflective layer 3 formed on the surface of the reflective layer 3.
  • a second dielectric layer 4 a recording layer 5 formed on the surface of the second dielectric layer 4 and formed by a phase-change film, and a first dielectric layer formed on the surface of the recording layer 5. It has a body layer 6, a heat radiation layer 7 formed on the surface of the first dielectric layer 6, and a light transmission layer 8 formed on the surface of the heat radiation layer 7.
  • the substrate 2 functions as a mechanical support for the optical recording disk 1.
  • the material for forming the substrate 2 is not particularly limited as long as it can function as a support for the optical recording disk 1, and may be formed of, for example, glass, ceramic, resin, or the like. can do.
  • resins are preferably used from the viewpoint of ease of molding.
  • examples of such a resin include a polycarbonate resin, an acrylic resin, an epoxy resin, a polystyrene resin, a polyethylene resin, a polypropylene resin, a silicone resin, a fluorine-based resin, an ABS resin, and a urethane resin.
  • the polycarbonate resin is particularly preferred in terms of processability, optical characteristics, and the like, and in this embodiment, the substrate 2 is formed of the polycarbonate resin.
  • the substrate 2 has a thickness of about 1.1 mm.
  • the recording layer 5 is irradiated with the laser beam via the light transmitting layer 8 located on the opposite side to the substrate 2, so that the substrate 2 has a light transmitting property. It is not always necessary to be.
  • groups 2 a and lands 2 b are alternately formed on the surface of substrate 2.
  • the groups 2a and Z or the lands 2b formed on the surface of the substrate 2 function as laser beam guide tracks when recording data on the recording layer 5 and when reproducing data from the recording layer 5.
  • a reflective layer 3 is formed on the surface of the substrate 2.
  • the reflection layer 3 reflects the laser beam irradiated on the recording layer 5 via the light transmission layer 8 and emits the laser beam again from the light transmission layer 8. It plays a role of effectively radiating the heat generated in the recording layer 5.
  • the thickness of the reflective layer 3 is not particularly limited, but is preferably 10 to 300 nm, and more preferably 20 nm to 200 nm.
  • the material for forming the reflection layer 3 is not particularly limited as long as it can reflect a laser beam. Mg, Al, Ti, Cr, Fe, Co, Ni, Cu, Zn, Ge,
  • the reflection layer 3 can be formed of Ag, Pt, Au, or the like. Of these, metallic materials such as Al, Au, Ag, Cu, or alloys containing at least one of these metals, such as alloys of Ag and Cu, having high reflectivity, form the reflective layer 3. It is preferably used for forming.
  • the reflective layer 3 can be formed, for example, by a vapor phase growth method using a chemical species containing a constituent element of the reflective layer 3.
  • a vapor phase growth method using a chemical species containing a constituent element of the reflective layer 3.
  • the vapor deposition method include a vacuum deposition method and a sputtering method.
  • a second dielectric layer 4 is formed on the surface of the reflective layer 3
  • the second dielectric layer 4 together with the first dielectric layer 6 protects the recording layer 5 mechanically and chemically, and when reproducing data recorded on the recording layer 5, Due to the multiple interference effect, it has a function to adjust the optical characteristics so as to obtain a reproduced signal with a high C / N ratio by increasing the difference in reflectance between the recorded part and the unrecorded part.
  • the material for forming the second dielectric layer 4 is not particularly limited, but includes Si, Zn, Al, Ta, Ti, Co, Zr, Pb, Ag, Sn, and Ca. It is preferably formed from oxides, nitrides, sulfides, fluorides containing at least one metal selected from the group consisting of, Ce, V, Cu, Fe, and Mg, or a composite of these. Masure,
  • the second dielectric layer 4 can be formed on the surface of the reflective layer 3 by, for example, a vapor phase growth method using a chemical species containing a constituent element of the second dielectric layer 4.
  • a vapor phase growth method using a chemical species containing a constituent element of the second dielectric layer 4.
  • the vapor deposition method include a vacuum deposition method and a sputtering method.
  • a recording layer 5 is formed on the surface of the second dielectric layer 4
  • the recording layer 5 is formed of a phase change material, and performs recording by utilizing a difference between a reflectance when the phase change material is in a crystalline state and a reflectance when the phase change material is in an amorphous state. Data is recorded on layer 5, and data is reproduced from recording layer 5.
  • the recording layer 5 is irradiated with a laser beam whose power is modulated by a pulse train pattern including a unit pulse train pattern including the recording power Pw and the base power Pb. Then, the area of the recording layer 5 irradiated with the laser beam is heated to a temperature equal to or higher than the melting point, and then the power of the laser beam is set to the base power Pb. Is rapidly cooled to form an amorphous region and a recording mark is formed.
  • the power of the laser beam is modulated by a pulse train pattern having an erasing power in addition to the recording power Pw and the base power Pb. Then, the region of the recording layer 5 irradiated with the laser beam is heated to a temperature higher than the crystallization temperature, the amorphous region is crystallized, and the recording mark is erased.
  • phase change material for forming the recording layer 5 is not particularly limited, but in the present embodiment, a phase change material represented by a general formula: Sb Te Ge Tb is used.
  • phase change material represented by the general formula: Sb Te Ge Tb changes from an amorphous state to a crystalline state.
  • the time required for the phase change of the crystal layer is extremely short, that is, the crystallization speed is very fast, and the data is recorded on the recording layer 5 at an extremely high recording linear velocity of about 19 m / s or more. Can be erased.
  • phase change material represented by the general formula: Sb Te Ge Tb is converted from an amorphous state to a crystalline state.
  • phase change material represented by the general formula: Sb Te Ge Tb has such properties.
  • Tb has the effect of increasing the crystallization rate as well as the crystallization rate.By replacing part of Sb with Tb, the crystallization rate of the phase change material is increased and the crystallization temperature is increased. That power s can.
  • the recording layer 5 is preferably formed to a thickness of 2 nm to 40 nm, more preferably to a thickness of 4 nm to 30 nm, and even more preferably to a thickness of 5 nm. 20nm Is formed to have a thickness of
  • the thickness force of the recording layer 5 is less than 2 nm, the difference in optical characteristics before and after recording is reduced, and it becomes impossible to obtain a reproduction signal with a high C / N ratio during data reproduction.
  • the thickness force is larger than 40 nm, the heat capacity required for data recording increases, the recording sensitivity deteriorates, and it becomes difficult to form a recording mark, which is not preferable.
  • the recording layer 5 can be formed by a vapor phase growth method using a chemical species containing a constituent element of the recording layer 5.
  • Examples of the vapor phase growth method include a vacuum evaporation method and a sputtering method.
  • a first dielectric layer 6 is formed on the surface of the recording layer 5.
  • Materials for forming the first dielectric layer 6 are not particularly limited, but include Si, Zn, Al, Ta, Ti, Co, Zr, Pb, Ag, Zn, and Sn. Oxides, nitrides, sulfides, fluorides, or composites containing at least one metal selected from the group consisting of, Ca, Ce, V, Cu, Fe, and Mg Is preferred.
  • the first dielectric layer 6 can be formed, for example, by a vapor deposition method using a chemical species containing a constituent element of the first dielectric layer 6.
  • a vapor deposition method using a chemical species containing a constituent element of the first dielectric layer 6.
  • the vapor growth method include a vacuum deposition method and a sputtering method.
  • the first dielectric layer 6 and the second dielectric layer 4 may be formed of the same dielectric material, or may be formed of different dielectric materials. Further, at least one of the first dielectric layer 6 and the second dielectric layer 4 may have a multi-layer structure including a plurality of dielectric films.
  • a heat radiation layer 7 is formed on the surface of the first dielectric layer 6
  • the heat radiation layer 7 plays a role of quickly releasing the heat generated in the recording layer 5 to the light incident surface side.
  • the recording layer 5 When data is stored in the recording layer 5 when data is recorded in the recording layer 5, the recording layer 5 is melted and melted under the influence of the stored heat, even after being quenched. Area may be recrystallized, or thermal interference between adjacent recording marks may occur.This phenomenon becomes more significant as the recording linear velocity increases. To prevent the recording layer 5 from recrystallizing and causing thermal interference between adjacent recording marks. You can.
  • the material for forming the heat radiation layer 7 is not particularly limited as long as the heat of the recording layer 5 can be radiated. Materials having high thermal conductivity are preferred. Specifically, A1N, AlO, SiN, ZnS, ZrO, SiO, etc. are preferred.
  • the heat radiation layer 7 can be formed, for example, by a vapor phase growth method using a chemical species containing a constituent element of the heat radiation layer 7.
  • a vapor phase growth method using a chemical species containing a constituent element of the heat radiation layer 7.
  • the vapor deposition method include a vacuum deposition method and a sputtering method.
  • the heat radiation layer 7 is preferably formed to have a thickness of 20 nm to 150 nm.
  • a light transmitting layer 8 is formed on the surface of the heat radiation layer 7.
  • the light transmitting layer 8 is a layer through which a laser beam is transmitted.
  • the material for forming the light transmitting layer 8 is optically transparent, has low optical absorption and reflection in the laser beam wavelength range of 350 nm to 450 nm, and has a low birefringence.
  • an ultraviolet curable resin, an electron beam curable resin, a thermosetting resin, or the like is used to form the light transmitting layer 8.
  • Active energy ray-curable resins such as ultraviolet-curable resins and electron beam-curable resins are particularly preferred.
  • the light transmitting layer 8 may be formed by bonding a sheet formed of a light transmitting resin to the surface of the first dielectric layer 6 using an adhesive.
  • the thickness of the light transmitting layer 8 is determined by using a sheet formed of a light transmitting resin that is preferably 1111 to 150 ⁇ 111.
  • the light transmitting layer 8 is formed by adhering to the surface of the first dielectric layer 6 using an adhesive, 50 ⁇ m is preferable, and 150 ⁇ m is preferable.
  • the optical recording disk 1 having the above-described configuration can record a recording power Pw having a wavelength ⁇ at an extremely high recording linear velocity of about 19 m / s or more through an objective lens having a numerical aperture NA.
  • the recording layer 5 is irradiated with the beam to form a recording mark having a length of ⁇ or more in a predetermined region of the recording layer 5, the reflectance Ri of the region where the recording mark is formed, and the recording layer Irradiating the laser beam with erasing power Pe to the recording mark formed in the predetermined area of
  • data is recorded on the recording layer 5 at an extremely high recording linear velocity of about 19 mZs or more, and the data recorded on the recording layer 5 is recorded. Can be erased.
  • data are recorded on the recording layer 5 of the optical recording disk 1 having the force and the curl characteristics at a high recording linear velocity of about 19 mZs or more and a low recording linear velocity of about 10 OmZs or less, respectively. Be recorded.
  • FIG. 3 and FIG. 4 show that, in the data recording method according to the preferred embodiment of the present invention, one recording mark is formed on the recording layer 5 of the optical recording disc 1 at a high recording linear velocity of 31.8 m / s.
  • FIGS. 3 (a), 3 (b), 3 (c) and 3 (d) are diagrams of unit pulse train patterns used to modulate the laser beam power when forming.
  • FIG. 4 (a), FIG. 4 (b) and FIG. 4 (c) show unit pulse train patterns when recording marks having a length of 2T to 5T are formed on the recording layer 5 of the optical recording disc 1.
  • 5 shows a unit pulse train pattern when forming a recording mark having a length of 6T to 8T on the recording layer 5 of the optical recording disk 1, respectively.
  • FIGS. 5 and 6 show a data recording method according to a preferred embodiment of the present invention, wherein one recording mark is formed on the recording layer 5 of the optical recording disc 1 at a low recording linear velocity of 5.3 m / s.
  • Fig. 5 (a), Fig. 5 (b), Fig. 5 (c), and Fig. 5 (d) are diagrams of unit pulse train patterns used to modulate the laser beam power when forming.
  • FIGS. 6 (a), 6 (b), and 6 (c) show unit pulse train patterns when recording marks of 2T and 5T length are formed on the recording layer 5 of the optical recording disc 1.
  • the unit pulse train pattern includes a level corresponding to the recording power Pw, a level corresponding to the base power Pb, and erasing.
  • the level changes between the three levels corresponding to the power Pe. It consists of modulated pulses.
  • the recording power Pw, the base power Pb, and the erasing power Pe satisfy Pw>Pe> Pb, and accordingly, three levels of the pulse train pattern are determined.
  • a pulse during a period of rising to a level corresponding to the recording power Pw is referred to as a "recording pulse” or a period during which the pulse falls to a level corresponding to the base power Pb.
  • recording pulse or a period during which the pulse falls to a level corresponding to the base power Pb.
  • base pulses the pulses during the period in which they rise to the level corresponding to the erase power Pe are called “erase pulses”.
  • the recording layer 5 of the optical recording disc 1 has a length of 2T or 3T.
  • the unit pulse train pattern for recording one recording mark is composed of a combination of one recording pulse and one base pulse.
  • the noise width Tel of the base pulse included in the unit pulse train pattern in the case of forming a recording mark having a length of 3T shown in Figs. 3 (b) and 5 (b) is obtained.
  • the pulse widths Tel and 0 of the base pulse in the unit pulse train pattern are respectively obtained.
  • the pulse width of the base pulse in the pulse train pattern is set to be Tel force S, 0.6T, and 2.35 ⁇ .
  • the unit pulse train pattern used to form one recording mark having a length of 4T or more must be 2 or more.
  • the pulse width Tcl of the base pulse inserted after the last recording pulse is set according to the pulse width Tlast of the last recording pulse included in the unit pulse train pattern.
  • the unit pulse train pattern used to form one recording mark having a length of 4T or more has a long pulse width Tlast of the last recording pulse included in the unit pulse train pattern.
  • the pulse width Tel of the base pulse inserted after the last recording pulse is configured to be long.
  • the data is recorded at a low recording linear velocity on the recording layer 5 of the optical recording disc 1 designed to be suitable for recording data at a high recording linear velocity. Is recorded, the jitter of the reproduced signal can be greatly reduced.
  • the unit pulse train pattern used to form one recording mark having a length of 4 T or more includes two or more recording pulses, and the unit pulse train pattern is Since the pulse width Tel of the base pulse inserted after the last recording pulse is set according to the pulse width Tlast of the last recording pulse included, the laser beam of the recording power Pw is applied to the area of the recording layer 5. The longer the irradiation period, the later the power of the laser beam irradiating the area is maintained at the base power Pb for a longer period. Thermal interference between adjacent recording marks can cause undesirable changes in the size or shape of the recording marks. Can be effectively prevented.
  • the unit nozzle row pattern when forming a recording mark having a length of 2T or 3T, has one recording mark.
  • two recording pulses are used.
  • To form a 6T or 7T length recording mark three recording pulses are used and an 8T length is used.
  • four recording pulses are used.
  • a unit pulse train pattern force S for forming a recording mark is configured to include n recording pulses.
  • the base pulse whose pulse width Tel is determined according to the unit pulse train pattern force S and the pulse width Tlast of the trailing recording pulse is added after the trailing recording panel.
  • the pulse train pattern force n recording pulses When the data is recorded on the optical recording disc 1 using a pulse train pattern including a unit pulse train pattern having the same number of recording pulses, regardless of the recording linear velocity, the jitter is reduced. It has been found that a low reproduction signal can be obtained.
  • the unit pulse train pattern force S includes n recording pulses.
  • the amount of heat applied to the area of the optical recording disc 1 where recording marks are to be formed on the recording layer 5 is high. It is possible to record data without any shortage, and when recording data on the recording layer 5 at a low recording linear velocity, the area where the recording marks of the recording layer 5 of the optical recording disc 1 are to be formed is formed. It is presumed that data could be recorded without adding excessive heat.
  • the optical recording disk 1 can maintain a constant angular velocity (CAV: Constant Angular Even when the recording linear velocity varies greatly depending on the position where the laser beam is irradiated, such as when rotating at (Velocity), it is not necessary to change the number of recording pulses contained in the unit pulse train pattern. Therefore, a process for changing the number of recording pulses included in the unit pulse train pattern can be omitted, and thus the configuration of a circuit for controlling the pulse train pattern can be simplified.
  • CAV Constant Angular velocity
  • the same number of recordings as when recording data at a high recording linear velocity when recording data on the recording layer 5 of the optical recording disc 1 at a low recording linear velocity According to the pulse train pattern including the unit pulse train pattern including the number of pulses, a laser beam whose power has been modulated can be applied to the recording layer 5 of the optical recording disc 1 to record data. Heat can be efficiently applied to the area of the recording layer 5 where the recording mark is to be formed, and therefore, when data is recorded on the recording layer 5 of the optical recording disk 1 at a low recording linear velocity, the recording is performed.
  • the power Pw can be set to a low level.
  • FIGS. 3 (b), 3 (c), 3 (d), 4 (a), 4 (b), and 4 (c) are shown.
  • the pulse width Td is set at the beginning of the unit pulse train pattern.
  • a 2T base pulse is inserted, and the rising timing of the first recording pulse is delayed.
  • the data was recorded on the recording layer 5 of the optical recording disc 1 at a high recording linear velocity of 31.8 m / s.
  • undesirable changes in the size or shape of the recording mark are likely to occur due to thermal interference between adjacent recording marks.
  • the rising timing of the first recording pulse This is prevented by delaying
  • FIG. 7 is a block diagram of a data recording / reproducing apparatus according to a preferred embodiment of the present invention.
  • the data recording / reproducing apparatus 20 includes a spindle motor 22 for rotating the optical recording disc 1 and a laser beam directed toward the optical recording disc 1.
  • the pickup 23 receives the laser beam emitted and reflected by the optical recording disk 1, controls the operation of the spindle motor 22 and the pickup 23, and reproduces data input from outside or from the optical recording disk 1.
  • a controller 24 that performs predetermined signal processing on the obtained data, a laser drive circuit 25 that supplies a laser drive signal to the pickup 23, and a lens drive circuit 26 that supplies a lens drive signal to the pickup 23 .
  • the controller 24 includes a focus servo circuit 27 for generating a focus control signal based on a focus error signal read from the optical recording disk 1,
  • a tracking servo circuit 28 for generating a tracking control signal based on the read tracking error signal; and a clock signal having a predetermined cycle based on a reproduction signal reproduced from the optical recording disc 1, and a timing signal to be described later.
  • a clock generation circuit 29 for outputting to the controller 31 or the control circuit 32, an address for generating an address signal by extracting a wobble signal from the playback signal reproduced from the optical recording disc 1 and performing demodulation processing on the extracted wobble signal.
  • a timing controller 31 that generates a timing signal based on the address signal generated by the address decoder 30 and outputs the timing signal to each circuit in the controller 24; a control circuit 32 that controls the entire operation of the controller 24; It has a memory 33, a data processing circuit 34, and a write strategy circuit 35.
  • the timing signal generated by the timing controller 31 is output to each circuit inside the controller 24, so that the operation timing of each circuit inside the controller 24 is changed. Is controlled so that each circuit operates synchronously.
  • the memory 33 stores various data used for processing inside the program data controller 24 for controlling the entire data recording / reproducing device 20.
  • the memory 33 stores a plurality of recording strategies used for modulating the power of the laser beam in association with the type of the optical recording disk 1.
  • the control circuit 32 controls the operation of the entire controller 24, and outputs a control signal to each circuit inside the controller 24 according to command data corresponding to a user's key input or button input. Controls the operation of each circuit.
  • the control circuit 32 outputs an instruction signal to change the rotational speed to the spindle motor 22 to change the recording linear velocity.
  • the data processing circuit 34 When data is recorded on the optical recording disc 1, the data processing circuit 34 functions as an encoder for performing encoding processing on user data input from the outside, and reproduces data from the optical recording disc 1. In this case, it functions as a decoder that performs a decoding process on the reproduction signal reproduced from the optical recording disk 1.
  • the write strategy circuit 35 generates a laser beam power control signal for modulating the power of the laser beam based on the data subjected to the encoding process in the data processing circuit 34.
  • the data recording / reproducing device 20 having the above configuration records data on the recording layer 5 of the optical recording disc 1 as follows.
  • the controller 24 irradiates the optical recording disk 1 with a laser beam, reads the reflected light thereof, and outputs a tracking error signal and a focus error signal. Generate a signal.
  • the controller 24 generates a tracking control signal and a focus control signal based on the tracking error signal and the focus error signal, and outputs them to the pickup 23 and the lens drive circuit 26, respectively.
  • the position of the pickup 23 is controlled so that the laser beam automatically follows the track of the optical recording disk 1, and the laser beam is focused on the recording layer 5 of the optical recording disk 1.
  • the objective lens (not shown) built in the pickup 23 The position is fine-tuned.
  • the address decoder 30 of the controller 24 reads out the wobble signal / pre-pit signal from the optical recording disk 1, generates an address signal, and outputs it to the timing controller 31 or the control circuit 32. By outputting the address signal power to the timing controller 31 or the control circuit 32, the controller 24 can recognize the irradiation position of the laser beam.
  • the ID data for specifying the type of the optical recording disk 1 is recorded on the optical recording disk 1 as a recordable pre-pit, and the address decoder 30 of the controller 24 performs optical recording.
  • ID data for specifying the type of the optical recording disk 1 is read.
  • the recording strategy stored in the memory 33 is selected based on the read ID data of the optical recording disk 1, and the setting of the write strategy circuit 35 is determined.
  • the input of the user data is permitted, and the user data is input to the data recording / reproducing device 20.
  • the data processing circuit 34 performs an encoding process on the user data.
  • the data processing circuit 34 performs scramble processing on the input user data, and adds error correction notice data to the scrambled data.
  • the data processing circuit 34 performs 1, 7RLL modulation processing and NRZI (Non Return to Zero Inverse) modulation processing on the data to which the note data for error correction has been added, thereby obtaining the data "1".
  • the array of “0” is converted into an array suitable for recording on the optical recording disk 1 and output to the write strategy circuit 35.
  • the write strategy circuit 35 modulates the power of the laser beam based on the encoded data. Is generated.
  • the write strategy circuit 35 generates a laser beam power control signal by combining the unit pulse train patterns shown in FIGS. 3 to 6, and generates a unit pulse train pattern included in the laser beam power control signal.
  • the base pulse whose pulse width Tel is determined according to the pulse width Tlast of the recording pulse included at the end is included after the recording pulse at the end, and the clock period T is 2n (n is a positive integer). ) Times or (2n + l) times the length of a recording mark, it is configured to include n recording pulses.
  • the laser beam power control signal generated by the write strategy circuit 35 is output to the laser drive circuit 25, and the pattern of the laser beam emitted from the pickup 23 is modulated. Data is recorded in 5.
  • data is recorded on the optical recording disk 1 by the data recording / reproducing device 20.
  • data recorded on the recording layer 5 of the optical recording disk 1 is reproduced by the data recording / reproducing device 20 as follows.
  • the focus control and the tracking control are executed by the controller 24, and the address signal is generated by the address decoder 30 of the controller 24. Is done.
  • the pickup 23 irradiates the laser beam power set to the power for reproduction onto the recording layer 5 of the optical recording disk 1 and reads out the data recorded on the recording layer 5 of the optical recording disk 1. , A reproduction signal is generated.
  • the reproduced signal thus generated is subjected to waveform shaping and Viterbi decoding by a PRML (Partial Response Maximum Likelihood) processing circuit (not shown), and is binarized.
  • PRML Partial Response Maximum Likelihood
  • the data thus binarized and generated is output to the data processing circuit 34, where the data processing circuit 34 performs a decoding process.
  • the data processing circuit 34 performs NRZI demodulation processing and 1,7RLL demodulation processing on the data reproduced from the recording layer 5 of the optical recording disc 1, and performs NRZI modulation when data is recorded on the optical recording disc 1.
  • the data that has been subjected to the processing and the 1.7RLL modulation processing and converted into an array suitable for recording is converted to a state before the NRZI modulation processing and the 1.7RLL modulation processing have been performed.
  • the data processing circuit 34 performs NRZI demodulation processing and 1 7 Perform error correction processing on the data subjected to the RLL demodulation processing to correct errors contained in the reproduced data.
  • the data processing circuit 34 performs a descrambling process on the data on which the NRZI demodulation process, the 1,7RLL demodulation process, and the error correction process have been performed.
  • the array of the applied data is converted to the original array.
  • the user data is reproduced by the controller 24, and the reproduced user data is output to the outside or stored in the memory 33 as reproduction data.
  • the data recorded on the recording layer 5 of the optical recording disc 1 is reproduced by the data recording / reproducing device 20.
  • the pulse width Tlast of the last recording pulse included in the pulse train pattern is long, it is inserted after the last recording pulse.
  • the base layer pulse Tel is irradiated with a laser beam whose power has been modulated in accordance with a panel train pattern including a unit pulse train pattern configured to increase the width of the Tel to record data by recording the data on the recording layer 5 of the optical recording disk 1.
  • the laser beam whose power has been modulated according to the pulse train pattern including the unit pulse train pattern is configured so that the pulse width Tel of the base pulse inserted after the trailing recording pulse is longer.
  • the area of the recording layer 5 irradiated with the laser beam of the recording power Pw is large. Even if a large amount of heat is applied, the power of the laser beam irradiating the area is maintained at the base power Pb for a long period of time, so that the cooling efficiency is increased and the excessively heated portion is increased.
  • one recording mark when forming a recording mark having a length of 2n times (n is a positive integer) or (2n + 1) times the clock period T, one recording mark is formed.
  • the unit is configured to include n recording pulses, so when recording data on the recording layer 5 at a high recording linear velocity, the recording on the recording layer 5 of the optical recording disc 1 is performed. It is possible to record data without losing the amount of heat applied to the area where the mark is to be formed, and to record data on the recording layer 5 at a low recording linear velocity. It is possible to record data without excessive heat applied to the area of the recording layer 5 where the recording mark is to be formed, and therefore, regardless of the recording linear velocity, a unit pulse train pattern having the same number of recording pulses is used.
  • the recording layer 5 of the optical recording disc 1 when data is recorded on the recording layer 5 of the optical recording disc 1 at a low recording linear velocity, the same as when recording data at a high recording linear velocity. Since data can be recorded by irradiating the recording layer 5 of the optical recording disk 1 with a laser beam whose phase has been modulated according to a pulse train pattern including a unit pulse train pattern including a number of recording pulses, the Heat can be efficiently removed from the recording layer 5 of the recording disk 1 to the area where the recording mark is to be formed, and therefore, data is recorded on the recording layer 5 of the optical recording disk 1 at a low recording linear velocity. In this case, the recording power Pw can be set to a low level.
  • a polycarbonate substrate having a thickness of 1 mm and a diameter of 120 mm is set in a sputtering apparatus, and on the polycarbonate substrate, Ag, Pd and Cu are contained at an atomic ratio of 98: 1: 1 and have a thickness of 100 nm.
  • the reflection layer was formed by a sputtering method.
  • the molar ratio of ZnS and SiO in the mixture of ZnS and Si ⁇ contained in the second dielectric layer is:
  • a sputtering process was performed on the surface of the recording layer using a target composed of a mixture of ZnS and Si ⁇ .
  • a first dielectric layer having a thickness of 40 nm was formed by a tarling method.
  • a 100 nm thick heat dissipation layer containing A1N as a main component was formed by a reactive sputtering method.
  • an acrylic UV-curable resin is dissolved in a solvent, and the prepared resin solution is applied to the surface of the heat radiation layer by a spin coating method to form an application layer.
  • Ultraviolet rays were irradiated to cure the acrylic ultraviolet-curable resin to form a light-transmitting layer having a thickness of 100 / m.
  • An optical recording disk sampler was set on an optical recording medium evaluation apparatus "DDU1000" (trade name) manufactured by Pulstec Industrial Co., Ltd., and blue laser light having a wavelength of 405 nm was used as recording laser light.
  • the laser beam is focused on the recording layer via the light transmitting layer, and the pulse train pattern including the unit pulse train pattern shown in Figs. 3 and 4
  • the recording mark was formed on the recording layer of the optical recording disc sample under the following conditions by using.
  • the recording power Pw of the laser beam was set to 7.6 mW, and the base power Pb was set to 0.3 mW.
  • the data recorded on the recording layer of the optical recording disk sample was reproduced using the above-mentioned optical recording medium evaluation apparatus, and the jitter of the reproduced signal was measured.
  • the laser beam wavelength was 405 nm
  • the NA (numerical aperture) of the objective lens was 0.85
  • the laser beam power was 0.44 mW.
  • the recording power Pw of the laser beam was gradually increased to 12.5 mW, and data was recorded on the recording layer of the optical recording disk sampler, and the recorded data was reproduced. The jitter of the reproduced signal was measured.
  • the laser beam whose power has been modulated using the pulse train pattern including the unit pulse train pattern shown in Figs. 3 and 4 Irradiates the recording layer of the optical recording disc sample, and when data is recorded, when the recording power Pw is set within the range of 8 mW to 9.6 mW, the jitter of the reproduced signal becomes It was 8% or less, indicating that a reproduced signal with low jitter could be obtained.
  • An optical recording disk sampler was set in the optical recording medium evaluation apparatus, and blue laser light having a wavelength of 405 nm was recorded through a light transmitting layer using an objective lens having a NA (numerical aperture) of 0.85. Light was focused on the layer, and a recording mark was formed on the recording layer of the optical recording disk sampler using the pulse train pattern including the unit pulse train pattern shown in FIGS. 5 and 6 under the following conditions.
  • the recording power Pw of the laser beam was set to 6.7 mW, and the base power Pb was set to 0.3 mW.
  • the data recorded on the recording layer of the optical recording disk sampler was reproduced using the above-described optical recording medium evaluation apparatus, and the jitter of the reproduced signal was measured. Playing data
  • the laser beam wavelength was 405 nm
  • the NA (numerical aperture) of the objective lens was 0.85
  • the laser beam power was 0.44 mW.
  • the recording power Pw of the laser beam was gradually increased to 11.6 mW, and data was recorded on the recording layer of the optical recording disk sampler, and the recorded data was reproduced. The jitter of the reproduced signal was measured.
  • the laser beam whose power has been modulated using the pulse train pattern including the unit pulse train pattern shown in FIGS. 5 and 6 Irradiates the recording layer of the optical recording disc sample, and the data is recorded.
  • the recording power Pw is set to 7.3 mW or more, the jitter of the reproduced signal becomes 8% or less. It has been found that the jitter of the reproduced signal can be greatly reduced.
  • An optical recording disk sampler was set in the optical recording medium evaluation apparatus, and blue laser light having a wavelength of 405 nm was recorded through a light transmitting layer using an objective lens having a NA (numerical aperture) of 0.85. The light was condensed on the layer, and a recording mark was formed on the recording layer of the optical recording disk sampler using the pulse train pattern including the unit pulse train pattern shown in Table 1 under the following conditions.
  • the recording power Pw of the laser beam was set to 6.7 mW, and the base power Pb was set to 0.3 mW.
  • the period Toff of the base pulse provided between the recording pulses was set to 0.8T.
  • the unit pulse train patterns used to modulate the power of the laser beam when recording data on the recording layer of the optical recording disk sample are shown in Figs.
  • the pulse width Tel of the base pulse is 1 ⁇ 40T and forming a recording mark with a length of 3T to 8T, set the pulse width Tel of the base pulse inserted after the last recording pulse to 1 150T. Set to.
  • the unit pulse train pattern used to modulate the power of the laser beam depends on the recording mark to be formed. Is set to include (k-1) recording pulses, where kT is the length of kT (k is an integer of 2 to 8).
  • the data recorded on the recording layer of the optical recording disk was reproduced using the above-described optical recording medium evaluation apparatus, and the jitter of the reproduced signal was measured.
  • the laser beam wavelength was 405 nm
  • the NA (numerical aperture) of the objective lens was 0.85
  • the power of the laser beam was 0.44 mW.
  • the recording power Pw of the laser beam was gradually increased to 12.4mW, and data was recorded on the recording layer of the optical recording disk sampler, and the recorded data was reproduced and reproduced.
  • the signal jitter was measured.
  • Table 1 shows the data recorded by irradiating a laser beam whose power has been modulated onto the recording layer of an optical recording disc sample using a pulse train pattern including a unit pulse train pattern to be recorded. It was found that the jitter of the reproduced signal could be reduced to 8% or less at a lower level of recording power Pw than when data was recorded using a pulse train pattern including the indicated unit pulse train pattern. .
  • the unit pulse train pattern includes a base pulse whose pulse width Tel is determined according to the pulse width Tlast of the recording pulse included at the end, and a unit pulse pattern of the tail recording pulse. Includes later and includes n recording pulses when forming a recording mark that is 2n (n is a positive integer) times the clock period T or (2n + l) times as long.
  • the unit noise train pattern is The pulse width Tel is determined according to the pulse width Tlast of the trailing recording pulse.
  • the base pulse is included after the trailing recording pulse, and 2n of the clock period T (n is a positive integer) Form a recording mark that is twice as long or (2n + l) times as long In such a case, it is not always necessary to include the pulse train pattern with the number of recording pulses.
  • the optical recording disk sample was Sb Te Ge Tb
  • phase change material contained in the recording layer of the disk is not particularly limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Head (AREA)

Abstract

 高い記録線速度で、データを記録するのに適するように設計された光記録ディスクの記録層に、低い記録線速度で、データを記録した場合にも、再生信号のジッタを大幅に低下させることができる光記録ディスクへのデータ記録方法を提供する。  光記録ディスク1の記録層5に、少なくとも、記録パワーPwのレベルを有する記録パルスと、基底パワーPbのレベルを有する基底パルスとを含む単位パルス列パターンを含むパルス列パターンにしたがって、パワーが変調されたレーザビームを照射し、記録層5に、少なくとも1つの記録マークを形成して、データを記録する記録方法であって、1つの記録マークを形成するための単位パルス列パターンが、末尾に含まれる記録パルスのパルス幅Tlastに応じて、パルス幅Tclが決定された基底パルスを、末尾の記録パルスの後に含んでいることを特徴とする光記録ディスクへのデータ記録方法。

Description

明 細 書
光記録ディスク
技術分野
[0001] 本発明は、相変化材料を含む記録層を備えた光記録ディスクへのデータ記録方法 および光記録ディスクへのデータ記録装置に関するものであり、さらに詳細には、高 い記録線速度で、データを記録するのに適するように設計された光記録ディスクの記 録層に、低い記録線速度で、データを記録した場合にも、再生信号のジッタを大幅 に低下させることができる光記録ディスクへのデータ記録方法および光記録ディスク へのデータ記録装置に関するものである。 背景技術
[0002] 従来より、デジタルデータを記録するための記録媒体として、 CDや DVDに代表さ れる光記録ディスクが広く利用されており、近年においては、より大容量で、かつ、高 いデータ転送レートを有する次世代型の光記録ディスクが提案されている。
[0003] これらの光記録ディスクは、 CD— Rや DVD— Rのように、データの追記はできるが、 データの書き換えができなレ、追記型光記録ディスクと、 CD— RWや DVD— RWのよう に、データの書き換えが可能な書き換え型光記録ディスクとに大別することができる。
[0004] これらの光記録ディスクのうち、書き換え型光記録ディスクにおいては、記録層の材 料として相変化材料が用いられ、相変化材料が結晶状態にある場合の反射率と、非 晶質状態にある場合の反射率の差を利用して、データが記録される。
[0005] すなわち、データが記録されていない状態においては、記録層の全面が結晶状態 にあり、データが記録されると、記録層が、局所的に、非晶質状態に変化させられ、 記録マークが形成される。
[0006] 光記録ディスクの記録層に、記録マークを形成して、データを記録するにあたって は、形成すべき記録マークにしたがって、そのパワーが変調されたレーザビームが、 記録層に照射される。
[0007] データを記録するために照射されるレーザビームのパワー変調方法は、記録ストラ テジと呼ばれる。 [0008] 具体的には、特開平 9-305971号公報に開示されるように、光記録ディスクの記録 層に、データを記録するときには、そのパワーが記録パワー Pwに設定された記録パ ノレスと、そのパワーが基底パワー Pbに設定された基底ノ^レスとが組み合わされた単 位パルス列パターンを含むパルス列パターンにしたがって、パワーが変調されたレー ザビームを記録層の所定の領域に照射することによって、記録層の所定の領域が、 融点以上に加熱された後に、急冷されて、非晶質の領域が形成されて、記録マーク が形成される。
[0009] 一方、光記録ディスクの記録層に、記録されたデータを消去するときには、そのパヮ 一が消去パワー Peに設定された消去パルス力 S、揷入された単位パルス列パターンを 含むパルス列パターンにしたがって、パワーが変調されたレーザビームを記録層の 記録マークが形成された領域に照射することによって、レーザビームが照射された記 録層の領域が、結晶化温度以上の温度に加熱され、非晶質の領域が、結晶化される ことにより、記録マークが消去される。
発明の開示
発明が解決しょうとする課題
[0010] 近年、約 19m/s以上のきわめて高い記録線速度で、データを記録することができ
、かつ、約 lOmZs以下の低い記録線速度で、データを記録することができる光記録 ディスクの開発が望まれている。
[0011] かかる要望を満たすために、結晶化し易い性質を有する材料によって、記録層を 形成することによって、約 19m/s以上のきわめて高い記録線速度で、データを記録 する場合でも、データを記録し、記録したデータを消去することができる光記録デイス クが開発されている。
[0012] し力しながら、結晶化し易い性質を有する材料によって、記録層が形成された光記 録ディスクにおいては、高い記録線速度で、データを記録し、記録したデータを消去 することが可能である一方で、低い記録線速度で、データを記録した場合には、再生 された信号のジッタが悪化するという問題があった。
[0013] これは、記録線速度が低い場合には、記録線速度が高い場合に比べて、記録パヮ 一 Pwのレーザビームが照射されて、溶融した記録層の領域が、レーザビームのパヮ 一 、記録パワー Pwから基底パワー Pbに切り換えられて、急冷されるものの、記録 層が結晶化し易い性質を有しているために、溶融された記録層の領域の一部が、再 結晶化し、所望のように、記録マークを形成することができないことに起因するものと 推定される。
[0014] したがって、本発明の目的は、高い記録線速度で、データを記録するのに適するよ うに設計された光記録ディスクの記録層に、低い記録線速度で、データを記録した場 合にも、再生信号のジッタを大幅に低下させることができる光記録ディスクへのデー タ記録方法および光記録ディスクへのデータ記録装置を提供することにある。
課題を解決するための手段
[0015] 本発明のかかる目的は、基板と、前記基板上に形成され、相変化材料を主成分と して含む記録層を備え、前記記録層に、所定の線速度以上の高速で、レーザビーム を照射して、データの記録および記録されたデータの消去が可能に構成された光記 録ディスクに、少なくとも、記録パワーのレベルを有する記録パルスと、基底パワーの レベルを有する基底パルスとを含む単位パルス列パターンを含むパルス列パターン にしたがって、パワーが変調されたレーザビームを照射し、前記記録層に、少なくとも 1つの記録マークを形成して、データを記録する記録方法であって、 1つの記録マー クを形成するための前記単位パルス列パターン力 末尾に含まれる記録パルスのパ ノレス幅に応じて、パルス幅が決定された基底パルスを、前記末尾の記録パルスの後 に含んでいることを特徴とする光記録ディスクへのデータ記録方法によって達成され る。
[0016] 本発明において、光記録ディスクは、少なくとも基板と、基板上に形成された記録 層を備えている。
[0017] 本発明において、記録層は、相変化材料を主成分として含んでおり、相変化材料 が結晶状態にある場合の反射率と、非晶質状態にある場合の反射率の差を利用して 、記録層にデータが記録され、記録層からデータが再生される。
[0018] 本発明において、記録層に、データを記録する場合には、少なくとも、記録パワー のレベルを有する記録パルスと、基底パワーのレベルを有する基底パルスとを含む 単位パルス列パターンを含むパルス列パターンによって、パワーが変調されたレー ザビームが記録層に照射されて、レーザビームが照射された記録層の領域力 融点 以上の温度に加熱され、その後、レーザビームのパワーが基底パワーに設定される ことによって、レーザビームが照射された記録層の領域が急冷されて、非晶質領域が 形成され、記録マークが形成される。
[0019] 一方、本発明において、記録層に形成された記録マークを消去して、記録層に記 録されたデータを消去する場合には、記録パワーと基底パワーに加えて、消去パヮ 一を有する単位パルス列パターンを含むパルス列パターンを用レ、、記録マークが形 成された記録層の領域に、パワーが消去パワーに設定されたレーザビームを照射し て、レーザビームが照射された記録層の領域を結晶化温度以上に加熱し、非晶質状 態にある記録層の領域を結晶化することによって、記録マークが消去される。
[0020] 本発明において、光記録ディスクの記録層に、 1つの記録マークを形成するための 単位パルス列パターンは、末尾に含まれる記録パルスのパルス幅に応じて、パルス 幅が決定された基底パルスを、前記末尾の記録パルスの後に含んでいる。
[0021] 本発明者の研究によれば、末尾に含まれる記録パルスのノ^レス幅に応じて、パル ス幅が決定された基底パルスを、前記末尾の記録パルスの後に含む単位パルス列 パターンを含むパルス列パターンにしたがって、パワーが変調されたレーザビームを 、光記録ディスクの記録層に照射して、記録マークを形成し、データを記録する場合 には、約 lOm/s以下の記録線速度を有する低い記録線速度で、光記録ディスクの 記録層に、データを記録したときにも、再生信号のジッタを大幅に低下させることがで きることが見出されている。
[0022] これは、光記録ディスクの記録層に、 1つの記録マークを形成するための単位パル ス列パターンが、末尾に含まれる記録パルスのパルス幅に応じて、パルス幅が決定さ れた基底パルスを、前記末尾の記録パルスの後に含んでいるときには、単位パルス 列パターンに含まれる末尾の記録パルスのパルス幅が長いときに、末尾の記録パル スの後に挿入される基底パルスのノ^レス幅も長くなるように、単位パルス列パターン が構成されるから、単位パルス列パターンを含むパルス列パターンにしたがって、パ ヮ一が変調されたレーザビームを、光記録ディスクの記録層に照射して、記録マーク を形成する場合に、記録パワーのレーザビームが照射された記録層の領域に、大き な熱量が加えられる力 その後に、その領域に照射されるレーザビームのパワーが、 長い期間にわたって、基底パワーに維持されるため、冷却効率が高められて、過度 に加熱された部分が速やかに冷却され、その結果として、溶融後に、相変化材料が 再結晶化することを効果的に防止することができ、したがって、高い記録線速度で、 データを記録するのに適するように設計された光記録ディスクの記録層に、低レ、記録 線速度で、データを記録した場合にも、再生信号のジッタを大幅に低下させることが 可能になるためと推測される。
[0023] したがって、本発明によれば、高い記録線速度で、データを記録するのに適するよ うに設計された光記録ディスクの記録層に、低い記録線速度で、データを記録した場 合にも、再生信号のジッタを大幅に低下させることが可能になる。
[0024] また、本発明によれば、単位パルス列パターン力 末尾に含まれる記録パルスのパ ルス幅に応じて、パルス幅が決定された基底パルスを、末尾の記録パルスの後に含 んでいるから、記録層の領域に、記録パワーのレーザビームが照射された期間が長 レ、ほど、その後に、その領域に照射されるレーザビームのパワー力 長い期間にわた つて、基底パワーに維持され、したがって、次に、記録層に形成される記録マークと の間の熱干渉を抑制することが可能になるから、隣り合う記録マーク間の熱干渉によ つて、記録マークの大きさ、あるいは、形状に、望ましくない変化が生じることを効果 的に防止することが可能になる。
[0025] 本発明の好ましい実施態様においては、クロック周期 Tの 2n (nは正の整数)倍の 長さ、または、 (2n+l)倍の長さの記録マークを形成する場合に、単位パルス列パタ ーンカ 個の記録パルスを含むように構成されている。
[0026] 本発明者の研究によれば、単位パルス列パターン力 S、末尾に含まれる記録パルス のパルス幅に応じて、パルス幅が決定された基底パルスを、末尾の記録パルスの後 に含み、かつ、クロック周期 Tの 2n (nは正の整数)倍の長さ、または、(2n+l)倍の長 さの記録マークを形成する場合に、単位パルス列パターン力 ¾個の記録パルスを含 むように構成されている場合には、記録線速度にかかわらず、記録パルスが同じ単 位パルス列パターンを含むパルス列パターンを用いて、光記録ディスクに、データを 記録しても、ジッタの低い再生信号が得られることが見出されている。 [0027] これは、クロック周期 Tの 2n倍、または、(2n+l)倍の長さの 1つの記録マークを形 成するときに、単位パルス列パターン力 S、 n個の記録パルスを含むように構成されて レ、る場合には、高い記録線速度で、記録層にデータを記録するときに、光記録デイス クの記録層の記録マークを形成すべき領域に加えられる熱量が不足することなぐデ ータを記録することができ、また、低い記録線速度で、記録層にデータを記録すると きにも、光記録ディスクの記録層の記録マークを形成すべき領域に加えられる熱量が 過剰になることなぐデータを記録することができるためと推測される。
[0028] したがって、本発明の好ましい実施態様によれば、記録線速度に応じて、単位パル ス列パターンに含まれる記録パルスの数を変更する必要がなくなり、とくに、光記録 ディスク力 角速度一定(CAV:Constant Angular Velocity)で回転されている場合の ように、レーザビームが照射されている位置によって、記録線速度が大きく異なるとき にも、単位ノ^レス列パターンに含まれる記録パルスの数を変更する必要がないので 、単位パルス列パターンに含まれる記録パルスの数を変更するための処理を省略す ること力 Sでき、したがって、パルス列パターンを制御する回路の構成を簡略化すること ができる。
[0029] また、本発明の好ましい実施態様によれば、低い記録線速度で、光記録ディスクの 記録層にデータを記録する場合にも、高い記録線速度で、データを記録する場合と 同じ数の記録パルス数を含む単位パルス列パターンを含むパルス列パターンにした がって、パワーが変調されたレーザビームを、光記録ディスクの記録層に照射して、 データを記録することができるから、光記録ディスクの記録層の記録マークを形成す べき領域に、効率的に熱をカ卩えるができ、したがって、低い記録線速度で、光記録デ イスクの記録層にデータを記録する場合に、記録パワーのパワーを低いレベルに設 定することが可能となる。
[0030] 本発明において、光記録ディスクの記録層を形成するための相変化材料は、とくに 限定されるものではなレ、が、光記録ディスクの記録層力 Sb、 Te、 Ge、 Tb、 Agおよ び Inなどを含む相変化材料を主成分として含み、少なくとも、 Sb、 Te、 Geおよび Tb を含む相変化材料を主成分として含んでレ、ることが好ましレ、。光記録ディスクの記録 層に含まれる元素を、一般式: Sb Te Ge Tbで表わした場合には、 63≤a≤78, 2 ≤c≤10、 3≤d≤15、 75≤a + d≤82で、力つ、 3. 3≤a/b≤4. 9であること力 と くに好ましい。
[0031] 一般式: Sb Te Ge Tbで表わされる相変化材料は、非晶質状態から結晶状態へ
a b e d
の相変化に要する時間がきわめて短ぐすなわち、結晶化速度が非常に速ぐしたが つて、きわめて高い記録線速度で、たとえば、 19m/s以上の記録線速度で、記録層 にデータを記録し、記録層に記録されたデータを消去することができる。
[0032] また、一般式: Sb Te Ge Tbで表わされる相変化材料は、非晶質状態から結晶状
a b e d
態への相変化が生じる結晶化温度が非常に高いため、非晶質状態における熱安定 性も高い。
[0033] 一般式: Sb Te Ge Tbで表わされる相変化材料が、このような特性を有しているの
a b e d
は、主に、 Sbの割合を減らして、 Tbを添カ卩したことによるものである。 Tbは、結晶化 速度を高めるとともに、結晶化温度を高める効果があり、 Sbの一部を、 Tbによって、 置き換えることによって、相変化材料の結晶化速度を増大させ、結晶化温度を上昇さ せること力 Sできる。
[0034] 本発明において、光記録ディスクの記録層は、 2nmないし 40nmの厚さに形成され ることが好ましぐより好ましくは、 4nmないし 30nmの厚さを有するように形成され、さ らに好ましくは、 5nmなレ、し 20nmの厚さを有するように形成される。
[0035] 光記録ディスクの記録層の厚さ力 2nm未満のときには、記録前後における光学特 性の差が少なくなり、データの再生時に高い C/N比の再生信号を得ることができな くなり、一方、光記録ディスクの記録層の厚さ力 40nmよりも厚いときには、データの 記録に必要な熱容量が増大し、記録感度が悪化して、記録マークの形成が困難とな り、好ましくない。
[0036] 本発明において、好ましくは、光記録ディスクは、約 19mZs以上のきわめて高い 記録線速度で、開口数 NAの対物レンズを介して、波長 λを有する記録パワーのレ 一ザビームを、記録層に照射して、記録層の所定の領域に、 λ ΖΝΑ以上の長さの 記録マークを形成したときの記録マークが形成された領域の反射率 Riと、記録層の 所定の領域に形成された記録マークに、消去パワー Peのレーザビームを照射して、 記録マークを消去したときのその領域の反射率 Reとが、 Re≥0. 95 'Riの関係を満 たすような特性を有してレ、る。
[0037] 本発明のさらに好ましい実施態様においては、前記光記録ディスクの前記記録層 に、 350nmないし 450nmの波長のレーザビームを照射して、前記光記録ディスクに データを記録するように構成されてレ、る。
[0038] 本発明のさらに好ましい実施形態においては、 λ ΖΝΑ≤640ηπιを満たす開口数 ΝΑを有する対物レンズおよび波長 λを有するレーザビームを用いて、対物レンズを 介して、前記光記録ディスクの前記記録層に、レーザビームを照射して、データを記 録するように構成されている。
[0039] 本発明の前記目的はまた、基板と、前記基板上に形成され、相変化材料を主成分 として含む記録層を備え、前記記録層に、所定の線速度以上の高速で、レーザビー ムを照射して、データの記録および記録されたデータの消去が可能に構成された光 記録ディスクに、データを記録する記録装置であって、少なくとも、記録パワーのレべ ルを有する記録パルスと、基底パワーのレベルを有する基底パルスとを含む単位パ ルス列パターンを含むパルス列パターンにしたがって、パワーが変調されたレーザビ ームを照射するレーザ照射手段を備え、前記レーザ照射手段が、末尾に含まれる記 録パルスのパルス幅に応じて、前記末尾の記録パルスの後に挿入される基底パルス のパルス幅が決定された単位パルス列パターンを含むパルス列パターンにしたがつ て、前記レーザビームのパワーを変調することを特徴とする光記録ディスクへのデー タ記録装置によって達成される。
[0040] 本発明の好ましい実施態様においては、クロック周期 Τの 2η (ηは正の整数)倍の 長さ、または、 (2η+1)倍の長さの記録マークを形成する場合に、前記単位パルス列 パターン力 個の前記記録パルスを含むように構成されている。
[0041] 本発明の前記目的および特徴は、添付図面を引用した以下の説明から明らかにな るであろう。
発明の効果
[0042] 本発明によれば、高い記録線速度で、データを記録するのに適するように設計され た光記録ディスクの記録層に、低い記録線速度で、データを記録した場合にも、再生 信号のジッタを大幅に低下させることができる光記録ディスクへのデータ記録方法お よび光記録ディスクへのデータ記録装置を提供することができる。
図面の簡単な説明
[0043] [図 1]図 1は、本発明の好ましい実施態様に力かる光記録ディスクの略断面図である [図 2]図 2は、図 1の Aで示された部分の略拡大断面図である。
[図 3]図 3は、本発明の好ましい実施態様に力かるデータ記録方法において、データ を記録する際の単位パルス列パターンを示す図である。
[図 4]図 4は、本発明の好ましい実施態様に力かるデータ記録方法において、データ を記録する際の単位パルス列パターンを示す図である。
[図 5]図 5は、本発明の好ましい実施態様に力かるデータ記録方法において、データ を記録する際の単位パルス列パターンを示す図である。
[図 6]図 6は、本発明の好ましい実施態様に力かるデータ記録方法において、データ を記録する際の単位パルス列パターンを示す図である。
[図 7]図 7は、本発明の好ましい実施態様に力かるデータ記録装置のブロックダイァグ ラムである。
[図 8]図 8は、記録線速度 31. 8m/sで、図 3および図 4に示される単位パルス列パタ ーンを含むパルス列パターンを用いて、光記録ディスクにデータを記録し、記録した データを再生したときの再生信号のジッタを示すグラフである。
[図 9]図 9は、記録線速度 5. 3m/sで、図 5および図 6に示される単位パルス列パタ ーンを含むパルス列パターンを用いて、光記録ディスクにデータを記録し、記録した データを再生したときの再生信号のジッタを示すグラフである。
[図 10]図 10は、比較例にしたがって、記録線速度 5. 3m/sで、光記録ディスクにデ ータを記録し、記録したデータを再生したときの再生信号 C
符号の説明
[0044] 1 光記録ディスク
2 基板
2a グループ 2b ランド
3 反射層
4 第二の誘電体層
5 記録層
6 第一の誘電体層
7 光透過層
20 データ記録装置
22 スピンドノレモータ
23 ピックアップ
24 コントローラ
25 レーザ駆動回路
26 レンズ駆動回路
27 フォーカスサーボ回路
28 トラッキングサーボ
29 クロック生成回路
30 アドレスデコーダ
31 タイミングコントローラ
32 制 ί卸回路
33 メモリ
34 データ処理回路
35 ライトストラテジ回路
発明を実施するための最良の形態
[0045] 以下、添付図面に基づいて、本発明の好ましい実施態様につき、詳細に説明をカロ る。
[0046] 図 1は、本発明の好ましい実施態様に力かる光記録ディスクの略斜視図であり、図
2は、図 1の Αで示される部分の略拡大断面図である。
[0047] 図 1に示されるように、本実施態様に力かる光記録ディスク 1は、円板状をなし、図 1 および図 2において、矢印で示される方向から、 350nmないし 450nmの波長 λを有 するレーザビームが、 え /NA≤ 640を満たす開口数 NAを有する対物レンズを介し て、光記録ディスク 1に照射されるように構成されてレ、る。
[0048] 図 2に示されるように、本実施態様に力かる光記録ディスク 1は、基板 2と、基板 2の 表面上に形成された反射層 3と、反射層 3の表面上に形成された第二の誘電体層 4 と、第二の誘電体層 4の表面上に形成され、相変化膜によって形成された記録層 5と 、記録層 5の表面上に形成された第一の誘電体層 6と、第一の誘電体層 6の表面上 に形成された放熱層 7と、放熱層 7の表面上に形成された光透過層 8を備えている。
[0049] 基板 2は、光記録ディスク 1の機械的な支持体として、機能するものである。
[0050] 基板 2を形成するための材料は、光記録ディスク 1の支持体として機能することがで きれば、とくに限定されるものではなぐたとえば、ガラス、セラミック、樹脂などによつ て、形成することができる。これらのうち、成形の容易性の観点から、樹脂が好ましく 使用される。このような樹脂としては、ポリカーボネート樹脂、アクリル樹脂、エポキシ 樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、フ ッ素系樹脂、 ABS樹脂、ウレタン樹脂などが挙げられる。これらの中でも、加工性、光 学特性などの点から、ポリカーボネート樹脂が、とくに好ましぐ本実施形態において は、基板 2は、ポリカーボネート樹脂によって形成される。
[0051] 本実施態様においては、基板 2は、約 1. 1mmの厚さを有している。
[0052] 本実施態様においては、レーザビームは、基板 2とは反対側に位置する光透過層 8 を介して、記録層 5に照射されるから、基板 2が、光透過性を有していることは必ずし も必要ではない。
[0053] 図 2に示されるように、基板 2の表面には、交互に、グループ 2aおよびランド 2bが形 成されている。基板 2の表面に形成されたグループ 2aおよび Zまたはランド 2bは、記 録層 5にデータを記録する場合および記録層 5からデータを再生する場合において 、レーザビームのガイドトラックとして機能する。
[0054] 図 2に示されるように、基板 2の表面上には、反射層 3が形成される。
[0055] 反射層 3は、光透過層 8を介して、記録層 5に照射されるレーザビームを反射し、再 び、光透過層 8から出射させる役割を果たすとともに、レーザビームの照射によって、 記録層 5に生じた熱を効果的に放熱させる役割を果たす。 [0056] 反射層 3の厚さは、とくに限定されるものではなレ、が、 10ないし 300nmであることが 好ましく、 20nmなレヽし 200nmであること力 とくに好ましレヽ。
[0057] 反射層 3を形成するための材料は、レーザビームを反射することができれば、とくに 限定されるものではなぐ Mg、 Al、 Ti、 Cr、 Fe、 Co、 Ni、 Cu、 Zn、 Ge、 Ag、 Pt、 Au などによって、反射層 3を形成することができる。これらのうち、高い反射率を有してい る Al、 Au、 Ag、 Cu、または、 Agと Cuとの合金などのこれらの金属の少なくとも 1つを 含む合金などの金属材料が、反射層 3を形成するために、好ましく用いられる。
[0058] 反射層 3は、たとえば、反射層 3の構成元素を含む化学種を用いた気相成長法に よって、形成することができる。気相成長法としては、真空蒸着法、スパッタリング法な どが挙げられる。
[0059] 図 2に示されるように、反射層 3の表面上には、第二の誘電体層 4が形成されている
[0060] 第二の誘電体層 4は、第一の誘電体層 6とともに、記録層 5を機械的、化学的に保 護するとともに、記録層 5に記録されたデータを再生するときに、多重干渉効果によつ て、記録部と未記録部との反射率の差を大きくして、 C/N比の高い再生信号を得ら れるように光学特性を調整する機能を有してレ、る。
[0061] 第二の誘電体層 4を形成するための材料は、とくに限定されるものではなレ、が、 Si、 Zn、 Al、 Ta、 Ti、 Co、 Zr、 Pb、 Ag、 Sn、 Ca、 Ce、 V、 Cu、 Fe、 Mgよりなる群力ら選 ばれる少なくとも一種の金属を含む酸化物、窒化物、硫化物、フッ化物、あるいは、こ れらの複合物から形成されることが好ましレ、。
[0062] 第二の誘電体層 4は、たとえば、第二の誘電体層 4の構成元素を含む化学種を用 いた気相成長法によって、反射層 3の表面上に形成することができる。気相成長法と しては、真空蒸着法、スパッタリング法などが挙げられる。
[0063] 図 2に示されるように、第二の誘電体層 4の表面上には、記録層 5が形成されている
[0064] 記録層 5は、相変化材料によって形成されており、相変化材料が結晶状態にある場 合の反射率と、非晶質状態にある場合の反射率の差を利用して、記録層 5にデータ が記録され、記録層 5からデータが再生される。 [0065] 記録層 5に、データを記録する場合には、記録パワー Pwと基底パワー Pbを含む単 位パルス列パターンを含むパルス列パターンによって、パワーが変調されたレーザビ ームが記録層 5に照射されて、レーザビームが照射された記録層 5の領域力 融点 以上の温度に加熱され、その後、レーザビームのパワーが基底パワー Pbに設定され ることによって、レーザビームが照射された記録層 5の領域が急冷されて、非晶質領 域が形成され、記録マークが形成される。
[0066] 一方、記録層 5に記録されたデータを、消去する場合には、記録パワー Pwと基底 パワー Pbに加えて、消去パワーを有するパルス列パターンによって、レーザビームの パワーが変調されることによって、レーザビームが照射された記録層 5の領域が結晶 化温度以上に加熱され、非晶質領域が結晶化されて、記録マークが消去される。
[0067] 記録層 5を形成するための相変化材料は、とくに限定されるものではないが、本実 施態様においては、一般式: Sb Te Ge Tbで表わされる相変化材料が用いられて
a b e d
レヽる。ここに、 a、 b、 cおよび diま、 63≤a≤78, 2≤c≤10, 3≤d≤15, 75≤a + d≤ 82で、かつ、 3. 3≤a/b≤4. 9を満たしていることが好ましい。
[0068] 一般式: Sb Te Ge Tbで表わされる相変化材料は、非晶質状態から結晶状態へ
a b e d
の相変化に要する時間がきわめて短ぐすなわち、結晶化速度が非常に速ぐしたが つて、約 19m/s以上のきわめて高い記録線速度で、記録層 5にデータを記録し、記 録層 5に記録されたデータを消去することができる。
[0069] また、一般式: Sb Te Ge Tbで表わされる相変化材料は、非晶質状態から結晶状
a b e d
態への相変化が生じる結晶化温度が非常に高いため、非晶質状態における熱安定 性も高い。
[0070] 一般式: Sb Te Ge Tbで表わされる相変化材料が、このような特性を有しているの
a b e d
は、主に、 Sbの割合を減らして、 Tbを添カ卩したことによるものである。 Tbは、結晶化 速度を高めるとともに、結晶化温度を高める効果があり、 Sbの一部を、 Tbによって、 置き換えることによって、相変化材料の結晶化速度を増大させ、結晶化温度を上昇さ せること力 sできる。
[0071] 記録層 5は、 2nmないし 40nmの厚さに形成されることが好ましぐより好ましくは、 4 nmないし 30nmの厚さを有するように形成され、さらに好ましくは、 5nmなレ、し 20nm の厚さを有するように形成される。
[0072] 記録層 5の厚さ力 2nm未満のときには、記録前後における光学特性の差が少なく なり、データの再生時に高い C/N比の再生信号を得ることができなくなり、一方、記 録層 5の厚さ力 40nmよりも厚いときには、データの記録に必要な熱容量が増大し、 記録感度が悪化して、記録マークの形成が困難となり、好ましくない。
[0073] 記録層 5は、記録層 5の構成元素を含む化学種を用いた気相成長法によって、形 成すること力 Sできる。気相成長法としては、真空蒸着法、スパッタリング法などが挙げ られる。
[0074] 図 2に示されるように、記録層 5の表面上には、第一の誘電体層 6が形成される。
[0075] 第一の誘電体層 6を形成するための材料は、とくに限定されるものではなレ、が、 Si、 Zn、 Al、 Ta、 Ti、 Co、 Zr、 Pb、 Ag、 Zn、 Sn、 Ca、 Ce、 V、 Cu、 Fe、 Mgよりなる群力 ら選ばれる少なくとも一種の金属を含む酸化物、窒化物、硫化物、フッ化物、あるい は、これらの複合物から形成されることが好ましい。
[0076] 第一の誘電体層 6は、たとえば、第一の誘電体層 6の構成元素を含む化学種を用 いた気相成長法によって、形成することができる。気相成長法としては、真空蒸着法 、スパッタリング法などが挙げられる。
[0077] 第一の誘電体層 6と第二の誘電体層 4は、互いに同じ誘電体材料によって形成さ れていてもよいが、異なる誘電体材料によって形成されていてもよい。さらに、第一の 誘電体層 6および第二の誘電体層 4の少なくとも一方が、複数の誘電体膜からなる多 層構造であってもよい。
[0078] 図 2に示されるように、第一の誘電体層 6の表面上には、放熱層 7が形成されている
[0079] 放熱層 7は、記録層 5に生じた熱を、光入射面側に速やかに逃がす役割を果たす。
[0080] 記録層 5にデータが記録される際に、記録層 5に、熱が蓄熱されると、溶融され、急 冷された後であっても、蓄熱された熱の影響によって、溶融された領域が再結晶化さ れたり、また、隣り合う記録マーク間の熱干渉を引き起こすおそれがあり、こうした現 象は、記録線速度が高くなるほど、顕著となるが、放熱層 7を設けることにより、記録 層 5が再結晶化したり、また、隣り合う記録マーク間で熱干渉が生じるのを防止するこ とができる。
[0081] 放熱層 7を形成するための材料は、記録層 5の熱を放熱することができれば、とくに 限定されるものではなレ、が、第一の誘電体層 6の熱伝導率よりも高い熱伝導率を有 する材料が好ましぐ具体的には、 A1N、 Al O、 SiN、 ZnS、 ZrO、 SiOなどが好ま
2 3 2 2 しい。
[0082] 放熱層 7は、たとえば、放熱層 7の構成元素を含む化学種を用いた気相成長法に よって、形成することができる。気相成長法としては、真空蒸着法、スパッタリング法な どが挙げられる。
[0083] 放熱層 7は、 20nmないし 150nmの厚さを有するように形成されるのが好ましい。
[0084] 図 2に示されるように、放熱層 7の表面上には、光透過層 8が形成されている。
[0085] 光透過層 8は、レーザビームが透過される層である。
[0086] 光透過層 8を形成するための材料としては、光学的に透明で、使用されるレーザビ ームの波長領域である 350nmないし 450nmでの光学吸収や反射が少なぐ複屈折 率が小さいことが要求され、スピンコーティング法などによって、光透過層 8が形成さ れる場合には、紫外線硬化型樹脂、電子線硬化型樹脂、熱硬化型樹脂などが、光 透過層 8を形成するために用いられ、紫外線硬化型樹脂、電子線硬化型樹脂などの 活性エネルギー線硬化型樹脂が、とくに好ましぐ使用される。
* 活性エネルギー線硬化型樹脂という語はないため、削除
光透過層 8は、第一の誘電体層 6の表面に、光透過性樹脂によって形成されたシ ートを、接着剤を用いて、接着することによって、形成されてもよい。
[0087] 光透過層 8の厚さは、スピンコーティング法によって、光透過層 8を形成する場合に は、 1 111なぃし150 ^ 111が好ましぐ光透過性樹脂によって形成されたシートを、接 着剤を用いて、第一の誘電体層 6の表面に接着して、光透過層 8を形成する場合に は 50 μ mなレ、し 150 μ mが好ましレ、。
[0088] 以上のような構成を有する光記録ディスク 1は、約 19m/s以上のきわめて高い記 録線速度で、開口数 NAの対物レンズを介して、波長 λを有する記録パワー Pwのレ 一ザビームを、記録層 5に照射して、記録層 5の所定の領域に、 λ ΖΝΑ以上の長さ の記録マークを形成したときの記録マークが形成された領域の反射率 Riと、記録層 の所定の領域に形成された記録マークに、消去パワー Peのレーザビームを照射して
、記録マークを消去したときのその領域の反射率 Reと力 Re≥0. 95 'Riの関係を満 たすような特性を有してレ、る。
[0089] したがって、本実施態様に力、かる光記録ディスク 1においては、約 19mZs以上の きわめて高い記録線速度で、記録層 5にデータを記録し、記録層 5に記録されたデ ータを消去することができる。
[0090] 本実施態様においては、力、かる特性を有する光記録ディスク 1の記録層 5に、約 19 mZs以上の高い記録線速度と、約 lOmZs以下の低い記録線速度で、それぞれ、 データが記録される。
[0091] 図 3および図 4は、本発明の好ましい実施態様にかかるデータ記録方法において、 光記録ディスク 1の記録層 5に、 31. 8m/sの高い記録線速度で、 1つの記録マーク を形成する場合に、レーザビームパワーを変調するために用いられる単位パルス列 パターンのダイアグラムであり、図 3 (a)、図 3 (b)、図 3 (c)および図 3 (d)は、それぞ れ、光記録ディスク 1の記録層 5に、 2Tないし 5Tの長さの記録マークを形成する場 合の単位パルス列パターンを示し、図 4 (a)、図 4 (b)および図 4 (c)は、それぞれ、光 記録ディスク 1の記録層 5に、 6Tないし 8Tの長さの記録マークを形成する場合の単 位パルス列パターンを示してレ、る。
[0092] 図 5および図 6は、本発明の好ましい実施形態にかかるデータ記録方法において、 光記録ディスク 1の記録層 5に、 5. 3m/sの低い記録線速度で、 1つの記録マークを 形成する場合に、レーザビームパワーを変調するために用いられる単位パルス列パ ターンのダイアグラムであり、図 5 (a)、図 5 (b)、図 5 (c)および図 5 (d)は、それぞれ、 光記録ディスク 1の記録層 5に、 2Tなレ、し 5Tの長さの記録マークを形成する場合の 単位パルス列パターンを示し、図 6 (a)、図 6 (b)および図 6 (c)は、それぞれ、光記録 ディスク 1の記録層 5に、 6Tないし 8Tの長さの記録マークを形成する場合の単位パ ルス列パターンを示してレ、る。
[0093] 図 3ないし図 6に示されるように、本実施態様に力、かるデータ記録方法において、単 位パルス列パターンは、記録パワー Pwに対応するレベル、基底パワー Pbに対応す るレベルおよび消去パワー Peに対応するレベルの 3つのレベルの間で、レベルが変 調されたパルスによって構成されている。記録パワー Pw、基底パワー Pbおよび消去 パワー Peは、 Pw>Pe >Pbを満たしており、これに対応して、パルス列パターンの 3 つのレベルも、決定されている。
[0094] 本明細書においては、以下、記録パワー Pwに対応するレベルに立ち上げられて いる期間のパルスを、「記録パルス」、また、基底パワー Pbに対応するレベルに立ち 下げらている期間のパルスを、「基底パルス」、さらに、消去パワー Peに対応するレべ ルに立ち上げらている期間のパルスを、「消去パルス」という。
[0095] 図 3 (a)および図 3 (b)、ならびに、図 5 (a)および図 5 (b)に示されるように、光記録 ディスク 1の記録層 5に、 2Tあるいは 3Tの長さの 1つの記録マークを記録する場合の 単位パルス列パターンは、 1つの記録パルスと、 1つの基底パルスとの組み合わせに よって構成されている。
[0096] 本実施態様においては、図 3 (b)および図 5 (b)に示される 3Tの長さの記録マーク を形成する場合の単位パルス列パターンに含まれる基底パルスのノ^レス幅 Telが、 図 3 (a)および図 5 (a)に示される 2Tの長さの記録マークを形成する場合の単位パル ス列パターンに含まれる基底パルスのパルス幅 Telに比べて、長くなるように設定され ている。
[0097] すなわち、図 3 (a)および図 5 (a)に示されるように、 2Tの長さの記録マークを形成 する場合には、それぞれ、単位パルス列パターンにおける基底パルスのパルス幅 Tel 、 0. 3Tおよび 1. 50Tに設定されているのに対して、図 3 (b)および図 5 (b)に示さ れるように、 3Tの長さの記録マークを形成する場合には、それぞれ、単位パルス列パ ターンにおける基底パルスのパルス幅 Tel力 S、 0· 6Tおよび 2· 35Τとなるように設定 されている。
[0098] これは、図 3 (b)および図 5 (b)に示されるように、 3Tの長さの記録マークを形成す る場合の単位パルス列パターンに含まれる記録パルスのパルス幅 Ttop力 図 3 (a) および図 5 (a)に示される 2Tの長さの記録マークを形成する場合の単位パルス列パ ターンに含まれる記録パルスのパルス幅 Ttopに比べて、長く設定されていることに対 応するものである。
[0099] また、本実施態様においては、図 3 (c)および図 3 (d)、図 4 (a)ないし(c)、図 5 (c) および図 5 (d)、図 6 (a)ないし図 6 (c)に示されるように、 4T以上の長さを有する 1つ の記録マークを形成するために用いられる単位パルス列パターンは、 2以上の記録 パルスを含んでおり、単位パルス列パターンに含まれる末尾の記録パルスのパルス 幅 Tlastにしたがって、末尾の記録パルスの後に挿入される基底パルスのパルス幅 T clが設定されている。
[0100] すなわち、本実施態様において、 4T以上の長さを有する 1つの記録マークを形成 するために用いられる単位パルス列パターンは、単位パルス列パターンに含まれる 末尾の記録パルスのパルス幅 Tlastが長いときには、末尾の記録パルスの後に揷入 される基底パルスのパルス幅 Telが長くなるように構成されてレ、る。
[0101] 本発明者の研究によれば、単位パルス列パターンに含まれる末尾の記録パルスの パルス幅 Tlastが長いときに、末尾の記録パルスの後に挿入される基底パルス Telの 幅が長くなるように構成された単位パルス列パターンを含むパルス列パターンにした がって、パワーが変調されたレーザビームを、光記録ディスク 1の記録層 5に照射して 、データを記録する場合には、低い記録線速度で、光記録ディスク 1の記録層 5に、 データを記録したときにも、再生信号のジッタを大幅に低下させることができることが 見出されている。
[0102] これは、単位パルス列パターンに含まれる末尾の記録パルスのパルス幅 Tlastが長 いときに、末尾の記録パルスの後に挿入される基底パルスのパルス幅 Telも長くなる ように、単位パルス列パターンが構成されたときには、力かる単位パルス列パターン を含むパルス列パターンにしたがって、パワーが変調されたレーザビームを、光記録 ディスク 1の記録層 5に照射して、記録マークを形成する場合に、記録パワー Pwのレ 一ザビームが照射された記録層の領域に、大きな熱量が加えられる力 S、その後に、そ の領域に照射されるレーザビームのパワー力 長い期間にわたって、基底パワー Pb に維持されるため、冷却効率が高められて、過度に加熱された部分が速やかに冷却 され、その結果として、溶融後に、相変化材料が再結晶化することを効果的に防止す ること力 Sできるためと推測される。
[0103] したがって、本実施態様においては、高い記録線速度で、データを記録するのに 適するように設計された光記録ディスク 1の記録層 5に、低い記録線速度で、データ を記録した場合にも、再生信号のジッタを大幅に低下させることが可能になる。
[0104] また、本実施態様においては、 4T以上の長さを有する 1つの記録マークを形成す るために用いられる単位パルス列パターンは、 2以上の記録パルスを含んでおり、単 位パルス列パターンに含まれる末尾の記録パルスのパルス幅 Tlastにしたがって、末 尾の記録パルスの後に挿入される基底パルスのパルス幅 Telが設定されているから、 記録層 5の領域に、記録パワー Pwのレーザビームが照射された期間が長いほど、そ の後に、その領域に照射されるレーザビームのパワー力 長い期間にわたって、基底 パワー Pbに維持され、したがって、次に、記録層 5に形成された記録マークとの間の 熱干渉を抑制することが可能になるから、隣り合う記録マーク間の熱干渉によって、 記録マークの大きさ、あるいは、形状に、望ましくない変化が生じることを効果的に防 止することが可能になる。
[0105] さらに、本実施態様おいては、図 3ないし図 6に示されるように、単位ノ^レス列パタ ーンは、 2Tあるいは 3Tの長さの記録マークを形成するときには、 1つの記録パルス を用い、 4Tあるいは 5Tの長さの記録マークを形成するときには、 2つの記録パルス を用い、 6Tあるいは 7Tの長さの記録マークを形成するときには、 3つの記録パルス を用い、 8Tの長さの記録マークを形成するときには、 4つの記録パルスを用いるよう に、構成されている。
[0106] すなわち、本実施態様においては、クロック周期 Tの 2n (nは正の整数)倍の長さ、 または、(2n+l)倍の長さの記録マークを形成する場合に、 1つの記録マークを形成 するための単位パルス列パターン力 S、 n個の記録パルスを含むように構成されている
[0107] 本発明者の研究によれば、単位パルス列パターン力 S、末尾に含まれる記録パルス のパルス幅 Tlastに応じて、パルス幅 Telが決定された基底パルスを、末尾の記録パ ノレスの後に含み、かつ、クロック周期 Tの 2n (nは正の整数)倍の長さ、または、 (2n+ 1)倍の長さの記録マークを形成する場合に、パルス列パターン力 n個の記録パル スを含むように構成されている場合には、記録線速度にかかわらず、記録パルスの数 が同じ単位パルス列パターンを含むパルス列パターンを用いて、光記録ディスク 1に 、データを記録しても、ジッタの低い再生信号が得られることが見出されている。 [0108] これは、クロック周期 Tの 2n倍、または、(2n+l)倍の長さの 1つの記録マークを形 成するときに、単位パルス列パターン力 S、 n個の記録パルスを含むように構成されて レ、る場合には、高い記録線速度で、記録層 5にデータを記録するときに、光記録ディ スク 1の記録層 5の記録マークを形成すべき領域に加えられる熱量が不足することな ぐデータを記録することができ、また、低い記録線速度で、記録層 5にデータを記録 するときにも、光記録ディスク 1の記録層 5の記録マークを形成すべき領域に加えられ る熱量が過剰になることなぐデータを記録することができるためと推測される。
[0109] したがって、本実施態様においては、記録線速度に応じて、単位パルス列パターン に含まれる記録パルスの数を変更する必要がなくなり、とくに、光記録ディスク 1が、 角速度一定(CAV:Constant Angular Velocity)で回転されている場合のように、レー ザビームが照射されている位置によって、記録線速度が大きく異なるときにも、単位 パルス列パターンに含まれる記録パルスの数を変更する必要がなレ、ので、単位パル ス列パターンに含まれる記録パルスの数を変更するための処理を省略することができ 、したがって、パルス列パターンを制御する回路の構成を簡略化することができる。
[0110] また、本実施態様においては、低い記録線速度で、光記録ディスク 1の記録層 5に データを記録する場合にも、高い記録線速度で、データを記録する場合と同じ数の 記録パルス数を含む単位パルス列パターンを含むパルス列パターンにしたがって、 パワーが変調されたレーザビームを、光記録ディスク 1の記録層 5に照射して、データ を記録することができるから、光記録ディスク 1の記録層 5の記録マークを形成すべき 領域に、効率的に熱をカ卩えるができ、したがって、低い記録線速度で、光記録デイス ク 1の記録層 5にデータを記録する場合に、記録パワー Pwを低いレベルに設定する ことが可能となる。
[0111] また、本実施態様においては、図 3 (b)、図 3 (c)、図 3 (d)、および図 4 (a)、図 4 (b) 、図 4 (c)に示されるように、 31. 8mZsの高い記録線速度で、光記録ディスク 1の記 録層 5に、 3Tないし 8Tの記録マークを形成する場合には、単位パルス列パターンの 先頭に、パルス幅 Tdが 0. 2Tの基底パルスが揷入され、最初の記録パルスの立ち上 力 Sりタイミングが遅延される。
[0112] すなわち、 31. 8m/sの高い記録線速度で、光記録ディスク 1の記録層 5に、デー タを記録する場合には、隣り合う記録マーク間の熱干渉によって、記録マークの大き さ、あるいは、形状に望ましくない変化が生じやすいが、本実施態様においては、最 初の記録パルスの立ち上がりタイミングを遅延することによって、これを防止するよう にしている。
[0113] 図 7は、本発明の好ましい実施態様に力かるデータ記録再生装置のブロックダイァ グラムである。
[0114] 図 7に示されるように、本実施態様にかかるデータ記録再生装置 20は、光記録ディ スク 1を回転させるためのスピンドルモータ 22と、光記録ディスク 1に向けて、レーザビ ームを発するとともに、光記録ディスク 1によって、反射されたレーザビームを受光す るピックアップ 23と、スピンドルモータ 22およびピックアップ 23の動作を制御するとと もに、外部から入力されるデータあるいは光記録ディスク 1から再生されたデータに、 所定の信号処理を施すコントローラ 24と、ピックアップ 23に、レーザ駆動信号を供給 するレーザ駆動回路 25と、ピックアップ 23に、レンズ駆動信号を供給するレンズ駆動 回路 26とを備えている。
[0115] 図 7に示されるように、コントローラ 24は、光記録ディスク 1から読み出されるフォー カスエラー信号に基づレ、て、フォーカス制御信号を生成するフォーカスサーボ回路 2 7と、光記録ディスク 1から読み出されるトラッキングエラー信号に基づいて、トラツキン グ制御信号を生成するトラッキングサーボ回路 28と、光記録ディスク 1から再生された 再生信号に基づいて、所定の周期を有するクロック信号を生成し、後述するタイミン グコントローラ 31あるいは制御回路 32に出力するクロック生成回路 29と、光記録ディ スク 1から再生された再生信号からゥォブル信号を取り出し、取り出したゥォブル信号 に復調処理を施して、アドレス信号を生成するアドレスデコーダ 30と、クロック生成回 路 29で生成されるクロック信号およびアドレスデコーダ 30で生成されるアドレス信号 に基づいて、タイミング信号を生成し、タイミング信号を、コントローラ 24内部の各回 路に出力するタイミングコントローラ 31と、コントローラ 24全体の動作を制御する制御 回路 32と、メモリ 33と、データ処理回路 34と、ライトストラテジ回路 35とを備えている。
[0116] タイミングコントローラ 31によって、生成されたタイミング信号が、コントローラ 24内 部の各回路へ出力されることによって、コントローラ 24内部の各回路の動作タイミング が制御され、各回路が同期して動作するように制御される。
[0117] メモリ 33は、データ記録再生装置 20全体を制御するためのプログラムデータゃコン トローラ 24内部での処理に用いる各種データを記憶している。また、本実施態様に おいては、メモリ 33は、レーザビームのパワーを変調するために用いる複数の記録ス トラテジを、光記録ディスク 1の種類と関連付けて、記憶している。
[0118] 制御回路 32は、コントローラ 24全体の動作を制御するものであり、ユーザーのキー 入力、あるいは、ボタン入力に対応したコマンドデータにしたがって、コントローラ 24 内部の各回路に制御信号を出力し、各回路の動作を制御する。また、制御回路 32 は、ユーザーから記録線速度の変更が指示されると、回転数を変更する旨の指示信 号を、スピンドルモータ 22に出力して、記録線速度を変更させる。
[0119] データ処理回路 34は、光記録ディスク 1にデータを記録するときには、外部から入 力されるユーザデータに、符号化処理を施す符号器として機能するとともに、光記録 ディスク 1からデータを再生するときには、光記録ディスク 1から再生された再生信号 に、復号化処理を施す復号器として機能する。
[0120] ライトストラテジ回路 35は、データ処理回路 34で符号ィ匕処理の施されたデータに基 づいて、レーザビームのパワーを変調するためのレーザビームパワー制御信号を生 成する。
[0121] 以上のような構成を有するデータ記録再生装置 20は、次のようにして、光記録ディ スク 1の記録層 5に、データを記録する。
[0122] まず、光記録ディスク 1が、データ記録再生装置 20にセットされると、コントローラ 24 は、光記録ディスク 1にレーザビームを照射し、その反射光を読み取って、トラツキン グエラー信号およびフォーカスエラー信号を生成する。次いで、コントローラ 24は、ト ラッキングエラー信号およびフォーカスエラー信号に基づレ、て、トラッキング制御信号 およびフォーカス制御信号を生成して、それぞれ、ピックアップ 23およびレンズ駆動 回路 26に出力する。
[0123] その結果、光記録ディスク 1のトラックに、レーザビームが自動追従するように、ピッ クアップ 23の位置が制御されるとともに、光記録ディスク 1の記録層 5に、レーザビー ムがフォーカスされるように、ピックアップ 23に内蔵された対物レンズ(図示せず)の 位置が微調整される。
[0124] 次いで、コントローラ 24のアドレスデコーダ 30が、光記録ディスク 1から、ゥォブル信 号ゃプレピット信号を読み出して、アドレス信号を生成し、タイミングコントローラ 31あ るいは制御回路 32に出力する。このように、アドレス信号力 タイミングコントローラ 31 あるいは制御回路 32に出力されることによって、レーザビームの照射位置を、コント口 ーラ 24が認識することが可能になる。
[0125] また、本実施態様においては、光記録ディスク 1に、光記録ディスク 1の種類を特定 する IDデータ力 ゥォブルゃプレピットとして、記録されており、コントローラ 24のアド レスデコーダ 30は、光記録ディスク 1から、ゥォブル信号ゃプレピット信号を読み出す ことによって、光記録ディスク 1の種類を特定する IDデータを読み出すように構成され ている。こうして、読み出された光記録ディスク 1の IDデータに基づき、メモリ 33に記 憶された記録ストラテジが選択され、ライトストラテジ回路 35の設定が決定される。
[0126] IDデータの読み出しが完了すると、ユーザーデータの入力が許可され、ユーザデ ータが、データ記録再生装置 20に入力される。
[0127] ユーザデータが入力されると、まず、データ処理回路 34によって、ユーザデータに 、符号化処理が施される。
[0128] データ処理回路 34は、入力されたユーザデータに、スクランブル処理を施し、スク ランブル処理が施されたデータに、エラー訂正用のノ^ティデータを付与する。
[0129] さらに、データ処理回路 34は、エラー訂正用のノ^ティデータを付与したデータに 、 1、 7RLL変調処理および NRZI (Non Return to Zero Inverse)変調処理を施して、 データの「1」「0」の配列を、光記録ディスク 1への記録に適した配列に変換し、ライト ストラテジ回路 35に出力する。
[0130] 符号化処理の施されたデータが、ライトストラテジ回路 35に出力されると、ライトスト ラテジ回路 35は、符号化処理が施されたデータに基づいて、レーザビームのパワー を変調するためのレーザビームパワー制御信号を生成する。
[0131] 本実施態様において、ライトストラテジ回路 35は、図 3ないし図 6に示される単位パ ノレス列パターンを組み合わせて、レーザビームパワー制御信号を生成し、レーザビ ームパワー制御信号に含まれる単位パルス列パターンは、図 3ないし図 6に示される ように、末尾に含まれる記録パルスのパルス幅 Tlastに応じて、パルス幅 Telが決定さ れた基底パルスを、末尾の記録パルスの後に含み、かつ、クロック周期 Tの 2n (nは 正の整数)倍の長さ、または、(2n+l)倍の長さの記録マークを形成する場合に、 n個 の記録パルスを含むように構成される。
[0132] こうして、ライトストラテジ回路 35によって生成されたレーザビームパワー制御信号 は、レーザ駆動回路 25に出力され、ピックアップ 23から発せられるレーザビームのパ ヮ一が変調され、光記録ディスク 1の記録層 5にデータが記録される。
[0133] 以上のようにして、データ記録再生装置 20によって、光記録ディスク 1に、データが 記録される。
[0134] 一方、光記録ディスク 1の記録層 5に記録されたデータは、データ記録再生装置 20 によって、以下のようにして、再生される。
[0135] データ記録再生装置 20に、光記録ディスク 1がセットされると、まず、コントローラ 24 によって、フォーカス制御およびトラッキング制御が実行されるとともに、コントローラ 2 4のアドレスデコーダ 30によって、アドレス信号が生成される。
[0136] 次いで、ピックアップ 23によって、再生用のパワーに設定されたレーザビーム力 光 記録ディスク 1の記録層 5に照射され、光記録ディスク 1の記録層 5に記録されたデー タが読み出され、再生信号が生成される。
[0137] こうして生成された再生信号は、 PRML (Partial Response Maximum Likelihood)処 理回路(図示せず)によって、波形整形およびビタビ復号処理が施され、 2値化される
[0138] こうして、 2値化されて、生成されたデータは、データ処理回路 34に出力され、デー タ処理回路 34によって、複号化処理が施される。
[0139] データ処理回路 34は、光記録ディスク 1の記録層 5から再生されたデータに、 NRZ I復調処理および 1、 7RLL復調処理を施して、光記録ディスク 1へのデータ記録時に 、 NRZI変調処理および 1、 7RLL変調処理が施されて、記録に適した配列に変換さ れたデータを、 NRZI変調処理および 1、 7RLL変調処理が施される前の状態に変換 する。
[0140] さらに、データ処理回路 34は、ノ^ティデータに基づいて、 NRZI復調処理および 1 、 7RLL復調処理が施されたデータに、エラー訂正処理を施して、再生されたデータ に含まれるエラーを訂正する。
[0141] 次いで、データ処理回路 34は、 NRZI復調処理、 1、 7RLL復調処理およびエラー 訂正処理の施されたデータに、デスクランブル処理を施して、光記録ディスク 1への 記録時に、スクランブル処理が施されたデータの配列を、もとの配列に変換する。
[0142] こうして、コントローラ 24によって、ユーザデータが再生され、再生されたユーザデ ータが、外部に出力されるか、あるいは、メモリ 33に、再生データとして、格納される。
[0143] 以上のようにして、データ記録再生装置 20によって、光記録ディスク 1の記録層 5に 記録されたデータが再生される。
[0144] 本実施態様によれば、図 3ないし図 6に示されるように、パルス列パターンに含まれ る末尾の記録パルスのパルス幅 Tlastが長いときに、末尾の記録パルスの後に揷入さ れる基底パルス Telの幅が長くなるように構成された単位パルス列パターンを含むパ ノレス列パターンにしたがって、パワーが変調されたレーザビームを、光記録ディスク 1 の記録層 5に照射して、データが記録されるように構成されているから、末尾の記録 パルスの後に挿入される基底パルスのパルス幅 Telが長くなるように構成された単位 パルス列パターンを含むパルス列パターンにしたがって、パワーが変調されたレーザ ビームを、光記録ディスク 1の記録層 5に照射して、データを記録する場合に、記録 パワー Pwのレーザビームが照射された記録層 5の領域に、大きな熱量が加えられて も、その後に、その領域に照射されるレーザビームのパワーが、長い期間にわたって 、基底パワー Pbに維持されるため、冷却効率が高められて、過度に加熱された部分 が速やかに冷却され、その結果として、溶融後に、相変化材料が再結晶化することを 効果的に防止することができ、したがって、高い記録線速度で、データを記録するの に適するように設計された光記録ディスク 1の記録層 5に、低い記録線速度で、デー タを記録した場合にも、再生信号のジッタを大幅に低下させることが可能になる。
[0145] さらに、本実施態様によれば、クロック周期 Tの 2n倍 (nは正の整数)または(2n+l) 倍の長さの記録マークを形成する場合に、 1つの記録マークを形成するための単位 パルス列パターン力 n個の記録パルスを含むように構成されているから、高い記録 線速度で、記録層 5にデータを記録するときに、光記録ディスク 1の記録層 5の記録 マークを形成すべき領域に加えられる熱量が不足することなぐデータを記録するこ とができ、また、低い記録線速度で、記録層 5にデータを記録するときにも、光記録デ イスク 1の記録層 5の記録マークを形成すべき領域に加えられる熱量が過剰になるこ となぐデータを記録することができ、したがって、記録線速度にかかわらず、記録パ ルスの数が同じ単位パルス列パターンを含むパルス列パターンを用いて、光記録デ イスク 1に、データを記録しても、ジッタの低い再生信号を得ることが可能になり、また 、記録線速度に応じて、単位パルス列パターンに含まれる記録パルスの数を変更す る必要がなくなり、とくに、光記録ディスク 1が、角速度一定(CAV:Constant Angular Velocity)で回転されている場合のように、レーザビームが照射されている位置によつ て、記録線速度が大きく異なるときにも、単位ノ^レス列パターンに含まれる記録パル スの数を変更する必要がなレ、ので、単位パルス列パターンに含まれる記録パルスの 数を変更するための処理を省略することができ、したがって、パルス列パターンを制 御する回路の構成を簡略化することができる。
[0146] また、本実施態様によれば、低い記録線速度で、光記録ディスク 1の記録層 5にデ ータを記録する場合にも、高い記録線速度で、データを記録する場合と同じ数の記 録パルスを含む単位パルス列パターンを含むパルス列パターンにしたがって、パヮ 一が変調されたレーザビームを、光記録ディスク 1の記録層 5に照射して、データを 記録することができるから、光記録ディスク 1の記録層 5の記録マークを形成すべき領 域に、効率的に熱をカ卩えるができ、したがって、低い記録線速度で、光記録ディスク 1 の記録層 5にデータを記録する場合に、記録パワー Pwを低いレベルに設定すること が可能となる。
実施例
[0147] 以下、本発明の効果をより明瞭なものとするため、実施例および比較例を掲げる。
[0148] 実施例 1
1. 1mmの厚さと 120mmの直径を有するポリカーボネート基板をスパッタリング装 置にセットし、ポリカーボネート基板上に、 98 : 1 : 1の原子比で、 Ag、 Pdおよび Cuを 含み、 lOOnmの厚さを有する反射層を、スパッタリング法により形成した。
[0149] 次いで、反射層上に、 ZnSと Si〇の混合物をターゲットとして、スパッタリング法
2 より、 4nmの厚さを有する第二の誘電体層を形成した。
[0150] 第二の誘電体層に含まれた ZnSと Si〇の混合物中の ZnSと SiOのモル比率は、
2 2
50 : 50であった。
[0151] 次いで、 Sb、 Te、 Ge、 Tbおよび Inの混合ターゲットが設けられたスパッタリング装 置を用いて、第二の誘電体層の表面に、 Sb Te Ge Tb In の原子組成
68. 1 15. 6 3. 1 12. 4 0. 8
を有する相変化材料を含む厚さ 14nmの記録層を形成した。
[0152] さらに、記録層の表面に、 ZnSと Si〇の混合物よりなるターゲットを用いて、スパッ
2
タリング法により、 40nmの厚さを有する第一の誘電体層を形成した。
[0153] 第一の誘電体層に含まれた ZnSと Si〇の混合物中の ZnSと SiOのモル比率は、
2 2
80 : 20であった。
[0154] 次いで、第一の誘電体層上に、 A1からなるターゲットを用いて、 Arと Nガスの雰囲
2
気中にて、反応性スパッタリング法により、 A1Nを主成分として含む lOOnmの厚さの 放熱層を形成した。
[0155] 最後に、アクリル系紫外線硬化性樹脂を、溶剤に溶解して、調整した樹脂溶液を、 放熱層の表面に、スピンコーティング法によって、塗布して、塗布層を形成し、塗布 層に紫外線を照射して、アクリル系紫外線硬化性樹脂を硬化させ、 100 / mの層厚 を有する光透過層を形成した。
[0156] こうして、光記録ディスクサンプルを作製した。
[0157] 光記録ディスクサンプノレを、パルステック工業株式会社製の光記録媒体評価装置「 DDU1000」(商品名)にセットし、波長が 405nmの青色レーザ光を、記録用レーザ 光として用い、 NA (開口数)が 0. 85の対物レンズを用いて、レーザビームを、光透 過層を介して、記録層に集光し、図 3および図 4に示された単位パルス列パターンを 含むパルス列パターンを用いて、以下の条件で、光記録ディスクサンプノレの記録層 に記録マークを形成した。レーザビームの記録パワー Pwは 7. 6mWに設定し、基底 パワー Pbは 0. 3mWに設定した。
[0158] 記録線速度: 31. 8m/s
記録信号: 1、 7RLL変調信号
記録領域:オングループ記録 クロック周期(IT) : 2· 53nsec
次いで、上述の光記録媒体評価装置を用いて、光記録ディスクサンプノレの記録層 に、記録されたデータを再生し、再生信号のジッタを測定した。データの再生にあた つては、レーザビームの波長を 405nm、対物レンズの NA (開口数)を 0. 85とし、レ 一ザビームのパワーを 0. 44mWとした。
[0159] 同様にして、レーザビームの記録パワー Pwを、 12. 5mWまで、少しづつ、増大さ せて、光記録ディスクサンプノレの記録層にデータを記録し、記録したデータを再生し て、再生信号のジッタを測定した。
[0160] 測定結果は、図 8に示されている。
[0161] 図 8に示されるように、記録線速度が 31. 8mZsのときに、図 3および図 4に示され る単位パルス列パターンを含むパルス列パターンを用いて、パワーが変調されたレ 一ザビームを、光記録ディスクサンプノレの記録層に照射して、データを記録した場合 には、記録パワー Pwのレベルを、 8mWないし 9. 6mWの範囲内に設定したときに、 再生信号のジッタが、 8%以下となり、ジッタの低い再生信号を得られることが判明し た。
実施例 2
光記録ディスクサンプノレを、前記光記録媒体評価装置にセットし、波長が 405nm の青色レーザ光を、 NA (開口数)が 0. 85の対物レンズを用いて、光透過層を介して 、記録層に集光し、図 5および図 6に示される単位パルス列パターンを含むパルス列 パターンを用いて、以下の条件で、光記録ディスクサンプノレの記録層に、記録マーク を形成した。レーザビームの記録パワー Pwは 6. 7mWに設定し、基底パワー Pbは 0 . 3mWに設定した。
[0162] 記録線速度: 5. 3m/s
記録信号: 1、7RLL変調信号
記録領域:オングループ記録
クロック周期(1T) : 15. 2nsec
次いで、上述の光記録媒体評価装置を用いて、光記録ディスクサンプノレの記録層 に、記録されたデータを再生し、再生信号のジッタを測定した。データの再生にあた つては、レーザビームの波長を 405nm、対物レンズの NA (開口数)を 0· 85とし、レ 一ザビームのパワーを 0· 44mWとした。
[0163] 同様にして、レーザビームの記録パワー Pwを、 11 · 6mWまで、少しづつ、増大さ せて、光記録ディスクサンプノレの記録層にデータを記録し、記録したデータを再生し て、再生信号のジッタを測定した。
[0164] 測定結果は、図 9に示されている。
[0165] 図 9に示されるように、記録線速度が 5. 3m/sのときに、図 5および図 6に示される 単位パルス列パターンを含むパルス列パターンを用いて、パワーが変調されたレー ザビームを、光記録ディスクサンプノレの記録層に照射して、データを記録した場合に は、記録パワー Pwのレベルを、 7. 3mW以上に設定したときに、再生信号のジッタ が、 8%以下となり、再生信号のジッタを大幅に低下し得ることが判明した。
[0166] これは、図 5および図 6に示される単位パルス列パターンを含むパルス列パターン を用いて、パワーが変調されたレーザビームを、光記録ディスクの記録層に照射して 、データを記録した場合には、記録パワー Pwのレーザビームが照射された記録層の 領域に、大きな熱量が加えられる力 その後に、その領域に照射されるレーザビーム のパワーが、長い期間にわたって、基底パワー Pbに維持されるため、冷却効率が高 められて、過度に加熱された部分が速やかに冷却され、その結果、溶融後に、相変 化材料が再結晶化することが防止されるためと推測される。
[0167] 比較例 1
光記録ディスクサンプノレを、前記光記録媒体評価装置にセットし、波長が 405nm の青色レーザ光を、 NA (開口数)が 0. 85の対物レンズを用いて、光透過層を介して 、記録層に集光し、表 1に示される単位パルス列パターンを含むパルス列パターンを 用いて、以下の条件で、光記録ディスクサンプノレの記録層に、記録マークを形成した 。レーザビームの記録パワー Pwは 6. 7mWに設定し、基底パワー Pbは 0. 3mWに 設定した。
[0168] 記録線速度: 5. 3m/s
記録信号: 1、7RLL変調信号
記録領域:オングループ記録 クロック周期(IT) : 15· 2nsec
[0169] [表 1]
Figure imgf000032_0001
ここに、記録パルスと記録パルスとの間に設けられる基底パルスの期間 Toffは、何 れも、 0. 8Tとした。
[0170] 表 1に示されるように、光記録ディスクサンプルの記録層にデータを記録する際に、 レーザビームのパワーを変調するために用いた単位パルス列パターンにおいては、 図 3ないし図 6に示された単位パルス列パターンとは異なり、単位パルス列パターン に含まれる末尾の記録パルスのパルス幅 Tlastにかかわらず、 2Tの長さの記録マー クを形成する場合には、末尾の記録パルスの後に挿入される基底パルスのパルス幅 Telを 1 · 40Tに設定し、 3Tないし 8Tの長さの記録マークを形成する場合には、末尾 の記録パルスの後に挿入される基底パルスのパルス幅 Telを 1 · 50Tに設定した。
[0171] また、表 1に示されるように、光記録ディスクサンプノレの記録層にデータを記録する 際に、レーザビームのパワーを変調するために用いた単位パルス列パターンは、形 成すべき記録マークの長さを kT (kは 2ないし 8の整数)とした場合に、(k一 1)個の記 録パルスを含むように設定した。
[0172] 次いで、上述の光記録媒体評価装置を用いて、光記録ディスクの記録層に、記録 されたデータを再生し、再生信号のジッタを測定した。データの再生にあたっては、 レーザビームの波長を 405nm、対物レンズの NA (開口数)を 0. 85とし、レーザビー ムのパワーを 0. 44mWとした。
[0173] 同様にして、レーザビームの記録パワー Pwを、 12. 4mWまで、少しづつ、増大さ せて、光記録ディスクサンプノレの記録層にデータを記録し、記録したデータを再生し 、再生信号のジッタを測定した。
[0174] 測定結果は、図 10に示されている。
[0175] 図 9および図 10から明らかなように、記録線速度 5. 3m/sで、図 5および図 6に示 される単位ノ^レス列パターンを含むパルス列パターンを用いて、パワーが変調された レーザビームを、光記録ディスクサンプノレの記録層に照射して、データを記録した場 合には、表 1に示される単位パルス列パターンを含むパルス列パターンを用いて、デ ータを記録した場合に比べて、低いレベルの記録パワー Pwで、再生信号のジッタを 8%以下に低下させることができるのが判明した。
[0176] したがって、図 5および図 6に示される単位パルス列パターンを含むパルス列パタ ーンを用いて、パワーが変調されたレーザビームを、光記録ディスクサンプノレの記録 層に照射して、低い記録線速度で、データを記録するときには、記録パワー Pwのレ ベルを低下させて、データを記録し得ることがわかった。
[0177] 本発明は、以上の実施態様および前記実施例に限定されることなぐ特許請求の 範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲 内に包含されるものであることはいうまでもない。
[0178] 本発明は、前記実施態様および前記実施例に限定されることなぐ特許請求の範 囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内 に包含されるものであることはいうまでもない。
[0179] たとえば、前記実施態様においては、単位ノ^レス列パターンは、末尾に含まれる記 録パルスのパルス幅 Tlastに応じて、パルス幅 Telが決定された基底パルスを、末尾 の記録パルスの後に含み、かつ、クロック周期 Tの 2n (nは正の整数)倍の長さ、また は、(2n+l)倍の長さの記録マークを形成する場合に、 n個の記録パルスを含むよう に構成されているが、低い記録線速度で、光記録ディスク 1の記録層 5に、データを 記録し、ジッタが大幅に低下した再生信号を得るためには、単位ノ^レス列パターンは 、末尾に含まれる記録パルスのパルス幅 Tlastに応じて、パルス幅 Telが決定された 基底パルスを、末尾の記録パルスの後に含んでいれば足り、クロック周期 Tの 2n (n は正の整数)倍の長さ、または、(2n+l)倍の長さの記録マークを形成する場合に、 パルス列パターン力 個の記録パルスを含むように構成されることは必ずしも必要で ない。
[0180] また、前記実施例においては、光記録ディスクサンプルは、 Sb Te Ge Tb
68. 1 15. 6 3. 1 1
In の原子組成を有する相変化材料を含む記録層を備えているが、光記録ディ
2. 4 0. 8 スクの記録層に含まれる相変化材料は、とくに限定されるものではなレ'

Claims

請求の範囲
[1] 基板と、前記基板上に形成され、相変化材料を主成分として含む記録層を備え、 前記記録層に、所定の線速度以上の高速で、レーザビームを照射して、データの記 録および記録されたデータの消去が可能に構成された光記録ディスクに、少なくとも 、記録パワーのレベルを有する記録パルスと、基底パワーのレベルを有する基底パ ルスとを含む単位パルス列パターンを含むパルス列パターンにしたがって、パワーが 変調されたレーザビームを照射し、前記記録層に、少なくとも 1つの記録マークを形 成して、データを記録する記録方法であって、 1つの記録マークを形成するための前 記単位パルス列パターン力 s、末尾に含まれる記録パルスのパルス幅に応じて、パル ス幅が決定された基底パルスを、前記末尾の記録パルスの後に含んでいることを特 徴とする光記録ディスクへのデータ記録方法。
[2] クロック周期 Tの 2n (nは正の整数)倍の長さ、または、(2n+l)倍の長さの記録マー クを形成する場合に、単位パルス列パターン力 個の記録パルスを含むように構成さ れたことを特徴とする請求項 1に記載の光記録ディスクへのデータ記録方法。
[3] 基板と、前記基板上に形成され、相変化材料を主成分として含む記録層を備え、 前記記録層に、所定の線速度以上の高速で、レーザビームを照射して、データの記 録および記録されたデータの消去が可能に構成された光記録ディスクに、データを 記録する記録装置であって、少なくとも、記録パワーのレベルを有する記録パルスと 、基底パワーのレベルを有する基底パルスとを含む単位パルス列パターンを含むパ ノレス列パターンにしたがって、パワーが変調されたレーザビームを照射するレーザ照 射手段を備え、前記レーザ照射手段が、末尾に含まれる記録パルスのパルス幅に応 じて、前記末尾の記録パルスの後に挿入される基底パルスのパルス幅が決定された 単位パルス列パターンを含むパルス列パターンにしたがって、前記レーザビームの パワーを変調することを特徴とする光記録ディスクへのデータ記録装置。
[4] クロック周期 Tの 2n (nは正の整数)倍の長さ、または、(2n+l)倍の長さの記録マー クを形成する場合に、前記単位パルス列パターン力 個の前記記録パルスを含むよう に構成されたことを特徴とする請求項 3に記載の光記録ディスクへのデータ記録装置
PCT/JP2004/012198 2003-08-27 2004-08-25 光記録ディスク WO2005022516A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-302312 2003-08-27
JP2003302312A JP2005071515A (ja) 2003-08-27 2003-08-27 光記録ディスクへのデータ記録方法および光記録ディスクへのデータ記録装置

Publications (1)

Publication Number Publication Date
WO2005022516A1 true WO2005022516A1 (ja) 2005-03-10

Family

ID=34269173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012198 WO2005022516A1 (ja) 2003-08-27 2004-08-25 光記録ディスク

Country Status (3)

Country Link
US (1) US20050063272A1 (ja)
JP (1) JP2005071515A (ja)
WO (1) WO2005022516A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309855A (ja) 2005-04-27 2006-11-09 Tdk Corp 光記録媒体への情報記録方法
KR101306026B1 (ko) * 2005-06-03 2013-09-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 디스크의 정보층에 마크들을 기록하는 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334433A (ja) * 2001-05-02 2002-11-22 Ricoh Co Ltd 情報記録方法、情報記録装置及び情報処理装置
JP2004152369A (ja) * 2002-10-29 2004-05-27 Ricoh Co Ltd 情報記録方法および記録装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642343A (en) * 1990-06-29 1997-06-24 Hitachi, Ltd. Magnetooptic disc apparatus and recording medium
US5732062A (en) * 1995-10-16 1998-03-24 Ricoh Company, Ltd. Information recording apparatus, method and computer program product
US5972621A (en) * 1995-11-27 1999-10-26 Millennium Pharmaceuticals, Inc. Methods of identifying compounds that modulate body weight using the OB receptor
JP4027422B2 (ja) * 1996-02-16 2007-12-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光情報担体の記録方法および装置
JP3323782B2 (ja) * 1997-09-09 2002-09-09 株式会社日立製作所 情報の記録方法
US6231945B1 (en) * 1997-09-09 2001-05-15 Hitachi, Ltd. Information recording medium
JPH11175976A (ja) * 1997-12-09 1999-07-02 Hitachi Ltd 情報記録装置
JP3762847B2 (ja) * 1999-04-13 2006-04-05 株式会社日立製作所 情報の記録方法及び情報の記録装置
JP2000322739A (ja) * 1999-05-10 2000-11-24 Tdk Corp 光記録方法
KR100403614B1 (ko) * 2000-11-29 2003-11-01 삼성전자주식회사 고밀도 광기록을 위한 적응적 기록 제어 방법
JP3921046B2 (ja) * 2000-12-07 2007-05-30 株式会社日立製作所 情報記録方法及び光ディスク装置
US6914866B2 (en) * 2001-04-06 2005-07-05 Ricoh Company, Ltd. Optical information recording medium and information recording method and apparatus using the recording medium
JP2003123252A (ja) * 2001-10-09 2003-04-25 Hitachi Ltd 情報記録方法および情報記録装置
JP2003228834A (ja) * 2002-01-30 2003-08-15 Ricoh Co Ltd 情報記録方式及び光記録媒体
US7369470B2 (en) * 2002-05-20 2008-05-06 Samsung Electronics Co., Ltd. Method of recording erase pattern information on an optical recording medium, erasing information on the optical recording medium based on the erase pattern information, and optical recording medium therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334433A (ja) * 2001-05-02 2002-11-22 Ricoh Co Ltd 情報記録方法、情報記録装置及び情報処理装置
JP2004152369A (ja) * 2002-10-29 2004-05-27 Ricoh Co Ltd 情報記録方法および記録装置

Also Published As

Publication number Publication date
US20050063272A1 (en) 2005-03-24
JP2005071515A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4986985B2 (ja) 光記録方法、光記録媒体
JP2002358691A (ja) 光情報記録媒体、光情報記録再生方法、光情報記録再生装置、及び光情報記録媒体の製造方法
JP2003178448A (ja) 光学的情報記録方法、光学的情報記録再生装置、および光学的情報記録媒体
JP4012934B1 (ja) 光記録媒体及び多層型光記録媒体を用いた光記録方法及び光記録装置
JP2003228834A (ja) 情報記録方式及び光記録媒体
US20040208105A1 (en) Optical recording medium
US7564769B2 (en) Phase-change recording medium having the relation between pulse patterns and reflectivity of un-recorded section
US20040191689A1 (en) Optical recording medium and data recording medium for recording data in the same
JP2004171642A (ja) 光記録媒体、光記録方法及び光記録装置
TW200307266A (en) Method for recording information on optical recording medium, information recorder, and optical recording medium
WO2003073419A1 (fr) Procede d'enregistrement d'informations sur support d'enregistrement optique, enregistreur d'informations et support d'enregistrement optique
US7668071B2 (en) Phase-change optical recording medium having tracking signal smaller than saturation value
US20040213124A1 (en) Optical recording medium and data recording apparatus for recording data in the same
WO2005022517A1 (ja) 光記録ディスク
WO2005022516A1 (ja) 光記録ディスク
WO2005022515A1 (ja) 相変化型光記録媒体、光記録方法及び光記録装置
US20060280111A1 (en) Optical storage medium and optical recording method
JP2000348378A (ja) 光記録媒体および該光記録媒体を使用した記録方法
JPH08329521A (ja) 光記録媒体
WO2003028021A1 (fr) Support d'enregistrement optique et systeme d'enregistrement associe
WO2003102931A1 (en) Method for recording data to optical recording medium, device for recording data to optical recording medium, and optical recording medium
JP2005243218A (ja) 光記録媒体
TW200402048A (en) Optical recording medium
JP3881215B2 (ja) 光情報記録方法
TWI277961B (en) Optical storage medium, optical recording method and optical recording apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase