WO2005019134A1 - Procede de preparation d'un monolithe de materiau inorganique - Google Patents

Procede de preparation d'un monolithe de materiau inorganique Download PDF

Info

Publication number
WO2005019134A1
WO2005019134A1 PCT/FR2004/001811 FR2004001811W WO2005019134A1 WO 2005019134 A1 WO2005019134 A1 WO 2005019134A1 FR 2004001811 W FR2004001811 W FR 2004001811W WO 2005019134 A1 WO2005019134 A1 WO 2005019134A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
precursor
foam
monolith
calcination
Prior art date
Application number
PCT/FR2004/001811
Other languages
English (en)
Inventor
Rénal BACKOV
Annie Colin
Florent Carn
Original Assignee
Centre National De La Recherche Scientifique
Universite Des Sciences Et Technologies (Bordeaux 1)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite Des Sciences Et Technologies (Bordeaux 1) filed Critical Centre National De La Recherche Scientifique
Publication of WO2005019134A1 publication Critical patent/WO2005019134A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • C04B38/103Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam the foaming being obtained by the introduction of a gas other than untreated air, e.g. nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/3212Calcium phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite

Definitions

  • the present invention relates to a process for preparing an inorganic material in the form of an inorganic solid foam monolith, as well as the material obtained.
  • the shape and size of the pores are important characteristics.
  • biological cells such as osteoblasts can colonize the pores.
  • the pores must therefore be of sufficient size to accommodate the osteoblasts.
  • the pores have the maximum roughness, which is favored by a non-spherical shape. (Cf. Z. Shwartz, et al. Adv. Dent. Res. 1999, 13, 510).
  • the degree of sound insulation allowed by a porous material depends in particular on the density of the material. Consequently, for the same bubble size, the density depends on the width of the edges of the plate, that is to say on the shape and the size of the pores.
  • silica monoliths which have a hierarchical structure combining microporosity and mesoporosity. (Cf. notably "Attard, GS, Glyde, JC, Goltner, CG Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378, 366" and "Kresge, CT, Leonowicz, ME, Roth,.
  • a liquid / gas foam can be defined as a mass of gas bubbles in a solution of surfactants which can coexist for variable durations.
  • the faces of the bubbles are films having a thickness of the order of 10 nm to 1 ⁇ m.
  • the films meet trent three by three to form the edges of the polyhedral bubbles, said edges being designated by edges of the tray.
  • the mechanical balance imposes symmetry, and the edges meet by 4 at 120 °.
  • a liquid / gas foam is a metastable system which tends to disappear under the effect of three mechanisms: drainage, Ostwald ripening and coalescence. Drainage is the result of gravity, which causes it to flow downward. of solution_.de. liquid jâans.
  • the aim of the present invention is to propose a process for the preparation of a solid foam monolith of inorganic material from a liquid / gas foam in which the three phenomena mentioned above as well as the organic chemistry reaction are controlled. , in order to obtain solid foam monoliths of inorganic material having a macroporosity consisting of pores whose size and shape can be predetermined.
  • the process for the preparation of a solid foam monolith of inorganic material comprises a step of preparation of a liquid / gas foam and a step of calcination, and it is characterized in that, during the foam preparation step: - bubbles of inert gas saturated with organic solvent immiscible with water are introduced into an aqueous solution containing a precursor of the inorganic material and a surfactant, the introduction being carried out through a glass sintered above which the precursor solution is placed, the liquid / gas foam is optionally sprayed from above with a constant flow rate of aqueous precursor solution, by adjusting the watering flow rate according to the desired results. pores. polyhedral ...
  • the use of a sintered glass makes it possible to adjust the diameter of the macropores, by choosing the diameter P of the pores of the sintered glass.
  • An increase in the diameter of the frit pores has the effect of increasing the length L of the edges of the plate, and the diameter of the macropores of the material inorganic prepared.
  • the diameter of the macropores varies between 160 ⁇ m and approximately 600 ⁇ m for the material after calcination, and between approximately 225 ⁇ m and approximately 800 ⁇ m for the material before calcination.
  • the choice of pore diameter is within the reach of the skilled person. For a given inorganic material, after having chosen an appropriate precursor, it is advisable to carry out some tests with frits having different pore diameters, and to choose the one which gives the desired pore diameter for the macropores.
  • the choice of the irrigation flow rate makes it possible to adjust the liquid fraction (that is to say the volume / solution / foam ratio) of the reaction medium. An increase in the watering rate gives a higher liquid fraction.
  • the liquid fraction has a direct influence on the structure of the liquid / air foam and which makes it possible to adjust the shape of the macropores, i.e. to predict the length (L), the thickness (a) and the curvature of the Plateau borders.
  • a high liquid fraction increases the thickness of the tray edges and promotes the formation of spherical bubbles, while a lower liquid fraction causes polyhedral bubbles to form.
  • the thickness of the edges of the plate is generally between 10 and 100 ⁇ m, and the length of the edges of the plate between 10 and 800 ⁇ m.
  • Sprinkling at constant flow rate also makes it possible to obtain a homogeneous fraction of liquid throughout the sample and to avoid coalescence of the foam.
  • the choice of watering rate is within the reach of 1- man. .For a. material_.inorganic_donn ⁇ , after having chosen an appropriate precursor, it is advisable to carry out some tests by increasing the flow rate of watering to determine from which flow rate the pores of the material have an essentially spherical aspect.
  • the inert gas can be, for example, compressed air or nitrogen under pressure.
  • the organic solvent immiscible with water is advantageously perfluorohexane.
  • the mixture of inert gas and organic solvent can be obtained by bubbling the gas through the organic solvent.
  • the calcination is carried out with the aim of eliminating the organic components after formation of the foam, and of improving the mechanical properties of the foam by sintering. It can eventually release a mesoporosity.
  • the calcination temperature depends on the material prepared.
  • a monolith according to the present invention consists of an inorganic material and it has macropores which have a spherical or polyhedral shape and whose dimension is between 10 ⁇ m and 600 ⁇ m.
  • the inorganic material can be an oxide, a phosphate, a phosphonate or a carbonate.
  • oxide mention may be made of silica, ⁇ , ⁇ , or ⁇ aluminas, titanium oxide, zincconium oxide, thorium oxide, niobium oxide, oxide tantalum, vanadium oxide, tungsten oxide, cerium oxide, tin oxide, thallium oxide, boron oxide.
  • phosphate and phosphonate mention may be made of phosphates and phosphonates of tetravalent metals such as in particular zirconium, tin, titanium and cerium, as well as calcium phosphates (for example ple . _.hy.dr_oxy-apatites.) ).
  • carbonate mention may be made of calcium carbonates (for example nacre).
  • the monoliths constituted by silica, by titanium oxide or by V 2 0 5 are particularly interesting.
  • the precursor of the inorganic material can be a molecular precursor.
  • the process for preparing the monolith preferably comprises an intermediate stage, during which the liquid / air foam formed during the 1st stage is frozen then lyophilized, before the calcination stage.
  • the precursor of the inorganic material can also be in the form of an aqueous suspension of nanoparticles of said material.
  • the intermediate freezing / freeze-drying step is not necessary, but the reaction medium contains a flocculating agent during the first step.
  • the alkoxide type precursors correspond to the formula MR ' n (0R) m - n in which M represents a metal center having the valence m, O ⁇ n ⁇ m, R' represents an alkyl radical having from 1 to 5 carbon atoms , R represents an alkyl or aryl radical optionally carrying one or more functional groups.
  • Si (OR) 4 By way of example, mention may be made of Si (OR) 4 , Ti (0R) 4 , Zr (0R) 4 , Th (0R) 4 , Nb (OR) 5 , Ta (0R) 5 , A1 (0R) 3 , W (OR) 6 . Mention may also be made of the vanadate alkoxides VO (OR) 3 . The alkoxides in which R is methyl or ethyl are particularly preferred.
  • the halide type and oxyhalide type precursors mention may be made of SiCl 4 , TiCl 4 or SnCl4, and ZrOCl 2 .2H 2 0.
  • Sodium metavanadate is an example of a mixed oxide which can be used as a molecular precursor.
  • the oxide is formed by a sol-gel reaction in -two stages.
  • the first. .step_. is a hydrolysis of the precursor by water, during which a hydroxy group binds to an atom M.
  • the following reaction scheme illustrates the case where the precursor is an alkoxide Si: Si (OR) 4 + H 2 0 ⁇ HO-Si (OR) 3 + ROH
  • the second step is a condensation between fully or partially hydrolyzed molecules according to the following reaction scheme: n Si (OH) 4 ⁇ ⁇ HO [Si (OH) 2 -0] n . 1 -Si (OH) 3 + (n-1) H 2 0 When condensation begins, hydrolysis is not complete.
  • hydrolysis produces an alcohol ROH which is a poison for the formation of foams. It is therefore preferable to leave the aqueous solution of precursor at rest before introducing the inert gas bubbles, so that the precursor undergoes partial hydrolysis and that the alcohol formed is at least partially removed.
  • a molecular precursor other than an alkoxide or a molecular precursor of an element M other than Si is used.
  • a monolith according to the invention consisting of a nacre-type carbonate
  • calcium chloride and sodium carbonate can be used as molecular precursor.
  • calcium chloride and sodium hydrogen phosphate NaH 2 P0 4 can be used as molecular precursor.
  • the reaction medium also contains a flocculating agent which can be chosen, for example, from A1C1 3 , CaCl 2 , MgCl 2 and LaN0 3 .
  • a flocculating agent which can be chosen, for example, from A1C1 3 , CaCl 2 , MgCl 2 and LaN0 3 .
  • This embodiment of the process of the invention is particularly useful for the preparation of solid foam monoliths of various oxides such as silica oxide, aluminum oxide, titanium oxide, oxy - of cerium, zirconium oxide, tin oxide, thallium oxide, tellurium oxide, boron oxide, niobium oxide, and aluminas, and for the preparation solid foam monoliths of metal phosphates or phosphonates.
  • tetravalents such as phosphate or zirconium phosphonate, tin phosphate or phosphonate, titanium phosphate or phosphonate or cerium phosphate or phosphonate, or for the preparation of monoliths of solid mother-of-pearl foam or hydroxyapatite.
  • the kinetics of the reaction increases with the acidity or the basicity of the medium.
  • the surfactant is of the cationic type or nonionic
  • the pH of the medium must be acidic and preferably less than 1.
  • a cationic surfactant there may be mentioned tetradecyltrimethylammonium bromide (TTAB), hexadecyltrimethylammonium bromide (CTAB), decyltrimethylammonium bromide (DTAB).
  • nonionic surfactant include surfactants sold under the names Pluronic ®, Brij ® or Tergitol ®.
  • the acid pH of the solution can be obtained by adding the appropriate amount of a mineral acid, for example HC1, H 2 S0 4 or HN0 3 .
  • the reaction medium contains an anionic surfactant, the pH of the medium is basic, preferably greater than 10.
  • anionic surfactant mention may be made of sodium dodecylsulfate (SDS), sodium decylbenzenesulfonate (SDBS) and dioctylsulfosuccinate sodium (AOT).
  • SDS sodium dodecylsulfate
  • SDBS sodium decylbenzenesulfonate
  • AOT dioctylsulfosuccinate sodium
  • the basic pH of the solution can be obtained by adding the appropriate amount of NaOH or NH 3 .
  • the method according to the invention has many advantages.
  • the use of a sintered glass makes it possible to adjust the length L of the edges of the tray and the diameter ⁇ of the macropores, by the choice of the porosity of the sintered glass, an increase in the size of the pores of the frit causing an increase in L and of ⁇ .
  • the choice of the liquid / foam volume ratio in the liquid foam being formed makes it possible to adjust the shape of the macropores, that is to say to predict the length L, the thickness a and the curvature of the edges of the tray.
  • the final calcination removes the surfactant (which eventually releases mesopores) and causes f-sintering which densifies the - material -
  • the overall size. inorganic foam monoliths obtained by. the process of the present invention can go beyond the decimetre and the meter without major difficulty.
  • the shaping on large scales of the objects formed can be carried out with very great homogeneity of the material, unlike the Bagshaw process of the prior art.
  • the method of the invention makes it possible to obtain a solid foam monolith of an inorganic material which not only has a macroporosity, but also microporosity and mesoporosity.
  • the micropores which are inherent in the statistical connectivity of the basic polyhedra constituting the silica skeleton, have a dimension less than or equal to 12 ⁇ .
  • the mesoporosity is formed of pores having an average diameter between 20 ⁇ and 40 ⁇ , obtained by removal of the surfactant during calcination.
  • the implementation of the process proposed for the preparation of silica with a watering rate between 0.20 and 0.30 g / s gives substantially spherical macropores.
  • the spherical character of the macropores fades when the watering rate decreases.
  • the general shape of the macropores of the material before calcination is maintained after calcination.
  • calcination has the effect of reducing the thickness and the length of the edges of the Plateau, which has the result of increasing the polyhedral character of the macropores and of reducing the size of the pores.
  • the calcination temperature is advantageously between 600 ° C and 900 ° C.
  • the method of the invention makes it possible to obtain a titanium oxide monolith having pores whose diameter is in the field of macropores, and the spherical or polyhedral shape of which can be predetermined- As for silica monoliths, the average diameter of the macropores is between 10 ⁇ m and 600 ⁇ m.
  • the implementation of the proposed process for the preparation of titanium oxide with a watering rate between 0.15 and 0.20 g / s gives substantially spherical macropores.
  • the spherical character of the macropores fades when the watering rate decreases.
  • the temperature chosen for the calcination makes it possible to predetermine the crystal structure of the titanium oxide. prepared monolith.
  • the titanium oxide At temperatures below 500 ° C, the titanium oxide is in amorphous form and it optionally contains a residue of organic compound. Above 500 ° C., a mixture of anatase phase and rutile phase is obtained, the material becoming rutile enriched as the calcination temperature increases. At 900 ° C, the titanium oxide is completely in rutile form.
  • the choice of surfactant makes it possible to adjust certain properties of the monolith of the titanium oxide obtained. For example, when the surfactant is SDS, the texture of the tray edges of the titanium oxide is either fibrous or in platelets. However, the calcination does not make it possible to completely eliminate the SDS even if it is carried out at a temperature of 900 ° C.
  • the surfactant is TTAB
  • a calcination temperature of 500 ° C is sufficient to completely eliminate it.
  • the precursor used in the step of producing the liquid / gas foam is a vanadium oxide precursor
  • the process of the invention makes it possible to obtain a V 2 0 5 monolith having macropores the diameter of which is between 10 ⁇ m and 800 ⁇ m, and whose spherical or polyhedral shape can be predetermined.
  • the implementation of the process proposed for the preparation of V 2 0 5 with a watering rate between 0.15 and 0.20 g / s gives substantially spherical macropores. A decrease in the watering rate increases the polyhedral character of the macropores.
  • a monolith of inorganic material according to the invention can be used in particular in the field of acoustic insulation, thermal insulation, insulation. treatment - of. water, as a tire reinforcement, as a texturing agent, as a catalyst support, or as synthetic bone tissue.
  • the present invention is illustrated by the examples of preparation of solid foams which are described below, to which it is not however limited. The preparations were carried out in a device as shown in Figure 1.
  • the device comprises a column Plexiglas ® polished 1 which has a square section, which includes at its base a removable part 2 and which is open at its upper part.
  • the removable part 2 contains bubblers, namely sintered glass discs, and it is provided with a gas inlet 3 and a weir 4.
  • a peristaltic pump 5 makes it possible to bring the liquid contained in a reservoir 6 to 'at the open upper part of column 1.
  • the porosity of the sintered glass discs is 5 ⁇ m, 25 ⁇ m and 40 ⁇ m.
  • two parallel vertical walls 7 and 8 of the column 1 are provided with nickel-plated brass electrodes. Each of the walls 7 and 8 has at its base a reference electrode, respectively 9 and 10.
  • the wall 7 carries working electrodes 11 1 , 11 2 , ..., 11 1 .
  • the wall 8 carries counter electrodes 12 1 , 12 2 , ... 12 j .
  • column 1 has a height of 50 cm and a square section of 2.5 cm x 2.5 cm.
  • Side 7 carries 25 rectangular electrodes of 1.5 cm x 2 cm.
  • Face 8 carries 6 rectangular 5 cm x 2 cm counter electrodes.
  • the peristaltic pump 5 is a Gilson ® pump connected to the column by pipes having an inner diameter adapted to the desired flow rate.
  • the electrodes placed on the internal faces of the column make it possible to measure, by conductimetry, the liquid fraction, of .. the foam .contained the .__ ⁇ o.lonne 1 ... _En. during.
  • the reference electrodes 9 and 10 are immersed in the solution and serve as a measure of the reference conductivity.
  • the working electrodes 11, 11 1 , 11 2 , ..., Il 1 and the counter electrodes 12 1 , 12 2 , ... 12 j are in contact with foam.
  • the potential difference between the electrodes is sent to the multiplexer, then transferred to the computing device in the form of an impedance and a phase.
  • Conductometry can be used to determine the liquid fraction of the foam, since the difference in conductivity between water and air is large enough to relate the measurement to a volume liquid fraction of the foam.
  • the principle is to impose a sinusoidal voltage and to measure the current which passes in the sample.
  • Example 1 Preparation of silica monoliths Several samples of silica monoliths were prepared according to the following general procedure. To an aqueous solution of surfactant brought to the desired pH by addition of HCl, the silica precursor was added, then the resulting solution was introduced at the bottom of the column. After a rest period TR, we have introduces nitrogen under a pressure of 1 bar saturated with perfluorohexane, into the solution which is in column 1 by the sintered glass discs (pore diameter: ⁇ ) located in the removable lower part 2. During the entire duration of the process, we recovered by the weir 4 the drainage liquid which flowed down.
  • the liquid is returned to the top of the column by means of the pump 5 for a period TA with a flow rate D, collected in the weir to water the foam formed and maintain a homogeneous liquid fraction.
  • watering has started as soon as the foam formed occupies the entire column. In other cases, watering started after a while. Then, the foam was collected, frozen, lyophilized, then calcined according to the temperature cycle predefined below:
  • the micrographs on the left represent the metastable liquid foam during its formation within the column
  • the micrographs in the center represent the corresponding foams after lyophilization and before calcination
  • the micrographs on the right represent the corresponding foams after lyophilization and calcination.
  • the micrographs confirm that the macrostructure of the foams obtained by the process of the invention is homogeneous and regular, both in terms of the distribution of pores and in terms of size.
  • the size of the macroporosity is determined by the pore diameter of the frit used for the introduction of the inert gas at the bottom of the column, the size of macropores observed on the various samples prepared being between 5 ⁇ m and 210 ⁇ m.
  • Sample M18 shows that the combination of a high flow rate with a frit having a small pore size results in the mineralization of the films which form the wall of the gas bubbles and which, when they meet three by three, form the edges of the Plateau. In the general case, we only mineralize the edges of the Plateau because these regions concentrate a large amount of growing mineral.
  • Fig. 17 shows on the left the evolution of the length of the tray L as a function of the porosity P of the frit
  • Example 3 Determination of the mesoporosity It was determined for the samples M1 and M5 of Example 1 by transition electron micrography (TEM) and by X-ray diffraction at small angles.
  • FIGS. 18 and 19 represent the TEM micrographs for the sample M1 respectively before and after calcination.
  • FIG. 20 represents the X-ray diffraction diagram for the Ml sample after calcination
  • FIG. 1 represents the MET micrographs for sample M5 respectively before and after calcination.
  • FIG. 23 represents the X-ray diffraction diagram for the sample M5 after calcination (curve 1) and before calcination (curve 2).
  • the characteristic pitch relating to this mesoporosity corresponds to the distance between vermicles and it is of the order of 40 ⁇ .
  • the X-ray diffractograms show that calcination has a densification effect on the mesostructure since the characteristic pitch decreases on average by 13% during calcination, which results in a shift to the right of the peak associated with the characteristic pitch.
  • the calcination also has the effect of eliminating the parasitic compounds which can be attributed to the residual TTAB crystals, which results in the disappearance of the peaks located at q ⁇ 0.26 and q ⁇ 0.53.
  • Example 4 represents the X-ray diffraction diagram for the sample M5 after calcination (curve 1) and before calcin
  • the drainage liquid which flowed downwards was recovered by the weir 4.
  • the foam formed by the introduction of saturated perfluorohexane nitrogen has filled the entire column, as the case may be, it is returned to the top of the column by 1 through the pump 5 for a period TA with a flow rate D, the liquid recovered in the weir to water the foam formed and maintain a homogeneous liquid fraction.
  • the foam was collected and wetted drop by drop with an aqueous solution of ammonia at 20% by weight, in an amount of 0.5 ml of solution per 100 ml of foam obtained with a watering rate D of 0.024 g / s or at the rate of 2 ml of solution per 100 ml of foam obtained with a watering rate D of 0.160 g / s.
  • the foam thus recovered was frozen overnight, then lyophilized for 5 h.
  • Calcination was then carried out to remove the organic constituents, according to the following temperature cycle: heating at 2 ° C / min up to 200 ° C, holding at 200 ° C for 2 hours, heating at 2 ° C / min until '' at 500 ° C (to obtain the anatase form) or up to 900 ° C (to obtain the rutile formula), then free cooling to room temperature.
  • the reagents used in the examples described below are the following: • Titanium ethoxide
  • FIGS. 25a and 25b show SEM (scanning electron microscopy) micrographs before calcination (fig. A), and after calcination (fig. B) for Til.
  • Figures 25c and 25d represent SEM (scanning electron microscopy) micrographs before calcination (fig. A), and after calcination (fig. B) for Ti2.
  • the curves in Figure 25e represent the evolution of the thickness (a) of the edges of the Plateau in ⁇ m, as a function of the watering rate D (g / s) (triangle mark: before calcination; circle mark: after calcination) .
  • FIG. 26a and 26b represent SEM (Scanning Electron Microscopy) micrographs before calcination (fig. A), and after calcination (fig. B) for Ti3.
  • Figures 26c and 26d represent SEM (Scanning Electron Microscopy) micrographs before calcination (fig. A), and after calcination (fig. B) for Ti4.
  • the curves in FIG. 26e represent the evolution of the length L of the edges of the plate (in ⁇ m) as a function of the pore diameter P (in ⁇ m) of the frit (triangle mark: before calcination; circle mark: after calcination).
  • FIGS. 27a and 27b represent SEM (Scanning Electron Microscopy) micrographs before calcination (fig. A), and after calcination (fig. B) for Ti5.
  • Figures 27c and 27d represent SEM (Scanning Electron Microscopy) micrographs before calcination (fig. A), and after calcination (fig. B) for Ti6. These figures confirm the influence of the watering rate and the size of the pores of the frit on the size and shape of the macropores of the monolith obtained.
  • Example 6 Influence of the calcination temperature
  • a T7 sample was prepared under conditions analogous to those of the T6 sample, with a heat treatment up to a temperature of 900 ° C.
  • the crystallographic structure of the sample was determined by X-ray diffraction at various stages of calcination. The results are shown by the curves in FIG. 28. The agreement between the calcination temperatures and the curves is as follows:
  • the diagram essentially shows the lines characteristic of a TTAB powder. From 500 ° C, the SDS has disappeared and the titanium oxide obtained is amorphous. When the calcination temperature increases above 500 ° C, anatase is obtained. At a temperature of the order of 900 ° C., the titanium oxide is in the rutile form. At intermediate temperatures, a mixture of anatase phase and rutile phase is obtained.
  • Example 7 Determination of the specific surface of various samples of TiQ 2 .
  • Various samples were prepared according to the general procedure of Example 1, using a calcination temperature of 520 ° C. and a frit having pores of 70 ⁇ m.
  • the area Internal specific was determined by BET nitrogen adsorption / desorption measurements and by BJH desorption measurements.
  • the specific conditions for sample preparation, as well as the specific surfaces obtained are given in the following table:
  • Figures 29, 30, 31 and 32 relate respectively to samples Til3, Til4, Til5 and Til6.
  • Part a) of each of the figures represents the adsorption isotherm (curves oooo) and the desorption isotherm (+ + + +).
  • the relative pressure P / P 0 is given on the abscissa
  • the adsorbed volume STP in cm 3 / g
  • Part b) of each of the figures represents the differential pore volume VDP (in cm 3 / g) on the ordinate, as a function of the pore diameter ⁇ (in ⁇ ) of the material indicated on the ordinate.
  • Example 8 Preparation of the precursor of V 2 O 5 was used proton exchange resin Dowex ® 50 X2-100 and sodium metavanadate in 90% marketed by the company Aldrich. A 0.1 mol / L sodium metavanadate solution was passed through the proton exchange resin. The evolution of the acidity of metavanadate results in a decrease in the pH of the medium, which goes from 7 to 2.6, which is the optimal value for a polymerization of the precursor. After a few hours, a dark red gel is obtained containing V 2 0 5 ribbons. The mass proportion of vanadium in the gel is determined by preparing a dry extract. The physical properties of the V 2 0 5 gel samples are stable over time.
  • V 2 0 5 monolith Preparation of the V 2 0 5 monolith Several samples were prepared as follows. The precursor obtained according to the above procedure was used, Tergitol type NP-100 sold by the company Sigma, and perfluorohexane sold by the company Acros Organics under the name FC72. A precursor solution was prepared by introducing the V 2 0 5 gel into a 10% aqueous solution of Tergitol surfactant, the amount of V 2 0 5 being such that the concentration in the final solution is 65% by weight. The mixture was homogenized by vigorous stirring for 30 min, then introduced into a device similar to that used in Example 1. Then, air saturated with perfluorohexane was introduced into the solution under a pressure of 1 bar , by sintered glass discs (pore diameter: P).
  • FIG. 33e represents the evolution of the width at the edges of the plate as a function of the watering rate Q (g / sec), for a diameter of frit pores of 70 ⁇ m.
  • 34e represents the evolution of the length L of the edges of the tray as a function of the pore diameter of the frit, for a zero watering rate.
  • SEM micrographs of some samples were performed. The preparation conditions specific to each of these samples are given in the table below.
  • P represents the pore diameter (in ⁇ m) of the frit used
  • Q represents the watering rate (in g / sec)
  • SEM (l) indicates the number of the figure representing the SEM view before calcination
  • SEM (2 ) indicates the number of the figure representing the SEM view after calcination at 600 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

L'invention concerne un procédé de préparation d'un monolithe de mousse solide inorganique. Le procédé comprend une étape de préparation d'une mousse liquide/gaz et une étape de calcination. Au cours de l'étape de préparation, on introduit des bulles de gaz inerte saturé en solvant organique non miscible à l'eau dans une solution aqueuse contenant un précurseur du matériau inorganique et un tensioactif, à travers un verre fritté au-dessus duquel la solution de précurseur est placée. On arrose éventuellement la mousse liquide/gaz avec un débit constant de solution aqueuse de précurseur, en ajustant le débit d'arrosage en fonction de la forme souhaitée pour les bulles.

Description

Procédé de préparation d'un monolithe de matériau inorganique
La présente invention concerne un procédé de préparation d'un matériau inorganique sous forme d'un monolithe de mousse solide inorganique, ainsi que le matériau obtenu. Dans diverses applications de matériaux inorganiques poreux, la forme et la dimension des pores sont des caractéristiques importantes. Par exemple, lorsque ces matériaux minéraux poreux sont utilisés pour 1 'ostéosynthèse, il est important que les cellules biologiques telles que les ostéo- blastes puissent coloniser les pores. Il faut donc que les pores aient une dimension suffisante pour accueillir les ostéoblastes . En outre, afin d'améliorer le taux de fixation des cellules biologiques dans les pores du matériau inorganique, il est préférable que les pores aient le maximum de rugosité, ce qui est favorisé par une forme non sphérique. (Cf. Z. Shwartz, et al. Adv. Dent. Res . 1999, 13, 510). Dans le domaine de l'acoustique, le degré d'isolation phonique permise par un matériau poreux dépend notamment de la densité du matériau. Par voie de conséquence, pour une même dimension de bulle, le densité dépend de la largeur des bords de Plateau, c'est-à-dire de la forme et de la dimension des pores. Il est connu de former des monolithes de silice qui ont une structure hiérarchisée combinant une microporosité et une mésoporositë . (Cf. notamment "Attard, G. S., Glyde, J.C., Goltner, C.G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature, 1995, 378, 366" et "Kresge, C.T., Leonowicz, M.E., Roth, .J., Vartuli, J.C., Bec , J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359, 710"). Il est également connu de préparer des monolithes de silice ayant une supermésoporosité et une macroporosité (diamètres de pores de l'ordre du micromètre). (Cf. notamment "Davis, S.A., Burkett, S.L., Mendelson, N.H., Mann, S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 1997, 385, 420" et "Bagshaw, S.A. Morphosynthesis of macrocellular mesoporous silicate foams. Chem.Com., 1999, 767"). En outre, des structures comprenant une mésoporosité et une macroporosité de l'ordre de 200 μm à 500 μm sont décrites par Bagshaw précité ; elles sont obtenues par un procédé consistant à préparer une mousse liquide/gaz métastable en soumettant à une agitation mécanique énergique une solution aqueuse contenant un précurseur de silice et un tensioactif non ionique du type POE. Ledit procédé est supposé permettre l'ajustage de la taille des pores par le réglage de l'agitation. Cependant ce paramètre est très difficile à contrôler et les monolithes finalement obtenus après congélation, lyophilisation et calcination de la mousse présentent une porosité très hétérogène . Une mousse liquide/gaz peut être définie comme un amas de bulles de gaz dans une solution de tensioactifs qui peuvent coexister pendant des durées variables. Les faces des bulles sont des films ayant une épaisseur de l'ordre de 10 nm à 1 μm. Les films se rencontrent trois par trois pour former les arêtes des bulles polyédriques, lesdites arêtes étant désignées par bords de Plateau. Les films exerçant une traction sur les bords de Plateau, l'équilibre mécanique impose une symétrie, et les arêtes se rejoignent par 4 à 120°. Une mousse liquide/gaz est un système métastable qui tend à disparaître sous l'effet de trois mécanismes : le drainage, le mûrissement d'Ostwald et la coalescence. Le drainage est le résultat de la gravité, qui provoque l'écou- lement._.vers_.la bas. de la solution_.de . liquide jâans. la .mous- se ; la quantité de liquide dans la mousse diminue par conséquent au cours du temps. Le mûrissement d'Ostwald entraîne une augmentation de la taille moyenne des bulles et une diminution du nombre de bulles, jusqu'à disparition complète de la mousse. Ce phénomène est du au fait que le gaz présent dans les bulles possède une certaine solubilité dans le liquide, la pression de Laplace est plus importante dans les petites bulles que dans les grosses bulles, et il en résulte que le gaz va migrer des petites bulles vers les grosses bulles à travers le liquide, les petites bulles disparaissant au profit des grosses bulles dont la dimension augmente encore. La coalescence résulte du fait que les films liqui- des présents entre les bulles peuvent se briser et deux bulles voisines se transforment alors en une bulle plus grosse. Le but de la présente invention est de proposer un procédé de préparation d'un monolithe de mousse solide de matériau inorganique à partir d'une mousse liquide/gaz dans lequel les trois phénomènes évoqués ci-dessus ainsi que la réaction de chimie organique sont maîtrisés, en vue d'obtenir des monolithes de mousse solide de matériau inorganique ayant une macroporosité constituée de pores dont la dimension et la forme peuvent être prédéterminées. Le procédé pour la préparation d'un monolithe de mousse solide de matériau inorganique selon l'invention comprend une étape de préparation d'une mousse liquide/gaz et une étape de calcination, et il est caractérisé en ce que, au cours de l'étape de préparation de la mousse : - on introduit des bulles de gaz inerte saturé en solvant organique non miscible à l'eau dans une solution aqueuse contenant un précurseur du matériau inorganique et un tensioactif, l'introduction étant effectuée à travers un verre fritte au-dessus duquel la solution de précurseur est placée, on arrose éventuellement par le dessus la mousse liquide/gaz avec un débit constant de solution aqueuse de précurseur, en ajustant le débit d'arrosage en fonction des résultats., souhaités,, des,, pores . polyédriques...étant obtenus avec un débit d'arrosage faible voire nul, une augmentation du débit provoquant une diminution du caractère polyédrique pour tendre vers une forme sphérique . L'utilisation d'un verre fritte permet de régler le diamètre des macropores, par le choix du diamètre P des po- res du verre fritte. Une augmentation du diamètre des pores du fritte a pour effet une augmentation de la longueur L des bords de Plateau, et du diamètre des macropores du matériau inorganique préparé . Pour un diamètre P qui varie entre environ 50 μm et 250 μm, le diamètre des macropores varie entre 160 μm et environ 600 μm pour le matériau après calci- nation, et entre environ 225 μm et environ 800 μm pour le matériau avant calcination. Le choix du diamètre de pores est à la portée de l'homme de métier. Pour un matériau inorganique donné, après avoir choisi un précurseur approprié, il convient d'effectuer quelques essais avec des frittes ayant des diamètres de pores différents, et de choisir celui qui donne le diamètre de pores recherché pour les macropores . Le choix du débit d'arrosage permet d'ajuster la fraction liquide (c'est-à-dire le rapport volumique solution/ mousse) du milieu réactionnel. Une augmentation du débit d'arrosage donne une fraction liquide plus élevée. La fraction liquide a une influence directe sur la structure de la mousse liquide/air et qui permet d'ajuster la forme des macropores, c'est à dire de prévoir la longueur (L) , l'épaisseur (a) et la courbure des bordures de Plateau. Une fraction liquide élevée augmente l'épaisseur des bords de Plateau et favorise la formation de bulles sphêriques, alors qu'une fraction liquide plus faible provoque la formation de bulles polyédriques. L'épaisseur des bords de Plateau est généralement entre 10 et 100 μm, et la longueur des bords de Plateau entre 10 et 800 μm. L'arrosage à débit constant permet en outre d'obtenir une fraction de liquide homogène dans tout l'échantillon et d'éviter la coalescence de la mousse. Le choix du débit d'arrosage est à la portée de 1-' homme .de..métier . .Pour .un. matériau_.inorganique_donnë, après avoir choisi un précurseur approprié, il convient d'effectuer quelques essais en augmentant le débit d'arrosage pour déterminer à partir de quel débit les pores du matériau ont un aspect essentiellement sphérique. Lorsque l'épaisseur (a) des bords de Plateau augmente, la forme des macropores tend vers la forme sphérique. Lorsque (a) diminue, la caractère polyédrique des macropores s'accentue. Le diamètre P des pores du fritte utilisé lors de la production de la mousse liquide/gaz permet de contrôler la longueur L des bords de Plateau, . c ' est-à-dire le diamètre des macropores de la mousse solide finalement obtenue. Le gaz inerte peut être par exemple de 1 ' air comprimé ou de l'azote sous pression. Le solvant organique non miscible à l'eau est avantageusement le perfluorohexane . Le mélange de gaz inerte et de solvant organique peut être obtenu en faisant buller le gaz dans le solvant organique. La calcination est effectuée dans le but d'éliminer les composants organiques après formation de la mousse, et d'améliorer les propriétés mécaniques de la mousse par frittage. Elle permet éventuellement de libérer une mésoporosité. La température de calcination dépend du matériau préparé . Un monolithe selon la présente invention est constitué par un matériau inorganique et il présente des macropores qui ont une forme sphérique ou polyédrique et dont la dimension est comprise entre 10 μm et 600 μm. Le matériau inorganique peut être un oxyde, un phosphate, un phosphonate ou un carbonate. Comme exemples d'oxyde, on peut citer la silice, les alumines α, β, ou γ, l'oxyde de titane, l'oxyde de zir- conium, l'oxyde de thorium, l'oxyde de niobium, l'oxyde de tantale, l'oxyde de vanadium, l'oxyde de tungstène, l'oxyde de cérium, l'oxyde d'étain, l'oxyde de thallium, l'oxyde de bore. Comme exemples de phosphate et de phosphonate, on peut citer les phosphates et les phosphonates de métaux tétra- valents tels que notamment le zirconium, l'étain, le titane et le cérium, ainsi que les phosphates de calcium (par exem-ple_.les. _.hy.dr_oxy-apatites.)..... Comme exemp1es_de σarbonate , on peut citer les carbonates de calcium (par exemple la nacre) . Les monolithes constitués par de la silice, par de l'oxyde de titane ou par V205 sont particulièrement intéressants. Le précurseur du matériau inorganique peut être un précurseur moléculaire. Dans ce cas, le procédé de préparation du monolithe comprend de préférence une étape intermédiaire, au cours de laquelle la mousse liquide/air formée lors de la 1 étape est congelée puis lyophilisée, avant l'étape de calcination. Le précurseur du matériau inorganique peut également être sous forme d'une suspension aqueuse de nanoparticules dudit matériau. Dans ce cas, l'étape intermédiaire de congélation/lyophilisation n'est pas nécessaire, mais le milieu réactionnel contient un agent floculant lors de la première étape. Pour préparer un monolithe solide constitué par un oxyde d'un élément M, on peut utiliser un précurseur moléculaire choisi parmi les alcoxydes, les halogénures, les oxy- halogénures et les oxydes mixtes. Dans ce cas, l'étape de congélation/lyophilisation est indispensable. Les précurseurs du type alcoxyde répondent à la formule MR'n(0R)m-n dans laquelle M représente un centre métallique ayant la valence m, O≤n≤m, R' représente un radical alkyle ayant de 1 à 5 atomes de carbone, R représente un radical alkyle ou aryle portant éventuellement un ou plusieurs groupes fonctionnels. A titre d'exemple, on peut citer Si(OR)4, Ti(0R)4, Zr(0R)4, Th(0R)4, Nb(OR)5, Ta(0R)5, A1(0R)3, W(OR)6. On peut également citer les alcoxydes de vanadate VO (OR) 3. Les alcoxydes dans lesquels R est un méthyle ou un éthyle sont particulièrement préférés . Parmi les précurseurs de type halogénure et du type oxyhalogënure, on peut citer SiCl4, TiCl4 ou SnCl4, et ZrOCl2.2H20. Le metavanadate de sodium est un exemple d'oxyde mixte utilisable comme précurseur moléculaire. Lorsque l'on utilise un précurseur moléculaire tel que décrit ci-dessus, l'oxyde se forme par une réaction sol-gel en -deux-- étapes.. _La première. .étap.e_. est une._ hydrolyse du précurseur par l'eau, au cours de laquelle un groupe hydroxy se lie à un atome M. Le schéma réactionnel suivant illustre le cas où le précurseur est un alcoxyde Si : Si (OR) 4 + H20 <→ HO-Si(OR)3 + ROH La deuxième étape est une condensation entre des molécules totalement ou partiellement hydrolysees selon le schéma réactionnel suivant : n Si (OH) 4 < HO[Si(OH)2-0]n.1-Si(OH)3 + (n-1) H20 Lorsque la condensation commence, l'hydrolyse n'est pas terminée . Or 1 ' hydrolyse produit un alcool ROH qui est un poison pour la formation des mousses. Il est donc préférable de laisser la solution aqueuse de précurseur au repos avant d'introduire les bulles de gaz inerte, afin que le précurseur subisse une hydrolyse partielle et que l'alcool formé soit au moins partiellement évacué. Les phénomènes sont analogues lorsque l'on utilise un précurseur moléculaire autre qu'un alcoxyde ou un précurseur moléculaire d'un élément M autre que Si . Pour obtenir un monolithe selon l'invention constitué par un carbonate du type nacre, on peut utiliser comme précurseur moléculaire le chlorure de calcium et le carbonate de sodium. Pour les monolithes d'hydroxyapatites, on peut utiliser comme précurseur moléculaire le chlorure de calcium et 1 'hydrogênophosphate de sodium NaH2P04. Lorsque le précurseur du matériau inorganique est une solution aqueuse de nanoparticules dudit matériau inorganique, le milieu réactionnel contient en outre un agent flocu- lant qui peut être choisi par exemple parmi A1C13, CaCl2, MgCl2 et LaN03. Ce mode de mise en œuvre du procédé de l'invention est particulièrement utile pour la préparation de monolithes de mousse solide de divers oxydes tels que l'oxyde de silice, l'oxyde d'aluminium, l'oxyde de titane, l'oxy- de de cérium, l'oxyde de zirconium, l'oxyde d'étain, l'oxyde de thallium, l'oxyde de tellure, l'oxyde de bore, l'oxyde de niobium, et les alumines, et pour la préparation de monolithes de mousse solide de phosphates ou de phosphonates de métaux. tetravalents, .tels .que le phosphate pu le_ phosphonate de zirconium, le phosphate ou le phosphonate d'étain, le phosphate ou le phosphonate de titane ou le phosphate ou le phosphonate de cérium, ou pour la préparation de monolithes de mousse solide de nacre ou d'hydroxyapatite. Dans tous les modes de mise en œuvre du procédé de pré- paration à partir d'un précurseur moléculaire, la cinétique de la réaction augmente avec 1 ' acidité ou la basicité du milieu. Lorsque l'agent tensioactif est du type cationique ou non ionique, le pH du milieu doit être acide et de préférence inférieur à 1. Comme exemple de tensioactif cationi- que, on peut citer le bromure de tétradécyltriméthylammonium (TTAB) , le bromure d'hexadécyltriméthylammonium (CTAB) , le bromure de décyltriméthylammonium (DTAB) . Comme exemple de tensioactif non ionique, on peut citer les tensioactifs commercialisés sous les dénominations Pluronic®, Tergitol® ou Brij®. Le pH acide de la solution peut être obtenu par addition de la quantité appropriée d'un acide minéral, par exemple HC1, H2S04 ou HN03. Lorsque le milieu réactionnel contient un agent tensioactif anionique, le pH du milieu est basique, de préférence supérieur à 10. Comme exemple de tensioactif anionique, on peut citer le dodécylsulfate de sodium (SDS) , le dëcylbenzènesulfonate de sodium (SDBS) et le dioctylsulfosuccinate de sodium (AOT) . Le pH basique de la solution peut être obtenu par addition de la quantité appropriée de NaOH ou de NH3. Le procédé selon l'invention présente de nombreux avantages. L'utilisation d'un verre fritte permet de régler la longueur L des bords de Plateau et le diamètre Φ des macropores, par le choix de la porosité du verre fritte, une augmentation de la dimension des pores du fritte provoquant une augmentation de L et de Φ. Le choix du rapport volumique liquide/mousse dans la mousse liquide en formation permet d'ajuster la forme des macropores, c'est à dire de prévoir la longueur L, l'épaisseur a et la courbure des bordures de Plateau. La calcination finale élimine le tensioactif (ce qui libère éventuellement des mésopores) et provoque un f-rittage qui densifie- le - matériau— La- -taille globale des. monolithes de mousse inorganique obtenus par . le procédé de la présente invention peut aller au-delà du décimètre et du mètre sans difficulté majeure. En outre, la mise en forme aux grandes échelles des objets formés (colonnes, plaques, films etc.) peut être effectuée avec une très grande homogénéité du matériau, contrairement au procédé Bagshaw de l'art antérieur. Lorsque le précurseur utilisé dans l'étape de production de mousse liquide/gaz est un précurseur de silice, le procédé de l'invention permet d'obtenir un monolithe de mousse solide d'un matériau inorganique qui présente non seulement une macroporosité, mais aussi une microporosité et une mésoporositë . Les micropores, qui sont inhérents à la connectivité statistique des polyèdres de base constitutifs du squelette de silice, ont une dimension inférieure ou égale à 12 Â. La mésoporosité est formée de pores ayant un diamètre moyen entre 20 Â et 40 Â, obtenus par élimination du tensioactif lors de la calcination. La mise en œuvre du procédé proposé pour la préparation de silice avec un débit d'arrosage entre 0,20 et 0,30 g/s donne des macropores substantiellement sphériques. Le caractère sphérique des macropores s ' estompe lorsque le débit d'arrosage diminue. La forme générale des macropores du matériau avant calcination est maintenue après calcination. La calcination a cependant pour effet de diminuer l'épaisseur et la longueur des bords de Plateau, ce qui a pour résultat d'augmenter le caractère polyédrique des macropores et de diminuer la dimension des pores. La température de calcination est avantageusement comprise entre 600°C et 900°C. Lorsque le précurseur utilisé dans l'étape de produc- tion de la mousse liquide/gaz est un précurseur d'oxyde de titane, le procédé de l'invention permet d'obtenir un monolithe d'oxyde de titane ayant des pores dont la diamètre est dans le domaine des macropores, et dont la forme sphérique ou- polyédrique peut être prédéterminée- -Comme pour, les mono- lithes de silice, le diamètre moyen des macropores est entre 10 μm et 600 μm. La mise en œuvre du procédé proposé pour la préparation d'oxyde de titane avec un débit d'arrosage entre 0,15 et 0,20 g/s donne des macropores substantiellement sphériques. Le caractère sphérique des macropores s'estompe lorsque le débit d'arrosage diminue. La température choisie pour la calcination permet de prédéterminer la structure cristalline de 1 ' oxyde de titane du monolithe préparé. Aux températures inférieures à 500°C, l'oxyde de titane est sous forme amorphe et il contient éventuellement un résidu de composé organique. Au delà de 500°C, on obtient un mélange de phase anatase et de phase rutile, le matériau s 'enrichissant en rutile à mesure que la température de calcination augmente. A 900°C, l'oxyde de titane est totalement sous forme rutile. Le choix de l'agent tensioactif permet d'ajuster certaines propriétés du monolithe de l'oxyde de titane obtenu. Par exemple, lorsque l'agent tensioactif est le SDS, la texture des bords de Plateau de l'oxyde de titane est soit fi- brillaire, soit en plaquettes. Mais la calcination ne permet pas d'éliminer complètement le SDS même s'il elle est effectuée à une température de 900°C. Lorsque l'agent tensioactif est le TTAB, une température de calcination de 500°C suffit à 1 ' éliminer totalement . Lorsque le précurseur utilisé dans l'étape de production de la mousse liquide/gaz est un précurseur d'oxyde de vanadium, le procédé de l'invention permet d'obtenir un monolithe de V205 ayant des macropores dont la diamètre est entre 10 μm et 800 μm, et dont la forme sphérique ou polyédrique peut être prédéterminée . La mise en œuvre du procédé proposé pour la préparation de V205 avec un débit d'arrosage entre 0,15 et 0,20 g/s donne des macropores substantielle- ment sphériques. Une diminution du débit d'arrosage augmente le caractère polyédrique des macropores . Un monolithe de matériau inorganique selon 1 ' invention peut être utilisé notamment dans le domaine de 1 ' isolation acoustique, de 1 ' isolation—thermique, du. traitement —des. eaux, comme renfort de pneumatiques, comme agent texturant, comme support de catalyseur, ou comme tissu osseux de synthèse . La présente invention est illustrée par les exemples de préparation de mousses solides qui sont décrits ci-après, auxquels elle n'est cependant pas limitée. Les préparations ont été effectuées dans un dispositif tel que représenté sur la figure 1. Le dispositif comprend une colonne de Plexiglas ® poli 1, qui a une section carrée, qui comprend à sa base une partie amovible 2 et qui est ouverte à sa partie supérieure . La partie amovible 2 contient des bulleurs, à savoir des disques de verre fritte, et elle est munie d'une arrivée de gaz 3 et d'un déversoir 4. Une pompe péristaltique 5 permet d'amener du liquide contenu dans un réservoir 6 jusqu'à la partie supérieure ouverte de la colonne 1. Suivant les exemples, la porosité des disques de verre fritte est de 5 μm, 25 μm et 40 μm. Tel que représenté schematiquement sur la figure 2, deux parois verticales parallèles 7 et 8 de la colonne 1 sont munies d'électrodes en laiton nickelé. Chacune des parois 7 et 8 comporte à sa base une électrode de référence, respectivement 9 et 10. La paroi 7 porte des électrodes de travail 111, 112, ..., 111. La paroi 8 porte des contre- électrodes 121, 122, ... 12j . Les électrodes de travail et les contre-électrodes sont reliées à un dispositif de contrôle comprenant un multiplexeur 13, un impédance-mètre 14, et un système informatique de traitement des données 15. Dans l'installation utilisée, la colonne 1 a une hauteur de 50 cm et une section carrée de 2,5 cm x 2,5 cm. La face 7 porte 25 électrodes rectangulaires de 1,5 cm x 2 cm. La face 8 porte 6 contre-électrodes rectangulaires de 5 cm x 2 cm. La pompe péristaltique 5 est une pompe Gilson® reliée à la colonne par des tuyaux ayant un diamètre intérieur adapté au débit souhaité . Les électrodes placées sur les faces internes de la colonne permettent de mesurer par conductimétrie la fraction liquide, de.. la mousse .contenue la.__αo.lonne 1... _En. cours ...de. fonctionnement, les électrodes de référence 9 et 10 sont immergées dans la solution et servent de mesure de la conductivité de référence. Les électrodes de travail 11, 111, 112, ..., Il1 et les contre-électrodes 121, 122, ... 12j sont en contact avec de la mousse. La différence de potentiel entre les électrodes est envoyée vers le multiplexeur, puis transféré vers le dispositif informatique sous la forme d'une impédance et d'une phase. La conductimétrie peut être utilisée pour déterminer la fraction liquide de la mousse, car la différence de conduc- tivité entre l'eau et l'air est suffisamment importante pour relier la mesure à une fraction liquide volumique de la mousse. Le principe est d'imposer une tension sinusoïdale et de mesurer le courant qui passe dans l'échantillon. Si l'on écrit la tension en notation complexe ϋ(γ) = U.el2πγt (γ étant la fréquence et U l'amplitude du signal), alors le courant mesuré aura la même fréquence et s'exprimera comme : I (y) = I(γ) ,ei2π(γt~φ(Y)), cp(γ) étant la différence de phase entre la tension et l'intensité qui a priori dépend de la fréquence et I (γ) étant l'amplitude de l'intensité qui elle aussi dépend de la fréquence. Ainsi l'impédance que l'on mesure s'écrit Z(γ) = U(γ)/ I (γ) = Z (y) .e i2π(p(γ) , Z (γ) étant le module de l'impédance et cp(γ) étant la phase de l'impédance. Connaissant l'impédance de la solution utilisée pour faire la mousse (ladite impédance servant de référence pour calculer la conductivité relative de la mousse) et l'impédance de la mousse, on en déduit la conductivité relative de la mousse par la formule K = f . [Zsolution/Zmousse] , f étant un facteur correctif vis à vis des différences de constante de cellule des différentes électrodes considérées. La conductivité de la mousse est reliée dans un premier temps au rapport a/L2 (a désignant le diamètre d'un bord de Plateau et L sa longueur) par l'expression (a/L2)1 2=21/2. [ [(3,17.K) + (2) 1 2. K] 1/ -3 , 17.K] , puis à la fraction liquide (ε) par l'expression ε ≈ a/L2 (1+3,98. (a/L2) 1 2) .
Exemple 1 Préparation de monolithes de silice On a préparé plusieurs échantillons de monolithes de silice selon le mode opératoire général suivant. A une solution aqueuse de tensioactif amenée au pH souhaité par addition de HC1, on a ajouté le précurseur de silice, puis on a introduit la solution résultante dans le bas de la colonne. Après un temps de repos TR, on a introduit de l'azote sous une pression de 1 bar saturé en perfluorohexane, dans la solution qui est dans la colonne 1 par les disques de verre fritte (diamètre de pores : Φ) situés dans la partie inférieure amovible 2. Pendant toute la durée du procédé, on a récupéré par le déversoir 4 le liquide de drainage qui a coulé vers le bas . Lorsque la mousse formée par l'introduction de l'azote a rempli toute la colonne, suivant les cas, on a renvoyé dans le haut de la colonne par 1 ' intermédiaire de la pompe 5 pendant une durée TA avec un débit D, le liquide récupéré dans le déversoir pour arroser la mousse formée et maintenir une fraction liquide homogène. Dans certains cas, l'arrosage a commencé dès que la mousse formée occupe 1 ' intégralité de la colonne . Dans d'autre cas, l'arrosage a débuté après un certain temps. Ensuite, la mousse a été récupérée, congelée, lyophilisée, puis calcinée suivant le cycle de température prédéfini ci-dessous :
Figure imgf000014_0001
Tambiante Tambiante
Les réactifs utilisés dans les exemples décrits ci- après sont les suivants :
• Tëtraéthoxysilane [Fluka réf . 8650] (TEOS)
• Bromure de tétradécyltriméthyla monium [Fluka réf 87210] (TTAB) , solution aqueuse à 10% en poids
• Acide chlorhydrique ( solution aqueuse à 37%) [Prolabo] • Perf luorohexane commercialisé par la société Acros Organics sous la dénomination FC72
• Air
• Azote
• Sodium dodecyl sulfate (SDS) , Fluka Biochemica, ref 71727 • Ludox® HS-40 colloidal silica, Aldrich chemical Company, ref 42,081-6. Le mode opératoire décrit ci-dessus a été mis en œuvre pour la préparation de divers échantillons dans les conditions particulières suivantes.
Figure imgf000015_0001
* pas d'arrosage au début de l'étape de bullage, puis arrosage # pas d'arrosage Les structures obtenues après calcination sont fragiles: Elles peuvent être" comprimées pour - obtenir des filaments de silice anisotrope. Les micrographies par MEB ont été effectuées pour divers échantillons. Elles sont représentées sur les figures 3 à 16 comme suit :
Figure imgf000015_0002
Sur ces figures, les micrographies de gauche représentent la mousse liquide métastable durant sa formation au sein de la colonne, les micrographies au centre représentent les mousses correspondantes après lyophilisation et avant calcination, les micrographies à droite représentent les mousses correspondantes après lyophilisation et calcination. Les micrographies confirment que la macrostructure des mousses obtenues par le procédé de l'invention est homogène et régulière, tant sur le plan de la répartition des pores que sur le plan de la taille. La taille de la macroporosité est déterminée par le diamètre de pores du fritte utilisé pour l'introduction du gaz inerte au bas de colonne, la taille de macropores constatés sur les divers échantillons préparés se situant entre 5 μm et 210 μm. L'échantillon M18 montre que la combinaison d'un fort débit avec un fritte ayant une faible dimension de pore entraîne un départ de la minéralisation des films qui forment la paroi des bulles de gaz et qui, lorsqu'ils se rejoignent trois par trois, forment les bords de Plateau. Dans le cas général, on ne minéralisé que les bords de Plateau car ces régions concentre une grande quantité de minéral en croissance.
Exemple 2
Effet du diamètre de pores du fritte et du débit d'arrosage sur l'épaisseur et la longueur des bords de Plateau Divers échantillons ont été préparés dans les conditions de l'échantillon M12 de l'exemple 1, mais en faisant varier d'une part le diamètre de pores du fritte et d'autre partie débit d'arrosage. La fig. 17 représente à gauche l'évolution de la longueur de Plateau L en fonction de la porosité P du fritte
(en μm) et à droite, l'évolution de l'épaisseur de Plateau L en fonction du débit d'arrosage D (en g/s) . Il apparaît ainsi que que la longuer L des bords de Plateau, et par conséquent le diamètre des macropores augmente lorsque le diamètre des pores du fritte augmente, et que l'épaisseur des bords de Plateau augmente lorsque l'on augmente le débit de liquide introduit par le haut de la colonne durant la formation de la mousse.
Exemple 3 Détermination de la mésoporosité Elle a été déterminée pour les échantillons Ml et M5 de l'exemple 1 par micrographie électronique en transition (MET) et par diffraction des RX aux petits angles. Les figures 18 et 19 représentent les micrographies MET pour l'échantillon Ml respectivement avant et après calcination. La figure 20 représente le diagramme de diffraction des RX pour l'échantillon Ml après calcination
(courbe 1) et avant calcination (courbe 2) . Les figures 21 et 22 représentent les micrographies MET pour l'échantillon M5 respectivement avant et après calcination. La figure 23 représente le diagramme de diffraction des RX pour l'échantillon M5 après calcination (courbe 1) et avant calcination (courbe 2) . La pas caractéristique relatif à cette mésoporosité correspond à la distance inter vermicules et elle est de l'ordre de 40 À. Les diffractogrammes RX montrent que la calcination a un effet de densification sur la mësostructure puisque le pas caractéristique diminue en moyenne de 13% lors de la calcination, ce qui se traduit par un déplacement vers la droite du pic associé au pas caractéristique. La calcination a en outre pour effet d'éliminer les composés parasites que l'on peut attribuer aux cristaux de TTAB résiduels, ce qui se traduit par la disparition des pics situés à q≈0,26 et q≈0,53. Exemple 4
Préparation d'une mousse inorganique par floculation de nanoparticules de silice. A 25,780 g d'une solution aqueuse de TTAB à 10% en poids, on a ajouté 2,864 g de A1C13, puis 1,301 g d'un sol de particules de silice (LUDOX®) et 24,724 g d'une solution aqueuse de SDS à 10% en poids, et on a introduit ce mélange dans le bas d'une colonne. Après trois minutes d'agitation, on a introduit de l'azote sous une pression de 1 bar à travers un fritte ayant une porosité de 100 μm jusqu'à ce que la mousse formée occupe toute le volume de la colonne. Ensuite, on a arrosé par une solution analogue à la solution initiale pendant 10 min avec un débit de 0,37 g/s pour maintenir la fraction liquide à une valeur constante. La mousse ainsi obtenue est séchée à l'air. Après une calcina- tion dans des conditions identiques à celles mises en œuvre dans les exemples précédents, on a obtenu un monolithe dont une micrographie MEB est représentée sur la figure 24. Le repère représente 1300 nm. Le procédé ci-dessus a été reproduit, mais en séchant la mousse obtenue, par lyophilisation à froid. Un produit similaire a été obtenu.
Exemple 5
Préparation de monolithes d'oxyde de titane Divers échantillons ont été préparés à l'aide d'un dispositif analogue à celui utilisé dans l'exemple 1. A une solution aqueuse de tensioactif, on a ajouté de l'ethoxyde de titane, puis la quantité requise de HCl pour amener le pH à 1. Ensuite, on a soumis la solution à une agitation énergique pendant 30 min pour l'homogénéiser et pour évaporer l'alcool produit par l'hydrolyse de l'ethoxyde de titane, puis on a introduit la solution résultante dans le bas de la colonne du dispositif. Après un temps de repos TR, on a introduit de l'air saturé en perfluorohexane sous une pression de 1 bar, dans la solution qui est dans ladite colonne, par les disques de verre fritte (diamètre de pores : P) situés dans la partie inférieure amovible 2. Pendant toute la durée du procédé, on a récupéré par le déversoir 4 le liquide de drainage qui a coulé vers le bas . Lorsque la mousse formée par l'introduction d'azote saturé en perfluorohexane a rempli toute la colonne, suivant les cas, on a renvoyé dans le haut de la colonne par 1 ' intermédiaire de la pompe 5 pendant une durée TA avec un débit D, le liquide récupéré dans le déversoir pour arroser la mousse formée et maintenir une fraction liquide homogène. Ensuite, la mousse a été récupérée et mouillée goutte à goutte par une solution aqueuse d'ammoniac à 20% en poids, à raison de 0,5 ml de solution pour 100 ml de mousse obtenue avec un débit d'arrosage D de 0,024 g/s ou à raison de 2 ml de solution pour 100 ml de mousse obtenue avec un débit d'arrosage D de 0,160 g/s. La mousse ainsi récupérée a été congelée pendant une nuit, puis lyophilisée pendant 5 h. Une calcination a ensuite été effectuée pour éliminer les constituants organiques, selon le cycle de température suivant : chauffage à 2°C/min jusqu'à 200°C, maintien à 200°C pendant 2 heures, chauffage à 2°C/min jusqu'à 500°C (pour obtenir la forme anatase) ou jusqu'à 900°C (pour obtenir la formule rutile) , puis refroidissement libre jusqu'à la température ambiante. Les réactifs utilisés dans les exemples décrits ci- après sont les suivants : • Ethoxyde de titane
• Bromure de tétradécyltriméthylammonium [Fluka réf 87210] (TTAB) , solution aqueuse à 10% en poids
• Acide chlorhydrique (solution aqueuse à 37%) [Prolabo]
• Perfluorohexane • Air
• Azote
• Sodium dodecyl sulfate (SDS), Fluka Biochemica, ref 71727. Le mode opératoire décrit ci-dessus a été mis en œuvre pour- la préparation, -de- -divers-, échantillons dans les. conditions particulières indiquées dans le tableau ci- dessous. La concentration de chacun des réactifs dans le milieu réactionnel est indiquée en pourcentage en poids par rapport au poids total d'eau. 19
Figure imgf000020_0001
Les échantillons Til et Ti2 ont été préparés dans les mêmes conditions, à l'exception de l'arrosage. Les figures 25a et 25b représentent des micrographies MEB (Microscopie Electronique à Balayage) avant calcination (fig. a) , et après calcination (fig. b) pour Til. Les figures 25c et 25d représentent des micrographies MEB (Microscopie Electronique à Balayage) avant calcination (fig. a) , et après calcination (fig. b) pour Ti2. Les courbes de la figure 25e représentent l'évolution de l'épaisseur (a) des bords de Plateau en μm, en fonction du débit d'arrosage D (g/s) (repère triangle : avant calcination ; repère cercle : après calcination) . Les échantillons Ti3 et Ti4 ont été préparés dans les mêmes conditions, à l'exception du diamètre des pores du fritte. Les figures 26a et 26b représentent des micrographies MEB (Microscopie Electronique à Balayage) avant calcination (fig. a) , et après calcination (fig. b) pour Ti3. Les figures 26c et 26d représentent des micrographies MEB (Microscopie Electronique à Balayage) avant calcination (fig. a), et après calcination (fig. b) pour Ti4. Les courbes de la figure 26e représentent l'évolution de la longueur L des bords de Plateau (en μm) en fonction du diamètre de pores P (en μm) du fritte (repère triangle : avant calcination ; repère cercle : après calcination) . Les échantillons Ti5 et Ti6 ont été préparés dans les mêmes conditions, à l'exception du temps de repos TR avant le bullage. Les figures 27a et 27b représentent des micrographies MEB (Microscopie Electronique à Balayage) avant calcination (fig. a) , et après calcination (fig. b) pour Ti5. Les figures 27c et 27d représentent des micrographies MEB (Microscopie Electronique à Balayage) avant calcination (fig. a), et après calcination (fig. b) pour Ti6. Ces figures confirment l'influence du débit d'arrosage et de la dimension des pores du fritte sur la dimension et la forme des macropores du monolithe obtenu. Exemple 6 Influence de la température de calcination Un échantillon T7 a été préparé dans des conditions analogues à celles de l'échantillon T6, avec un traitement thermique jusqu'à une température de 900°C. La structure cristallographique de l'échantillon a été déterminée par diffraction des rayons X à divers stades de calcination. Les résultats sont montrés par les courbes de la figure 28. La concordance entre les températures de calcination et les courbes est comme suit :
Figure imgf000022_0001
Il apparaît que, pour une température de calcination inférieure à 500°C, le diagramme montre essentiellement les raies caractéristiques d'une poudre de TTAB. A partir de 500°C, le SDS a disparu et l'oxyde de titane obtenu est amorphe . Lorsque la température de calcination augmente au- delà de 500°C, on obtient de 1 'anatase. A une température de l'ordre de 900°C, l'oxyde de titane est sous la forme rutile. Aux températures intermédiaires, on obtient un mélange de phase anatase et de phase rutile. La détermination de la structure du matériau obtenu dans les conditions analogues à celle de l'échantillon T5 dans lequel l'agent tensioactif est le SDS donne le même résultat en ce qui concerne la structure cristallographique de l'oxyde de titane, mais les diagrammes de diffraction de RX montre la présence de résidus carbonisés de SDS
Exemple 7 Détermination de la surface spécifique de divers échantillons de TiQ2. Divers échantillons ont été préparés selon le mode opératoire général de l'exemple 1, en utilisant une température de calcination de 520°C et un fritte ayant des pores de 70 μm. Pour chacun des échantillons, la surface spécifique interne a été déterminée par des mesures BET d'adsorption/désorption d'azote et par des mesures BJH de désorption. Les conditions particulières de préparation des échantillons, ainsi que les surfaces spécifiques obtenues sont données dans le tableau suivant :
Figure imgf000023_0001
Les figures 29, 30, 31 et 32 se rapportent respectivement aux échantillons Til3, Til4, Til5 et Til6. La partie a) de chacune des figures représente les iso- thermes d'adsorption (courbes o o o o) et les isothermes de désorption ( + + + + ) . La pression relative P/P0 est donnée en abscisse, le volume adsorbé STP (en cm3/g) est donné en ordonnée . La partie b) de chacune des figures représente le volume de pore différentiel VDP (en cm3/g) en ordonnée, en fonction du diamètre de pore Φ (en Â) du matériau indiqué en ordonnée . Ces figures montrent l'existence d'une mësoporosité résiduelle. Exemple 8 Préparation du précurseur de V2O5 On a utilisé une résine ëchangeuse de protons Dowex ® 50 X2-100 et du metavanadate de sodium à 90% commercialisés par la société Aldrich. Une solution de metavanadate de sodium à 0,1 mol/L a été passée à travers la résine échangeuse de protons. L'évolution de l'acidité du metavanadate se traduit par une diminution du pH du milieu, qui passe de 7 à 2,6, qui est la valeur optimale pour une polymérisation du précurseur. Après quelques heures, on obtient un gel rouge foncé contenant des rubans de V205. La proportion massique de vanadium dans le gel est déterminée par préparation un extrait sec. Les propriétés physiques des échantillons de gel de V205 sont stables dans le temps. Préparation du monolithe de V205 Plusieurs échantillons ont été préparés de la manière suivante. On a utilisé le précurseur obtenu selon le mode opératoire ci-dessus, du Tergitol type NP-100 commercialisé par la société Sigma, et du perfluorohexane commercialisé par la société Acros Organics sous la dénomination FC72. On a préparé une solution de précurseur en introduisant le gel de V205 dans une solution aqueuse de tensioactif Tergitol à 10%, la quantité de V205 étant telle que la concentration dans la solution finale soit de 65% en poids. Le mélange a été homogénéisé par une agitation énergique pendant 30 min, puis introduite dans un dispositif analogue à celui utilisé dans l'exemple 1. Ensuite, on a introduit dans la solution, de l'air saturé en perfluorohexane sous une pression de 1 bar, par les disques de verre fritte (diamètre de pores : P) . Pour certains échantillons, on a procédé à un arrosage de la même manière que dans les exemples précédents, avec un débit Q (g/s) . La mousse ainsi récupérée a été congelée pendant une nuit à -80°C, puis lyophilisée pendant 5 h. Une calcination a ensuite été ef_fectu.ee pour éliminer les constituants orga- niques, selon le cycle de température suivant : chauffage à 2°C/min jusqu'à 200°C, maintien à 200°C pendant 2 heures, chauffage à 2°C/min jusqu'à 600°C, puis refroidissement libre jusqu'à la température ambiante. La figure 33e représente l'évolution de la largeur a des bords de Plateau en fonction du débit d'arrosage Q (g/sec) , pour un diamètre de pores de fritte de 70 μm. La figure 34e représente l'évolution de la longueur L des bords de Plateau en fonction du diamètre de pores du fritte, pour un débit d'arrosage nul. Des micrographies MEB de certains échantillons ont été réalisées. Les conditions de préparation propres à chacun de ces échantillons sont données dans le tableau ci-dessous. P représente le diamètre de pores (en μm) du fritte utilisé, Q représente le débit d'arrosage (en g/sec), MEB(l) indique le n° de la figure représentant la vue MEB avant calcination, et MEB (2) indique le n° de la figure représentant la vue MEB après calcination à 600°C.
Figure imgf000025_0001
Analyse par diffraction des rayons X Les échantillons ont été soumis à une analyse par diffraction des rayons X, à l'aide d'un dispositif X'ert MPD commercialisé par la société Philips, avec une radiation CuKα et un courant moyen de 50 mA. Une fraction de chaque échantillon a été mise sous forme de poudre, placée sur une grille de cuivre ayant une membrane Formvar ®. La figure 35 représente les diagrammes de diffraction du Tergitol à l'état liquide (courbe a), de la mousse V205 contenant du Tergitol (courbe b) , de la mousse V205-Tergitol après un lavage de 48 h à l'aide de THF (courbe c) , de la mousse de V205 après un traitement thermique à 600°C (courbe d) , et de V205 commercial (courbe e) . Il apparaît ainsi que l'agent tensioactif a complètement disparu après la calcination et que le produit final présente les raies caractéristiques de V205, avec des traces de NaV60ls.

Claims

Revendications 1. Procédé pour la préparation d'un monolithe de mousse solide de matériau inorganique selon la revendication
1, comprenant une étape de préparation d'une mousse liquide/gaz et une étape de calcination, caractérisé en ce que, au cours de l'étape de préparation de la mousse : on introduit des bulles de gaz inerte saturé en solvant organique non miscible à l'eau dans une solution aqueuse contenant un précurseur du matériau inorganique et un tensioactif, l'introduction étant effectuée à travers un verre fritte au-dessus duquel la solution de précurseur est placée, on arrose éventuellement par le dessus la mousse liquide/gaz avec un débit constant de solution aqueuse de précurseur, en ajustant le débit d'arrosage en fonction des résultats souhaités, des pores polyédriques étant obtenus avec un débit d'arrosage faible voire nul, une augmentation du débit provoquant une diminution du caractère polyédrique pour tendre vers une forme sphérique .
2. Procédé selon la revendication 1, caractérisé en ce que le gaz inerte est de 1 ' air comprimé ou de 1 ' azote sous pression.
3. Procédé selon la revendication 1, caractérisé en ce que le solvant organique non miscible à l'eau est le perfluorohexane .
4. Procédé selon la revendication 1, caractérisé en ce que le fritte a un diamètre de pores entre 50 μm et 250 μm.
5. Procédé selon la revendication 1, caractérisé en ce que le précurseur est un précurseur moléculaire, et en ce que la mousse liquide/air obtenue au cours de la première étape est soumise à une congélation, suivie d'une lyophilisation, avant l'étape de calcination.
6. Procédé selon la revendication 5 pour la préparation d'un monolithe d'oxyde, caractérisé en ce que le précurseur est un précurseur moléculaire choisi parmi les alcoxydes, les halogénures, les oxyhalogénures et les oxydes mixtes, et en ce qu'une étape de congélation/ lyophilisation est effectuée avant l'étape de calcination.
7. Procédé selon la revendication 6, caractérisé en ce que le précurseur est un alcoxyde qui répond à la formule MR'n(OR)m.n dans laquelle M représente un centre métallique ayant la valence m, O≤n≤ , R' représente un radical alkyle ayant de 1 à 5 atomes de carbone, R représente un radical alkyle ou aryle portant éventuellement un ou plusieurs groupes fonctionnels.
8. Procédé selon la revendication 7, caractérisé en ce que le précurseur est un alcoxyde choisi parmi Si(OR)4, Ti(OR)4, Zr(OR)4, Th(OR)4, Nb(OR)5, Ta(OR)5, Al(OR)3, W(OR)6 VO(OR)3.
9. Procédé selon la revendication 6, caractérisé en ce que le précurseur est le metavanadate de sodium ou un halogénure choisi parmi SiCl4, TiCl4, SnCl4 et ZrOCl2. 2H20.
10. Procédé selon la revendication 5 pour la préparation d'un monolithe de mousse solide de carbonate, caractérisé en ce que le précurseur est un précurseur moléculaire constitué par le chlorure de calcium et le carbonate de sodium.
11. Procédé selon la revendication 5 pour la préparation d'un monolithe de mousse solide d' hydroxy- apatite, caractérisé en ce que le précurseur est un précurseur moléculaire constitué par le chlorure de calcium et 1 ' hydrogénophosphate de sodium.
12. Procédé selon la revendication 1, caractérisé en ce que l'agent tensioactif est du type cationique ou non ionique, et le pH du milieu est acide.
13. Procédé selon la revendication 1, caractérisé en ce que l'agent tensioactif est du type anionique, et le pH du milieu est basique.
14. Procédé selon la revendication 1, caractérisé en ce que le précurseur est constitué par des nanoparticules du matériau inorganique souhaité pour le monolithe solide, sous forme de suspension aqueuse et en ce que le milieu réactionnel contient en outre un agent floculant.
15. Procédé selon la revendication 14, caractérisé en ce que l'agent floculant est choisi parmi A1C13, CaCl2, MgCl2 et LaN03.
16. Procédé selon la revendication 14, caractérisé en ce que les nanoparticules sont choisies parmi les nanoparticules d'oxyde de silice, d'oxyde d'aluminium, d'oxyde de titane, d'oxyde de cérium, d'oxyde de zirconium, d'oxyde d'étain, d'oxyde de thallium, d'oxyde de tellure, d'oxyde de bore, d'oxyde de niobium, d'alumine, de phosphates ou de phosphonates de métaux tetravalents, de nacre ou d'hydroxyapatite.
17. Procédé selon la revendication 1, caractérisé en ce que le précurseur du matériau inorganique est un précurseur de silice et en ce que la température de calcination est comprise entre 600°C et 900°C.
18. Procédé selon la revendication 17, caractérisé en ce que le débit d'arrosage en compris entre 0,20 et 0,30 g/L.
19. Procédé selon la revendication 1, caractérisé en ce que le précurseur du matériau inorganique est un précurseur d'oxyde de titane.
20. Procédé selon la revendication 19, caractérisé en ce que la température de calcination est inférieure à 500°C.
21. Procédé selon la revendication 19, caractérisé en ce que la température de calcination est comprise entre
500°C et 900°C.
22. Procédé selon la revendication 19, caractérisé en ce que la température de calcination est supérieure ou égale à 900°C.
23. Procédé selon la revendication 1, caractérisé en ce que le précurseur du matériau inorganique est le metavanadate de sodium.
24. Procédé selon l'une des revendications 19 ou 23, caractérisé en ce que le débit d'arrosage en compris entre 0,15 et 0,20 g/L.
25. Monolithe de mousse solide d'un matériau inorganique qui présente des macropores qui ont une forme sphérique ou polyédrique et dont la dimension est comprise entre 10 μm et 600 μm.
26. Monolithe selon la revendication 25, caractérisé en ce que le matériau inorganique est un oxyde, un phospha- te, un phosphonate ou un carbonate.
27. Monolithe selon la revendication 26, caractérisé en ce que l'oxyde est choisi parmi la silice, les alumines α, β, ou γ, l'oxyde de titane, l'oxyde de zirconium, l'oxyde de thorium, l'oxyde de niobium, l'oxyde de tantale, l'oxyde de vanadium, l'oxyde de tungstène, l'oxyde de cérium, l'oxyde d'étain, l'oxyde de thallium, l'oxyde de bore.
28. Monolithe selon la revendication 26, caractérisé en ce que le phosphate et le phosphonate sont choisis parmi les phosphates et les phosphonates de métaux tetravalents et les phosphates de calcium.
29. Monolithe selon la revendication 26, caractérisé en ce que le carbonate est choisi parmi les carbonates de calcium.
30. Monolithe selon la revendication 25, caractérisé en ce qu'il est constitué par de la silice, et en ce qu'il présente en outre une microporosité et une mésoporosité.
31. Monolithe selon la revendication 25, caractérisé en ce qu'il est constitué par de l'oxyde de titane amorphe ou de l'oxyde de titane cristallisé constitué par la phase anatase, la phase rutile ou un mélange des deux phases.
32. Monolithe selon la revendication 25, caractérisé en ce qu'il est constitué par de l'oxyde de vanadium V205.
PCT/FR2004/001811 2003-07-24 2004-07-09 Procede de preparation d'un monolithe de materiau inorganique WO2005019134A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/09085 2003-07-24
FR0309085A FR2857961A1 (fr) 2003-07-24 2003-07-24 Monolithe de mousse solide inorganique, procede pour sa preparation

Publications (1)

Publication Number Publication Date
WO2005019134A1 true WO2005019134A1 (fr) 2005-03-03

Family

ID=33561076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/001811 WO2005019134A1 (fr) 2003-07-24 2004-07-09 Procede de preparation d'un monolithe de materiau inorganique

Country Status (2)

Country Link
FR (1) FR2857961A1 (fr)
WO (1) WO2005019134A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093853A1 (fr) 2011-12-23 2013-06-27 Saint-Gobain Centre De Recherches Et D'etudes Europeen Procédé pour la fabrication d'un produit mésoporeux

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927898B1 (fr) * 2008-02-27 2012-08-31 Univ Sud Toulon Var Mousse ceramique, son procede d'obtention et son utilisation comme isolant thermique
US8966782B2 (en) 2010-09-28 2015-03-03 Baxter International Inc. Optimization of nucleation and crystallization for lyophilization using gap freezing
CN103140731B (zh) 2010-09-28 2015-12-16 巴克斯特国际公司 使用间隙冷冻来优化冻干的成核和结晶
FR3037806B1 (fr) * 2015-06-23 2017-07-21 Centre Nat Rech Scient Procede de preparation de materiaux macroporeux monolithiques biocompatibles utilisables a titre de substitut osseux
CN114349485B (zh) * 2022-01-11 2023-01-10 无锡特科精细陶瓷有限公司 一种高硬度氧化铝陶瓷的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1501115A (en) * 1975-05-06 1978-02-15 Atomic Energy Authority Uk Foams
GB2129416A (en) * 1982-09-08 1984-05-16 Antiphon Ab Shaped sintered porous ceramic body
EP0360244A1 (fr) * 1988-09-20 1990-03-28 Asahi Kogaku Kogyo Kabushiki Kaisha Matériau céramique fritté poreux et procédé de sa production
WO1993004013A1 (fr) * 1991-08-12 1993-03-04 Dytech Corporation Limited Articles poreux
WO2000020353A1 (fr) * 1998-10-05 2000-04-13 Abonetics Limited Mousses de céramique
US20020114938A1 (en) * 2000-12-07 2002-08-22 Asahi Kogaku Kogyo Kabushiki Kaisha Porous sintered body of calcium phosphate-based ceramic and method for producing same
US20030052428A1 (en) * 2001-07-02 2003-03-20 Toshiba Ceramics Co., Ltd. Production method for ceramic porous material
US20030148089A1 (en) * 2000-02-14 2003-08-07 Jozef Cooymans Ceramic composite foams with high mechanical strength

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3213166A (en) * 1960-05-06 1965-10-19 Quigley Co Method of producing light weight high temperature refractory products
BE631865A (fr) * 1962-05-04
WO1996025475A1 (fr) * 1995-02-14 1996-08-22 Allied Foam Tech Corporation Composition de mousse aqueuse stable et resistante a l'eau

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1501115A (en) * 1975-05-06 1978-02-15 Atomic Energy Authority Uk Foams
GB2129416A (en) * 1982-09-08 1984-05-16 Antiphon Ab Shaped sintered porous ceramic body
EP0360244A1 (fr) * 1988-09-20 1990-03-28 Asahi Kogaku Kogyo Kabushiki Kaisha Matériau céramique fritté poreux et procédé de sa production
WO1993004013A1 (fr) * 1991-08-12 1993-03-04 Dytech Corporation Limited Articles poreux
WO2000020353A1 (fr) * 1998-10-05 2000-04-13 Abonetics Limited Mousses de céramique
US20030148089A1 (en) * 2000-02-14 2003-08-07 Jozef Cooymans Ceramic composite foams with high mechanical strength
US20020114938A1 (en) * 2000-12-07 2002-08-22 Asahi Kogaku Kogyo Kabushiki Kaisha Porous sintered body of calcium phosphate-based ceramic and method for producing same
US20030052428A1 (en) * 2001-07-02 2003-03-20 Toshiba Ceramics Co., Ltd. Production method for ceramic porous material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATTARD G S ET AL: "LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA", NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 378, 23 November 1995 (1995-11-23), pages 366 - 368, XP002067339, ISSN: 0028-0836 *
ORTEGA F S ET AL: "Alternative gelling agents for the gelcasting of ceramic foams", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER SCIENCE PUBLISHERS, BARKING, ESSEX, GB, vol. 23, no. 1, January 2003 (2003-01-01), pages 75 - 80, XP004387479, ISSN: 0955-2219 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093853A1 (fr) 2011-12-23 2013-06-27 Saint-Gobain Centre De Recherches Et D'etudes Europeen Procédé pour la fabrication d'un produit mésoporeux
FR2984882A1 (fr) * 2011-12-23 2013-06-28 Saint Gobain Ct Recherches Procede de fabrication d'un produit mesoporeux.
CN104169057A (zh) * 2011-12-23 2014-11-26 法商圣高拜欧洲实验及研究中心 用于制备中孔产品的方法

Also Published As

Publication number Publication date
FR2857961A1 (fr) 2005-01-28

Similar Documents

Publication Publication Date Title
López et al. Porosity, structural and fractal study of sol–gel TiO2–CeO2 mixed oxides
Petkovich et al. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating
US10576462B2 (en) Mesoporous materials and processes for preparation thereof
Misran et al. Nonsurfactant route of fatty alcohols decomposition for templating of mesoporous silica
Yuan et al. Hierarchically mesostructured titania materials with an unusual interior macroporous structure
Zimny et al. Synthesis and photoactivity of ordered mesoporous titania with a semicrystalline framework
JP5916867B2 (ja) キラルネマチックナノ結晶性金属酸化物
US6638885B1 (en) Lyotropic liquid crystalline L3 phase silicated nanoporous monolithic composites and their production
JP3397255B2 (ja) 無機系多孔質体の製造方法
Yusuf et al. Preparation of porous titania film by modified sol-gel method and its application to photocatalyst
WO2006052917A2 (fr) Materiaux mesoporeux de silice
CN108217661A (zh) 一种合成多级有序孔道材料的普适方法
Eiblmeier et al. Bottom-up self-assembly of amorphous core–shell–shell nanoparticles and biomimetic crystal forms in inorganic silica–carbonate systems
JP5603566B2 (ja) 球状メソポーラスカーボン及びその製造方法
WO2005019134A1 (fr) Procede de preparation d&#39;un monolithe de materiau inorganique
KR20180029909A (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
JP3829188B2 (ja) メソポーラスシリケート及びその製造方法
Almeida et al. The influence of secondary structure directing agents on the formation of mesoporous SBA-16 silicas
Han et al. Synthesis of hollow spherical silica with MCM-41 mesoporous structure
KR100488100B1 (ko) 메조다공성 전이금속 산화물 박막 및 분말, 및 이의제조방법
JP2005290032A (ja) 長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法
Assaker et al. Hydrothermal stability of ordered surfactant-templated titania
Niu et al. In situ growth of the ZIF‐8 on the polymer monolith via CO2‐in‐water HIPEs stabilized using metal oxide nanoparticles and its photocatalytic activity
JP2007246795A (ja) 多孔質シリカ被膜及び粉末(粉末前駆体を含む)形成用塗布液の製造方法
WO2004087610A2 (fr) Materiau inorganique a structure hierarchisee, et procede pour sa preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase