WO2005018081A1 - 圧電アクチュエータモジュール、モータモジュールおよび装置 - Google Patents

圧電アクチュエータモジュール、モータモジュールおよび装置 Download PDF

Info

Publication number
WO2005018081A1
WO2005018081A1 PCT/JP2004/011687 JP2004011687W WO2005018081A1 WO 2005018081 A1 WO2005018081 A1 WO 2005018081A1 JP 2004011687 W JP2004011687 W JP 2004011687W WO 2005018081 A1 WO2005018081 A1 WO 2005018081A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric actuator
main body
actuator module
housing
slider
Prior art date
Application number
PCT/JP2004/011687
Other languages
English (en)
French (fr)
Inventor
Makoto Zakoji
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP2005513185A priority Critical patent/JPWO2005018081A1/ja
Publication of WO2005018081A1 publication Critical patent/WO2005018081A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0055Supports for driving or driven bodies; Means for pressing driving body against driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0055Supports for driving or driven bodies; Means for pressing driving body against driven body
    • H02N2/006Elastic elements, e.g. springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods
    • H02N2/0085Leads; Wiring arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details
    • H02N2/123Mechanical transmission means, e.g. for gearing

Definitions

  • Piezoelectric actuator module Piezoelectric actuator module, motor module and device
  • the present invention relates to a piezoelectric actuator module, a motor module, and an apparatus using them.
  • Piezoelectric actuators which are actuators using piezoelectric elements, have been conventionally known.
  • Patent Document 1 Japanese Patent No. 3241688
  • a piezoelectric actuator module includes a piezoelectric actuator body having electrodes, a signal input terminal to which a driving signal is input from the outside and supplies the driving signal to the electrodes, A part of the piezoelectric actuator main body is disposed on the substantially same plane as the piezoelectric actuator main body in a contact state, and a rotating body driven to rotate by the piezoelectric actuator main body, and the rotating body and the signal input terminal are arranged.
  • a housing housing the piezoelectric actuator body electrically connected thereto, and an output shaft exposed from the housing and for outputting a rotary motion transmitted directly or indirectly by the rotating body to the outside. , Is provided.
  • a slider that supports the piezoelectric actuator body is provided,
  • the state where the piezoelectric actuator main body abuts on the rotating body may be maintained by rotating or moving the slider in parallel.
  • an urging member for urging the slider toward the rotating body may be provided. Further, the urging member may be configured to be replaceable.
  • an urging force varying unit for varying the urging force of the urging member on the slider may be provided.
  • the housing includes a lid and a housing main body, wherein the lid is a first lid that covers a portion corresponding to the rotating body and the output shaft, and a piezoelectric actuator main body. And a second lid that covers a portion corresponding to.
  • first lid and the second lid may be assemblable in a state where the first lid and the second lid are partially overlapped.
  • a viewing window or a transparent member that allows the abutting state to be visible from the outside of the housing may be provided in the housing.
  • the rotating body may have a rotating shaft, and a bearing for receiving the rotating shaft may be protruded from a peripheral surface of the housing.
  • the output shaft may be connected to the rotating body, and a driving force transmitting unit may be connected via the output shaft.
  • the driving force transmitting portion may include a gear or a cam, and the gear or the force may be fixed or detachably disposed.
  • the output shaft may have a substantially cylindrical shape.
  • a ground-side potential of a driving power supply of the piezoelectric actuator main body may be set to be the same as a potential of the housing.
  • the piezoelectric actuator main body is provided at a longitudinal direction end of the substrate, a substrate having a plurality of piezoelectric elements laminated on a surface thereof, a fixing portion for fixing the substrate to the slider, and a longitudinal end of the substrate.
  • a driving signal is supplied to the piezoelectric element, whereby the piezoelectric element expands and contracts, and the vibration plate expands and contracts in the longitudinal direction. Bending vibrations are generated, and the rotating body is rotationally driven by the displacement of the abutting portion caused by the combined vibration obtained by combining these vibrations. You may make it do.
  • a slider for supporting the piezoelectric actuator main body in contact with the rotating body, and an electrode for the piezoelectric actuator main body for supplying driving power from an external connection terminal to the piezoelectric actuator main body.
  • a flexible substrate comprising: a housing support portion supported by the housing; a slider support portion supported by the slider; and the housing support portion and the slider support portion. And a part of a damper, which is disposed at an intermediate portion between the support members and which relieves stress between the two support portions or suppresses vibration transmission.
  • the piezoelectric actuator main body includes a substrate on which a piezoelectric element is laminated.
  • An abutting portion that is configured separately from the substrate, is supported by the substrate, and abuts on the rotating body, and at least a portion of the abutting portion that abuts on the rotating body includes the substrate. May be configured to have a hardness higher than the hardness.
  • the contact portion has one end protruding from an end surface of the substrate in a predetermined direction and the other end fixed and supported in a concave portion provided on one end side of the substrate.
  • the contact portion may be made of ceramics, cemented carbide, a steel material subjected to a nitriding treatment, or a steel material subjected to a carburizing treatment.
  • a plurality of the electrodes and the signal input terminals may be respectively provided.
  • the piezoelectric actuator main body having the electrode, a signal input terminal to which a drive signal is input and supplying the drive signal to the electrode, and a part of the piezoelectric actuator main body are in contact with each other.
  • a rotating body that is disposed on substantially the same plane as the piezoelectric actuator body and is driven by the piezoelectric actuator body to rotate and accommodates the piezoelectric actuator body to which the rotating body and the signal input terminal are electrically connected.
  • the device includes a piezoelectric actuator main body having an electrode, a signal input terminal to which a drive signal is input and supplying the drive signal to the electrode, and a part of the piezoelectric actuator main body being in contact with the electrode.
  • a rotating body which is disposed on substantially the same plane as the piezoelectric actuator body and is driven and rotated by the piezoelectric actuator body, and houses the piezoelectric actuator body to which the rotating body and the signal input terminal are electrically connected.
  • a drive shaft connected to the output shaft for outputting a rotary motion, which is exposed from the housing and transmitted directly or indirectly by the rotating body, to the outside, and is driven.
  • a driven part a power supply that supplies power, and a drive circuit that generates the drive signal based on the power supplied from the power supply and outputs the drive signal to the signal input terminal. It is characterized in that.
  • the driven portion may be a wheel, a propeller, or a tool attachment.
  • a piezoelectric actuator module that is easy to handle, can be made thinner, and has high versatility can be configured.
  • a device incorporating a piezoelectric actuator module can be reduced in size and thickness. I can do it.
  • FIG. 1 is an external perspective view of a piezoelectric actuator module according to a first embodiment.
  • FIG. 2 is a top view of the piezoelectric actuator module of the first embodiment.
  • FIG. 3 is a top view of a piezoelectric actuator body (vibrating body).
  • FIG. 4 is a side view of a piezoelectric actuator main body (vibrating body).
  • FIG. 5 is a top perspective view of a state before the piezoelectric actuator main body is fixed to the slider.
  • FIG. 6 is a top perspective view after the piezoelectric actuator main body is fixed to the slider.
  • FIG. 7 is a bottom perspective view after the main body of the piezoelectric actuator is fixed to the slider.
  • FIG. 8 is an external perspective view of the case where the slider and the piezoelectric actuator main body of FIG. 7 are incorporated in a casing main body.
  • FIG. 9 is an external perspective view of a flexible substrate.
  • FIG. 10 is a top view of a flexible substrate. It is a side view of a substrate.
  • FIG. 14 is a top view of a piezoelectric actuator module of a first modified example.
  • FIG. 15 is a top view of a piezoelectric actuator module of a third modified example.
  • FIG. 16 is a side view of a piezoelectric actuator of a third modification.
  • FIG. 17 is a front view of a piezoelectric actuator of the third modified example:
  • FIG. 18 is a top view of a slider according to a fifth modification.
  • FIG. 19 is an external perspective view of the case where the slider and the piezoelectric actuator main body of FIG. 18 are incorporated in a casing main body.
  • FIG. 20 is a top view of the piezoelectric actuator of the second embodiment.
  • FIG. 21 is a top view of the piezoelectric actuator module according to the third embodiment.
  • FIG. 22 is a side view of the piezoelectric actuator module according to the third embodiment.
  • FIG. 23 is a front view of a piezoelectric actuator module according to a third embodiment.
  • FIG. 24 AA sectional view of the piezoelectric actuator module 10Y.
  • FIG. 25 is a diagram illustrating a modification of the third embodiment.
  • FIG. 26 is a top view of the piezoelectric actuator module according to the fourth embodiment.
  • FIG. 27 is a side sectional view of a piezoelectric actuator module according to a fourth embodiment.
  • FIG. 28 is a front sectional view of a piezoelectric actuator module according to a fourth embodiment.
  • FIG. 29 is an external perspective view of a piezoelectric actuator module according to a fourth embodiment.
  • FIG. 30 is an external perspective view of a piezoelectric actuator module according to a fifth embodiment.
  • FIG. 31 is a sectional view taken along the line AA of the piezoelectric actuator module according to the fifth embodiment.
  • FIG. 32] is a diagram (part 1) for explaining a more specific application example of the fifth embodiment.
  • FIG. 33 is a diagram (part 2) for explaining a more specific application example of the fifth embodiment.
  • FIG. 34 This is a main part of the sixth embodiment.
  • FIG. 35 is an external perspective view of the case where the actuator module is applied to a model airplane (flying object).
  • FIG. 36 is a partial sectional view of a propeller device.
  • FIG. 37 is an external perspective view of a power tool according to an eighth embodiment.
  • FIG. 38 is a schematic configuration block diagram of a power tool according to an eighth embodiment.
  • FIG. 39 is a schematic configuration block diagram of a motor module according to a ninth embodiment.
  • FIG. 40 is an external front view of the vibration motor module according to the tenth embodiment.
  • FIG. 41 is an explanatory diagram of a built-in state when the vibration motor module is built in a mobile phone.
  • FIG. 42 is a top view of a piezoelectric body of the eleventh embodiment (a vibrating body).
  • FIG. 43 is a top view of a piezoelectric body of the twelfth embodiment (a vibrating body).
  • FIG. 44] is an external perspective view of the contact portion c.
  • FIG. 45 is a side view of a piezoelectric body of the twelfth embodiment
  • FIG. 46 is a top view of a piezoelectric body of the thirteenth embodiment (a vibrating body).
  • FIG. 47 is a side view of a piezoelectric body of the thirteenth embodiment.
  • FIG. 1 is an external perspective view of the piezoelectric actuator module of the first embodiment.
  • the piezoelectric actuator module 10 includes a casing (housing) 11, and an output shaft 12 for transmitting a driving force protrudes from an upper surface of the casing 11 and is exposed. Further, a flexible board 14 provided with an external connection terminal 13 is drawn out from one end face of the casing 11 in the longitudinal direction.
  • the casing 11 includes a casing body 15 and a lid 17 fixed to the casing body 15 with screws 16 and cooperating with the casing body 15 to protect a piezoelectric actuator body described later.
  • the size of the casing 11 for example, the length of the short side of the lid 17 is approximately 6 mm, and the length of the long side is approximately 13 mm.
  • the casing body 15 is provided with a fixing screw hole 15A for fixing the piezoelectric actuator module 10 to a device to be mounted.
  • the external connection terminal 13 is connected to a piezoelectric actuator Electrodes 18A-18D that are electrically connected to the body are provided.
  • FIG. 2 is a top view of the piezoelectric actuator module of the first embodiment.
  • a piezoelectric actuator body 21 is provided in the casing body 15.
  • the piezoelectric actuator main body 21 is supported by a slider 23.
  • a rotating body 22 having an output shaft 12 exposed from the casing main body 15 and functioning as a driven body driven by the piezoelectric actuator main body 21 is provided in the casing main body 15.
  • the slider 23 supports the piezoelectric actuator body 21 at a node of the vibration of the piezoelectric actuator body 21, that is, at a position where the displacement during the vibration becomes substantially zero.
  • the slider 23 is attached to the rotating body 22 by an urging member 24 engaged with an engaging projection 23A of the slider 23 that maintains the abutting state of the supporting piezoelectric actuator body 21 against the rotating body 22. It is being rushed.
  • the biasing member 24 is arranged at a position overlapping the piezoelectric actuator body 21 in the thickness direction (the direction perpendicular to the plane of FIG. 2), so that space can be saved.
  • the urging member 24 has a structure that can be easily replaced. By replacing the urging member 24 with an urging member 24 having a different urging force, it is possible to change the drive torque of the rotating body 22 and thus the output shaft 12.
  • the structure is stabilized by one elastic body. Energization (pressurization) can be performed, and the resulting drive torque becomes stable.
  • the piezoelectric actuator main body 21 when the piezoelectric actuator main body 21 is regarded as a substantially rectangular plate, the piezoelectric actuator main body 21 and the rotary body 22 are arranged such that the longitudinal center line passes through the rotation center of the rotary body 22. ing. This is because the arrangement space is reduced and the driving force of the piezoelectric actuator body 21 is set to be substantially equal between when the rotating body 22 is rotating forward and when it is rotating backward.
  • the piezoelectric actuator main body 21 is disposed substantially at the center of the casing main body 15 in the longitudinal direction, thereby reducing the arrangement area.
  • the fixing member 25 fixes the flexible board 14 to the casing body 15 on the side of the external connection terminal 13.
  • the fixing member 25 has a tilt-prevention spring 26.
  • the tilt-prevention spring 26 moves the slider 2 from the upper surface side (the lid 17 side) to the lower surface side (the casing body 15 side) of the slider 23. 3 is biased to prevent the slider 23 from tilting. As a result, conduction between the piezoelectric actuator body 21 and the electrodes (overhang electrodes described later) of the flexible substrate 14 can be reliably ensured.
  • FIG. 3 is a top view of the piezoelectric actuator main body (vibrating body).
  • FIG. 4 is a side view of the piezoelectric actuator body (vibrating body).
  • the piezoelectric actuator body 21 has a structure in which a piezoelectric element 21B such as PZT is attached to both sides of a substrate (shim material) 21A which is an elastic member.
  • a voltage V- negative voltage
  • V + positive voltage
  • fixing portions 21D for fixing the piezoelectric actuator body 21 to the slider 23 are provided, respectively, and support the portion where the piezoelectric element 21B is attached in a floating state. It will be.
  • the fixing portion 21D is provided with a screw hole 21E into which a screw is inserted to fix the slider 23, and a positioning hole 21F.
  • the piezoelectric element 21B is provided with five regions A1 to A5 per one side, and the region A1 and the region A5 are used as a pair. Similarly, the area A2 and the area A4 are used as a pair. That is, the same drive signal is applied to the regions used as a pair.
  • the actuator body 21 is driven by separately applying a driving voltage to each of the region A1 and the region A5, and each of the region A2 and the region A4. Then, longitudinal vibration occurs in the area A1 and the area A5, the area A2 and the area A4 vibrate, and the area A3 does not vibrate, causing imbalance in the vertical expansion and contraction, and the bending vibration is excited. Then, a vibration is generated along an elliptical orbit in a certain direction (for example, clockwise) with respect to a contact portion 21C described later. At this time, the electrode corresponding to the area A3 becomes the detection electrode.
  • a region C at the center in the longitudinal direction of the substrate 21A corresponds to a so-called node, which is not affected by the vibration of the piezoelectric actuator, and this region is used as a connection portion of the electrode.
  • the electrodes are arranged in row S1 in the area C, mounting is easy. It has a structure.
  • a contact portion 21C for transmitting a driving force by being in contact with the rotating body 22 is provided.
  • the piezoelectric actuator main body 21 undergoes longitudinal vibration that expands and contracts in the longitudinal direction and bending vibration that vibrates in a substantially S-shape. These are combined, and the tip of the contact portion 21C drives the rotating body 22 while drawing an elliptical locus. As a result, the rotating body 22 performs a rotating motion.
  • FIG. 5 is a top perspective view of a state before the piezoelectric actuator body is fixed to the slider.
  • FIG. 6 is a top perspective view after the piezoelectric actuator body is fixed to the slider.
  • FIG. 7 is a bottom perspective view after the piezoelectric actuator main body is fixed to the slider.
  • the slider 23 has a substantially H-shaped planar shape.
  • a pin insertion hole 23C for inserting an engaging pin 32 for engaging the engaging member 14, and a rotating shaft 15A provided on the casing body 15 which is a center of rotation when biased by the biasing member 24 (FIG.
  • a rotation shaft insertion hole 23D into which the reference shaft is inserted.
  • FIG. 8 is an external perspective view of the case where the slider and the piezoelectric actuator main body of FIG. 7 are incorporated in a casing main body.
  • the flexible board is not shown for easy understanding.
  • the slider 23 and the piezoelectric actuator main body 21 are housed together with the rotating body 22 in the housing recess 15B in the casing main body 15 in a fixed state. At this time, the contact portion 21C is disposed at a position where the contact portion 21C easily comes into contact with the peripheral surface of the rotating body 22 by being rotated about the rotation shaft 15A.
  • FIG. 9 is an external perspective view of the flexible substrate.
  • FIG. 10 is a top view of the flexible substrate.
  • FIG. 11 is a side view of the flexible substrate.
  • FIG. 12 is a front view of the flexible substrate.
  • the flexible substrate 14 is provided with ten overhanging electrodes 35 as shown in the external perspective view of FIG. 8 and the side view of FIG. 10 (only five are visible in FIG. 2). ing).
  • the overhang electrodes 35 are electrically fixedly connected to the electrodes of the piezoelectric actuator body 21 by soldering, welding, or the like, and supply drive power.
  • the overhang electrode 35 is classified into three systems: an electrode 35A, an electrode 35B, and an electrode 35C.
  • the electrode 35A is configured to supply the same drive signal to the areas A1 and A5 used as a pair among the areas A1 to A5 of the piezoelectric element 21B shown in FIG. ing.
  • the electrode 35b is configured to supply the same drive signal to the region A2 and the region A4 which are also used as a pair.
  • the electrode 35c is configured to supply a drive signal to the area A3.
  • the flexible substrate 14 is configured as a multilayer substrate, and the overhanging electrodes 35 are electrically connected to the corresponding electrodes 18A-18D by multilayer wiring.
  • FIG. 13 is a connection diagram illustrating an example of a wiring state.
  • the electrode 35A is connected to the electrode 18A of the external connection terminal 13 via the connection wiring 19A.
  • the electrode 35B is connected to 18B of the external connection terminal 13 via a connection wiring 19B.
  • the electrode 35C is connected to the electrode 18C of the external connection terminal 13 via the connection wiring 19C.
  • the electrode 18D is electrically connected to the substrate 21A of the piezoelectric actuator main body 21 through a positioning hole 38 described later.
  • each of the electrodes 35A-35C constituting the overhang electrode 35 is composed only of a pattern of a conductive material (such as copper) that the base material constituting the flexible substrate 14 is connected to, the vibration of the piezoelectric actuator body 21 Time (driving) loss can be reduced. Further, each of the electrodes 35A to 35C constituting the overhang electrode 35 is formed so as to become thinner toward the distal end side (the side connected to the piezoelectric actuator main body). As a result, the bending stress generated due to the vibration of the piezoelectric actuator body 21 is alleviated, and the vibration loss (energy loss) due to the overhang electrode during the vibration of the piezoelectric actuator body 21 is reduced, so that the driving can be performed with high efficiency. I can do it.
  • a conductive material such as copper
  • the tip of the flexible substrate 14 including the overhang electrode 35 is As shown in the plan view, the piezoelectric actuator body 21 is bent into a substantially U-shape via a connecting portion 36 which sandwiches the piezoelectric actuator body 21 therebetween. As described above, since one flexible substrate 14 is bent into a substantially U-shape to supply power to both sides of the piezoelectric actuator body 21, the number of parts can be reduced, and the size can be reduced at low cost. You can do it.
  • a positioning hole 37 for positioning with respect to the slider is provided in a tip portion of the flexible substrate 14.
  • two positioning holes 37 are provided, one is a round hole, and the other is a long hole.
  • a positioning hole 38 for positioning with respect to the fixing member 25 is provided in a central portion of the flexible substrate 14.
  • the flexible board 14 is fixed to the casing body 15 on the side of the external connection terminal 13 by the fixing member 25 using the positioning hole 38. By doing so, the flexible substrate 14 is completely fixed.
  • a damper part having a function of a damper that absorbs even a small amount of stress is provided between the central portion of the flexible substrate 14, ie, the portion where the positioning hole 38 is provided, and the external connection terminal 13. 39, and the flexible substrate 14 is also fixed to the casing body by the fixing member 25 using the positioning holes 38, so that when a tensile force is applied to the external connection terminals 13, Even if there is, the influence is not directly transmitted to the piezoelectric actuator main body 21, so that the driving force does not decrease.
  • the tilt prevention spring 26 of the fixing member 25 is The slider 23 is urged from the (lid 17 side) to the lower side (casing body 15 side), so that even if the piezoelectric actuator body 21 is in a vibrating state, the slider 23 is easily prevented from being pushed up. .
  • the lid 17 is fixed to the casing main body 15 with the screw 16, thereby completing the piezoelectric actuator module 10 as shown in FIG.
  • the piezoelectric actuator module 10 having the above-described structure includes a piezoelectric actuator body 21 having a structure in which a piezoelectric element 21B is attached to a substrate 21A by applying a driving voltage to an external connection terminal 13 from outside.
  • the vibrating member 23 is vibrated while being urged toward the rotating body 22 by the urging member 24 engaged with the engaging projection 23A of 23.
  • the longitudinal vibration that expands and contracts in the longitudinal direction and the bending vibration that vibrates in a substantially S-shape are combined, and the tip of the contact portion 21C drives the rotating body 22 while drawing an elliptical trajectory. A rotating motion will be performed.
  • the flexible substrate 14 is fixed to the slider 23, and no stress is generated on the overhang electrode 35 of the flexible substrate even if the piezoelectric actuator main body 21 moves together with the slider 23. And a longer life can be achieved.
  • the drive torque of the output shaft 12 is changed by replacing the urging member 24 having an easily replaceable structure with a member having a different urging force.
  • the first modified example is a modified example in which the drive torque of the output shaft 12 is changed without replacing the urging member 24.
  • FIG. 14 is a top view of the piezoelectric actuator module of the first modified example.
  • the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • FIG. 2 is a top view of the piezoelectric actuator module of the first embodiment.
  • a piezoelectric actuator body 21 is provided in the casing body 15.
  • the piezoelectric actuator main body 21 is supported by a slider 23.
  • the slider 23 is rotatably fitted to a rotating shaft 41A provided on the slider 23 which maintains the abutting state of the supporting piezoelectric actuator body 21 against the rotating body 22. It is urged toward the rotating body 22 by the urging member 24 engaged with the force adjusting cam 41.
  • the urging force of the urging member 24 by rotating the urging force adjusting cam 41, the drive tonole of the rotating body 22, and thus the output shaft 12 can be easily changed.
  • the potential level of the casing 11 was not described.
  • the casing 11 is made of a conductor such as metal, and the potential level is set to the ground (ground) level.
  • the ground can be shared and the circuit configuration can be simplified.
  • the lid was integrated.
  • the assembly of the rotating body and the assembly of the piezoelectric actuator must be performed simultaneously in parallel, and the positional relationship between them is not fixed. Was difficult.
  • the third modification is a modification in which the lid is divided to improve the assemblability.
  • FIG. 15 is a top view of a piezoelectric actuator module according to a third modification.
  • FIG. 16 is a side view of a piezoelectric actuator module according to a third modification.
  • FIG. 17 is a front view of a piezoelectric actuator module according to a third modification.
  • the lid includes a first lid 17-1 that covers and fixes a portion including the rotating body and the output shaft 12 that is the rotating shaft, a part of the piezoelectric actuator body and the flexible substrate, and other components. And a second lid 17-2 that covers and fixes the portion.
  • the joint 17X between the first lid 17-1 and the second lid 17-2 is such that the thickness of each of the lids 17-1 and 17-2 is half that of the other parts. It is possible to overlap each other is there.
  • the force casing 11 (see FIG. 1) has been reduced in thickness while preventing inclination of the output shaft 12 of the rotating body and facilitating positioning.
  • the bearing portion 16A protrude from the casing body 15, as shown in FIG.
  • FIG. 18 is a top view of a slider according to a fifth modification.
  • the same parts as those in FIG. 5 are denoted by the same reference numerals.
  • the slider 23M has a slider body 23MA having a substantially H-shaped planar shape, and a substantially U-shaped urging portion 23MB formed at one end of the slider body 23MA.
  • the slider body 23MA has a screw insertion hole 23B for inserting a screw 31 for fixing the piezoelectric actuator body 21, and a pin insertion hole for inserting an engagement pin 32 for engaging the flexible substrate 14.
  • 23C a rotating shaft 15A (see FIG. 19) provided on the casing body 15 which is a rotating center which is a rotating center when biased by the biasing portion 23MB, and a rotating shaft insertion hole 23D. , Is provided.
  • FIG. 19 is an external perspective view of the case where the slider and the piezoelectric actuator main body of FIG. 18 are incorporated in a casing main body.
  • the flexible substrate is illustrated for easy understanding.
  • the slider 23M and the piezoelectric actuator body 21 are fixed to the casing
  • the rotating body 22 is housed in the housing recess 15 ⁇ / b> B in the main body 15.
  • the urging portion 23MB of the slider 23M is engaged with the engaging projection 15M in the storage recess 15B while being elastically deformed, and the elastic force causes the slider 23M to pivot the pivot shaft 15A around the pivot shaft 15A.
  • the contact portion 21C of the piezoelectric actuator main body 21 is kept in contact with the peripheral surface of the rotating body 22.
  • the slider is rotated about the rotation axis to maintain the contact state of the contact portion of the piezoelectric actuator main body with the rotating body.
  • This is an embodiment in which a slider is slid toward the rotating body in a parallel state to maintain a contact state with the rotating body against the contact portion.
  • FIG. 20 is a top view of the piezoelectric actuator of the second embodiment. 20, the same parts as those in FIG. 2 are denoted by the same reference numerals.
  • the side protruding portion 50 or the side sliding contact portion 51 of the slider 23X slidably contacts the side wall 15C of the concave portion 15B of the casing body 15. Accordingly, the movement of the slider 23X is limited only in the longitudinal direction of the piezoelectric actuator module.
  • the slider 23X is rotated by the urging member 24X engaged with the engaging protrusion 23AX of the slider 23X that maintains the abutting state of the supporting piezoelectric actuator body 21 against the rotating body 22. It is biased to the body 22 side.
  • the force vector applied by the urging member 24X to the engagement protrusion 23AX is assumed to be A1
  • the resolution vector in the short direction of the piezoelectric actuator module is A2
  • the resolution vector in the longitudinal direction is A3.
  • the decomposition force vector A2 in the lateral direction only appears as a frictional force between the side protrusion 50 and the side wall 15C. That is, the contact state of the contact portion 21C of the piezoelectric actuator main body 21 with the rotating body 22 is substantially maintained by the longitudinal decomposition force vector A3.
  • the contact portion 21C comes into contact with the rotating body 22 from the same direction, the first actual Compared to the case of the embodiment, more stable driving of the rotating body 22 is possible, and the obtained driving torque is more stable.
  • the output shaft is a simple shaft.
  • the third embodiment is an embodiment in which a gear functioning as an output shaft is provided.
  • FIG. 21 is a top view of the piezoelectric actuator module according to the third embodiment.
  • FIG. 22 is a side view of the piezoelectric actuator module according to the third embodiment.
  • FIG. 23 is a front view of the piezoelectric actuator module according to the third embodiment.
  • the piezoelectric actuator module 10Y includes a casing (housing) 11. On an upper surface of the casing 11, a gear 60 functioning as an output shaft for transmitting a driving force is provided. Further, a flexible board 14 provided with an external connection terminal 13 is drawn out from one end face of the casing 11 in the longitudinal direction.
  • the casing 11 is fixed to the casing main body 15 and the casing main body 15 with screws 16, and cooperates with the casing main body 15 to protect the piezoelectric actuator main body and a rotating body and an output shaft which is a rotating shaft thereof.
  • the gear portion 60A and the rotating shaft 60B that constitute the gear 60 are formed separately in the present embodiment. Therefore, the gear portion 60A can be made detachable. According to this configuration, it can be appropriately changed according to the purpose of use.
  • gear portion 60A and the rotating shaft 60B constituting the gear 60 are configured separately, but may be configured.
  • FIG. 24 is a cross-sectional view taken along the line AA of the piezoelectric actuator module 10Y.
  • This piezoelectric actuator module 10Y has a piezoelectric A viewing hole 70 is provided that can be closed by a closing plate (not shown) that enables the contact state between the contact portion 21C of the cuticle body 21 and the rotating body 11 to be visually recognized.
  • the piezoelectric actuator module 10Y when the piezoelectric actuator module 10Y is manufactured, the state of contact between the contact portion 21C and the rotating body 11 can be visually recognized and appropriate adjustment can be performed, thereby improving the testability. I can do it.
  • the viewing hole 70 is closed by a closing plate (not shown).
  • a transparent member is provided instead of the viewing hole 70, and the state of contact between the contact portion 21C and the rotating body 11 is viewed. The same effect can be obtained even in a recognizable state.
  • FIG. 25 is a diagram illustrating a modification of the third embodiment. 25, the same parts as those in FIG. 24 are denoted by the same reference numerals.
  • the modification of the third embodiment is a case where a cam 61 is provided instead of the gear 60 functioning as an output shaft, as compared with the third embodiment.
  • the cam portion 61A and the rotating shaft 61B constituting the cam 61 are formed separately. Therefore, the cam portion 61A can be made detachable. According to this configuration, it can be appropriately changed according to the purpose of use.
  • the force portion 61A and the rotating shaft 61B constituting the cam 61 may be constituted separately.
  • the gear portion of the gear functioning as the output shaft or the cam portion of the drum is configured to be entirely exposed to the outside of the casing. This is an embodiment in which only one is exposed.
  • FIG. 26 is a top view of the piezoelectric actuator module according to the fourth embodiment.
  • FIG. 27 is a side view of the piezoelectric actuator module according to the fourth embodiment.
  • FIG. 28 is a front view of the piezoelectric actuator module according to the fourth embodiment.
  • FIG. 29 is an external perspective view of a piezoelectric actuator module according to the fourth embodiment.
  • the piezoelectric actuator module 10Z includes a casing (housing) 11, and this casing A part of a gear 62 functioning as an output shaft for transmitting a driving force protrudes from an end surface in the longitudinal direction of the single 11. Further, a flexible board 14 provided with an external connection terminal 13 is drawn out from one end face of the casing 11 in the end direction.
  • the fifth embodiment is an embodiment in which a cylindrical rotating body is used as an output shaft.
  • FIG. 30 is an external perspective view of the piezoelectric actuator module according to the fifth embodiment.
  • the piezoelectric actuator module 10Q includes a casing (housing) 11, and accommodates a cylindrical rotary body 12B that functions as an output shaft for transmitting a driving force in the casing 11.
  • an external connection terminal (not shown) (for surface mounting) is provided on the back side of the casing 11.
  • FIG. 31 is a sectional view taken along the line AA of the piezoelectric actuator module of the fifth embodiment.
  • a piezoelectric actuator body 21 is provided in the casing body 15.
  • the piezoelectric actuator main body 21 is supported by a slider (not shown).
  • a cylindrical rotating body 12B as a driven body that functions as an output shaft and is driven by the piezoelectric actuator body 21.
  • the output shaft portion can transmit light, so that the piezoelectric actuator module is suitable for applications in which control is performed while transmitting light.
  • FIGS. 32 and 33 show more specific application examples of the fifth embodiment.
  • FIG. 32 is a cross-sectional view of a specific application example of a piezoelectric actuator module when a lens is provided in a hole of an output shaft portion and used for focusing of the lens.
  • FIG. 33 is a side view of a specific application example of the piezoelectric actuator module of FIG.
  • the focusing device 80 which is the device of this application example, is interlocked with the cylindrical rotating body 12B by rotating the lens 82 having the sliding shaft 81 and the cylindrical rotating body 12B by the piezoelectric actuator body 21.
  • An inner barrel 83 that rotates by rotating the outer barrel 84 fixed to the casing 11, It has.
  • a first guide groove 91 extending obliquely is provided in the inner barrel 83, and a second guide groove 92 extending vertically is provided in the outer barrel 84. It is set up.
  • the first guide groove 91 and the second guide groove 92 are provided to intersect each other.
  • the internal lens barrel 83 When the cylindrical rotating body 12B is rotationally driven by the piezoelectric actuator main body 21, the internal lens barrel 83 also rotates.
  • the sliding shaft 81 of the lens 82 slides along both the first guide groove 91 and the second guide groove 92.
  • the lens 82 moves downward.
  • the inner lens barrel 83 is rotated clockwise when viewed from above, the lens 82 moves upward.
  • the lens 84 can be moved to a desired lens position.
  • the present invention can be used for a zoom mechanism or an auto-focus mechanism of a small camera including a small digital camera. It is also possible to adopt a configuration that drives a lens for a small optical pickup.
  • FIG. 34 shows a main part of an embodiment in which the actuator module of each of the above embodiments is applied to a vehicle (moving body) having a wheel device used for a toy or the like.
  • the wheel device 100 includes an actuator module 101.
  • the axle 102 is directly connected to the output shaft 101A of the actuator module 101, and the actuator module 101 drives the axle 102 to rotate, thereby driving the wheels 103 and the wheel device 100 to rotate.
  • Vehicles such as model cars provided can run.
  • the suspension device is not shown, but by mounting the actuator module 101, the axle 102, and the wheels 103 on the suspension device, the influence of unevenness on the running surface is reduced. It is also possible to configure so as to run well.
  • the actuator module can be configured to be thin and small, even in a small model car or the like, the actuator module is configured to be provided separately for each wheel. Also, large parts such as knottery can be easily arranged.
  • the above description is based on the fact that the actuator module 101 directly drives the wheel 103 via the axle 102 so that it is driven via a predetermined reduction gear train or a speed increasing gear train. It is also possible to configure.
  • FIG. 35 is an external perspective view in the case where the actuator module of each of the above embodiments is applied to a model airplane (flying object).
  • the model airplane 200 includes a propeller device 201, and is designed to fly by the propulsion generated by the propeller device 201.
  • the model airplane 200 includes a main wing 203 extending left and right from the fuselage main body 202 and a tail wing 204 provided at the rear of the fuselage main body 202.
  • a tail rudder 204 is provided with a rudder 205. By driving the rudder 205, the traveling direction of the model airplane 200 can be adjusted.
  • FIG. 36 is a partial sectional view of the propeller device.
  • the propeller device 201 has a rotating shaft 211 that is rotatably supported as a propeller 210 on an airframe body (support) 202.
  • the rotation shaft 211 is integrated with the output shaft 213A of the actuator module 213.
  • the rotation shaft 211 rotates with this rotation.
  • Propeller 210 generates a propulsive force in the direction of arrow X in the figure, and model airplane 200 flies.
  • the actuator module is small and light. Since it is easy to quantify, compared to a model airplane with a built-in coil motor, it can be made lighter, and it is possible to fly for a longer time and a larger model airplane.
  • the above description is based on the assumption that the actuator module 213 drives the propeller 210 via a predetermined reduction gear train or a speed increasing gear train, which was used when the propeller 210 is directly driven. Yes.
  • FIG. 37 is an external perspective view of the power tool according to the eighth embodiment.
  • FIG. 38 is a schematic block diagram of a power tool according to the ninth embodiment.
  • the electric power tool 300 includes a casing 301, a casing 301, a lid 303 for accommodating a battery 302 serving as a power supply, an actuator module 304, and an actuator incorporated in the casing 301.
  • a drive circuit 307 for driving the actuator module 304 by the power supplied from the battery 302 in accordance with the operation state of the operation switch 306.
  • the output shaft of the actuator module 304, and furthermore, the attachment 305 attached to the output shaft are driven to rotate by the drive circuit 307 in accordance with the operation state of the user's operation switch 306,
  • the 310 can be tightened and removed.
  • the actuator module 304 can obtain a larger tonnolec compared to a coil motor of the same volume, and can be configured as a small, wide-ranging power tool. Become.
  • the actuator module can constitute a small, high-torque power tool.
  • FIG. 39 is a schematic block diagram of a motor module according to the tenth embodiment.
  • the motor module 400 exposes the actuator module 401, a drive circuit 403 for driving the actuator module 401 with power supplied from the outside via the power supply terminal 402, and the power supply terminal 402 to the outside. And a casing 404 for accommodating the actuator module 401 and the drive circuit 403.
  • the output shaft (not shown) of the actuator module 401 can be rotated only by connecting an external power supply to the power supply terminal 402, and can be handled in the same manner as a normal coil motor. It becomes possible.
  • FIG. 40 is an external front view of the vibration motor module according to the tenth embodiment.
  • the same parts as those in the modification of the third embodiment in FIG. 25 are denoted by the same reference numerals.
  • the tenth embodiment is different from the third embodiment in that an eccentric weight 71 is provided in place of the gear 60 functioning as an output shaft, and is configured as a vibration motor module 500 that notifies an incoming call in a mobile phone. is there.
  • the weight portion 71A and the rotating shaft 71B that constitute the eccentric weight 71 are configured separately.
  • the weight portion 71A is made of a metal material having a high specific gravity because of the need to keep the vibration amount high, for example, tungsten.
  • the weight 71A is detachable, and the material, shape, and the like can be changed according to the required amount of vibration.
  • FIG. 41 is an explanatory diagram of a built-in state when the vibration motor module 500 is actually built in the mobile phone 501.
  • the vibration motor module 500 can be formed very small, and even if the mobile phone 501 is small, there is no problem in the storage space.
  • the weight 71A rotates in, for example, the direction of the arrow in FIG. 41, and the weight is imbalanced on the rotating shaft 71B of the weight 71A. Can be notified by vibrating that there is an incoming call.
  • FIG. 42 is a top view of the piezoelectric actuator body (vibrating body) of the eleventh embodiment.
  • the piezoelectric actuator body 21X has a structure in which a piezoelectric element 21B such as PZT is attached to both sides of a substrate (shim material) 21A which is an elastic member.
  • a piezoelectric element 21B such as PZT
  • the voltage V- negative voltage
  • the voltage V + positive voltage
  • fixing portions 21D for fixing the piezoelectric actuator body 21 to the slider 23 are provided, respectively, and the portion where the piezoelectric element 21B is attached is supported in a floating state. It will be.
  • the fixing portion 21D is provided with a screw hole 21E into which a screw is inserted to fix the slider 23, and a positioning hole 21F.
  • One region All is provided in the piezoelectric element 21B, and a drive signal is applied.
  • the actuator body 21X is driven by applying a drive voltage to All. Then, longitudinal vibration occurs. At this time, the abutment portion 21Z is provided at an asymmetrical position of the substrate 21A, so imbalance occurs in vertical expansion and contraction, and the bending vibration is excited, and the abutment portion 21Z is excited. Vibration along an elliptical orbit in a certain direction (for example, clockwise) with respect to 21Z is generated.
  • a piezoelectric actuator body 21X of the present embodiment it is possible to configure a piezoelectric actuator that can rotate in one direction only by providing one electrode.
  • a balance portion 21Z1 having the same shape as the contact portion 21Z was provided with a contact portion 21Z with respect to the center of the rectangular substrate, as shown by a broken line in FIG. It may be provided at a position substantially point-symmetric with the position.
  • FIG. 43 is a top view of the piezoelectric actuator body (vibrating body) of the twelfth embodiment.
  • FIG. 44 is an external perspective view of the contact portion.
  • FIG. 45 shows a piezoelectric actuator of the twelfth embodiment. It is a side view of a body (vibrating body).
  • the substrate 21A is made of, for example, SUS301EH having a Vickers hardness of 500 HV and a Young's modulus of 210 GPa.
  • the contact portion 21M is made of anoremina having a Vickers hardness of 1600 HV and a Young's modulus of 350 to 380 GPa, and has a contact end portion 21MA having a contact surface 21MA1 to be in contact with the rotating body.
  • a fixing portion 21MB fixedly supported in a concave portion 21K provided at one end of the substrate to support the contact end portion 21MA.
  • the contact end 21MA is formed, for example, in a semi-cylindrical shape as shown in FIG. 44. As shown in FIG. 45, the thickness of the piezoelectric element 21B (two layers) is added to the thickness of the substrate 21A. It is said that the thickness is about the same as the thickness.
  • the fixed portion 21MB is formed in the same semi-cylindrical shape as the shape of the concave portion 21K provided at one end of the substrate 21A, and its thickness is the same as that of the substrate 21A.
  • the fixed portion 21MB is fixed to the substrate 21A, and is sandwiched between two layers of piezoelectric elements 21B, and the piezoelectric element 21B, the substrate 21A, and the contact portion 21M are mutually cold-curable epoxy. It is bonded and fixed with a resin adhesive.
  • the substrate 21A and the contact portion 21M can be made of a material suitable for each function.
  • the substrate 21A is made of SUS301EH, and does not hinder the vibration of the piezoelectric element 21B while compensating for the brittleness of the piezoelectric element 21B.
  • the contact portion 21M is made of alumina, the wear resistance of the contact surface 21 MA1 in contact with the rotating body can be improved, thereby improving the durability of the piezoelectric actuator module. It will be.
  • FIG. 46 is a top view of the piezoelectric actuator body (vibrating body) of the thirteenth embodiment.
  • FIG. 47 is a side view of the piezoelectric actuator body (vibrating body) of the thirteenth embodiment.
  • the substrate 21A constituting the piezoelectric actuator body (vibrating body) 21Z is made of, for example, SUS301EH having a Vickers hardness of 500 HV and a Young's modulus of 210 GPa.
  • the contact portion 21N is made of a super steel alloy H having a Vickers hardness of 1500 HV and a Young's modulus of 700 GPa. 1 (WC particle diameter l / m, Co content 10%), to support the contact end 21NA having the contact surface 21NA1 contacting the rotating body and the contact end 21NA.
  • a fixing portion 21NB fixedly supported in a concave portion 21K provided at one end of the substrate 21A.
  • the entire contact portion 21N is formed in a disk shape.
  • the contact portion 21N is formed, for example, by cutting a bar of a super steel alloy HI to an appropriate thickness, polishing the bar in the thickness direction to remove burrs generated by the cutting, and forming the contact surface 21NA1 in FIG. So that the cross-sectional shape cut in a direction parallel to the paper surface of the
  • the fixing portion 21NB is formed in the same semi-cylindrical shape as the shape of the concave portion 21K provided at one end of the substrate 21A, and the thickness thereof is the same as that of the substrate 21A.
  • the fixing portion 21NB is fixed to the substrate 21A, and is sandwiched between two layers of piezoelectric elements 21B, and the piezoelectric element 21B, the substrate 21A, and the contact portion 21N are cured at room temperature with each other. It is bonded and fixed with a type epoxy resin adhesive.
  • the substrate 21A and the contact portion 21N can be made of a material suitable for each function.
  • the substrate 21A is made of SUS301EH, and does not hinder the vibration of the piezoelectric element 21B while supplementing the brittleness of the piezoelectric element 21B.
  • the contact part 21N is made of a super steel alloy HI, the wear resistance of the contact surface 21NA1 that contacts the rotating body can be improved, and the durability of the piezoelectric actuator module is improved. Will be done.
  • the force using SUS301EH as the material of the substrate 21A is not limited to this, and other stainless steel may be used.
  • the piezoelectric element 21B may be made of a material that vibrates at a low Young's modulus and does not immediately hinder the vibration of the piezoelectric element 21B, such as an anolymium, an amorphous metal, and a rubber metal.
  • alumina or a super-steel alloy was used as the material of the contact portion provided separately from the substrate 21A.
  • the material is not limited to this and may be silicon nitride, zirconia, or silicon carbide. Any ceramics or steel materials that have been treated such as nitriding or carburizing .
  • the material of the contact portion only needs to be selected so that at least the contact surface with the rotating body has a higher hardness than the material of the substrate when the contact portion can be constituted by the substrate 21A alone.
  • the appearances of the substrate and the piezoelectric element have been substantially rectangular or plate-like.
  • the piezoelectric element is formed on a substantially flat surface, but may be formed in a block shape or the like.
  • the contact portion may be made to protrude in a predetermined direction from the end face of the piezoelectric element on the rotating body side.
  • the predetermined direction is set to be within ⁇ 30 °, more preferably, within ⁇ 15 °, and further preferably, within ⁇ 10 ° with respect to a plane perpendicular to the plane including the end face of the piezoelectric element on the rotating body side.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Toys (AREA)

Abstract

 取り扱いが容易で薄型化が図れ、汎用性の高い圧電アクチュエータモジュールを提供する。  圧電アクチュエータモジュール10は、電極を有する圧電アクチュエータ本体21と、外部から駆動信号が入力され、前記電極に前記駆動信号を供給する信号入力端子18A~18Dと、圧電アクチュエータ本体21と略同一平面上に配置され、圧電アクチュエータ本体21により駆動され回転運動する回転体22と、回転体22および前記信号入力端子が電気的に接続された前記圧電アクチュエータ本体を収納する筐体15と、筐体15より露出され、回転体22により直接的あるいは間接的に伝達された回転運動を外部に出力するための出力軸12と、を備える。

Description

明 細 書
圧電ァクチユエータモジュール、モータモジュールおよび装置
技術分野
[0001] 本発明は、圧電ァクチユエータモジュール、モータモジュールおよびそれらを用レ' た装置に関するものである。
背景技術
[0002] 従来より圧電素子を用いたァクチユエータである、圧電ァクチユエータが知られてい る。
特許文献 1 :日本国特許第 3241688号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、上記特許文献 1に記載された配置で圧電ァクチユエータを構成した 場合には、ァクチユエータ自体が厚くなつてしまい、当該圧電ァクチユエータを組み 込んだ装置自体の薄型化がはかりにくいと言う問題点があった。
そこで本発明の目的は、取り扱いが容易で薄型化が図れ、汎用性の高い圧電ァク チユエータモジュール、モータモジュールおよびそれらを備えた装置を提供すること にある。
課題を解決するための手段
[0004] 上記課題を解決するため、圧電ァクチユエータモジュールは、電極を有する圧電ァ クチユエータ本体と、外部から駆動信号が入力され、前記電極に前記駆動信号を供 給する信号入力端子と、前記圧電ァクチユエータ本体の一部が当接状態で前記圧 電ァクチユエータ本体と略同一平面上に配置され、前記圧電ァクチユエータ本体に より駆動され回転運動する回転体と、前記回転体および前記信号入力端子が電気 的に接続された前記圧電ァクチユエータ本体を収納する筐体と、前記筐体より露出さ れ、前記回転体により直接的あるいは間接的に伝達された回転運動を外部に出力 するための出力軸と、を備えたことを特徴としている。
[0005] この場合において、前記圧電ァクチユエータ本体を支持するスライダを備え、前記 スライダを回動あるいは平行移動させることにより前記圧電ァクチユエータ本体の前 記回転体に対する当接状態を維持するようにしてもよい。
また、前記スライダを前記回転体側に付勢する付勢部材を備えるようにしてもょレ、。 さらに、前記付勢部材は交換可能に構成されているようにしてもよい。
さらにまた、前記付勢部材の前記スライダに対する付勢力を可変するための付勢力 可変部を備えるようにしてもよい。
[0006] また、前記筐体は、蓋体と、筐体本体とを備え、前記蓋体は、前記回転体および前 記出力軸に対応する部分を覆う第 1蓋体と、前記圧電ァクチユエータ本体に対応す る部分を覆う第 2蓋体と、を備えるようにしてもよレ、。
さらに、前記第 1蓋体と前記第 2蓋体とは、その一部が重なり合った状態で組立可 能であるようにしてもよい。
さらにまた、前記当接状態を前記筐体の外部より視認可能とする視認窓あるいは透 明部材が前記筐体に設けられているようにしてもよい。
[0007] また、前記回転体は回転軸を有し、前記回転軸を受ける軸受け部は、前記筐体の 周面に突設されているようにしてもよい。
さらに、前記回転体に前記出力軸が接続され、当該出力軸を介して駆動力伝達部 が接続されてレ、るようにしてもょレ、。
さらにまた、前記駆動力伝達部は、歯車あるいはカムを有し、前記歯車あるいは力 ムは固定もしくは着脱可能に配置されてレ、るようにしてもょレ、。
[0008] また、前記出力軸は、略円筒形状を有しているようにしてもよい。
さらに、前記圧電ァクチユエータ本体の駆動電源の接地側電位が前記筐体の電位 と同電位とされているようにしてもよい。
さらにまた、前記圧電ァクチユエータ本体は、その表面の複数の領域に圧電素子が 積層された基板と、前記基板を前記スライダに固定するための固定部と、前記基板 の長手方向端部に設けられた当接部とを備え、前記圧電素子に駆動信号を供給す ることにより、前記圧電素子を伸縮させて前記振動板に前記長手方向に伸縮する縦 振動および前記長手方向とは交差する方向への屈曲振動を生じさせ、これらの振動 が合成された合成振動に伴う前記当接部の変位によって前記回転体を回転駆動す るようにしてもよい。
[0009] また、前記圧電ァクチユエータ本体を前記回転体に当接させるべく支持するスライ ダと、前記圧電ァクチユエータ本体に外部の接続端子からの駆動電力を供給すべく 、当該圧電ァクチユエータ本体の電極に電気的に接続されるフレキシブル基板と、を 備え、前記フレキシブル基板は、前記筐体に支持される筐体支持部と、前記スライダ に支持されるスライダ支持部と、前記筐体支持部とスライダ支持部との中間部分に配 置され両支持部間における応力を緩和しあるいは振動伝達を抑制するためのダンバ 一部と、を備えるようにしてもよレ、。
[0010] さらに、前記圧電ァクチユエータ本体は、その表面に圧電素子が積層された基板と
、前記基板とは別体で構成され、前記基板に支持されるとともに、前記回転体に当接 する当接部を備え、前記当接部の少なくとも前記回転体に当接する部分は、前記基 板の硬度よりも高硬度に構成されているようにしてもよい。
[0011] さらにまた、前記当接部は、一端が前記基板の端面から所定方向に突設され、他 端が前記基板の一端側に設けられた凹部内に固定されて支持されているようにして あよい。
また、前記当接部は、セラミックス、超硬合金、窒化処理を施した鋼材あるいは侵炭 処理が施された鋼材で構成されてレ、るようにしてもょレ、。
また、前記電極及び前記信号入力端子は、それぞれ複数設けられているようにして あよい。
[0012] また、モータモジュールは、電極を有する圧電ァクチユエータ本体と、駆動信号が 入力され、前記電極に前記駆動信号を供給する信号入力端子と、前記圧電ァクチュ エータ本体の一部が当接状態で前記圧電ァクチユエータ本体と略同一平面上に配 置され、前記圧電ァクチユエータ本体により駆動され回転運動する回転体と、前記回 転体および前記信号入力端子が電気的に接続された前記圧電ァクチユエータ本体 を収納する筐体と、前記筐体より露出され、前記回転体により直接的あるいは間接的 に伝達された回転運動を外部に出力するための出力軸と、外部から供給される電力 に基づいて前記駆動信号を生成し、前記信号入力端子に出力するドライブ回路と、 を備えたことを特徴としてレ、る。 [0013] また、装置は、電極を有する圧電ァクチユエータ本体と、駆動信号が入力され、前 記電極に前記駆動信号を供給する信号入力端子と、前記圧電ァクチユエータ本体 の一部が当接状態で前記圧電ァクチユエータ本体と略同一平面上に配置され、前 記圧電ァクチユエータ本体により駆動され回転運動する回転体と、前記回転体およ び前記信号入力端子が電気的に接続された前記圧電ァクチユエータ本体を収納す る筐体と、前記筐体より露出され、前記回転体により直接的あるいは間接的に伝達さ れた回転運動を外部に出力するための出力軸と、前記出力軸に接続されて駆動さ れる被駆動部と、電力を供給する電源と、前記電源から供給される電力に基づいて 前記駆動信号を生成し、前記信号入力端子に出力するドライブ回路と、を備えたこと を特徴としている。
この場合において、前記被駆動部は、車輪、プロペラあるいは工具アタッチメントの レ、ずれかであるようにしてもょレ、。
発明の効果
[0014] 本発明によれば、取扱が容易で薄型化が図れ汎用性の高い圧電ァクチユエータモ ジュールを構成することができ、ひいては、圧電ァクチユエータモジュールを内蔵した 機器の小型化、薄型化が図れる。
図面の簡単な説明
[0015] [図 1]第 1実施形態の圧電ァクチユエータモジュールの外観斜視図である。
[図 2]第 1実施形態の圧電ァクチユエータモジュールの上面図である。
[図 3]圧電ァクチユエータ本体 (振動体)の上面図である。
[図 4]圧電ァクチユエータ本体 (振動体)の側面図である。
[図 5]スライダに圧電ァクチユエータ本体を固定する前の状態の上面斜視図である。
[図 6]スライダに圧電ァクチユエータ本体を固定した後の上面斜視図である。
[図 7]スライダに圧電ァクチユエータ本体を本体を固定した後の下面斜視図である。
[図 8]図 7のスライダおよび圧電ァクチユエータ本体をケーシング本体に組み込んだ 場合の外観斜視図である。
[図 9]フレキシブル基板の外観斜視図である。
[図 10]フレキシブル基板の上面図である。 基板の側面図である。
基板の正面図である。
基板の結線図である。
図 14]第 1変形例の圧電ァクチユエータモジ: -ルの上面図である。
図 15]第 3変形例の圧電ァクチユエータモジ: -ルの上面図である。
図 16]第 3変形例の圧電ァクチユエータモジ: -ルの側面図である。
図 17]第 3変形例の圧電ァクチユエータモジ: -ノレの正面図である。
図 18]第 5変形例のスライダの上面図である。
図 19]図 18のスライダおよび圧電ァクチユエータ本体をケーシング本体に組み込ん だ場合の外観斜視図である。
図 20]第 2実施形態の圧電ァクチユエータの上面図である。
図 21]第 3実施形態の圧電ァクチユエータモジュールの上面図である。
図 22]第 3実施形態の圧電ァクチユエータモジュールの側面図である。
図 23]第 3実施形態の圧電ァクチユエータモジュールの正面図である。
図 24]圧電ァクチユエータモジュール 10Yの A— A断端面図である。
図 25]第 3実施形態の変形例を説明する図である。
図 26]第 4実施形態の圧電ァクチユエータモジュールの上面図である。
図 27]第 4実施形態の圧電ァクチユエータモジュールの側断面図である。
図 28]第 4実施形態の圧電ァクチユエータモジュールの正断面図である。
図 29]第 4実施形態の圧電ァクチユエータモジュールの外観斜視図である。
図 30]第 5実施形態の圧電ァクチユエータモジュールの外観斜視図である。
図 31]第 5実施形態の圧電ァクチユエータモジュールの A— A断端面図である。 図 32]第 5実施形態のより具体的適用例を説明する図(その 1)である。
図 33]第 5実施形態のより具体的適用例を説明する図(その 2)である。
図 34]第 6実施形態の実施形態の主要部である。
図 35]ァクチユエータモジュールを模型飛行機 (飛行体)に適用した場合の外観斜視 図である。
園 36]プロペラ装置の一部断面図である。 図 37]第 8実施形態の電動工具の外観斜視図である。
図 38]第 8実施形態の電動工具の概要構成ブロック図である。
図 39]第 9実施形態のモータモジュールの概要構成ブロック図である。
図 40]第 10実施形態の振動モータモジュールの外観正面図である。
図 41]振動モータモジュールを携帯電話機に組み込んだ場合の組込状態説明図で ある。
図 42]第 11実施形態の圧電: -タ本体(振動体)の上面図である。
図 43]第 12実施形態の圧電: -タ本体(振動体)の上面図である。
図 44]当接部の外観斜視図である c
図 45]第 12実施形態の圧電: -タ本体 (振動体)の側面図である。
図 46]第 13実施形態の圧電: -タ本体(振動体)の上面図である。
図 47]第 13実施形態の圧電: -タ本体 (振動体)の側面図である。
発明を実施するための最良の形態
[0016] 次に図面を参照して本発明の実施の形態について説明する。
[1]第 1実施形態
まず、第 1実施形態について説明する。
図 1は、第 1実施形態の圧電ァクチユエータモジュールの外観斜視図である。 圧電ァクチユエータモジュール 10は、ケーシング(筐体) 11を備えており、このケー シング 11の上面から駆動力を伝達するための出力軸 12が突出されて露出されてい る。さらにケーシング 11の長手方向の一端面から外部接続端子 13が設けられたフレ キシブル基板 14が引き出されている。
[0017] ケーシング 11は、ケーシング本体 15と、ケーシング本体 15にねじ 16により固定さ れ、ケーシング本体 15と協働して後述する圧電ァクチユエータ本体を保護する蓋体 17と、を備えている。ケーシング 11の大きさは、例えば、蓋体 17の短手側の長さが およそ 6mm、長手側の長さがおよそ 13mmとなっている。
また、ケーシング本体 15には、圧電ァクチユエータモジュール 10を、実装対象の機 器に固定するための固定用ねじ穴 15Aが設けられている。
さらに、外部接続端子 13には、後述する接続配線を介して圧電ァクチユエータ本 体に電気的に接続される電極 18A— 18Dが設けられている。
[0018] 図 2は、第 1実施形態の圧電ァクチユエータモジュールの上面図である。
ケーシング本体 15内には、圧電ァクチユエータ本体 21が設けられている。圧電ァク チユエータ本体 21は、スライダ 23により支持されている。また、ケーシング本体 15内 には、ケーシング本体 15から露出する出力軸 12を有し圧電ァクチユエータ本体 21 により駆動される被駆動体として機能する回転体 22が設けられている。
スライダ 23は、圧電ァクチユエータ本体 21の振動の節、すなわち、振動時の変位 がほぼ零となる位置で、圧電ァクチユエータ本体 21を支持してレ、る。
[0019] スライダ 23は、支持している圧電ァクチユエータ本体 21の回転体 22に対する当接 状態を維持すベぐスライダ 23の係合突起 23Aに係合した付勢部材 24により回転体 22側に付勢されている。このとき、付勢部材 24は、圧電ァクチユエータ本体 21と、厚 さ方向(図 2の紙面に垂直な方向)に重なり合う位置に配置されており、省スペース化 を図ることができる。さらに付勢部材 24は、交換容易な構造となっており、付勢力の 異なる付勢部材 24に交換することにより回転体 22、ひいては、出力軸 12の駆動トノレ クを変更すること力できる。さらに、このスライダ 23を回動軸 15Aを中心として回動さ せて圧電ァクチユエータ本体 21の回転体 22に対する当接状態を維持するような構 成を採っているため、一つの弾性体で安定した付勢 (加圧)が行え、得られる駆動ト ルクも安定したものとなる。
[0020] また、圧電ァクチユエータ本体 21を略矩形板状とみなした場合に、長手方向の中 心線が回転体 22の回転中心を通るように、圧電ァクチユエータ本体 21と回転体 22と が配置されている。これは、配置スペースを小さくするとともに、圧電ァクチユエータ本 体 21の駆動力が、回転体 22の正転時と、逆転時とで、略等しく設定されるようにする ためである。
また、圧電ァクチユエータ本体 21は、ケーシング本体 15の長手方向のほぼ中央に 配置されており、配置面積の低減を図っている。
固定部材 25は、フレキシブル基板 14を外部接続端子 13側でケーシング本体 15に 固定する。固定部材 25は、あおり防止ばね 26を有しており、このあおり防止ばね 26 は、スライダ 23の上面側(蓋体 17側)から下面側(ケーシング本体 15側)にスライダ 2 3を付勢し、スライダ 23のあおりを防止している。この結果、圧電ァクチユエータ本体 2 1とフレキシブル基板 14の電極(後述するオーバーハング電極)との導通を確実に図 ることが可能となっている。
[0021] ここで、圧電ァクチユエータモジュールを構成する各部品の詳細について説明する まず圧電ァクチユエータ本体にっレ、て説明する。
図 3は、圧電ァクチユエータ本体 (振動体)の上面図である。また、図 4は、圧電ァク チユエータ本体 (振動体)の側面図である。
圧電ァクチユエータ本体 21は、弾性部材である基板(シム材) 21Aに PZTなどの圧 電素子 21Bが両面に貼り付けられた構造を有している。この構造において、実際の 駆動時には、例えば、基板 21Aには、電圧 V- (負側電圧)が印加され、圧電素子 21 Bには電圧 V+ (正側電圧)が印加されることとなる。
[0022] 基板 21Aの両側部には、圧電ァクチユエータ本体 21をスライダ 23に固定するため の固定部 21Dがそれぞれ設けられており、圧電素子 21Bが貼り付けられた部分を浮 かせた状態で支持することとなる。この固定部 21Dには、スライダ 23と固定すべくね じが挿入されるねじ孔 21Eと、位置決め用孔 21Fが設けられている。
圧電素子 21Bは、片面当たり 5つの領域 A1— A5が設けられており、領域 A1と領 域 A5とは、対として用いられる。同様に領域 A2と領域 A4とは対として用いられる。 すなわち、対として用いられる領域は、同一の駆動信号が印加されることとなる。
[0023] より詳細には、例えば、領域 A1および領域 A5、領域 A2と領域 A4のそれぞれに別 個に駆動電圧を印加することによってァクチユエータ本体 21が駆動される。そして領 域 A1および領域 A5で縦振動を起こし、領域 A2と領域 A4を振動させ、領域 A3を振 動させないことにより、縦方向の伸縮に対してアンバランスが生じ、屈曲振動が励震さ れ、後述の当接部 21Cに対してある方向(例えば、時計回り方向)の楕円軌道に沿つ た振動を発生させる。この際、領域 A3に対応する電極が検出用電極となる。
さらに基板 21Aの長手方向中央の領域 Cは、圧電ァクチユエータの振動の影響を 受けなレ、、いわゆる、節に相当し、この領域が電極の接続部として用いられることとな る。また、この領域 Cで電極力 S1列に配置された状態となっているため、実装が容易な 構造となっている。
[0024] 圧電ァクチユエータ本体 21の基板 21Aの長手方向の一端には、回転体 22に当接 して駆動力を伝達するための当接部 21Cが設けられている。
そして、圧電素子 21Bに領域 Cを介して駆動電圧が印加されることにより、圧電ァク チユエータ本体 21には、長手方向に伸縮する縦振動と、略 S字状に振動する屈曲振 動とが発生し、これらが合成されて当接部 21Cの先端は楕円軌跡を描きつつ、回転 体 22を駆動する。この結果、回転体 22は回転運動を行うこととなる。
[0025] 次にスライダについて説明する。
図 5はスライダに圧電ァクチユエータ本体を固定する前の状態の上面斜視図である 。図 6は、スライダに圧電ァクチユエータ本体を固定した後の上面斜視図である。図 7 は、スライダに圧電ァクチユエータ本体を本体を固定した後の下面斜視図である。 スライダ 23は、平面形状が略 H字形状を有しており、前述した係合突起 23Aと、圧 電ァクチユエータ本体 21を固定するためのねじ 31を挿入するねじ揷入孔 23Bと、フ レキシブル基板 14を係合するための係合ピン 32を挿入するピン挿入孔 23Cと、付勢 部材 24により付勢される場合に回動中心となるケーシング本体 15に設けられた回動 軸 15A (図 2参照)が挿入される回動軸挿入孔 23Dと、を備えている。
[0026] 図 8は、図 7のスライダおよび圧電ァクチユエータ本体をケーシング本体に組み込ん だ場合の外観斜視図である。なお、図 8では、理解の容易のためにフレキシブル基 板は図示していない。
スライダ 23および圧電ァクチユエータ本体 21は、固定された状態でケーシング本 体 15内の収納凹部 15Bに回転体 22とともに収められる。このとき、当接部 21Cは、 回動軸 15Aを回動中心として回動されることにより容易に回転体 22の周面に当接状 態となるような位置に配置されることとなる。
[0027] 図 9は、フレキシブル基板の外観斜視図である。図 10は、フレキシブル基板の上面 図である。図 11はフレキシブル基板の側面図である。図 12はフレキシブル基板の正 面図である。
フレキシブル基板 14は、図 8の外観斜視図および図 10の側面図に示すように、 10 本のオーバーハング電極 35が設けられている(図 2では、 5本のみが視認可能となつ ている)。
[0028] このオーバーハング電極 35は、圧電ァクチユエータ本体 21の電極にそれぞれハン ダ付け、溶着などにより電気的に固定的に接続され、駆動電力を供給する。
オーバーハング電極 35は、より詳細には、電極 35A、電極 35B、電極 35Cの 3系 統に分類されている。
この場合に、電極 35Aは、図 3に示した圧電素子 21Bの領域 A1— A5のうち、対と して用レ、られる領域 A1と領域 A5とに同一の駆動信号を供給するように構成されてい る。また、電極 35bは、同様に対として用いられる領域 A2と領域 A4とに同一の駆動 信号を供給するように構成されている。さらに、電極 35cは、領域 A3に駆動信号を供 給するように構成されている。
具体的には、フレキシブル基板 14は、多層基板として構成されており、オーバーハ ング電極 35は多層配線により対応する電極 18A— 18Dに電気的に接続されている
[0029] 図 13は、配線状態の一例を示す結線図である。
図 13に示すように、電極 35Aは、外部接続端子 13の電極 18Aに接続配線 19Aを 介して接続されている。また、電極 35Bは、外部接続端子 13の 18Bに接続配線 19B を介して接続されている。さらに電極 35Cは、外部接続端子 13の電極 18Cに接続配 線 19Cを介して接続されている。さらにまた、電極 18Dは、後述する位置決め孔 38 を介して圧電ァクチユエータ本体 21の基板 21Aに電気的に接続されることとなる。
[0030] オーバーハング電極 35を構成する各電極 35A— 35Cは、フレキシブル基板 14を 構成する基材がなぐ導電性材料 (銅など)のパターンのみで構成されているため、 圧電ァクチユエータ本体 21の振動時 (駆動時)の損失を低減することができる。さら にオーバーハング電極 35を構成する各電極 35A— 35Cは、先端側(圧電ァクチュ エータ本体への接続部側)に向かって細く形成されている。これにより、圧電ァクチュ エータ本体 21の振動に伴って発生する曲げ応力を緩和するとともに、圧電ァクチュ エータ本体 21の振動時におけるオーバーハング電極による振動損失 (エネルギー 損失)を低減させて高効率で駆動を行えるようにされてレ、る。
[0031] この場合にオーバーハング電極 35を含むフレキシブル基板 14の先端部分は、側 面図に示すように、圧電ァクチユエータ本体 21をその間に挟み込むベぐ連結部 36 を介して略 U字状に曲げられている。このように、一枚のフレキシブル基板 14を略 U 字状に折り曲げて圧電ァクチユエータ本体 21の両面に電力を供給する構成としてレ、 るため、部品点数を削減できるとともに、低コストで小型化を図ることができるようにな つている。
[0032] また、オーバーハング電極 35のうち圧電ァクチユエータ本体 21の上面側に対向す る 5本が圧電ァクチユエータ本体 21の上面側に向けて折り曲げられて、圧電ァクチュ エータ本体 21の上面側の電極に接続される。また、オーバーハング電極 35のうち、 圧電ァクチユエータ本体 21の下面側に対向する残りの 5本が圧電ァクチユエータ本 体 21の下面側の電極に接続される。このように圧電ァクチユエータ本体 21の両面に 対し、 1枚のフレキシブル基板 14で実装することが可能であるため、部品点数が少な くなり取り扱いが容易になっている。
[0033] さらにフレキシブル基板 14の先端部分には、スライダとの間で位置決めを行うため の位置決め孔 37が設けられている。なお、位置決め孔 37は、本実施形態では、 2個 設けられており、一方は、丸孔、他方は長孔となっている。さらまたフレキシブル基板 14の中央部分には、固定部材 25との間で位置決めを行うための位置決め孔 38が 設けられている。
[0034] 従って、フレキシブル基板 14を圧電ァクチユエータ本体 21に電気的に接続した状 態として、位置決め孔 38を利用して、固定部材 25によりフレキシブル基板 14を外部 接続端子 13側でケーシング本体 15に固定することによりフレキシブル基板 14は、完 全に固定状態となる。
またフレキシブル基板 14の中央部分、すなわち、位置決め孔 38が設けられている 部分と、外部接続端子 13との間は、多少の応力が加わってもそれを吸収するダンバ 一機能を持たせたダンパー部 39を構成しており、さらにフレキシブル基板 14は、位 置決め孔 38を用いて固定部材 25によりケーシング本体にも固定されるため、外部接 続端子 13へ引張り力が印加されたような場合であっても、圧電ァクチユエータ本体 2 1にその影響が直接的に伝わることがないため、駆動力の低下を招くことがない。
[0035] この状態で(図 2参照)、固定部材 25のあおり防止ばね 26は、スライダ 23の上面側 (蓋体 17側)から下面側(ケーシング本体 15側)にスライダ 23を付勢し、圧電ァクチュ エータ本体 21が振動状態にあっても、スライダ 23があおられるのを容易に防止する こととなる。
[0036] この後、ケーシング本体 15にねじ 16により蓋体 17を固定することにより、図 1に示し たように圧電ァクチユエータモジュール 10が完成することとなる。
上記構成の圧電ァクチユエータモジュール 10は、外部接続端子 13に駆動電圧を 外部より印加することにより、基板 21Aに圧電素子 21Bが貼り付けられた構造を有す る圧電ァクチユエータ本体 21は、スライダ 23の係合突起 23Aに係合した付勢部材 2 4により回転体 22側に付勢された状態で振動する。この結果、長手方向に伸縮する 縦振動と、略 S字状に振動する屈曲振動とが合成されて当接部 21Cの先端は楕円 軌跡を描きつつ、回転体 22を駆動し、回転体 22は回転運動を行うこととなる。
[0037] このとき、フレキシブル基板 14は、スライダ 23に固定されており、圧電ァクチユエ一 タ本体 21がスライダ 23とともに、動いたとしてもフレキシブル基板のオーバーハング 電極 35に応力が発生することはないため、長寿命化を図ることができる。
この結果、回転体 22の回転運動は、出力軸 12を介して外部の被駆動部材を駆動 することとなる。
[0038] [2]第 1実施形態の変形例
次に第 1実施形態の変形例について説明する。
[2. 1]第 1変形例
以上の説明においては、出力軸 12の駆動トルクを変更する場合には、交換容易な 構造となっている付勢部材 24を付勢力の異なるものに交換することにより行うこととし ていたが、本第 1変形例は、付勢部材 24の交換なしに出力軸 12の駆動トルクを変更 する場合の変形例である。
[0039] 図 14は第 1変形例の圧電ァクチユエータモジュールの上面図である。図 14におい て、図 2と同様の部分には、同一の符号を付すものとする。
図 2は、第 1実施形態の圧電ァクチユエータモジュールの上面図である。 ケーシング本体 15内には、圧電ァクチユエータ本体 21が設けられている。圧電ァク チユエータ本体 21は、スライダ 23により支持されてレ、る。 このとき、スライダ 23は、支持している圧電ァクチユエータ本体 21の回転体 22に対 する当接状態を維持すベぐスライダ 23に設けられた回動軸 41Aに回動可能に嵌合 された付勢力調整用カム 41に係合した付勢部材 24により回転体 22側に付勢されて いる。このとき、付勢力調整用カム 41を回動させることにより付勢部材 24の付勢力を 変更することにより、容易に回転体 22、ひいては、出力軸 12の駆動トノレクを変更する ことができるようになってレ、る。
[0040] [2. 2]第 2変形例
以上の説明におレ、ては、ケーシング 11の電位レベルにっレ、ては述べてレ、なかった が、ケーシング 11を金属などの導体で構成するとともに、その電位レベルをグランド( 接地)レベルとすることにより、圧電ァクチユエータ本体はシールド状態となり、静電気 の影響等を考慮する必要もない。さらにグランドの共通化が図れ、回路構成も簡略化 すること力 Sできる。
[0041] [2. 3]第 3変形例
以上の説明においては、蓋体を一体のものとしていた。し力 ながら、蓋体が一体 の場合には、回転体の組込と圧電ァクチユエータ本体の組込を同時並行して行う必 要があり、両者の位置関係が固定的ではないので、調整、組立が難しいこととなって いた。
そこで、本第 3変形例は、蓋体を分割して、組立性の向上を図る場合の変形例であ る。
[0042] 図 15は、第 3変形例の圧電ァクチユエータモジュールの上面図である。図 16は第 3 変形例の圧電ァクチユエータモジュールの側面図である。図 17は、第 3変形例の圧 電ァクチユエータモジュールの正面図である。
図 15ないし図 17において、図 1と同様の部分には同一の符号を付すものとする。 本第 3変形例において、蓋体は、回転体およびその回転軸である出力軸 12を含む 部分を覆って固定する第 1蓋体 17-1と、圧電ァクチユエータ本体およびフレキシブル 基板の一部、その他の部分を覆って固定する第 2蓋体 17-2と、で構成している。
[0043] この場合に、第 1蓋体 17-1と、第 2蓋体 17-2との合わせ目部分 17Xは、各蓋体 17 -1、 17-2の厚さが他の部分の半分程度とされており、互いに重なり合うことが可能で ある。
この結果、完成した圧電ァクチユエータモジュール内に外部からゴミなどが進入す るのを防止することができる。
このような構成を採った結果、最初にケーシング本体 15に回転体を組み込んで、 第 1蓋体 17-1をねじ 16により固定してしまえば、回転体の位置がずれたりすることが なくなり、組立工程において組立性の向上を容易に図ることが可能となっている。
[0044] [2. 4]第 4変形例
以上の説明においては、回転体の軸受部分については何ら詳細を述べていなかつ た力 ケーシング 11 (図 1参照)全体の厚さを薄くしつつ、回転体の出力軸 12の傾き 防止、位置決めの容易さの観点から、図 17に示すように、軸受け部 16Aをケーシン グ本体 15から突出させることが好ましレ、。
[0045] [2. 5]第 5変形例
以上の説明は、スライダと別体の付勢部材によりスライダにより支持されている圧電 ァクチユエータ本体の回転体への当接状態を維持するものであった力 S、本変形例は
、スライダ自身に付勢部を設けることにより同様の効果を得る変形例である。
図 18は第 5変形例のスライダの上面図である。図 18において、図 5と同様の部分に は同一の符号を付すものとする。
スライダ 23Mは、平面形状が略 H字形状のスライダ本体 23MAと、スライダ本体 23 MAの一端に略 U字状の付勢部 23MBが形成された形状となっている。
[0046] スライダ本体 23MAには、圧電ァクチユエータ本体 21を固定するためのねじ 31を 挿入するねじ挿入孔 23Bと、フレキシブル基板 14を係合するための係合ピン 32を挿 入するピン揷入孔 23Cと、付勢部 23MBにより付勢される場合に回動中心となるケー シング本体 15に設けられた回動軸 15A (図 19参照)が揷入される回動軸揷入孔 23 Dと、を備えている。
[0047] 図 19は、図 18のスライダおよび圧電ァクチユエータ本体をケーシング本体に組み 込んだ場合の外観斜視図である。なお、図 19では、理解の容易のためにフレキシブ ル基板は図示してレ、なレ、。
スライダ 23Mおよび圧電ァクチユエータ本体 21は、固定された状態でケーシング 本体 15内の収納凹部 15Bに回転体 22とともに収められる。このとき、スライダ 23Mの 付勢部 23MBは、収納凹部 15B内の係合突部 15Mに弾性変形した状態で係合さ れており、その弾性力によりスライダ 23Mを回動軸 15Aを回動中心として回動させる ことにより、圧電ァクチユエータ本体 21の当接部 21Cを回転体 22の周面への当接状 態を維持するようにする。
従って、本第 5変形例によっても、一つの弾性体で安定した付勢 (加圧)が行え、得 られる駆動トルクも安定したものとなる。
[0048] [3]第 2実施形態
上記第 1実施形態においては、スライダは回転軸を中心として回動させることにより 、圧電ァクチユエータ本体の当接部の回転体への当接状態を維持していたが、本第 2実施形態は、スライダを平行状態で回転体側にスライドさせることにより当接部との 回転体への当接状態を維持させるための実施形態である。
図 20は、第 2実施形態の圧電ァクチユエータの上面図である。図 20において、図 2 と同様の部分には同一の符号を付すものとする。
スライダ 23Xの側部突起部 50あるいは側部摺接部 51は、ケーシング本体 15の凹 部 15Bの側壁 15Cに摺動可能に当接している。従って、スライダ 23Xの動きは、圧電 ァクチユエータモジュールの長手方向への自由度があるだけとされている。
[0049] この状態において、スライダ 23Xは、支持している圧電ァクチユエータ本体 21の回 転体 22に対する当接状態を維持すベぐスライダ 23Xの係合突起 23AXに係合した 付勢部材 24Xにより回転体 22側に付勢されている。
このとき、付勢部材 24Xが係合突起 23AXに与える力ベクトルを仮に A1とすると、 圧電ァクチユエータモジュールの短手方向の分解力ベクトルは A2、長手方向の分解 力ベクトルは A3となる。
[0050] し力、しながら、短手方向の分解力ベクトル A2は、側部突起部 50と側壁 15Cの摩擦 力として現れるだけである。すなわち、実質的には、長手方向の分解力ベクトル A3に より、圧電ァクチユエータ本体 21の当接部 21Cの回転体 22への当接状態が維持さ れることとなる。
従って、当接部 21Cは、同一方向から回転体 22に当接することとなるため、第 1実 施形態の場合と比較して、より安定した回転体 22の駆動が可能となり、得られる駆動 トルクもより安定したものとなる。
[0051] [4]第 3実施形態
以上の各実施形態においては、出力軸は単なる軸の場合であつたが、本第 3実施 形態は、出力軸として機能する歯車が設けられている場合の実施形態である。
[0052] 図 21は、第 3実施形態の圧電ァクチユエータモジュールの上面図である。図 22は 第 3実施形態の圧電ァクチユエータモジュールの側面図である。図 23は、第 3実施 形態の圧電ァクチユエータモジュールの正面図である。
図 21ないし図 23において、図 15ないし図 17と同様の部分には同一の符号を付す ものとする。
圧電ァクチユエータモジュール 10Yは、ケーシング(筐体) 11を備えている。このケ 一シング 11の上面には、駆動力を伝達するための出力軸として機能する歯車 60が 設けられている。さらにケーシング 11の長手方向の一端面から外部接続端子 13が 設けられたフレキシブル基板 14が引き出されている。
[0053] ケーシング 11は、ケーシング本体 15と、ケーシング本体 15にねじ 16により固定さ れ、ケーシング本体 15と協働して圧電ァクチユエータ本体を保護すベぐ回転体およ びその回転軸である出力軸 12を含む部分を覆って固定する第 1蓋体 17-1と、圧電 ァクチユエータ本体およびフレキシブル基板の一部、その他の部分を覆って固定す る第 2蓋体 17-2と、を備えている。
この場合において、歯車 60を構成する歯車部 60Aおよび回転軸 60Bは、本実施 形態では別体に構成している。従って、歯車部 60Aは着脱可能とすることもできる。 この構成によれば、使用目的に応じて適宜変更が可能である。
以上の説明では、歯車 60を構成する歯車部 60Aおよび回転軸 60Bを別体に構成 していたが、構成することも可能である。
[0054] 図 24は、圧電ァクチユエータモジュール 10Yの A— A断端面図である。
図 24において、図 2あるいは図 17と同様の部分には同一の符号を付すものとする 本圧電ァクチユエータモジュール 10Yには、ケーシング本体 15の裏面側に圧電ァ クチユエータ本体 21の当接部 21Cと回転体 11との当接状態を視認することが可能と する図示しない塞ぎ板により塞ぐことが可能な視認用孔 70を設けている。
[0055] この結果、圧電ァクチユエータモジュール 10Yの製造時に当接部 21Cと回転体 11 との当接状態を視認して、適正な調整を行うことができ、検查性を向上させることがで きる。
以上の説明では、視認用孔 70は、図示しない塞ぎ板により塞ぐものとしていたが、 視認用孔 70に代えて、透明部材を設け、当接部 21Cと回転体 11との当接状態を視 認可能な状態としても同様の効果を得ることが可能である。
[0056] [4. 1]変形例
図 25は第 3実施形態の変形例を説明する図である。図 25において、図 24と同様 の部分には同一の符号を付すものとする。
第 3実施形態の変形例は、第 3実施形態と比較して、出力軸として機能する歯車 60 に代えてカム 61を設けた場合のものである。
この場合においても、カム 61を構成するカム部 61Aおよび回転軸 61Bは、別体に 構成している。従って、カム部 61 Aは着脱可能とすることもできる。この構成によれば 、使用目的に応じて適宜変更が可能である。以上の説明では、カム 61を構成する力 ム部 61Aおよび回転軸 61Bを別体に構成していた力 構成することも可能である。
[0057] [5]第 4実施形態
以上の第 3実施形態においては、出力軸として機能する歯車の歯車部あるいは力 ムのカム部が、ケーシング外部に全て露出している構成であつたが、本第 4実施形態 は、その一部のみが露出している場合の実施形態である。
[0058] 図 26は、第 4実施形態の圧電ァクチユエータモジュールの上面図である。図 27は 第 4実施形態の圧電ァクチユエータモジュールの側面図である。図 28は、第 4実施 形態の圧電ァクチユエータモジュールの正面図である。図 29は、第 4実施形態の圧 電ァクチユエータモジュールの外観斜視図である。
図 26ないし図 29において、図 21ないし図 23と同様の部分には同一の符号を付す ものとする。
[0059] 圧電ァクチユエータモジュール 10Zは、ケーシング(筐体) 11を備えており、このケ 一シング 11の長手方向端面から、駆動力を伝達するための出力軸として機能する歯 車 62の一部が突設されている。さらにケーシング 11の端手方向の一端面から外部 接続端子 13が設けられたフレキシブル基板 14が引き出されている。
このようにケーシング 11の長手方向端面から、駆動力を伝達するための出力軸とし て機能する歯車 62の一部が突設された構成を採ることで、第 3実施形態の場合と比 較してより薄型の圧電ァクチユエータモジュールを構成することが可能となる。
[0060] [6]第 5実施形態
本第 5実施形態は、出力軸として筒状の回転体を用いた場合の実施形態である。 図 30は、第 5実施形態の圧電ァクチユエータモジュールの外観斜視図である。 圧電ァクチユエータモジュール 10Qは、ケーシング(筐体) 11を備えており、このケ 一シング 11において駆動力を伝達するための出力軸として機能する筒状回転体 12 Bが収納されている。
さらに、ケーシング 11の裏面側には、図示しない外部接続端子 (表面実装用)が設 けられている。
[0061] 図 31は、第 5実施形態の圧電ァクチユエータモジュールの A— A断端面図である。
ケーシング本体 15内には、圧電ァクチユエータ本体 21が設けられている。圧電ァク チユエータ本体 21は、図示しなレ、スライダにより支持されてレ、る。
そして、ケーシング本体 15内には、出力軸として機能し、圧電ァクチユエータ本体 2 1により駆動される被駆動体としての筒状回転体 12Bが設けられている。
[0062] この結果、出力軸部分は光を透過することができるため、光を透過させつつ制御を 行うような用途に適した圧電ァクチユエータモジュールである。
[0063] 図 32および図 33に本第 5実施形態のより具体的適用例を示す。
図 32は、出力軸部分の孔にレンズを配設して、レンズの焦点合わせに用いる場合 の圧電ァクチユエータモジュールの具体的適用例の断面図である。図 33は、図 32の 圧電ァクチユエータモジュールの具体的適用例の側面図である。
[0064] 本適用例の装置である焦点合わせ装置 80は、摺動軸 81を有するレンズ 82と、筒 状回転体 12Bが圧電ァクチユエータ本体 21により回転されることにより、筒状回転体 12Bに連動して回転する内部鏡筒 83と、ケーシング 11に固定された外部鏡筒 84と、 を備えている。
この場合において、図 33に示すように、内部鏡筒 83には斜め方向に延在する第 1 ガイド溝 91が設けられ、外部鏡筒 84には上下方向に延在する第 2ガイド溝 92が設 けられている。そして、第 1ガイド溝 91および第 2ガイド溝 92は互いに交差するように 設けられている。
[0065] 次に動作を説明する。
筒状回転体 12Bが圧電ァクチユエータ本体 21により回転駆動されることにより、内 部鏡筒 83も回転することとなる。
このとき、外部鏡筒 84は、ケーシング 11に固定されているため、回転しないこととな る。
[0066] 従って、レンズ 82の摺動軸 81は、第 1ガイド溝 91と第 2ガイド溝 92の双方に沿って 摺動することとなり、例えば、図 33に示すような場合、内部鏡筒 83を上方から見て反 時計回りに回した場合には、レンズ 82は下方に移動することとなる。同様に内部鏡筒 83を上方から見て時計回りに回した場合には、レンズ 82は上方に移動することとな る。
このようにして、所望のレンズ位置にレンズ 84を移動させることが可能となる。 以上の説明においては、実際の用途については説明していなかつたが、小型ディ ジタルカメラなどを含む小型カメラのズーム機構あるいはオートフォーカス機構などに 用いることが可能である。また、小型の光ピックアップ用のレンズを駆動する構成とす ることも可肯である。
[0067] [7]第 6実施形態
図 34は、上記各実施形態のァクチユエータモジュールを玩具などに用いられる車 輪装置を備えた車両 (移動体)に適用した場合の実施形態の主要部である。
図 34に示すように、車輪装置 100は、ァクチユエータモジュール 101を備えている 。ァクチユエータモジュール 101の出力軸 101Aには、車軸 102が直接接続されてお り、ァクチユエータモジュール 101が車軸 102を回転駆動することにより、車輪 103を 駆動して、車輪装置 100が設けられた模型自動車などの車両を走行させることが可 能となる。 [0068] 本実施形態では、サスペンション装置は図示していないが、サスペンション装置に ァクチユエータモジュール 101、車軸 102および車輪 103を載置することにより、走行 面の凹凸などの影響を低減して良好に走行させるように構成することも可能である。 また、ァクチユエータモジュールは、薄く、且つ、小型に構成することが可能なので 、小型の模型自動車などにおいても、各車輪にァクチユエータモジュールをそれぞ れ別個に設けるように構成しても、ノ ッテリーなどの大型部品を容易に配置すること ができる。
することも可能である。
以上の説明は、ァクチユエータモジュール 101が車軸 102を介して車輪 103をダイ レクト駆動する場合のものであった力 所定の減速ギア輪列あるいは増速ギア輪列を 介して駆動するように構成することも可能である。
[0069] [8]第 7実施形態
図 35は上記各実施形態のァクチユエータモジュールを模型飛行機 (飛行体)に適 用した場合の外観斜視図である。
模型飛行機 200は、プロペラ装置 201を備え、このプロペラ装置 201の発生させた 推進力によって飛行するようなっている。模型飛行機 200は、機体本体 202から左右 に伸びる主翼 203と、機体本体 202の後部に設けられる尾翼 204とを備えている。尾 翼 204には、方向舵 205が設けられており、方向舵 205を駆動することにより、模型 飛行機 200の進行方向を調整することができるようになつている。
[0070] 次に、プロペラ装置 201の詳細について説明する。
図 36は、プロペラ装置の一部断面図である。
図 36に示すように、このプロペラ装置 201は、機体本体(支持体) 202にプロペラ 2 10となって回転可能に支持される回転軸 211を有している。
[0071] この回転軸 211は、ァクチユエータモジュール 213の出力軸 213Aと一体となって おり、ァクチユエータモジュール 213の出力軸 213Aが回転駆動されると、この回転 に伴って回転するプロペラ 210によって、図中矢印 X方向への推進力が発生し、模 型飛行機 200が飛行するようになっている。
以上の説明のように、本実施形態によれば、ァクチユエータモジュールは、小型軽 量化が容易であるので、コイルモータを内蔵する模型飛行機と比較して、より重量を 軽くすることができ、長時間の飛行や、より大型の模型飛行機を飛行させることが可 能となる。
以上の説明は、ァクチユエータモジュール 213がプロペラ 210をダイレクト駆動する 場合のものであった力 所定の減速ギア輪列あるいは増速ギア輪列を介して駆動す るように構成することち可肯である。
[0072] [9]第 8実施形態
図 37は、第 8実施形態の電動工具の外観斜視図である。図 38は、第 9実施形態の 電動工具の概要構成ブロック図である。
電動工具 300は、ケーシング 301と、ケーシング 301を構成し、その内部に電源で ある電池 302を収納する蓋体 303と、ァクチユエータモジュール 304と、ケーシング 3 01内に内蔵されたァクチユエータモジュール 304の出力軸に着脱可能に取り付けら れた工具アタッチメント(図 36では、十字ドライバピット) 305と、回転方向の切替およ び停止を切り換えるための操作スィッチ 306と、ケーシング 301に内蔵され、操作スィ ツチ 306の操作状態に応じて、電池 302からの供給電力によりァクチユエータモジュ ール 304を駆動するドライブ回路 307と、を備えてレ、る。
[0073] 上記構成によれば、ユーザの操作スィッチ 306の操作状態に応じて、ァクチユエ一 タモジュール 304の出力軸、ひいては、出力軸に取り付けられたアタッチメント 305が ドライブ回路 307により回転駆動され、ねじ 310の締め付け、取り外しなどを行えるこ ととなる。
この場合において、ァクチユエータモジュール 304は、同一の体積のコイルモータと 比較してより大きなトノレクを得ることができ、小型で適用範囲の広レ、電動工具を構成 すること力 S可肯 となる。
[0074] 以上の説明のように、本実施形態によれば、ァクチユエータモジュールは、小型で 高トルクの電動工具を構成することが可能となる。
以上の説明においては、工具アタッチメントとして十字ドライバを説明した力 ドリノレ アタッチメント、各種ドライバアタッチメント、丸鋸アタッチメント等を用いることが可能 である。さらには、工具アタッチメントとしてリンク機構やカム機構を備えた工具ァタツ チメントを構成すれば、ジグソ一、インパクトドライバ、サンダーなどを構成することも 可能である。
[0075] [10]第 9実施形態
図 39は、第 10実施形態のモータモジュールの概要構成ブロック図である。
モータモジュール 400は、ァクチユエータモジュール 401と、電源供給端子 402を 介した外部からの供給電力によりァクチユエータモジュール 401を駆動するドライブ 回路 403と、電源供給端子 402を外部に露出し、ァクチユエータモジュール 401およ びドライブ回路 403を収納するケーシング 404と、を備えてレ、る。
本第 9実施形態によれば、電源供給端子 402に外部電源を接続するだけで、ァク チユエータモジュール 401の図示しない出力軸を回転させることができ、通常のコィ ルモータと同様に取り扱うことが可能となる。
[0076] [11]第 10実施形態
図 40は第 10実施形態の振動モータモジュールの外観正面図である。 図 40において、図 25の第 3実施形態の変形例と同様の部分には同一の符号を付す ものとする。
本第 10実施形態は、第 3実施形態と比較して、出力軸として機能する歯車 60に代 えて偏心分銅 71を設け、携帯電話機において着信報知を行う振動モータモジユー ル 500として構成した場合のものである。
[0077] この場合においても、偏心分銅 71を構成する分銅部 71Aおよび回転軸 71Bは、別 体に構成している。
分銅部 71Aは、振動量を高く保つ必要性から、比重の高い金属材料が用いられて おり、例えば、タングステンが用いられている。
この場合において、分銅部 71Aは着脱可能であり、要求される振動量などに応じて 材料、形状などを変更することも可能である。
[0078] 図 41は、実際に振動モータモジュール 500を携帯電話機 501に組み込んだ場合の 組込状態説明図である。
図 41に示すように、振動モータモジュール 500は、非常に小型に形成することが可 能であり、小型の携帯電話機 501であっても、収納スペースに困ることがない。 そして、携帯電話機 501が着信した場合には、分銅部 71Aが、図 41中、例えば、矢 印方向に回転し、分銅部 71Aの回転軸 71Bにおける重量不釣り合いのため、振動 が発生し、ユーザに着信があった旨を振動により告知することが可能となる。
[0079] [12]第 11実施形態
図 42は、第 11実施形態の圧電ァクチユエータ本体 (振動体)の上面図である。 圧電ァクチユエータ本体 21Xは、弾性部材である基板(シム材) 21Aに PZTなどの 圧電素子 21Bが両面に貼り付けられた構造を有している。この構造において、実際 の駆動時には、例えば、基板 21Aには、電圧 V- (負側電圧)が印加され、圧電素子 21Bにはそれぞれ電圧 V+ (正側電圧)が印加されることとなる。
[0080] 基板 21Aの両側部には、圧電ァクチユエータ本体 21をスライダ 23に固定するため の固定部 21Dがそれぞれ設けられており、圧電素子 21Bが貼り付けられた部分を浮 かせた状態で支持することとなる。この固定部 21Dには、スライダ 23と固定すべくね じが挿入されるねじ孔 21Eと、位置決め用孔 21Fが設けられている。
圧電素子 21Bには、 1つの領域 Al lが設けられており、駆動信号が印加されること となる。
[0081] より詳細には、 Al lに駆動電圧を印加することによってァクチユエータ本体 21Xが 駆動される。そして縦振動を起こすが、このとき当接部 21Zは、基板 21Aの非対称な 位置に設けられているので、縦方向の伸縮に対してアンバランスが生じ、屈曲振動が 励震され、当接部 21Zに対してある一定方向(例えば、時計回り方向)の楕円軌道に 沿った振動を発生させることとなる。
すなわち、本実施形態の圧電ァクチユエータ本体 21Xによれば、一つの電極を設け るだけで、一方向の回転が可能な圧電ァクチユエータを構成することが可能となる。 なお、より振動を確実にするために、図 42に破線で示すように、当接部 21Zと同一形 状のバランス部 21Z1を長方形状の基板の中心に対して当接部 21Zが設けられた位 置と略点対称な位置に設けるようにしてもよい。
[0082] [13]第 12実施形態
図 43は、第 12実施形態の圧電ァクチユエータ本体 (振動体)の上面図である。図 4 4は、当接部の外観斜視図である。図 45は、第 12実施形態の圧電ァクチユエータ本 体 (振動体)の側面図である。
基板 21Aは、例えば、ビッカース硬度 500HV、ヤング率 210GPaの SUS301EH で形成されている。
[0083] 一方、当接部 21Mは、ビッカース硬度 1600HV、ヤング率 350 380GPaのァノレ ミナで構成されており、回転体に当接される当接面 21MA1を有する当接端部 21M Aと、当接端部 21MAを支持すべく基板の一端に設けられた凹部 21K内に固定支 持される固定部 21MBと、を備えている。
当接端部 21MAは、例えば、図 44に示すように、半円柱形に形成され、図 45に示 すように、基板 21Aの厚さに圧電素子 21Bの厚さ(2層分)を加えた厚さと同程度の 厚さとされてレヽる。
[0084] また、固定部 21MBは、基板 21Aの一端に設けられた凹部 21Kの形状と同一の半 円柱型に形成されており、その厚さは基板 21Aと同定度となっている。
固定部 21MBは、基板 21Aへ固定されている状態で、 2層の圧電素子 21Bに両面 力 挟まれた状態となっており、圧電素子 21B、基板 21A及び当接部 21Mは互いに 常温硬化型エポキシ樹脂系接着剤により接着固定されている。
以上のような構成とされているので、基板 21Aと当接部 21Mとをそれぞれの機能に 適した材料で構成することができる。
[0085] 上述したように、基板 21Aは、 SUS301EHで構成されており、圧電素子 21Bの脆 性を補いながら圧電素子 21Bの振動を阻害することがない。
また、当接部 21Mは、アルミナで構成されているので、回転体と接する当接面 21 MA1の耐摩耗性を向上することができるため、圧電ァクチユエータモジュールの耐 久性が向上することとなる。
[0086] [14]第 13実施形態
図 46は、第 13実施形態の圧電ァクチユエータ本体 (振動体)の上面図である。また 、図 47は、第 13実施形態の圧電ァクチユエータ本体 (振動体)の側面図である。 圧電ァクチユエータ本体 (振動体) 21Zを構成する基板 21 Aは、例えば、ビッカース 硬度 500HV、ヤング率 210GPaの SUS301EHで形成されている。
[0087] 一方、当接部 21Nは、ビッカース硬度 1500HV、ヤング率 700GPaの超鋼合金 H 1 (WC粒子径 l / m、 Co含有量 10%)で構成されており、回転体に当接される当接 面 21NA1を有する当接端部 21NAと、当接端部 21NAを支持すべく基板 21Aの一 端に設けられた凹部 21K内に固定支持される固定部 21NBと、を備えている。 そして当接部 21N全体としては、円盤状に形成されている。
[0088] この当接部 21Nは、例えば、超鋼合金 HIの棒材を適切な厚みで切断して、厚み 方向に研磨し切断により生じたばりを取り除くととともに、当接面 21NA1を図 47の紙 面に平行な方向に切断した断面形状が回転体に対して円弧凸形状となるようにする
[0089] また、固定部 21NBは、基板 21Aの一端に設けられた凹部 21Kの形状と同一の半 円柱型に形成されており、その厚さは基板 21Aと同定度となっている。
固定部 21NBは、基板 21Aへ固定されている状態で、 2層の圧電素子 21Bに両面 力、ら挟まれた状態となっており、圧電素子 21B、基板 21A及び当接部 21Nは互いに 常温硬化型エポキシ樹脂系接着剤により接着固定されている。
以上のような構成とされているので、基板 21Aと当接部 21Nとをそれぞれの機能に 適した材料で構成することができる。
[0090] 上述したように、基板 21Aは、 SUS301EHで構成されており、圧電素子 21Bの脆 性を補いながら圧電素子 21Bの振動を阻害することがない。
また、当接部 21Nは、超鋼合金 HIで構成されているので、回転体と接する当接面 21NA1の耐摩耗性を向上することができるため、圧電ァクチユエータモジュールの 耐久性が向上することとなる。
[0091] [15]実施形態の変形例
以上の説明においては、基板 21Aの材料として SUS301EHを用いていた力 こ れに限らず、他のステンレス鋼を用いても良レ、。また、ァノレミニゥム、アモルファス金 属、ゴムメタルなどの低ヤング率で振動しやすぐ圧電素子 21 Bの振動を阻害しない 材料で構成されていてもよい。
[0092] 以上の説明においては、基板 21Aとは、別体で設ける当接部の材料としてアルミナ や超鋼合金を用いていたが、これに限らず、窒化ケィ素、ジルコニァ、炭化ケィ素な どのセラミックスや、窒化処理あるいは侵炭処理などの処理が施された鋼材でもよい 。要するに当接部の材料は、基板 21 A単体でも当接部を構成可能な場合に、少なく とも回転体に対する当接面が基板の材料よりも高硬度となるように選定されていれば よい。
以上の説明においては、基板及び圧電素子の外観を略長方形状、板状としていた 、用途や使用条件によって、他の形状等任意に設定可能である。例えば、以上の 説明においては、圧電素子が略平面上に形成されていたが、ブロック状等とすること も可能である。
これらの場合において、当接部は、圧電素子の回転体側端面から所定方向に突出 するようにすればよい。所定方向としては、圧電素子の回転体側端面を含む平面垂 直な面に対し、 ± 30°以内、より望ましくは、 ± 15°以内、さらに望ましくは ± 10°以内 となるようにする。

Claims

請求の範囲
[1] 電極を有する圧電ァクチユエータ本体と、
外部から駆動信号が入力され、前記電極に前記駆動信号を供給する信号入力端 子と、
前記圧電ァクチユエータ本体の一部が当接状態で前記圧電ァクチユエータ本体と 略同一平面上に配置され、前記圧電ァクチユエータ本体により駆動され回転運動す る回転体と、
前記回転体および前記信号入力端子が電気的に接続された前記圧電ァクチユエ ータ本体を収納する筐体と、
前記筐体より露出され、前記回転体により直接的あるいは間接的に伝達された回 転運動を外部に出力するための出力軸と、
を備えたことを特徴とする圧電ァクチユエータモジュール。
[2] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記圧電ァクチユエータ本体を支持するスライダを備え、
前記スライダを回動あるいは平行移動させることにより前記圧電ァクチユエータ本体 の前記回転体に対する当接状態を維持することを特徴とする圧電ァクチユエータモ ジュール。
[3] 請求項 2記載の圧電ァクチユエータモジュールにおレ、て、
前記スライダを前記回転体側に付勢する付勢部材を備えたことを特徴とする圧電ァ クチユエ一タモジユーノレ。
[4] 請求項 3記載の圧電ァクチユエータモジュールにおレ、て、
前記付勢部材は交換可能に構成されていることを特徴とする圧電ァクチユエータモ ジュール。
[5] 請求項 3記載の圧電ァクチユエータモジュールにおレ、て、
前記付勢部材の前記スライダに対する付勢力を可変するための付勢力可変部を備 えたことを特徴とする圧電ァクチユエータモジュール。
[6] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記筐体は、蓋体と、筐体本体とを備え、 前記蓋体は、前記回転体および前記出力軸に対応する部分を覆う第 1蓋体と、 前記圧電ァクチユエータ本体に対応する部分を覆う第 2蓋体と、
を備えたことを特徴とする圧電ァクチユエータモジュール。
[7] 請求項 6記載の圧電ァクチユエータモジュールにおレ、て、
前記第 1蓋体と前記第 2蓋体とは、その一部が重なり合った状態で組立可能である ことを特徴とする圧電ァクチユエータモジュール。
[8] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記当接状態を前記筐体の外部より視認可能とする視認窓あるいは透明部材が前 記筐体に設けられていることを特徴とする圧電ァクチユエータモジュール。
[9] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記回転体は回転軸を有し、
前記回転軸を受ける軸受け部は、前記筐体の周面に突設されていることを特徴と する圧電ァクチユエータモジュール。
[10] 請求項 1に記載の圧電ァクチユエータモジュールにおいて、
前記回転体に前記出力軸が接続され、当該出力軸を介して駆動力伝達部が接続 されていることを特徴とする圧電ァクチユエータモジュール。
[11] 請求項 10記載の圧電ァクチユエータモジュールにおいて、
前記駆動力伝達部は、歯車あるいはカムを有し、前記歯車あるいはカムは固定もし くは着脱可能に配置されていることを特徴とする圧電ァクチユエータモジュール。
[12] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て
前記出力軸は、略円筒形状を有していることを特徴とする圧電ァクチユエ一タモジ ユーノレ。
[13] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記圧電ァクチユエータ本体の駆動電源の接地側電位が前記筐体の電位と同電 位とされていることを特徴とする圧電ァクチユエータモジュール。
[14] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記圧電ァクチユエータ本体は、その表面の複数の領域に圧電素子が積層された 基板と、前記基板を前記スライダに固定するための固定部と、前記基板の長手方向 端部に設けられた当接部とを備え、
前記圧電素子に駆動信号を供給することにより、前記圧電素子を伸縮させて前記 振動板に前記長手方向に伸縮する縦振動および前記長手方向とは交差する方向へ の屈曲振動を生じさせ、これらの振動が合成された合成振動に伴う前記当接部の変 位によって前記回転体を回転駆動する、
ことを特徴とする圧電ァクチユエータモジュール。
[15] 請求項 1に記載の圧電ァクチユエータモジュールにおいて、
前記圧電ァクチユエータ本体を前記回転体に当接させるべく支持するスライダと、 前記圧電ァクチユエータ本体に外部の接続端子からの駆動電力を供給すベぐ当 該圧電ァクチユエータ本体の電極に電気的に接続されるフレキシブル基板と、を備 前記フレキシブル基板は、前記筐体に支持される筐体支持部と、前記スライダに支 持されるスライダ支持部と、前記筐体支持部とスライダ支持部との中間部分に配置さ れ両支持部間における応力を緩和しあるいは振動伝達を抑制するためのダンパー 部と、を備えたことを特徴とする圧電ァクチユエータモジュール。
[16] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記圧電ァクチユエータ本体は、その表面に圧電素子が積層された基板と、 前記基板とは別体で構成され、前記基板に支持されるとともに、前記回転体に当接 する当接部を備え、
前記当接部の少なくとも前記回転体に当接する部分は、前記基板の硬度よりも高 硬度に構成されていることを特徴とする圧電ァクチユエータモジュール。
[17] 請求項 16記載の圧電ァクチユエータモジュールにおいて、
前記当接部は、一端が前記基板の端面から所定方向に突設され、他端が前記基 板の一端側に設けられた凹部内に固定されて支持されていることを特徴とする圧電 ァクチユエ一タモジユーノレ。
[18] 請求項 16記載の圧電ァクチユエータモジュールにおいて、
前記当接部は、セラミックス、超硬合金、窒化処理を施した鋼材あるいは侵炭処理 が施された鋼材で構成されていることを特徴とする圧電ァクチユエータモジュール。
[19] 請求項 1記載の圧電ァクチユエータモジュールにおレ、て、
前記電極及び前記信号入力端子は、それぞれ複数設けられていることを特徴とす る圧電ァクチユエータモジュール。
[20] 電極を有する圧電ァクチユエータ本体と、
駆動信号が入力され、前記電極に前記駆動信号を供給する信号入力端子と、 前記圧電ァクチユエータ本体の一部が当接状態で前記圧電ァクチユエータ本体と 略同一平面上に配置され、前記圧電ァクチユエータ本体により駆動され回転運動す る回転体と、
前記回転体および前記信号入力端子が電気的に接続された前記圧電ァクチユエ ータ本体を収納する筐体と、
前記筐体より露出され、前記回転体により直接的あるいは間接的に伝達された回 転運動を外部に出力するための出力軸と、
外部から供給される電力に基づいて前記駆動信号を生成し、前記信号入力端子に 出力するドライブ回路と、
を備えたことを特徴とするモータモジュール。
[21] 電極を有する圧電ァクチユエータ本体と、
駆動信号が入力され、前記電極に前記駆動信号を供給する信号入力端子と、 前記圧電ァクチユエータ本体の一部が当接状態で前記圧電ァクチユエータ本体と 略同一平面上に配置され、前記圧電ァクチユエータ本体により駆動され回転運動す る回転体と、
前記回転体および前記信号入力端子が電気的に接続された前記圧電ァクチユエ ータ本体を収納する筐体と、
前記筐体より露出され、前記回転体により直接的あるいは間接的に伝達された回 転運動を外部に出力するための出力軸と、
前記出力軸に接続されて駆動される被駆動部と、
電力を供給する電源と、
前記電源から供給される電力に基づレ、て前記駆動信号を生成し、前記信号入力 端子に出力するドライブ回路と、 を備えたことを特徴とする装置。
[22] 請求項 21記載の装置において、
前記被駆動部は、車輪、プロペラあるいは工具アタッチメントのいずれかであること を特徴とする装置。
PCT/JP2004/011687 2003-08-13 2004-08-13 圧電アクチュエータモジュール、モータモジュールおよび装置 WO2005018081A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513185A JPWO2005018081A1 (ja) 2003-08-13 2004-08-13 圧電アクチュエータモジュール、モータモジュールおよび装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003293202 2003-08-13
JP2003-293202 2003-08-13

Publications (1)

Publication Number Publication Date
WO2005018081A1 true WO2005018081A1 (ja) 2005-02-24

Family

ID=34190989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011687 WO2005018081A1 (ja) 2003-08-13 2004-08-13 圧電アクチュエータモジュール、モータモジュールおよび装置

Country Status (3)

Country Link
US (1) US20050082950A1 (ja)
JP (1) JPWO2005018081A1 (ja)
WO (1) WO2005018081A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969065B2 (en) 2008-09-09 2011-06-28 Canon Kabushiki Kaisha Vibration wave driving device
KR20160062440A (ko) * 2014-11-25 2016-06-02 주식회사 이노칩테크놀로지 압전 장치 및 그 제조 방법
JP2020096428A (ja) * 2018-12-11 2020-06-18 株式会社Piezo Sonic 圧電モータ、並びに圧電モータ及びコネクタ組立体の製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825680B1 (fr) * 2001-06-07 2003-09-26 Sagem Actionneur de commande de vol primaire a moteur a vibration
TWI300285B (en) * 2005-03-18 2008-08-21 Foxconn Tech Co Ltd Piezoelectric motor
JP4857886B2 (ja) 2005-06-24 2012-01-18 セイコーエプソン株式会社 圧電アクチュエータの耐衝撃装置、これを備えた電子機器
JP2007221865A (ja) * 2006-02-14 2007-08-30 Seiko Epson Corp 圧電振動体、圧電振動体の固有振動数調整方法、圧電アクチュエータ、および電子機器
US8884474B2 (en) 2006-06-02 2014-11-11 MicroZeus, LLC Method of fabricating a micro machine
US8134276B2 (en) * 2006-06-02 2012-03-13 MicroZeus, LLC Methods and systems for positioning micro elements
US8159107B2 (en) * 2006-06-02 2012-04-17 Microzeus Llc Micro rotary machine and methods for using same
US8282284B2 (en) * 2006-06-02 2012-10-09 MicroZeus, LLC Methods and systems for micro bearings
US9156674B2 (en) * 2006-06-02 2015-10-13 MicroZeus, LLC Micro transport machine and methods for using same
US8915158B2 (en) * 2006-06-02 2014-12-23 MicroZeus, LLC Methods and systems for micro transmissions
WO2007143623A2 (en) 2006-06-02 2007-12-13 Stalford Harold L Methods and systems for micro machines
US7929382B2 (en) * 2007-02-14 2011-04-19 Seiko Epson Corporation Piezoelectric transducer, piezoelectric actuator, and portable device
US8122973B2 (en) 2008-05-21 2012-02-28 Stalford Harold L Three dimensional (3D) robotic micro electro mechanical systems (MEMS) arm and system
US8556850B2 (en) 2008-12-31 2013-10-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Shaft and handle for a catheter with independently-deflectable segments
US8676290B2 (en) 2010-05-11 2014-03-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Multi-directional catheter control handle
US9289147B2 (en) * 2010-05-11 2016-03-22 St. Jude Medical, Atrial Fibrillation Division, Inc. Multi-directional flexible wire harness for medical devices
KR101153553B1 (ko) * 2010-07-28 2012-06-11 삼성전기주식회사 진동 장치 및 이를 갖는 전자 장치
USD726905S1 (en) 2011-05-11 2015-04-14 St. Jude Medical, Atrial Fibrillation Division, Inc. Control handle for a medical device
US20130138226A1 (en) * 2011-11-23 2013-05-30 Ftrx Llc Quasi-translator, fourier modulator, fourier spectrometer, motion control system and methods for controlling same, and signal processor circuit
US8796906B2 (en) * 2011-12-06 2014-08-05 Seiko Epson Corporation Piezoelectric motor, driving device, electronic component conveying device, electronic component inspection device, printing device, robot hand, and robot
EP2680334A1 (de) * 2012-06-28 2014-01-01 Leica Geosystems AG Piezo-Antrieb mit drehgelenkgelagertem Piezooszillator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023155A (ja) * 1988-05-13 1990-01-08 Hitachi Ltd 半導体メモリ
JPH053689U (ja) * 1991-06-28 1993-01-19 株式会社三協精機製作所 モ−タ−取り付け用防振クツシヨン
JPH06284755A (ja) * 1993-03-31 1994-10-07 Alps Electric Co Ltd 超音波モータおよび直動案内装置
JPH07299761A (ja) * 1994-05-06 1995-11-14 Nippon Electric Ind Co Ltd 超音波モータ式ドライバ
JPH08289572A (ja) * 1995-04-14 1996-11-01 Canon Inc 動力発生器
JPH09191670A (ja) * 1996-01-08 1997-07-22 Canon Inc 振動装置
JPH11346484A (ja) * 1998-05-29 1999-12-14 Star Micronics Co Ltd 超音波モータおよびその製造方法
JP2000295876A (ja) * 1999-04-08 2000-10-20 Nikon Corp 振動アクチュエータ
JP2001099049A (ja) * 1999-09-29 2001-04-10 Seiko Epson Corp 車輪装置、プロペラ装置、飛行体、回転装置および送風装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3439665A1 (de) * 1984-10-30 1986-05-07 Ebm Elektrobau Mulfingen Gmbh & Co, 7119 Mulfingen Kollektorloser gleichstrommotor
JP2969447B2 (ja) * 1998-01-29 1999-11-02 セイコーインスツルメンツ株式会社 超音波モータ及び超音波モータの製造方法
EP1819036B1 (en) * 1998-12-21 2013-06-19 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
JP2000270574A (ja) * 1999-03-16 2000-09-29 Seiko Instruments Inc 圧電アクチュエータおよびその製造方法
US6384514B1 (en) * 1999-07-28 2002-05-07 Technology Commercialization Corp. Reversible piezoelectric positioning device and a disk drive using same
JP2001136762A (ja) * 1999-11-01 2001-05-18 Seiko Instruments Inc 超音波モータ付駆動機構および超音波モータ付電子機器
WO2002069532A2 (en) * 2000-11-03 2002-09-06 Herzel Laor Piezoelectric optical cross connect switching

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023155A (ja) * 1988-05-13 1990-01-08 Hitachi Ltd 半導体メモリ
JPH053689U (ja) * 1991-06-28 1993-01-19 株式会社三協精機製作所 モ−タ−取り付け用防振クツシヨン
JPH06284755A (ja) * 1993-03-31 1994-10-07 Alps Electric Co Ltd 超音波モータおよび直動案内装置
JPH07299761A (ja) * 1994-05-06 1995-11-14 Nippon Electric Ind Co Ltd 超音波モータ式ドライバ
JPH08289572A (ja) * 1995-04-14 1996-11-01 Canon Inc 動力発生器
JPH09191670A (ja) * 1996-01-08 1997-07-22 Canon Inc 振動装置
JPH11346484A (ja) * 1998-05-29 1999-12-14 Star Micronics Co Ltd 超音波モータおよびその製造方法
JP2000295876A (ja) * 1999-04-08 2000-10-20 Nikon Corp 振動アクチュエータ
JP2001099049A (ja) * 1999-09-29 2001-04-10 Seiko Epson Corp 車輪装置、プロペラ装置、飛行体、回転装置および送風装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969065B2 (en) 2008-09-09 2011-06-28 Canon Kabushiki Kaisha Vibration wave driving device
US8339016B2 (en) 2008-09-09 2012-12-25 Canon Kabushiki Kaisha Vibration wave driving device
KR20160062440A (ko) * 2014-11-25 2016-06-02 주식회사 이노칩테크놀로지 압전 장치 및 그 제조 방법
WO2016085227A3 (ko) * 2014-11-25 2016-08-04 주식회사 이노칩테크놀로지 압전 장치 및 그 제조 방법
KR101685104B1 (ko) 2014-11-25 2016-12-09 주식회사 모다이노칩 압전 장치 및 그 제조 방법
JP2020096428A (ja) * 2018-12-11 2020-06-18 株式会社Piezo Sonic 圧電モータ、並びに圧電モータ及びコネクタ組立体の製造方法
JP7154583B2 (ja) 2018-12-11 2022-10-18 株式会社Piezo Sonic 圧電モータ、並びに圧電モータ及びコネクタ組立体の製造方法

Also Published As

Publication number Publication date
US20050082950A1 (en) 2005-04-21
JPWO2005018081A1 (ja) 2006-10-12

Similar Documents

Publication Publication Date Title
WO2005018081A1 (ja) 圧電アクチュエータモジュール、モータモジュールおよび装置
JP4576154B2 (ja) 超音波モータ
CN103227585B (zh) 超声波马达和镜头驱动设备
CN103151956B (zh) 压电马达、驱动装置、机器人及打印机
US7432633B2 (en) Ultrasonic driving apparatus
KR20040071609A (ko) 전동 격납식 도어 미러 장치 및 전동 격납식 도어 미러장치에 있어서의 전동 격납 유닛
JP2012235622A (ja) モーター、ロボットハンドおよびロボット
US10425019B2 (en) Motor and apparatus using the same
CN100404092C (zh) 行驶玩具
JPWO2017098704A1 (ja) 発電装置及びこれを備えた電子機器
KR20060045377A (ko) 주행 완구
JP2004274916A (ja) アクチュエータ
JP5958013B2 (ja) アクチュエーターおよびロボット
JP4645229B2 (ja) 駆動装置
JP2012039819A (ja) 超音波モータ
KR102419785B1 (ko) 자동차 외부미러의 폴딩을 위한 액츄에이터 및 이를 포함한 외부미러
JP2012039820A (ja) 超音波モータ
WO2022102306A1 (ja) 駆動ユニット、レンズ駆動装置、カメラモジュールおよびカメラ搭載装置
CN109246268A (zh) 电子装置
WO2021145354A1 (ja) レンズ駆動装置、カメラモジュールおよびカメラ搭載装置
JP4316350B2 (ja) 超音波モータ及び超音波モータ付電子機器
CN117833707A (zh) 压电马达、摄像头模组及电子设备
CN101499738A (zh) 压电电机与使用该电机的驱动模块
CN117130249A (zh) 驱动装置、带开闭部的装置以及图像形成装置
KR100691272B1 (ko) 압전 초음파 모터 모듈

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005513185

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase