WO2005015247A1 - 電界センサおよびその調整方法 - Google Patents

電界センサおよびその調整方法 Download PDF

Info

Publication number
WO2005015247A1
WO2005015247A1 PCT/JP2004/010716 JP2004010716W WO2005015247A1 WO 2005015247 A1 WO2005015247 A1 WO 2005015247A1 JP 2004010716 W JP2004010716 W JP 2004010716W WO 2005015247 A1 WO2005015247 A1 WO 2005015247A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
light
electro
polarized light
optic crystal
Prior art date
Application number
PCT/JP2004/010716
Other languages
English (en)
French (fr)
Inventor
Aiichirou Sasaki
Mitsuru Shinagawa
Nobutarou Shibata
Tadashi Minotani
Kazuo Fujiura
Masahiro Sasaura
Seiji Toyoda
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to US10/527,790 priority Critical patent/US7859666B2/en
Priority to EP04770979A priority patent/EP1650574A4/en
Priority to JP2005512916A priority patent/JP4128584B2/ja
Publication of WO2005015247A1 publication Critical patent/WO2005015247A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/241Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using electro-optical modulators, e.g. electro-absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential

Definitions

  • the present invention relates to a method of irradiating a laser beam onto an electro-optic (Electro Optic) crystal (hereinafter, referred to as an “E ⁇ crystal”) to which an electric field to be measured is applied, and detecting the electric field to apply the electric field.
  • E ⁇ crystal electro-optic (Electro Optic) crystal
  • the present invention relates to an electric field sensor for measuring the electric field strength of an electric field, and a method for adjusting a strong electric field sensor.
  • a light beam is incident on an EO crystal to which an AC electric field is applied, and light emitted from the EO crystal is polarized by a polarizing beam splitter (hereinafter referred to as PBS).
  • PBS polarizing beam splitter
  • the light is separated into S-polarized light and P-polarized light, and each polarized light is detected independently by two photodetectors (PD). Then, the difference in the intensity of each polarized light is detected by a differential amplifier.
  • the polarization state of the light beam immediately before entering the PBS is preferably circularly polarized light.
  • the main advantages of circularly polarized light are listed below.
  • the intensity modulation degree of the light beam is maximized, which contributes to highly sensitive detection. Also, the amplitude of the output signal of the PD can be doubled by detecting the differential signal.
  • FIG. 1 is a diagram illustrating the operation of a conventional electric field sensor.
  • the light beam 3 emitted from the light source 1 passes through a quarter-wave plate (hereinafter, referred to as QWP) 5 and an EO crystal 7, and then enters a PBS9.
  • the polarization state of the light beam 3 is adjusted by QWP5 so as to be circularly polarized immediately before the light beam 3 enters the PBS9.
  • An AC electric field corresponding to the AC measured signal 15 is applied to the EO crystal 7 via the signal electrode 11 and the ground electrode 13.
  • the light beam 3 undergoes polarization modulation in the EO crystal 7 according to the electric field.
  • the polarization-modulated light is separated into S and P polarization components by PBS9. At this time, each polarized light The components have been converted to intensity modulated light.
  • the intensity-modulated S and P polarization components change in opposite phases. Therefore, by receiving light at the PDs 17 and 19 and detecting a differential signal using the differential amplifier 21, it is possible to obtain an output signal 22 with higher sensitivity.
  • FIG. 2 is a diagram showing the relationship between the polarization state of the light beam incident on the PBS 9 and the corresponding electric signal.
  • A be the maximum amplitude of each signal.
  • the light beam changes to elliptically polarized light, so the following disadvantages occur.
  • FIG. 3 is a diagram illustrating a configuration of the electric field sensor similar to that of FIG. 1, and particularly, a diagram focusing on reflected light based on a polarization state.
  • the electrodes 11 and 13 are omitted.
  • the P-polarized light 108 is emitted from the laser light source 1,
  • the circularly polarized light 109 is polarization-modulated by the EO crystal 7, and the polarization-modulated light is
  • P-polarized 110 is received by PD 19 and converted to an electrical signal
  • S-polarized 111 is received by PD 17 and converted to an electrical signal. You. These electric signals are differentially amplified by the differential amplifier 22 shown in FIG.
  • the electric field is measured based on this.
  • reflection element 107 the above-mentioned E ⁇ crystal 7, PBS9, PD17 and 19 will be collectively referred to as “reflection element 107” as appropriate. The details of the reflection element 107 will be described later.
  • FIG. 4 is a diagram for describing a problem to be solved in the electric field sensor 101 described above.
  • the electric field sensor 101 circularly polarized light is incident on the E ⁇ crystal 7.
  • the incident light is reflected by each component of the reflection element including the EO crystal 7 and becomes reflected return light 112, which is converted into S-polarized light 113 by QWP5, and
  • the return light (S-polarized light) 113 is incident back to the laser light source 1, the measurement accuracy of the electric field sensor 101 may be affected.
  • the reflected light is likely to be generated not only on the E ⁇ crystal end face but also on the light receiving surface of the PD.
  • the reflected light from the light receiving surface of the PD is also incident on the laser light source 1, the measurement accuracy of the electric field sensor 101 may be affected.
  • the electric field sensor as described above detects an electric signal transmitted through a human body as shown in FIG. 5, and a device under test (hereinafter referred to as DUT) as shown in FIG. ) (See Japanese Patent Application Laid-Open No. 2000-171488).
  • receiving electrode RP is in contact with a measured point of human body 100.
  • the signal electrode 11 in the electric field sensor which is connected to the receiving electrode RP by a lead wire, is exposed. It has the same potential as the measurement point.
  • the metal needle MN is in contact with a point to be measured on the DUT 201.
  • the signal electrode 11 in the electric field sensor connected to the metal needle MN with the lead wire LD has the same potential as the measured point. Become.
  • the subsequent operation is the same in FIGS. 5 and 6, and first, an electric field is generated between the signal electrode 11 and the ground.
  • the electric lines of force at this time partially pass through the power crystal 7 as shown in FIGS. 5 and 6, so that an electric field is generated in the E crystal 7.
  • the birefringence changes in the E ⁇ ⁇ ⁇ ⁇ crystal 7 according to the electric field.
  • the EO crystal 7 outputs elliptically polarized light.
  • the elliptically polarized light After being reflected by the two mirrors 14a and 14b, the elliptically polarized light enters the PBS 9 and is separated into two linearly polarized lights (S and P polarized lights).
  • the S and P polarizations are detected by the two PDs 17 and 19, and an electric signal proportional to the intensity of each is input to the differential amplifier 21.
  • the electric field amplitude in the EO crystal 7 can be detected by measuring the output electric signal of the differential amplifier 21. Is possible. Also, since the electric field amplitude in the E ⁇ crystal 7 is proportional to the potential of the measured point of the human body 100 or the DUT 201, the potential of the measured point is detected by detecting the output electric signal of the differential amplifier 21. Can be detected.
  • an object of the present invention is to provide an electric field sensor capable of compensating for a decrease in sensitivity due to a natural birefringence of an electro-optic crystal and an electric field sensor therefor. It is to provide an adjustment method.
  • Another object of the present invention is to provide an electric field sensor that can prevent reflected return light from entering a laser light source.
  • Still another object of the present invention is to provide an electric field sensor that can obtain high sensitivity by increasing the electric field amplitude in an electro-optic crystal.
  • the invention according to the first aspect is characterized in that a light source and an electric field based on a signal under measurement are applied, the birefringence changes according to the electric field, and the birefringence changes according to the birefringence.
  • An electro-optic crystal that changes the polarization state of light incident from the light source and emits the light; and a detection unit that detects an electric signal corresponding to the change in the polarization state of the light emitted from the electro-optic crystal.
  • the gist is an electric field sensor including a second electrode paired with the first electrode, and an auxiliary electrode electrically connected to the second electrode and forming a capacitance between the second electrode and a ground.
  • the invention according to a second aspect is the invention according to the first aspect, wherein the surface area of the auxiliary electrode is larger than the surface area of the first electrode and the surface area of the second electrode. .
  • the invention according to a third aspect is characterized in that, in the invention according to the second aspect, the shape of the auxiliary electrode is any one of a rod shape, a plate shape, and a spherical shape.
  • the invention according to a fourth aspect is the invention according to the first aspect, wherein the distance between the auxiliary electrode and the second electrode is greater than the distance between the first electrode and the second electrode. The point is that it is also long.
  • the invention according to a fifth aspect is the invention according to the first aspect, further comprising a distance changing means for moving the auxiliary electrode to change a distance from the second electrode.
  • the invention according to a sixth aspect is the invention according to the fifth aspect, wherein the detecting unit is moved when the auxiliary electrode is separated from the second electrode by a predetermined distance or more by the distance changing unit.
  • a gist is further provided with a control means for controlling the operation.
  • the invention according to a seventh aspect is based on the invention according to the first aspect, in which the auxiliary electrode is insulated from a circuit forming the detection unit and a circuit driving the light source. I do.
  • the invention according to an eighth aspect is directed to a quarter-wave plate that converts P-polarized light and S-polarized light into circularly polarized light, and an electric field based on a signal under measurement.
  • the birefringence changes according to the electric field
  • the electro-optic crystal that emits light by changing the polarization state of the circularly polarized light from the quarter-wave plate according to the birefringence, and the light that emerges from the electro-optic crystal.
  • a detection unit that detects an electric signal corresponding to the change in the polarization state of the emitted light, and a P-polarized light or an S-polarized light that is positioned in front of the 1/4 wavelength plate and is guided to the 1/4 wavelength plate.
  • the reflected light separation guides the S-polarized light or P-polarized light converted from the circularly polarized light returned from the electro-optic crystal side by the 1Z4 wavelength plate to a method different from the incident direction of the incident P-polarized light or S-polarized light.
  • an electric field sensor comprising:
  • the invention according to a ninth aspect is based on the invention according to the eighth aspect, wherein the reflected light separating means includes a polarizing plate, a polarizing beam splitter, a Glan-Thompson prism, and a Wollaston prism.
  • the gist is that there is.
  • the invention according to a tenth aspect is based on the invention according to the ninth aspect, wherein the reflected light separation means is a polarization beam splitter that transmits P-polarized light and reflects S-polarized light. You.
  • the invention according to an eleventh aspect is the invention according to the eighth aspect, wherein the reflected light separating means is provided.
  • the gist is that it further includes a light source that is located in front of the step and emits either P-polarized light or s-polarized light.
  • the invention according to the twelfth aspect is directed to applying an electric field based on the signal under measurement, changing the birefringence according to the electric field, and changing the birefringence according to the birefringence.
  • An electro-optic crystal that changes the polarization state of incident light and emits light; and transmits one of the P-polarization component and the S-polarization component of the emitted light whose polarization state has changed.
  • a polarizing beam splitter that separates the light having changed polarization state into a P-polarized component and an S-polarized component by reflecting the other, and a first quarter-wave plate that converts the P-polarized component into circularly polarized light.
  • a second quarter-wave plate for converting the S-polarized component to circularly polarized light, and a first light for converting the P-polarized component converted to circularly polarized light by the first quarter-wave plate to an electric signal.
  • a second photodetector for converting the electric field sensor with the gist.
  • the invention according to the thirteenth aspect is characterized in that a light source and an electric field based on the signal under measurement are applied, the birefringence changes according to the electric field, and the birefringence changes.
  • An electro-optic crystal that changes the polarization state of light incident from the light source and emits the light; a pair of electrodes for applying an electric field based on the signal under measurement to the electro-optic crystal; A detector that separates the light emitted from the optical crystal into a P-polarized component and an S-polarized component and obtains an AC signal according to the difference between the intensities of the respective polarized components, and the natural birefringence of the electro-optical crystal
  • An electric field sensor comprising: a compensating unit that cancels a change in a polarization state of light incident from the light source when the electric field is not applied.
  • the invention according to a fourteenth aspect is the invention according to the thirteenth aspect, wherein the light incident on the electro-optic crystal is an arbitrary polarized light, and the compensating means has an electric principal axis having the electro-optic
  • the 1Z4 wavelength plate that matches the main axis of the elliptically polarized light emitted from the crystal and converts the elliptically polarized light into linearly polarized light, and the polarization plane of the linearly polarized light from the / 4 wavelength plate when the electric field is not applied,
  • the angle of the electro-optic crystal with respect to the electric main axis is 45 ° - ⁇
  • the angle of the electric main axis with respect to the electric main axis of the electro-optic crystal is ⁇ ⁇ 45 °- ⁇ ⁇ / 2 (where ⁇ is an integer).
  • a half-wave plate that adjusts the angle of the plane of polarization of the linearly polarized light.
  • the invention according to a fifteenth aspect is the invention according to the thirteenth aspect, wherein the light incident on the electro-optic crystal has an angular force 5 with respect to a principal plane of electric polarization of the electro-optic crystal. °, and the compensating means converts the elliptically polarized light emitted from the electro-optic crystal into linearly-polarized light emitted from the electro-optic crystal at an angle of 45 ° with respect to the electric principal axis of the electro-optic crystal.
  • the electric principal axis is the electric power of the electro-optic crystal.
  • the angle with respect to the principal axis is ⁇ ⁇ 45 ° — ⁇ / 2 (where ⁇ is an integer) to adjust the angle of the plane of polarization of linearly polarized light emitted from the quarter-wave plate. And a half-wave plate.
  • the invention according to a sixteenth aspect is the invention according to the thirteenth aspect, wherein the light incident on the electro-optic crystal is circularly polarized light, and the compensating means has an electrical principal axis of the electro-optic crystal. Has an angle of 45 ° with respect to the electric main axis of the electro-optic crystal, converts the elliptically polarized light emitted from the electro-optic crystal into linearly polarized light, and the electric wave when the electric field is not applied.
  • the angle that the electric principal axis has with respect to the electric principal axis of the electro-optic crystal is ⁇ ⁇ 45 ° — ⁇ / 2 (where , ⁇ is an integer) and a 1Z2 wavelength plate for adjusting the angle of the plane of polarization of linearly polarized light emitted from the 1 wavelength plate.
  • ne is the refractive index of the electro-optic crystal for extraordinary light
  • is the wavelength of light in vacuum
  • L is the length of the electro-optic crystal in the light direction.
  • the compensating means comprises: a pair of control electrodes for applying an electric field based on a control signal to the electro-optic crystal; On the basis of the obtained AC signal, an electric field based on the signal under measurement is marked. And a control signal generating means for generating the control signal for canceling a change in a polarization state of light incident from the light source when the user is not burned.
  • the invention according to a nineteenth aspect is the invention according to the thirteenth aspect, wherein the compensation means comprises: an adder for adding a control signal to the signal under measurement; and the AC signal obtained by the detection unit.
  • Control signal generation means for generating the control signal that cancels a change in the polarization state of light incident from the light source when an electric field based on the signal under measurement is not applied, based on That is the gist.
  • control signal generating means is an electrical signal based on the P-polarized component and an electrical signal based on the S-polarized component.
  • a first buffer amplifier and a second buffer amplifier that respectively receive the outputs of the first and second buffer amplifiers; a first low-pass filter and a second low-pass filter that respectively receive the outputs of the first buffer amplifier and the second buffer amplifier;
  • An integrator that receives the output of the second low-pass filter and integrates the difference between the outputs is included.
  • the invention according to a twenty-first aspect is directed to a light source; an electric field based on a signal to be measured is applied, the birefringence changes according to the electric field, and the birefringence changes.
  • An electro-optic crystal that changes the polarization state of any incident polarized light and emits it according to the following; a pair of electrodes for applying an electric field based on the signal to be measured to the electro-optic crystal;
  • a detector that separates light emitted from the crystal into a P-polarized component and an s-polarized component and obtains an AC signal according to the difference between the intensities of the respective polarized components.
  • a 1/4 wavelength plate that converts elliptically polarized light emitted from the electro-optic crystal into linearly polarized light, such that its electric principal axis coincides with the electric principal axis of the elliptically polarized light, and outputs a straight line emitted from the 1Z4 wavelength plate.
  • a half-wave plate for adjusting the angle of the plane of polarization of the polarized light When the angle of the plane of polarization of linearly polarized light from the quarter-wave plate with respect to the electrical principal axis of the electro-optic crystal when no electric field is applied is 45 ° - ⁇ 0, the electrical principal axis The point is that the angle with respect to the electric principal axis of the electro-optic crystal is ⁇ ⁇ 45 ° — ⁇ 2 (where ⁇ is an integer).
  • the invention according to the twenty-second aspect further comprises a light source; An electric field is applied, the birefringence changes according to the electric field, and the polarization plane has an angle of 45 ° with the electric principal axis of the electro-optic crystal according to the birefringence.
  • An electro-optic crystal that emits light with a changed polarization state; a pair of electrodes for applying an electric field based on the signal under measurement to the electro-optic crystal; and a P-polarized component that emits light emitted from the electro-optic crystal.
  • an S-polarized component, and a detection unit that obtains an AC signal according to the difference between the intensities of the respective polarized components.
  • An elliptical polarized light emitted from the electro-optical crystal is provided so that the electric principal axis is at an angle of 45 ° to the electric principal axis of the electro-optic crystal, and the polarization of the linearly polarized light emitted from the quarter wave plate is The electric field is applied to the half-wave plate for adjusting the angle of the wavefront.
  • the angle that the electric principal axis has with respect to the electric principal axis of the electro-optic crystal is ⁇ 45
  • the point is to provide the angle so that it becomes °- ⁇ / 2 (where ⁇ is an integer).
  • the invention according to the twenty-third aspect is directed to a light source; an electric field based on a signal to be measured is applied, the birefringence changes according to the electric field, and the birefringence changes.
  • An electro-optic crystal that changes the polarization state of the incident circularly polarized light in accordance with the condition; a pair of electrodes for applying an electric field based on the signal under measurement to the electro-optic crystal; A detector that separates light emitted from the crystal into ⁇ -polarized light components and S-polarized light components and obtains an AC signal according to the difference in the intensity of each of the polarized light components.
  • ne is the refractive index of the electro-optic crystal for extraordinary light
  • is the wavelength of light in vacuum
  • L is the length of the electro-optic crystal in the light direction.
  • the invention according to a twenty-fifth aspect is characterized in that, in the invention according to any one of the twenty-first to twenty-third aspects, said ⁇ is determined by measurement.
  • the invention according to a twenty-sixth aspect relates to a light source; an electric field based on a signal to be measured is applied, a birefringence changes according to the electric field, and the birefringence changes.
  • An electro-optic crystal that changes the state of polarization of light incident from the light source and emits the light, and a pair of electrodes for applying an electric field based on the signal under measurement to the electro-optic crystal;
  • a detection unit that separates light emitted from the crystal into a ⁇ -polarized component and an s-polarized component and obtains an AC signal corresponding to a difference between the intensities of the respective polarized components; and converts the electric field based on a control signal into the electro-optical crystal.
  • a method for adjusting an electric field sensor comprising: a pair of control electrodes applied to the electric field; and control signal generating means for generating the control signal, wherein the AC signal obtained by the detection unit is displayed and displayed. The measured AC signal is And adjusting the control signal generating means so as to generate the control signal that cancels out a change in the polarization state of light incident from the light source when an electric field based on the signal is not applied. .
  • the invention according to a twenty-seventh aspect is directed to a light source; an electric field based on a signal to be measured is applied, and the birefringence changes according to the electric field;
  • An electro-optic crystal that changes the state of polarization of light incident from the light source and emits the light, and a pair of electrodes for applying an electric field based on the signal under measurement to the electro-optic crystal;
  • a detector that separates the light emitted from the crystal into a ⁇ -polarized light component and an s-polarized light component and obtains an AC signal according to the difference between the intensities of the respective polarized light components; and an adder that adds a control signal to the signal under measurement.
  • the method for adjusting an electric field sensor comprising: displaying the AC signal obtained by the detection unit; and, based on the displayed AC signal, An electric field based on the signal under measurement is applied
  • the gist of the present invention is to adjust the control signal generating means so as to generate the control signal that cancels out the change in the polarization state of the light incident from the light source when there is no light.
  • FIG. 1 is a block diagram showing a configuration of a conventional electric field sensor.
  • FIG. 2 is a diagram showing a relationship between a polarization state of a light beam incident on PBS and an electric signal corresponding thereto.
  • FIG. 3 is a block diagram showing a configuration of a conventional electric field sensor.
  • FIG. 4 is a diagram for explaining a problem in the electric field sensor of FIG. 3.
  • FIG. 5 is a diagram showing a configuration example in which a conventional electric field sensor is used for detecting an electric signal of a human body.
  • FIG. 6 is a diagram showing an example of a configuration in which a conventional electric field sensor is used for measuring a voltage of a DUT.
  • FIG. 7 is a diagram showing a configuration of an electric field sensor according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a polarization state of the electric field sensor according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of an electric field sensor according to a second embodiment of the present invention.
  • FIG. 10 is a diagram showing a polarization state of the electric field sensor according to the second embodiment of the present invention.
  • FIG. 11 is a waveform diagram in the case where the EO crystal of the electric field sensor according to the first or second embodiment has a natural birefringence.
  • FIG. 12 is a configuration diagram of an electric field sensor according to a third embodiment.
  • FIG. 13 is an arrangement diagram of electrodes in a third embodiment.
  • FIG. 14 is a configuration diagram of an electric field sensor according to a fourth embodiment.
  • FIG. 15 is a circuit diagram of an adder.
  • FIG. 16 is a configuration diagram of an electric field sensor according to a fifth embodiment.
  • FIG. 17 is a layout view of electrodes according to a fifth embodiment.
  • FIG. 18 is a configuration diagram of an electric field sensor according to a sixth embodiment.
  • Figure 19 shows the circuit diagram of the integrator (switched capacitor integrator) and the waveform of the drive signal FIG.
  • FIG. 20 is a configuration diagram of an electric field sensor according to a seventh embodiment.
  • FIG. 21 is a configuration diagram of an electric field sensor according to an eighth embodiment.
  • FIG. 22 is a configuration diagram of an electric field sensor according to a ninth embodiment.
  • FIG. 23 is a view for explaining a basic principle of the electric field sensor of FIG. 22.
  • FIG. 24 is a configuration diagram of an electric field sensor according to a tenth embodiment.
  • FIG. 25 is a diagram for explaining the basic principle of the electric field sensor of FIG. 24.
  • FIG. 26 is a configuration diagram of an electric field sensor according to an eleventh embodiment.
  • FIG. 27 is a diagram for explaining the basic principle of the electric field sensor of FIG. 26.
  • FIG. 28 is a configuration diagram of an electric field sensor according to a twelfth embodiment.
  • FIG. 29 is a diagram for explaining a basic principle of the electric field sensor of FIG. 28.
  • FIG. 30 is a configuration diagram of an electric field sensor according to a thirteenth embodiment.
  • FIG. 31 is a view for explaining a basic principle of the electric field sensor of FIG. 30.
  • FIG. 32 is a configuration diagram of an electric field sensor according to a fourteenth embodiment.
  • FIG. 33 is a diagram showing a configuration example in which the electric field sensor of the present invention is used for detecting an electric signal of a human body.
  • FIG. 34 is a diagram showing a configuration example in which the electric field sensor of the present invention is used for measuring the voltage of a DUT.
  • FIG. 35 is a diagram showing a state where auxiliary electrodes are provided near a signal electrode and a counter electrode.
  • FIG. 36 is a view showing a state in which an auxiliary electrode is separated from a signal electrode and a counter electrode force.
  • an embodiment of an electric field sensor capable of compensating for a decrease in sensitivity due to the natural birefringence of the electro-optic crystal and a method of adjusting the electric field sensor will be described as i-th to eighth embodiments.
  • the traveling direction of light is defined as the z axis
  • the vertically upward direction is defined as the y axis
  • the horizontal direction is defined as the X axis.
  • FIG. 7 is a diagram showing a configuration of the electric field sensor according to the first embodiment of the present invention.
  • the electric field sensor includes an electro-optic (Electro Optic) crystal (hereinafter, referred to as an “E ⁇ crystal”) 7 whose birefringence changes due to electric field coupling, and the EO crystal. 7, a pair of electrodes 11 and 13 provided with the E ⁇ crystal 7 interposed therebetween to couple an electric field, a light source 1 for emitting light to the E ⁇ crystal 7, and elliptically polarized light emitted from the E ⁇ crystal 7 1/4 wavelength plate (Quarter Wave Plate: hereafter, QWP) and 6 to adjust the phase of the linearly polarized light 1 Z 2 wavelength plate (Half Wave Plate: hereafter, HWP and 8), a polarizing beam splitter (hereinafter referred to as PBS) 9 for separating linearly polarized light emitted from the HWP 8 into a P-polarized component and an S-polarized polarized component, and each of the polarized components is converted into an electric signal. Amplify the difference between the two photo
  • PBS
  • the linearly polarized light emitted from the light source 1 is the linearly polarized light emitted from the light source 1
  • the plane of polarization of the linearly polarized light at the point A is set so as to form 45 ° with respect to the electric principal axis of the EO crystal 7.
  • the EO crystal 7 has natural birefringence, and when no electric field is applied to the EO crystal 7, the light at the point B is elliptically polarized light.
  • the electric main axis of QWP6 is set at 45 ° to the electric main axis of EO crystal 7.
  • the elliptically polarized light at point B is converted into linearly polarized light by transmitting through the thus set QWP6.
  • the light at point C is a linearly polarized light.
  • the angle formed by the plane of polarization and the electric principal axis of E ⁇ crystal 7 is different from the angle at point A.
  • the linearly polarized light at the point C is converted by the HWP8 arranged at an appropriate angle into a linearly polarized light that contains the P-polarized component and the S-polarized component with respect to PBS9 in a ratio of 1: 1.
  • P-polarized light is linearly polarized light transmitted through PBS 9
  • S-polarized light is linearly polarized light reflected by PBS 9.
  • the arrangement of the PBS9 is arbitrary, but it is common to arrange the PBS9 so that the P and S polarized lights are separated in a horizontal plane (Xz plane). The explanation is continued assuming the use of.
  • the polarization plane of the P-polarized light coincides with the X-z plane, and the polarization plane of the S-polarized light coincides with the y-z plane.
  • the plane of polarization of the linearly polarized light at point D forms an angle of 45 ° with the Xz plane.
  • the ratio of the P and S components contained in the linearly polarized light at point D is 1: 1, the light amounts detected by PD19 and PD17 are equal. Since the PDs 19 and 17 output an electric signal at a level proportional to the received light intensity, the level of the electric signal output from the differential amplifier 21 is zero.
  • is proportional to ⁇ the electric field amplitude in the crystal 7 ⁇ .
  • the differential amplifier 21 outputs an electric signal having a level proportional to the electric field A. Therefore, by detecting the output electric signal of the differential amplifier 21, the electric field applied to the EO crystal 7 can be detected. Since the electric field in the EO crystal 7 is proportional to the potential difference between the electrodes attached to the EO crystal 7, detecting the output electric signal of the differential amplifier 21 is equivalent to detecting the potential difference between the electrodes.
  • FIG. 8 is a diagram showing a polarization state of the electric field sensor according to the first embodiment of the present invention.
  • light is described as traveling in the positive z-axis direction (from the back of the paper to the front).
  • the slow axis and the fast axis which are one of the main electrical axes of the EO crystal 7, are aligned with the X axis (horizontal direction) and the y axis (vertical direction), respectively.
  • FIG. 8 (a) shows the polarization state of light at point A.
  • the plane of polarization of linearly polarized light forms an angle of 45 ° with the x-axis (slow axis of EO crystal 7). I have.
  • FIG. 8 (b) shows the polarization state of light at point B, which is elliptically polarized light due to the birefringence of the EO crystal 7.
  • the major axis of this ellipse is at an angle of 45 ° to the X axis.
  • FIG. 8 (c) shows the relationship between the polarization state of light at point C and the electrical principal axis of QWP6.
  • the s and f axes represent the slow and fast axes of QWP6, respectively, and the s axis is at a 45 ° angle to the x axis.
  • the elliptically polarized light at point B is converted to linearly polarized light.
  • the phase change phase difference included in the elliptically polarized light emitted from the E ⁇ crystal 7
  • the linear polarization The angle between the plane of polarization and the X axis is 45 ° - ⁇ .
  • FIG. 8 (d) shows the relationship between the polarization state of light at point D and the electrical principal axis of HWP8.
  • the s and f axes represent the slow and fast axes of HWP8, respectively.
  • the dotted line is It shows the polarization state of light at point C.
  • can be determined by the following equation or measurement.
  • is the wavelength of the light incident on the crystal (in vacuum)
  • L is the length of the crystal in the ⁇ direction
  • no and ne are the refractive index of ⁇ crystal 7 for ordinary light and extraordinary light, respectively.
  • the level of the electric signal output from the differential amplifier 21 becomes zero at point D because the intensities of the S and P polarization components are equal.
  • FIG. 8 (e) shows the change in the polarization state at point D when the electric field A (t) to be measured is applied to the EO crystal 7.
  • a (t) Aosin co t
  • ⁇ (t) 45 ° + ⁇ osin co t.
  • FIG. 9 is a diagram illustrating a configuration of an electric field sensor according to the second embodiment of the present invention.
  • the difference from the electric field sensor according to the first embodiment is that the QWP 5 is inserted between the light source 1 and the EO crystal 7.
  • the linearly polarized light emitted from the light source 1 is converted into circularly polarized light by the QWP5. Therefore, circularly polarized light enters the E ⁇ crystal 7.
  • the polarization plane is set to 45 ° with respect to the electric principal axis in order to efficiently perform polarization modulation in the EO crystal 7.
  • the steps for manufacturing the electric field sensor of the present invention are simplified.
  • FIG. 10 is a diagram showing a polarization state of the electric field sensor according to the second embodiment of the present invention. .
  • FIGS. 10A and 10E correspond to FIGS. 8A to 8E in order.
  • the angle that the plane of polarization of linearly polarized light from QWP6 has with respect to the y-axis is 45 °- ⁇ . Even in this case, the angle formed by the polarization plane at point D and the electrical principal axis of the crystal 7 can be corrected to 45 °.
  • FIG. 11 is a waveform diagram of the electric field sensors according to the first and second embodiments.
  • FIG. 11 (a) shows the waveform of the electric field to be measured
  • a (t) Aosin ⁇ t
  • Fig. 11 (b) shows the light intensity due to the electric field to be measured and the change in the birefringence index due to the electric field.
  • a phase difference ⁇ (t) Sosincot occurring between independent polarization components of Naturally, the waveforms of A (t) and ⁇ (t) are the same.
  • FIGS. 11 (d) and 11 (e) show the waveforms (VI (t) and V2 (t)) of the output electric signals of PD19 and PD17, respectively.
  • V the level of the electric signal output from PD19 and PD17 is proportional to the light intensity incident on the PD, and that PD19 and PD17 receive P- and S-polarized light respectively.
  • I do the condition of ⁇ ⁇ 90 ° was used. This condition is sufficiently practical because the phase change due to the measured electric field is generally very small.
  • FIG. 12 is a configuration diagram of an electric field sensor according to the third embodiment.
  • a light beam is made incident on an EO crystal to which an AC electric field is applied, and light emitted from the EO crystal is emitted. Is separated into S-polarized light and P-polarized light by PBS, and the difference in the intensity of each polarized light is detected by a differential amplifier.
  • the light beam 3 emitted from the light source 1 passes through the QWP 5 and the EO crystal 7, and then enters the PBS 9.
  • the polarization state of the light beam immediately before entering the PBS 9 is adjusted by the QWP5 so that the light beam becomes circularly polarized at a predetermined ambient temperature.
  • An electric field corresponding to the signal under measurement 15 (for example, alternating current of several kHz to several hundred MHz) is applied to the EO crystal 7 via the signal electrode 11 and the ground electrode 13.
  • the light beam 3 is polarization-modulated in the E ⁇ crystal 7 according to the electric field.
  • the polarization-modulated light is separated into S and P polarization components by PBS9.
  • each polarization component has been converted into intensity-modulated light.
  • the intensity-modulated S and P polarization components change in phase opposite to each other.
  • the PDs 17 and 19 receive the S and P polarization components, and output differentially by the differential amplifier 21 to obtain an output signal 22.
  • the EO crystal 7 of the electric field sensor according to the third embodiment has a signal for adjustment. Are provided, and a control ground electrode 25 is provided.
  • FIG. 13 is an arrangement diagram of electrodes according to the third embodiment.
  • the signal electrode 11 and the ground electrode 13 are provided so as to sandwich the EO crystal 7, and the control electrode 23 and the control ground electrode 25 are similarly connected. It is preferable to provide the EO crystal 7 so as to sandwich the EO crystal 7, since an electric field is uniformly applied to the E ⁇ crystal 7. If each electrode is provided on one side of the EO crystal 7 as shown in FIG. 13 (c), the electrodes can be easily mounted when the E ⁇ crystal 7 is thin. Further, the ground electrode may be divided as shown in FIG. Also, as shown in FIG. 13 (e), if the ground electrode 13 and the control ground electrode 25 are shared, the electric field sensor can be simply configured.
  • a display 27 that displays the output signal 22, for example, as shown in FIG. 2F, and a variable DC power supply 31 that supplies a control signal (DC voltage) 31 to the control electrode 23 And are used.
  • the adjuster adjusts (changes) the voltage of the variable DC power supply 31 (the voltage of the control signal 29) so that the DC component of the output signal 22 displayed on the display 27 is eliminated.
  • the control signal 29 is applied to the control electrode 23
  • an electric field is applied to the EO crystal 7 by the control signal 29, which is not only the electric field of the signal under measurement 15 but the electric field of the light beam is generated by the latter electric field.
  • the polarization state can be corrected to circularly polarized light.
  • light intensity noise can be sufficiently reduced.
  • FIG. 14 is a configuration diagram of an electric field sensor according to the fourth embodiment.
  • the control electrode 23 and the control ground electrode 25 are not provided on the E ⁇ crystal 7, and only the signal electrode 11 and the ground electrode 13 are provided as the electrodes. ing. Further, the electric field sensor according to the fourth embodiment has an adder 33 in the signal path of the signal under test 15, and the signal under test 15 A after the addition is provided to the signal electrode 11.
  • FIG. 15 is a circuit diagram of the adder 33.
  • the calo calculator 33 is configured by connecting a capacitor 331 and a coil 332 in series.
  • the signal to be measured 15 is given to the terminal of the capacitor 331 which is not connected to the coil 332, and the capacitor 331 is connected to the capacitor 331.
  • the control signal 29 is supplied to the terminal of the coil 332, which is connected to the EO crystal 7, and the signal at the connection point between the capacitor 331 and the coil 332 is supplied to the EO crystal 7 as the signal under test 15A.
  • the capacitor 331 passes the signal under test 15 which is a high frequency signal, but cuts off the control signal 29 which is a low frequency signal.
  • the coil 332 allows the control signal 29, which is a low frequency signal, to pass, but blocks the signal under test 15, which is a high frequency signal. Therefore, the control signal 29 can be added to the signal under test 15.
  • the adder 33 may be constituted by a digital circuit.
  • the display 27 and the variable DC power supply 31 are also used for adjusting the electric field sensor.
  • the adjuster adjusts (changes) the voltage of the variable DC power supply 31 (the voltage of the control signal 29) so that the DC component of the output signal 22 displayed on the display 27 is eliminated.
  • the control signal 29 is given to the adder 33, an electric field corresponding to the control signal 29 is applied to the EO crystal 7 by using only the electric field corresponding to the signal under measurement 15 and the polarization of the light beam is generated by the latter electric field.
  • the state can be corrected to circularly polarized light. Further, light intensity noise can be sufficiently reduced.
  • FIG. 16A is a configuration diagram of an electric field sensor according to the fifth embodiment.
  • the electric field sensor according to the fifth embodiment is used for radio wave measurement, it has a reflective optical system.
  • differences from the electric field sensor of the third embodiment will be described, and description of the same configuration will be omitted.
  • the electric field sensor according to the fifth embodiment measures the signal under test 15 applied to the electrode provided on the EO crystal 7, and transmits the measured signal 15 directly incident on the EO crystal 7 by propagating through the space. Since it measures the electric field generated from the electric circuit to be measured as shown in FIG. 16 (b), it is provided with the signal electrode 11 and the ground electrode 13.
  • PBSs 91 and 92 are provided in order from the light source 1 to the E-crystal 7 instead of the PBS 9.
  • the QWP5 is provided between the PBS92 and the E-crystal 7, and the HWP37, the Faraday rotator 39 and the force S are provided between the PBS91 and the PBS92.
  • a dielectric mirror 71 is provided on the surface of the E ⁇ crystal 7 opposite to the light beam incident surface, and the radio wave 16 to be measured is incident on the surface of the dielectric mirror 71.
  • the light beam 3 from the light source 1 passes through the PBS91, the HWP37, the Faraday rotator 39, the PBS92, and the QWP5, and then passes through the E ⁇ crystal 7. Incident. Then, the light is reflected by the dielectric mirror 71, exits the E ⁇ crystal 7, passes through the QWP5 again, and enters the PBS 92.
  • the PBS 92 separates the light beam 3 into S and P polarized components, and the S polarized component is incident on PD17.
  • the P-polarized light component transmitted through PBS92 is converted into S-polarized light by the Faraday rotator 39 and HWP37, and then enters PBS91.
  • PBS91 directs S-polarized light to PD19.
  • FIG. 17 is an arrangement diagram of electrodes according to the fifth embodiment.
  • control electrode 23 and the control ground electrode 25 may be provided so as to sandwich the EO crystal 7, or as shown in FIG. 17 (b), It may be provided on one side of EO crystal 7.
  • control ground electrode 25 may be divided as shown in FIG.
  • the fifth embodiment has a simple configuration because an electrode to which a signal to be measured is applied is not required.
  • the display 27 and the variable DC power supply 31 are also used for adjusting the electric field sensor.
  • the adjuster adjusts (changes) the voltage of the variable DC power supply 31 (the voltage of the control signal 29) so that the DC component of the output signal 22 displayed on the display 27 is eliminated.
  • the control signal 29 is given to the adder 33
  • the E ⁇ crystal 7 is applied with an electric field corresponding to the control signal 29, which is not only the electric field corresponding to the signal 15 to be measured.
  • the polarization state can be corrected to circularly polarized light. Further, light intensity noise can be sufficiently reduced.
  • FIG. 18 is a configuration diagram of an electric field sensor according to the sixth embodiment.
  • a light beam is made incident on an EO crystal to which an AC electric field is applied, and light emitted from the EO crystal is emitted. Is separated into S-polarized light and P-polarized light by PBS, and the difference in the intensity of each polarized light is detected by a differential amplifier. That is, in FIG. 18, the light beam 3 emitted from the light source 1 passes through the QWP 5 and the EO crystal 7, and then enters the PBS 9. The polarization state of the light beam immediately before entering the PBS 9 is adjusted by the QWP5 so that the light beam becomes circularly polarized at a predetermined ambient temperature.
  • An electric field corresponding to the signal under measurement 15 (for example, alternating current of several kHz to several hundred MHz) is applied to the E ⁇ crystal 7 via the signal electrode 11 and the ground electrode 13.
  • the light beam 3 is polarization-modulated in the E ⁇ crystal 7 according to the electric field.
  • the polarization-modulated light is separated into S and P polarization components by PBS9.
  • each polarization component has been converted into intensity-modulated light.
  • the intensity-modulated S and P polarization components change in phase opposite to each other.
  • the PDs 17 and 19 receive the S and P polarization components, and the output signal 22 is obtained by the differential amplifier 21 detecting the differential signal of the output.
  • a control signal having a voltage corresponding to the DC component included in the output signal is generated, and the control signal is provided to a control electrode provided on the EO crystal.
  • the control signal can be generated from the output signal 22 of the power differential amplifier 21 generated from the input signal of the differential amplifier 21.
  • the electric field sensor includes a buffer amplifier 43 connected to PD17, a buffer amplifier 44 connected to PD19, and a low-pass filter (hereinafter referred to as LPF) connected to the output of buffer amplifier 43. 45), an LPF 47 connected to the output of the buffer amplifier 44, and an integrator 49 for taking the difference between the outputs from the LPFs 45 and 47 and integrating the difference.
  • the E-crystal 7 is provided with a control electrode 23 and a control ground electrode 25 as control signal applying means. The output voltage of the integrator 49 is applied between the control electrode 23 and the control ground electrode 25. Note that only signals of extremely low frequency components (DC components) due to changes in environmental temperature are input to the integrator by the LPFs 45 and 47.
  • the signal of the high-frequency component caused by the signal under test 15 is cut off by the LPFs 45 and 47, so that it is not input to the integrator 49. Then, the integrator 49 integrates the difference between the two signals consisting only of the low frequency component, and outputs the result as the control signal 29.
  • the differential amplifier 21 is supplied with signals including both low-frequency components and high-frequency components from PD17 and PD19.
  • FIG. 19 (a) is a circuit diagram of an integrator 49 (switched capacitor integrator), and FIG. 19 (b) is a waveform diagram of a drive signal for driving the integrator 49.
  • the integrator 49 is composed of two linked switches, one end of which is connected to the LPF45, and the other end of which is connected to the LPF47.
  • Switch 491 a capacitor 492 connected between the other end of one switch of the switch 491 and the other end of the other switch, and two interlocking switches, and one end of the switch and the other
  • a switch 493 having one end connected to the capacitor 492 and a differential amplifier, the other end of one switch of the switch 493 having a minus input terminal and the other end of the other switch having a plus end.
  • a differential amplifier 495 connected to the input terminal and having its positive input terminal biased at the voltage Vb, a capacitor 494 connected between the negative input terminal and the output terminal of the differential amplifier 495, and a differential amplifier 495. 495 output terminal and control electrode 29 Buffer amplifier 496 and the force that has been continued has also been constructed. Note that (capacity of capacitor 492) is (capacity of capacitor 494). If the differential amplifier 495 is a positive / negative power supply type, use its positive input terminal grounded, that is, without bias.
  • the drive signal D1 given to the switch 491 and the drive signal D2 given to the switch 493 are applied so that the switches 491 and 493 are not closed at the same time and alternately closed.
  • the differential amplifier 495 outputs a voltage having a magnitude proportional to the integral value of the output difference between the LPF 45 and the LPF 47, and this voltage is supplied to the control electrode 23 as the control signal 29 after passing through the buffer amplifier 496. That is, the control signal 29 becomes a signal having a voltage corresponding to the DC component of the output signal 22 and is given to the control electrode 23.
  • the arrangement of the electrodes in the sixth embodiment is the same as the arrangement of the electrodes in the third embodiment described with reference to FIG.
  • the integrator 49 (control signal generation means) generates the control signal 29 having a voltage corresponding to the DC component included in the output signal 22. I do.
  • the control signal 29 is applied to the control electrode 23
  • an electric field corresponding to the control signal 29 is applied to the E ⁇ crystal 7 instead of the electric field corresponding to the signal 15 to be measured.
  • the polarization state can be corrected to circularly polarized light. Further, light intensity noise can be sufficiently reduced.
  • FIG. 20 is a configuration diagram of an electric field sensor according to the seventh embodiment.
  • the electric field sensor according to the seventh embodiment has a structure in which the control electrode 23 and the control ground electrode
  • the electric field sensor according to the seventh embodiment includes an adder 33 that adds the control signal 29 to the signal under measurement 15, and the signal under measurement 15 A after the addition is provided to the signal electrode 11.
  • the adder 33 corresponds to a control signal providing means.
  • the configuration of the adder 33 in the seventh embodiment is similar to the configuration of the adder 33 in the fourth embodiment described with reference to FIG.
  • the integrator 49 (control signal generation means) generates the control signal 29 having a voltage corresponding to the DC component included in the output signal 22. I do.
  • the control signal 29 is given to the adder 33, an electric field corresponding to the control signal 29 is applied to the EO crystal 7 instead of the electric field corresponding to the signal under measurement 15, and the light beam is generated by the latter electric field. Can be corrected to circularly polarized light. In addition, light intensity noise can be sufficiently reduced.
  • FIG. 21A is a configuration diagram of an electric field sensor according to the eighth embodiment.
  • the electric field sensor according to the eighth embodiment is used for radio wave measurement, and therefore has a reflection type optical system.
  • differences from the electric field sensor of the sixth embodiment will be described, and description of the same configuration will be omitted.
  • the electric field sensor according to the eighth embodiment measures the signal under test 15 applied to the electrodes provided on the EO crystal 7, so that the electric wave to be measured propagates through the space and directly enters the EO crystal 7. Since it measures an electric field generated from an electric circuit to be measured as shown in FIG. 21 (b), the signal electrode 11 and the ground electrode 13 are provided.
  • PBSs 91 and 92 are provided in order from the light source 1 to the E-crystal 7 instead of the PBS 9.
  • QWP5 is provided between PBS92 and EO crystal 7.
  • An HWP 37 and a Faraday rotator 39 are provided between PBS 91 and PBS 92.
  • a dielectric mirror 71 is provided on the surface of the E ⁇ crystal 7 opposite to the light beam incident surface, and the radio wave 16 to be measured is incident on the surface of the dielectric mirror 71.
  • the light beam 3 from the light source 1 passes through the PBS 91, the HWP 37, the Faraday rotator 39, the PBS 92, and the QWP 5, and then passes through the E ⁇ crystal 7. Incident. After being reflected by the dielectric mirror 71 and exiting the E ⁇ crystal 7, it is adjusted to an appropriate polarization state by the QW P5 and enters the PBS 92.
  • the PBS 92 separates the light beam 3 into S and P polarized components, and the S polarized component is incident on PD17.
  • the P-polarized light component transmitted through the PBS 92 is converted into S-polarized light by the Faraday rotator 39 and the HWP 37, and then enters the PBS 91.
  • PBS91 causes the S-polarized light component to enter PD19.
  • the arrangement of the electrodes in the eighth embodiment is the same as the arrangement of the electrodes in the fifth embodiment described with reference to FIG.
  • an integrator 49 outputs a voltage corresponding to a DC component included in the output signal 22.
  • the control signal 29 is generated, and the control signal 29 is applied to the control electrode 23, an electric field corresponding to the control signal 29 is applied to the EO crystal 7 instead of the electric field corresponding to the signal under measurement 15;
  • the polarization state of the light incident on PBS92 is appropriately adjusted, and the light intensity incident on PD17 and PD19 can be made equal. In addition, light intensity noise can be sufficiently reduced.
  • FIG. 22 is a configuration diagram of the electric field sensor according to the ninth embodiment.
  • the electric field sensor 101a has a laser light source 1, QWP5, E ⁇ crystal 7, PBS9, PD17, PD19, and a second PBS 51 provided between the laser light source 1 and QWP5. Note that, when an electric field to be detected exists, description of an electrode for applying a voltage to the EO crystal 7 due to the electric field is omitted.
  • the laser light source 1 When measuring the electric field with the electric field sensor 101a, the laser light source 1 emits P-polarized light 108, and this P-polarized light 108 is converted into circularly-polarized light 109 by the QWP5.
  • the circularly polarized light 109 is polarization-modulated by the EO crystal 7 and separated into P-polarized light (component) 110 and S-polarized light (component) 111 by PBS9.
  • the P-polarized light 110 is received by the PD19 and converted into an electric signal.
  • the S-polarized light 111 is received by the PD 17 and converted into an electric signal.
  • These electric signals are differentially amplified by a differential amplifier or the like (not shown), and the electric field is measured based on the amplified signals.
  • FIG. 23 is a diagram for explaining the basic principle of the electric field sensor 101a in FIG. In this figure, the reflection element 107 is regarded as a mirror.
  • the reflected return light (circularly polarized light) 112 generated in the reflective element 107 is converted into S-polarized light 1 by QWP5.
  • the reflected return light (S-polarized light) 113 is polarized and separated by the PBS 51, so that the reflected return light 113 can be prevented from being incident on the laser light source 1.
  • the electric field sensor 101a includes the PBS 51 as a unit (polarization separating unit) that separates the reflected return light (S-polarized light) is described, but is not limited thereto. It can be configured to have an element that spatially separates two independent linearly polarized lights, such as a Glan-Thompson prism and a Wollaston prism, or an element that transmits only specific linearly polarized light, such as a polarizing plate.
  • FIG. 24 is a configuration diagram of the electric field sensor according to the tenth embodiment.
  • the electric field sensor 101b has a laser light source 1, a QWP5, an E ⁇ crystal 7, PBS9, PD17, PD19, and a second PBS51.
  • the difference between the electric field sensor 101b and the electric field sensor 101a in FIG. 22 is that the position of the laser light source 1 is changed.
  • the laser light source 1 When measuring the electric field with the electric field sensor 101b, the laser light source 1 irradiates S-polarized light 115, and this S-polarized light 115 is incident on the QWP5 by the PBS 51, and is converted into circularly-polarized light 109 by the QWP5.
  • the circularly polarized light 109 is polarization-modulated by the EO crystal 7 and separated into P-polarized light (component) 110 and S-polarized light (component) 111 by PBS9.
  • the P-polarized light 110 is received by the PD19 and converted into an electric signal.
  • the S-polarized light 111 is received by the PD 17 and converted into an electric signal.
  • These electric signals are differentially amplified by a differential amplifier or the like (not shown), and the electric field is measured based on the amplified signals.
  • FIG. 25 is a diagram for explaining the basic principle of the electric field sensor 101b in FIG. In this figure, the reflection element 107 is regarded as a mirror.
  • the reflected return light (circularly polarized light) 117 generated in the reflective element 107 is converted into P-polarized light by QWP5.
  • the laser light emitted from the laser light source may be S-polarized light such as 115.
  • the reflected return light (P-polarized light) 116 is polarized and separated by the PBS 51, thereby obtaining the reflected return light 11
  • the electric field sensor 101b includes the PBS 51 as a unit (polarization separating unit) that separates the reflected return light (P-polarized light) is described.
  • the present invention is not limited thereto. It is also possible to adopt a configuration having an element that spatially separates two independent linearly polarized lights, such as a Glan-Thompson prism and a Wollaston prism.
  • FIG. 26 is a configuration diagram of the electric field sensor according to the eleventh embodiment.
  • the electric field sensor 101c includes a laser light source 1, a QWP5, an E-crystal 7, a PBS9, a PD17, a PD19, a second PBS51, and a HWP53.
  • HWP53 is provided between them.
  • the P-polarized light 108 is emitted from the laser light source 1, and the P-polarized light 108 is converted into the S-polarized light 115 by the HWP 53, and
  • the light enters the QWP5 and is converted into circularly polarized light 109 by the QWP5.
  • Circularly polarized light 109 is polarization-modulated by the EO crystal 7, and P-polarized (component) 110 and S Separated into polarized light (component) 111, P-polarized light 110 is received by PD19 and converted to an electric signal, while S-polarized light 111 is received by PD17 and converted to an electric signal.
  • P-polarized (component) 110 and S Separated into polarized light (component) 111 P-polarized light 110 is received by PD19 and converted to an electric signal
  • S-polarized light 111 is received by PD17 and converted to an electric signal.
  • These electric signals are differentially amplified by a differential amplifier or the like (not shown), and the electric field is measured based on the amplified signals.
  • the E-crystal 7, PBS9, PD17, and PD19 are collectively referred to as the reflection element 107 as appropriate.
  • FIG. 27 is a diagram for explaining the basic principle of the electric field sensor 101c in FIG.
  • the reflection element 107 is regarded as a mirror.
  • the reflected return light (circularly polarized light) 117 generated in the reflective element 107 is converted into P-polarized light by QWP5.
  • the P-polarized light 108 emitted from the laser light source 1 is converted into the S-polarized light 115, and then the reflected return light (P-polarized light) 116 that can be incident on the EO crystal 7 is polarized by the PBS 51.
  • the separation prevents the reflected return light 116 from entering the laser light source 1.
  • the electric field sensor 101c includes the PBS 51 as a unit (polarization separating unit) that separates the reflected return light (P-polarized light) is described.
  • the present invention is not limited thereto. It is also possible to adopt a configuration having an element that spatially separates two independent linearly polarized lights, such as a Glan-Thompson prism and a Wollaston prism.
  • FIG. 28 is a configuration diagram of the electric field sensor according to the twelfth embodiment.
  • the electric field sensor 101d includes a laser light source 1, a QWP5, an E-crystal 7, PBS9, PD17, PD19, a second PBS51, and a prism 55.
  • the electric field sensor 101d is the same as the electric field sensor 101a of FIG. 22, except that the prism 55 is provided.
  • the laser light source 1 When measuring the electric field with the electric field sensor 101d, the laser light source 1 irradiates the P-polarized light 108, and the P-polarized light 108 is incident on the QWP5 by changing the traveling direction in the prism 55. Converted to polarized light 109.
  • Circularly polarized light 109 is polarization-modulated by the EO crystal 7 and separated into P-polarized light (component) 110 and S-polarized light (component) 111 by PBS9.
  • the P-polarized light 110 is received by PD19 and converted into an electric signal.
  • the S-polarized light 11 is received by the PD 17 and converted into an electric signal.
  • These electric signals are differentially amplified by a differential amplifier or the like (not shown), and the electric field is measured based on the amplified signals.
  • FIG. 29 is a view for explaining the basic principle of the electric field sensor 101d in FIG.
  • the reflection element 107 is regarded as a mirror.
  • the reflected return light (circularly polarized light) 117 generated in the reflective element 107 is converted into S-polarized light by QWP5.
  • the light is converted to 20, the traveling direction is changed by the prism 55, and the light is incident on the PBS 51, and is polarized and separated by the PBS 51.
  • the traveling direction of the P-polarized light 108 is changed, and then the traveling direction of the reflected return light (S-polarized light) 120 is changed, and then the PBS 51 is incident. Accordingly, the degree of freedom in arranging the laser light source is increased, and the reflected return light 120 is polarized and separated by the PBS 51, so that the reflected return light 120 can be prevented from entering the laser light source 1.
  • the electric field sensor 101d is provided with the PBS 51 as a means (polarization separating means) for polarizing and separating the reflected return light (S-polarized light) has been described.
  • a device such as a polarizing plate that transmits only specific linearly polarized light.
  • FIG. 30 is a configuration diagram of an electric field sensor according to the thirteenth embodiment.
  • the electric field sensor 101e has a laser light source 1, QWP5, EO crystal 7, PBS9, PD17, PD19, second PBS51, and prism 55.
  • the difference between the electric field sensor 101e and the electric field sensor 101d in FIG. 28 is that the position of the prism 55 is changed and the prism 55 is arranged adjacent to the laser light source 1.
  • the P-polarized light 108 is emitted from the laser light source 1 and the traveling direction of the P-polarized light 108 is changed by the prism 55.
  • the light enters the QWP5 and is converted into circularly polarized light 109 by the QWP5.
  • the circularly polarized light 109 is polarization-modulated by the EO crystal 7 and separated into P-polarized light (component) 110 and S-polarized light (component) 111 by PBS9.
  • the P-polarized light 110 is received by the PD19 and converted into an electric signal.
  • the S-polarized light 111 is received by the PD 17 and converted into an electric signal.
  • These electric signals are differentially amplified by a differential amplifier or the like (not shown), and the electric field is measured based on the amplified signals.
  • FIG. 31 is a view for explaining the basic principle of the electric field sensor 101e in FIG.
  • the reflection element 107 is regarded as a mirror.
  • the reflected return light (circularly polarized light) 117 generated in the reflective element 107 is converted into an S-polarized light by QWP5.
  • the light is converted into 20 and is incident on the PBS 51, and is polarized and separated by the PBS 51.
  • the reflected return light 120 is polarized and separated by 1 so that the reflected return light 120 is
  • the electric field sensor 101e is provided with the PBS 51 as means (polarization separating means) for polarizing and separating the reflected return light (S-polarized light) has been described.
  • a device such as a polarizing plate that transmits only specific linearly polarized light.
  • the light reflected on the incident surface of the E ⁇ crystal is mainly considered.
  • the fourteenth embodiment further includes a light reflected on the light receiving surface of the PD. Therefore, a device has been devised so that the light reflected from the light receiving surface of the PD does not return to the laser light source side.
  • FIG. 32 is a configuration diagram of an electric field sensor according to the fourteenth embodiment.
  • the electric field sensor 101f includes a QWP 57 between the PBS 9 and the PD 17, and a QWP 59 between the PBS 9 and the PD 19.
  • P-polarized light 110 transmitted through PBS9 is converted into circularly-polarized light 109 by QWP59, and a part of the light is reflected by the light-receiving surface of PD19.
  • the reflected circularly polarized light 109 is again converted into S-polarized light 120 by passing through QWP59, and reflected by PBS9. That is, it is possible to prevent the inconvenience that the light reflected on the light receiving surface of the PD 19 returns to the light source 1.
  • S-polarized light 111 reflected by PBS9 is converted into circularly-polarized light 109 by QWP57, and a part thereof is reflected by the light receiving surface of PD17.
  • the reflected circularly polarized light 109 is again converted into P-polarized light 116 by transmitting through the QWP 57, and transmits through the PBS 9. That is, it is possible to prevent the problem that the reflected light on the light receiving surface of the PD 17 returns to the light source 1.
  • FIG. 33 is a diagram showing a configuration example in which the electric field sensor of the present invention is used for detecting an electric signal of a human body
  • FIG. 34 is a diagram showing a configuration example in which the electric field sensor of the present invention is used for voltage measurement of a DUT.
  • the same components as those of the electric field sensor shown in FIGS. 5 and 6 are denoted by the same reference numerals, and the description of the components is omitted.
  • the electric field sensor of the present embodiment operates as described with reference to FIGS. 5 and 6 when detecting an electric field in EO crystal 7, and thus the description of the operation is omitted.
  • the opposing electrode 12 as the second electrode is provided on the surface of the EO crystal 7 opposite to the surface on which the signal electrode 11 as the first electrode is provided. Further, an auxiliary electrode 61 for increasing the sensitivity of the electric field sensor is connected to the counter electrode 12 by a lead wire LD.
  • the second electrode may be provided on the same surface as the surface on which the signal electrode 11 is provided (a slot electrode structure referred to as an EO modulator having a waveguide structure), or provided on a surface adjacent thereto. May be.
  • the auxiliary electrode 61 is insulated from all components and circuits in the electric field sensor (such as a circuit for driving the differential amplifier 21 and the light source 1) and the housing of the electric field sensor. The distance between the counter electrode 12 and the auxiliary electrode 61 is farther than the distance between the signal electrode 11 and the counter electrode 12. The reason for this will be described later.
  • the capacitor C1 is formed by the signal electrode 11 and the counter electrode 12, and the capacitor C2 is formed by the auxiliary electrode 61 and the ground.
  • the electric field amplitude in the EO crystal 7 can be increased, and the sensitivity of the electric field sensor can be increased.
  • the potential difference between the signal electrode 11 and the ground is ⁇
  • the capacitance of the capacitor C1 is C1
  • the capacitance of the capacitor C2 is C2
  • the potential difference between the electrodes of the capacitor C1 is ⁇ 1
  • the potential difference between the electrodes of the capacitor C2 is ⁇ 1. If the potential difference is ⁇ 2, the following two equations hold.
  • ⁇ 2 ⁇ -C1 / (C1 + C2)
  • the electric field amplitude in the EO crystal 7 is proportional to the potential difference ⁇ 1 between the electrodes of the capacitor C1, and therefore, to increase the electric field amplitude in the EO crystal 7, the capacitance C2> C1 (preferably C2>> C1 ).
  • the sensitivity can be improved only by providing the counter electrode 12 and the auxiliary electrode 61.
  • the sensitivity is further increased by further increasing the capacitance C2.
  • the surface area of the auxiliary electrode 61 may be increased.
  • the shape of the auxiliary electrode 61 is, for example, a rod shape (including a string shape), a flat plate shape, a spherical shape (including a hemispherical shape), or the like, the surface area that does not hinder manufacturing can be increased.
  • the auxiliary electrode 61 may be moved away from the electrode 11 and the counter electrode 12, preferably, close to the ground.
  • the electric field sensor is difficult to handle.
  • the electrodes are connected to each other with an expandable member to make the distance between the counter electrode 12 and the auxiliary electrode 61 variable. Is preferred.
  • the auxiliary electrode 61 may be housed in a housing like an antenna of a mobile phone. Further, when the auxiliary electrode 61 is near the signal electrode 11 and the counter electrode 12, the sensitivity for detecting the electric field is low.
  • the operation is performed only when the counter electrode 12 and the auxiliary electrode 61 are separated.
  • the auxiliary electrode 61 is near the counter electrode 12, the power supply to the light source 1 and the photodetectors 17, 19 and the differential amplifier 21 is cut off, and the counter electrode 12 and the auxiliary electrode 6 1
  • a switch mechanism is provided so that power is supplied when the power supply is separated by more than a predetermined distance.
  • the auxiliary electrode 61 is configured to be movable along the rail, and a switch 63 is provided on the rail.
  • a switch 63 is provided on the rail.
  • the switch 63 is turned on to supply power when moving in a direction away from 12 and passing on the switch 63, while the auxiliary electrode 61 moves in a direction approaching the counter electrode 12 and passes on the switch 63.
  • a mechanism can be provided to turn off the switch 63 and cut off the power supply.
  • the auxiliary electrode 61 can be fixed to either the position A which is at least a predetermined distance from the counter electrode 12 or the position B which is very close to the counter electrode 12, and a switch is provided at the position A, and the auxiliary is provided at the position A.
  • the electric field sensor of the present invention it is possible to compensate for the decrease in sensitivity due to the natural birefringence of the electro-optic crystal.
  • reflected light in a circularly polarized state is converted into P-polarized light or S-polarized light, and this is removed by a polarizing beam splitter or the like. Therefore, it is possible to provide an electric field sensor capable of preventing reflected light from being incident on the laser light source.
  • the second electrode provided on the electro-optic crystal can be electrically connected to the second electrode and separated from the second electrode by a sufficient distance.
  • the amplitude of the electric field in the electro-optic crystal can be increased, and the sensitivity of the electric field sensor can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光源(1)と、被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じて、光源から入射される光の偏光状態を変化させて出射する電気光学結晶(7)と、電気光学結晶(7)から出射した光の偏光状態の変化に応じた電気信号を検出する検出部(9,17,19,21)と、を有する電界センサに関する。被測定信号に基づく電界を電気光学結晶(7)に印加するための信号電極(11)と対をなす対向電極(12)を設けると共に、その対向電極(12)に電気的に接続され、大地グラウンドとの間で容量を形成する補助電極(61)を設ける。

Description

明 細 書
電界センサおよびその調整方法
技術分野
[0001] 本発明は、測定対象の電界が印加される電気光学 (Electro Optic)結晶(以下、 "E 〇結晶"とする)にレーザ光を照射し、これを検出することにより印加された電界の電 界強度を測定する電界センサと、力かる電界センサの調整方法に関する。
背景技術
[0002] EO効果を利用した電界センサにおいては、交流の電界が印加されている EO結晶 に光ビームを入射させ、 EO結晶から出射された光を偏光ビームスプリッタ(Polarizing Beam Splitter:以下、 PBSとレ、う)により S偏光と P偏光とに分離し、 2つの光検出器( Photo Detector:以下、 PDという)によってそれぞれの偏光を独立に検出する。そし て、各偏光の強度の差を差動アンプで検出する。
[0003] PBSに入射する直前の光ビームの偏光状態としては、円偏光であることが望ましい 。円偏光のときの主なメリットを以下に列挙する。
[0004] (1)光ビームの強度変調度が最大となり、高感度の検出に寄与する。また、差動信号 検出によって PDの出力信号の振幅を 2倍に増幅することができる。
[0005] (2)差動信号検出によって光ビームの強度雑音を低減できるので、高感度の検出に 寄与する。
[0006] (3)差動信号検出によって信号の直流成分を相殺できるので、信号処理回路の負担 軽減に寄与する。
[0007] 図 1は、従来の電界センサの動作説明図である。
[0008] 光源 1から出射した光ビーム 3は 1/4波長板(Quarter Wave Plate :以下、 QWPと レヽう) 5と EO結晶 7を透過後、 PBS9に入射する。光ビーム 3の偏光状態は、 PBS9に 入射する直前において円偏光になるように、 QWP5によって調整されている。 EO結 晶 7には、信号電極 11およびグラウンド電極 13を介して、交流の被測定信号 15に応 じた交流電界が印加される。光ビーム 3は電界に応じて EO結晶 7内にて偏光変調を 受ける。偏光変調光は PBS9で Sおよび P偏光成分に分離される。このとき、各偏光 成分は強度変調光に変換されている。強度変調された Sおよび P偏光成分は互いに 逆相に変化する。したがって、 PD17および 19で受光し、差動アンプ 21を用いて差 動信号検出することによって、より高感度な出力信号 22を得ることが可能となる。
[0009] 図 2は、 PBS9に入射する光ビームの偏光状態とそれに対応する電気信号の関係 を示す図である。
[0010] 図 2 (a)に示すように、 PBS9に入射する光ビームの偏光状態が円偏光に保たれて レ、るならば、 PBS9で分離される Sおよび P偏光成分の強度は等しい。
[0011] 図 2 (b)に示すように、 PBS9に入射する光ビームの偏光状態が円偏光に保たれて レ、るならば、 PD17および 19が出力する電気信号は、 0. 5Vmax (Vmaxは全光量 に対応する PDの出力電圧)を基準値として被測定信号 (この場合は正弦波)に対応し た信号となり、互いに逆相に変化する。ここで、それぞれの信号の最大振幅を Aとお <。
[0012] 図 2 (c)に示すように、 PBS9に入射する光ビームの偏光状態が円偏光に保たれて いるならば、差動アンプ 21の出力信号の最大振幅は 2Aとなり、直流成分は相殺され る。またこの時には、 PD17および 19の出力信号に含まれている光強度雑音も大幅 に低減される。
[0013] なお、上記技術は、例えば、特開 2003— 98205号公報、特開 2001— 324525号 公報に開示されている。
[0014] し力 ながら、電界センサにあっては、図 2 (d)に示すように、 PBS9に入射する光ビ 一ムが円偏光に保たれておらず楕円偏光になっているならば、 PBS9で分離される S および P偏光成分の強度にアンバランスが生じる。これは、主に温度変化によるもの である。
[0015] 図 2 (e)に示すように、 PBS9に入射する光ビームが楕円偏光になっているならば、 PD17および 19の出力電気信号の直流成分にアンバランスが生じる (Vs≠Vpかつ V s +Vp=Vmax)0また、図 2 (b)の状態に比べて信号振幅 rAが小さくなる (rA, 0≤r < 1)。
[0016] 図 2 (f)に示すように、 PBS9に入射する光ビームが楕円偏光になっているならば、 差動アンプ 21の出力電気信号には直流成分 (Vp— Vs)が残る。振幅は 2rAとなり、図 2 (c)の状態に比べて小さくなる。またこの時には、 PD17および 19の出力信号に含 まれてレ、る光強度雑音を十分に低減することができなレ、。
[0017] なお、光ビームが PBS9に入射する直前の偏光状態を常に円偏光に保つことは、 温度変化のある場合には困難である。
[0018] 以上のように、電界センサにおいては光ビームが楕円偏光に変化してしまうので、 以下のデメリットが生じる。
[0019] (1)光ビームの強度変調度が低下するのでセンサとしての感度が低下する。
[0020] (2) Sおよび P偏光成分の平均強度にアンバランスが生じ、差動信号検出によってレ 一ザ強度雑音を十分に低減することが不可能であり、センサとしての感度が低下する
[0021] (3)差動信号検出によって信号の直流成分を十分に低減できない。
[0022] 次に、上記のような電界センサにおける、好ましくない反射光について説明する。
[0023] 図 3は、図 1と同様の電界センサの構成を示す図であり、特に、偏光状態に基づく 反射光に着目した図である。なお、図 3においては、電極 11 , 13は省略している。
[0024] 電界センサ 101において、レーザ光源 1から P偏光 108が照射され、この P偏光 10
8は QWP5により円偏光 109に変換される。
[0025] 円偏光 109は、 EO結晶 7により偏光変調され、偏光変調された光は、 PBS9により
P偏光 (成分) 110と S偏光(成分) 111とに分離され、 P偏光 110は PD 19により受信 され、電気信号に変換され、一方、 S偏光 111は PD17により受信され、電気信号に 変換される。これらの電気信号は、図 1に示した差動アンプ 22等により差動増幅され
、これに基づいて電界が測定される。
[0026] なお、以降の説明においては、適宜、上記の E〇結晶 7、 PBS9、 PD17および 19 を反射要素 107と総称する。また、この反射要素 107の詳細については後述する。
[0027] 図 4は、上記の電界センサ 101における解決すべき課題について説明するための 図である。
[0028] 上述したように、電界センサ 101においては、 E〇結晶 7に円偏光が入射される。し かし、入射された光が EO結晶 7を含む反射要素の各構成機器において反射され、 それが反射戻り光 112となり、これが QWP5により S偏光 113に変換され、この反射 戻り光(S偏光) 113がレーザ光源 1に逆入射されると、電界センサ 101の測定精度に 影響を及ぼす場合がある。
[0029] また、反射光は、 E〇結晶端面はもとより、 PDの受光面でも発生しやすい。この PD の受光面での反射光もレーザ光源 1に逆入射されると、電界センサ 101の測定精度 に影響を及ぼす場合がある。
[0030] 一方、上記のような電界センサは、図 5に示すような、人体を伝わる電気信号を検出 するものや、図 6に示すような、被測定デバイス(Device Under Test:以下、 DUTと称 す)中の電気信号を検出するものに応用されている(特開 2000-171488号公報参 照)。
[0031] 図 5に示すように、受信用電極 RPは、人体 100の被測定点に接触している。信号 源 Sinから送信用電極 SPと人体 100を介して、受信用電極 RPに電気信号が入力さ れると、受信用電極 RPにリード線で接続された、電界センサ内の信号電極 11は、被 測定点と同電位になる。
[0032] また、図 6に示すように、金属針 MNは、 DUT201の被測定点に接触している。信 号源 Sinから DUT201を介して、金属針 MNに電気信号が入力されると、金属針 M Nにリード線 LDで接続された、電界センサ内の信号電極 11は、被測定点と同電位 になる。
[0033] これ以降の動作は、図 5と図 6の場合で同一であり、先ず、信号電極 11と大地ダラ ンド間に電界が発生する。この時の電気力線は、図 5や図 6に示すように、その一部 カ¾〇結晶 7中を通過するので、 E〇結晶 7内に電界が発生する。
[0034] E〇結晶 7内に電界が発生すると、その電界に応じて E〇結晶 7において複屈折率 の変化が生じる。光源 1から直接または QWP5を介して、複屈折率が変化した EO結 晶 7に円偏光を入射させると、 EO結晶 7からは楕円偏光が出力される。楕円偏光は、 2つのミラー 14a、 14bによって反射した後、 PBS9に入射し、この PBS9で 2つの直 線偏光(Sおよび P偏光)に分離される。この Sおよび P偏光は 2つの PD17、 19によつ て検出され、それぞれの強度に比例した電気信号が差動アンプ 21に入力する。この 差動アンプ 21の出力電気信号は、 E〇結晶 7内の電界振幅に比例するので、差動ァ ンプ 21の出力電気信号を測定することにより、 EO結晶 7内の電界振幅を検出するこ とが可能となる。また、 E〇結晶 7内の電界振幅は、人体 100や DUT201の被測定点 の電位に比例しているので、この差動アンプ 21の出力電気信号を検出することにより 、被測定点の電位を検出することができる。
[0035] しかしながら、図 5や図 6に示したように、従来の電界センサにおいては、信号電極 11から発生した電気力線のごく一部のみが EO結晶 7内を通過するので、 E〇結晶 7 内の電界振幅が小さい。したがって、光源 1からの光ビームの偏光状態を十分に変 調できず、そのため、電界センサとして高い感度が得られない。
発明の開示
[0036] そこで本発明は、上記の従来の課題に鑑みてなされたものであり、その目的とする ところは、電気光学結晶の自然複屈折率による感度低下の補償が可能な電界セン サとその調整方法を提供することにある。
[0037] 本発明の他の目的は、反射戻り光がレーザ光源に入射することを防止可能な電界 センサを提供することにある。
[0038] 本発明の更に他の目的は、電気光学結晶内の電界振幅を高めることによって高い 感度が得られる電界センサを提供することにある。
[0039] 上記目的を達成するため、第 1の態様に係る発明は、光源と、被測定信号に基づく 電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じて、前 記光源から入射される光の偏光状態を変化させて出射する電気光学結晶と、前記電 気光学結晶から出射した光の前記偏光状態の変化に応じた電気信号を検出する検 出部と、前記電気光学結晶に近接して設けられ、前記被測定信号に基づく電界を前 記電気光学結晶に印加するための第 1の電極と、前記電気光学結晶に近接して設 けられ、前記第 1の電極と対をなす第 2の電極と、前記第 2の電極に電気的に接続さ れ、大地グラウンドとの間で容量を形成する補助電極と、を備えた電界センサを要旨 とする。
[0040] 第 2の態様に係る発明は、第 1の態様に係る発明において、前記補助電極の表面 積は、前記第 1の電極および前記第 2の電極の表面積よりも大きいことを要旨とする。
[0041] 第 3の態様に係る発明は、第 2の態様に係る発明において、前記補助電極の形状 は、棒状、板状、球状のいずれかであることを要旨とする。 [0042] 第 4の態様に係る発明は、第 1の態様に係る発明において、前記補助電極と前記 第 2の電極との距離は、前記第 1の電極と前記第 2の電極との距離よりも長いことを要 旨とする。
[0043] 第 5の態様に係る発明は、第 1の態様に係る発明において、前記補助電極を移動 させて、前記第 2の電極との距離を可変にする距離変更手段を更に備えたことを要 旨とする。
[0044] 第 6の態様に係る発明は、第 5の態様に係る発明において、前記距離変更手段に より前記補助電極が前記第 2の電極と所定距離以上離れたときに、前記検出部を動 作させるように制御する制御手段を更に備えたことを要旨とする。
[0045] 第 7の態様に係る発明は、第 1の態様に係る発明において、前記補助電極は、前 記検出部を構成する回路および前記光源を駆動する回路から絶縁されていることを 要旨とする。
[0046] また、上記目的を達成するため、第 8の態様に係る発明は、 P偏光および S偏光を 円偏光に変換する 1/4波長板と、被測定信号に基づく電界が印加され、その電界 に応じて複屈折率が変化し、その複屈折率に応じて、前記 1/4波長板からの前記 円偏光の偏光状態を変化させて出射する電気光学結晶と、前記電気光学結晶から 出射した光の前記偏光状態の変化に応じた電気信号を検出する検出部と、前記 1/ 4波長板の前段に位置し、入射される P偏光または S偏光を前記 1/4波長板に導くと 共に、前記電気光学結晶側から戻ってきた円偏光が前記 1Z4波長板により変換さ れた S偏光または P偏光を前記入射される P偏光または S偏光の入射方向とは異なる 方法へ導く反射光分離手段と、を備えた電界センサを要旨とする。
[0047] 第 9の態様に係る発明は、第 8の態様に係る発明において、前記反射光分離手段 は、偏光板、偏光ビームスプリッタ、グラントムソンプリズムおよびウォラストンプリズム の内のレ、ずれかであることを要旨とする。
[0048] 第 10の態様に係る発明は、第 9の態様に係る発明において、前記反射光分離手 段は、 P偏光を透過し、 S偏光を反射する偏光ビームスプリッタであることを要旨とす る。
[0049] 第 11の態様に係る発明は、第 8の態様に係る発明において、前記反射光分離手 段の前段に位置し、 P偏光および s偏光のいずれかを出射する光源を更に備えたこ とを要旨とする。
[0050] また、上記目的を達成するため、第 12の態様に係る発明は、被測定信号に基づく 電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じて、入 射される光の偏光状態を変化させて出射する電気光学結晶と、前記電気光学結晶 力 出射した、偏光状態の変化した光の P偏光成分と S偏光成分のうちの一方を透 過し、他方を反射することにより、前記偏光状態の変化した光を P偏光成分と S偏光 成分に分離する偏光ビームスプリッタと、前記 P偏光成分を円偏光に変換する第 1の 1/4波長板と、前記 S偏光成分を円偏光に変換する第 2の 1/4波長板と、前記第 1 の 1/4波長板により円偏光に変換された前記 P偏光成分を電気信号に変換する第 1光検出器と、前記第 2の 1/4波長板により円偏光に変換された前記 S偏光成分を 電気信号に変換する第 2光検出器と、を備えた電界センサを要旨とする。
[0051] また、上記目的を達成するため、第 13の態様に係る発明は、光源と、被測定信号 に基づく電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応 じて、前記光源から入射される光の偏光状態を変化させて出射する電気光学結晶と 、前記被測定信号に基づく電界を前記電気光学結晶に印加するための一対の電極 と、当該電気光学結晶から出射された光を P偏光成分と S偏光成分とに分離し、当該 各偏光成分の強度の差分に応じた交流信号を得る検出部と、前記電気光学結晶が 有する自然複屈折性による、前記電界が印加されていないときにおける、前記光源 から入射される光の偏光状態の変化を相殺する補償手段と、を備えた電界センサを 要旨とする。
[0052] 第 14の態様に係る発明は、第 13の態様に係る発明において、前記電気光学結晶 に入射される光は任意の偏光であり、前記補償手段は、電気的主軸が前記電気光 学結晶から出射した楕円偏光の主軸と一致し、その楕円偏光を直線偏光に変換する 1Z4波長板と、前記電界が印加されていないときの、前記 1/4波長板からの直線 偏光の偏波面が前記電気光学結晶の電気的主軸に対して有する角度を 45° - φ ο としたときに、電気的主軸が前記電気光学結晶の電気的主軸に対して有する角度が 、 η·45° - φ ο/2 (ただし、 ηは整数)であることでもって、前記 1/4波長板から出射 する直線偏光の偏波面の角度を調整する 1/2波長板と、を含むことを要旨とする。
[0053] 第 15の態様に係る発明は、第 13の態様に係る発明において、前記電気光学結晶 に入射される光は、偏波面が前記電気光学結晶の電気的主軸に対して有する角度 力 5° である直線偏光であり、前記補償手段は、電気的主軸が前記電気光学結晶 の電気的主軸に対して有する角度は 45° であり、前記電気光学結晶から出射する 楕円偏光を直線偏光に変換する 1/4波長板と、前記電界が印加されていないとき の、前記電気光学結晶から出射した楕円偏光に含まれる位相差を Φ 0としたときに、 電気的主軸が前記電気光学結晶の電気的主軸に対して有する角度が、 η·45° —φ ο/2 (ただし、 ηは整数)であることでもって、前記 1/4波長板から出射する直線偏光 の偏波面の角度を調整する 1/2波長板と、を含むことを要旨とする。
[0054] 第 16の態様に係る発明は、第 13の態様に係る発明において、前記電気光学結晶 に入射される光は円偏光であり、前記補償手段は、電気的主軸が前記電気光学結 晶の電気的主軸に対して有する角度は 45° であり、前記電気光学結晶から出射す る楕円偏光を直線偏光に変換する 1/4波長板と、前記電界が印加されていないとき の、前記電気光学結晶から出射した楕円偏光に含まれる位相差を φ 0としたときに、 電気的主軸が前記電気光学結晶の電気的主軸に対して有する角度が、 η·45° —φ ο/2 (ただし、 ηは整数)であることでもって、前記 1/4波長板から出射する直線偏光 の偏波面の角度を調整する 1Z2波長板と、を含むことを要旨とする。
[0055] 第 17の態様に係る発明は、第 14乃至第 16のいずれかの態様に係る発明におい て、前記 φ οは、 φ ο= (2 π Ζ λ ) (no_ne) Lに基づいて決定されることを要旨とする
[0056] ここで、 noは、前記電気光学結晶の常光に対する屈折率、
neは、前記電気光学結晶の異常光に対する屈折率、
λは、光の真空中における波長、
Lは、前記電気光学結晶の光の方向における長さ。
[0057] 第 18の態様に係る発明は、第 13の態様に係る発明において、前記補償手段は、 制御信号に基づいた電界を前記電気光学結晶に印加する一対の制御電極と、前記 検出部により得られた前記交流信号に基づき、前記被測定信号に基づく電界が印 カロされていないときにおける、前記光源から入射される光の偏光状態の変化を相殺 するような前記制御信号を生成する制御信号生成手段と、を含むことを要旨とする。
[0058] 第 19の態様に係る発明は、第 13の態様に係る発明において、前記補償手段は、 制御信号を前記被測定信号に加算する加算器と、前記検出部により得られた前記 交流信号に基づき、前記被測定信号に基づく電界が印加されていないときにおける 、前記光源から入射される光の偏光状態の変化を相殺するような前記制御信号を生 成する制御信号生成手段と、を含むことを要旨とする。
[0059] 第 20の態様に係る発明は、第 18または第 19の態様に係る発明において、前記制 御信号生成手段は、前記 P偏光成分に基づく電気信号および前記 S偏光成分に基 づく電気信号をそれぞれ入力する第 1バッファアンプおよび第 2バッファアンプと、前 記第 1バッファアンプおよび第 2バッファアンプの出力をそれぞれ入力する第 1ローパ スフィルタおよび第 2ローパスフィルタと、前記第 1ローパスフィルタおよび第 2ローパ スフィルタの出力を入力し、それらの出力の差分を積分する積分器と、を含むことを 要旨とする。
[0060] また、上記目的を達成するため、第 21の態様に係る発明は、光源と;被測定信号に 基づく電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じ て、入射される任意の偏光の偏光状態を変化させて出射する電気光学結晶と;前記 被測定信号に基づく電界を前記電気光学結晶に印加するための一対の電極と;当 該電気光学結晶から出射された光を P偏光成分と s偏光成分とに分離し、当該各偏 光成分の強度の差分に応じた交流信号を得る検出部と;を備えた電界センサの調整 方法であって、前記電気光学結晶から出射した楕円偏光を直線偏光に変換する 1/ 4波長板を、その電気的主軸が前記楕円偏光の電気的主軸と一致するように設け、 前記 1Z4波長板から出射する直線偏光の偏波面の角度を調整する 1/2波長板を 、前記電界が印加されていないときの、前記 1/4波長板からの直線偏光の偏波面 が前記電気光学結晶の電気的主軸に対して有する角度を 45° - φ 0としたときに、 電気的主軸が前記電気光学結晶の電気的主軸に対して有する角度が、 η·45° —φ οΖ2 (ただし、 ηは整数)となるように設けることを要旨とする。
[0061] また、上記目的を達成するため、第 22の態様に係る発明は、光源と;被測定信号に 基づく電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じ て、偏波面が電気光学結晶の電気的主軸に対して有する角度が 45° である直線偏 光の偏光状態を変化させて出射する電気光学結晶と;前記被測定信号に基づく電 界を前記電気光学結晶に印加するための一対の電極と;当該電気光学結晶から出 射された光を P偏光成分と S偏光成分とに分離し、当該各偏光成分の強度の差分に 応じた交流信号を得る検出部と;を備えた電界センサの調整方法であって、前記電 気光学結晶から出射する楕円偏光を直線偏光に変換する 1Z4波長板を、電気的主 軸が前記電気光学結晶の電気的主軸に対して 45° の角度となるように設け、前記 1 /4波長板から出射する直線偏光の偏波面の角度を調整する 1/2波長板を、前記 電界が印加されていないときの、前記電気光学結晶から出射した楕円偏光に含まれ る位相差を φ 0としたときに、電気的主軸が前記電気光学結晶の電気的主軸に対し て有する角度が、 η·45° - φ ο/2 (ただし、 ηは整数)となるように設けることを要旨と する。
[0062] また、上記目的を達成するため、第 23の態様に係る発明は、光源と;被測定信号に 基づく電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じ て、入射される円偏光の偏光状態を変化させて出射する電気光学結晶と;前記被測 定信号に基づく電界を前記電気光学結晶に印加するための一対の電極と;当該電 気光学結晶から出射された光を Ρ偏光成分と S偏光成分とに分離し、当該各偏光成 分の強度の差分に応じた交流信号を得る検出部と;を備えた電界センサの調整方法 であって、前記電気光学結晶から出射する楕円偏光を直線偏光に変換する 1Z4波 長板を、電気的主軸が前記電気光学結晶の電気的主軸に対して 45° の角度となる ように設け、前記 1/4波長板から出射する直線偏光の偏波面の角度を調整する 1Z 2波長板を、前記電界が印加されていないときの、前記電気光学結晶から出射した 楕円偏光に含まれる位相差を Φ 0としたときに、電気的主軸が前記電気光学結晶の 電気的主軸に対して有する角度が、 η·45° _ φ ο/2 (ただし、 ηは整数)となるように 設けることを要旨とする。
[0063] 第 24の態様に係る発明は、第 21乃至第 23のいずれかの態様に係る発明におい て、前記 φ οは、 φ ο= (2 π / λ ) (no— ne) Lに基づいて決定されることを要旨とする [0064] ここで、 noは、前記電気光学結晶の常光に対する屈折率、
neは、前記電気光学結晶の異常光に対する屈折率、
λは、光の真空中における波長、
Lは、前記電気光学結晶の光の方向における長さ。
[0065] 第 25の態様に係る発明は、第 21乃至第 23のいずれかの態様に係る発明におい て、前記 φ οは、測定により決定されることを要旨とする。
[0066] また、上記目的を達成するため、第 26の態様に係る発明は、光源と;被測定信号に 基づく電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じ て、前記光源から入射される光の偏光状態を変化させて出射する電気光学結晶と; 前記被測定信号に基づく電界を前記電気光学結晶に印加するための一対の電極と ;当該電気光学結晶から出射された光を Ρ偏光成分と s偏光成分とに分離し、当該各 偏光成分の強度の差分に応じた交流信号を得る検出部と;制御信号に基づいた電 界を前記電気光学結晶に印加する一対の制御電極と;前記制御信号を生成する制 御信号生成手段と;を備えた電界センサの調整方法であって、前記検出部により得ら れた前記交流信号を表示し、表示された前記交流信号に基づき、前記被測定信号 に基づく電界が印加されていないときにおける、前記光源から入射される光の偏光 状態の変化を相殺するような前記制御信号を生成するように前記制御信号生成手段 を調整することを要旨とする。
[0067] また、上記目的を達成するため、第 27の態様に係る発明は、光源と;被測定信号に 基づく電界が印加され、その電界に応じて複屈折率が変化し、その複屈折率に応じ て、前記光源から入射される光の偏光状態を変化させて出射する電気光学結晶と; 前記被測定信号に基づく電界を前記電気光学結晶に印加するための一対の電極と ;当該電気光学結晶から出射された光を Ρ偏光成分と s偏光成分とに分離し、当該各 偏光成分の強度の差分に応じた交流信号を得る検出部と;制御信号を前記被測定 信号に加算する加算器と;前記制御信号を生成する制御信号生成手段と;を備えた 電界センサの調整方法であって、前記検出部により得られた前記交流信号を表示し 、表示された前記交流信号に基づき、前記被測定信号に基づく電界が印加されてい ないときにおける、前記光源から入射される光の偏光状態の変化を相殺するような前 記制御信号を生成するように前記制御信号生成手段を調整することを要旨とする。 図面の簡単な説明
[図 1]図 1は、従来の電界センサの構成を示すブロック図である。
[図 2]図 2は、 PBSに入射する光ビームの偏光状態とそれに対応する電気信号の関 係を示す図である。
[図 3]図 3は、従来の電界センサの構成を示すブロック図である。
[図 4]図 4は、図 3の電界センサにおける課題を説明するための図である。
[図 5]図 5は、従来の電界センサを人体の電気信号検出に用いた構成例を示す図で ある。
[図 6]図 6は、従来の電界センサを DUTの電圧測定に用いた構成例を示す図である
[図 7]図 7は、本発明の第 1の実施の形態に係る電界センサの構成を示す図である。
[図 8]図 8は、本発明の第 1の実施の形態に係る電界センサの偏光状態を示す図で ある。
[図 9]図 9は、本発明の第 2の実施の形態に係る電界センサの構成を示す図である。
[図 10]図 10は、本発明の第 2の実施の形態に係る電界センサの偏光状態を示す図 である。
[図 11]図 11は、第 1または第 2の実施の形態の電界センサの EO結晶が自然複屈折 率を有する場合の波形図である。
[図 12]図 12は、第 3の実施の形態における電界センサの構成図である。
[図 13]図 13は、第 3の実施の形態における電極の配置図である。
[図 14]図 14は、第 4の実施の形態における電界センサの構成図である。
[図 15]図 15は、加算器の回路図である。
[図 16]図 16は、第 5の実施の形態における電界センサの構成図である。
[図 17]図 17は、第 5の実施の形態における電極の配置図である。
[図 18]図 18は、第 6の実施の形態における電界センサの構成図である。
[図 19]図 19は、積分器 (スィッチトキャパシタ積分器)の回路図とドライブ信号の波形 図である。
[図 20]図 20は、第 7の実施の形態における電界センサの構成図である。
[図 21]図 21は、第 8の実施の形態における電界センサの構成図である。
[図 22]図 22は、第 9の実施の形態における電界センサの構成図である。
[図 23]図 23は、図 22の電界センサの基本原理を説明するための図である。
[図 24]図 24は、第 10の実施の形態における電界センサの構成図である。
[図 25]図 25は、図 24の電界センサの基本原理を説明するための図である。
[図 26]図 26は、第 11の実施の形態における電界センサの構成図である。
[図 27]図 27は、図 26の電界センサの基本原理を説明するための図である。
[図 28]図 28は、第 12の実施の形態における電界センサの構成図である。
[図 29]図 29は、図 28の電界センサの基本原理を説明するための図である。
[図 30]図 30は、第 13の実施の形態における電界センサの構成図である。
[図 31]図 31は、図 30の電界センサの基本原理を説明するための図である。
[図 32]図 32は、第 14の実施の形態における電界センサの構成図である。
[図 33]図 33は、本発明の電界センサを人体の電気信号検出に用いた構成例を示す 図である。
[図 34]図 34は、本発明の電界センサを DUTの電圧測定に用いた構成例を示す図 である。
[図 35]図 35は、補助電極を、信号電極や対向電極の近くに設けた状態を示す図で ある。
[図 36]図 36は、補助電極を、信号電極や対向電極力 遠ざけた状態を示す図である 発明を実施するための最良の形態
[0069] 以下、本発明の実施の形態を図面を参照して説明する。
[0070] 先ず、電気光学結晶の自然複屈折率による感度低下の補償が可能な電界センサ とその調整方法に係る実施の形態を第 i乃至第 8の実施の形態として説明する。な お、ここでは、光の進行方向を z軸、鉛直上向きを y軸、水平方向を X軸と定義する。
[0071] <第 1の実施の形態 > 図 7は、本発明の第 1の実施の形態に係る電界センサの構成を示す図である。
[0072] 第 1の実施の形態に係る電界センサは、電界の結合で複屈折率が変化する電気光 学 (Electro Optic)結晶(以下、 "E〇結晶"とする) 7と、該 EO結晶 7に電界を結合さ せるために当該 E〇結晶 7を挟んで設けられた一対の電極 11 , 13と、 E〇結晶 7に光 を入射させる光源 1と、 E〇結晶 7から出射する楕円偏光を直線偏光にする 1/4波長 板(Quarter Wave Plate :以下、 QWPとレ、う) 6と、当該直線偏光の位相を調整する 1 Z 2波長板(Half Wave Plate :以下、 HWPとレ、う) 8と、該 HWP8から出射する直線偏 光を P偏光成分と S偏光偏光成分に分離する偏光ビームスプリッタ(Polarizing Beam Splitter:以下、 PBSと称す) 9と、当該各偏光成分を電気信号に変換する 2つの光検 出器(Photo Detector:以下、 PDと称す) 17, 19と、該各光検出器で得られた各電気 信号の差分を増幅する差動アンプ (増幅器) 21と、を備える。
[0073] 第 1の実施の形態に係る電界センサでは、光源 1から出射した直線偏光が EO結晶
7に入射する。このとき、 A点における直線偏光の偏波面は EO結晶 7の電気的主軸 に対して 45° をなすように設定されている。
[0074] EO結晶 7は自然複屈折性を有しており、 EO結晶 7に電界が印加されない場合に おいて、 B点における光は楕円偏光になっている。 QWP6の電気的主軸は、 EO結 晶 7の電気的主軸に対して 45° をなすように設定されている。 B点における楕円偏 光は、このように設定された QWP6を透過することによって、直線偏光に変換される。
[0075] したがって C点における光は直線偏光になっている力 一般にその偏波面と E〇結 晶 7の電気的主軸がなす角度は、 A点におけるその角度とは異なる。 C点における直 線偏光は、適当な角度に配置された HWP8によって、 PBS9に対する P偏光成分と S 偏光成分を 1 : 1の割合で含むような直線偏光に変換される。ここで、 P偏光とは PBS 9を透過する直線偏光であり、 S偏光とは PBS9で反射する直線偏光である。 PBS9 の配置の仕方は任意であるが、 Pおよび S偏光を水平面 (X— z面)内に分離するように PBS9を配置するのが普通であるので、本実施の形態においてもそのような配置を採 用したものとして説明を続ける。
[0076] P偏光の偏波面は X— z平面に一致し、 S偏光の偏波面は y— z平面に一致している。
したがって D点における直線偏光の偏波面は、 X— z平面と 45° の角度をなしている。 [0077] D点における直線偏光に含まれる Pおよび S成分の比は 1: 1であるので、 PD19お よび PD17で検出される光量は等しい。 PD19および 17は受光強度に比例したレべ ルの電気信号を出力するので、差動アンプ 21が出力する電気信号のレベルはゼロ である。 EO結晶 7に電界が印加された場合には、 D点における直線偏光の偏波面が X— z平面となす角度が 45° から δだけずれる。 δは ΕΟ結晶 7中の電界振幅 Αに比 例する。したがって電界が印加されると PD17および 19が検出する光量にアンバラン スが生じ、差動アンプ 21は電界 Aに比例したレベルの電気信号を出力する。したが つて、差動アンプ 21の出力電気信号を検出することにより、 EO結晶 7に印加されて レ、る電界を検出することが可能になる。 EO結晶 7中の電界は、 EO結晶 7に付随した 電極間の電位差に比例するので、差動アンプ 21の出力電気信号を検出することは、 電極間電位差を検出することと等価である。
[0078] 図 8は、本発明の第 1の実施の形態に係る電界センサの偏光状態を示す図である。
ここでは、光は z軸の正方向 (紙面の裏から表)に向かって進むように記載している。ま た、 EO結晶 7の電気的主軸の 1つである slow軸と fast軸をそれぞれ X軸(水平方向) と y軸 (鉛直方向)に一致させている。
[0079] 図 8 (a)は、 A点における光の偏光状態を表したものであり、直線偏光の偏波面は x 軸(EO結晶 7の slow軸)に対して 45° の角度をなしている。
[0080] 図 8 (b)は、 B点における光の偏光状態を表したものであり、 EO結晶 7の複屈折性 により楕円偏光となっている。またこの楕円の主軸は X軸に対して 45° の角度をなし ている。
[0081] 図 8 (c)は、 C点における光の偏光状態と QWP6の電気的主軸の関係を表したもの である。 sおよび f軸は、それぞれ QWP6の slowおよび fast軸を表しており、 s軸は x 軸に対して 45° の角度をなしている。点 Bにおける楕円偏光は、直線偏光に変換さ れる。 E〇結晶 7の自然複屈折性によって光の独立な偏光成分間に生じた位相変化 量 (E〇結晶 7から出射する楕円偏光に含まれる位相差)を φ 0とすると、その直線偏 光の偏波面が X軸となす角度は、 45° 一 φ οである。
[0082] 図 8 (d)は、 D点における光の偏光状態と HWP8の電気的主軸の関係を表したもの である。 sおよび f軸は、それぞれ HWP8の slowおよび fast軸を表している。点線は、 C点における光の偏光状態を表している。 HWP8の slow軸(s軸)が X軸となす角度を 、次式のように設定すると、直線偏光の偏波面と X軸のなす角度を 45° に補正できる 。このとき、 D点の直線偏光の偏波面と y軸(EO結晶 7の fast軸)のなす角度も同時 に 45° に補正できるのは勿論である。
[0083]
また、 φ οの値は、次式もしくは測定によって決定することが可能である。
[0084] φ ο= (2 π /ん)、 no_ne) L
ここで λは結晶に入射する光の(真空中における)波長、 Lは ζ方向に関する結晶の 長さ、 noと neはそれぞれ常光と異常光に対する ΕΟ結晶 7の屈折率である。
[0085] 力かる補正によって、 D点においては、 Sおよび P偏光成分の強度が等しくなつてい るために、差動アンプ 21の出力電気信号のレベルはゼロとなる。
[0086] 図 8 (e)は、 EO結晶 7に被測定電界 A (t)が印加された場合における D点の偏光状 態の変化を表したものである。例として、 A (t) =Aosin co tという変化をする交流電界 が印加された場合を説明する。この場合、 EO結晶 7内で光の独立な偏光成分間に 生じる位相差 φ (t)は、 (t) = ο+ δ osin co tという形で表される。したがって D点 では、直線偏光の偏波面と X軸がなす角度 Θ (t)は 45° 土 δ 0の間を角周波数 ωで 振動することになる。数式で表すと、 Θ (t) =45° + δ osin co tである。
[0087] <第 2の実施の形態 >
図 9は、本発明の第 2の実施の形態に係る電界センサの構成を示す図である。
[0088] 第 1の実施の形態の電界センサとの違いは、光源 1と EO結晶 7の間に QWP5が揷 人されてレ、ることである。
[0089] 光源 1を出射した直線偏光は、この QWP5によって円偏光に変換される。したがつ て、 E〇結晶 7には円偏光が入射する。第 1の実施の形態のように直線偏光を EO結 晶 7に入射させる場合、 EO結晶 7内で効率よく偏光変調を行うためには、偏波面を 電気的主軸に対して 45° に設定する必要がある。それに対して円偏光を用いた場 合には、偏波面と電気的主軸とに角度の設定を行う必要が無くなるので、本発明の 電界センサを製造する際の工程が簡素化される。
[0090] 図 10は、本発明の第 2の実施の形態に係る電界センサの偏光状態を示す図である 。なお、図 10(a) (e)は、図 8(a)—(e)に順番どおりに対応する。
[0091] ここでは、右回り円偏光を結晶に入射した場合について示している。第 2の実施の 形態に係る電界センサの偏光状態は、図 8における φοを φ 0 + 90° に置き換えた 場合と同じになる。
[0092] すなわち、 HWP8の slow軸(s軸)が X軸となす角度を、次式のように設定すると、直 線偏光の偏波面と X軸のなす角度を 45° に補正できる。
[0093] -φο/2
また図示しないが、左回り円偏光を入射した場合には、 φ 0を φ 0— 90° に置き換え た場合と同じになる。
[0094] さて、これまで説明した HWP8の角度調整に鑑みると、 QWP6からの直線偏光の 偏波面が y軸 (EO結晶 7の fast軸)に対して有する角度を 45° - φ οとした場合であ つても、 D点の偏波面と ΕΟ結晶 7の電気的主軸とのなす角度を 45° に補正できる。 また、 HWP8の s軸(または f軸)が X軸ほたは y軸)に対して有する角度を、 η·45° - φ ο/2 (ただし、 ηは整数)とした場合であっても、 D点の偏波面と ΕΟ結晶 7の電気 的主軸とのなす角度を 45° に補正できる。
[0095] 図 11は、第 1および第 2の実施の形態の電界センサの波形図である。
[0096] 図 11 (a)は、被測定電界の波形 A (t) = Aosin ω t、図 11 (b)は、被測定電界およ び該電界による複屈折率の変化に起因して光の独立な偏光成分間に生じる位相差 δ (t)= Sosincotを表す。当然のことながら、 A(t)と δ (t)の波形は同じである。図 1 1 (c)は、図 7や図 9の D点における直線偏光の偏波面の、 X軸に対する角度 Θ (t) = 45° + δ osincotを表す。この偏波面は Θ (t) =45° のときを中心として正弦波状 に振動する。図 11(d)および図 11(e)は、それぞれ PD19および 17の出力電気信 号の波形(VI (t)および V2(t))を表している。 PD19、 PD17の出力電気信号のレべ ルは当該 PDに入射する光強度に比例すること、さらに PD19および PD17にはそれ ぞれ Pおよび S偏光が入射することを考慮すると、以下の関係が成立する。ただし、最 後の式変形では δ ο<<90° という条件を用いた。被測定電界に起因する位相変 化は一般に極めて小さいので、この条件は十分実用的である。
[0097] Vl(t)ocCos20 (t)=0. 5{l_sin2( δ osincot) } 0· 5_δ osincot V2 (t) ^sin2 0 (t) =0. 5 { l +sin2 ( δ osin ω t) } 0. 5 + δ osin ω t
したがって VI (t)および V2 (t)は、それぞれ図 11 (d)および図 11 (e)に示した通り 、同一の直流成分を有し、互いに逆相で変動する。図 11 (f)は差動アンプ 21の出力 電気信号 Vdiff(t) =V2 (t)-Vl (t) oc 2 S osin co tの波形を示している。差動演算を 行うことにより、直流成分を除去し、さらに振幅を 2倍に増幅することができる。 Vdiff(t )の波形は被測定電界 A (t)の波形と同じであるので、 Vdiff(t)を検出することにより、 A(t)に関する情報を抽出することが可能になる。
[0098] <第 3の実施の形態 >
図 12は、第 3の実施の形態における電界センサの構成図である。
[0099] 第 3の実施の形態の電界センサでは、第 1および第 2の実施の形態と同様、交流の 電界が印加されている EO結晶に光ビームを入射させ、 EO結晶から出射された光を PBSにより S偏光と P偏光とに分離し、各偏光の強度の差分を差動アンプで検出する 構成をとる。
[0100] 即ち、図 12にあっては、光源 1から出射した光ビーム 3は QWP5と EO結晶 7を透過 後、 PBS9に入射する。 PBS9に入射する直前の光ビームの偏光状態は、所定の周 囲温度において円偏光になるように、 QWP5によって調整されている。 EO結晶 7に は、信号電極 11およびグラウンド電極 13を介して被測定信号 15 (例えば、数 kHzか ら数百 MHzの交流)に応じた電界が印加される。光ビーム 3は、電界に応じて E〇結 晶 7内にて偏光変調される。偏光変調光は PBS9で Sおよび P偏光成分に分離される 。このとき、各偏光成分は強度変調光に変換されている。強度変調された Sおよび P 偏光成分は互いに逆相に変化する。 PD17および 19は Sおよび P偏光成分を受光し 、出力を差動アンプ 21によって差動演算することによって、出力信号 22が得られる。
[0101] 次に、かかる構成を有する電界センサが、例えば、前述の所定の周囲温度とは異 なる周囲温度の環境に置かれた場合や、 QWP5だけでは偏光調整がしきれずに、さ らなる調整が必要な場合の調整方法について説明する。具体的には、この調整方法 は、電界センサの実験や、電界センサを用いた製品の出荷段階での特性の合わせ 込みなどで実施される。
[0102] さて、第 3の実施の形態における電界センサの EO結晶 7には、調整のための信号 が与えられる制御電極 23と、制御グラウンド電極 25が設けられている。
[0103] 図 13は、第 3の実施の形態における電極の配置図である。
[0104] 図 13 (a)や図 13 (b)に示すように、信号電極 11とグラウンド電極 13とを EO結晶 7 を挟むようにして設け、同じように、制御電極 23と制御グラウンド電極 25とを EO結晶 7を挟むようにして設ければ、 E〇結晶 7に均一に電界が印加されるので好ましい。な お、図 13 (c)に示すように、各電極を EO結晶 7の片側に設ければ、 E〇結晶 7が薄い 場合に電極を実装しやすくなる。また、図 13 (d)のように、グラウンド電極を分割して もよい。また、図 13 (e)のようにグラウンド電極 13と制御グラウンド電極 25とを共通に すれば電界センサを簡素に構成にできる。
[0105] 図 12に戻り、説明する。
[0106] この電界センサの調整には、出力信号 22を、例えば図 2 (f)に示すように表示する 表示器 27と、制御電極 23に制御信号 (直流電圧) 31を与える可変直流電源 31とが 用いられる。
[0107] 例えば、調整者は、表示器 27に表示された出力信号 22の直流成分が無くなるよう に、可変直流電源 31の電圧 (制御信号 29の電圧)を調整する(変更する)。制御信 号 29が制御電極 23に与えられると、 EO結晶 7内には、被測定信号 15による分の電 界だけでなぐ制御信号 29による分の電界が印加され、後者の電界により光ビーム の偏光状態を円偏光に補正することができる。また、光強度雑音を十分に低減するこ とがでさる。
[0108] <第 4の実施の形態 >
図 14は、第 4の実施の形態における電界センサの構成図である。
[0109] 以下、第 3の実施の形態の調整方法との差異を説明し、同一の事項については説 明を省略する。
[0110] 第 4の実施の形態の電界センサは、 E〇結晶 7に制御電極 23と制御グラウンド電極 25が設けられておらず、電極としては、信号電極 11とグラウンド電極 13だけが設けら れている。また、第 4の実施の形態の電界センサは、被測定信号 15の信号経路に加 算器 33を有し、加算後の被測定信号 15Aが信号電極 11に与えられる。
[0111] 図 15は、加算器 33の回路図である。 [0112] カロ算器 33は、コンデンサ 331とコイル 332とを直列接続して構成され、コィノレ 332 に接続されていない方の、コンデンサ 331の端子に被測定信号 15が与えられ、コン デンサ 331に接続されてレ、なレ、方の、コイル 332の端子に制御信号 29が与えられ、 コンデンサ 331とコイル 332との接続点の信号を被測定信号 15Aとして EO結晶 7に 与えられる。コンデンサ 331は高周信号である被測定信号 15を通過させるが低周波 信号である制御信号 29を遮断する。一方、コイル 332は低周波信号である制御信号 29を通過させるが高周波信号である被測定信号 15を遮断する。したがって、被測定 信号 15に対し制御信号 29を加算することができる。なお、加算器 33は、ディジタル 回路により構成してもよい。
[0113] この電界センサの調整にも表示器 27と可変直流電源 31とが用いられる。
[0114] 例えば、調整者は、表示器 27に表示された出力信号 22の直流成分が無くなるよう に、可変直流電源 31の電圧 (制御信号 29の電圧)を調整する(変更する)。制御信 号 29が加算器 33に与えられると、 EO結晶 7内には、被測定信号 15による分の電界 だけでなぐ制御信号 29による分の電界が印加され、後者の電界により光ビームの 偏光状態を円偏光に補正することができる。また、光強度雑音を十分に低減すること ができる。
[0115] <第 5の実施の形態 >
図 16 (a)は、第 5の実施の形態における電界センサの構成図である。
[0116] 第 5の実施の形態における電界センサは電波測定に用いられるので、反射型光学 系を有する。以下、第 3の実施の形態の電界センサとの差異を説明し、同一の構成 については説明を省略する。
[0117] 第 5の実施の形態における電界センサは、 EO結晶 7に設けられた電極に与えられ る被測定信号 15を測定するのでなぐ空間を伝播して EO結晶 7に直接入射する被 測定電波や、図 16 (b)に示すような測定対象の電気回路から発生する電界を測定 するものであるので、信号電極 11とグラウンド電極 13を備えてレ、なレ、。
[0118] また、この電界センサにあっては、 PBS9に代えて、光源 1から E〇結晶 7の方に、順 に PBS91および 92が設けられている。 QWP5は、 PBS92と E〇結晶 7の間に設けら れ、 PBS91と PBS92との間に HWP37とファラデー回転子 39と力 S設けられてレヽる。 そして、 E〇結晶 7の光ビーム入射面と反対側の面には誘電体鏡 71が設けられ、この 誘電体鏡 71の面に被測定電波 16が入射される。
[0119] 力かる構成を有する第 5の実施の形態の電界センサでは、光源 1からの光ビーム 3 は、 PBS91、 HWP37、ファラデー回転子 39、 PBS92および QWP5を通り抜けてか ら E〇結晶 7に入射する。そして誘電体鏡 71に反射し E〇結晶 7を出射してから再び QWP5を通過した後に、 PBS92に入射する。 PBS92は光ビーム 3を Sおよび P偏光 成分に分離し、 S偏光成分は PD17に入射する。一方、 PBS92を透過した P偏光成 分は、ファラデー回転子 39と HWP37によって S偏光に変換された後、 PBS91に入 射する。 PBS91は S偏光を PD19に人射させる。
[0120] 図 17は、第 5の実施の形態における電極の配置図である。
[0121] 図 17 (a)に示すように、制御電極 23と制御グラウンド電極 25とを EO結晶 7を挟む ようにして設けてもよいし、図 17 (b)に示すように、各電極を EO結晶 7の片側に設け てもよい。また、図 17 (c)に示すように制御グラウンド電極 25を分割してもよい。この ように、第 5の実施の形態にあっては、被測定信号が与えられる電極が不要なので簡 素な構成になる。
[0122] この電界センサの調整にも表示器 27と可変直流電源 31とが用いられる。
[0123] 例えば、調整者は、表示器 27に表示された出力信号 22の直流成分が無くなるよう に、可変直流電源 31の電圧 (制御信号 29の電圧)を調整する(変更する)。制御信 号 29が加算器 33に与えられると、 E〇結晶 7内には、被測定信号 15による分の電界 だけでなぐ制御信号 29による分の電界が印加され、後者の電界により光ビームの 偏光状態を円偏光に補正することができる。また、光強度雑音を十分に低減すること ができる。
[0124] <第 6の実施の形態 >
図 18は、第 6の実施の形態における電界センサの構成図である。
[0125] 第 6の実施の形態の電界センサでは、第 1および第 2の実施の形態と同様、交流の 電界が印加されている EO結晶に光ビームを入射させ、 EO結晶から出射された光を PBSにより S偏光と P偏光とに分離し、各偏光の強度の差分を差動アンプで検出する 構成をとる。 [0126] 即ち、図 18にあっては、光源 1から出射した光ビーム 3は QWP5と EO結晶 7を透過 後、 PBS9に入射する。 PBS9に入射する直前の光ビームの偏光状態は、所定の周 囲温度において円偏光になるように、 QWP5によって調整されている。 E〇結晶 7に は、信号電極 11およびグラウンド電極 13を介して被測定信号 15 (例えば、数 kHzか ら数百 MHzの交流)に応じた電界が印加される。光ビーム 3は、電界に応じて E〇結 晶 7内にて偏光変調される。偏光変調光は PBS9で Sおよび P偏光成分に分離される 。このとき、各偏光成分は強度変調光に変換されている。強度変調された Sおよび P 偏光成分は互いに逆相に変化する。 PD17および 19は Sおよび P偏光成分を受光し 、出力を差動アンプ 21が差動信号検出することによって、出力信号 22が得られる。
[0127] さらに第 6の実施の形態では、出力信号に含まれる直流成分に応じた電圧を有す る制御信号を生成し、 EO結晶に設けられた制御電極に当該制御信号が与えられる 。なお、図 18では、制御信号は、差動アンプ 21の入力信号から生成している力 差 動アンプ 21の出力信号 22から生成することも可能である。
[0128] 図 18に示すように、電界センサは、 PD17に接続されたバッファアンプ 43と、 PD19 に接続されたバッファアンプ 44と、バッファアンプ 43の出力に接続されたローパスフ ィルタ(以下、 LPFという) 45と、バッファアンプ 44の出力に接続された LPF47と、 LP F45および 47からの出力の差分をとり、それを積分する積分器 49を備える。また、 E 〇結晶 7には、制御信号付与手段たる制御電極 23および制御グラウンド電極 25が 設けられている。積分器 49の出力電圧は、制御電極 23と制御グラウンド電極 25の間 に印加される。なお、 LPF45および 47によって環境温度の変化に起因する極めて 低い周波数成分 (直流成分)の信号のみが積分器に入力される。したがって温度変化 によるドリフトのみが低減される。一方、被測定信号 15に起因する高周波成分の信 号は、 LPF45および 47で遮断されるので、積分器 49に入力されることは無レ、。そし て積分器 49は、当該低周波成分のみからなる 2つの信号の差分を積分し、制御信号 29として出力する。差動アンプ 21へは、 PD17および PD19から、低周波成分と高 周波成分の両方を含んだ信号が与えられる。
[0129] 図 19 (a)は、積分器 49 (スィッチトキャパシタ積分器)の回路図であり、図 19 (b)は 、積分器 49を駆動するドライブ信号の波形図である。 [0130] スィッチトキャパシタ積分器とした場合の積分器 49は、連動する 2つの開閉器から なりその一方の開閉器の一端が LPF45に接続され、他方の開閉器の一端が LPF4 7に接続されたスィッチ 491と、このスィッチ 491の一方の開閉器の他端と他方の開 閉器の他端の間に接続されたコンデンサ 492と、連動する 2つの開閉器からなりその 開閉器の一端と他方の開閉器の一端が前記コンデンサ 492に接続されたスィッチ 4 93と、差動アンプであって、スィッチ 493の一方の開閉器の他端がマイナス入力端 子に他方の開閉器の他端がプラス入力端子に接続され、このプラス入力端子が電圧 Vbでバイアスされた差動アンプ 495と、この差動アンプ 495のマイナス入力端子と出 力端子との間に接続されたコンデンサ 494と、差動アンプ 495の出力端子と制御電 極 29に接続されたバッファアンプ 496と力も構成されている。なお、(コンデンサ 492 の容量)くく (コンデンサ 494の容量)である。また、差動アンプ 495が正負電源タイ プの場合は、そのプラス入力端子を接地して、すなわちバイアスをかけずに使用して ちょい。
[0131] スィッチ 491に与えられるドライブ信号 D1とスィッチ 493に与えられるドライブ信号 D2は、スィッチ 491とスィッチ 493とが同時に閉じることがないように、また交互に閉 じるように印加されるので、コンデンサ 492が充電された後にその電荷がコンデンサ 4 94に転送される。そのため、差動アンプ 495は、 LPF45と LPF47の出力差の積分 値に比例した大きさの電圧を出力し、これがバッファアンプ 496を通過後、制御信号 29として制御電極 23に与えられる。すなわち、制御信号 29は、出力信号 22の直流 成分に応じた電圧を有する信号になり、制御電極 23に与えられる。
[0132] なお、第 6の実施の形態における電極の配置は、図 13を参照して説明した第 3の 実施の形態における電極の配置と同様である。
[0133] 力かる構成を有する第 6の実施の形態の電界センサでは、積分器 49 (制御信号生 成手段)が出力信号 22に含まれる直流成分に応じた電圧を有する制御信号 29を生 成する。この制御信号 29が制御電極 23に与えられると、 E〇結晶 7内には、被測定 信号 15による分の電界だけでなぐ制御信号 29による分の電界が印加され、後者の 電界により光ビームの偏光状態を円偏光に補正することができる。また、光強度雑音 を十分に低減することができる。 [0134] <第 7の実施の形態 >
図 20は、第 7の実施の形態における電界センサの構成図である。
[0135] 以下、第 6の実施の形態の電界センサとの差異を説明し、同一の構成については 説明を省略する。
[0136] 第 7の実施の形態の電界センサは、 E〇結晶 7に制御電極 23と制御グラウンド電極
25が設けられておらず、電極としては、信号電極 11とグラウンド電極 13だけが設けら れている。また、第 7の実施の形態の電界センサは、被測定信号 15に対し制御信号 29を加算する加算器 33を有し、加算後の被測定信号 15Aが信号電極 11に与えら れる。なお、加算器 33は制御信号付与手段に相当する。
[0137] なお、第 7の実施形態における加算器 33の構成は、図 15を参照して説明した第 4 の実施の形態における加算器 33の構成と同様である。
[0138] 力かる構成を有する第 7の実施の形態の電界センサでは、積分器 49 (制御信号生 成手段)が出力信号 22に含まれる直流成分に応じた電圧を有する制御信号 29を生 成する。この制御信号 29が加算器 33に与えられると、 EO結晶 7内には、被測定信 号 15による分の電界だけでなぐ制御信号 29による分の電界が印加され、後者の電 界により光ビームの偏光状態を円偏光に補正することができる。また、光強度雑音を 十分に低減することができる。
[0139] <第 8の実施の形態 >
図 21 (a)は、第 8の実施の形態における電界センサの構成図である。
[0140] 第 8の実施の形態における電界センサは電波測定に用いられるので、反射型光学 系を有する。以下、第 6の実施の形態の電界センサとの差異を説明し、同一の構成 については説明を省略する。
[0141] 第 8の実施の形態における電界センサは、 EO結晶 7に設けられた電極に与えられ る被測定信号 15を測定するのでなぐ空間を伝播して EO結晶 7に直接入射する被 測定電波や、図 21 (b)に示すような測定対象の電気回路などから発生する電界を測 定するものであるので、信号電極 11とグラウンド電極 13を備えてレ、なレ、。
[0142] また、この電界センサにあっては、 PBS9に代えて、光源 1から E〇結晶 7の方に、順 に PBS91および 92が設けられている。 QWP5は、 PBS92と EO結晶 7の間に設けら れ、 PBS91と PBS92との間に HWP37とファラデー回転子 39とが設けられている。 そして、 E〇結晶 7の光ビーム入射面と反対側の面には誘電体鏡 71が設けられ、この 誘電体鏡 71の面に被測定電波 16が入射される。
[0143] 力かる構成を有する第 3の実施の形態の電界センサでは、光源 1からの光ビーム 3 は、 PBS91、 HWP37、ファラデー回転子 39、 PBS92および QWP5を通り抜けてか ら E〇結晶 7に入射する。そして誘電体鏡 71で反射し E〇結晶 7を出射してから、 QW P5によって適当な偏光状態に調整され PBS92に入射する。 PBS92は光ビーム 3を Sおよび P偏光成分に分離し、 S偏光成分は PD17に入射する。一方、 PBS92を透 過した P偏光成分は、ファラデー回転子 39と HWP37で S偏光に変換された後に、 P BS91に入射する。 PBS91は、その S偏光成分を PD19に入射させる。
[0144] なお、第 8の実施の形態における電極の配置は、図 17を参照して説明した第 5の 実施の形態における電極の配置と同様である。
[0145] 力かる構成を有する第 8の実施の形態の電界センサにあっては、第 6の実施の形態 と同様に、積分器 49により、出力信号 22に含まれる直流成分に応じた電圧を有する 制御信号 29が生成され、この制御信号 29が制御電極 23に与えられると、 EO結晶 7 内には、被測定信号 15による分の電界だけでなぐ制御信号 29による分の電界が 印加され、 PBS92に入射する光の偏光状態が適切に調整され、 PD17および PD1 9に入射する光強度を等しくすることができる。また、光強度雑音を十分に低減するこ とがでさる。
[0146] 次に、反射戻り光がレーザ光源に入射することを防止可能な電界センサに係る実 施の形態を第 9乃至第 14の実施の形態として説明する。
[0147] <第 9の実施の形態 >
図 22は、第 9の実施の形態における電界センサの構成図である。
[0148] 電界センサ 101aは、レーザ光源 1、 QWP5、 E〇結晶 7、 PBS9、 PD17、 PD19、 レーザ光源 1と QWP5との間に設けられた第 2の PBS51を有する。なお、検知される べき電界が存在する際に、これに起因して EO結晶 7に電圧を印加する電極の記載 は省略している。
[0149] なお、以降の説明においては、適宜、上記の EO結晶 7、 PBS9、 PD17および 19 を反射要素 107と総称する。
[0150] 電界センサ 101aにより電界を測定するにあたっては、レーザ光源 1から P偏光 108 が照射され、この P偏光 108は QWP5により円偏光 109に変換される。
[0151] 円偏光 109は、 EO結晶 7により偏光変調され、 PBS9により P偏光(成分) 110と S 偏光 (成分) 111とに分離され、 P偏光 110は PD19により受信され、電気信号に変換 され、一方、 S偏光 111は PD17により受信され、電気信号に変換される。これらの電 気信号は、図示しない差動アンプ等により差動増幅され、これに基づいて電界が測 定される。
[0152] 図 23は、図 22の電界センサ 101aの基本原理を説明するための図である。なお、 本図においては、反射要素 107を鏡に見立てている。
[0153] 反射要素 107において発生した反射戻り光(円偏光) 112は、 QWP5により S偏光 1
13に変換され、 PBS51により偏光分離される。
[0154] 上記のように、反射戻り光(S偏光) 113を PBS51により偏光分離することにより、こ の反射戻り光 113がレーザ光源 1に入射することを防止できる。
[0155] なお、本実施の形態においては、電界センサ 101aが、反射戻り光(S偏光)を偏光 分離する手段 (偏光分離手段)として PBS51を備える場合を示したが、これに限定さ れず、グラントムソンプリズムやウォラストンプリズムといった 2つの独立な直線偏光を 空間的に分離する素子や、偏光板のように特定の直線偏光のみが透過する素子を 有する構成とすることちできる。
[0156] <第 10の実施の形態 >
図 24は、第 10の実施の形態における電界センサの構成図である。
[0157] 電界センサ 101bは、レーザ光源 1、 QWP5、 E〇結晶 7、 PBS9、 PD17、 PD19、 第 2の PBS51を有する。
[0158] この電界センサ 101bと図 22の電界センサ 101aとの差異は、レーザ光源 1の位置 を変更した点にある。
[0159] 電界センサ 101bにより電界を測定するにあたっては、レーザ光源 1から S偏光 115 が照射され、この S偏光 115は、 PBS51により QWP5に入射され、この QWP5により 円偏光 109に変換される。 [0160] 円偏光 109は、 EO結晶 7により偏光変調され、 PBS9により P偏光(成分) 110と S 偏光 (成分) 111とに分離され、 P偏光 110は PD19により受信され、電気信号に変換 され、一方、 S偏光 111は PD17により受信され、電気信号に変換される。これらの電 気信号は、図示しない差動増幅器等により差動増幅され、これに基づいて電界が測 定される。
[0161] なお、以降の説明においては、適宜、上記の E〇結晶 7、 PBS9、 PD17および 19 を反射要素 107と総称する。
[0162] 図 25は、図 24の電界センサ 101bの基本原理を説明するための図である。なお、 本図においては、反射要素 107を鏡に見立てている。
[0163] 反射要素 107において発生した反射戻り光(円偏光) 117は、 QWP5により P偏光 1
16に変換され、 PBS51により偏光分離される。
[0164] 上記のように、レーザ光源から発せられるレーザ光は 115のような S偏光でもよぐ 反射戻り光(P偏光) 116を PBS51により偏光分離することにより、この反射戻り光 11
6がレーザ光源 1に入射することを防止できる。
[0165] なお、本実施の形態においては、電界センサ 101bが、反射戻り光(P偏光)を偏光 分離する手段 (偏光分離手段)として PBS51を備える場合を示したが、これに限定さ れず、グラントムソンプリズムやウォラストンプリズムといった 2つの独立な直線偏光を 空間的に分離する素子を有する構成とすることもできる。
[0166] <第 11の実施の形態 >
図 26は、第 11の実施の形態における電界センサの構成図である。
[0167] 電界センサ 101cは、レーザ光源 1、 QWP5、 E〇結晶 7、 PBS9、 PD17、 PD19、 第 2の PBS51、 HWP53を有する。
[0168] この電界センサ 101cと図 24の電界センサ 101bとの差異は、レーザ光源 1と PBS5
1との間に HWP53を設けた点にある。
[0169] 電界センサ 101cにより電界を測定するにあたっては、レーザ光源 1から P偏光 108 が照射され、この P偏光 108は、 HWP53により S偏光 115に変換され、 PBS51により
QWP5に入射され、この QWP5により円偏光 109に変換される。
[0170] 円偏光 109は、 EO結晶 7により偏光変調され、 PBS9により P偏光(成分) 110と S 偏光 (成分) 111とに分離され、 P偏光 110は PD19により受信され、電気信号に変換 され、一方、 S偏光 111は PD17により受信され、電気信号に変換される。これらの電 気信号は、図示しない差動アンプ等により差動増幅され、これに基づいて電界が測 定される。
[0171] なお、以降の説明においては、適宜、上記の E〇結晶 7、 PBS9、 PD17および 19 を反射要素 107と総称する。
[0172] 図 27は、図 26の電界センサ 101cの基本原理を説明するための図である。なお、 本図においては、反射要素 107を鏡に見立てている。
[0173] 反射要素 107において発生した反射戻り光(円偏光) 117は、 QWP5により P偏光 1
16に変換され、 PBS51により偏光分離される。
[0174] 上記のように、レーザ光源 1から発せられた P偏光 108を S偏光 115に変換し、その 後に EO結晶 7に入射させてもよぐ反射戻り光(P偏光) 116を PBS51により偏光分 離することにより、この反射戻り光 116がレーザ光源 1に入射することを防止できる。
[0175] なお、本実施の形態においては、電界センサ 101cが、反射戻り光(P偏光)を偏光 分離する手段 (偏光分離手段)として PBS51を備える場合を示したが、これに限定さ れず、グラントムソンプリズムやウォラストンプリズムといった 2つの独立な直線偏光を 空間的に分離する素子を有する構成とすることもできる。
[0176] <第 12の実施の形態 >
図 28は、第 12の実施の形態における電界センサの構成図である。
[0177] 電界センサ 101dは、レーザ光源 1、 QWP5、 E〇結晶 7、 PBS9、 PD17、 PD19、 第 2の PBS51、プリズム 55を有する。
[0178] この電界センサ 101dは、図 22の電界センサ 101aにプリズム 55を設けたものであ る。
[0179] 電界センサ 101dにより電界を測定するにあたっては、レーザ光源 1から P偏光 108 が照射され、この P偏光 108はプリズム 55において進行方向が変更されることにより QWP5に入射され、この QWP5により円偏光 109に変換される。
[0180] 円偏光 109は、 EO結晶 7により偏光変調され、 PBS9により P偏光(成分) 110と S 偏光 (成分) 111とに分離され、 P偏光 110は PD19により受信され、電気信号に変換 され、一方、 S偏光 11は PD17により受信され、電気信号に変換される。これらの電 気信号は、図示しない差動アンプ等により差動増幅され、これに基づいて電界が測 定される。
[0181] なお、以降の説明においては、適宜、上記の E〇結晶 7、 PBS9、 PD17および 19 を反射要素 107と総称する。
[0182] 図 29は、図 28の電界センサ 101dの基本原理を説明するための図である。なお、 本図においては、反射要素 107を鏡に見立てている。
[0183] 反射要素 107において発生した反射戻り光(円偏光) 117は、 QWP5により S偏光 1
20に変換され、プリズム 55により進行方向が変換されるとともに PBS51に入射され、 この PBS51により偏光分離される。
[0184] 上記のように、 P偏光 108の進行方向を変更し、その後に QWP5に入射させ、反射 戻り光(S偏光) 120の進行方向を変更し、その後に PBS51に入射させる構成とする ことにより、レーザ光源を配置するにあたっての自由度が拡大し、また、 PBS51により 反射戻り光 120を偏光分離することにより、この反射戻り光 120がレーザ光源 1に入 射することを防止できる。
[0185] なお、本実施の形態においては、電界センサ 101dが、反射戻り光(S偏光)を偏光 分離する手段 (偏光分離手段)として PBS51を備える場合を示したが、これに限定さ 空間的に分離する素子や、偏光板のように特定の直線偏光のみが透過する素子を 有する構成とすることちできる。
[0186] <第 13の実施の形態 >
図 30は、第 13の実施の形態における電界センサの構成図である。
[0187] 電界センサ 101eは、レーザ光源 1、 QWP5, EO結晶 7、 PBS9、 PD17、 PD19、 第 2の PBS51、プリズム 55を有する。
[0188] この電界センサ 101eと図 28の電界センサ 101dとの差異は、プリズム 55の位置を 変更し、レーザ光源 1に隣接配置した点にある。
[0189] 電界センサ 101eにより電界を測定するにあたっては、レーザ光源 1から P偏光 108 が照射され、この P偏光 108はプリズム 55において進行方向が変更されることにより QWP5に入射され、この QWP5により円偏光 109に変換される。
[0190] 円偏光 109は、 EO結晶 7により偏光変調され、 PBS9により P偏光(成分) 110と S 偏光 (成分) 111とに分離され、 P偏光 110は PD19により受信され、電気信号に変換 され、一方、 S偏光 111は PD17により受信され、電気信号に変換される。これらの電 気信号は、図示しない差動増幅器等により差動増幅され、これに基づいて電界が測 定される。
[0191] なお、以降の説明においては、適宜、上記の E〇結晶 7、 PBS9、 PD17および 19 を反射要素 107と総称する。
[0192] 図 31は、図 30の電界センサ 101eの基本原理を説明するための図である。なお、 本図においては、反射要素 107を鏡に見立てている。
[0193] 反射要素 107において発生した反射戻り光(円偏光) 117は、 QWP5により S偏光 1
20に変換されるとともに PBS51に入射され、この PBS51により偏光分離される。
[0194] 上記のように、 P偏光 108の進行方向を変更し、その後に QWP5に入射させる構成 とすることにより、レーザ光源を配置するにあたっての自由度が拡大し、また、 PBS5
1により反射戻り光 120を偏光分離することにより、この反射戻り光 120がレーザ光源
1に入射することを防止できる。
[0195] なお、本実施の形態においては、電界センサ 101eが、反射戻り光(S偏光)を偏光 分離する手段 (偏光分離手段)として PBS51を備える場合を示したが、これに限定さ 空間的に分離する素子や、偏光板のように特定の直線偏光のみが透過する素子を 有する構成とすることちできる。
[0196] <第 14の実施の形態 >
上述した第 9乃至第 13の実施の形態においては、 E〇結晶の入射面での反射光を 主として問題にしたが、この第 14の実施の形態は、さらに、 PDの受光面での反射光 を問題としており、 PDの受光面での反射光もレーザ光源側に戻らないような工夫が なされている。
[0197] 図 32は、第 14の実施の形態における電界センサの構成図である。
[0198] ここでは、第 9の実施の形態における電界センサとの差異を説明し、同一の構成に ついては説明を省略する。
[0199] 第 14の実施の形態における電界センサ 101fは、特に、 PBS9と PD17との間に Q WP57を備え、 PBS9と PD19との間に QWP59を備えてレヽる。
[0200] 力かる構成を有する電界センサ 101fにおいて、 EO結晶 7からの円偏光 109のうち 、 P偏光 110は PBS9を透過し、 S偏光 111は PBS9で反射する。
[0201] PBS9を透過した P偏光 110は QWP59により円偏光 109に変換され、その一部は PD19の受光面で反射する。しかし、その反射した円偏光 109は再び QWP59を透 過することにより S偏光 120に変換され、 PBS9で反射される。すなわち、 PD19の受 光面での反射光が光源 1に戻る不都合を防止できる。
[0202] —方、 PBS9で反射した S偏光 111は QWP57により円偏光 109に変換され、その 一部は PD17の受光面で反射する。しかし、その反射した円偏光 109は再び QWP5 7を透過することにより P偏光 116に変換され、 PBS9を透過する。すなわち、 PD17 の受光面での反射光が光源 1に戻る不都合を防止できる。
[0203] 次に、電気光学結晶内の電界振幅を高めることによって高い感度が得られる電界 センサに係る実施の形態を第 15の実施の形態として説明する。
[0204] <第 15の実施の形態 >
図 33は、本発明の電界センサを人体の電気信号検出に用いた構成例を示す図で あり、図 34は、本発明の電界センサを DUTの電圧測定に用いた構成例を示す図で ある。本実施の形態の電界センサの構成要素のうち、図 5や図 6に示した電界センサ の構成要素と同一のものには同一符号を付与することで要素説明を省略する。また 、本実施の形態の電界センサは、 EO結晶 7内の電界を検出するときに、図 5や図 6を 参照して説明したように動作するので動作説明を省略する。
[0205] 図 33や図 34の電界センサでは、 EO結晶 7の第 1の電極である信号電極 11を設け た面の対向面に第 2の電極である対向電極 12が設けられている。さらに、電界セン サの感度を高めるための補助電極 61がリード線 LDで対向電極 12に接続されている
[0206] なお、第 2の電極は、信号電極 11を設けた面と同一の面に設けても良いし(導波路 構造を有する EO変調素子でいうスロット電極構造)、その隣の面に設けてもよい。 [0207] 補助電極 61は、電界センサ内の全ての部品および回路(差動アンプ 21や光源 1を 駆動する回路等)ならびに電界センサの筐体から絶縁されている。また、対向電極 1 2と補助電極 61の間は、信号電極 11と対向電極 12の間よりも離れているが、この理 由については後述する。
[0208] 図 33や図 34の電界センサでは、信号電極 11と対向電極 12でコンデンサ C1が形 成され、さらに補助電極 61と大地グランドでコンデンサ C2が形成されるので、電気力 線は、それぞれのコンデンサの電極間に集中することとなり、 EO結晶 7内の電界振 幅を大きくすることができ、これにより、電界センサの感度を高めることができる。
[0209] また、信号電極 11と大地グランド間の電位差を φ、コンデンサ C1の静電容量を C1 、コンデンサ C2の静電容量を C2、コンデンサ C1の電極間電位差を φ 1、コンデンサ C2の電極間電位差を φ 2とすると次の 2式が成り立つ。
[0210] 1 = - C2/ (C1 +C2)
φ 2= φ - C1/ (C1 +C2)
したがって、 EO結晶 7内の電界振幅は、コンデンサ C1の電極間電位差 φ 1に比例 するので、 EO結晶 7内の電界振幅を大きくするには、静電容量 C2 >C1 (好ましくは C2 > > C1)となるように設計すればよい。
[0211] なお、 EO結晶 7は、通常は、ごく小さいものなので、対向電極 12と補助電極 61を 設けるだけでも感度が向上するが、静電容量 C2をさらに大きくしてさらに感度を上げ るには、例えば、補助電極 61の表面積を大きくすればよい。また、補助電極 61の形 状を、例えば、棒状 (紐状を含む)、平板状、球状 (半球状を含む)などとすれば、製 造上の支障なぐその表面積を大きくすることができる。
[0212] また、静電容量 C2を大きくするには、図 35に示すように、補助電極 61を、信号電 極 11や対向電極 12の近くに設けるよりは、図 36に示すように、信号電極 11や対向 電極 12から遠ざけ、好ましくは、補助電極 61を大地グランドに近づければよい。なお 、補助電極 61が電界センサから離れると、電界センサが取り扱いにくいので、例えば 、当該電極同士を伸縮可能な部材で接続して、対向電極 12と補助電極 61との間の 距離を可変にするのが好ましい。さらには、携帯電話のアンテナのように、補助電極 61を筐体に収納できるようにしてもよい。 [0213] また、補助電極 61が、信号電極 11や対向電極 12の近くにあるときには、電界を検 出する感度が低くなるので、対向電極 12と補助電極 61とが離れたときに限って動作 するように、例えば、補助電極 61が対向電極 12の近くにあるときには、光源 1ゃ光検 出器 17、 19および差動アンプ 21への電力供給を遮断し、対向電極 12と補助電極 6 1とが所定の距離以上離れたときには電力供給がなされるようなスィッチ機構を設け ること力 S好ましレ、。
[0214] 具体的には、例えば、図 35および 36に示すように、補助電極 61をレールに沿って 移動可能なように構成するとともにそのレール上にスィッチ 63を設け、補助電極 61が 対向電極 12から離れる方向に移動してスィッチ 63上を通過したときにスィッチ 63を オンにして電力供給を行い、一方、補助電極 61が対向電極 12に近づく方向に移動 してスィッチ 63上を通過したときにスィッチ 63をオフにして電力供給を遮断するような 機構を設けることができる。また、補助電極 61を対向電極 12から所定の距離以上離 れた位置 Aと対向電極 12のごく近くの位置 Bのいずれかに固定可能とするとともに、 位置 Aにスィッチを設け、位置 Aに補助電極 61が固定されたときにスィッチをオンに して電力供給を行い、一方、補助電極 61が位置 Bに固定されたときには位置 Aのス イッチをオフにして電力供給を遮断するような機構を設けることができる。
[0215] このような機構を設けることにより、常に高い感度で検出することが可能な電界セン サを実現することができる。
産業上の利用可能性
[0216] 本発明の電界センサによれば、電気光学結晶の自然複屈折率による感度低下を ネ甫償することができる。
[0217] 本発明は、円偏光状態にある反射光を P偏光または S偏光に変換し、これを偏光ビ 一ムスプリッタ等で除去する。したがって、反射光がレーザ光源に入射することを防 止可能な電界センサを提供することが可能となる。
[0218] 本発明の電界センサによれば、電気光学結晶に設けた第 2の電極と、該第 2の電 極に電気的に接続され、且つ、第 2の電極と十分な距離離すことができる補助電極と 、を備えたことで、電気光学結晶内の電界振幅が高まり、よって電界センサの感度を 高めることができる。

Claims

請求の範囲
光源(1)と、
被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変化し、その 複屈折率に応じて、前記光源(1)から入射される光の偏光状態を変化させて出射す る電気光学結晶(7)と、
前記電気光学結晶(7)から出射した光の前記偏光状態の変化に応じた電気信号 を検出する検出部(9, 17, 19, 21)と、
前記電気光学結晶(7)に近接して設けられ、前記被測定信号に基づく電界を前記 電気光学結晶(7)に印加するための第 1の電極(11)と、
前記電気光学結晶(7)に近接して設けられ、前記第 1の電極(11)と対をなす第 2 の電極(12)と、
前記第 2の電極(12)に電気的に接続され、大地グラウンドとの間で容量を形成す る補助電極 (61)と、
を備えたことを特徴とする電界センサ。
前記補助電極(61)の表面積は、前記第 1の電極(11)および前記第 2の電極(12) の表面積よりも大きいことを特徴とする請求の範囲第 1項に記載の電界センサ。 前記補助電極 (61)の形状は、棒状、板状、球状のいずれかであることを特徴とする 請求の範囲第 2項に記載の電界センサ。
前記補助電極(61)と前記第 2の電極(12)との距離は、前記第 1の電極(11)と前記 第 2の電極(12)との距離よりも長いことを特徴とする請求の範囲第 1項に記載の電界 センサ。
前記補助電極 (61)を移動させて、前記第 2の電極(12)との距離を可変にする距離 変更手段を更に備えたことを特徴とする請求の範囲第 1項に記載の電界センサ。 前記距離変更手段により前記補助電極(61)が前記第 2の電極(12)と所定距離以 上離れたときに、前記検出部(9, 17, 19, 21)を動作させるように制御する制御手段 (63)を更に備えたことを特徴とする請求の範囲第 5項に記載の電界センサ。
前記補助電極(61)は、前記検出部(9, 17, 19, 21)を構成する回路および前記光 源(1)を駆動する回路から絶縁されていることを特徴とする請求の範囲第 1項に記載 の電界センサ。
[8] P偏光および S偏光を円偏光に変換する 1Z4波長板(5)と、
被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変化し、その 複屈折率に応じて、前記 1/4波長板(5)からの前記円偏光の偏光状態を変化させ て出射する電気光学結晶(7)と、
前記電気光学結晶(7)から出射した光の前記偏光状態の変化に応じた電気信号 を検出する検出部(9, 17, 19)と、
前記 1/4波長板(5)の前段に位置し、入射される P偏光または S偏光を前記 1/4 波長板(5)に導くと共に、前記電気光学結晶(7)側から戻ってきた円偏光が前記 1/ 4波長板(5)により変換された S偏光または P偏光を前記入射される P偏光または S偏 光の入射方向とは異なる方法へ導く反射光分離手段(51)と、
を備えたことを特徴とする電界センサ。
[9] 前記反射光分離手段(51)は、偏光板、偏光ビームスプリッタ、グラントムソンプリズム およびウォラストンプリズムの内のいずれかであることを特徴とする請求の範囲第 8項 に記載の電界センサ。
[10] 前記反射光分離手段(51)は、 P偏光を透過し、 S偏光を反射する偏光ビームスプリ ッタであることを特徴とする請求の範囲第 9項に記載の電界センサ。
[11] 前記反射光分離手段(51)の前段に位置し、 P偏光および S偏光のいずれかを出射 する光源(1)を更に備えたことを特徴とする請求の範囲第 8項に記載の電界センサ。
[12] 被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変化し、その複 屈折率に応じて、入射される光の偏光状態を変化させて出射する電気光学結晶(7) と、
前記電気光学結晶(7)から出射した、偏光状態の変化した光の P偏光成分と S偏 光成分のうちの一方を透過し、他方を反射することにより、前記偏光状態の変化した 光を P偏光成分と S偏光成分に分離する偏光ビームスプリッタ(9)と、
前記 P偏光成分を円偏光に変換する第 1の 1/4波長板(59)と、
前記 S偏光成分を円偏光に変換する第 2の 1/4波長板(57)と、
前記第 1の 1/4波長板(59)により円偏光に変換された前記 P偏光成分を電気信 号に変換する第 1光検出器(19)と、
前記第 2の 1/4波長板(57)により円偏光に変換された前記 S偏光成分を電気信 号に変換する第 2光検出器(17)と、
を備えたことを特徴とする電界センサ。
[13] 光源(1)と、
被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変化し、その 複屈折率に応じて、前記光源(1)から入射される光の偏光状態を変化させて出射す る電気光学結晶(7)と、
前記被測定信号に基づく電界を前記電気光学結晶(7)に印加するための一対の 電極(11, 13)と、
当該電気光学結晶(7)から出射された光を P偏光成分と S偏光成分とに分離し、当 該各偏光成分の強度の差分に応じた交流信号を得る検出部(9, 17, 19, 21)と、 前記電気光学結晶(7)が有する自然複屈折性による、前記電界が印加されてレ、な いときにおける、前記光源(1)から入射される光の偏光状態の変化を相殺する補償 手段((6, 8) , (27, 31 , 29, 23, 25) , (27, 31, 29, 33) , (43, 44, 45, 47, 49 , 29, 23, 25) , (43, 44, 45, 47, 49, 29, 33) )と、
を備えたことを特徴とする電界センサ。
[14] 前記電気光学結晶(7)に入射される光は任意の偏光であり、
前記補償手段は、
電気的主軸が前記電気光学結晶(7)から出射した楕円偏光の主軸と一致し、そ の楕円偏光を直線偏光に変換する 1Z4波長板(6)と、
前記電界が印加されていないときの、前記 1/4波長板(6)からの直線偏光の偏 波面が前記電気光学結晶(7)の電気的主軸に対して有する角度を 45° - φ 0とした ときに、電気的主軸が前記電気光学結晶(7)の電気的主軸に対して有する角度が、 η·45° _ φ οΖ2 (ただし、 ηは整数)であることでもって、前記 1/4波長板(6)から出 射する直線偏光の偏波面の角度を調整する 1/2波長板(8)と、
を含むことを特徴とする請求の範囲第 13項に記載の電界センサ。
[15] 前記電気光学結晶(7)に入射される光は、偏波面が前記電気光学結晶(7)の電気 的主軸に対して有する角度が 45° である直線偏光であり、
前記補償手段は、
電気的主軸が前記電気光学結晶(7)の電気的主軸に対して有する角度は 45° であり、前記電気光学結晶(7)から出射する楕円偏光を直線偏光に変換する 1Z4 波長板(6)と、
前記電界が印加されていないときの、前記電気光学結晶(7)から出射した楕円偏 光に含まれる位相差を φ 0としたときに、電気的主軸が前記電気光学結晶(7)の電気 的主軸に対して有する角度が、 η·45° - φ ο/2 (ただし、 ηは整数)であることでもつ て、前記 1/4波長板(6)から出射する直線偏光の偏波面の角度を調整する 1/2波 長板 (8)と、
を含むことを特徴とする請求の範囲第 13項に記載の電界センサ。
[16] 前記電気光学結晶(7)に入射される光は円偏光であり、
前記補償手段は、
電気的主軸が前記電気光学結晶(7)の電気的主軸に対して有する角度は 45° であり、前記電気光学結晶(7)から出射する楕円偏光を直線偏光に変換する 1/4 波長板(6)と、
前記電界が印加されていないときの、前記電気光学結晶(7)から出射した楕円偏 光に含まれる位相差を φ 0としたときに、電気的主軸が前記電気光学結晶(7)の電気 的主軸に対して有する角度が、 η·45° _ φ ο/2 (ただし、 ηは整数)であることでもつ て、前記 1Z4波長板(6)から出射する直線偏光の偏波面の角度を調整する 1/2波 長板 (8)と、
を含むことを特徴とする請求の範囲第 13項に記載の電界センサ。
[17] 前記 φ οは、 φ ο= (2 π / λ ) (no_ne) Lに基づいて決定されることを特徴とする請求 の範囲第 14項乃至第 16項のいずれかに記載の電界センサ。
ここで、 noは、前記電気光学結晶の常光に対する屈折率、
neは、前記電気光学結晶の異常光に対する屈折率、
λは、光の真空中における波長、
Lは、前記電気光学結晶の光の方向における長さ。 [18] 前記補償手段は、
制御信号(29)に基づレ、た電界を前記電気光学結晶に印加する一対の制御電極 (23, 25)と、
前記検出部(9, 17, 19, 21)により得られた前記交流信号に基づき、前記被測 定信号に基づく電界が印加されていないときにおける、前記光源(1)から入射される 光の偏光状態の変化を相殺するような前記制御信号 (29)を生成する制御信号生成 手段((27, 31) , (43, 44, 45, 47, 49) )と、
を含むことを特徴とする請求の範囲第 13項に記載の電界センサ。
[19] 前記補償手段は、
制御信号 (29)を前記被測定信号に加算する加算器 (33)と、
前記検出部(9, 17, 19, 21)により得られた前記交流信号に基づき、前記被測 定信号に基づく電界が印加されていないときにおける、前記光源(1)から入射される 光の偏光状態の変化を相殺するような前記制御信号 (29)を生成する制御信号生成 手段((27, 31) , (43, 44, 45, 47, 49) )と、
を含むことを特徴とする請求の範囲第 13項に記載の電界センサ。
[20] 前記制御信号生成手段は、
前記 P偏光成分に基づく電気信号および前記 S偏光成分に基づく電気信号をそ れぞれ入力する第 1バッファアンプおよび第 2バッファアンプ(43, 44)と、
前記第 1バッファアンプおよび第 2バッファアンプ (43, 44)の出力をそれぞれ入 力する第 1ローパスフィルタおよび第 2ローパスフィルタ(45, 47)と、
前記第 1ローパスフィルタおよび第 2ローパスフィルタ(45, 47)の出力を入力し、 それらの出力の差分を積分する積分器 (49)と、
を含むことを特徴とする請求の範囲第 18項または第 19項に記載の電界センサ。
[21] 光源(1)と;被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変 化し、その複屈折率に応じて、入射される任意の偏光の偏光状態を変化させて出射 する電気光学結晶(7)と;前記被測定信号に基づく電界を前記電気光学結晶(7)に 印加するための一対の電極(11 , 13)と;当該電気光学結晶(7)から出射された光を P偏光成分と S偏光成分とに分離し、当該各偏光成分の強度の差分に応じた交流信 号を得る検出部(9, 17, 19, 21)と;を備えた電界センサの調整方法であって、 前記電気光学結晶(7)から出射した楕円偏光を直線偏光に変換する 1/4波長板
(6)を、その電気的主軸が前記楕円偏光の電気的主軸と一致するように設け、 前記 1Z4波長板(6)から出射する直線偏光の偏波面の角度を調整する 1/2波長 板(8)を、前記電界が印加されていないときの、前記 1Z4波長板(6)からの直線偏 光の偏波面が前記電気光学結晶(7)の電気的主軸に対して有する角度を 45° —φ 0としたときに、電気的主軸が前記電気光学結晶(7)の電気的主軸に対して有する角 度力 η·45° - φ ο/2 (ただし、 ηは整数)となるように設けることを特徴とする電界セ ンサの調整方法。
[22] 光源(1)と;被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変 化し、その複屈折率に応じて、偏波面が電気光学結晶(7)その電気的主軸に対して 有する角度が 45° である直線偏光の偏光状態を変化させて出射する電気光学結晶
(7)と;前記被測定信号に基づく電界を前記電気光学結晶(7)に印加するための一 対の電極(11 , 13)と;当該電気光学結晶(7)から出射された光を Ρ偏光成分と S偏 光成分とに分離し、当該各偏光成分の強度の差分に応じた交流信号を得る検出部( 9, 17, 19, 21)と;を備えた電界センサの調整方法であって、
前記電気光学結晶(7)から出射する楕円偏光を直線偏光に変換する 1/4波長板 (6)を、電気的主軸が前記電気光学結晶(7)の電気的主軸に対して 45° の角度と なるように設け、
前記 1Z4波長板(6)から出射する直線偏光の偏波面の角度を調整する 1/2波長 板(8)を、前記電界が印加されていないときの、前記電気光学結晶(7)から出射した 楕円偏光に含まれる位相差を Φ 0としたときに、電気的主軸が前記電気光学結晶(7 )の電気的主軸に対して有する角度力 η·45° _ φ οΖ2 (ただし、 ηは整数)となるよ うに設けることを特徴とする電界センサの調整方法。
[23] 光源(1)と;被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変 化し、その複屈折率に応じて、入射される円偏光の偏光状態を変化させて出射する 電気光学結晶(7)と;前記被測定信号に基づく電界を前記電気光学結晶(7)に印加 するための一対の電極(11 , 13)と;当該電気光学結晶(7)から出射された光を Ρ偏 光成分と S偏光成分とに分離し、当該各偏光成分の強度の差分に応じた交流信号を 得る検出部(9, 17, 19, 21)と;を備えた電界センサの調整方法であって、
前記電気光学結晶(7)から出射する楕円偏光を直線偏光に変換する 1Z4波長板 (6)を、電気的主軸が前記電気光学結晶(7)の電気的主軸に対して 45° の角度と なるように設け、
前記 1Z4波長板(6)から出射する直線偏光の偏波面の角度を調整する 1/2波長 板(8)を、前記電界が印加されていないときの、前記電気光学結晶(7)から出射した 楕円偏光に含まれる位相差を φ 0としたときに、電気的主軸が前記電気光学結晶(7 )の電気的主軸に対して有する角度力 η· 45° - φ ο/2 (ただし、 ηは整数)となるよ うに設けることを特徴とする電界センサの調整方法。
[24] 前記 φ οは、 φ ο= (2 π / λ ) (no— ne) Lに基づいて決定されることを特徴とする請求 の範囲第 21項乃至第 23項のいずれかに記載の電界センサの調整方法。
ここで、 noは、前記電気光学結晶の常光に対する屈折率、
neは、前記電気光学結晶の異常光に対する屈折率、
λは、光の真空中における波長、
Lは、前記電気光学結晶の光の方向における長さ。
[25] 前記 φ 0は、測定により決定されることを特徴とする請求の範囲第 21項乃至第 23項 のいずれかに記載の電界センサの調整方法。
[26] 光源(1)と;被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変 化し、その複屈折率に応じて、前記光源(1)から入射される光の偏光状態を変化さ せて出射する電気光学結晶(7)と;前記被測定信号に基づく電界を前記電気光学 結晶(7)に印加するための一対の電極(11, 13)と;当該電気光学結晶(7)から出射 された光を Ρ偏光成分と S偏光成分とに分離し、当該各偏光成分の強度の差分に応 じた交流信号を得る検出部(9, 17, 19, 21)と;制御信号(29)に基づいた電界を前 記電気光学結晶(7)に印加する一対の制御電極(23, 25)と;前記制御信号(29)を 生成する制御信号生成手段(31)と;を備えた電界センサの調整方法であって、 前記検出部(9, 17, 19, 21)により得られた前記交流信号を表示し、
表示された前記交流信号に基づき、前記被測定信号に基づく電界が印加されてい ないときにおける、前記光源(1)から入射される光の偏光状態の変化を相殺するよう な前記制御信号 (29)を生成するように前記制御信号生成手段(31)を調整すること を特徴とする電界センサの調整方法。
光源(1)と;被測定信号に基づく電界が印加され、その電界に応じて複屈折率が変 化し、その複屈折率に応じて、前記光源(1)から入射される光の偏光状態を変化さ せて出射する電気光学結晶(7)と;前記被測定信号に基づく電界を前記電気光学 結晶(7)に印加するための一対の電極(11, 13)と;当該電気光学結晶(7)から出射 された光を P偏光成分と S偏光成分とに分離し、当該各偏光成分の強度の差分に応 じた交流信号を得る検出部(9, 17, 19, 21)と;制御信号(29)を前記被測定信号に 加算する加算器 (33)と;前記制御信号 (29)を生成する制御信号生成手段(31)と; を備えた電界センサの調整方法であって、
前記検出部(9, 17, 19, 21)により得られた前記交流信号を表示し、
表示された前記交流信号に基づき、前記被測定信号に基づく電界が印加されてい ないときにおける、前記光源(1)から入射される光の偏光状態の変化を相殺するよう な前記制御信号 (29)を生成するように前記制御信号生成手段(31)を調整すること を特徴とする電界センサの調整方法。
PCT/JP2004/010716 2003-07-28 2004-07-28 電界センサおよびその調整方法 WO2005015247A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/527,790 US7859666B2 (en) 2003-07-28 2004-07-28 Electric field sensor
EP04770979A EP1650574A4 (en) 2003-07-28 2004-07-28 ELECTRIC FIELD SENSOR AND ADJUSTING METHOD THEREFOR
JP2005512916A JP4128584B2 (ja) 2003-07-28 2004-07-28 電界センサ

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003-281010 2003-07-28
JP2003281010 2003-07-28
JP2003380400 2003-11-10
JP2003380407 2003-11-10
JP2003-380432 2003-11-10
JP2003-380400 2003-11-10
JP2003380432 2003-11-10
JP2003-380407 2003-11-10
JP2004100254 2004-03-30
JP2004-100254 2004-03-30
JP2004113083 2004-04-07
JP2004-113083 2004-04-07

Publications (1)

Publication Number Publication Date
WO2005015247A1 true WO2005015247A1 (ja) 2005-02-17

Family

ID=34139926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010716 WO2005015247A1 (ja) 2003-07-28 2004-07-28 電界センサおよびその調整方法

Country Status (5)

Country Link
US (1) US7859666B2 (ja)
EP (2) EP1921458A3 (ja)
JP (3) JP4128584B2 (ja)
KR (1) KR100717703B1 (ja)
WO (1) WO2005015247A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520264A (zh) * 2011-11-30 2012-06-27 西安交通大学 基于拉锥光纤-平板波导耦合结构的电场传感器及测量系统
WO2020066816A1 (ja) * 2018-09-26 2020-04-02 横河電機株式会社 電界センサ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8358414B2 (en) * 2007-07-11 2013-01-22 Baker Hughes Incorporated Downhole sensors using manufactured anisotropic permittivity
US7920263B2 (en) 2007-09-06 2011-04-05 The United States Of America As Represented By The Secretary Of The Navy Apparatus and system for electro magnetic field measurements and automatic analyses of phase modulated optical signals from electrooptic devices
WO2011003041A1 (en) * 2009-07-01 2011-01-06 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Quasi - longitudinal mode electro-optic) high power microwave sensor
US9185899B2 (en) * 2010-06-03 2015-11-17 R2Z Innovations, Inc. Device to avoid attacks from electro-sensitive animals
US9612152B2 (en) * 2013-11-07 2017-04-04 Apple Inc. Ambient light sensor with internal light cancellation
CN103616570B (zh) * 2013-11-13 2016-08-17 清华大学 一种自校正光电集成电场传感器系统
CN104280588B (zh) * 2014-09-28 2017-05-31 暨南大学 基于液晶填充倾斜光纤光栅的电压传感仪及其制作方法
CN105527503A (zh) * 2014-12-12 2016-04-27 国家电网公司 一种带电作业人员屏蔽服内外电场强度检测方法
US9509178B2 (en) * 2015-02-24 2016-11-29 R2Z Innovations, Inc. System and a method for communicating user interaction data to one or more communication devices
ES2741848T3 (es) * 2016-09-02 2020-02-12 Abb Schweiz Ag Sensor interferométrico de tensión con compensación de errores
US10162415B2 (en) * 2016-12-13 2018-12-25 Epic Semiconductors Inc System implantable under skin of a living organism
CN107656122B (zh) * 2017-08-22 2022-04-29 全球能源互联网研究院 一种瞬态电流测量装置
CN109030962B (zh) * 2018-06-12 2024-04-09 浙江菲达环保科技股份有限公司 基于电光折射和离散化微信号的电场性能测量方法及装置
JP6989852B2 (ja) * 2019-01-22 2022-02-03 横河電機株式会社 電界センサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227620A (ja) * 1989-02-28 1990-09-10 Toshiba Corp 光学式測定装置
JPH10132865A (ja) * 1996-10-30 1998-05-22 Nissin Electric Co Ltd 光電圧・電界センサ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH516806A (de) * 1970-06-09 1971-12-15 Bbc Brown Boveri & Cie Elektrooptische Vorrichtung zur Drehung der Polarisationsebene einer linear polarisierten Lichtwelle
GB2220061B (en) * 1988-06-27 1992-09-30 British Broadcasting Corp Power meter
DE3924369A1 (de) * 1989-07-22 1991-01-31 Asea Brown Boveri Verfahren zur messung eines elektrischen feldes oder einer elektrischen spannung und einrichtung zur durchfuehrung des verfahrens
JP2856880B2 (ja) * 1990-10-08 1999-02-10 富士通株式会社 偏光無依存性光スイッチ/変調器及びその製造方法
JP2521395B2 (ja) * 1992-08-31 1996-08-07 日本碍子株式会社 光学式電圧・電界センサ
JPH0915503A (ja) * 1995-06-30 1997-01-17 Nikon Corp 微分干渉顕微鏡
GB9525432D0 (en) * 1995-12-13 1996-02-14 Amp Great Britain Capacitively ground electrode for piezo-electric film
JP3301324B2 (ja) 1996-10-30 2002-07-15 日新電機株式会社 光電圧・電界センサ
DE19742055C2 (de) * 1997-09-24 2000-02-24 Ita Ingb Testaufgaben Gmbh Vorrichtung zum Testen von Schaltungsplatinen
US6122415A (en) * 1998-09-30 2000-09-19 Blake; James N. In-line electro-optic voltage sensor
JP3420977B2 (ja) 1998-09-30 2003-06-30 安藤電気株式会社 電気光学プローブ
US6522456B2 (en) * 2001-05-04 2003-02-18 Corning Applied Technologies, Inc. Dynamic optical filter
JP2001324525A (ja) 2000-05-12 2001-11-22 Nippon Telegr & Teleph Corp <Ntt> 電界センサ
JP2002022775A (ja) * 2000-07-05 2002-01-23 Ando Electric Co Ltd 電気光学プローブおよび磁気光学プローブ
JP3688615B2 (ja) 2001-09-26 2005-08-31 日本電信電話株式会社 電界検出光学装置
JP3688614B2 (ja) 2001-09-26 2005-08-31 日本電信電話株式会社 電界検出光学装置
US6961129B2 (en) * 2003-05-15 2005-11-01 Agilent Technologies, Inc. Active control of two orthogonal polarizations for heterodyne interferometry

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227620A (ja) * 1989-02-28 1990-09-10 Toshiba Corp 光学式測定装置
JPH10132865A (ja) * 1996-10-30 1998-05-22 Nissin Electric Co Ltd 光電圧・電界センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1650574A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520264A (zh) * 2011-11-30 2012-06-27 西安交通大学 基于拉锥光纤-平板波导耦合结构的电场传感器及测量系统
WO2020066816A1 (ja) * 2018-09-26 2020-04-02 横河電機株式会社 電界センサ

Also Published As

Publication number Publication date
EP1921458A3 (en) 2010-09-01
JP4812799B2 (ja) 2011-11-09
EP1650574A4 (en) 2007-06-13
US7859666B2 (en) 2010-12-28
KR100717703B1 (ko) 2007-05-11
JP2008180733A (ja) 2008-08-07
KR20060024332A (ko) 2006-03-16
EP1650574A1 (en) 2006-04-26
EP1921458A2 (en) 2008-05-14
JP2008180734A (ja) 2008-08-07
JP4128584B2 (ja) 2008-07-30
US20060152209A1 (en) 2006-07-13
JPWO2005015247A1 (ja) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4812799B2 (ja) 電界センサ
JP5476554B2 (ja) 電界測定装置
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
CN108036783A (zh) 基于偏振感测技术的非干涉式光学陀螺仪及感测旋转方法
US20150070709A1 (en) Electro-optic modulator and electro-optic distance-measuring device
JP3294376B2 (ja) ファイバ光学センサ
JP2619981B2 (ja) 電磁界強度測定装置
JP2001519887A (ja) 干渉光ファイバ・ジャイロスコープにおける光強度平衡
CN110530497A (zh) 基于光电振荡器的干涉型光纤振动传感解调系统和方法
JP3188528B2 (ja) 交番電界及び交流電圧のための光ファイバーセンサ
JP4071723B2 (ja) 電界センサおよび電界検出方法
US6233370B1 (en) Interference measurement apparatus and probe used for interference measurement apparatus
CN100523837C (zh) 电场传感器及其调节方法
JPH0447214A (ja) 光ファイバジャイロスコープ
JP4875835B2 (ja) 計測システム
EP1212624A2 (en) Fiber optic current sensor
JP4031446B2 (ja) 電界センサおよび電界検出方法
JP3301324B2 (ja) 光電圧・電界センサ
JP3793117B2 (ja) 電界分布測定装置
JP4213877B2 (ja) マッハツェンダ干渉計光センサ
JPH063375A (ja) 電気光学効果を利用した電界分布測定装置
JP3406523B2 (ja) 電気光学サンプリングオシロスコープ
JPS5862799A (ja) 光応用計測装置
WO2001006283A2 (en) Faser optic current sensor
JPH06138151A (ja) 光ファイバセンサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004770979

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048008830

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005512916

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057012887

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006152209

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527790

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057012887

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004770979

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10527790

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020057012887

Country of ref document: KR