WO2005014813A1 - 糖尿病改善薬のスクリーニングに利用できる新規蛋白質 - Google Patents

糖尿病改善薬のスクリーニングに利用できる新規蛋白質 Download PDF

Info

Publication number
WO2005014813A1
WO2005014813A1 PCT/JP2004/011585 JP2004011585W WO2005014813A1 WO 2005014813 A1 WO2005014813 A1 WO 2005014813A1 JP 2004011585 W JP2004011585 W JP 2004011585W WO 2005014813 A1 WO2005014813 A1 WO 2005014813A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
polypeptide
sequence represented
polynucleotide
cbap40
Prior art date
Application number
PCT/JP2004/011585
Other languages
English (en)
French (fr)
Inventor
Hideki Endoh
Yoshitaka Ueda
Original Assignee
Astellas Pharma Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astellas Pharma Inc. filed Critical Astellas Pharma Inc.
Priority to EP04771560A priority Critical patent/EP1652922A4/en
Priority to JP2005513016A priority patent/JP4264904B2/ja
Priority to US10/547,365 priority patent/US20070015155A1/en
Priority to CA002517489A priority patent/CA2517489A1/en
Publication of WO2005014813A1 publication Critical patent/WO2005014813A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4713Autoimmune diseases, e.g. Insulin-dependent diabetes mellitus, multiple sclerosis, rheumathoid arthritis, systemic lupus erythematosus; Autoantigens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Definitions

  • Novel proteins that can be used for screening diabetes-improving drugs
  • the present invention relates to a method for screening a type 2 diabetes ameliorating drug.
  • Novel polypeptides that bind to C-Cbl and polynucleotides that encode the polypeptides are novel polypeptides that bind to C-Cbl and polynucleotides that encode the polypeptides
  • the present invention also relates to a promoter for controlling the expression level of the polypeptide, the polynucleotide or an expression vector containing the promoter, and a transformed cell containing the expression vector. Furthermore, the present invention relates to the use of the polypeptide, promoter, expression vector and / or transformed cell for screening a drug for improving type 2 diabetes. Background art
  • Insulin is secreted by the three cells of the islets of Langerhans, and acts mainly on muscles, liver and fat to lower blood sugar levels by taking up and storing and consuming blood sugar in the cells. Diabetes is caused by this lack of insulin action, but there are two types of patients, type 1 that has impaired insulin production or secretion, and type 2 that makes it difficult for insulin to promote glucose reduction. I do. In all patients, blood glucose levels are higher than in healthy individuals, but type 1 absolutely lacks blood insulin, whereas type 2 promotes uptake or consumption of blood glucose by cells despite the presence of insulin Insulin resistance is not produced. Type 2 diabetes is a so-called lifestyle-related disease caused by overeating, lack of exercise, and stress in addition to genetic predisposition.
  • insulin injections are prescribed for the treatment of patients with type 1 diabetes.
  • hypoglycemic drugs prescribed for patients with type 2 diabetes in addition to insulin injections, sulfonylurea hypoglycemic drugs that act on beta cells in the swelling to stimulate insulin secretion
  • SU agent a biguanide hypoglycemic agent that acts to increase sugar utilization and suppress gluconeogenesis by anaerobic glycolysis, and to suppress intestinal absorption of sugar, and also delays digestion and absorption of carbohydrates
  • ⁇ _Darcosidase inhibitors are known. Although these improve insulin resistance indirectly, thiazolidine derivatives have recently been used as drugs that directly improve insulin resistance. Its effect is to promote the uptake of bran into cells and the utilization of sugar in cells. This thiazolidine derivative is a peroxisome proliferator activated j
  • PPAR y has been shown to act as an agonist (see Non-Patent Document 1).
  • thiazolidine derivatives are known not only to improve insulin resistance but also to cause edema (see Non-Patent Documents 2-3). Since the onset of this edema is a serious side effect that causes cardiac hypertrophy, a more useful drug discovery target alternative to PPAR y is required to improve insulin resistance.
  • Insulin action signals are transmitted into cells via insulin receptors on the cell membrane. There are two pathways for insulin action, the first and second.
  • Non-Patent Document 4 the activated insulin receptor goes through IRS-1 and IRS-2, PI3 kinase, PDK1 to Aktl (PKB ⁇ ) or Akt2 (PKBj3), or PKC or PKC sequentially. A signal is transmitted, and as a result, glucose transporter GLUT4 present in the cell is transferred to the cell membrane, thereby promoting the uptake of sugar from outside the cell (see Non-Patent Document 5).
  • signals are sequentially transmitted from the insulin receptor to CrK II, C3G, and TC10 via C-Cbl and CAP, thereby promoting the uptake of sugar by GLUT4 (Non-patent Document 6). reference).
  • these insulin signaling pathways particularly how these signals ultimately promote glucose transporter-mediated glucose uptake by cells. Not obvious.
  • c-Cbl is a signaling mediator present on the insulin signaling alternative pathway and is a proline-rich 120 kDa cytoplasmic protein.
  • C-Cbl is transiently phosphorylated on tyrosine by insulin stimulation, and has various signaling components with SH2 and SH3. Meet with the child.
  • CAP Cbl associated protein
  • CAP Cbl associated protein
  • This CAP-Cbl complex promotes the transfer of the glucose transporter GLUT4 to the cell membrane via the Crk II-C3G complex and TC10 in response to insulin signal. It has been reported that CAP deficient in SH3, which is a domain binding to c-Cbl, does not affect PI3 kinase activity, but inhibits cellular uptake of glucose (see Non-Patent Document 8). It is also known that the expression of CAP is enhanced by a thiazolidine derivative which is an agonist of PPAR v that improves insulin resistance.
  • c_Cbl is a signaling mediator that acts on glucose uptake into cells through binding to CAP, and that inhibition of its function blocks insulin signals downstream from CAP and causes insulin resistance.
  • C-Cbl-mediated insulin signal transduction is inhibited by some mechanism in cells of type 2 diabetic patients with insulin resistance (see Non-Patent Document 9).
  • a molecule that directly interacts with C-Cbl and negatively regulates activities involved in insulin signaling has not been known so far.
  • Non-Patent Document 1 "The Journal of Biological Chemistry” J, (USA), 1995, Vol. 270, p. 12953-12956
  • Non-Patent Document 2 "Diabetes Frontier
  • Non-Patent Document 3 “Diabetes Frontier"
  • Non-patent document 4 “The Journal of Clinical Investigation”, (USA), 2000, Vol. 106, No. 2, p. 165 -169
  • Non-Patent Document 5 "The Journal of Biological Chemistry” J, (USA), 1999, Vol. 274, No. 4, p. 1865-1868
  • Non-Patent Document 6 “Nature”, (UK), 2001, Vol. 410, No. 6831, p. 944-948
  • Non-Patent Document 7 "Molecular and Cellular Biology” J (United States), 1998, Vol. 18, No. 2, p. 872-879
  • Non-Patent Document 8 "The Journal of Biological Chemistry” J, (USA), 2001, Vol. 276, No. 9, p. 6065-6068
  • Non-Patent Document 9 The Journal of Biological Chemistry J, (USA), 2000, Vol. 275, No. 13, p. 9131-9135.
  • An object of the present invention is to provide a method for screening a type 2 diabetes ameliorating drug.
  • the present inventors identified a protein that binds to c-Cbl using the yeast two-hybrid system.
  • c- protein human Certified Business Analysis Professional 4 0 bound to Cbl found (Cbl associated protein 40)
  • expression of the gene encoding the protein is localized in skeletal muscle, which is one of the insulin response tissue Revealed that
  • mouse CbAP40 gene and protein were obtained and bound to c_Cbl.
  • the expression level of the mouse CbAP40 gene was significantly increased in the muscle of diabetic model mice compared to normal individuals, and the overexpression of human CbAP40 gene in muscle-derived cells inhibited sugar uptake.
  • the present inventors have clarified that the protein is a causative factor of diabetes mellitus, and provided a new screening tool for ameliorating type 2 diabetes. Furthermore, the promoter region of the human CbAP40 gene was identified, and it was clarified that the transcription-inducing activity derived from the promoter was suppressed by a thiazolidin derivative known to improve insulin resistance. From these findings, it was clarified that suppressing transcription-inducing activity derived from the CbAP40 promoter can improve insulin resistance. Based on these findings, the promoter activity was specified. A screening system for substances with therapeutic effect on type 2 diabetes was established. That is, the present invention relates to the following screening methods, polypeptides, polynucleotides, expression vectors containing the polynucleotides, cells transformed with the expression vectors, and uses thereof.
  • nucleotide sequence represented by SEQ ID NO: 3 (ii) the nucleotide sequence represented by nucleotides 1364 to 3119 of the nucleotide sequence represented by SEQ ID NO: 3, or (iii) the SEQ ID NO: A polynucleotide consisting of the nucleotide sequence represented by Nos. 2125 to 3119 of the nucleotide sequence represented by No.
  • nucleotide sequence represented by the above (i) to (ii i) A polynucleotide having a promoter activity of a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26, including a base sequence in which the base of SEQ ID NO: 2 is deleted, substituted, and Z or inserted
  • the polynucleotide according to [1] comprising a nucleotide sequence obtained by deletion, substitution, insertion, addition or addition, and having the promoter activity of the polypeptide according to [1].
  • a method for analyzing whether a test substance inhibits said binding is analyzed whether a test substance inhibits said binding.
  • a method for screening a substance that inhibits binding of the polypeptide according to [5] to C-Cbl comprising:
  • [7] A method for screening a type 2 diabetes ameliorating agent by the method according to [6].
  • [8] In the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26, or the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26, 1 to 10 amino acids are deleted, substituted, and Z or A polypeptide comprising an inserted amino acid sequence, which binds to c-Cbl and inhibits sugar uptake by Z or overexpression.
  • a polypeptide comprising an amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26.
  • amino acids in the amino acid sequence represented by SEQ ID NO: 26 comprising a deletion, substitution, insertion and Z or an added amino acid sequence, and binding to c-Cbl and Z or sugar by overexpression.
  • the method for screening a type 2 diabetes ameliorating agent according to [3] or [7] further comprises a type 2 diabetes ameliorating effect analysis step.
  • the type 2 diabetes improving agent obtained by the screening method of the present invention is particularly preferable as an insulin resistance improving agent and a Z or glucose metabolism improving agent.
  • the screening tool for a type 2 diabetes mellitus ameliorating agent of the present invention is particularly preferable as a screening tool for an insulin resistance ameliorating agent and / or a bran metabolic ameliorating agent.
  • sequence identical to the polypeptide of the present invention consisting of the sequence of SEQ ID NO: 26 is not known.
  • the sequence database GenPept Prior to the priority date of the present application (August 8, 2003), the sequence database GenPept has the same amino acid sequence as SEQ ID NO: 2 as accession number AK091037, which is one sequence of the polypeptide of the present invention.
  • accession number AK044445 the amino acid represented by SEQ ID NO: 26, which is one sequence of the polypeptide of the present invention, as accession number AK044445 in the sequence database GenPept An amino acid sequence in which four amino acids have been substituted in the sequence and 103 amino acids have been added is listed.
  • the accession number AK044445 describes on the database that the sequence of the polypeptide is putative.
  • the present inventors have produced the polypeptide of the present invention for the first time, and have clarified for the first time that the enhanced expression of the polypeptide of the present invention and the interaction with c-Cbl are responsible for the pathology of diabetes. Further, the screening method of the present invention utilizing the binding between the polypeptide of the present invention and c-Cbl is a method first provided by the present inventors.
  • FIG. 1 is a drawing showing expression of human CbAP40 in cultured cells. Lane 1 shows the case where the empty vector was introduced, and lane 2 shows the case where pcDNA-CbAP40 was introduced. Lane 3 shows the molecular weight marker.
  • FIG. 2 is a diagram comparing the expression levels of CbAP40 gene in muscle tissues of normal mice C57BL / 6J and m + / m +, and muscle tissues of type 2 diabetes model mice KKAVTa and db / db.
  • the vertical axis in the figure indicates the relative expression level in mouse muscle.
  • the expression level in C57BL / 6J is shown as 1.
  • FIG. 3 is a graph showing the amount of sugar uptake in muscle cells overexpressing CbAP40.
  • the vertical axis in the figure indicates the amount of 2-dexoxy-D-glucose uptake (cpm).
  • the horizontal axis in the figure shows the insulin concentration in the medium during the measurement. Closed bars show the results for muscle cells overexpressing CbAP40, and open bars show the results for muscle cells infected with control virus.
  • FIG. 4 is a diagram showing the transcription inducing activity 14 of the CbAP40 promoter and its inhibitory action by pioglitazone. Numerical values on the vertical axis in the figure indicate luciferase activity. The values on the horizontal axis in the figure indicate the concentration of pioglitazone ⁇ ⁇ 1).
  • polypeptide of the present invention >
  • polypeptide comprising an amino acid sequence represented by SEQ ID NO: 2;
  • amino acids are deleted, substituted, and Z or inserted amino acid sequence ''
  • a polypeptide that inhibits sugar uptake by binding and / or overexpression to c_Cbl preferably inhibits sugar uptake by binding to and overexpression of C-Cbl polypeptide (hereinafter referred to as a human functional equivalent variant) );
  • amino acids are deleted, substituted, and / Or imported amino acid sequence
  • a polypeptide that binds to c-Cbl and / or inhibits glucose uptake by overexpression preferably, binds to c-Cbl and inhibits glucose uptake by overexpression
  • mouse functionally equivalent variants (Hereinafter referred to as mouse functionally equivalent variants);
  • the origin of the human or mouse functionally equivalent variant of the present invention is not limited to human or mouse.
  • those derived from other vertebrates other than mice eg, rats, egrets, pomas, sheep, dogs, monkeys, cats, bears, pigs, chickens, etc.
  • it is not limited to natural polypeptides, but can be genetically engineered based on the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26.
  • artificially modified polypeptides are also included, natural polypeptides, in particular, vertebrate-derived polypeptides are more preferred.
  • “Binds to c_Cbl” means that the polypeptide binds to c-Cbl (preferably a polypeptide encoded by GenBank accession number X57111). It can be confirmed by the following method whether or not “bond”. 'The cell expresses a part or the full-length region of the polypeptide to be examined for binding or a part or the full-length region of the polypeptide to be examined to which a tag such as GST, Flag or His is fused.
  • the cells are preferably cells that respond to insulin, and more specifically, adipocytes, hepatocytes, or skeletal muscle-derived cells.
  • the c-Cbl protein and the protein binding thereto can be concentrated from the cells by immunoprecipitation using an anti-C-Cbl antibody.
  • the obtained c_Cbl and its concentrated protein concentrate are separated by polyacrylamide gel electrophoresis using a known method, and whether or not the polypeptide to be examined binds to C-Cbl by Western blotting using an antibody Can be confirmed.
  • an antibody against the polypeptide to be examined prepared based on the polypeptide to be examined or a partial sequence thereof, or an antibody recognizing the above-mentioned tag can be used.
  • Example 9 can be used to detect the binding between the polypeptide of interest and c-Cbl.
  • “Inhibiting sugar uptake by overexpression” means that overexpression of a certain polypeptide inhibits sugar uptake as compared to the case where it is not overexpressed. Whether or not “inhibits sugar uptake” can be confirmed by the following method. Transform cells (eg, muscle cells L6 cells) with an expression vector containing a polynucleotide encoding the polypeptide of interest. Whether or not the polypeptide to be examined was highly expressed (overexpressed) in the cells by the transformation was determined by Western blotting using an extract of the cells and using an antibody capable of detecting the polypeptide to be examined. It can be confirmed by real-time PCR using primers or primers that specifically detect the polynucleotide encoding the polypeptide to be examined.
  • Whether the polypeptide under study inhibits bran uptake is determined by whether the polypeptide is over-expressed or not over-expressed, by using cells, and by the amount of Darcos taken up into cells. Can be confirmed by measuring. If the glucose uptake of the overexpressed cells is lower than that of the cells not overexpressing the target polypeptide, it can be determined that the target polypeptide inhibits glucose uptake by overexpression.
  • the method described in Example 6 can be used to confirm whether the polypeptide to be examined has the ability to inhibit sugar uptake by overexpression.
  • polypeptide of the present invention has been described.
  • the polypeptide consisting of the amino acid represented by SEQ ID NO: 2 or SEQ ID NO: 26, and the human or mouse functionally equivalent variant of the present invention are collectively referred to as “ It is referred to as "the polypeptide of the present invention”.
  • a protein that is a polypeptide consisting of the amino acid represented by SEQ ID NO: 2 is a “human CbAP40 protein”
  • a protein that is a polypeptide consisting of the amino acid represented by SEQ ID NO: 26 is “mouse” CbAP40 protein ".
  • polypeptide of the present invention a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26, or a human or mouse functionally equivalent variant, SEQ ID NO: 2 or SEQ ID NO: 26 Most preferred is a polypeptide comprising the amino acid sequence represented by
  • CbAP40 binds to C-Cbl (Examples 1 and 9) .
  • the gene encoding human CbAP40 is highly expressed in muscle cells, the amount of sugar uptake is reduced. It was found to decrease (Example 6). Therefore, it is considered that CbAP40 interferes with the function of c-Cbl in insulin signaling, and a substance that inhibits the binding of the polypeptide of the present invention to C-Cbl is a substance that improves glucose uptake, that is, type 2 It turned out to be a diabetes improver.
  • the polypeptide of the present invention is useful as a screening tool in a method for screening the above-mentioned binding inhibitor (that is, a drug for improving type 2 diabetes, especially a substance improving glucose uptake).
  • a binding inhibitor that is, a drug for improving type 2 diabetes, especially a substance improving glucose uptake.
  • a polynucleotide comprising a nucleotide sequence encoding a mouse CbAP40 protein and a polypeptide that is a mouse functionally equivalent variant (hereinafter, referred to as a mouse-type polynucleotide);
  • nucleotide sequence represented by SEQ ID NO: 3 (2) the nucleotide sequence represented by nucleotides 1364 to 3119 of the nucleotide sequence represented by SEQ ID NO: 3, or (3) the nucleotide sequence represented by SEQ ID NO: 3 Or a polynucleotide consisting of the nucleotide sequence represented by Nos.
  • a polynucleotide containing a deleted, substituted, and / or inserted nucleotide sequence and having a promoter activity of a human CbAP40 protein or a polypeptide which is a human functional equivalent variant referred to as a promoter-type polynucleotide
  • the mouse polynucleotide may be derived from any species as long as it encodes a mouse CbAP40 protein and a polypeptide that is a mouse functionally equivalent variant, and may comprise a nucleotide sequence encoding mouse CbAP40.
  • Polynucleotides are preferred, and the polynucleotide represented by SEQ ID NO: 25 is most preferred.
  • the promoter-type polynucleotides the most preferred is a polynucleotide consisting of the nucleotide sequence represented by Nos. 2125 to 3119 of the nucleotide sequence represented by SEQ ID NO: 3.
  • the mouse-type polynucleotide includes any mutant as long as it encodes a mouse CbAP40 protein and a polypeptide that is a mouse functionally equivalent variant.
  • the motor-type polynucleotide includes: (1) a nucleotide sequence represented by SEQ ID NO: 3,
  • Naturally occurring variants non-naturally occurring variants
  • Mutants having deletions, substitutions, additions and insertions are included.
  • the above-mentioned mutation may be caused, for example, by a mutation in nature, but may also be made by artificially modifying it.
  • the cause and means of mutation of the polynucleotide are not limited.
  • an artificial means for producing the above mutant for example, a base-specific substitution method
  • DNAs with the desired base substitutions can be obtained by their combination.
  • non-specific bases in DNA molecules can be replaced by repeated PCR or by the presence of manganese ions in the reaction solution.
  • the promoter-type polynucleotide of the present invention and the polynucleotide encoding the polypeptide of the present invention can be easily produced and obtained by general genetic engineering techniques based on the sequence information disclosed by the present invention. .
  • polynucleotide encoding the promoter of the present invention and the polypeptide of the present invention can be obtained, for example, as follows, but is not limited to this method, and may be a known operation. I Molecular Cloning J LSambrook, J. Spring Harbor Laboratory Press ⁇ 1989, etc.].
  • a method using PCR (2) a method using a conventional genetic engineering technique (that is, a method of selecting a transformant containing a desired amino acid from a transformant transformed with a cDNA library).
  • a chemical synthesis method Each manufacturing method can be carried out in the same manner as described in W001 / 34785.
  • the polynucleotide described in the present specification can be obtained by the procedure described in the above-mentioned Patent Document, “Embodiment of the Invention” 1) Method for producing protein gene a) First method for production. Can be manufactured.
  • a human cell or tissue capable of producing the protein of the present invention includes, for example, human skeletal muscle. Extract mRNA from human skeletal muscle. Then, the mRNA is subjected to a reverse transcriptase reaction in the presence of a random primer or an oligo dT primer to synthesize a first-strand cDNA. Using the obtained first-strand cDNA, target gene Polymerase chain reaction using two types of primers
  • PCR to obtain the polynucleotide of the present invention or a part thereof. More specifically, for example, a polynucleotide encoding the polypeptide of the present invention and / or the promoter-type polynucleotide of the present invention by the method described in Example 1, Example 7, or Example 8. Can be manufactured. ,
  • the polymorphism of the present invention is carried out by the procedure described in the above-mentioned Patent Document “Embodiment of the Invention” 1) The method for producing a protein gene b) The second production method Polynucleotides encoding peptides and Z or the promoter-type polynucleotides of the present invention can be produced.
  • a substance that suppresses the expression of the polypeptide of the present invention can be screened.
  • the present inventors have reported that human CbAP40, which is one of the polypeptides of the present invention, inhibits sugar uptake (Example 6) and uses a thiazolidine derivative known to improve insulin resistance. The fact that the transcription-inducing activity derived from the promoter of the present invention is suppressed (Example 7) was made clear.
  • the substance that suppresses the expression of the polypeptide of the present invention improves glucose uptake inhibition and is useful as a type 2 diabetes improving agent, particularly an insulin resistance improving agent and / or a glucose metabolism improving agent. Therefore, the promoter of the present invention can be used as a screening tool for a type 2 diabetes ameliorating drug, particularly an insulin sensitizing drug and a Z or glucose metabolism improving drug.
  • polypeptide of the present invention for example, mouse CbAP40, can be produced by the mouse-type polynucleotide of the present invention.
  • the present invention incorporates a polynucleotide encoding the polypeptide of the present invention.
  • the present invention also includes a method for producing the polypeptide of the present invention, which comprises culturing cells transformed by an expression vector.
  • the polynucleotide encoding the polypeptide of the present invention obtained as described above can be appropriately prepared by the method described in "Molecula, r Cl'oning Sambrook, J et al., Cold Spring Harbor Laboratory Press, 1989" or the like. By ligating downstream of the promoter, the polypeptide of the present invention can be expressed in a test tube or a test cell. Specifically, by adding a polynucleotide containing a specific promoter sequence upstream of the initiation codon of the polypeptide of the present invention obtained as described above, a gene in a cell-free system using The polypeptide of the present invention can be expressed by transcription and translation.
  • the polypeptide of the present invention can be expressed in the cell.
  • cells having such a configuration incorporated into chromosome DNA may be obtained and used.
  • eukaryotic and prokaryotic host cells can be transformed by reintegrating the fragment containing the isolated polynucleotide into an appropriate plasmid vector.
  • the polypeptide of the present invention can be expressed in each host cell by introducing an appropriate promoter and a sequence relating to expression into these vectors.
  • the host cell is not particularly limited as long as it can detect the expression level of the polypeptide of the present invention at the messenger RNA level or at the protein level. It is more preferable to use muscle-derived cells rich in endogenous CbAP40 as host cells.
  • the vector of the present invention is not particularly limited as long as it contains a desired polynucleotide.
  • an expression vector obtained by inserting a desired polynucleotide into a known expression vector appropriately selected according to the host cell to be used can be mentioned.
  • the cells of the present invention include, for example, transfecting a desired host cell with the expression vector. Can be obtained.
  • a desired polynucleotide can be expressed by incorporating a desired polynucleotide into an expression vector pcDNA3.1 (Invitrogen) for mammalian cells.
  • the transformed vector of the present invention can be produced by incorporating the expression vector into 293 cells using the calcium phosphate method.
  • the desired transformed cells obtained above can be cultured according to a conventional method, and the culture produces the desired protein.
  • the medium used for the culture various types commonly used depending on the host cells used can be appropriately selected.
  • a medium obtained by adding G418 to a medium such as Dulbecco's Modified Eagle Minimum Essential Medium (DMEM) to which serum components such as fetal bovine serum (FBS) are added can be used.
  • DMEM Dulbecco's Modified Eagle Minimum Essential Medium
  • FBS fetal bovine serum
  • the polypeptide of the present invention produced in the cell can be detected, quantified, and further purified.
  • the polypeptide of the present invention can be detected and purified by Western blotting or immunoprecipitation using an antibody that binds to the polypeptide of the present invention.
  • an appropriate tag protein such as daltathione-S-transferase (GST), protein ⁇ , ⁇ -galatatosidase, maltose binding protein ( ⁇ )
  • GST daltathione-S-transferase
  • the polypeptide of the present invention can be detected by Western blotting or immunoprecipitation using an antibody specific to the tag protein, and purified using the tag protein. More specifically, it can be purified using a tag protein as follows.
  • the polypeptide of the present invention (for example, the polypeptide represented by SEQ ID NO: 2 or SEQ ID NO: 26) can be obtained by combining a polynucleotide encoding them, for example, a vector to which a His tag is fused, and more specifically, for example, It is expressed in cultured cells by incorporating it into pcDNA3.l / V5-His-T0P0 (Invitrogen) or the like described in 1 or Example 8, and is obtained by removing the tag portion after purifying using the His tag. be able to.
  • a polynucleotide encoding them for example, a vector to which a His tag is fused, and more specifically, for example, It is expressed in cultured cells by incorporating it into pcDNA3.l / V5-His-T0P0 (Invitrogen) or the like described in 1 or Example 8, and is obtained by removing the tag portion after purifying using the His tag. be able to.
  • the human or mouse CbAP40 expression plasmids prepared using pcDNA3.l / V5-His-T0P0 in Example 1 or Example 8 were designed so that V5 and His tags were added to the C-terminal of CbAP40. Designed. This allows expression of CMP40 shown in Example 2 or Example 8 using those His tags.
  • CbAP40 protein can be purified from the cultured cells. Specifically, according to a known method (Experimental Medicine Separate Volume, Experimental Method for Molecular Interaction of Proteins, page 32, Nakahara et al., 1996), the CbAP40 protein fused to His tag was extracted from the lysed cell extract with Ni 2+ -NTA.
  • the polypeptide-expressing cells of the present invention cultured in a culture flask are removed by adding an appropriate amount of a buffer solution (for example, 1 ml), and thereafter, every minute. Separate the supernatant by centrifugation at 15,000 rpm for 5 minutes, add an appropriate amount (eg, 50 ⁇ M) of Ni 2+ -NTA-Agarose replaced with an appropriate buffer, and mix well.
  • a buffer solution for example, 1 ml
  • the buffer for example buffer B (8 M Urea, 0. 1 M Na 2 HP0 4, 0. 1 M NaH 2 P0 4, 0. 01 M Tris-HCl pH8. 0) can be used.
  • the His tag in the purified protein molecule can be designed, for example, by fusing the His tag to the N-terminal side.
  • the protein can be purified by a method not using a tag protein, for example, by various separation procedures utilizing the physical and chemical properties of a protein comprising the polypeptide of the present invention. Specific examples include the use of ultrafiltration, centrifugation, gel filtration, adsorption chromatography, ion exchange chromatography, affinity chromatography, and high-performance liquid chromatography.
  • the polypeptide of the present invention can be produced by a general chemical synthesis method according to the amino acid sequence information shown in SEQ ID NO: 2 or SEQ ID NO: 26. Specifically, a peptide synthesis method by a liquid phase and a solid phase method is included. In the synthesis, amino acids may be sequentially linked one by one, or a peptide fragment consisting of several amino acids may be synthesized and then linked.
  • the polypeptide of the present invention obtained by these means can be purified according to the various methods described above. ⁇ Expression vector and cell of the present invention>'''''
  • the expression vector of the present invention includes an expression vector containing the mouse polynucleotide of the present invention, and an expression vector containing the promoter polynucleotide.
  • the cells of the present invention include cells transformed with an expression vector containing the mouse-type polynucleotide of the present invention (hereinafter referred to as mouse-type polynucleotide-expressing cells), and cells transformed with an expression vector containing the promoter-type polynucleotide. Transformed cells
  • the cells of the present invention include cells transformed with an expression vector containing a mouse polynucleotide or cells transformed with an expression vector containing a promoter polynucleotide, which express a mouse polynucleotide. Or a cell expressing the promoter activity of the promoter-type polynucleotide.
  • the mouse-type polynucleotide-transformed cell or promoter-transformed cell of the present invention can be produced by incorporating the mouse-type polynucleotide or promoter-type polynucleotide of the present invention into a host cell appropriately selected according to the purpose. It is preferable to produce by incorporating the mouse-type polynucleotide or the promoter-type polynucleotide of the present invention into a betater appropriately selected according to the purpose.
  • the present invention is applied to a vector into which a reporter gene such as luciferase has been incorporated. It is preferable to incorporate the promoter-type polynucleotide of the present invention.
  • the reporter gene fused to the promoter region is not particularly limited as long as it is a commonly used reporter gene, but is preferably an enzyme gene or the like that is easily quantitatively measured.
  • the reporter gene may be functionally fused to the promoter-type polynucleotide of the present invention.
  • the objective is to construct a screening system for a substance that regulates the promoter activity of the present invention, it is preferable to use cells derived from mammals (eg, human, mouse or rat) as the cells, More preferably, human-derived cells are used.
  • mammals eg, human, mouse or rat
  • Mouse-type polynucleotide-transformed cells can be used to produce the polypeptide of the present invention.
  • the expression vector and the cell of the present invention can be obtained by the screening method of the present invention (for example, a screening method for a substance that regulates promoter activity (Example 7)), a screening method utilizing the binding of the polypeptide of the present invention to c-Cbl. ), And is useful as a tool for the screening.
  • the present invention includes (1) a polypeptide of the present invention, a polynucleotide encoding the polypeptide of the present invention, a promoter-type polynucleotide of the present invention, a polynucleotide encoding the polypeptide of the present invention, or a polynucleotide of the present invention.
  • a type 2 diabetes mellitus improving drug screening tool consisting of cells transformed with an expression vector containing a promoter-type polynucleotide,
  • polypeptide of the present invention (2) a polypeptide of the present invention, a polynucleotide encoding the polypeptide of the present invention, a promoter-type polynucleotide of the present invention, or a polynucleotide encoding the polypeptide of the present invention or the promoter-type polynucleotide of the present invention.
  • the use of cells transformed with the expression vector for screening of a type 2 diabetes mellitus ameliorating agent is included.
  • the term “screening tool” refers to a substance used for screening (specifically, a polypeptide, a polynucleotide or a cell used for screening).
  • the “type 2 diabetes ameliorating drug screening tool” is used for screening a type 2 diabetes ameliorating drug (in particular, an insulin resistance ameliorating drug and a Z or glucose metabolism ameliorating drug) in the screening method of the present invention.
  • Use of the polypeptide, polynucleotide or cell of the present invention for screening for a drug for improving type 2 diabetes is also included in the present invention.
  • the analysis method or screening method of the present invention > They found that CbAP40, one of the polypeptides of the present invention, binds to c_Cbl (Examples 1 and 9), and that expression is increased in diabetic model mice (Example 5). It has been found that high expression of a gene encoding sucrose in muscle cells reduces the amount of sugar uptake (Example 6). Therefore, it was found that a substance that inhibits the binding of the polypeptide of the present invention to c-Cbl is a substance that improves bran uptake. It was revealed that the transcription-inducing activity derived from the promoter of the polypeptide of the present invention was suppressed by a thiazolidine derivative known to improve insulin resistance (Example 7). From this, it was found that a substance having a type 2 diabetes improving action (particularly a substance having an insulin resistance improving action and / or a glucose metabolism improving action) can be screened using the promoter activity as an index.
  • a type 2 diabetes ameliorating effect comprising using the polypeptide of the present invention as a marker for a change in the interaction between the polypeptide of the present invention and the c-Cbl protein.
  • a method of screening for a substance having an insulin resistance improving effect and / or a substance having a glucose metabolism improving effect comprising using the promoter type polynucleotide of the present invention and using the change in the promoter activity as an index. Screening method for a substance having an activity of improving the solubility and a substance having an activity of improving the sugar content).
  • polypeptide used in the scripting of the present invention utilizing the interaction with the c-Cbl protein examples include the polypeptide of the present invention or a homologous polypeptide.
  • a homologous polypeptide consisting of an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26 and being a protein that binds to C-Cbl Called.
  • the homologous polypeptide herein is an amino acid sequence having 90% or more homology with the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26, and a polypeptide that binds to c-Cbl
  • the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 26 is preferably, but not limited to, 95% or more, and more preferably 98% or more, as long as Polypeptides consisting of amino acid sequences are preferred.
  • the polypeptide that can be used for the screening of the present invention ie, the polypeptide of the present invention and the homologous polypeptide
  • a screening polypeptide ie, the polypeptide of the present invention and the homologous polypeptide.
  • the analysis method or screening method of the present invention includes the following methods.
  • ⁇ 1> (1) a step of contacting a cell expressing the promoter of the present invention with a test substance
  • a method for screening for a substance that suppresses the expression of a polypeptide of the present invention or a drug for ameliorating type 2 diabetes comprising:
  • a step of detecting the binding between the polypeptide and c-Cbl A method for analyzing whether a test substance inhibits said binding.
  • a method for screening a substance that inhibits binding between the polypeptide for screening of the present invention and c-Cbl or a drug for ameliorating type 2 diabetes comprising:
  • the reporter gene Atsusei (Tamura et al., Transcription Factor Research, Yodosha, 1993) is a method for detecting the regulation of gene expression using the reporter gene expression as a marker.
  • the regulation of gene expression is controlled by a part called the promoter region located in the 5 'upstream region, and the gene expression level at the transcription stage can be estimated by measuring the activity of this promoter.
  • the test substance activates the promoter, it activates the transcription of a reporter gene located downstream of the promoter region.
  • the promoter activating action ie, the expression enhancing action, can be detected by replacing it with the reporter gene expression.
  • the effect of the test substance on the regulation of the expression of the polypeptide of the present invention can be detected by replacing the expression of the reporter gene with the reporter gene using the promoter-type polynucleotide of the present invention.
  • the “reporter gene” fused to the promoter-type polynucleotide (for example, a sequence consisting of the base sequence represented by SEQ ID NO: 3) of the present invention is not particularly limited as long as it is a commonly used one. An easy enzyme gene is preferred.
  • CAT clonal ramphenicol acetyltransferase gene
  • Luc luciferase gene
  • GFP green fluorescent protein gene
  • the reporter gene may be functionally fused to the promoter-type polynucleotide of the present invention.
  • the screen Jung can be performed by the method described in the seventh embodiment.
  • test cells expressing a part or the full length region of the screening polypeptide of the present invention are untreated or treated with a test substance.
  • the test cells are preferably cells that respond to insulin, and more specifically, adipocytes, hepatocytes, or skeletal muscle-derived cells.
  • the c_Cbl protein and the protein binding thereto can be concentrated from the cells by immunoprecipitation using an anti-c-Cbl antibody.
  • the same test substance obtained by treating the cells be contained in the reaction solution.
  • the resulting concentrated solution of c-Cbl and its binding protein was separated by polyacrylamide gel electrophoresis according to a known method, and the amount of the polypeptide for screening was determined by Western blotting using an antibody.
  • a test substance that inhibits the binding between the screening polypeptide and c-Cbl can be selected.
  • an antibody against a screening polypeptide or a screening polypeptide prepared based on a partial sequence thereof for example, an anti-CbAP40 antibody
  • an antibody recognizing the above tag is used. be able to. '
  • a test substance that inhibits the binding of c_Cbl to the screening polypeptide can be selected. it can.
  • known spot western blotting is performed without using polyacrylamide gel electrophoresis. By doing so, it is possible to screen a large number of test substances.
  • c_Cbl and c_Cbl were also determined according to a known ELISA method comprising adding a test substance to a lysate of cells that simultaneously expressed a screening polypeptide expressed by fusing the same tag as described above and c-Cbl. Screening is possible to select a test substance that inhibits binding of the screening polypeptide.
  • screening was performed by fusing c-Cbl fused to the DNA binding region of GAL4 on the bait and fusion-promoting region of VP16 on the play side.
  • test substance used in the screening method of the present invention is not particularly limited, and examples thereof include commercially available compounds (including peptides) and various known compounds (including peptides) registered in a chemical file.
  • a group of compounds obtained by combinatorial chemistry technology (N. Terrett et al., Drug Discov. Today, 4 (1): 41, 1999), culture supernatants of microorganisms, natural components derived from plants and marine organisms, An animal tissue extract or a compound (including a peptide) obtained by chemically or biologically modifying a compound (including a peptide) selected by the screening method of the present invention can be used.
  • the analysis of the type 2 diabetes ameliorating effect can be carried out by using a method known to those skilled in the art or a modified method thereof.
  • the compound selected by the screening method of the present invention is continuously administered to a diabetic model animal, and the blood glucose lowering effect is checked as needed according to a conventional method, or the blood glucose-lowering effect after an oral bran load test.
  • the presence or absence of the type 2 diabetes ameliorating effect can be determined.
  • insulin resistance in humans can be measured, and the improvement in type 2 diabetes can be analyzed using the improvement in the value as an index. Insulin resistance has been measured in humans in two main ways.
  • glucose tolerance test in which a glucose solution is orally administered to determine the clearance rate from the blood circulation. More accurate Tests include euglycemic hyperinsulinemic clamp. This test uses the principle that insulin and glucose in blood are maintained at a constant concentration, and measures the total amount of glucose administered and the insulin concentration used for metabolism over time. Is what you do.
  • the expression level of the polynucleotide encoding the polypeptide of the present invention can be examined, and the expression level can be determined.
  • Diabetes can be diagnosed using an increase in the amount (preferably, the expression level in skeletal muscle) as an index.
  • stringent conditions means conditions under which non-specific binding does not occur. Specifically, 0.1% SLA containing 0.1% sodium lauryl sulfate (SDS) (Saline-sodium citrate buffer) solution, and means that the temperature is 65 ° C.
  • a DNA having a sequence of at least a part or all of the polynucleotide of the present invention (or a complementary sequence thereof) and a chain length of at least 15 bp is used.
  • the probe described above is brought into contact with a test sample, and a polynucleotide (for example, mRNA or cDNA derived therefrom) encoding the polypeptide of the present invention is conjugated with a known probe. Diagnosis can be detected by analysis using an analysis method (for example, Northern printing). Further, the above-described probe can be applied to a DNA chip to analyze the expression level. If the amount of the conjugate, that is, the amount of the polynucleotide encoding the polypeptide of the present invention is higher than that in a healthy person, it can be determined that the patient has diabetes.
  • a method of measuring the expression level of the polynucleotide encoding the polypeptide of the present invention a method of measuring the expression level by detecting the polypeptide of the present invention is possible.
  • a detection method include, for example, Western blotting using an antibody that binds a test sample to the polypeptide of the present invention, preferably an antibody that specifically binds to the polypeptide of the present invention, and immunoprecipitation. Method, ELISA method, etc. Rukoto can.
  • the polypeptide of the present invention can be used as a standard amount.
  • the polypeptide of the present invention is useful for preparing an antibody that binds to the polypeptide of the present invention.
  • the amount of the polypeptide of the present invention is higher than that in a healthy person, it can be determined that the patient has diabetes.
  • the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.
  • the method can be carried out according to a known method (“Molecular Cloning J Sambrook, J et al., Cold Spring Harbor Laboratory Press, 1989, etc.”). Can be carried out according to the instructions for commercial products.
  • SEQ ID NO: 4 and SEQ ID NO: 5 (5 'side) designed with reference to the cDNA sequence encoding the full length region of mouse c-Cbl described in accession number X57111 of the gene database GenBank, and SEQ ID NO: 6 and Heat denaturation at 95 ° C for 3 minutes using DNA oligonucleotide (Pyrobest DNA Polymerase, Takara Shuzo Co., Ltd.) with the oligonucleotide represented by SEQ ID NO: 7 (3 'side) as primer and mouse skeletal muscle cDNA as type I Thereafter, PCR was performed 40 times at 98 ° C. for 10 seconds, 60 ° C. for 30 seconds, 74 ° C.
  • the above mouse c-Cbl cDNA was inserted into a yeast two-hybrid expression vector using homologous recombination in accordance with the method described in Example 2 (2) of Patent Document ( ⁇ 003 / 0 ⁇ 2427).
  • the primers shown in SEQ ID NO: 8 and SEQ ID NO: 9 were designed, and these were used to sequence the 40-mer sequence required for homologous recombination by PCR using the above mouse c-Cbl cDNA as type II.
  • the associated C-Cbl cDNA fragment was obtained.
  • Example 2 (2) of Endo et al. After confirming the sequence of the expression vector prepared by homologous recombination according to the method of Patent Document Example 2 (2) of Endo et al., The human skeletal muscle library was subjected to the same method as in Example 2 (3). Interaction factors were screened from among them. Yeast cells expressing a protein that binds to c-Cbl were identified, and a library-derived plasmid was extracted from the cells. The nucleotide sequence of the gene fragment contained therein was determined according to the method described in Example 2 (2), and as a result, the 934th to 1101st nucleotides at the 3 'end of the nucleotide sequence shown in SEQ ID NO: 1 were determined.
  • This clone has a DNA sequence encoding a protein containing the net 55 amino acids at the carboxyl terminal side of the polypeptide shown in SEQ ID NO: 2, and expressed a fusion protein containing the 55 amino acid polypeptide in yeast.
  • the polypeptide shown in SEQ ID NO: 2 was shown to be a protein having the ability to bind to c_Cbl at the 55-amino acid moiety on the carboxyl terminal side.
  • PCR reaction is DNA polymerase (TAKARA LA Taq; Using Takara Shuzo, a cycle of 94 ° C (3 minutes) followed by a cycle of 94 ° C (30 seconds) '58 ° C (1.5 minutes) ⁇ 72 ° C (4 minutes) was repeated 35 times.
  • PCR was performed under the same conditions using the PCR product as a type III. As a result of separating the PCR product by agarose gel electrophoresis, it was confirmed that a DNA fragment of about 1200 base pairs was amplified.
  • the same DNA fragment in the reaction solution was cloned into the expression vector (pcDNA3.1 / V5-His-TOP0; Invitogen) using the T0P0 TA Cloning system (Invitrogen).
  • a primer T0P0 TA Cloning kit / Invitrogen; SEQ ID NO: 11
  • a sequencing kit Applied Biosystem
  • a sequencer ABS Biosystems
  • a primer shown in SEQ ID NO: 12 was synthesized (Proligo Co., Ltd.), and using the primer and the primer shown in SEQ ID NO: 10, the cDNA encoding the net human CbAP40 protein was synthesized as described above.
  • the plasmid obtained in (3) was amplified as a type I plasmid by PCR.
  • Each of these two types of DNA primers has a nucleotide sequence homologous to the partial sequence on the 5 ′ side or 3 side of the CbAP40 gene shown in SEQ ID NO: 1.
  • the PCR reaction was performed using 98 ° C (1 minute), 98 ° C (5 seconds), 55 ° C (30 seconds) and 72 ° C (5 minutes) using Pyrobest DNA Polymerase (Takara Shuzo). The cycle was repeated 35 times. As a result of separating the PCR products by agarose gel electrophoresis, it was confirmed that a DNA fragment of about 1.1 kbp was amplified. Therefore the same DNA fragment originating expression vector in the reaction solution (p C DNA3 1 / V5- His- TOP0;. Invitrogen) was supplicant cloned using T0P0 TA Cloning System (Invitrogen) to. Use this time The primer shown in SEQ ID NO: 10 was cloned into a vector-derived V5 epitope (cloned from the V protein of paramyxovirus SV5, Southern JA,
  • the 1101 base pair human CbAP40 cDNA encoding the net human CbAP40 protein shown in SEQ ID NO: 1 was converted to the above-described expression vector pcDNA3.1 / V5-His as DNA excluding the 3 'stop codon of the DNA sequence. -Confirmed that T0P0 has been purchased.
  • this expression plasmid is abbreviated as pcDNA-CbAP40.
  • the expression plasmid pcDNA-CbAP40 or empty vector (pcDNA3.1) (Invitrogen) prepared in Example 1 (4) described above was introduced into 293 cells. 293 cells were plated on a 6-well culture plate (35 mm in diameter) in 2 ml of 10% fetal bovine serum.
  • DMEM minimal essential medium DMEM (Gibco) containing (Sigma) was added, and the cells were cultured until they reached 70% confluence.
  • the cells were treated with pcDNA-CbAP40 (3.0 ⁇ g / well) by the calcium phosphate method (Graham et al., Virology, 52, 456, 1973; Naoko Arai, Gene Transfer and Expression / Analysis Methods 13-15, 1994). ) was transiently introduced. After culturing for 30 hours, the medium is removed, the cells are washed with a phosphate buffer solution (hereinafter abbreviated as PBS), and then 0.1 ml of a cell lysate (100 mM potassium phosphate (pH 7.8)) is used per well. ), 0.2% Triton X-loo) was applied to the cells to lyse the cells.
  • PBS phosphate buffer solution
  • Triton X-loo 0.2% Triton X-loo
  • a monoclonal antibody recognizing V5 epitope fused to the C-terminus of CbAP40 was used, and as a secondary antibody, a rabbit IgG-HRP fusion antibody (Bio-Rad) was used.
  • a CbAP40-V5-His6 fusion protein consisting of a total of 411 amino acids including a C-terminal tag consisting of 45 amino acids, and a protein of about 45 kDa, which depends on cell introduction of the expression vector pcDNA_CbAP40 It was confirmed that it was detected. This revealed that the above-mentioned human CbAP40 gene cloned in cultured cells certainly expressed the full-length region and could have a stable structure as a protein.
  • the pcDNA-CbAP40 prepared in Example 1 was used using the primers shown in SEQ ID NOS: 33 and 34.
  • a PCR reaction was performed as type III, and a DNA fragment was prepared by adding a restriction enzyme BamHI site to the 5 'end of the CbAP40 gene cDNA and a restriction enzyme Xhol site at the 3' end.
  • the PCR reaction was performed using DNA polymerase (Pyrobest DNA Polymerase; Takara Shuzo) at 98 ° C (1 minute), 98 ° C (5 seconds), 55 ° C (30 seconds), and 72 ° C (5 minutes). The cycle was repeated 35 times.
  • the DNA fragment was enzymatically treated with BamHI and Xhol, and recombined into the BamHI and Xhol sites of pGEX-6P-1 to obtain an expression plasmid pGEX-CbAP40.
  • GST protein a protein containing only the GST portion
  • GST protein a protein containing only the GST portion
  • GST protein was induced from E. coli BL21 transformed with pGEX-6P-1 and purified by the same method as described above.
  • These purified proteins are separated by SDS gel electrophoresis according to known methods, and purified to obtain the expected molecular weight proteins (GST-CbAP40; 67 kDa, GST protein; 26 kDa) by Coomassie Prilian Blue staining. Confirmed that.
  • the purified sample of the CbAP40 protein can be used for various purposes such as analysis of the interaction with C-Cbl and production of an antibody of the CbAP40 protein.
  • the GST-pull down method (Experimental Studies, Vol. 3, No. 6, 1994 528) was used to determine the presence or absence of direct interaction with the c-Cbl protein according to the method described in Example 9 (3) below. It can be confirmed by Shichigozo Pinematsu). More specifically, using the c-Cbl cDNA as type II, TNT kit (TNT R Quick Coupled Transcription / Trans1 ation System; Promega) and radioisotope
  • the PCR reaction uses Pyrobest DNA Polymerase (Takara Shuzo) at 98 ° C (1 ), A cycle of 98 ° C (5 seconds), 55 ° C (30 seconds), and 72 ° C (5 minutes) was repeated 35 times.
  • the resulting PCR product was separated by agarose gel electrophoresis, and as a result, a DNA fragment of about 1100 base pairs, which was considered to be the desired human CbAP40 gene, was amplified from one of the cDNA libraries derived from skeletal muscle and knee.
  • the nucleotide sequences of the DNA fragments were determined using the primers of SEQ ID NO: 12 according to the method described in Example 1 (4) above, and as a result, SEQ ID NO: 1 was confirmed to be the human CbAP40 gene shown in FIG. This indicates that the expression of the human CbAP40 gene is specifically controlled in very limited organs such as muscles and wrong muscles that respond to insulin signals.
  • Example 5 Measurement of CbAP40 Expression Level in Normal Mice and Diabetic Model Mice From the above findings, it was found that the human CbAP40 protein of the present invention binds to c_Cbl and is expressed in insulin-responsive tissues such as skeletal muscle. Since c-Cbl protein is a factor that acts on the insulin signal pathway 2, it was expected that the action of CbAP40 of the present invention would be related to insulin resistance. Therefore, the messenger RNA (mRNA) expression levels of the CbAP40 gene in the muscles of normal mice C57BL / 6J and m + / m + and type 2 diabetes model mouse KKA y / Ta and db / db were measured.
  • mRNA messenger RNA
  • the gene expression level was corrected by measuring the expression level of the mouse CbAP40 gene of the present invention and simultaneously measuring the expression level of the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) gene.
  • G3PDH glyceraldehyde 3-phosphate dehydrogenase
  • PRISM TM 7700 Sequence Detection System and SYBR Green PCR Master Mix were used.
  • the expression level of the target gene is determined by detecting and quantifying the amount of fluorescence of the SYBR Green I dye incorporated in the double-stranded DNA amplified by PCR in real time.
  • the measurement was performed according to the following procedure.
  • Reverse transcription from total RNA to single-stranded cDNA was performed using the reverse transcription reaction kit (Advantage TM RT-for-PCR Kit; Clontech), using 1 ⁇ g of each RNA prepared in (1). In a 20 ⁇ l system. After reverse transcription, 1801 of sterile water was added and stored at -20 ° C.
  • SEQ ID NO: 13-SEQ ID NO: 16 Four oligonucleotides (SEQ ID NO: 13-SEQ ID NO: 16) were designed as primers for PCR described in (4).
  • SEQ ID NO: 13 and SEQ ID NO: 14 were used, and for the G3PDH gene, a combination of SEQ ID NO: 15 and SEQ ID NO: 16 was used.
  • the expression level of the mouse CbAP40 gene in each sample was corrected with the expression level of the G3PDH gene based on the following equation.
  • FIG. 1 In the comparison of the expression level in muscle tissue, the relative level with the expression level of C57BL / 6J mouse being 1 is shown in FIG.
  • the figure shows the average soil SE.
  • the symbol “*” in the figure indicates the evaluation in the Dunnett test, which means that the significant difference is p ⁇ 0.05. ing.
  • the expression of the mouse CbAP40 gene of the present invention was found to be significantly increased in the muscle of a diabetic model mouse. It is also known that in humans, 75% of insulin-dependent sugar uptake into cells is performed in skeletal muscle. Therefore, CbAP40 of the present invention is considered to induce insulin resistance through enhanced expression in muscle, and it is concluded that CbAP40 is significantly involved in insulin resistance.
  • results of this example revealed that the measurement of the expression level of CbAP40 can diagnose a diabetic condition.
  • a human CbAP40 gene fragment was excised from the pcDNA-CbAP40 prepared in Example 1 using restriction enzymes ⁇ and Notl, and the vector pAdTrack-CMV (He T—C. Et al., Proc. Natl. Acad. Sci. USA., 95, 2509-2514, 1998).
  • the human CbAP40 gene was subcloned (hereinafter, pAdTrack-CMV_CbAP40).
  • pAdTrack-CMV_CbAP40 was recombined adenovirus vector P AdEasy_l in E. coli was digested with this restriction enzyme Pmel.
  • the occurrence of the recombination was confirmed by the Pad digestion with restriction enzyme and agarose gel electrophoresis, which revealed a 4.5 kb gene fragment.
  • the recombinant virus vector was prepared, digested with the restriction enzyme Pacl to form a single strand, and then transfected into 293 cells using Ribofectamine 2000 reagent (Invitrogen).
  • the human CbAP40-high expressing virus was grown in large amounts in 293 cells and purified by density gradient centrifugation using the following salt and used in experiments.
  • 293 cells infected with the human CbAP40 high expression virus were detached from a collagen-coated dish using a scraper, and collected by centrifugation at 1500 rpm for 5 minutes. After removing the medium, the 293 cells were suspended in PBS, and a process consisting of three steps of freezing using dry ice ethanol, thawing using a 37 ° C water bath, and vigorous suspension was repeated four times. By this operation, the virus multiplied in the cell comes out of the cell. The cell suspension was centrifuged at 1500 rpm for 5 minutes, and the supernatant fraction was collected.
  • a solution containing 43.9 g of NaCl, 3.7 g of KC1, 30.3 g of Tris, and 1.42 g of Na2HP04 per liter was prepared at a pH of 7.4 with HC1, and cesium chloride was dissolved therein.
  • cesium chloride solutions having densities of 1.339, 1.368, and 1.377 were prepared.
  • a cesium chloride solution with a density of 1.377 was overlaid on a cesium chloride solution with a density of 377, and the virus supernatant fraction collected earlier was further overlaid on the cesium chloride solution with a density of 1.339, using a Beckman SW41 rotor for 35,000. Ultracentrifuged at rpm for 1.5 hours.
  • the band at the bottom contained the virus, which was collected with an 18-gauge syringe.
  • This virus fraction was overlaid on a cesium chloride solution with a density of 1.368, and ultracentrifuged again at 35,000 rpm for 18 hours.
  • the virus was collected with an 18-gauge syringe, transferred to a dialysis tube, and dialyzed with a dialysate (10 mM Tris-HCl, 1 mM MgC12, 135 mM NaCl pH 7.5).
  • L6 cells are suspended in ⁇ minimum essential medium (a MEM, Invitrogen) containing 10% fetal calf serum (FCS) and placed in a collagen-coated 24-well plate (Asahi Techno Glass Co., Ltd.) at 1.6 ⁇ 10 5 cells / So that it became a hole. The next day, the medium was replaced with ⁇ MEM containing 2% FCS to induce differentiation of L6 cells into muscle, and three days later, the medium was replaced with 400 ⁇ l of the same medium. The next day, 1.6 x 10 1 human CbAP40-expressing adenovirus was added per well. It was added to the medium at the concentration of pfu. As a control was used adenovirus expressing only the e GFP.
  • MEM fetal calf serum
  • PCR conditions were 98 ° C (5 minutes), followed by 35 cycles of 96 ° C (30 seconds), 55 ° C (30 seconds), and 72 ° C (90 seconds). Then, the mixture was heated for 7 minutes at 72.
  • a polynucleotide of about 3.1 kbp was successfully amplified.
  • the DNA fragment obtained by this PCR was treated with restriction enzymes Xhol and BaraHI (Takara Shuzo) and ligated to a luciferase reporter vector (pGL3-Basic vector; Promega) similarly treated with restriction enzymes Xhol and Bglll.
  • CbAP40 gene promotion Over consolidated reporter vector (pGL3- CbAP40p) was constructed.
  • the 3.1 kbp polynucleotide inserted into the PGL3-CbAP40p was obtained by combining the primers shown in SEQ ID NOs: 17 and 18 and the DNA primers shown in SEQ ID NOs: 19 and 20 that bind before and after the multiple cloning site of the pGL3-Basic vector. (Proligo) was used to partially determine the nucleotide sequence. Further, the full-length nucleotide sequence of the polynucleotide was determined using four types of DNA primers (Proligo) shown in SEQ ID NOS: 21, 22, 23 and 24 designed based on the determined nucleotide sequence information. As a result, it was revealed that the polynucleotide was a 3119 bp polynucleotide shown in SEQ ID NO: 3.
  • the above-mentioned pGL3_CbAP40p was treated with the restriction enzyme Hindlll.Then, the plasmid was ligated by a ligation reaction, and the sequence from nucleotides 1231 to 3119 from the polynucleotide shown in SEQ ID NO: 3 was obtained. The removed plasmid pGL3-CbAP40p [1-1231] was produced.
  • pGL3-CbAP40p was treated with restriction enzymes Smal and Hindlll to cut out a DNA fragment corresponding to nucleotides 1364 to 3119 of the polynucleotide shown in SEQ ID NO: 3, and the fragment was treated with restriction enzymes Smal and Hindlll to obtain pGL3_Basic.
  • the vector was ligated to create pGL3_CbAP40p [1364-3119].
  • pGL3-CbAP40p was subjected to a PCR reaction under the same conditions as those described in Example 7 (1) above using p-type as type III.
  • DNA fragment containing bases 2125 to 3119 and a DNA fragment containing bases 2569 to 3119 of the polynucleotide shown in SEQ ID NO: 3 were extracted. These DNA fragments were treated with restriction enzymes Sacl and BamHI, respectively, ligated to pGL3-Basic vector similarly treated with restriction enzymes Sacl and Bglll, and pGL3-CbAP40p [2125_3119] and pGL3-CbAP40p [2569-3119] ] was constructed respectively.
  • pGL3-CbAP40p [1-1231], pGL3-CbAP40p [1364-3119], pGL3-CbAP40p [2125-3119] and pGL3-CbAP40p [2569-3119] are all DNA plasmids represented by SEQ ID NOS: 19 and 20 described above.
  • the nucleotide sequence of the imported sequence was determined using the immobilizer. As a result, it was confirmed that each of the plasmids had a partial fragment of the polynucleotide shown in SEQ ID NO: 3 and contained a nucleotide sequence portion of the polynucleotide corresponding to the numerical value shown in parentheses of each plasmid name.
  • the cells were transiently transfected with the pGL3-CbAP40p or pGL3-Basic Vector (0.8 g / well) using the ribofectamine method (LIP0FECTAMINE TM 2000; Invitrogen Corporation) according to the attached protocol. Transfected. Pioglitazone (pioglitazone, (+) -5- [4- [2- (5-ethyl-2-pyridinyl) ethoxy] benzyl] -2,4-thiazolidinedione) 0.
  • ⁇ ⁇ ⁇ or 1.0 ⁇ ⁇ Alternatively, add 10 ⁇ l to the medium, incubate for 24 hours, remove the medium, wash the cells with PBS, and wash 0.1 ml of cell lysate per well (100 mM potassium phosphate ( ⁇ 7.8), The cells were lysed by adding 0.2% Triton X-100). Pioglitazone was synthesized according to the method described in Japanese Patent No. 1853588. 100 ⁇ l of this cell lysate is added to Luciferase substrate solution ⁇ , ⁇ (Pikki Gene) Was added, and the amount of luminescence for 10 seconds was measured using an AB-2100 type chemiluminescence measurement device (Atokasha).
  • Plasmid p CHllO (Amersham Pharmacy Biotech) with the -galatatosidase expression gene at the same time as the luciferase reporter gene ⁇ Co-transfer the ⁇ g nowell to the cells, and a ⁇ -galactosidase activity detection kit Using a Galacto-Light Plus TM system (Applied Biosystems),] 3-galactosidase activity was measured and numerically determined. The above-mentioned luciferase activity was corrected for each well as the transgene efficiency of the transgene.
  • Fig. 4 shows the results.
  • the figure shows the average soil SE.
  • Significant promoter activity dependent on the presence of the upstream sequence of the human CbAP40 gene was confirmed. Furthermore, it was revealed that this promoter activity was suppressed by adding 0.1-10 ⁇ M of pioglitazone, a thiazolidine derivative, which is an insulin sensitizer.
  • the same experiment was performed by replacing pGL3-CbAP40p with pGL3-CbAP40p [1-1231], pGL3-CbAP40p [1364-3119], pGL3-CbAP40p [2125-3119], or pGL3-CbAP40p [2569- 3119].
  • promoter activity was detected, and the activity was suppressed by piodaritazone.
  • pGL3_CbAP40p [2569-3119] was used, one activity of the promoter was detected, but the inhibitory effect of pioglitazone was not observed.
  • pGL3-CbAP40p [l-1231] was used, no promoter activity was detected. Therefore, it was found that the expression of the promoter activity should include the nucleotide sequence at positions 2125 to 3119 of the polynucleotide of SEQ ID NO: 3.
  • SEQ ID NO: 3 a polynucleotide consisting of the nucleotide sequence represented by nucleotides 1364 to 3119 and 2125 to 3119 of the nucleotide sequence represented by SEQ ID NO: 3 has a promoter sequence that controls human CbAP40 expression. It has been shown that this promoter is negatively regulated by PPARy ligands such as pioglitazone that reduce insulin resistance.
  • the human Atsushi of human CbAP40 in this example can be used to screen for a PPARy ligand or an insulin sensitizer without using the PPARy protein or its response element.
  • the inhibitory effect of pioglitazone on the promoter activity is caused by the presence of the nucleotide sequence of Nos. 2125 to 2569 of SEQ ID NO: 3, as described above, the polynucleotide containing this sequence portion was converted to a polynucleotide other than CbAP40. Placing the gene upstream of a minimal length promoter sequence containing the TATA box required for transcriptional induction also allows PPAR7 ligand or insulin resistance without using the PPARy protein or its response element. It can be used to screen improving drugs.
  • Compounds obtained by this screening method may include those having structural characteristics different from typical PPAR y ligands such as thiazolidine derivatives obtained by a conventional PPAR y protein-mediated screening method. That is, it is possible to obtain a type 2 diabetes mellitus ameliorating agent which does not have side effects such as edema and an increase in fat weight observed in the thiazolidine derivative.
  • the nucleotide sequence of the resulting DNA fragment of about 1.4 kbp was determined in the same manner as in Example 1, and it was found that the full-length cDNA of the gene consisting of 1404 bp shown in SEQ ID NO: 25 was included. It was confirmed.
  • the cDNA is a novel gene encoding the polypeptide shown in SEQ ID NO: 26.
  • GenBank Marauder_172708 and AK044445 have a partially identical sequence to the novel gene, but have a different 3 ′ end of the cDNA, and the encoded polypeptide has a carboxyl-terminal length and sequence that is completely different. Different Molecule.
  • the novel gene has almost the same C-terminal structure as human CbAP40, and 75.6% of the human CbAP40 gene shown in SEQ ID NO: 1, and the encoded polypeptide is human CbAP40 shown in SEQ ID NO: 2.
  • mice CbAP40cDNA was cloned into pcDNA3.1-V5-T0P0 (Invitoguchi Gen) by the same method as described in Example 1 (4) above.
  • PCR and vector recloning were performed using the primers shown in SEQ ID NOS: 29 and 27.
  • the produced expression vector was named pcDNA-mCbAP40.
  • mice CbAP40-V5-His6 fusion protein consisting of a total of 512 amino acids including the C-terminal tag consisting of 45 amino acids, and a protein of about 60 kDa, which depends on the cell transfer of the expression vector pcDNA-mCbAP40, was determined. It was confirmed that it was detected. This revealed that the mouse CbAP40 cloned in cultured cells certainly expressed the full-length region of the gene and could have a stable structure as a protein.
  • the mouse C-Cbl cDNA obtained in Example 1 (1) was DNA oligo primers represented by SEQ ID NOs: 30 and 31 (Proligo The restriction enzyme EcoRV site and Xhol site were added to both ends of the cDNA at both ends by PCR reaction using E. coli. The PCR reaction was performed under the conditions described in Example 1 (1). This cDNA fragment was cut with the restriction enzymes EcoRV and Xhol, and the vector pGEX-6P-1 was cut with the restriction enzymes Smal and Xhol, respectively, to make it linear.
  • pGEX_Cbl DNA ligase solution
  • SEQ ID NO: 32 a nucleotide sequence was determined using a sequencing kit (Applied Biosystems) and a sequencer (ABI 3700 DNA sequencer Applied Biosystems), and the c-Cbl cDNA was determined. The one in which the coding region and the pGEX solid GST tag translation frame were inserted in agreement was selected.
  • GST-Cbl was purified in the same manner as in Example 3 using the plasmid pGEX_Cbl obtained in (1) above.
  • a protein containing only the GST portion (hereinafter abbreviated as GST protein) was induced from E. coli BL21 transformed with pGEX-6P-1 and purified in the same manner as described above. Separation by SDS polyatarylamide gel electrophoresis and Coomassie brilliant blue staining were performed according to a known method, and a protein having the expected molecular weight (GST-Cbl; 100 kDa, GST protein; 26 kDa) was detected. It was confirmed that it had been purified.
  • Radioisotope-labeled human or mouse CbAP40 protein was prepared by transcription and translation in vitro. This human or mouse CbAP40 protein preparation solution (15 ⁇ 1) and GST protein purified on daltathione beads as described in (2) above were used. Alternatively, mix each or 1 ⁇ g of GST-Cbl with 0.3 ml of Buffer A (50 mM Tris-HCl).
  • CbAP40 is a new novel molecule related to insulin signal.
  • the polypeptide, polynucleotide, expression vector and cell of the present invention are useful for identifying and improving type 2 diabetes ameliorating drugs, particularly insulin sensitizing drugs or glucose metabolism improving drugs. ⁇ Useful for screen jing. By the screening method of the present invention, a type 2 diabetes ameliorating drug can be screened. Further, the polypeptide of the present invention and a polynucleotide encoding the polypeptide are useful for diagnosing diabetes. , Sequence Listing Free Text

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Rehabilitation Therapy (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、2型糖尿病改善薬のスクリーニング方法を提供する。c-Cblに結合する蛋白質CbAP40を見出した。マウスCbAP40遺伝子は糖尿病モデルマウスの筋肉において正常個体より発現量が顕著に増加していること、ヒトCbAP40遺伝子を筋肉由来細胞に高発現させると糖の取り込みが阻害されることを明らかにし、同蛋白質が糖尿病態の原因因子であることを見出した。さらにヒトCbAP40遺伝子のプロモーター領域を同定し、該プロモーター由来の転写誘導活性がインスリン抵抗性を改善するチアゾリジン誘導体により抑制されることを明らかにした。これをもとに該プロモーター活性及びc-CblとCbAP40との相互作用の変化を指標としたインスリン抵抗性改善効果を有する物質のスクリーニング系を構築した。

Description

糖尿病改善薬のスクリーニングに利用できる新規蛋白質 技術分野
本発明は、 2型糖尿病改善薬のスクリーニング方法に関する。 C- Cblに結合す る新規なポリぺプチド及び該ポリぺプチドをコ ドするポリヌクレオチドに関す 書一
る。 また該ポリペプチドの発現量を制御するプロモーター、 前記ポリヌクレオチ ド又は該プロモーターを含有する発現べクター、 該発現ベクターを含有する形質 転換細胞に関する。 さらに、 前記ポリペプチド、 プロモーター、 発現ベクター及 び/又は形質転換細胞の 2型糖尿病改善薬スクリーニングのための使用に関する。 背景技術
インスリンは勝臓ランゲルハンス島の ]3細胞より分泌され、 主に筋肉、 肝臓、 脂肪に作用して血中の糖を細胞に取り込ませて貯蔵、消費させることにより血糖 値を降下させる。 糖尿病は、 このインスリンの作用不足から引き起こされるが、 患者にはィンスリ'ンの生産又は分泌に障害をもつ 1型と、 インスリンによる糖代 鶴す促進が起こりにくくなる 2型の 2つのタイプが存在する。いずれの患者でも血糖 値が健常人より高くなるが、 1型では血中インスリンが絶対的に不足するのに対し て、 2型ではインスリンの存在にもかかわらず血糖の細胞における取り込み又は 消費が促進されないィンスリン抵抗性が生じている。 2型糖尿病は遺伝的素因に 加えて過食や運動不足、 ストレスなどが原因となり惹起されるいわゆる生活習慣 病である。 今日先進諸国では摂取カロリーの増大に伴いこの 2型糖尿病患者が急 激に増加しており、 日本では糖尿病患者の 95%を占めている。 そのため糖尿病の 治療薬には単純な血糖降下剤のみでなく、 インスリン抵抗性の改善により糖代謝 を促進する 2型糖尿病の治療を対象とした研究の必要性が増大している。
現在 1型糖尿病患者の治療にはィンスリン注射製剤が処方されている。 一方、 2型糖尿病患者に処方される血糖降下剤としては、 インスリン注射製剤に加えて 膨臓の β細胞に作用してィンスリンの分泌を促すスルホニル尿素系血糖降下剤
(SU剤) や、 嫌気的解糖作用による糖利用の増大や糖新生の抑制、 及び糖の腸管 吸収を抑制する作用を持つビグアナィド系血糖降下剤の他、 糖質の消化吸収を遅 らせる α _ダルコシダーゼ阻害剤が知られている。 これらは間接的にィンスリン 抵抗性を改善するが、近年より直接的にインスリン抵抗性を改善する薬剤として チアゾリジン誘導体が使われるようになった。その作用は細胞内への糠の取り込 みと細胞内における糖利用の促進である。 このチアゾリジン誘導体はペルォキシ ソーム増殖剤 j心答性受容体ガンマ (peroxisome proliferator activated
receptor :PPAR y )のァゴニストとして作用することが示されている(非特許文献 1参照)。 しかしチアゾリジン誘導体はィンスリン抵抗性を改善するのみでなく、 浮腫を惹起する副作用が知られている(非特許文献 2 - 3参照)。この浮腫の惹起は 心肥大をもたらす重篤な副作用なので、 インスリン抵抗性改善のために、 PPAR y にかわるより有用な創薬標的分子が求められている。
インスリン作用のシグナルは細胞膜上にあるィンスリン受容体を介して細胞内 へ伝達される。このインスリンの作用経路には第一と第二の 2経路が存在する。
(非特許文献 4参照) 。 第一経路においては、 活性ィヒされたインスリン受容体か ら IRS-1及び IRS- 2、 PI3キナーゼ、 PDK1を介して Aktl (PKB α )又は Akt2 (PKB j3 ) 、 或いは PKCえ又は PKC へ順次シグナルが伝達され、その結果として細胞内に存在 するグルコーストランスポーター GLUT4を細胞膜上へ移行させることにより、 細 胞外からの糖の取り込みを促進する(非特許文献 5参照)。一方、 第二経路ではィ ンスリン受容体から C- Cbl及び CAPを介して CrK II、 C3G、 及ぴ TC10へ順次.シグナ ルが伝達され、結果 GLUT4による糖の取り込みを促進する (非特許文献 6参照)。 し力 し、 これらィンスリンシグナル伝達経路の詳細についてはいまだ不明な部分 が多く、特にこれらのシグナルが最終的にどのような機構を経てグルコーストラ ンスポーターを介した細胞の糖取り込みを促進するのか明らかではない。
c - Cblはィンスリンシグナル第二経路上に存在するシグナル伝達仲介因子であ り、 プロリンに富む 120 k Daの細胞質蛋白質である。 C- Cblはィンスリン刺激によ つて一過性にチロシンがリン酸化され、 SH2、 SH3を有する種々のシグナル伝達分 . 子と会合する。 例えばィンスリンシグナル第二経路に存在するアダプタータンパ ク質で、 インスリン感受性組織である肝臓、 骨格筋、 腎臓や心臓で強く発現して いる(非特許文献 7参照) CAP (Cbl associated protein) は、 その C末端側にあ る SH3ドメインを介して C- Cblと結合する。 この CAPん- Cbl複合体はィンスリンシ グナルに応答して Crk II-C3G複合体及び、 TC10を介してグルコーストランスポー ター GLUT4の細胞膜への移行を促進する。 c - Cblとの結合ドメィンである SH3を欠損 させた CAPは、 PI3キナーゼ活性には影響は与えないが、 細胞の糖取り込みを阻害 することが報告されている(非特許文献 8参照)。 また CAPの発現はインスリン抵 抗性を改善する PPAR vのァゴニストであるチアゾリジン誘導体によって亢進する ことが知られている。 これらの事実から、 c_Cblは CAPとの結合を通じて細胞内へ の糖取り込みに働くシグナル伝達仲介因子であり、その機能阻害は CAPから下流の インスリンシグナルを遮断してインスリン抵抗性を引き起こすと考えられている (非特許文献 9参照)。したがってィンスリン抵抗性が見られる 2型糖尿病患者の細 胞内では何らかの機序により C- Cblを介したィンスリンシグナル伝達が阻害され ていると考えられている (非特許文献 9参照) 。 しかしこれまで C- Cblと直接相 互作用してィンスリンシグナル伝達に関わる活·生を負に調節する分子はこれまで に知られていなかった。
(非特許文献 1 ) 「ザ · ジャーナル ·オフ、、 ·バイオロジカノレ 'ケミストリー (The Journal of Biological Chemistry) J 、 (米国) 、 1995年、 第 270卷、 p. 12953 - 12956
(非特許文献 2 ) 「ダイアビーテイーズ フロンティア (Diabetes Frontier) 」 、
(米国) 、 1999年、 第 10卷、 p. 811-818
(非特許文献 3 ) 「ダイアビーテイーズ フロンティア (Diabetes Frontier) 」 、
(米国) 、 1999年、 第 10卷、 p. 819- 824
(非特許文献 4 ) 「ザ · ジャーナル ·ォプ · クリ二カル ·ィンべスティゲーショ ン (The Journal of Clinical Investigation) 」 、 (米国) 、 2000年、 第 106卷、 第 2号、 p. 165-169
(非特許文献 5 ) 「ザ'ジャーナル ·ォプ ·パイォロジカル 'ケミストリー (The Journal of Biological Chemistry) J 、 (米国) 、 1999年、 第 274卷、 第 4号、 p. 1865-1868
(非特許文献 6 ) 「ネイチヤー (Nature)」、 (英国)、 2001年、 第 410卷、 第 6831号、 p. 944-948 ' '
(非特許文献 7 ) 「モレキュラー 'アンド ·セルラー 'バイオロジー (Molecular and Cellular Biology) J (米国) 、 1998年、 第 18卷、 第 2号、 p. 872-879
(非特許文献 8 ) 「ザ ' ジャーナル ·ォブ '·バイオロジカル 'ケミストリー (The Journal of Biological Chemistry) J 、 (米国) 、 2001年、 第 276卷、 第 9号、 p. 6065-6068
(非特許文献 9 ) 「ザ · ジャーナル ·ォブ ·パイォロジカル · ケミストリー (The Journal of Biological Chemistry) J 、 (米国) 、 2000年、 第 275卷、 第 13号、 p. 9131-9135 発明の開示 .
本発明の目的は、 2型糖尿病改善薬のスクリ一二ング方法を提供することであ る。
本発明者らは、 c-Cblに結合する蛋白質を酵母ツーハイプリッドシステムによ り同定した。 その結果、 c- Cblに結合する蛋白質ヒト CbAP40 (Cbl associated protein 40) を見出し、 加えて、 該蛋白質をコードする遺伝子の発現がインスリ ン応答組織の一つである骨格筋に偏在していることを明らかにした。 また、 マウ ス CbAP40遺伝子及ぴ蛋白質を取得し、 c_Cblと結合することを明らカにした。 さ らにマウス CbAP40遺伝子は糖尿病モデルマウスの筋肉において正常個体より発 現量が顕著に増加していること、 ヒト CbAP40遺伝子を筋肉由来細胞に高発現さ せると糖の取り込みが阻害されることを明らかにし、該蛋白質が糖尿病態の原因 因子であることを見出し、 新たな 2型糖尿病改善薬スクリ一二ングツールを提供 した。 さらにヒト CbAP40遺伝子のプロモーター領域を同定し、該プロモーター由 来の転写誘導活性がィンスリン抵抗性を改善することが知られているチアゾリジ ン誘導体により抑制されることを明らかにした。 これらの知見から、 CbAP40プロ モーター由来の転写誘導活性を抑制することによりインスリン抵抗性改善効果が 得られることを明らかにした。 これらの知見をもとに上記プロモータ一活性を指 標とした 2型糖尿病治療効果を有する物質のスクリーニング系を構築した。 すなわち本発明は、 以下のスクリーニング方法、 ポリペプチド、 ポリヌクレオ チド、 該ポリヌクレオチドを含む発現ベクター、 該発現べクタ一で形質転換され た細胞、 並びにそれらの用途に関する。
〔1〕 ( 1 ) (i) 配列番号 3で表される塩基配列、 (i i) 配列番号 3で表され る塩基配列の第 1364〜3119番で表される塩基配列、 又は (iii) 配列番号 3で表 される塩基配列の第 2125〜3119番で表される塩基配列からなるポリヌクレオチ ド、 あるいは (iv) 前記 (i) 〜 (ii i) で表される塩基配列において、 1〜10個 の塩基が欠失、 置換、 及ぴ Z又は挿入された塩基配列を含み、 配列番号 2若しく は配列番号 26で表されるァミノ酸配列からなるポリぺプチドのプロモーター活 性を有するポリヌクレオチド
を含む発現ベクターで形質転換された細胞と試験物質とを接触させる工程、 及び
( 2 ) プロモーター活性を検出する工程
を含む、 試験物質が前賈己(i)乃至(iv)のポリヌクレオチドのプロモーター活性を 阻害するか否かを分析する方法。
〔2〕 〔1〕 に記載の方法による分析工程、 及ぴ
プ口モータ'一活性を阻害する物質を選択する工程
を含む、 請求の範囲 1に記載のポリぺプチドの発現を抑制する物質をスタリー二 ングする方法。
〔3〕 〔2〕'に記載の方法により 2型糖尿病改善薬をスクリーニングする方法。 〔4〕 ( 1 ) 配列番号 3で表される塩基配列、 (2 ) 配列番号 3で表される塩基 配列の第 1364〜3119番で表される塩基配列、 又は (3 ) 配列番号 3で表される 塩基配列の第 2125〜3119番で表される塩基配列からなるポリヌクレオチド、 あ るいは (4 ) 前記 (1 ) 〜 (3 ) で表される塩基配列において、 1〜10個の塩基 が欠失、 置換、 挿入、 及ぴズ又は付カ卩された塩基配列からなり、 〔1〕 に記載の ポリべプチドのプロモーター活性を有するポリヌクレオチド。
〔5〕 ( 1 ) 配列番号 2又は配列番号 26で表されるアミノ酸配列、 (2 ) 配列 番号 2又は配列番号 26で表されるァミノ酸配列において、 1〜: L0個のアミノ酸が 欠失、 置換、 及ぴ Z若しくは挿入されたアミノ酸配列、 あるいは (3 ) 配列番号
2又は配列番号 26で表されるァミノ酸配列との相同性が 90%以上であるアミノ 酸配列を含み、 かつ c- Cblと結合及び Z若しくは過剰発現により糖取り込みを阻 害するポリペプチドと c - Cblと試験物質とを接触させる工程、 及び
前記ポリペプチドと c - Cblとの結合を検出する工程
を含む、試験物質が前記結合を阻害するか否かを分析する方法。
〔6〕 〔5〕 に記載の方法による分析工程、 及び .
,結合を阻害する物質を選択する工程
を含む、 〔5〕 に記載のポリペプチドと C- Cblとの結合阻害物質をスクリーニン グする方法。
〔7〕 〔6〕 に記載の方法により 2型糖尿病改善薬をスクリーニングする方法。 〔 8〕 配列番号 2又は配列番号 26で表されるァミノ酸配列、 あるいは配列番号 2 又は配列番号 26で表されるアミノ酸配列において、, 1〜10個のアミノ酸が欠失、 置換、 及び Z若しくは挿入されたアミノ酸配列を含み、 ^つ c-Cblと結合及び Z 若しくは過剰発現により糖取り込みを阻害するポリぺプチド。
〔 9〕 配列番号 2若しくは配列番号 26で表されるァミノ酸配列からなるポリべ プチド。
〔1 0〕 配列番号 26で表されるァミノ酸配列からなるポリぺプチド
又は配列番号 26で表されるアミノ酸配列において 1〜10個のアミノ酸が欠失、 置換、 揷入及び Z若しくは付加されたァミノ酸配列からなり、 かつ c - Cblと結合 及び Z若しくは過剰発現により糖取り込みを阻害するポリぺプチドをコードする ポリヌクレオチド。
〔1 1〕 〔4〕 又は 〔1 0〕 に記載のポリヌクレオチドを含む発現ベクター。 〔1 2〕 〔1 1〕 に記載の発現べクタ一で形質転換された細胞。
〔1 3〕 ( 1 ) 〔8〕 に記載のポリペプチド、 (2 ) 〔8〕 に記載のポリべプチ ドをコードするポリヌクレオチド又は 〔1〕 の(i)乃至(iv)に記載のポリヌクレ ォチド、 あるいは (3 ) 〔8〕 のポリペプチドをコードするポリヌクレオチド又 は 〔1〕 の(i)乃至(iv)に記載のポリヌクレオチドを含む発現ベクターで形質転 換された細胞からなる 2型糖尿病改善薬スクリーニングツール。 〔1 4〕 ( 1 > 〔8〕 に記載のポリペプチド、 (2 ) 〔8〕 に記載のポリべプチ ドをコードするポリヌクレオチド又は 〔1〕 の(i)乃至(iv)に記載のポリヌクレ ォチド、 あるいは ( 3 ) 〔8〕 のポリべプチドをコードするポリヌクレオチド又 は 〔 1〕 の(i)乃至(iv)に記載のポリヌクレオチドを含む発現べクターで形質転 換された細胞の 2型糖尿病改善薬スクリ一ユングのための使用。
〔3〕 又は 〔7〕 記載の 2型糖尿病改善薬をスクリーニングする方法は、 2型 糖尿病改善作用分析工程を更に含むことがより好ましい。
本発明のスクリ一ユング方法で得られる 2型糖尿病改善薬は、 特にィンスリン 抵抗性改善薬及び Z又は糖代謝改善薬として好ましい。 また、 本発明の 2型糖尿 病改善薬スクリ一二ングツールは、 特にィンスリン抵抗性改善薬及び/又は糠代 謝改善薬のスクリーニングツールとして好ましい。
配列番号 26に記載の配列からなる本発明のポリぺプチドと同一の配列は知られ ていない。 本願優先日 (2003年 8月 8日) 以前に、 配列データベース GenPeptに、 ァクセッション番号 AK091037として、 本発明のポリべプチドの一つの配列である 配列番号 2で表されるァミノ酸配列と同一配列が、 また本願優先日 (2004年 1月 6 日) 以前に、 配列データベース GenPeptに、 ァクセッション番号 AK044445として、 本発明のポリぺプチドの一つの配列である配列番号 26で表されるアミノ酸配列に おいて、 4個のアミノ酸が置換され、 103個のアミノ酸が付加されたアミノ酸配列 が収載されている。 し力 しながら、 実際にこれらポリペプチドを取得したとの情 報はおろか、 どのように取得できるかの具体的情報もない。 また、 当該ポリぺプ チドの具体的用途についても記載されていない。 ァクセッション番号 AK044445は データベース上にポリぺプチドの配列が推定上の (putative)ものであると記载 されている。 本発明者らは本発明のポリペプチドを初めて製造し、 本発明のポリ ぺプチドの発現亢進及ぴ c - Cblとの相互作用が糖尿病病態の原因であることを初 めて明らかにした。 また、 本発明のポリペプチドと c - Cblとの結合を利用した本 発明のスクリーニング方法は本発明者らによつて初めて提供された方法である。 本願優先日前に、 配列データベース GenBankに、 ァクセッション番号 AL590235 として、 配列番号 3で表される 3119塩基の塩基配列のうち 1個の塩基が置換された 配列を一部に含む 159246塩基からなる配列が収载されているが、 配列が開示され たにすぎず、'その具体的用途については記載されていない。 本発明.の配列番号 3 で表される塩基配列、 配列番号 3で表される塩基配列の第 1364〜3119番で表され る塩基配列、 又は配列番号 3で表される塩基配列の第 2125〜さ 119番で表される塩 基配列からなるポリヌクレオチドと同一のポリヌクレオチドは知られておらず、 本発明のポリヌクレオチドのプロモーター活性を指標とした本発明のスクリー^ ング方法は本発明者らによって初めて提供された方法である。
図面の簡単な説明
図 1は、 培養細胞におけるヒト CbAP40の発現を示す図面である。レーン 1は空 ベクターを、 レーン 2は pcDNA-CbAP40を導入した場合を示している。 レーン 3 は分子量マーカーを示している。
図 2は、 正常マゥス C57BL/6Jと m+/m+、 および 2型糖尿病モデルマゥス KKAVTaと db/dbの筋肉組織における CbAP40遺伝子発現量を比較した図である。 図の縦軸はマウス筋肉における相対発現量を示す。 C57BL/6Jにおける発現量を 1 として表示している。
図 3は、 CbAP40を過剰発現させた筋肉細胞における糖取り込み量を示す図であ る。 図の縦軸は 2-デォキシ- D -グルコースの取り込み量 (cpm) を示す。 図の横軸 は測定時における培地中のィンスリン濃度を示す。 黒塗りのバーは CbAP40を高 発現させた筋肉細胞、 白塗りのバーはコントロールウィルスを感染させた筋肉細 胞における結果を示す。
図 4は、 CbAP40プロモーターの転写誘導活 14およびピオグリタゾンによるその 抑制作用を示す図である。 図の縦軸の数値は、 ルシフヱラーゼ活性を示す。 図の 横軸の数値は、 ピオグリタゾンの濃度 ¾1) を示す。
発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
く本発明のポリぺプチド >
差替え用弒(規則 26) 本発明のポリぺプチドには、
( 1 ) 配列番号 2で表されるァミノ酸配列からなるポリぺプチド;及ぴ
( 2 ) 配列番号 2で表されるアミノ酸配列
あるいは配列番号 2で表されるアミノ酸配列において、 1〜10個(好ましくは 1〜 7個、より好ましくは 1〜5個、更に好ましくは 1〜3個)のァミノ酸が欠失、 置換、 及び Z若しくは揷入されたァミノ酸配列 '
を含み、 かつ c_Cblに結合及び/又は過剰発現により糖取り込みを阻害する (好 ましくは C- Cblに結合及び過剰発現により糖取り込みを阻害する) ポリぺプチド (以下、 ヒト機能的等価改変体と称する) ;
( 3 ) 配列番号 26で表されるァミノ酸配列からなるポリぺプチド;及ぴ
( 4 ) 配列番号 26で表されるァミノ酸配列
あるいは配列番号 26で表されるアミノ酸配列において、 1〜10個(好ましくは 1 〜7個、より好ましくは 1〜5個、更に好ましくは 1〜3個)のァミノ酸が欠失、 置換、 及び/若しくは揷入されたアミノ酸配列
を含み、 かつ c- Cblに結合及び/又は過剰発現により糖取り込みを阻害する (好 ましくは c- Cblに結合及び過剰発現により糖取り込みを阻害する) ポリぺプチド
(以下、 マウス機能的等価改変体と称する) ;
が含まれる。
また、 本発明のヒト又はマウス機能的等価改変体の起源はヒト又はマウスに限 定されない。 例えば、 配列番号 2又は配列番号 26で表されるァミノ酸配列のヒ ト又はマウスにおける変異体が含まれるだけでなく、 前述の (1) 乃至 (4) のい ずれかに該当する限り、 ヒト又はマウス以外の他の脊椎動物 (例えばラット、ゥ サギ、 ゥマ、 ヒッジ、ィヌ、 サル、 ネコ、クマ、 ブタ、 ニヮトリなど) 由来のもの も含まれる。 更には、 前述の (1) 乃至 (4) のいずれかに該当する限り、 天然ポ リぺプチドに限定されず、 配列番号 2又は配列番号 26で表されるァミノ酸配列 を元にして遺伝子工学的に人為的に改変したポリべプチドも含まれるが、 天然ポ リぺプチド、 特には脊椎動物由来のポリぺプチドがより好ましい。
「c_Cblに結合する」 とは、 c- Cbl (好ましくは GenBankのァクセッション番号 X57111によりコードされるポリペプチド) にポリペプチドが結合することを意味 しており、 「結合する」 か否かは以下の方法により確認することができる。 ' 結合するか否かの検討対象ポリぺプチドの一部若しくは全長域、 または GSTや Flag, Hisなどのタグを融合させた検討対象ポリべプチドの一部若しくは全長域 を細胞に発現させる。 前記細胞としてはィンスリンに応答する細胞が好ましく、 より具体的には脂肪細胞、 肝細胞、 あるいは骨格筋由来細胞が好ましい。 前記細 胞から抗 C- Cbl抗体を用いた免疫沈降により c-Cbl蛋白質とそこに結合する蛋白 質を濃縮することができる。 得られた c_Cblおよびその結合蛋白質の濃縮液を公 知の方法によりポリアクリルアミドゲル電気泳動法により分離し、抗体を用いた ウェスタンブロティングにより検討対象のポリぺプチドが C- Cblに結合するか否 かを確認することができる。 ここで用いる抗体は、 検討対象のポリペプチド若し くはその部分配列をもとに作製した検討対象のポリぺプチドに対する抗体、また は上記タグを認識する抗体を利用することができる。
また検討対象のポリペプチドを発現させた細胞の抽出液、 または、 インビトロ で転写及び翻訳して作製した蛋白質混合液と、 GSTなどのタグをつけて精製した c_Cbl蛋白質とを用いた in vitroのプルダウン法 (実験工学、 Voll3、 No. 6、 1994年 528頁松七五三ら) と上述と同様のウェスタンブロッティングを組み合 わせるによっても c - Cblと検討対象のポリペプチドの結合を検出することができ る。 好ましくは、 実施例 9に示すように検討対象蛋白質発現用プラスミ ドから直 接検討対象蛋白質をインビトロトランスレーシヨンキット (例えば TNTキット
(プロメガ社) ) を用いて in vitroで転写及び翻訳して作製した蛋白質混合液 を用いて結合を検出できる。 より好ましくは、 実施例 9に記載の方法により検討 対象のポリペプチドと c-Cblとの結合を検出することができる。
「過剰発現により糖取り込みを阻害する」 とは、 あるポリペプチドが過剰発現 されることによって、 過剰発現されない場合に比較して糖取り.込みを阻害するこ とをいう。 「糖取り込みを阻害する」 か否かは以下の方法により確認することが できる。 検討対象のポリぺプチドをコードするポリヌクレオチドを含む発現べク ターで細胞 (例えば筋肉細胞 L6細胞) を形質転換する。 形質転換により、 該細 胞に検討対象のポリペプチドが高発現 (過剰発現) したか否かは、 該細胞の抽出 液を用い検討対象のポリぺプチドを検出できる抗体を利用したウェスタンプロッ ティング又は検討対象のポリぺプチドをコードするポリヌクレオチドを特異的に 検出するプライマーを用いたリアルタイム PCRなどにより確認することができる。
•検討対象のポリぺプチドが糠取り込みを阻害するか否かは、 該ポリぺプチドを過 剰発現した又は過剰発現していなレ、細胞を用レ、て細胞内に取り込まれるダルコ一 ス量を測定することにより確認することができる。 検討対象ポリぺプチドを過剰 発現していない細胞に比較して過剰発現した細胞のグルコース取り込み量が減少 した場合、 検討対象ポリぺプチドは過剰発現により糖取り込みを阻害すると判断 できる。
好ましくは実施例 6に記載の方法により検討対象ポリぺプチドが過剰発現によ り糖取り込みを阻害する力否かを確認できる。
以上、 本発明のポリぺプチドについて説明したが、 配列番号 2又は配列番号 26 で表されるアミノ酸からなるポリペプチド、 及び本発明のヒト又はマウス機能的 等価改変体を総称して、 以下、 「本発明のポリペプチド」 と称する。 「本発明の ポリペプチド」 のうち、 配列番号 2で表されるアミノ酸からなるポリペプチドで ある蛋白質を 「ヒト CbAP40蛋白質」 、 配列番号 26で表されるアミノ酸からなる ポリペプチドである蛋白質を 「マウス CbAP40蛋白質」 と称する。
本発明のポリぺプチドとしては、 配列番号 2又は配列番号 26で表されるアミ ノ酸配列からなるポリぺプチド、 あるいはヒト又はマウス機能的等価改変体のう ち、 配列番号 2又は配列番号 26で表されるアミノ酸配列を含むポリべプチドが 最も好ましい。
本発明のポリペプチドの一つである CbAP40が C- Cblと結合することを見出し (実施例 1及び実施例 9 ) 、 更にヒト CbAP40をコードする遺伝子を筋肉細胞に 高発現させると糖取り込み量が減少することを見出した (実施例 6 ) 。 従って、 CbAP40はィンスリンのシグナル伝達における c-Cblの機能を妨げていると考えら れ、 本発明のポリペプチドと C- Cblとの結合を阻害する物質は糖取り込みを改善 する物質、 即ち 2型糖尿病改善薬となることがわかった。 本発明のポリペプチド は前記結合阻害物質 (即ち 2型糖尿病改善薬、 特に糖取り込み改善物質) をスク . リーユングする方法のスクリーニングツールとして有用である。 <本発明のポリヌクレオチド及び本明細書のポリヌクレオチドの製造法 > 本発明のポリヌクレオチドには、
[ 1 ] マウス CbAP40蛋白質及びマウス機能的等価改変体であるポリぺプチドを コードする塩基配列からなるポリヌクレオチド (以下、 マウス型ポリヌクレオチ ドと称する) ;
[ 2 ] ( 1 ) 配列番号 3で表される塩基配列、 (2 ) 配列番号 3で表される塩基 配列の第 1364〜3119番で表される塩基配列、 又は (3 ) 配列番号 3で表される 塩基配列の第 2125〜3119番で表される塩基配列からなるポリヌクレオチド、 あ るいは (4 ) 前記 (1 ) 〜 (3 ) で表される塩基配列において、 1〜10個の塩基 が欠失、 置換、 及び/又は揷入された塩基配列を含み、 ヒ ト CbAP40蛋白質又は ヒト機能的等価改変体であるポリべプチドのプロモーター活性を有するポリヌク レオチド (プロモーター型ポリヌクレオチドと称する) ;
が含まれる。
マウス型ポリヌクレオチドとしては、 マウス CbAP40蛋白質及ぴマゥス機能的 等価改変体であるポリべプチドをコ一ドする塩基配列なら何れの種由来であって もよく、 マウス CbAP40をコードする塩基配列からなるポリヌクレオチドが好ま しく、 配列番号 25で表されるポリヌクレオチドが最も好ましい。 プロモーター 型ポリヌクレオチドのうち最も好ましいのは配列番号 3で表される塩基配列の第 2125〜3119番で表される塩基配列からなるポリヌクレオチドである。
マウス型ポリヌクレオチドとしては、 マウス CbAP40蛋白質及びマウス機能的 等価改変体であるポリぺプチドをコードする限りあらゆる変異体が含まれる。 プ 口モーター型ポリヌクレオチドとしては、 (1 ) 配列番号 3で表される塩基配列、
( 2 ) 配列番号 3で表される塩基配列の第 1364〜3119番で表される塩基配列、 又は (3 ) 配列番号 3で表される塩基配列の第 2125〜3119番で表される塩基配 列からなるポリヌクレオチド、 あるいは (4 ) 前記 (1 ) 〜 (3 ) で表される塩 基配列において、 1〜10個の塩基が欠失、 置換、 揷入及ぴ Z又は付カ卩された塩基 配列かちなり、 ヒト若しくはマウス CbAP40蛋白質又はヒト若しくはマウス機能 的等価改変体であるポリぺプチドのプロモーター活性を含む限り、 あらゆる変異 体が含まれる。 より具体的には天然に存在する変異体、 天然に存在しない変異体、 欠失、 置換、 付加及び挿入を有する変異体が含まれる。 前記の変異は、 例えば天 然において突然変異によって生じることもあるが、 人為的に改変して作製するこ とも出来る。本発明は、 上記ポリヌクレオチドの変異の原因及ぴ手段を問わない。 上記の変異体作製にいたる人為的手段としては、 例えば塩基特異的置換法
(Methods in Enzymology、(1987) 154、350, 367- 382)等の遺伝子工学的手法の他、リ ン酸トリエステル法ゃリン酸アミダイド法などの化学合成手段(Science, 150, 178、 1968)を挙げることができる。 それらの組み合わせによつて所望の塩基置換を伴 う DNAを得ることが可能である。あるいは PCR法の繰り返し作業や、 その反応液 中にマンガンイオンなどを存在させることにより DNA分子中の非特定塩基に置換 を生じさせることが可能である。
本発明のプロモーター型ポリヌクレオチド及び本発明のポリべプチドをコード するポリヌクレオチドは、 本発明により開示された配列情報に基づいて一般的遺 伝子工学的手法により容易に製造 ·取得することが出来る。
本発明のプロモータ一及び本発明のポリぺプチドをコ一ドするポリヌクレオチ ドは、 例えば次のように得ることができるが、 この方法に限らず公知の操作 I Molecular CloningJ LSambrook, Jり、 Cold Spring Harbor Laboratory Pressヽ 1989年、 等]でも得ることができる。
例えば、 (1 ) PCRを用いた方法、 (2 ) 常法の遺伝子工学的手法 (すなわち cDNAライブラリ一で形質転換した形質転換株から所望のアミノ酸を含む形質転換 株を選択する方法) を用いる方法、 又は ( 3 ) 化学合成法などを挙げることがで きる。 各製造方法については、 W001/34785に記載されているのと同様に実施でき る。
PCRを用いた方法では、 例えば、 前記特許文献の 「発明の実施の形態」 1 ) 蛋 白質遺伝子の製造方法 a)第 1製造法に記載された手順により、 本明細書記載のポ リヌクレオチドを製造することができる。 該記載において、 「本発明の蛋白質を 産生する能力を有するヒト細胞あるいは組織」 とは、 例えば、 ヒト骨格筋を挙げ ることができる。 ヒト骨格筋から mRNAを抽出する。 次いで、 この mRNAをランダ ムプライマーまたはオリゴ dTプライマーの存在下で、 逆転写酵素反応を行い、 第一鎖 cDNAを合成することが出来る。 得ちれた第一鎖 cDNAを用い、 目的遺伝子 の一部の領域をはさんだ 2種類のプライマーを用いてポリメラーゼ連鎖反応
(PCR) に供し、 本発明のポリヌクレオチドまたはその一部を得ることができる。 より _具体的には、 例えば実施例 1、 実施例 7、 又は実施例 8に記載の方法により 本発明のポリべプチドをコ一ドするポリヌクレオチド及び/又は本発明のプロモ 一ター型ポリヌクレオチドを製造することが出来る。 、
常法の遺伝子工学的手法を用いる方法では、 例えば、 前記特許文献の 「発明の 実施の形態」 1 ) 蛋白質遺伝子の製造方法 b)第 2製造法に記載された手順により、 本発明のポリぺプチドをコ一ドするポリヌクレオチド及び Z又は本発明のプロモ 一ター型ポリヌクレオチドを製造することができる。
化学合成法を用いた方法では、 例えば、 前記特許文献の 「発明の実施の形態」 1 ) 蛋白質遺伝子の製造方法 c)第 3製造法、 d)第 4製造法に記載された方法によ つて、 本発明のポリべプチドをコ一ドするポリヌクレオチド及び Z又は本発明の プロモーター型ポリヌクレオチドを製造することができる。
本発明のプロモーター型ポリヌクレオチドを用い、 試験化合物が本発明のプロ モーター活性を阻害するか否かを分析することにより、 本発明のポリペプチドの 発現を抑制する物質をスクリーニングすることができる。 本発明者らは、 本発明 のポリぺプチドの 1つであるヒ ト CbAP40は糖の取り込みを阻害すること (実施 例 6 ) 、インスリン抵抗性を改善することが知られているチアゾリジン誘導体に より本発明のプロモーター由来の転写誘導活性が抑制されること (実施例 7 ) を 明ら力にした。 これらのことから前記本発明のポリベプチドの発現を抑制する物 質は、 糖取り込み阻害を改善し 2型糖尿病改善薬、 特にィンスリン抵抗性改善薬 及び/又は糖代謝改善薬として有用である。 従って、 本発明のプロモーターは 2 型糖尿病改善薬、 特にィンスリン抵抗性改善薬及び Z又は糖代謝改善薬のスクリ 一二ングツールとして使用することができる。
本発明のマウス型ポリヌクレオチドにより本発明のポリペプチド、 例えばマウ ス CbAP40を製造することができる。
<本発明のポリぺプチドの製造方法 >
本発明には、 本発明のポリぺプチドを ードするポリヌクレオチドを組み込ん だ発現べクターにより形質転換された細胞を培養することを特徴とする本発明の ポリぺプチドの製造方法も包含される。
上述のように得られた本発明のポリべプチドをコードするポリヌクレオチドは、 「Molecula,r Cl'oning Sambrook, Jら、 Cold Spring Harbor Laboratory Press、 1989年」 等に記載の方法により、 適当なプロモーターの下流に連結することで本 発明のポリペプチドを試験管内、 あるいは試験細胞内で発現させることができる。 具体的には上述のように得られた本発明のポリぺプチドの開始コドン上流に特 定のプロモーター配列を含むポリヌクレオチドを付加することにより、 これを鎵 型として用いた無細胞系での遺伝子の転写、 翻訳による本発明のポリべプチドの 発現が可能である。
あるいは上述の本発明のポリべプチドをコ一ドするポリヌクレオチドを適当な プラスミドベクターに組み込み、 プラスミドの形で宿主細胞に導入すれば細胞内 で本発明のポリペプチドの発現が可能になる。 あるいは、 このような構成が染色 体 DNAに組み込まれた細胞を取得してこれを用いてもよい。 より具体的には、 単 離されたポリヌクレオチドを含む断片は、 適当なプラスミドベクターに再び組込 むことにより、 真核生物及び原核生物の宿主細胞を形質転換させることができる。 さらに、 これらのベクターに適当なプロモーター及ぴ形質発現にかかわる配列を 導入することにより、 それぞれの宿主細胞において本発明のポリぺプチドを発現 させることが可能である。 宿主細胞は、 特に限定されるわけではなく、 本発明の ポリペプチドの発現量をメッセンジャー RNAレベルで、 あるいは蛋白質レベルで 検出できるものであればよい。 内在性の CbAP40が豊富に存在する筋肉由来細胞 を宿主細胞として用いることがより好ましい。
宿主細胞を形質転換し遺伝子を発現させる方法は、 例えば、 前記特許文献の 「発明の実施の形態」 2 ) 本発明のベクター、 本発明の宿主細胞、 本発明の組換 え蛋白の製造方法に記載された方法により実施できる。 発現ベクターは、 所望の ポリヌクレオチドを含む限り、 特に限定されるものではない。 例えば、 用いる宿 主細胞に応じて適宜選択した公知の発現ベクターに、 所望のポリヌクレオチドを 揷入することにより得られる発現ベクターを挙げることができる。 本発明の細胞 は、 例えば、 前記発現ベクターにより所望の宿主細胞をトランスフヱクシヨンす ることにより得ることができる。 より具体的には、 例えば、 実施例 2又は実施例 8に記載のように所望のポリヌクレオチドを哺乳類動物細胞用の発現ベクター pcDNA3. 1 (インビトロジェン社)に組み込むことにより、 所望の蛋白質の発現べク ターを得ることができ、 該発現ベクターをリン酸カルシウム法を用いて 293細胞 に取り込ませて本発明の形質転換細胞を製造することができる。
上記で得られる所望の形質転換細胞は、'常法に従い培養することができ、 該培 養により所望の蛋白質が生産される。 該培養に用いられる培地としては、 採用し た宿主細胞に応じて慣用される各種のものを適宜選択できる。 例えば上記 293細 胞であれば牛胎児血清 (FBS)等の血清成分を添加したダルべッコ修飾イーグル最 小必須培地 (DMEM)等の培地に G418を加えたものを使用できる。
本発明の細胞を培養することにより、 細胞中で産生した本発明のポリペプチド を検出、定量、 さらには精製することが出来る。 例えば、 本発明のポリペプチド と結合する抗体を用いたウェスタンブロット法、 あるいは免疫沈降法により本発 明のポリペプチドを検出、 精製することが可能である。 あるいは、 本発明のポリ ぺプチドを、 ダルタチオン- S-トランスフェラーゼ(GST)、 プロテイン Α、 β—ガ ラタトシダーゼ、 マルトースーパインディングプロテイン(ΜΒΡ)など適当なタグ 蛋白質との融合蛋白質として発現させることにより、 これらタグ蛋白質に特異的 な抗体を用いてウェスタンブロット法、 あるいは免疫沈降法により本発明のポリ ペプチドを検出、 タグ蛋白質を利用して精製することが出来る。 より具体的には 以下のようにしてタグ蛋白質を利用して精製することができる。
本発明のポリぺプチド (例えば、 配列番号 2又は配列番号 26で表されるポリ ペプチド) は、 これらをコードするポリヌクレオチドを、 例えば Hisタグが融合 されるベクター、 より具体的には例えば実施例 1又は実施例 8に記載の pcDNA3. l/V5-His-T0P0 (インビトロジヱン社) 等に組み込むことで培養細胞に発 現させ、 Hisタグを用いて精製した後でタグ部分を除去することにより得ることが できる。 例えば実施例 1又は実施例 8において pcDNA3. l/V5-His-T0P0を用いて 作製したヒトあるいはマウスの CbAP40発現プラスミドは、 いずれも CbAP40の C- 末端に V5および Hisタグが付加されるように設計されている。 これにより、 そ れらの Hisタグを利用して、 実施例 2又は実施例 8に示した CMP40を発現させ た培養細胞から CbAP40蛋白質を精製することができる。 具体的には公知の方法 (実験医学別冊 タンパク質の分子間相互作用実験法、 1996年 32頁 中原ら) に 従って、 破砕した細胞の抽出液より Hisタグと融合した CbAP40蛋白質を Ni2+ - NTA- Agarose (フナコシ) に結合させて遠心分離により単離することができる。 より具体的には培養フラスコ (例えば 10cm径のシャーレ) に培養させた本発明 のポリペプチド発現細胞を適当な量の緩衝液 (例えば、 1 ml) を加えて搔き取つ た後、 毎分 15000回転で 5分間の遠心分離によつて上清を分離し、適当な緩衝液 で置換した適量 (例えば 50 μ M) の Ni2+-NTA- Agaroseを加えて十分に混合する
(例えば、 ローテ一ターで 10分以上攪拌する) ことができる。 続いて遠心分離 (例えば毎分 2000回転で 2分間)により上清を分離して除去し、 PHを 6. 8にした緩 種 ί液を適量 (例えば 0. 5 ml)加えて再度遠心分離することにより洗浄する。 これを 3回繰り返した後適量 (例えば 50 i l) の lOOmM EDTAを加えて 10分置き、上清 を回収することにより遊離した本発明のポリぺプチドを精製することができる。 上記緩衝液としては、 例えば緩衝液 B (8 M Urea, 0. 1 M Na2HP04, 0. 1 M NaH2P04, 0. 01 M Tris-HCl pH8. 0) を用いることができる。 精製した蛋白質分子中の His タグは、 例えば N末端側に Hisタグを融合させるよう設計することにより
TAGZyme System (キアゲン社) を用いることで分子中から除去することができる。 あるいは所望により、タグ蛋白質を利用しない方法、 例えば、 本発明のポリべ プチドからなる蛋白質の物理的性質、 化学的性質を利用した各種の分離操作によ つても精製できる。具体的には限外濾過、 遠心分離、 ゲル濾過、吸着クロマトダラ フィ一、 イオン交換クロマトグラフィー、 ァフィニティクロマトグラフィー、 高 速液体クロマトグラフィーの利用を例示することが出来る。
本発明のポリぺプチドは、 配列番号 2又は配列番号 26に示すァミノ酸配列情 報に従って、 一般的な化学合成法により製造することが出来る。具体的には液相、 及び固相法によるペプチド合成法が包含される。合成はアミノ酸を 1個ずつ逐次 結合させても、 数アミノ酸からなるペプチド断片を合成した後に結合させてもよ い。 これらの手段により得られる本発明ポリぺプチドは前記した各種の方法に従 つて精製を行うことが出来る。 <本発明の発現ベクター及び細胞 > '
本発明の発現ベクターには、 本発明のマウス型ポリヌクレオチドを含む発現べ クタ一、 及びプロモーター型ポリヌクレオチドを含む発現ベクターが含まれる。 本発明の細胞には、 本発明のマウス型ポリヌクレオチドを含む発現ベクターで 形質転換された細胞 (以下、 マウス型ポリヌクレオチド発現細胞と称する) 、 及 ぴプロモーター型ポリヌクレオチドを含む発現べクターで形質転換された細胞
(以下、 プロモーター発現細胞と称する) が含まれる。 本発明の細胞としては、 マウス型ポリヌクレオチドを含む発現ベクターで形質転換された細胞又はプロモ 一ター型ポリヌクレオチドを含む発現べクターで形質転換された細胞のうち、 マ ウス型ポリヌクレオチドを発現している細胞又はプロモーター型ポリヌクレオチ ドのプロモーター活性を発現している細胞が好ましい。
本発明のマウス型ポリヌクレオチド形質転換細胞又はプロモーター形質転換細 胞は、 目的に応じ適宜選択した宿主細胞に本発明のマウス型ポリヌクレオチド又 はプロモーター型ポリヌクレオチドを組み込むことにより製造できる。 目的に応 じ適宜選択したベタターに本発明のマウス型ポリヌクレオチド又はプロモーター 型ポリヌクレオチドを組み込むことにより製造するのが好ましい。
例えばプロモーター形質転換細胞は、 プロモーター活性を阻害するか否かを分 析する系の構築を目的とする場合には実施例 7に示したように、 ルシフェラーゼ 等のレポーター遺伝子を組み込んだベクターに本発明のプロモーター型ポリヌク レオチドを組み込んで製造することが好ましい。 プロモーター領域と融合するレ ポーター遺伝子は、 一般に用いられるものであれば特に限定されないが、 定量的 測定が容易な酵素遺伝子などが好ましい。 例えば、 パクテリアトランスポゾン由 来のクロラムフエニコールァセチルトランスフェラーゼ遺伝子 (CAT) 、 ホタル 由来のルシフェラーゼ遺伝子 (Luc) 、 クラゲ由来の緑色蛍光蛋白質遺伝子
(GFP) 等があげられる。 レポーター遺伝子は、 本発明のプロモーター型ポリヌ クレオチドと機能的に融合されていればよい。例えば、 本発明のプロモーター活 性を調節する物質のスクリーニング系の構築を目的とする場合には、 細胞として は哺乳動物 (例えば、 ヒ ト、 マウス又はラットなど) 由来の細胞を用いることが 好ましく、 ヒト由来の細胞を用いることがより好ましい。 マウス型ポリヌクレオチド形質転換細胞は本発明のポリぺプチドを製造するた めに利用することができる。
本発明の発現ベクター及び細胞は本発明のスクリーニング方法 (例えば、 プロ モーター活性を調節する物質のスクリーニング方法 (実施例 7 ) 、 本発明のポリ ぺプチドと c-Cbl との結合を利用したスクリーニング方法) に用いることができ、 該スクリーニングのツールとして有用である。
<本発明のスクリ一二ングツール及ぴスクリーユングのための使用 >
本発明には、 (1 ) 本発明のポリペプチド、 本発明のポリペプチドをコードす るポリヌクレオチド、 本発明のプロモーター型ポリヌクレオチド、 又は本発明の ポリぺプチドをコードするポリヌクレオチド若しくは本発明のプロモーター型ポ リヌクレオチドを含む発現ベクターで形質転換された細胞からなる 2型糖尿病改 善薬スクリーニングツール、
( 2 ) 本発明のポリぺプチド、 本発明のポリペプチドをコードするポリヌクレオ チド、 本発明のプロモーター型ポリヌクレオチド、 又は本発明のポリペプチドを コードするポリヌクレオチド若しくは本発明のプロモーター型ポリヌクレオチド を含む発現ベクターで形質転換された細胞の 2型糖尿病改善薬スクリ一二ングの ための使用が含まれる。
本明細書において、 「スクリーニングツール」 とは、 スクリーニングの為に用 いる物 (具体的には、 スクリーニングの為に用いるポリペプチド、 ポリヌクレオ チド又は細胞) をいう。 「2型糖尿病改善薬スクリーニングツール」 とは、 2型 糖尿病改善薬 (特にィンスリン抵抗性改善薬及び Z又は糖代謝改善薬) をスクリ 一二ングするために、 本発明のスクリーニング方法において、 試験化合物を接触 させる対象となる細胞、 ポリヌクレオチ,ド又はポリペプチドである。 本発明のポ リペプチド、 ポリヌクレオチド又は細胞の、 2型糖尿病改善薬 (特にインスリン 抵抗性改善薬及び/又は糖代謝改善薬) スクリ一二ングのための使用も本発明に 含まれる。 く本発明の分析方法又はスクリーニング方法 > 本発明のポリぺプチドの一つである CbAP40が c_Cblと結合すること (実施例 1、 実施例 9 ) 、 糖尿病モデルマゥスで発現が増加していること (実施例 5 ) を 見出し、 更にヒト CbAP40蛋白質をコードする遺伝子を筋肉細胞に高発現させる と糖取り込み量が減少することを見出した (実施例 6 ) 。 従って、 本発明のポリ ペプチドと c-Cblとの結合を阻害する物質は糠取り込みを改善する物質となるこ とがわかった。 カロえて、 本発明のポリペプチドのプロモーター由来の転写誘導活 性がィンスリン抵抗性を改善することが知られているチアゾリジン誘導体により 抑制されることを明らかにした (実施例 7 ) 。 このことから該プロモーター活性 を指標として 2型糖尿病改善作用を有する物質 (特にィンスリン抵抗性改善作用 及び/又は糖代謝改善作用を有する物質) をスクリーニングできることがわかつ た。
即ち、 本発明の分析方法又はスクリーニング方法には、 本発明のポリペプチド を使用した、 本発明のポリペプチドと c - Cbl蛋白質との相互作用の変化を指標と することからなる 2型糖尿病改善作用を有する物質 (特にインスリン抵抗性改善 作用を有する物質及び/又は糖代謝改善作用を有する物質) のスクリーニング方 法が含まれる。また、 本発明の分析方法又はスクリーニング方法には、 本発明プ 口モーター型ポリヌクレオチドを利用して、 該プロモーター活性の変化を指標と することからなる 2型糖尿病改善作用を有する物質 (特にィンスリン抵抗性改善 作用を有する物質及ぴ 又は糖代 ®ί改善作用を有する物質) のスクリーニング方 法が含まれる。
c-Cbl蛋白質との相互作用を利用した本発明のスクリ一ユングに用いるポリぺ プチドとしては、 本発明のポリぺプチド又は相同ポリぺプチドを挙げることがで きる。 配列番号 2又は配列番号 26で表されるアミノ酸配列との相同性が 90%以 上であるアミノ酸配列からなり、 かつ、 C- Cblに結合する蛋白質であるポリぺプ チドのことを相同ポリペプチドと称する。 本明細書の相同ポリペプチドは、 配列 番号 2又は配列番号 26で表されるァミノ酸配列との相同性が 90%以上であるァ ミノ酸配列からなり、 かつ、 c-Cblに結合するポリペプチドである限り、 特に限 定されるものではないが、 配列番号 2又は配列番号 26で表されるァミノ酸配列 に関して、 好ましくは 95%以上、 更に好ましくは 98%以上の相同性を有するァ ミノ酸配列からなるポリぺプチドが好ましい。
なお、 本明細書における前記 「相同性」 とは、 Clustal program (Higgins and Sharp, Gene 73, 237-244, 1998; Thompson et al. Nucl. Acids Res. 22, 4673-4680, 1994) (Clustal V) 検索によりデフォルトで用意されているパラメ ータを用いて得られた値 (同一性) を意味する。 前記のパラメータは以下のとお りである。 ' '
Pairwise Alignment Parametersとし一
K tuple 1
Gap Penalty 3 '
Window 5
Diagonals Saved 5
本発明のスクリーニングに用いることができるポリペプチド (すなわち本発明 のポリぺプチド及ぴ相同ポリぺプチド) をスクリーニング用ポリペプチドと称す る。
本発明の分析方法又はスクリ一二ング方法には、 より具体的には以下の方法が 含まれる。
本発明のプロモーターを利用する系として、 . <1> ( 1 ) 本発明のプロモーター発現細胞と試験物質とを接触させる工程、 及ぴ
( 2 ) プロモーター活性を検出する工程
を含む、 試験物質が本発明のプロモーターの活性を阻害するか否かを分析する方 法。 '
<2>く 1>に記載の方法による分析工程、 及ぴ
プロモーター活性を阻害する物質を選択する工程
を含む、 本発明のポリべプチドの発現を抑制する物質あるいは 2型糖尿病改善薬 をスクリーニングする方法。
本発明のポリぺプチドと c_Cblとの結合を利用した系として、
<3>本発明スクリーニング用ポリべプチドと c-Cblと試験物質とを接触させるェ 程、 及び
前記ポリぺプチドと c-Cblとの結合を検出する工程 を含む、試験物質が前記結合を阻害するか否かを分析する方法。
<4> く 3〉に記載の方法による分析工程、 及び
結合を阻害する物質を選択する工程
を含む、 本発明のスクリーニング用ポリペプチドと c-Cblとの結合阻害物質ある いは 2型糖尿病改善薬をスクリーニングする方法。
本発明のプロモーターを利用する系としての実施態様の一つとしてレポーター 遺伝子アツセィ系が上げられる。 レポーター遺伝子アツセィ (田村ら、 転写因子 研究法、 羊土社、 1993年) は、 レポーター遺伝子の発現をマーカーとして遺伝子 の発現調節を検出する方法である。 一般に遺伝子の発現調節はその 5' 上流域に 存在するプロモーター領域と呼ばれる部分で制御されており、 転写段階での遺伝 子発現量はこのプロモーターの活性を測定することで推測することができる。 試 験物質がプロモータ一を活性化すれば、 プロモータ一領域の下流に配置されたレ ポーター遺伝子の転写を活性ィヒする。 このようにプロモーター活性化作用すなわ ち発現亢進作用をレポーター遺伝子の発現に置き換えて検出することができる。 したがって、 本発明のプロモーター型ポリヌクレオチドを用いたレポーター遺伝 子アツセィにより、 本発明のポリべプチドの発現調節に対する試験物質の作用は レポーター遺伝子の発現に置き換えて検出することができる。 本発明のプロモー ター型ポリヌクレオチド (例えば配列番号 3で表される塩基配列からなる配列) ' と融合された 「レポーター遺伝子」 は、 一般に用いられるものであれば特に限定 されないが、 定量的測定が容易な酵素遺伝子などが好ましい。 例えば、 パクテリ ァトランスポゾン由来のク口ラムフエニコールァセチルトランスフェラーゼ遺伝 子 (CAT) 、 ホタル由来のルシフェラーゼ遺伝子 (Luc) 、 クラゲ由来の緑色蛍光 蛋白質遺伝子 (GFP) 等があげられる。 レポーター遺伝子は、 本発明のプロモー ター型ポリヌクレオチドと機能的に融合されていればよい。本発明のプロモータ 一と融合されたレポ一タ一遺伝子により形質転換された細胞に試験物質を接触し た場合と接触しなかった場合のレポーター遺伝子の発現量を比較することにより 試験物質依存的な転写誘導活性の変化を分析することができる。 上記工程を実施 することにより、 本発明のポリべプチドの発現を抑制する物質あるいはインスリ ン抵抗性改善薬及び 又は糖代謝改善薬のスクリーニングを実施できる。 具体的 には、 実施例 7に記載の方法により、 前記スクリ一ユングを実施できる。
本発明のポリペプチドと c - Cblとの結合を利用した系として、 具体的には、 本 発明のスクリーニング用ポリペプチドの一部あるいは全長域、 あるいは GSTや Flag, 6 X Hisなどのタグを融合させた本発明のスクリーニング用ポリペプチドの 一部あるいは全長域を発現させた試験用細胞を試験物質で未処理又は処理する。 前記試験用細胞としてはィンスリンに応答する細胞が好ましく、 より具体的に は脂肪細胞、 肝細胞、 あるいは骨格筋由来細胞が好ましい。 前記細胞から抗 c - Cbl抗体を用いた免疫沈降により c_Cbl蛋白質とそこに結合する蛋白質を濃縮す ることができる。 この濃縮過程では反応液中に上記で細胞を処理した同じ試験物 質を含有させておくことが望ましい。 得られた c- Cblおよびその結合蛋白質の濃 縮液を公知の方法によりポリアクリルアミドゲル電気泳動法により分離し、抗体 を用いたウェスタンプロティングによりスクリーニング用ポリペプチドの量を測 定することにより、 スクリーニング用ポリペプチドと c - Cblとの結合を阻害する 試験物質を選択することができる。 ここで用いる抗体は、 スクリーニング用ポリ ぺプチド或いはその部分配列をもとに作製したスクリ一二ング用ポリぺプチドに 対する抗体 (例えば抗 CbAP40抗体) 、あるいは上記タグを認識する抗体を利用す ることができる。 '
また上述と同様にスクリーニング用ポリペプチドを発現させた細胞の抽出液に 試験物質を添加あるいは未添加したものから、 GSTなどのタグをつけて精製した c - Cbl蛋白質を用いた in vitroのプルダウン法 (実験工学、 Voll3、 No. 6、 1994 年 528頁松七五三ら) とウェスタンブロッテイングを組み合わせるによっても c-Cblとスクリーニング用ポリペプチドの結合を阻害する試験物質を選択するこ とができる。 あるいはここでスクリーニング用ポリペプチドを発現させた細胞の 抽出液を用いずに、スクリーニング用ポリペプチドの発現プラスミドから直接ス タリーニング用ポリぺプチドである蛋白質を TNTキット (プロメガ社) を用レ、て in vitroで転写及び翻訳して作製した蛋白質混合液に試験物質を添カ卩あるいは未 添加したものを用いても同様に c_Cblとスクリーニング用ポリペプチドとの結合 を阻害する試験物質を選択することができる。 これらの方法ではいずれもポリア クリルアミド電気泳動法を行わずに公知のスポットウェスタンブロッティングを 行うことにより多数の試験物質をスクリ一二ングすることが可能である。 また上 述と同様のタグを融合させて発現させたスクリーエング用ポリぺプチドおよび c- Cblを同時に発現させた細胞の溶解液に試験物質を添加することからなる公知の ELISA法に従っても c_Cbl とスクリーユング用ポリペプチドの結合を阻害する試 験物質を選択するスクリーニングが可能である。 また公知の哺乳類細胞における ツーハイプリッドシステム (クロンテック社) を利用して、べィトに GAL4の DNA 結合領域と融合させた c - Cblを、 プレイ側に VP16の転写促進領域を融合させた スクリーニング用ポリぺプチドを配置することにより、既存の CATあるいはルシ フェラーゼ活性の検出により c-Cblとスクリーニング用ポリぺプチドとの結合を 阻害する試験物質を大多数の母集団からスクリ一ユングし選択することが可能で ある。
本発明のスクリーニング法で使用する試験物質としては、 特に限定されるもの ではないが、 例えば、 市販の化合物 (ペプチドを含む) 、 ケミカルファイルに登 録されている種々の公知化合物 (ペプチドを含む) 、 コンビナトリアル ·ケミス トリー技術(N. Terrett et al. , Drug Discov. Today, 4 (1) : 41, 1999 )によって 得られた化合物群、 微生物の培養上清、 植物や海洋生物由来の天然成分、 動物組 織抽出物、 あるいは、 本発明のスクリーニング法により選択された化合物 (ぺプ チドを含む) を化学的又は生物学的に修飾した化合物 (ペプチドを含む) を挙げ ることができる。
2型糖尿病改善作用の分析は、 当業者に公知の方法、 あるいは、 それを改良し た方法を用いることにより実施することができる。 例えば、 本発明のスクリー二 ング法により選択された化合物を糖尿病モデル動物に連続投与し、 常法に従って 随時血糖低下作用を確認することにより、 あるいは、 経口糠負荷試験後の血糖上. 昇抑制作用の確認を行なうことにより、 2型糖尿病改善効果の有無を判定するこ とができる。 また、 ヒトのインスリン抵抗性を測定し、 その値の改善を指標に 2 型糖尿病改善作用を分析することもできる。 インスリン抵抗性はヒトでは主に 2 つの方法で測定されている。 ひとつは絶食後に血糖値とインスリン濃度を測定す るものであり、 他方はブドウ糖負荷試験といわれるもので、 グルコース液を経口 投与し、血液循環からのクリアランス率を知る方法である。 さらに、 より正確な 試験としてはオイグリセミック .高インスリン血症クランプ法が挙げられる。 こ の試験は、 血中のインスリンとグルコースは一定濃度に維持されるという原理を 利用したもので、 時間の経過に伴って投与されたグルコース液の総量と代謝に利 用されるインスリン濃度を測定するものである。
<糖尿病の検査方法 > '
本発明のポリぺプチドをコ一ドするポリヌクレオチドにストリンジェントな条 件下でハイブリダィズするプローブを用いることにより、 本発明のポリペプチド をコードするポリヌクレオチドの発現量を調べることができ、 その発現量 (好ま しくは骨格筋における発現量) の増加を指標として糖尿病の診断をすることがで きる。 糖尿病の検査方法において、 「ス トリンジヱントな条件」 とは、 非特異的 な結合が起こらない条件を意味し、 具体的には、 0. 1%ラウリル硫酸ナトリウム (SDS)を含有する 0. I X SSC (Saline- sodium citrate buffer)溶液を使用し、 温度 が 65°Cである条件を意味する。 プローブとしては、 本発明のポリヌクレオチドの 少なくとも一部若しくは全部の配列 (またはその相補配列) を有し、 少なくとも 15 bpの鎖長の DNAが用いられる。 ' 糖尿病の検出方法では、 上述のプローブと試験試料とを接触させ、 本発明のポ リペプチドをコードするポリヌクレオチド (例えば、 mR A又はそれ由来の cDNA) と前記プローブとの結合体を、 公知の分析方法 (例えば、 ノザンプロッテ イング) で分析することにより、 糖尿病であるか否かを検出することができる。 また、 上述のプローブを DNAチップに適用し、 発現量を分析することもできる。 前記結合体の量、 すなわち、 本発明のポリペプチドをコードするポリヌクレオチ ドの量が、 健常人に比べて増加している場合には、 糖尿病であると判定すること ができる。
本発明のポリべプチドをコ一ドするポリヌクレオチドの発現レベルを測定する 方法として、 発現レベルを本発明のポリペプチドの検出によって測定する方法が 可能である。 このような検查方法としては、 例えば、 試験試料を本発明のポリべ プチドに結合する抗体、 好ましくは、 本発明のポリぺプチドに特異的に結合する 抗体を利用したウェスタンプロッティング、 免疫沈降法、 ELISA法などを利用す ることが出来る。 試験試料中に含まれる本発明のポリべプチドの量を定量する際、 本発明のポリペプチドを標準量として利用することができる。 また、 本発明のポ リペプチドは本発明のポリぺプチドに結合する抗体を作製するために有用である。 本発明のポリべプチドの量が健常人に比べて増加している場合には、 糖尿病であ ると判定することができる。 以下、 実施例によって本発明を詳述するが、 本発明は該実施例によって限定さ れるものではない。 なお、 特に断りがない場合は、 公知の方法(「Molecular CloningJ Sambrook, Jら、 Cold Spring Harbor Laboratory Press、 1989年、等)に 従って実施可能である。 また、 市販の試薬やキットを用いる場合には市販品の指 示書に従って実施可能である。 ·
[実施例 1 ] c-Cbl結合分子 CbAP40の遺伝子クローニングと発現べクターの構築 ( 1 ) c-Cbl遺伝子のクローユング
遺伝子データベース GenBankのァクセッション番号 X57111に記載されたマウ ス c - Cblの全長領域をコードする cDNA配列を参照して設計した配列番号 4及び 配列番号 5 (5' 側) 、 並びに配列番号 6および配列番号 7 (3' 側) で示される オリゴヌクレオチドをプライマーとし、 マウス骨格筋 cDNAを錶型として、 DNAポ リメラーゼ (Pyrobest DNA Polymerase, 宝酒造社) を用いて、 95°C 3分間の熱 変性反応の後、 98°C 10秒間、 60°C 30秒間、 74°C 1分 30秒からなるサイクルを 40 回、さらに 74°C 7分間の条件で PCRを行なった。これにより生成した約 1. 3 kbp および 1. 5 kbpの DNA断片を、 プラスミド pZErO™- 2. 1 (インビトロジェン社) の EcoRV認識部位に揷入することにより、 マウス c - Cbl cDNAの 5, 側と 3, 側をそ れぞれサブクローユングした。 どちらの遺伝子断片もマウス C- Cbl cDNA上に唯 一存在する BamHI認識部位を含んでいる。 この BamHI認識部位と配列番号 4に付 加した Kpnl認識部位、 および配列番号 7に付加した Xhol認識部位を利用し、 各 サブクローンから 5'側の Kpnl-BamHI断片、 3'側の BamHI - Xhol断片を切り出し、 pcDNA3. 1 (+)の Kpnl-Xhol間に挿入することにより、 マウス c- Cbl cDNAの全長を 得た。 なおシーケンシングキット (アプライドバイオシステム社) 及びシーケン サー (ABI 3700 DNA sequencer アプライドバイオシステムズ社) を用いて、 ベ クタ一上にクローニングした c - Cbl cDNAの塩基配列が報告されてレ、る配列と一 致することを確認した。
( 2 ) 酵母ツーパイブリツド検索
上述のマウスの c- Cbl cDNAを特許文献 (Ψ003/0δ2427) 実施例 2 ( 2 ) に示さ れた方法に従い酵母ツーハイプリッド用発現ベクターに相同組み換えを利用して 揷入した。 ここでは配列番号 8及び配列番号 9に示すプライマーを設計し、 これ らを用いて上述のマウスの c-Cbl cDNAを铸型として PCR反応により相同組み換 えに必要な 40 merの配列を前後に付随させた C- Cbl cDNA断片を得た。相同組み 換えにより作製した発現べクターは上記遠藤らの特許文献実施例 2 ( 2 ) の方法 に従い配列の確認を行った後、 同実施例 2 ( 3 ) と同一の方法に従いヒ ト骨格筋 ライブラリ一中から相互作用因子をスクリーニングした。 c - Cblに結合する蛋白 質を発現している酵母細胞を特定し、 同細胞からライブラリー由来のプラスミド を抽出した。 そこに含まれる遺伝子断片の塩基配列を、 同実施例 2 ( 2 )に示した 方法に従い塩基配列決定した結果、 配列番号 1に示す塩基配列の 3' 末端側にあ る 934番目から 1101番目の塩基に相当する部分の配列を含む 1クローンが含ま れていることを確認した。 このクローンは配列番号 2に示すポリぺプチドのカル ボキシル末端側の正味 55アミノ酸を含む蛋白質をコードする DNA配列を有して おり、 酵母中で該 55アミノ酸のポリぺプチドを含む融合蛋白質を発現する能力 を有している。 従って配列番号 2に示すポリぺプチドはカルボキシル末端側の 55 ァミノ酸部分で c_Cblと結合する能力を有する蛋白質であることが示された。
( 3 ) ヒ ト CbAP40遺伝子の全長 cDNAのクローエング
前述 (2 ) の結果、 配列番号 1で表される塩基配列の一部を含む遺伝子断片を 持ったライブラリー由来のプラスミドが得られ、 c- Cblに結合する因子の存在が示 された。 そこで配列番号 1で示された塩基配列の第 1079〜: 1089番の塩基配列の 相捕鎖に相当する配列番号 10で表される塩基配列のプライマ一を合成 (プロリ ゴ社) し、該プライマーを用いて、 前記特許文献 (W003/062427) の実施例 1
( 4 ) に示した方法に従い、 前述の骨格筋由来 cDNAライプラリー中から PCR法 により全長 cDNAの増幅を試みた。 PCR反応は DNAポリメラーゼ (TAKARA LA Taq; 宝酒造社) を用い、 94°C (3分)の後、 94°C (30秒) ' 58°C (1. 5分) · 72°C (4分)のサ ィクルを 35回繰り返し、 その PCR産物を铸型にしてさらに同じ条件で PCRを行 つた。 PCR産物をァガロースゲル電気泳動によって分離した結果、 約 1200塩基対 の DNA断片が増幅されたことを確認した。 そこで反応液中の同 DNA断片を発現べ クタ一 (pcDNA3. 1/V5- His- T0P0;インビト口ジェン社) に T0P0 TA Cloning シス テム (インビトロジェン社) を用いてク ΰ一エングした。 得られたプラスミド中 の揷入 DNA断片の塩基配列を、 ベクター上の Τ7 プロモーター領域に結合するプ ライマー (T0P0 TA Cloning kit/ィンビトロジェン社;配列番号 11) とシーケン シングキット (アプライドバイォシステム社) 及びシーケンサー(ABI 3700 DNA sequencer アプライドバイオシステムズ社)を用いて決定した。 その結果、 酉己列 番号 1に示す DNA配列を含むクローンであることを確認し、 配列番号 1よりさら に 5' 側上流約 70塩基対の配列が得られたが、配列番号 2に示 アミノ酸配列を コードする DNAのトリプレツトに従うと配列番号 1の初めにある ATG (開始コ ド ン) より上流には別の開始コドンは認められず、 ストップコドンのトリプレット が存在した。 これにより配列番号 1に示す遺伝子のオープンリーディングフレー ムを確定した。この配列番号 1の塩基配列で表される遺伝子をヒト CbAP40遺伝子 と名付けた。
( 4 ) ヒ ト CbAP40発現ベクターの作製
配列番号 1に示す塩基配列情報に従い、 配列番号 12に示すプライマーを合成 (プロリゴ社) し、 該プライマーと前述の配列番号 10に示すプライマーを用い て、正味ヒト CbAP40蛋白質をコードする cDNAを前述の(3 )で得られたプラスミ ドを鎳型として PCR法により増幅した。これら 2種類の DNAプライマーはそれぞ れ配列番号 1が示す CbAP40遺伝子の 5 ' 側、 3, 側の部分配列と相同な塩基配列を 有する。 PCR反応は DNAポリメラーゼ (Pyrobest DNA Polymerase;宝酒造社) を 用い、 98°C (1分)の後、 98°C (5秒)、 55°C (30秒)、 72°C (5分)のサイクルを 35回 繰り返した。 PCR産物をァガロースゲル電気泳動によって分離した結果、 約 1. 1 kbpの DNA断片が増幅されたことを確認した。 そこで反応液中の同 DNA断片を発 現ベクター (pCDNA3. 1/V5- His- TOP0;インビトロジェン社) に T0P0 TA Cloning システム (インビトロジェン社) を用いてサプクローニングした。 このとき用い た配列番号 10に示すプライマーはクローニング後 3, 側にベクター由来の V5ェ ピ卜ーフ (paramyxovirus SV5の V protein由来、 Southern J A,
J. Gen. Virol. 72, 1551-1557, 1991) 及び His6タグ(Lindner P BioTechniques22, 140-149, 1997) が CbAP40遺伝子のトリプレツトと同じフレームで続くように、 ヒ ト CbAP40のストップコ ドン配列が除かれるよう設計した。得られたプラスミ ド 中の挿入 DNA断片の塩基配列を、 ベクタ二上の T7プロモーター領域に結合する プライマー (T0P0 TA Cloning kit;インビトロジェン社;配列番号 11) とシー ケンシングキット (アプライドバイオシステム社) 及ぴシーケンサー (ABI 3700 DNA sequencer;アプライドバイオシステムズ社)を用いて決定した。 その結果、 配列番号 1に示す正味ヒト CbAP40蛋白質をコードする 1101塩基対のヒト CbAP40 cDNAが DNA配列の 3' 側のストップコドンを除いた DNAとして前述の発現べクタ 一 pcDNA3. 1/V5 - His - T0P0に揷入されていることを確認した。 以下この発現プラス ミドを pcDNA - CbAP40と略記する。
[実施例 2 ] ヒト CbAP40蛋白質を発現する培養細胞の作製
( 1 ) ヒト CbAP40発現細胞の作製
上述の実施例 1 ( 4 )で作製した発現プラスミド pcDNA- CbAP40又は空べクタ一 (pcDNA3. 1) (ィンビトロジェン社)を 293細胞に導入した。 293細胞は 6ゥェル培 養プレート (ゥエル直径 35 mm) の培養皿に各ゥ ル 2 mlの 10%牛胎児血清
(シグマ社) を含む最少必須培地 DMEM (ギブコ社) を加えて 70%コンフルェン トの状態になるまで培養した。 この細胞にリン酸カルシゥム法(Graham et al. , Virology, 52, 456, 1973;新井直子、遺伝子導入と発現/解析法 13 - 15頁 1994年) により pcDNA- CbAP40 (3. 0 μ g/ゥエル)を一過性に導入した。 30 時間培養した後、 培地を除去し、 細胞をリン酸緩衝液 (以下 PBSと略称する) で洗浄した後にゥェ ルあたり 0. 1 mlの細胞溶解液(100 mM リン酸カリゥム(pH7. 8)、0. 2%トリ トン X- loo)を添力 aして細胞を溶解した。
( 2 ) ヒト CbAP40蛋白質の検出
上記ヒト CbAP40発現細胞の溶解液 10 μ 1に 10 1の 2倍濃度 SDSサンプルバ ッファー(125 mM トリス塩酸 (pH6. 8)、 3%ラウリル硫酸ナトリウム、 20% グリセ リン、 0. 14 M ]3 -メルカプトエタノール、 0. 02%ブロムフエノールブルー)を添 加し、 100°Cで 2分間処理した後、 10%の SDSポリアクリルァミドゲル電気泳動 を行い、 試料中に含まれている蛋白質を分離した。セミドライ式ブロッテイング 装置 (バイオラッド社) を用いてポリアクリルアミド中の蛋白質をニトロセル口 ース膜に転写した後、常法に従 、ウェスタンブロッテイング法により該ニトロセ ルロース上のヒ ト CbAP40蛋白質の検出を行った。一次抗体には CbAP40の C末端 に融合させた V5ェピトープを認識するモノクローナル抗体 (インビトロジェン 社) を用い、二次抗体にはラビット IgG- HRP融合抗体 (バイオラッド社) を用い た。その結果、図 1に示す通り、 45アミノ酸からなる C末端側のタグを含む合計 411ァミノ酸からなる CbAP40- V5-His6融合蛋白質を示す約 45 kDaの蛋白質が発 現ベクター pcDNA_CbAP40の細胞導入に依存して検出されることを確認した。これ により、 培養細胞中でクローニングした前述のヒト CbAP40遺伝子は全長領域が 確かに発現し、 蛋白質として安定な構造をとりうることが明らかになった。
[実施例 3 ] ヒ ト CbAP40蛋白質の作製
ヒ ト CbAP40の cDNAを GST融合発現ベクター pGEX - 6P-1 (アマシャムバイオサイエ ンス社)に挿入するため、 配列番号 33および 34に示すプライマーを用いて前述実 施例 1で作製した pcDNA- CbAP40を铸型として PCR反応を行レ、、 CbAP40遺伝子 cDNA の 5' 末端に制限酵素 BamHI サイトを、 3' 末端側には制限酵素 Xhol サイトをそ れぞれ付加した DNA断片を作製した。 PCR反応は DNAポリメラーゼ (Pyrobest DNA Polymerase;宝酒造社) を用い、 98°C (1分)の後、 98°C (5秒)、 55°C (30秒)、 72°C (5分)のサイクルを 35回繰り返した。 該 DNA断片を BamHI及ぴ Xholで酵素処理して、 pGEX- 6P- 1の BamHIおよび Xhol部位に組み換え、 発現プラスミド pGEX- CbAP40を得 た。
pGEX- CbAP40を大腸菌 BL21を用いて、 heat shock法による形質転換を行い、 2. 4 mlの培養液でー晚振盪培養した後、 その全量を 400 ml培養液に移し変え、 37°Cで 3時間振盪培養した後、最終濃度が 2. 5 raMとなるように IPTG (シグマ社) を添加し、 更に 3時間振盪培養して GST融合 CbAP40蛋白質 (以下 GST-CbAP40と略記する) の発 現を誘導した。 菌体を回収し、 実験工学、 Voll3、 No. 6、 1994年 528頁松七五三 らに従って GST-CbAP40をグルタチオンセファロースビーズ (Glutathione Sepharose 4B;アマシャム'ファルマシァ社) 上に精製した。 コントロールとし て pGEX- 6P- 1で形質転換した大腸菌 BL21から GST部分のみの蛋白質 (以下 GST蛋白 質と略記する) を上述と同様に発現誘導して精製した。 精製したこれらの蛋白質 は、 公知の方法に従って SDSゲル電気泳動法による分離と、クーマジープリリアン トブルー染色により期待される分子量の蛋白質 (GST- CbAP40; 67 kDa、GST蛋白 質; 26 kDa) が精製されていることを確認した。
この CbAP40蛋白質の精製標品は、 C- Cblとの相互作用解析、 CbAP40蛋白質の抗 体作製など多岐の用途に利用できる。 具体的には、 後述の実施例 9 ( 3 ) に示す 方法により、 c- Cbl蛋白質との直接の相互作用の有無を GST-pull down法 (実験ェ 学、 Voll3、 No. 6、 1994年 528頁松七五三ら) によって確認することが可能であ る。 より具体的には、 c- Cblの cDNAを鍚型として TNT kit (TNTRQuick Coupled Trans cr ipt i on/Trans 1 at i on System;プロメガ社) およぴラジオァイソトープ
(redivue Pro-mix L- [3¾] ;アマシャム) を用いて添付のプロトコールに従い in vitroでの転写 ·翻訳によりラジオアイソトープラベルされた c-Cbl蛋白質を調製 する。 この c_Cbl蛋白質にグルタチオンビーズ上に精製した GST- CbAP40蛋白質を を添加して 4°Cで 1時間振盪した後、 遠心分離によりビーズ上の GST- CbAP40蛋白質 に結合する蛋白質を共沈殿させる。 沈殿物中の蛋白質を公知の方法に従って SDS ポリアクリルアミ ドゲル電気泳動法により分離し、 オートラジオグラフィにより ラベルされた c_Cblを検出することにより、 本発明の CbAP40と c-Cbl蛋白質との直 接の相互作用を調べることが可能である。
[実施例 4 ] ヒト CbAP40遺伝子の組織別発現分布解析
前述配列番号 10および 12に示すプライマーを用いて、 CbAP40遺伝子の全長 cDNA断片を、 ヒト各種組織由来 cDNAから PCR反応を用いて増幅を試み、各種組織 における CbAP40の発現の有無を調べた。ヒト骨髄、 脳、 軟骨、心臓、 腎臓、 白血 球、 肝臓、 肺、 リンパ球、 乳腺、 卵巣、 膝臓、 胎盤、 前立腺、 骨格筋、脂肪、 大 動脈由来の cDNAライブラリー (クロンテック社) 各 を铸型として PCR反応 は DNAポリメラーゼ (Pyrobest DNA Polymerase;宝酒造社) ) を用い、 98°C (1 分)の後、 98°C (5秒)、 55°C (30秒)、 72°C (5分)のサイクルを 35回繰り返した。 得 られた PCR産物をァガロースゲル電気泳動によって分離した結果、 骨格筋、 膝臓 由来の cDNAライブラリ一から所望するヒト CbAP40遺伝子と思われる約 1100塩 基対の DNA断片が増幅された。 これらの DNA断片をァガロースゲル中から分離し た後、 上述の実施例 1 ( 4 )に記した方法に従い配列番号 12に示すプライマーを 用いて該 DNA断片の塩基配列をそれぞれ決定した結果、配列番号 1に示すヒト CbAP40遺伝子であることを確認した。このことから、ヒト CbAP40遺伝子の発現は、 インスリンシグナルに応答する筋肉おょぴ朦臓などごく限定された臓器で特異的 に制 Pされていることが判明した。
[実施例 5 ] 正常マウスおよび糖尿病モデルマウスにおける CbAP40発現量の測定 上述の知見により本発明のヒト CbAP40蛋白質は c_Cblと結合し、 骨格筋など のィンスリン応答組織に発現していることが判明した。 c - Cbl蛋白質はィンスリ ンシグナル第 2経路に作用する因子であることから、 本発明の CbAP40の作用が インスリン抵抗性に関わることが予想された。そこで正常マウス C57BL/6Jと m+/m+、 および 2型糖尿病モデルマウス KKAy /Taと db/dbの筋肉における CbAP40 遺伝子のメッセンジャ一 RNA (mRNA)発現量を測定した。
遺伝子発現量は、 本発明のマウス CbAP40遺伝子の発現量を測定し、同時に測定 したグリセルアルデヒド 3-リン酸脱水素酵素 (Glyceraldehyde 3- phosphate dehydrogenase (G3PDH) ) 遺伝子の発現量により補正した。測定系としては PRISM™ 7700 Sequence Detection Systemと SYBR Green PCR Master Mix (アプライド バイォシステムズ社) を用いた。 本測定系においては PCRで増幅された 2本鎖 DNAがとりこむ SYBR Green I色素の蛍光量をリアルタイムに検出 ·定量すること により、 目的とする遺伝子の発現量が決定される。
具体的には、 以下の手順により測定した。
( 1 ) 全 RNA (totalRNA)の調製
15週齢のォスの C57BL/6Jマウス、 KKAy /Taマウス、 m+/m+マウス、 db/dbマウ ス (いずれも日本クレア社) を使用した。 各マウスの筋肉を摘出し、 RNA抽出用 試薬 (Isogen;二ツボンジーン社) を用いて説明書に従い全 RNAを調製した。 調 製した各々の全 R Aはその後デォキシリボヌクレアーゼ (二ツボンジーン社) を 用いて処理し、 フエノール/クロ口ホルム処理、 エタノール沈殿して滅菌水に溶 解し- 20°Cで保存した。
( 2 ) 1本鎖 cDNAの合成
全 RNA.から 1本鎖 cDNAへの逆転写は、 ( 1 ) で調製した 1 μ gの RNAをそれぞ れ用い、 逆転写反応用キット (Advantage™ RT- for- PCR Kit;クロンテック社) を用いて 20 μ 1の系で行った。 逆転写後、 滅菌水 180 1を加えて- 20°Cで保存し た。
( 3 ) PCRプライマーの作製
4つのオリゴヌクレオチド (配列番号 13-配列番号 16) を (4 ) の項で述べる PCRのプライマーとして設計した。 マウス CbAP40遺伝子に対しては配列番号 13 と配列番号 14の組合せ、 G3PDH遺伝子に対しては配列番号 15と配列番号 16の組 み合わせで使用した。
( 4 ) 遺伝子発現量の測定
PRISM™ 7700 Sequence Detection Systemによる PCR増幅のリアルタイム測定 は 25 μ 1の系で説明書に従って行った。 各系において 1本鎖 cDNAは 5 l、 2 Χ SYBR Green試薬を 12. 5 1、 各プライマーは 7. 5 pmol使用した。 ここで 1本鎖 cDNAは( 2 )で保存したものを 100倍希釈して使用した。 なお検量線作成には、 1 本鎖 cDNA に代えて 0. l /^ g/ z lのマウスゲノム DNA (クロンテック社)を適当に 希釈したものを 5 μ ΐ用いた。 PCRは、 50°Cで 10分に続いて 95°Cで 10分の後、 95°Cで 15秒、 60°Cで 60秒の 2ステツプからなる工程を 45サイクル繰り返すこ とにより行った。
各試料におけるマウス CbAP40遺伝子の発現量は、 下記式に基づいて G3PDH遺 伝子の発現量で補正した。
[CbAP40補正発現量] = [CbAP40遺伝子の発現量 (生データ) ] / [G3PDH遺伝子の 発現量 (生データ) ]
筋肉組織における発現量の比較においては C57BL/6Jマウスの発現量を 1とし た相対量を図 2に示した。 図の値は平均土 SEを示している。 図中の記号 「*」 は Dunnett検定における評価を示しており、 有意差が pく 0. 05であることを意味し ている。
図 2に示す通り、 本発明のマウス CbAP40遺伝子の発現は、 糖尿病モデルマゥ スの筋肉において発現が顕著に増加していることが判明した。またヒトにおいて はィンスリンに依存した細胞への糖取り込みの 75%が骨格筋で行われることが知 られている。 従って本発明の CbAP40は筋肉における発現亢進を介してインスリ ン抵抗性を惹起すると考えられ、 インスリン抵抗性への関与が大きいと結論づけ られる。
また本実施例の結果より、 CbAP40発現量の測定により糖尿病病態の診断が出来 ることが明らかとなった。
[実施例 6 ] ヒ ト CbAP40高発現細胞における糖取り込み能の測定
( 1 ) アデノウィルスベクターを利用したヒト CbAP40高発現ウィルスの作製 基本的に次の Webサイトの情報 (He T— Cら、 A simplified system for rapid generation of recombinant adenoviruses. A practical guide for using the AdEasy system. )を基にウィルスを作製した。
http : //www. coloncancer. org/adeasy/protocol. htm
実施例 1で作製した pcDNA - CbAP40から制限酵素 ΚρηΙと Notlを用いてヒ ト CbAP40遺伝子断片を切り出し、 同制限酵素を利用してベクター pAdTrack- CMV (He T— C.ら, Proc. Natl. Acad. Sci. USA. , 95, 2509—2514, 1998) にヒ ト CbAP40 遺伝子をサブクローニングした (以下 pAdTrack-CMV_CbAP40) 。 これを制限酵素 Pmelで消化し大腸菌内でアデノウィルスベクター PAdEasy_lに組み換えた。 組み 換えが起きたことは、 制限酵素 Pad消化及びァガロースゲル電気泳動により 4. 5 kbの遺伝子断片が見られることで確認された。 組み換えられたウィルスベクター を調製し制限酵素 Paclで消化して 1本鎖化したのち、 リボフェクトァミン 2000 試薬 (ィンビトロジェン社) を利用して 293細胞に遺伝子導入した。 ヒ ト CbAP40 高発現ウィルスは、 293細胞で大量に増殖させたのち以下に示す塩ィヒセシゥムを 用いた密度勾配遠心により精製して実験に用いた。
まずヒト CbAP40高発現ウィルスに感染させた 293細胞をコラーゲンコートし たシャーレからスクレーパーを用いてはがし、 1500 rpmで 5分遠心して集めた。 培地を除去したのち 293細胞を PBSに懸濁し、 ドライアイスエタノールを用いた 凍結と 37°Cの湯浴を用いた融解および激しい懸濁の 3ステップからなる工程を 4 回繰り返した。 この操作により細胞内で増殖したウィルスが細胞外に出てくる。 細胞懸濁液を 1500 rpmで 5分遠心し、 その上清画分を集めた。 次に 1リットル あたり NaCl 43. 9 g, KC1 3. 7 g, Tris 30. 3 g, Na2HP04 1. 42 gを含み HC1で pH7. 4に調製した溶液を作製し、 これに塩ィヒセシウムを溶解させて、 密度 1. 339, 1. 368, 1. 377の 3種の塩化セシウム溶液を用意した。 密度 1. 377の塩化セシウム 溶液に密度 1. 339の塩ィ匕セシウム溶液を重層し、 さらにその上に先に集めたウイ ルス上清画分を重層して、 ベックマンの SW41ローターを用いて 35000 rpmで 1. 5 時間超遠心した。 一番下に見られるバンドにウィルスが含まれるので、 これを 18 ゲージのシリンジで回収した。 密度 1. 368の塩化セシウム溶液にこのウィルス画 分を重層し、 もう一度 35000 rpmで 18時間超遠心した。 18ゲージのシリンジで ウィルスを回収し、 透析チューブに移して、 透析液 (10 mM Tris-HCl, 1 mM MgC12, 135 mM NaCl pH7. 5) を用いて透析した。 透析後、 260 nmにおける吸光度 (A260)を測定して下記の計算式によりウィルスを定量、 換算し、 グリセロールを 10%になるように添カ卩し、 実験に使用するまで- 80°Cでウィルスを保存した。
[式] 1 A260 = 1. 1 X 1012ウイノレス粒子 = 3. 3 X 1011 pfu/ml
( 2 ) 筋肉細胞の分ィ匕とヒト CbAP40発現アデノウイルスの添カロ
L6細胞を用いて CbAP40の糖とりこみに対する効果を評価した。 L6細胞を 10% ゥシ胎児血清 (FCS)を含む α最小必須培地( a MEM, インビトロジェン社)に懸濁し、 コラーゲンコートした 24穴プレート (旭テクノグラス社) に 1. 6 X 105個/穴に なるようにまいた。 翌日、 2% FCSを含む α MEMに培地を交換して L6細胞の筋肉 への分化を誘導し、 さらにその 3日後に同培地 400 μ 1に交換した。 その翌日ヒ ト CbAP40発現アデノウィルスを 1穴あたり 1. 6 X 101。 pfuの濃度で培地に添加し た。 コントロールとしては eGFPのみを発現させるアデノウィルスを用いた。
( 3 ) ヒ ト CbAP40高発現細胞における糖取り込み能の測定
アデノウィルスを添加して 24時間後、 糖取り込みに対する効果を評価した。 まず培地を所定濃度のインスリンを含む KRP緩衝液 (136 mM NaCl, 4. 7 mM KC1, 1. 25 mM CaC12, 1. 25 mM MgS04, 5 mM Na2HP045 pH 7. 4) 0. 25 mlに交換し、 37°Cで 20分ィンキュベートした。 次に 1 mMの 2 -デォキシ- D-グルコースを含む KRPに 1 nilあたり 15 1の 2 -デォキシ- D_[U- 14C]グルコース (アマシャムバイ ォサイエンス社) を加えたものを用意し、 各穴に 50 μ 1ずつ添加して 37°Cで 10 分インキュベートした。 その後、 冷えたリン酸緩衝生理食塩液 (PBS) で 3回洗 い、 0. 1% ラウリノレ硫酸ナトリウム (SDS) を用いて細胞を溶解し、 2 mlのシン チレーター (Aquazol - 2、 パッカードバイオサイエンス社) と混合して、 細胞内 に取り込まれたグルコース量を液体シンチレーシヨンアナライザー (トライカー ブ B2500TR、 パッカード社) を用いて測定した。 結果を図 3に示す。 図の値は平 均土 SEを示している。 図中の記号 「*」 は Dunnett検定における評価を示してお り、 「*」 は有意差が Pく 0. 05であることを、 「**」 は有意差が pく 0. 01であるこ とを意味している。
図 3に示す通り、 ヒト CbAP40遺伝子を筋肉細胞に高発現させると糖取り込み 量が減少することが判明した。
[実施例 7 ] ヒト CbAP40遺伝子のプロモーター配列の同定、 および該配列の転写 誘導活性を利用したィンスリン抵抗性を改善する化合物のスクリ一ユング系
( 1 ) ヒ ト CbAP40遺伝子のプロモーターのクローニング
インスリンシグナル第 2経路にある分子で c-Cblと結合することが報告されて いる CAP (Cbl-assosiated protein) はインスリン抵抗性改善薬であるチアゾリ ジン誘導体によってその発現量が増加することが知られており、該発現量の増加 はチアゾリジン誘導体によるインスリン抵抗性改善作用の一機序を担うと考えら れている。 本発明の CbAP40は CAPと同様に c- Cblに結合する力 上述の事実から CbAP40は CAPとは対照的にィンスリン抵抗性をもたらす糖尿病の増悪因子である と考えられる。 このため CbAP40の発現についても CAPとは対照的な調節を受け ていることが予想された。 しかしヒト CbAP40の発現調節に関わるプロモーター 配列は明らかでなかった。 そこで、 ヒト CbAP40プロモーター配列の取得を試み、 該プロモーター配列の下流にレポーター遺伝子を配置することにより、ヒ ト CbAP40の発現を検出して定量化可能な系を構築し、 ヒト CbAP40遺伝子の発現調 節機構を調べた。 配列番号 17および 18に示す一対のプライマ一を設計した。これらのプライマ 一を用いてヒ トゲノム DNA (クロンテック社) を铸型とし、 PCR法 (DNAポリメラ 'ーゼ (LA Taq DNA polymerase;宝酒造社) により、 ヒ ト CbAP40のプロモーター 配列を含むポリヌクレオチドの増幅を試みた。 PCRの反応条件は、 98 °C (5分) の後、 96 °C (30秒) 、 55 °C (30秒) 、 72 °C (90秒) のサイクルを 35回繰り 返した後 72でで 7分加温した。 その結果約 3. 1 kbpのポリヌクレオチドの増幅 に成功した。 次に該ポリヌクレオチドがヒト CbAP40の発現を制御するプロモー タ一を含むことを示すため、 この PCRによって得られた DNA断片を制限酵素 Xhol および BaraHI (宝酒造社) で処理し、 同様に制限酵素 Xholおよび Bglllで処理し たルシフェラーゼレポーターベクター (pGL3- Basicベクター;プロメガ社) に連 結して CbAP40遺伝子プロモーター連結レポーターベクター (pGL3- CbAP40p) を 構築した。
PGL3-CbAP40pに揷入した 3. 1 kbpのポリヌクレオチドは、 配列番号 17及ぴ 18 に示すプライマー並びに pGL3 - Basicベクターのマルチクローニングサイトの前 後に結合する配列番号 19及ぴ 20に示す DNAプライマー (プロリゴ社) を用いて 塩基配列を部分的に決定した。 さらに決定した塩基配列情報をもとに設計した配 列番号 21、 22、 23、 及び 24に示す 4種類の DNAプライマー (プロリゴ社) を用 いてさらに該ポリヌクレオチドの全長の塩基配列を決定した。 その結果、 該ポリ ヌクレオチドは配列番号 3に示す 3119 bpのポリヌクレオチドであることを明ら かにした。
次に同塩基配列情報をもとに上述の pGL3_CbAP40pを制限酵素 Hindlll処理し、 続いてライゲーシヨン反応により同プラスミドを連結して配列番号 3に示すポリ ヌクレオチドから 1231番目から 3119番目の塩基までの配列を除去したプラスミ ド pGL3-CbAP40p [1-1231]を作製した。 さらに pGL3 - CbAP40pを制限酵素 Smal及び Hindlllで処理して配列番号 3に示すポリヌクレオチドの 1364番目から 3119番 目の塩基に相当する DNA断片を切り出し、同断片を制限酵素 Smal及び Hindlllで 処理した pGL3_Basicベクターに連結して pGL3_CbAP40p [1364 - 3119]を作製した。 さらに配列番号 18及ぴ 23、 配列番号 18及ぴ 24の 2対のプライマーを用いて、 pGL3-CbAP40pを鍀型として上述実施例 7 ( 1 ) に示した条件と同様の PCR反応に より配列番号 3に示すポリヌクレオチドの 2125から 3119番目の塩基を含む DNA 断片及び同 2569から 3119番目の塩基を含む DNA断片をそれぞれ抽出した。 これ らの DNA断片をそれぞれ制限酵素 Sacl及び BamHIで処理し、同様に制限酵素 Sacl および Bglllで処理した pGL3- Basicベクターに連結して pGL3- CbAP40p [2125_ 3119]及び、 pGL3-CbAP40p [2569- 3119]をそれぞれ構築した。 これら pGL3- CbAP40p [1-1231]、 pGL3 - CbAP40p [1364-3119]、 pGL3-CbAP40p [2125-3119]及び pGL3-CbAP40p [2569-3119]はいずれも上述の配列番号 19及び 20に示す DNAプラ イマ一を用いて揷入配列の塩基配列を決定した。 その結果いずれも配列番号 3に 示すポリヌクレオチドの部分断片を有しており、 各プラスミド名の括弧内に記し た数値に相当する該ポリヌクレオチドの塩基配列部分を含むことを確認した。
( 2 ) ヒ ト CbAP40プロモーターの転写誘導活性を利用した化合物のスクリ一二 ング系の構築
pGL3-CbAP40pを上述の実施例 2 ( 1 ) に示した方法に従つて COS- 1細胞にトラ ンスフエタトし、 空ベクター pGL3 - Basic Vectorをトランスフエクトした場合と 比較することにより、 該ポリヌクレオチドのプロモーターとしての発現誘導活性 をルシフヱラーゼの活性を指標に測定した。細胞へのトランスフエクション効率 の補正及ぴルシフェラーゼァッセィの詳細は以下の方法に従った。 培養細胞 293 細胞 (セルパンク社) は 12ゥヱル培養プレート (ゥエル直径 22 mm) の培養皿に 各ゥヱル 1mlの 10%牛胎児血?冑 (シグマ社) を含む最少必須培地 DMEM (ギブコ 社) を加えて 70%コンフルェントの状態になるまで培養した。 この細胞にリボフ ェクタミン法 (LIP0FECTAMINE™2000;インビトロジ工ン社) を用いて、 添付のプ 口トコールに従い上述の pGL3- CbAP40pあるいは p GL3 - Basic Vector (0. 8 g/ ゥエル) を、 一過性にトランスフエクトした。 ピオグリタゾン (pioglitazone, (+) -5- [4- [2- (5-ェチル -2-ピリジニル)ェトキシ]ベンジル] -2, 4-チアゾリジンジ オン) 0. Ι μ Μあるいは 1. 0 μ Μ、 あるいは 10 μ Μを培地に添加して 24時間培養 した後、 培地を除去し、 細胞を PBSで洗浄した後にゥエルあたり 0. 1 mlの細胞 溶解液 (100 mM リン酸カリウム (ρΗ7· 8) 、 0. 2%トリ トン X- 100) を添加して細 胞を溶解した。 ピオグリタゾンは特許 1853588号明細書の方法に従って合成した。 この細胞溶解液 100 μ 1にルシフエラ一ゼ基質溶液 ΙΟΟ , Ι (ピッ力ジーン社) を添加し、 AB- 2100型化学発光測定装置 (アト一社) を用いて 10秒間の発光量 を測定した。ルシフエラーゼレポ一タ 遺伝子と同時に -ガラタトシダーゼ発現 遣伝子をもつプラスミ ド p CHllO (アマシャムフアルマシァパイォテク社) ΟΛ μ gノウエルを細胞にコトランスフヱタトし、 β -ガラク トシダーゼ活性検出キット Galacto- Light Plus™system (アプライドバイオシステム社) を用いて ]3 -ガラク トシダーゼ活性を測定及び数値ィ匕した。 れを導入遺伝子のトランスフヱクショ ン効率として上述のルシフヱラーゼ活性を各ゥエル毎に補正した。
結果を図 4に示す。 図の値は平均土 SEを示している。 ヒ ト CbAP40遺伝子上流 配列の存在に依存した有意なプロモーター活性が確認された。 さらにこのプロモ 一ター活性はィンスリン抵抗性改善薬であるチアゾリジン誘導体の一種ピオグリ タゾン 0. 1-10 μ Μを加えた場合に抑制されることが明らかになった。さらに、 同 じ実験を pGL3- CbAP40pに替えて上述で作製した pGL3-CbAP40p [1-1231]、 pGL3- CbAP40p [1364-3119] , pGL3-CbAP40p [2125-3119]、 あるいは pGL3- CbAP40p [2569 - 3119]に置き換えて実施した。 pGL3-CbAP40p [1364- 3119]又は pGL3- CbAP40p [2125_ 3119]を用いた場合は、 プロモーター活性が検出され、 その活性はピオダリタゾ ンにより抑制された。 pGL3_CbAP40p [2569- 3119]を用いた場合には、 プロモータ 一活性は検出されたが、 ピオグリタゾンによる抑制効果は観察されなかった。 pGL3- CbAP40p [l - 1231]を用いた場合には、 プロモーター活性は検出されなかった。 従って、 プロモーター活性の発現には配列番号 3のポリヌクレオチドの第 2125〜 3119番の塩基配列が含まれていれば良いことがわかった。 また、 ピオグリタゾン によるプロモータ一活性の抑制作用は配列番号 3のポリヌクレオチドの第 2125〜 2569番の塩基までの DNA配列の存在に依存して引き起こされることが明らかにな つた。 すなわち、 配列番号 3、 配列番号 3で表される塩基配列の第 1364〜3119番 及び第 2125〜3119番で表される塩基配列からなるポリヌクレオチドにはヒト CbAP40の発現を制御するプロモータ一配列が含まれており、このプロモーターは インスリン抵抗性を低減させるピオグリタゾンなどの PPAR yリガンドによって負 に制御されることを示された。この事実から、 インスリン抵抗性を低減させるチ ァゾリジン誘導体によって CbAP40の発現が抑制されることによりインスリン抵 抗性の低減が引き起こされていることが予想された。 したがって本実施例におけるヒト CbAP40のプロモーターアツセィは、 PPAR y 蛋白質あるいはその応答配列を利用せずに PPAR yリガンドあるいはインスリン抵 抗性改善薬をスクリーニングするために利用できる。
さらに、 ピオグリタゾンによるプロモーター活性の抑制作用は上述のとおり配 列番号 3の第 2125〜2569番の塩基配列の存在に依存して引き起こされること力 ら、 この配列部分を含むポリヌクレオチドを、 CbAP40以外の遺伝子の、 転写誘導 に必要な TATAボックスを含む最低限の長さのプロモーター配列の上流に配置す ることによって、 同様に PPAR y蛋白質あるいはその応答配列を利用せずに PPAR 7リガンドあるいはィンスリン抵抗性改善薬をスクリ一ユングする,ために利用す ることができる。
本スクリーニング方法により得られる化合物には、 従来の PPAR y蛋白質を介在 させるスクリーエング方法によって得られたチアゾリジン誘導体などの典型的な PPAR yリガンドとは異なる構造的特徴を有するものが含まれうる。 すなわち、 チ ァゾリジン誘導体に見られる浮腫や脂肪重量増加などの副作用を付帯しない 2型 糖尿病改善剤を得ることが可能である。
[実施例 8 ] マウス CbAP40のクロー-ング
( 1 ) マウス CbAP40のクローニング
前述実施例 5で作製した糖尿病モデルマゥスの筋肉由来 mRNAを鎵型とした 1 本鎖 DNAのライブラリーを用いて、 公知の方法によりこれを铸型としてさらに PCRを行って 2本鎖 DNAからなる cDNAライブラリーを作製した。 これを錶型とし、 配列番号 27及び配列番号 28に示す一対のプライマーを用いて、 前述の実施例 1 ( 3 )と同様の PCR法により、 CbAP40マウスオルソ口グ遺伝子全長 cDNAの増幅を 試みた。その結果得られた約 1. 4 kbpの DNA断片を、 実施例 1と同様の方法に従 い塩基配列を決定したところ、 配列番号 25に示す 1404 bpからなる遺伝子の全 長 cDNAが含まれることを確認した。該 cDNAは配列番号 26に示すポリぺプチドを コードする新規の遺伝子である。 公知の登録遺伝子 GenBank匪 _172708及ぴ AK044445は、 該新規遺伝子と部分的に同一の配列を有するが、 cDNAの 3' 端が異 なっており、 コードするポリぺプチドはカルボキシル末端長および配列が全く異 なる分子である。 対照的に該新規遺伝子はヒト CbAP40とほぼ同一の C末端構造 を有しており、 配列番号 1に示すヒト CbAP40遺伝子と 75. 6%、 コードするポリ ペプチドは配列番号 2·に示すヒ ト CbAP40蛋白質と 71. 1%の高い相同性をそれぞ れ示す。 この知見から該新規遺伝子は本発明ヒ ト CbAP40のマウスオルソ口グ遺 伝子であり、 ヒ ト CbAP40とマウス CbAP40は同じ機能を有するといえる。
( 2 ) マウス CbAP40発現ベクターの作製'
前述の実施例 1 ( 4 ) に示した方法と同様の方法により上記マゥス CbAP40cDNA を pcDNA3. 1- V5-T0P0 (ィンビト口ジェン社)にクローニングした。 クローニングに 際してマウス CbAP40の停止コドンを除いてタグを融合させるため、 配列番号 29 及ぴ配列番号 27に示すプライマーを用いて PCRおよびべクタ一へめリクローニ ングを行つた。 作製した該発現べクタ一を pcDNA - mCbAP40と名付けた。
( 3 ) マウス CbAP40発現細胞の作製、 およびマウス CbAP40蛋白質の検出 前述実施例 2の ( 1 ) に示した方法に従い、 pcDNA_mCbAP40を 293細胞にリン 酸カルシウム法を用いて一過性に導入した。 30時間培養した後、 培地を除去し、 細胞を PBSで洗浄した後にゥエルあたり 0. 1 mlの細胞溶解液(100 mM リン酸カ リウム(pH7. 8)、0. 2%トリ トン X - 100)を添カ卩して細胞を溶解した。 続いて前述実 施例 2 ( 2 ) に示した方法に従い、 ポリアクリルアミド電気泳動による分離と抗 V5抗体を用いたウェスタンプロットでマウス CbAP40蛋白質の検出を行った。 そ の結果、 45ァミノ酸からなる C末端側のタグを含む合計 512ァミノ酸からなるマ ウス CbAP40- V5 - His6融合蛋白質を示す約 60 kDaの蛋白質が発現ベクター pcDNA - mCbAP40の細胞導入に依存して検出されることを確認した。これにより、 培養細胞 中でクローユングした前述のマウス CbAP40は、 遺伝子の全長領域が確かに発現 し、 蛋白質として安定な構造をとりうることが明らかになった。
[実施例 9 ] ヒ トおよびマゥス CbAP40と c - Cblの相互作用の検証
' ( 1 ) GST融合 c-Cbl発現プラスミ ドの作製
マウス C- Cblの cDNAを GST融合発現ベクター pGEX- 6P- 1 (アマシャムパイォサ ィエンス社)に揷入するため、 実施例 1 ( 1 ) で得られたマウス C- Cblの cDNAを 鐯型として配列番号 30および 31で表される DNAオリゴプライマー (プロリゴ 社) を用いた PCR反応により、 cDNAの両末端に末端にそれぞれ制限酵素 EcoRVサ イトと Xholサイトを付加した。 なお PCR反応は実施例 1 ( 1 ) で述べた条件で 行った。 この cDNA断片を制限酵素 EcoRV及ぴ Xholで、 ベクター pGEX - 6P- 1を制 限酵素 Smal及ぴ Xholでそれぞれ切断し、 直鎖状にした。 両者を混合したものを DNA ligase液 (DNA ligation kit II; 宝酒造社) と混合して 16°Cで 3時間処理 し、 pGEX-6P - 1のマルチクローユングサイトに c_Cbl cDNAが挿入されたプラスミ ド (以下 pGEX_Cblと略称する) を作製した。 配列番号 32に示すオリゴヌクレオ チドをプライマーとして、 シーケンシングキット (アプライドバイオシステム 社) 及びシーケンサー (ABI 3700 DNA sequencer アプライドバイォシステムズ 社) を用いて塩基配列の決定を行い、 c- Cblの cDNAのコード領域と pGEXベタタ 一の GSTタグ翻訳フレームが一致して挿入されているものを選択した。
( 2 ) GST融合 c - Cblタンパク質の精製
上述の (1 ) で得られたプラスミド pGEX_Cblを用いて、 実施例 3と同様に、 GST-Cblを精製した。 コントロールとして pGEX- 6P-1で形質転換した大腸菌 BL21 から GST部分のみの蛋白質 (以下 GST蛋白質と略記する) を上述と同様に発現誘 導して精製した。 公知の方法に従つて SDSポリアタリルァミドゲル電気泳動法に よる分離及びクーマジープリリアントブルー染色を行い、 期待される分子量の蛋 白質 (GST- Cbl; 100 kDa、GST蛋白質; 26 kDa) が精製されていることを確認した。
( 3 ) c - Cbl蛋白質とヒト又はマウス CbAP40蛋白質との生化学的結合の確認 上述 (2 ) で作製した GST- Cbl蛋白質を用いて、 ヒ トおよびマウス CbAP40蛋 白質と c_Cbl蛋白質の直接の相互作用の有無を GST- pull do皿法 (実験工学、 Voll3、 No. 6、 1994年 528頁松七五三ら) によって確認した。 まず上述実施例 1 ( 4 )で作製した pcDNA - CbAP40あるいは上述実施例 8 ( 2 ) で作製した pcDNA- mCbAP40の 0. 5 μ gをそれぞれ錶型として TNT kit (TNTRQuick Coupled
Transcript i on/Trans 1 at i on System;プロメガ社) 40 μ 1およびラジオアイソトー プ (redivue Pro-mix L- [35S] ;アマシャム) 1. 3 MBqを用いて添付のプロトコ一 ルに従い in vitroでの転写 ·翻訳によりラジオアイソトープラベルされたヒト あるいはマウス CbAP40蛋白質を調製した。 このヒトあるいはマウス CbAP40蛋白 質調製液各 15 ^ 1と上述 (2 ) でダルタチオンビーズ上に精製した GST蛋白質あ るいは GST- Cbl各又は 1 μ gを混合し、 0. 3 mlの Buffer A (50 mMトリス塩酸
(pH7. 5) 、 10%グリセロール、 120 mM NaCl、 1 mM EDTA、 0. 1 mM EGTA、 0. 5 mM PMSF、 0. 5%NP-40) を添カロして 4°Cで 1時間振盪した。 の後遠心分離によりビ ーズ上の GST蛋白質あるいは GST- Cblに結合する蛋白質を共沈殿させた。 これを 上述の Buffer Aの NaCl濃度を 100 mMに置換した緩衝液 0. 5 mlでけん濁し、 再 度遠心分離により共沈殿させた。 この操作を 4回繰り返したのち、 沈殿物中の蛋 白質を公知の方法に従って SDSポリアクリルアミドゲル電気泳動法により分離し、 オートラジオグラフィによりヒトあるいはマウス CbAP40蛋白質を検出した。 そ の結果、 GST蛋白質を混合した場合には検出されないバンドが GST_Cblを混合し た場"^'に検出された。 これにより、本発明のポリペプチドの一つであるヒトある いはマウス CbAP40は、 同様に c-Cbl蛋白質と相互作用することが明らかになり、 これらヒト、 マウスの CbAP40は両動物種で互いに同一の機能を担うカウンター パートであることが裏付けられた。 従って本発明のマウス CbAP40は、 本発明の ヒト CbAP40と同様に c - Cbl蛋白質との相互作用を介してィンスリン抵抗性の惹 起に関与することがわかつた。
産業上の利用可能性
CbAP40はィンスリンシグナルに関わる新たな新規分子であり、 本発明のポリぺ プチド、 ポリヌクレオチド、 発現ベクター及び細胞は、 2型糖尿病改善薬、 特に インスリン抵抗性改善薬若しくは糖代謝改善薬の同定及ぴスクリーユングに有用 である。 本発明のスクリーニング方法により 2型糖尿病改善薬をスクリーニング することができる。 また、 本発明のポリペプチド及ぴ該ポリペプチドをコードす るポリヌクレオチドは糖尿病の診断に有用である。 , 配列表フリーテキスト
以下の配列表の数字見出しく 2 2 3 >には、 「Art icial Sequence の説明 を記載する。具体的には、 配列表の配列番号 8, 9, 11, 19, 20, 30, 31, 33, 34の配列で 表される各塩基配列は、 人工的に合成したプライマー配列である。 以上、 本発明を特定の態様に沿って説明したが、 当業者に自明の変形や改良は 本発明の範囲に含まれる。

Claims

請 求 の 範 囲
1. ( 1 ) (i) 配列番号 3で表される塩基配列、 (ii) 配列番号 3で表される塩 基配列の第 1364〜3119番で表される塩基配列、 又は (iii) E列番号 3で表され る塩基配列の第 2125〜3119番で表される塩基配列からなるポリヌクレオチド、 あるいは (iv) 前記 (i) 〜 (iii) で表される塩基配列において、 1〜; 10個の塩 基が欠失、 置換、 及 ノ又は挿入された塩基配列を含み、 配列番号 2若しくは配 列番号 26で表されるァミノ酸配列からなるポリぺプチドのプロモータ一活性を 有するポリヌクレオチド
を含む発現べクターで形質転換された細胞と試験物質とを接触させる工程、 及び
( 2 ) プロモーター ^性を検出する工程
を含む、 試験物質が前記(i)乃至(iv)のポリヌクレオチドのプロモーター活性を 阻害するか否かを分析する方法。
2. 請求の範囲 1に記載の方法によ.る分析工程、 及び . プロモータ一活性を阻害する物質を選択する工程 '
を含む、 請求の範囲 1に記載のポリべプチドの発現を抑制する物質をスクリ一二 ングする方法。
3. 請求の範囲 2に記載の方法により 2型糖尿病改善薬をスクリーニングする方 法。
4. ( 1 ) 配列番号 3で表される塩基配列、 (2 ) 配列番号 3で表される塩基配 列の第 1364〜3119番で表される塩基配列、 又は (3 ) 配列番号 3で表される塩 基配列の第 2125〜3119番で表される塩基配列からなるポリヌクレオチド、 ある いは (4 ) 前記 (1 ) 〜 (3 ) で表される塩基配列において、 1〜10個の塩基が 欠失、 置換、 揷入、 及び Z又は付加された塩基配列からなり、 請求の範囲 1に記 載のポリペプチドのプロモータ一活性を有するポリヌクレオチド。
5. ( 1 ) 配列番号 2又は配列番号 26で表されるアミノ酸配列、 (2 ) 配列番号 2又は配列番号 26で表されるアミノ酸配列において、 1〜10個のアミノ酸が欠失 置換、 及び Z若しくは挿入されたアミノ酸配歹 IJ、 あるいは (3 ) 配列番号 2又は 配列番号 26で表されるァミノ酸配列との相同性が 90%以上であるァミノ酸配列 を含み、 かつ c- Cblと結合及び 若しくは過剰発現により糖取り込みを阻害する ポリペプチドと c-Cblと試験物質とを接触させる工程、 及び
前記ポリぺプチドと c - Cblとの結合を検出する工程
を含む、試験物質が前記結合を阻害するか否かを分析する方法。
6. 請求の範囲 5に記載の方法による分析工程、 及び
結合を阻害する物質を選択する工程 '
を含む、 請求の範囲 5に記載のポリべプチドと c- Cblとの結合阻害物質をスクリ 一二ングする方法。
7. 請求の範囲 6に記載の方法により 2型糖尿病改善薬をスクリーニングする方 法。
8. 配列番号 2又は配列番号 26で表されるァミノ酸配列、 あるいは配列番号 2又 は配列番号 26で表されるアミノ酸配列において、 1〜10個のアミノ酸が欠失、 置 換、 及び/若しくは挿入されたアミノ酸配列を含み、 かつ c - Cblと結合及ぴ Z若 しくは過剰発現により糖取り込みを阻害するポリぺプチド。
9. 配列番号 2若しくは配列番号 26で表されるァミノ酸配列からなるポリぺプチ ド、。
10. 配列番号 26で表されるァミノ酸配列からなるポリぺプチド
又は配列番号 26で表されるアミノ酸配列において 1〜: 10個のアミノ酸が欠失、 置換、 挿入及び/若しくは付加されたァミノ酸配列からなり、 かつ c - Cblと結合 及び/若しくは過剰発現により糖取り込みを阻害するポリべプチドをコードする ポリヌクレオチド。
11. 請求の範囲 4又は請求の範囲 10に記載のポリヌクレオチドを含む発現べク ター。
12. 請求の範囲 11に記載の発現ベクターで形質転換された細胞。
13. ( 1 ) 請求の範囲 8に記載のポリペプチド、 (2 ) 請求の範囲 8に記載のポ リペプチドをコードするポリヌクレオチド又は請求の範囲 1の(i)乃至(iv)に記 載のポリヌクレオチド、 あるいは (3 ) 請求の範囲 8のポリペプチドをコードす るポリヌクレオチド又は請求の範囲 1の(i)乃至(iv)に記載のポリヌクレオチド を含む発現ベクターで形質転換された細胞からなる 2型糖尿病改善薬スクリー二 ングツール。
14. ( 1 ) 請求の範囲 8に記載のポリペプチド、 (2 ) 請求の範囲 8に記載のポ リぺプチドをコードするポリヌクレオチド又は請求の範囲 1の(i)乃至(iv)に記 載のポリヌクレオチド、 あるいは (3 ) 請求の範囲 8のポリペプチドをコードす るポリヌクレオチド又は請 の範囲 1の(i)乃至(iv)に記載のポリヌクレオチド を含む発現べクターで形質転換された細胞の 2型糖尿病改善薬スクリ一二ングの ための使用。
PCT/JP2004/011585 2003-08-08 2004-08-05 糖尿病改善薬のスクリーニングに利用できる新規蛋白質 WO2005014813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04771560A EP1652922A4 (en) 2003-08-08 2004-08-05 NEW APPLICABLE PROTEIN FOR SCREENING TO A MEDICAMENT TO IMPROVE TYPE 2 DIABETES
JP2005513016A JP4264904B2 (ja) 2003-08-08 2004-08-05 糖尿病改善薬のスクリーニングに利用できる新規蛋白質
US10/547,365 US20070015155A1 (en) 2003-08-08 2004-08-05 Novel protein usable in screening drug improving type 2 diabetes
CA002517489A CA2517489A1 (en) 2003-08-08 2004-08-05 Novel protein usable in screening drug improving diabetes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003206948 2003-08-08
JP2003-206948 2003-08-08
JP2004000732 2004-01-06
JP2004-000732 2004-06-01

Publications (1)

Publication Number Publication Date
WO2005014813A1 true WO2005014813A1 (ja) 2005-02-17

Family

ID=34137888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011585 WO2005014813A1 (ja) 2003-08-08 2004-08-05 糖尿病改善薬のスクリーニングに利用できる新規蛋白質

Country Status (5)

Country Link
US (1) US20070015155A1 (ja)
EP (1) EP1652922A4 (ja)
JP (1) JP4264904B2 (ja)
CA (1) CA2517489A1 (ja)
WO (1) WO2005014813A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037482A1 (ja) * 2005-09-30 2007-04-05 The University Of Tokyo 真核細胞におけるタンパク質-タンパク質相互作用を検出するためのキットと方法
WO2007141971A1 (ja) * 2006-06-07 2007-12-13 National University Corporation, Tokyo Medical And Dental University 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135075A (ja) * 2001-11-05 2003-05-13 Research Association For Biotechnology 新規な全長cDNA

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517302A (ja) * 1999-11-12 2003-05-27 ワーナー−ランバート・カンパニー、リミテッド、ライアビリティ、カンパニー Cap遺伝子プロモーターのクローニングおよび特性解析
EP1308459A3 (en) * 2001-11-05 2003-07-09 Research Association for Biotechnology Full-length cDNA sequences

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003135075A (ja) * 2001-11-05 2003-05-13 Research Association For Biotechnology 新規な全長cDNA

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAING S.H. ET AL.: "Cloning and functional characterization of related TC10 isoforms, a subfamily of Rho proteins involved in insulin-stimulated glucose transport", J. BIOL. CHEM., vol. 277, 2002, pages 13067 - 13073, XP002904187 *
See also references of EP1652922A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037482A1 (ja) * 2005-09-30 2007-04-05 The University Of Tokyo 真核細胞におけるタンパク質-タンパク質相互作用を検出するためのキットと方法
WO2007141971A1 (ja) * 2006-06-07 2007-12-13 National University Corporation, Tokyo Medical And Dental University 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna
US8222383B2 (en) 2006-06-07 2012-07-17 National University Corporation, Tokyo Medical And Dental University DNA encoding polypeptide capable of modulating muscle-specific tyrosine kinase activity

Also Published As

Publication number Publication date
CA2517489A1 (en) 2005-02-17
EP1652922A1 (en) 2006-05-03
JP4264904B2 (ja) 2009-05-20
US20070015155A1 (en) 2007-01-18
JPWO2005014813A1 (ja) 2006-10-05
EP1652922A4 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
Taylor et al. Thymopoietin (lamina‐associated polypeptide 2) gene mutation associated with dilated cardiomyopathy
Thomas et al. Bridge-1, a novel PDZ-domain coactivator of E2A-mediated regulation of insulin gene transcription
JPWO2006137597A1 (ja) 新規生理物質nesfatinとその関連物質、およびそれらの用途
Santiard-Baron et al. Identification of β-amyloid-responsive genes by RNA differential display: early induction of a DNA damage-inducible gene, gadd45
AU2001295457B2 (en) Use of CARP inhibitors for the treatment of heart diseases
Johnston et al. Harp (harmonin‐interacting, ankyrin repeat‐containing protein), a novel protein that interacts with harmonin in epithelial tissues
JP4264904B2 (ja) 糖尿病改善薬のスクリーニングに利用できる新規蛋白質
JP4419077B2 (ja) Cap結合蛋白質
WO2001004299A1 (fr) Facteur regulant l&#39;agglutination de la proteine beta-amyloide
EP1354946B1 (en) Bhlh-pas proteins, genes thereof and utilization of the same
JP2002511735A (ja) アダプター蛋白質frs2および関連する物質および方法
JP4438951B2 (ja) Akt2に結合する蛋白質
JP4797508B2 (ja) 新規グルタミン酸受容体とその利用
CA2801162A1 (en) Diagnostic, screening and therapeutic applications of ocab-based tools
KR101338885B1 (ko) Mgc4504의 용도
WO2005100566A1 (ja) 新規サルgpr103及びサルqrfp並びにgpr103を用いた化合物の評価方法
JPWO2004015103A1 (ja) Akt2結合蛋白質
Macleod Growth hormone inhibition in Autosomal Dominant Polycystic Kidney Disease
JP2006180738A (ja) 新規plc様タンパク質およびその利用
JP2005312364A (ja) 糖尿病治療剤スクリーニング方法
WO2005071098A1 (ja) 脂質代謝改善物質のスクリーニング方法
US20050032696A1 (en) Muscle transcription factors
JPWO2004078784A1 (ja) 線維化病態に関連する新規遺伝子
Severyn Regulation and evolutionary origins of repulsive guidance molecule C/hemojuvelin expression: a muscle-enriched gene involved in iron metabolism
WO2004005497A1 (ja) インスリン抵抗性改善薬スクリーニング方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004771560

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007015155

Country of ref document: US

Ref document number: 2517489

Country of ref document: CA

Ref document number: 10547365

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005513016

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004771560

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547365

Country of ref document: US