WO2007141971A1 - 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna - Google Patents

筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna Download PDF

Info

Publication number
WO2007141971A1
WO2007141971A1 PCT/JP2007/059050 JP2007059050W WO2007141971A1 WO 2007141971 A1 WO2007141971 A1 WO 2007141971A1 JP 2007059050 W JP2007059050 W JP 2007059050W WO 2007141971 A1 WO2007141971 A1 WO 2007141971A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
seq
polypeptide
dok
procedure
Prior art date
Application number
PCT/JP2007/059050
Other languages
English (en)
French (fr)
Inventor
Yuji Yamanashi
Osamu Higuchi
Kumiko Okada
Akane Inoue
Original Assignee
National University Corporation, Tokyo Medical And Dental University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation, Tokyo Medical And Dental University filed Critical National University Corporation, Tokyo Medical And Dental University
Priority to JP2008520460A priority Critical patent/JP5339246B2/ja
Priority to EP07742485.1A priority patent/EP2031062B1/en
Publication of WO2007141971A1 publication Critical patent/WO2007141971A1/ja
Priority to US12/329,208 priority patent/US8222383B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6887Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids from muscle, cartilage or connective tissue
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • A01K2217/077Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out heterozygous knock out animals displaying phenotype
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • G01N2333/91205Phosphotransferases in general
    • G01N2333/9121Phosphotransferases in general with an alcohol group as acceptor (2.7.1), e.g. general tyrosine, serine or threonine kinases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2878Muscular dystrophy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/38Pediatrics
    • G01N2800/385Congenital anomalies

Definitions

  • the present invention relates to a DNA encoding a polypeptide that controls the activity of a muscle-specific tyrosine kinase, a vector containing the DNA, a transformant introduced with the vector, a polypeptide encoded by the DNA, Antibodies that bind to this polypeptide, non-human transgenic animals deficient or altered in DNA, pharmaceutical compositions comprising DNA and Z or polypeptides, diseases resulting from abnormalities in neuromuscular junctions (e.g. congenital).
  • the present invention relates to methods for screening myasthenia syndrome, screening agents, screening methods for candidate compounds for therapeutic agents for diseases caused by abnormalities in neuromuscular junctions, and the like. Background art
  • a neuromuscular junction site (hereinafter also referred to as “NMJ") formed by joining a motor nerve terminal and a muscle is, for example, acetylcholine by a motor nerve! / This synapse is indispensable for the control of skeletal muscles via a specific neurotransmitter.
  • NMJ neuromuscular junction site
  • clusters high-density sites in which acetylcholine receptors (hereinafter also referred to as “AChRs”) are clustered in the post-synaptic region of the neuromuscular junction site. Need to be formed).
  • Non-Patent Documents 1 and 2 It has been found that neuromuscular transmission disorders such as congenital myasthenia syndrome and myasthenia gravis occur when a high-density site of acetylcholine receptors is formed normally (see Non-Patent Documents 1 and 2). ).
  • Non-Patent Document 3 Motor nerve terminals have been reported to secrete glycoprotein agrin in order to activate MuSK, a muscle-specific tyrosine kinase (see Non-Patent Document 3). It was reported that MuSK activation, which occurs in an adaline-dependent manner, is essential to form and maintain a post-synaptic structure containing a high-density site of the acetylcholine receptor (Non-Patent Document 4, 5).
  • AChR crowding is indispensable for preventing neuromuscular transmission impairment, and that MuSK activation is essential for this AChR crowding.
  • Non-Patent Document 1 A. G. Engel, K. Ohno and S. M. Sine, “Nature Reviews Neuroscience J, 4, 339 (2003)
  • Non-Patent Document 2 A. Vincent et al., "Annals of the New York Academy of Sciences", 998, 324 (2003)
  • Non-Patent Document 3 D. J. Glass et al., "Cell”, 85, 513 (1996)
  • Non-Patent Document 4 S. J. Burden, "Genes and Development ⁇ 12, 133 (1998)
  • Non-Patent Document 5 J. R. Sanes and J. W. Lichtman," Nature Reviews Neuroscience ", 2, 791 (2001)
  • Non-Patent Document 6 T. M. DeChiara et al., "Cell”, 85, 501 (1996)
  • Non-Patent Document 7 W. Lin et al., “Nature”, 410, 1057 (2001)
  • Non-Patent Document 8 X. Yang et al., "Neuron”, 30, 399 (2001)
  • Non-Patent Document 9 T. Misgeld et al., "Proceedings of the National Acad emy of Sciences, U.S.A", 102, 11088 (2005)
  • Non-Patent Document 10 W. Lin et al., "Neuron”, 46, 569 (2005)
  • the present invention relates to DNA encoding a polypeptide capable of controlling the activity of MuSK, a vector containing this DNA, a transformant introduced with this vector, a polypeptide encoded by DNA, and binding to this polypeptide Antibody, non-human transformed animal deficient or mutated in DNA, pharmaceutical composition containing DNA and Z or polypeptide, method for testing diseases derived from abnormalities of neuromuscular junction (for example, congenital myasthenia syndrome) and
  • the object is to provide a screening method of a candidate compound for a test drug, a therapeutic drug for a disease caused by an abnormality in a neuromuscular junction, and the like.
  • Dok-7 protein a novel polypeptide belonging to Dok family protein (a type of intracellular signal transduction protein) that controls various cellular activities (growth, survival, migration, differentiation, etc.)
  • Dok-7 protein a novel polypeptide belonging to Dok family protein (a type of intracellular signal transduction protein) that controls various cellular activities (growth, survival, migration, differentiation, etc.)
  • Dok-7 protein is highly expressed in muscle tissue and is involved in the activity of MuSK, thereby completing the present invention.
  • the present invention provides the following.
  • a pharmaceutical composition comprising the DNA according to (1) or the polypeptide according to (4) as an active ingredient.
  • a polypeptide having an amino acid sequence ability described in SEQ ID NO: 1 or a fragment thereof having a binding activity to a muscle-specific tyrosine kinase, and a muscle-specific thymusin kinase The procedure of contacting
  • a screening method comprising: comparing the binding activity in the presence of the test substance with the binding activity in the absence of the test substance.
  • a screening method for a candidate compound for a therapeutic agent for a disease caused by an abnormality in a neuromuscular junction
  • a screening method comprising
  • MuSK activity can be controlled. Therefore, according to these DNA and the like, neuromuscular transmission disorder can be prevented.
  • FIG. 1 is a diagram showing the amount of transcription of the DNA of the present invention in each organ.
  • FIG. 2 shows the expression level of the polypeptide of the present invention in each organ.
  • FIG. 3 shows the localization of the polypeptide of the present invention.
  • FIG. 4 is a diagram showing the interaction between the polypeptide of the present invention and a muscle-specific tyrosine kinase.
  • FIG. 5 shows the interaction between the polypeptide of the present invention and muscle-specific tyrosine kinase.
  • FIG. 6 shows the interaction between the polypeptide of the present invention and muscle-specific tyrosine kinase.
  • FIG. 7 is a graph showing the relationship between the amount of DNA introduced according to the present invention and the density of acetylcholine receptors.
  • FIG. 8 shows co-condensation of the polypeptide of the present invention and acetylcholine receptor.
  • FIG. 9 is a graph showing the relationship between the expression of the DNA of the present invention and the density of acetylcholine receptors.
  • FIG. 10 is a diagram showing the state of confluence of acetylcholine receptors induced by forced expression of the DNA of the present invention.
  • FIG. 11 shows the localization of mRNA of the gene of the present invention.
  • FIG. 12 shows the interaction between the polypeptide of the present invention and muscle-specific tyrosine kinase.
  • FIG. 13 shows the interaction between the polypeptide of the present invention and muscle-specific tyrosine kinase.
  • FIG. 14 shows the interaction between the polypeptide of the present invention and muscle-specific tyrosine kinase.
  • FIG. 15 is a view showing an interaction between a polypeptide of the present invention and a muscle-specific tyrosine kinase.
  • FIG. 16 is a diagram showing the state of confluence of acetylcholine receptors induced by forced expression of the DNA of the present invention.
  • FIG. 17 is a diagram showing a muscle-specific tyrosine kinase and its substrate phosphorylation altered by suppression of DNA expression of the present invention.
  • FIG. 18 is a diagram showing the state of confluence of acetylcholine receptors altered by the suppression of DNA expression of the present invention.
  • FIG. 19 is a graph showing the time course of phosphorylation of the polypeptide of the present invention and muscle-specific tyrosine kinase.
  • FIG. 20 is a map of the gene of the present invention.
  • FIG. 21 shows the presence or absence of a DNA knockout of the present invention.
  • FIG. 22 shows the presence or absence of the polypeptide of the present invention.
  • FIG. 23 is a view showing a lung state changed by the knockout of the DNA of the present invention.
  • FIG. 24 is a diagram showing the state of confluence of acetylcholine receptors altered by the knockout of the DNA of the present invention.
  • FIG. 25 shows the interaction between the polypeptide of the present invention and muscle-specific tyrosine kinase.
  • FIG. 26 shows the N-terminal region of the polypeptide of the present invention and its homologous protein.
  • the “DNA” in the present invention may be either a sense strand or an antisense strand (for example, can be used as a probe), and the shape thereof may be either single-stranded or double-stranded. Further, it may be genomic DNA, cDNA, or synthesized DNA.
  • the most preferred embodiment of the DNA of the present invention is a DNA having the base sequence shown in SEQ ID NO: 2, but the DNA of the present invention further includes various mutants that control the activity of muscle-specific tyrosine kinase. And homologs.
  • control of the activity of a muscle-specific tyrosine kinase includes improving (ie, activating) and suppressing the activity of a muscle-specific tyrosine kinase.
  • Activation of muscle-specific tyrosine kinase refers to the ability of tyrosine in the muscle-specific tyrosin kinase molecule to be phosphorylated and / or promote AChR crowding.
  • Variants and homologues of DNA having the base sequence described in SEQ ID NO: 2 include, for example, DNA having a base sequence capable of hybridizing with the base sequence described in SEQ ID NO: 2 under stringent conditions.
  • stringent conditions for example, the reaction is performed at 40 to 70 ° C. (preferably 60 to 65 ° C.) in a normal hybridization buffer, and the salt concentration is 15 to 300 mM.
  • the conditions for washing in a washing solution are mentioned.
  • “one or more” is usually within 50 amino acids, preferably 30 amino acids or less. More preferably, it is within 10 amino acids (for example, within 5 amino acids, within 3 amino acids, 1 amino acid).
  • it is desirable that the amino acid side chain is conserved among the amino acid residues that are mutated, and the amino acid side chain is conserved and mutated to another amino acid.
  • amino acid side chain properties include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids with aliphatic side chains (G, A, V, L, I, P), amino acids with hydroxyl-containing side chains (S, T, ⁇ ), sulfur atom-containing side Amino acids with chains (C, M), amino acids with carboxylic acid and amide-containing side chains (D, N, E, Q), amino groups with base-containing side chains (R, K, ⁇ ), aromatics Amino acids having side chains (H, F, Y, W) can be mentioned (both in parentheses represent single letter amino acids).
  • amino acid sequence of Nos. 1 to 230 described in SEQ ID NO: 1 one or more amino acids have an amino acid sequence substituted, deleted and Z or added (provided that 1 to 60 of SEQ ID NO: 1 And a DNA encoding a polypeptide that controls the activity of a muscle-specific tyrosine kinase is a preferred embodiment of the DNA of the present invention!
  • the mutant or homologue of the DNA having the base sequence described in SEQ ID NO: 2 includes a DNA having a high degree of homology with the base sequence described in SEQ ID NO: 2.
  • Such DNA is preferably 90% or more, more preferably 95% or more (96% or more, 97% or more, 98% or more, 99% or more) of the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing.
  • the homology of amino acid sequences and nucleotide sequences is determined by the algorithm BLAST (Proc. Natl. Acad. Sci. USA 90: 5873-5877, 1993) by Karlin and Altschul. Can be determined.
  • the method for obtaining the DNA of the present invention is not particularly limited, but a method for obtaining cDNA by reverse transcription from mRNA (for example, RT-PCR method), a method for preparing from genomic DNA, and chemical synthesis. Examples thereof include known methods such as a synthesis method and a method for isolation from a genomic DNA library or a cDNA library (for example, see JP-A-11 29599).
  • the vector of the present invention can be prepared by inserting the above DNA into an appropriate vector.
  • Appropriate vectors are those that can be appropriately selected according to the purpose of use as long as they can be replicated or self-replicated in various prokaryotic and Z or eukaryotic hosts. .
  • a high copy vector can be selected when a large amount of DNA is desired
  • an expression vector can be selected when a polypeptide is desired.
  • Specific examples thereof are not particularly limited, and examples thereof include known vectors described in JP-A-11-29599.
  • the transformant of the present invention can be prepared by introducing a vector containing the aforementioned DNA into a host.
  • Such a host is not particularly limited as long as it can be adapted and transformed with the vector of the present invention.
  • Specific examples thereof include, but are not limited to, bacteria, yeast, animal cells, insect cells, and the like. Natural cells or artificially established cells (see JP-A-11 29599) ).
  • the method for introducing the vector can be appropriately selected depending on the type of the vector and the host. Specific examples thereof include, but are not limited to, publicly known methods such as a protoplast method and a combitent method (for example, see JP-A-11 29599).
  • the polypeptide of the present invention can be produced, for example, by using a transformant into which an expression vector containing the aforementioned DNA has been introduced. That is, first, this transformant is cultured under appropriate conditions to synthesize a protein (polypeptide) encoded by this DNA. Then, the polypeptide of the present invention can be obtained by recovering the synthesized protein from the transformant or the culture solution.
  • the culture of the transformant is appropriately selected according to the type of the transformant according to the type of the transformant so that the polypeptide can be easily obtained in large quantities, and the temperature, P of the nutrient medium is selected. H, culture time, etc. can be appropriately adjusted (see, for example, JP-A-11-29599).
  • the method for isolating and purifying a polypeptide is not particularly limited, and is a known method such as a method using solubility, a method using a difference in molecular weight, a method using charge, etc. 11-29599).
  • the antibody or antibody fragment of the present invention binds to the above-described polypeptide of the present invention.
  • the antibody of the present invention may be a polyclonal antibody or a monoclonal antibody!
  • antibodies include anti-serum obtained by immunizing animals such as rabbits with the polypeptide of the present invention, polyclonal antibodies and monoclonal antibodies of all classes, human antibodies and humanized antibodies by gene recombination, Modified antibodies are included.
  • the antibody fragment of the present invention includes Fab, F (ab,) 2, Fv, or a single chain Fv (scFv) (Huston, JS) in which the H chain and the L chain Fv are linked with an appropriate linker. et al., Proc. Natl. Acad. Sci. USA (1988) 85, 5879-5883).
  • the pharmaceutical composition of the present invention can be prepared by containing the aforementioned DNA and Z or polypeptide as an active ingredient.
  • this pharmaceutical composition since DNA and / or polypeptide is contained as an active ingredient, MuSK can be activated and formation of an AChR high-density site can be promoted. For this reason, this pharmaceutical composition can be used as a therapeutic or prophylactic agent for a disease (for example, congenital myasthenia syndrome) derived from an abnormality in a neuromuscular junction (see Examples described later).
  • a disease for example, congenital myasthenia syndrome
  • the pharmaceutical composition of the present invention can be administered orally or parenterally (for example, direct administration to muscle by injection).
  • the dosage should be appropriately selected because it varies depending on the patient's age, sex, weight, symptoms, therapeutic effect, administration method, treatment time, and the like.
  • compositions include, but are not limited to, koji, excipients, diluents, thickeners, disintegrants, stabilizers, preservatives, buffering agents, emulsifiers, fragrances, colorants, sweetness And carriers such as agents, thickeners, and solubilizers.
  • various forms of pharmaceutical compositions such as tablets, pills, powders, granules, injections, liquids, capsules, trowels, elixirs and the like can be easily prepared.
  • a non-human transformed animal can be produced by introducing, mutating, or knocking out the DNA of the present invention into a non-human animal.
  • this non-human transgenic animal since the DNA of the present invention is introduced, mutated, or knocked out, the mode of gene expression in the animal body changes. Therefore, this transformed animal can be used as a means for analyzing the function of the DNA of the present invention in the animal body, a screening system for substances that regulate this function, and the like.
  • Non-human animals are not particularly limited !, but mice, rats, guinea pigs, hamsters, u There are herons, goats, pigs, nu, cats.
  • a method for producing a non-human transformed animal is, for example, as follows. First, the DNA of the present invention
  • DNA mutation or DNA homologous recombination with DNA is introduced into fertilized eggs of non-human mammals. And by transplanting this fertilized egg into a female individual uterus and generating it,
  • Non-human transformed animals transformed with DNA can be produced.
  • the non-human transgenic animal can be produced, for example, as follows: First, a female individual after ovulation by hormone administration is mated with a male. Next, a fertilized egg is extracted from the oviduct of a female individual on the first day after mating, and the vector containing the DNA of the present invention, DNA mutation, or DNA homologously recombined with DNA is microinjected into this fertilized egg. It introduces by the method etc. Then, after the introduced fertilized egg is cultured by an appropriate method, the surviving fertilized egg is transplanted into the uterus of a pseudo-pregnant female individual (temporary parent) to give birth to a newborn. Whether or not the DNA is transformed in this newborn can be confirmed by Southern analysis of the DNA extracted from the newborn's cells.
  • ES cell embryonic stem cell
  • the DNA of the present invention can be used for all examinations depending on whether or not it is affected by a disease (for example, congenital myasthenia syndrome) resulting from an abnormality in a neuromuscular junction site.
  • a disease for example, congenital myasthenia syndrome
  • a method for examining a disease eg, congenital myasthenia syndrome
  • an extraction procedure for extracting DNA from a cell cell of a subject An amplification procedure in which a polymerase chain reaction is carried out using a primer capable of specifically amplifying part or all of the DNA having the base sequence ability described in SEQ ID NO: 2 or its expression control region; and the base sequence of the amplified DNA
  • a decoding procedure for decoding and a comparison procedure for comparing the decoded nucleotide sequence with the nucleotide sequence set forth in SEQ ID NO: 2.
  • the DNA base sequence of the Dok-7 gene possessed by a suspected congenital myasthenia syndrome is converted to the DNA base sequence of the Dok-7 gene possessed by a normal subject (SEQ ID NO: 2 Compare with the description.
  • SEQ ID NO: 2 Compare with the description.
  • the suspect is It can be determined that the patient is suffering from a disease resulting from a site abnormality (for example, congenital myasthenia syndrome).
  • test method of the present invention for example, the DNA amplified in the amplification procedure, the myotube
  • wild-type myotubes MuSK-deficient myotubes
  • a judgment procedure for judging whether or not muscle-specific tyrosine kinase is activated This eliminates the case where the difference between the base sequence of the amplified DNA and the base sequence described in SEQ ID NO: 2 is merely a polymorphism, etc., thus improving the test accuracy.
  • Another test method is a detection procedure for detecting the expression level of DNA having the base sequence described in SEQ ID NO: 2 in the subject's cells; and the detected DNA expression level is determined according to SEQ ID NO: 2 in a healthy subject. And a comparison procedure for comparison with the expression level of the described DNA.
  • DNA expression includes a transcription level (mRNA expression) and a translation level (protein expression).
  • the expression level of DNA having the base sequence described in SEQ ID NO: 2 is compared between the subject and the healthy subject. As a result of this comparison, if the expression level of the DNA in the subject is significantly different from the expression level of the DNA in the healthy subject, the suspect is in a disease caused by an abnormality in the neuromuscular junction (for example, congenital myasthenia syndrome). Can be determined to be affected.
  • a test agent for a disease eg, congenital myasthenia syndrome
  • a test agent for a disease derived from an abnormality in a neuromuscular junction site
  • Primer or the above-mentioned antibody or antibody fragment as an active ingredient Have.
  • the polypeptide of the present invention can be used in a method for screening a candidate compound for a therapeutic agent for a disease (for example, congenital myasthenia syndrome) derived from an abnormality in a neuromuscular junction site. That is, the screening method includes a procedure for bringing the above-described polypeptide into contact with a test substance and a procedure for detecting the binding between the polypeptide and the test substance.
  • a disease for example, congenital myasthenia syndrome
  • a test substance in which binding to a polypeptide is detected can be specified as a candidate compound for a therapeutic agent.
  • V a step of contacting a polypeptide having an amino acid sequence ability described in SEQ ID NO: 1 or a fragment thereof having a binding activity with a muscle-specific tyrosine kinase and a muscle-specific tyrosine kinase; in the presence of a test substance And a procedure for comparing the binding activity with the binding activity in the absence of the test substance.
  • test substance in which the binding activity of the binding substance in the presence of the test substance is different from the binding activity of the binding substance in the absence of the test substance is detected.
  • another screening method includes a step of contacting a cell expressing a DNA having the base sequence described in SEQ ID NO: 2 with a test substance; a procedure of detecting a change in the expression level of the DNA; ,including.
  • DNA expression includes transcription level (mRNA expression) and translation level (protein expression).
  • a test substance in which a change in intracellular DNA expression level is detected can be identified as a candidate compound for a therapeutic drug.
  • another screening method includes a procedure for administering a test substance to the above-described non-human transformed animal; a procedure for detecting improvement in abnormality of the neuromuscular junction site in the non-human transformed animal; including.
  • a screening kit used in the above screening method comprises the polypeptide of the present invention.
  • the present invention also includes candidate compounds for therapeutic agents identified by the above screening methods.
  • the above-mentioned DNA base sequence and polypeptide amino acid sequence may be stored in a computer-readable recording medium.
  • the stored amino acid sequence of the polypeptide of the present invention and the base sequence of DNA can be databased using a computer. For this reason, this amino acid sequence and base sequence can be used as sequence information.
  • the recording medium is not particularly limited as long as it can be read by a computer.
  • Magnetic media such as a flexible disk, a hard disk, and a magnetic tape, CD-ROM, MO, CD-R, CD-RW, DVD-R DVD-RAM and other optical disks, semiconductor memory, and the like.
  • DNA and polypeptide of the present invention can also be used in a state of being bound as a carrier on a substrate.
  • DNA and polypeptide of the present invention can also be used in a state of being bound as a carrier on a substrate.
  • polypeptide or DN of the present invention the basis on which other polypeptides and DNA are bound is the polypeptide or DN of the present invention.
  • the substrate is not particularly limited, and examples thereof include a resin substrate such as a nylon film and a polypropylene film, a nitrocellulose film, a glass plate, and a silicon plate.
  • a resin substrate such as a nylon film and a polypropylene film
  • a nitrocellulose film such as a glass plate
  • a silicon plate such as a glass plate
  • a silicon plate such as a glass plate
  • hybridization is detected using, for example, a fluorescent material and a non-radioactive isotope material, a glass plate, a silicon plate, or the like that does not contain the fluorescent material can be preferably used as a base.
  • the polypeptide or DNA can be bound to the substrate by a known method.
  • the highly conserved amino acids of the PTB domain in Dok family molecules The sequence (which is composed of about 100 amino acids) was input to a known database (for example, NCBI BLASTSearch) to search for clones showing high homology. Based on the position information of the translation start codon and translation stop codon in the sequence information of the clones obtained as a result of this search, the ORF (base sequence region encoding the protein) of Dok-7 was estimated. Based on the ORF nucleotide sequence information, the following oligo primers were designed, and cDNA corresponding to the ORF region of human Dok-7 was isolated by PCR according to a conventional method. When the base sequence of the isolated full-length cDNA was decoded by a known method, it was the base sequence described in SEQ ID NO: 2 in the Sequence Listing.
  • NCBI BLASTSearch NCBI BLASTSearch
  • the cDNA obtained was expressed in mammalian cell expression vectors “pcDNA3.1 (trade name)” (Clontech), “ PC DNA3.1—myc / His (trade name)” (Clontech), “ Create a polypeptide with the amino acid sequence of SEQ ID NO: 1 in pE GFP-N3 plasmidj (Clontech) and “pGEX-4T-2” (Amersham Falmacia), an expression vector for E. coli cells. Inserted in a reading frame that can.
  • This insertion involves a PCR procedure using a primer designed by adding a restriction site to the restriction enzyme site in the multicloning site of the inserted vector, and restricts the amplified product and vector after PCR.
  • Enzyme treatment procedure, restriction enzyme-treated amplification product and vector ligase treatment procedure, ligase treated vector transformation procedure into E. coli, transformed E. coli cultured for a predetermined period, after culture The procedure for purifying a vector from the above-mentioned Escherichia coli and the well-known method were performed.
  • a polypeptide is synthesized in such a manner that a polyhistidine tag is fused to its N-terminus and a FLAG tag and myc tag are fused to its C-terminus.
  • pEGFP-N3 plasmid the polypeptide is synthesized in the form of a green fluorescent protein (EGFP) fused to its C-terminus.
  • the polypeptide is in a form in which a N-terminal tag is fused with a dartathione-S-transferase (hereinafter also referred to as “GST”) tag. Synthesized .
  • GST dartathione-S-transferase
  • a transformed C2 myogenic cell line was prepared by the following procedure. First, C2 myogenic cell line (C2C 12) obtained from ATCC (American Type Culture Collection) was cultured in Dulbecco's modified Eagle (DME) medium supplemented with 20 vol% calf serum (FBS). . Next, using “Lipofectamine2000” (manufactured by Invitrogen) to introduce “pcDNA3.1-my c, His” containing the above-described DNA of the present invention into the C2 myogenic cell line cultured to an appropriate number of cells. Thus, a transformant was prepared.
  • C2 myogenic cell line C2C 12 obtained from ATCC (American Type Culture Collection) was cultured in Dulbecco's modified Eagle (DME) medium supplemented with 20 vol% calf serum (FBS).
  • DME Dulbecco's modified Eagle
  • FBS vol% calf serum
  • a transformed 293T cell line was prepared by the following procedure. That is, first, the 293T cell line, which is a human cultured cell (non-muscle cell), was cultured in a DME medium supplemented with 10 vol% FBS. Next, transformation was performed by introducing “pcDNA3.1—myc / His” containing the above-described DNA into “293T cell line” cultured to an appropriate number of cells using “Lipofectamine 2000” (manufactured by Invitrogen). The body was made.
  • transformed E. coli was prepared by the following procedure. That is, first, “pGEX-4T-2” containing the above-mentioned DNA was introduced into E. coli cultured in LB medium to an appropriate cell concentration by a well-known heat shock method, and the transformant was transformed. Produced.
  • the polypeptide of the present invention was produced by the following procedure. That is, first, the above-described transformed Escherichia coli was cultured in LB medium to an appropriate cell concentration, and the cultured cells were collected by centrifugation. Next, the collected cells were suspended in 50 mM phosphate buffer (pH 8.0), and then the cell wall was crushed by ultrasonic waves. Next, the crushed material was centrifuged to obtain a membrane fraction containing the target protein. Then, from the crude solution obtained by solubilizing this membrane fraction with the surfactant “Triton X-100”, the protein of interest is obtained using Dartathion Sepharose (Amersham Pharmacia) according to a conventional method. Was isolated and purified.
  • a human Dok-7 polypeptide fragment (including amino acid sequences 214 to 291 described in SEQ ID NO: 1 in the Sequence Listing), glutathione S transferase, and The anti-Dok-7 antiserum was obtained by injecting each of the fusion proteins as an antigen to each of rabbits and rats. From the results of Western analysis, it was found that this antiserum did not recognize Dok-7 protein derived from trough dogs (represented! / ⁇ ).
  • RNA blots (“human multi-tissue blot” (manufactured by Clontech)) from which each force of each of 1 to 12 of the above was extracted.
  • Figure 1 shows the results.
  • FIG. 1 shows the transcriptional activity of the human Dok-7 gene only in the heart and skeletal muscle.
  • the lower side of FIG. 1 shows the analysis result of ⁇ -actin (control group).
  • CM mouse myocardium
  • TM thigh muscle
  • Lv liver
  • Sp spleen
  • DM diaphragm muscle
  • mouse Dok-7 protein was detected only in the myocardium and skeletal muscle (thigh muscle and diaphragm muscle).
  • the lower side of FIG. 2 shows the analysis result of ⁇ -actin (control group).
  • Synaptophysin is a constituent of presynaptic vesicles and is a control plot showing the position of the presynaptic region and the like.
  • Bangaguchi toxin (Btx) is the control group indicating the position of AChR. It is.
  • the results are shown in Fig. 3.
  • the left side of Fig. 3 shows the results when the tissue before sciatic nerve resection was used, and the right side of Fig. 3 shows the results when the tissue one week after sciatic nerve resection was used.
  • each figure in the left side of FIG. 3 and the right side is a figure in the same visual field of the same section.
  • the bar in Fig. 3 corresponds to m.
  • Dok-7 is a protein expressed in muscle, not nerve, and has a function related to AChR in the post-synaptic region of the neuromuscular junction site. It was done.
  • PTB domains present in the molecules of proteins belonging to the Dok family have been reported to interact with phosphorylated thymus kinase (F. Cong, B. Yuan and SP Goff, Mol. Cell Biol. 19, 8314 (1999); J. Grimm et al., J. Cell Biol. 154, 345 (2001); RJ Crowder, H. Enomoto, M. Yang, EM Jr. Johns on and J. Milbrandt, J. Biol. Chem. 279, 42072 (2004) etc.). Furthermore, a PTB domain target motif composed of 4 amino acids of NPXY in the MuSK molecule (550 to 553 described in SEQ ID NO: 1 in the sequence listing) has been reported to be essential for MuSK activity ( H.
  • WT Wild-type mouse MuSK or kinase-inactive mutant MuSK
  • MoSK-KA kinase-inactive mutant MuSK
  • the vector into which each DNA has been inserted is introduced by the method described above and transformed.
  • a 293T cell line was prepared.
  • the wild-type (WT) mouse MuSK DNA was prepared by RT-PCR using a primer pair that specifically binds, and the prepared DNA was used as a reading frame for the desired amino acid sequence as described above. According to the method, it was inserted into “pcDNA3.1-mycZHis”.
  • MuSK—KA DNA is prepared by mutating wild-type (WT) mouse MuSK DNA to encode an amino acid sequence in which the lysine at position 608 in the amino acid sequence shown in SEQ ID NO: 3 is replaced with alanine. did. This mutation was performed by a well-known mutation engineering technique.
  • Each transformed 293T cell was cultured in DME medium supplemented with 10 vol% FBS until the number of cells reached a predetermined value, and then RIPA buffer (50 mM Tris-HC1 pH 8.0, 1 Cellular lysate (WCL) was obtained by dissolution in 50 mM NaCl, ImM Na3V04, 50 mM NaF ⁇ 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS). Subsequently, this whole cell lysate was subjected to immunoprecipitation using an anti-myc tag antibody ( ⁇ myc) according to a conventional method to obtain an immunoprecipitate (IP: a myc).
  • RIPA buffer 50 mM Tris-HC1 pH 8.0, 1 Cellular lysate (WCL) was obtained by dissolution in 50 mM NaCl, ImM Na3V04, 50 mM NaF ⁇ 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS.
  • the Dok-7 antibody (IB: a Dok-7) used for Western analysis was a polyclonal antibody purified from a mouse serum immunized with the Dok-7 protein obtained by the above procedure.
  • the anti-phosphotyrosine antibody (IB: ⁇ :) was “4G10” (manufactured by Upstate Biology), and the anti-myc tag antibody (IB: a myc) was “9B11” (manufactured by Cell Signaling).
  • the results are shown in Fig. 4.
  • the upper part of Fig. 4 shows the DNA combinations introduced into each 293T cell used in this analysis.
  • the trough puffer Dok-7 protein like the human Dok-7 protein, was able to promote tyrosine phosphorylation of MuSK. This result suggests that the nature of Dok-7 is common to vertebrates. On the other hand, no protein tyrosine phosphorylation was detected in human Dok-1-6.
  • Dok-7 is a specific activator of MuSK conserved in vertebrates in general.
  • Human C2 myoblasts transformed with human Dok-7 obtained by the above procedure are grown to saturation cell density and cultured in DME medium supplemented with 2vol% horse serum for 5-7 days. Differentiated into myotubes (C2 myotubes).
  • C2 myotube strength Whole cell lysate obtained (WCL), and immunoprecipitate obtained by immunoprecipitation of this whole cell lysate (IP: a MuSK), Btx Western analysis was performed on each of the isolates (BP) obtained by performing pull-down according to.
  • the antiphosphate phosphate antibody (IB: ⁇ ⁇ ) used for Western analysis was “4G10” (manufactured by Upstate Biology), and the anti-MUSK antibody (IB: a MuSK) was “AF562”.
  • anti-tyrosine phosphorylated AChR-811 antibody is “Tyr-390” (Santa Cruz)
  • anti-A ChR a 1 antibody is “C-18” (Santa Cruz)
  • the density of AChR in C2 myotubes transduced with various amounts of AChR-containing plasmid was examined by the following procedure. That is, first, the myotube was reacted with IngZml of Alexa594-bound Btx for 1 hour, washed, and fixed with PBS mixed with 3.7% PFA. Images of the fixed myotubes were collected with a “DM6000B microscopej (Leica) connected to a“ DFC350FX CCD camera ”(Leica). 10 fields with a 40x objective were randomly selected and AChR clusters ( The result is shown in Fig. 7. As shown in Fig. 7, AChR clusters were induced by forced expression of Dok-7, and the number of AChR clusters was determined based on the Dok-7-containing plasmid. Correlated with the amount of injection.
  • AChR is also known to form a cluster with MuSK in the myotube by the activation of MuSK (Kummer, TT, Misgeld, T., Lichtman, JW & Sanes, JR, J. Cell Biol). 164, 1077— 1087 (2004), Sander, A., Hesser, BA & Witzemann, VJ Cell Biol. 155, 1287— 1296 (2001).
  • Tyrosine phosphorylation of the AChR j8 subunit has been reported to accompany MuSK activation (eg, C. Fuhrer, JE Sugiyama, RG Taylor and Z. W. Hall, EMBO J. 16). , 4951 (1997)). Based on this report, the results shown in Fig. 6 and Fig. 9 show that Dok-7 protein promotes tyrosine phosphorylation of ACh Ri8 and promotes AChR crowding through tyrosine phosphorylation of MuSK. It was suggested that it can be done.
  • the AChR dense site induced by the foreign gene Dok-7 had a highly branched complex structure.
  • the AChR congested site induced by Dok-7 was stronger than the congested site induced by agrin or spontaneously formed.
  • the complex structure of the observed congested site is similar to that of the pretzel-like AChR that has been reported in vitro and in vivo (for example, TT Kummer, T. Misgeld, JW Lichtman and JR Sanes, J Cell. Biol. 164, 1077 (2004)) [Similar!
  • the in situ hybridizer was prepared using the diaphragm muscle obtained from the mouse embryo derived from C57BLZ6 as the subject in the following procedure. An analysis was performed.
  • the antisense riboprobe specifically bound to the endplate region of the diaphragm, and the sense riboprobe did not bind to this endplate region. Therefore, it was suggested that the mRNA of mouse Dok-7 is specifically expressed in the endplate region of the diaphragm.
  • NPXY musk amino acid sequence
  • NA, YF mutant MuSK
  • KA tyrosine kinase inactivation variant MuSK
  • KA is a mutant in which the lysine of the amino acid sequence 608 of SEQ ID NO: 3 is substituted with alanine.
  • the myc tag is fused to MuSK and its mutants.
  • wild type human Dok-7 (WT), a mutation that deletes part of the PH domain (8 to 107 in the amino acid sequence described in SEQ ID NO: 1) present on the N-terminal side of wild type human Dok-7 Transformed 293T cells that express type Dok—7 ( ⁇ N) and mutant type Dok—7 (AC), which lacks the C-terminal region of wild type human Dok—7, and forcibly express MuSK Strains were produced by the same procedure as described above.
  • is a mutant type deleted from amino acid sequence 61 to 504 described in SEQ ID NO: 1
  • AC is a mutant type deleted from amino acid sequence 1 to 230 described in SEQ ID NO: 1.
  • Dok-7 and its mutants are fused with a FLAG tag
  • MuSK is fused with a myc tag.
  • FIG. 13 The upper side of Fig. 13 is a schematic diagram of the structure of each Dok-7 (see Fig. 26 for details). Further, the central part of FIG. 13 shows the combination of DNA introduced into each 293T cell used in this analysis.
  • the wild-type Dok-7 protein was able to promote tyrosine phosphorylation of endogenous MuSK at 3 days and 6 days after the start of separation.
  • endogenous MuSK tyrosine phosphate was promoted 3 days after the start of differentiation (in the middle of differentiation), but endogenous 6 days after the start of separation (after completion of the separation). It did not promote MuSK tyrosine phosphate.
  • the wild-type Dok-7 protein shows the number of AChR clusters. Increased.
  • the increase in the number of AChR clusters in the C2 myotube after separation was almost unseen.
  • siRNA siD-7 that specifically suppresses the expression of Dok-7 and siRNA (control group) used for the control group was as follows (and the deviation was manufactured by Qiagen) .
  • siD-7 5 '-CACCACTATGACACACCTCGA 3'
  • this siRNA was introduced into C2 myogenic cells and separated to produce transformed myotubes in which Dok-7 expression was suppressed.
  • This transformation method was carried out in the same manner as described above, except that “X-tremeGENE siRNA reagent” (Roche) was used instead of rLipofectamine2000.
  • MuSK is indispensable for AChR densification by agrin (H. Zhou, DJ Glass, GD Yancopoulos, and JR Sanes, "Journal of Cell Biology", 146, 1133 (1999), R. Herbst, and SJ Burden, "EMBO Journal", 19, 67 (2000)).
  • Dok-7 plays an essential role in the activation of MuSK in the myotubes and the denseness of AChR depending on MuSK.
  • a bacterial artificial chromosome (BAC) clone containing the mouse dok-7 locus was obtained from the BACPA C Resource Center (FIG. 20, upper panel).
  • the recombinant vector replaces the first and second exons of the dok-7 gene (each exon is represented by numbers 1-7) with a neomycin phosphotransferase gene, and the neomycin phosphotransferase gene DNA It was constructed so as to be adjacent to the 5 ′ fragment (l.8 kb) and 3 ′ fragment (7.3 kb) of dok-7 gene DNA (middle panel in FIG. 20).
  • 129Z01a We electroborated native embryonic stem cells and identified three homo recombinants.
  • B represents a Bglll restriction site
  • X represents an Xhol restriction site
  • neo represents a neomycin resistance gene.
  • DNA was purified from the tails of wild-type mice, heterozygous mice, and null mice, and this DNA was subjected to restriction treatment with Bglll. Southern analysis was performed according to a conventional method using a probe corresponding to the sequence shown in. The results are shown in FIG.
  • Diaphragm muscles were prepared from embryos of wild-type mice and null mice (14.5 day embryos, 18.5 day embryos), and the diaphragm muscles were subjected to stake-eurofilament staining and Btx staining. And AChR were visualized respectively. The results of observation of the visualized diaphragm muscle are shown in FIG. The bar in Fig. 24 indicates 100 m.
  • Dok-7 may play an essential role in vivo in the MuSK-dependent biological process of neuromuscular synapse formation. It is suggested.
  • Congenital myasthenia syndrome has been reported to be associated with genetic changes affecting post-synaptic structures including AChR (see Non-Patent Documents 1 and 2 above).
  • a genetic change that caused congenital myasthenia syndrome a point mutation of the MuSK gene has been reported (for example, F. Chevessier et al., Hum. Mol. Genet. 13, 32 29 ( 2004)).
  • the mutated MuSK gene consists of a silent allele and MuSK-VM. Therefore, we decided to investigate the interaction between Dok-7 and MuSK-VM.
  • MuSK-VM myc tag labeling
  • human Dok-7 were introduced into 293T cells by the method described above to produce transformed 293T cells.
  • WCL whole cell lysate
  • IP immunoprecipitate
  • Western analysis was conducted.
  • the antibody used was the same antibody as described above. The results are shown in FIG. The upper side of Figure 25 shows this analysis.
  • WT wild-type MuSK protein
  • VM mutant MuSK Protein
  • Dok-7 gene By administering the polypeptide of the present invention and Z or DNA to a patient suffering from congenital myasthenia syndrome due to mutation in DNA, tyrosine phosphorylation of MuS K, AChR Consolidation of AChR is promoted through phosphorylation of jS1, and as a result, congenital myasthenia syndrome can be treated or prevented. Further, by determining the DNA base sequence of the present invention, congenital myasthenia syndrome can be examined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

 本発明は、筋特異的チロシンキナーゼの活性化を制御できるポリペプチドをコードするDNA等を提供する。DNAを、(a)特定の塩基配列を有するDNA、(b)特定の塩基配列とストリンジェントな条件下でハイブリダイズできる塩基配列を有するDNA、(c)特定のアミノ酸配列において1もしくは複数のアミノ酸が置換、欠失及び/又は付加されたアミノ酸配列をコードする塩基配列を有するDNA、(d)特定の塩基配列と90%以上の相同性を有する塩基配列からなるDNA、のいずれかとする。

Description

明 細 書
筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードする D
NA
技術分野
[0001] 本発明は、筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードする DNA、この DNAを含むベクター、このベクターが導入された开質転換体、 DNAに よりコードされるポリペプチド、このポリペプチドに結合する抗体、 DNAが欠損又は変 異された非ヒト形質転換動物、 DNA及び Z又はポリペプチドを含む医薬組成物、神 経筋接合部位の異常に由来する疾病 (例えば、先天性筋無力症候群)の検査方法 及び検査薬、神経筋接合部位の異常に由来する疾病の治療薬の候補化合物のスク リーニング方法等に関する。 背景技術
[0002] 運動神経末端と筋が接合してなる神経筋接合部位 (以下、「NMJ」とも称する)は、 運動神経による、例えばアセチルコリンと!/ヽつた神経伝達物質を介した骨格筋の制 御に不可欠なシナプスである。骨格筋の制御が適切に行われるためには、神経筋接 合部位のシナプス後領域において、アセチルコリン受容体 (以下、「AChR」とも称す る)が密集してなる高密度部位 (以下、「クラスター」とも称する)が形成される必要があ る。アセチルコリン受容体の高密度部位が正常に形成されな力つた場合、先天性筋 無力症候群や重症筋無力症等の神経筋伝達障害が発生することが分かって 、る( 非特許文献 1、 2参照)。
[0003] 運動神経末端は、筋特異的チロシンキナーゼである MuSKを活性ィ匕するため、糖 タンパク質ァグリンを分泌することが報告されている (非特許文献 3参照)。そして、ァ ダリン依存的に起こる MuSKの活性化が、アセチルコリン受容体の高密度部位を含 めたシナプス後構造を形成し、維持するために不可欠であることが報告された (非特 許文献 4、 5参照)。
[0004] しかし、筋が神経支配を受ける前であっても、 AChR高密度部位は、神経及びァグ リンに非依存的に、且つ、 MuSK依存的に、筋管の終板付近に形成されることが発 見された。この発見は、発達の初期段階における筋由来の機構により、 AChR高密 度部位が形成されることを示唆する (非特許文献 6〜8参照)。
[0005] また、アセチルコリンの産生能を失うことによって、 AChRの密集に対する神経伝達 依存的な阻害作用を排除したマウスにおいては、ァグリン非依存的な NMJの形成が 発見されている。この発見は、ァグリン以外にも MuSKの活性ィ匕因子が存在すること を示唆する (非特許文献 9、 10参照)。
[0006] 更に、遺伝学的研究の結果、軸索の適切な成長のみならず、 AChR遺伝子の正常 な発現、次いで起こる AChRの密集は、 MuSK依存的な筋由来の機構により制御さ れていることも示された (非特許文献 7、 8参照)。
[0007] このように、神経筋伝達障害を防止するためには AChRの密集が不可欠であり、こ の AChRの密集には、 MuSKの活性化が必須であることが分かってきた。
非特許文献 1 :A. G. Engel、K. Ohno and S. M. Sine著、「Nature Reviews NeuroscienceJ、 4、 339 (2003)
非特許文献 2 : A. Vincent et al.著、「Annals of the New York Academ y of Sciences」、 998、 324 (2003)
非特許文献 3 : D. J. Glass et al.著、「Cell」、 85、 513 (1996)
非特許文献 4: S. J. Burden著、「Genes and Development^ 12、 133 (1998) 非特許文献 5 :J. R. Sanes and J. W. Lichtman著、「Nature Reviews Neur oscience」、 2、 791 (2001)
非特許文献 6 :T. M. DeChiara et al.著、「Cell」、 85、 501 (1996)
非特許文献 7 :W. Lin et al.著、「Nature」、 410、 1057 (2001)
非特許文献 8 :X. Yang et al.著、「Neuron」、 30、 399 (2001)
非特許文献 9 : T. Misgeld et al.著、「Proceedings of the National Acad emy of Sciences, U. S. A」、 102、 11088 (2005)
非特許文献 10 :W. Lin et al.著、「Neuron」、46、 569 (2005)
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、 MuSKが活性ィ匕する機構は、その大部分が不明である。このため、 MuSKが活性ィ匕する機構を明らかにし、 MuSKの活性を制御できるようになることが 強く望まれている。
[0009] 本発明は、 MuSKの活性を制御できるポリペプチドをコードする DNA、この DNA を含むベクター、このベクターが導入された形質転換体、 DNAによりコードされるポリ ペプチド、このポリペプチドに結合する抗体、 DNAが欠損又は変異された非ヒト形質 転換動物、 DNA及び Z又はポリペプチドを含む医薬組成物、神経筋接合部位の異 常に由来する疾病 (例えば、先天性筋無力症候群)の検査方法及び検査薬、神経筋 接合部位の異常に由来する疾病の治療薬の候補ィ匕合物のスクリーニング方法等を 提供することを目的とする。
課題を解決するための手段
[0010] 本発明者らは、様々な細胞活動 (成長、生存、移動、分化等)を制御する Dokフアミ リータンパク質 (細胞内情報伝達タンパク質の一種)に属する新規なポリペプチド (以 下、「Dok— 7タンパク質」とも称する)を発見した。そして、 Dok— 7タンパク質が筋組 織において高発現し、 MuSKの活性ィ匕に関与することを見出し、本発明を完成する に至った。
[0011] 本発明は、具体的には、以下のようなものを提供する。
[0012] (1) 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードする以下 の(a)から(d)の!、ずれかに記載の DNA。
(a)配列番号 2記載の塩基配列を有する DNA
(b)配列番号 2記載の塩基配列とストリンジェントな条件下でハイブリダィズできる塩 基配列を有する DNA
(c)配列番号 1記載のアミノ酸配列において 1もしくは複数のアミノ酸が置換、欠失 及び Z又は付加されたアミノ酸配列をコードする塩基配列を有する DNA
(d)配列番号 2記載の塩基配列と 90%以上の相同性を有する塩基配列からなる D NA
[0013] (2) (1)記載の DNAを含むベクター。
[0014] (3) (2)記載のベクターが導入された形質転換体。
[0015] (4) (1)記載の DNAによりコードされるポリペプチド。 [0016] (5) (3)記載の形質転換体を培養し、この形質転換体又はその培養液から合成さ れたポリペプチドを回収する手順を含む (4)記載のポリペプチドの製造方法。
[0017] (6) (4)記載のポリペプチドに結合する抗体又は抗体フラグメント。
[0018] (7) 配列番号 2記載の塩基配列からなる DNA又はその発現制御領域の DNAの 少なくとも一部が欠損又は変異された非ヒト形質転換動物。
[0019] (8) (1)記載の DNA又は (4)記載のポリペプチドを有効成分として含む医薬組成 物。
[0020] (9) 神経筋接合部位の異常に由来する疾病の検査方法であって、
被験者の細胞から DNAを抽出する抽出手順と、
抽出された前記 DNAを铸型とし、配列番号 2記載の塩基配列力 なる DNA又は その発現制御領域の DNAの一部又は全部を特異的に増幅できるプライマーを用い てポリメラーゼ連鎖反応を行う増幅手順と、
増幅された DNAの塩基配列を解読する解読手順と、
解読された前記塩基配列を、配列番号 2に記載の塩基配列と比較する比較手順と 、を含む検査方法。
[0021] (10) 神経筋接合部位の異常に由来する疾病の検査方法であって、
被験者の細胞における配列番号 2記載の塩基配列を有する DNAの発現量を検出 する検出手順と、
検出された前記 DNAの発現量を、健常者における配列番号 2記載の DNAの発現 量と比較する比較手順と、を含む検査方法。
[0022] (11) 配列番号 2記載の塩基配列からなる DNA又はその発現制御領域の DNA の一部又は全部を特異的に増幅できるプライマー、又は、(6)記載の抗体又は抗体 フラグメントを有効成分とする神経筋接合部位の異常に由来する疾病の検査薬。
[0023] (12) 神経筋接合部位の異常に由来する疾病の治療薬の候補化合物のスクリー ニング方法であって、
前記ポリペプチドと被検物質とを接触させる手順と、
前記ポリペプチドと前記被検物質との結合を検出する手順と、を含むスクリーニング 方法。 [0024] (13) 神経筋接合部位の異常に由来する疾病の治療薬の候補化合物のスクリー ニング方法であって、
被検物質の存在下及び非存在下にお 、て、配列番号 1記載のアミノ酸配列力 な るポリペプチド又は筋特異的チロシンキナーゼと結合活性を有するその断片と、筋特 異的チ口シンキナーゼとを接触させる手順と、
前記被検物質の存在下における前記結合活性と、前記被検物質の非存在下にお ける前記結合活性とを比較する手順と、を含むスクリーニング方法。
[0025] (14) 神経筋接合部位の異常に由来する疾病の治療薬の候補ィ匕合物のスクリー ニング方法であって、
配列番号 2記載の塩基配列を有する DNAを発現する細胞と被検物質とを接触さ せる手順と、
前記 DNAの発現量の変化を検出する手順と、を含むスクリーニング方法。
[0026] (15) 神経筋接合部位の異常に由来する疾病の治療薬の候補化合物のスクリー ニング方法であって、
請求項 7記載の非ヒト形質転換動物に被検物質を投与する手順と、
前記非ヒト形質転換動物における神経筋接合部位の異常の改善を検出する手順と
、を含むスクリーニング方法。
発明の効果
[0027] 本発明に係る DNA等によれば、 MuSKの活性を制御できる。このため、これらの D NA等によれば、神経筋伝達障害を防止し得る。
図面の簡単な説明
[0028] [図 1]本発明の DNAの各器官における転写量を示す図である。
[図 2]本発明のポリペプチドの各器官における発現量を示す図である。
[図 3]本発明のポリペプチドの局在性を示す図である。
[図 4]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図であ る。
[図 5]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図であ る。 [図 6]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図であ る。
[図 7]本発明の DNAの導入量と、アセチルコリン受容体の密集化との関係を示す図 である。
[図 8]本発明のポリペプチドとアセチルコリン受容体との共密集化を示す図である。
[図 9]本発明の DNAの発現とアセチルコリン受容体の密集化との関係を示す図であ る。
[図 10]本発明の DNAの強制発現により誘導されたアセチルコリン受容体の密集化の 状態を示す図である。
[図 11]本発明の遺伝子の mRNAの局在性を示す図である。
[図 12]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図で ある。
[図 13]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図で ある。
[図 14]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図で ある。
[図 15]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図で ある。
[図 16]本発明の DNAの強制発現により誘導されたアセチルコリン受容体の密集化の 状態を示す図である。
[図 17]本発明の DNAの発現抑制により変化された筋特異的チロシンキナーゼ及び その基質のリン酸ィ匕を示す図である。
[図 18]本発明の DNAの発現抑制により変化されたアセチルコリン受容体の密集化の 状態を示す図である。
[図 19]本発明のポリペプチド、及び、筋特異的チロシンキナーゼの、リン酸化の経時 的変化を示す図である。
[図 20]本発明の遺伝子のマップである。
[図 21]本発明の DNAのノックアウトの存否を示す図である。 [図 22]本発明のポリペプチドの存否を示す図である。
[図 23]本発明の DNAのノックアウトにより変化された肺の状態を示す図である。
[図 24]本発明の DNAのノックアウトにより変化されたアセチルコリン受容体の密集化 の状態を示す図である。
[図 25]本発明のポリペプチドと筋特異的チロシンキナーゼとの相互作用を示す図で ある。
[図 26]本発明のポリペプチド及びその相同タンパク質の N末端領域を示す図である。
[0029] 以下、本発明の実施形態について説明する。
[0030] < DNA>
本発明における「DNA」は、センス鎖又はアンチセンス鎖(例えば、プローブとして 使用できる)のいずれでもよぐその形状は一本鎖と二本鎖のいずれでもよい。また、 ゲノム DNAであっても、 cDNAであっても、合成された DNAであってもよい。
[0031] 本発明の DNAの最も好ましい態様は、配列番号 2記載の塩基配列を有する DNA であるが、本発明の DNAには、更に、筋特異的チロシンキナーゼの活性を制御する 種々の変異体やホモログが含まれる。ここで「筋特異的チロシンキナーゼの活性の制 御」には、筋特異的チロシンキナーゼの活性を向上すること(つまり、活性化)、及び 抑制することが含まれる。「筋特異的チロシンキナーゼの活性化」とは、筋特異的チロ シンキナーゼ分子内のチロシンがリン酸ィ匕される、及び/又は、 AChRの密集を促 すことができることを指す。
[0032] 配列番号 2記載の塩基配列を有する DNAの変異体やホモログには、例えば、配列 番号 2記載の塩基配列とストリンジェントな条件下でハイブリダィズできる塩基配列を 有する DNAが含まれる。ここで、「ストリンジェントな条件」としては、例えば、通常の ハイブリダィゼーシヨン緩衝液中、 40〜70°C (好ましくは、 60〜65°C)で反応を行い 、塩濃度 15〜300mM (好ましくは、 15〜60mM)の洗浄液中で洗浄を行う条件が 挙げられる。
[0033] また、配列番号 1記載のアミノ酸配列において 1もしくは複数のアミノ酸が置換、欠 失及び Z又は付加されたアミノ酸配列をコードする塩基配列を有する DNAも含まれ る。ここで「1もしくは複数」とは、通常、 50アミノ酸以内であり、好ましくは 30アミノ酸以 内であり、更に好ましくは 10アミノ酸以内(例えば、 5アミノ酸以内、 3アミノ酸以内、 1 アミノ酸)である。筋特異的チロシンキナーゼを活性化する能力を維持する場合、変 異するアミノ酸残基にぉ 、ては、アミノ酸側鎖の性質が保存されて 、る別のアミノ酸 に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸 (A 、 I、 L、 M、 F、 P、 W、 Y、 V)、親水性アミノ酸 (R、 D、 N、 C、 E、 Q、 G、 H、 K、 S、 T) 、脂肪族側鎖を有するアミノ酸 (G、 A、 V、 L、 I、 P)、水酸基含有側鎖を有するァミノ 酸 (S、 T、 Υ)、硫黄原子含有側鎖を有するアミノ酸 (C、 M)、カルボン酸及びアミド含 有側鎖を有するアミノ酸 (D、 N、 E、 Q)、塩基含有側鎖を有するアミノ離 (R、 K、 Η)、 芳香族含有側鎖を有するアミノ酸 (H、 F、 Y、 W)を挙げることができる(括弧内はい ずれもアミノ酸の一文字標記を表す)。
[0034] あるアミノ酸配列に対する 1又は複数個のアミノ酸残基の欠失、付加及び Z又は他 のアミノ酸による置換により修飾されたアミノ酸配列を有する蛋白質がその生物学的 活性を維持することはすでに知られている(Mark, D. F. et al. , Proc. Natl. Ac ad. Sci. USA (1984) 81, 5662— 5666、 Zoller, M. J. & Smith, M. Nucleic Acids Research (1982) 10, 6487— 6500、 Wang, A. et al. , Science 22 4, 1431— 1433、 Dalbadie - McFarland, G. et al. , Proc. Natl. Acad. Sci . USA(1982) 79, 6409— 6413)。
[0035] 配列番号 1記載の 1〜230番のアミノ酸配列において、 1もしくは複数のアミノ酸が 置換、欠失及び Z又は付加されたアミノ酸配列を有し (ただし、配列番号 1記載の 1 〜60番のアミノ酸配列を有する)、且つ、筋特異的チロシンキナーゼの活性を制御 するポリペプチドをコードする DNAは、本発明の DNAの好まし!/、態様の一つである
[0036] 更に、配列番号 2記載の塩基配列を有する DNAの変異体やホモログには、配列 番号 2記載の塩基配列と高 、相同性を有する塩基配列力 なる DNAが含まれる。こ のような DNAは、好ましくは、配列表の配列番号 2記載の塩基配列と 90%以上、更 に好ましくは 95%以上(96%以上、 97%以上、 98%以上、 99%以上)の相同性を 有する。アミノ酸配列や塩基配列の相同性は、 Karlin and Altschulによるァルゴ リズム BLAST (Proc. Natl. Acad. Sci. USA 90 : 5873— 5877, 1993)によつ て決定することができる。このアルゴリズムに基づいて、 BLASTNや BLASTXと呼 ばれるプログラムが開発されている(Altschul et al. J. Mol. Biol. 215 :403— 410, 1990)。 BLASTに基づいて BLASTNによって塩基配列を解析する場合に は、パラメータは例えば score= 100、 wordlength= 12とする。また、 BLASTに基 づ 、て BLASTXによってアミノ酸配列を解析する場合には、パラメータは例えば sco re = 50、 wordlength= 3とする。 BLASTと Gapped BLASTプログラムを用いる 場合には、各プログラムのデフォルトパラメータを用いる。これらの解析方法の具体的 な手法は公知である(http:ZZwww. ncbi. nlm. nih. gov.;)。
[0037] 本発明の DNAを取得する方法としては、特に限定されないが、 mRNAから逆転写 することで cDNAを得る方法 (例えば、 RT— PCR法)、ゲノム DNAから調整する方 法、化学合成により合成する方法、ゲノム DNAライブラリーや cDNAライブラリーから 単離する方法等の公知の方法 (例えば、特開平 11 29599号公報参照)が挙げら れる。
[0038] <ベクター >
本発明のベクターは、適当なベクターに上述の DNAを挿入することにより、作製で きる。
[0039] 「適当なベクター」とは、原核生物及び Z又は真核生物の各種の宿主内で複製保 持又は自己増殖できるものであればよぐ使用の目的に応じて適宜選択できるもので ある。例えば、 DNAを大量に取得したい場合には高コピーベクターを選択でき、ポリ ペプチドを取得したい場合には発現ベクターを選択できる。その具体例としては、特 に限定されず、例えば、特開平 11— 29599号公報に記載された公知のベクターが 挙げられる。
[0040] <形質転換体 >
本発明の形質転換体は、前述の DNAを含むベクターを宿主に導入することにより 、作製できる。
[0041] このような宿主は、本発明のベクターに適合し形質転換され得るものであればよぐ その具体例としては、特に限定されないが、細菌、酵母、動物細胞、昆虫細胞等の、 公知の天然細胞もしくは人工的に榭立された細胞 (特開平 11 29599号公報参照 )が挙げられる。
[0042] ベクターの導入方法は、ベクターや宿主の種類等に応じて適宜選択できるものであ る。その具体例としては、特に限定されないが、プロトプラスト法、コンビテント法等の 公知の方法 (例えば、特開平 11 29599号公報参照)が挙げられる。
[0043] <ポリペプチド >
本発明のポリペプチドは、例えば、前述の DNAを含む発現ベクターが導入された 形質転換体を使用することで、作製できる。即ち、まず、この形質転換体を適宜の条 件で培養し、この DNAがコードするタンパク質 (ポリペプチド)を合成させる。そして、 合成されたタンパク質を形質転換体又は培養液から回収することにより、本発明のポ リペプチドを得ることができる。
[0044] 形質転換体の培養は、ポリペプチドが大量に且つ容易に取得できるように、形質転 換体の種類等に応じて、公知の栄養培地カゝら適宜選択し、温度、栄養培地の PH、 培養時間等を適宜調整して行うことができる (例えば、特開平 11— 29599号公報参 照)。
[0045] ポリペプチドの単離方法及び精製方法としては、特に限定されず、溶解度を利用 する方法、分子量の差を利用する方法、荷電を利用する方法等の公知の方法 (例え ば、特開平 11― 29599号公報参照)が挙げられる。
[0046] <抗体、抗体フラグメント >
本発明の抗体又は抗体フラグメントは、上述した本発明のポリペプチドに結合する
[0047] 本発明の抗体は、ポリクローナル抗体、モノクローナル抗体の!/、ずれでもよ!/、。また 、抗体には、ゥサギ等の免疫動物に本発明のポリペプチドを免疫して得られる抗血 清、全クラスのポリクローナル抗体及びモノクローナル抗体、ヒト抗体や遺伝子組換え によるヒト型化抗体、種々の修飾が施された抗体が含まれる。
[0048] なお、本発明の抗体の作成方法としては、例えば、従来公知のハイプリドーマ法が 挙げられる(Kohler and Milstein, Nature 256 : 495 (1975) )。
[0049] また、本発明の抗体フラグメントとしては、 Fab、 F (ab,) 2、 Fv又は H鎖と L鎖の Fv を適当なリンカ一で連結させたシングルチェーン Fv (scFv) (Huston, J. S. et al. , Proc. Natl. Acad. Sci. U. S. A. (1988) 85, 5879— 5883)力挙げられ る。
[0050] <医薬組成物 >
本発明の医薬組成物は、前述の DNA及び Z又はポリペプチドを有効成分として 含有させることで、作製できる。
[0051] この医薬組成物によれば、 DNA及び/又はポリペプチドを有効成分として含むの で、 MuSKを活性化させ、 AChR高密度部位の形成を促進できる。このため、この医 薬組成物は、神経筋接合部位の異常に由来する疾病 (例えば先天性筋無力症候群 )の治療薬もしくは予防薬として使用し得る (後述する実施例参照)。
[0052] 本発明の医薬組成物は、経口あるいは非経口(例えば、注射による筋肉への直接 投与)で投与できる。投与量は、患者の年齢、性別、体重、症状、治療効果、投与方 法、処理時間等により異なるため、適宜選択すべきものである。
[0053] 「有効成分として含む」とは、神経筋伝達障害の治療用医薬品もしくは予防用医薬 品として有効である程度に含むという意味であって、他の任意成分を含むことを除外 するものではない。
[0054] 他の任意成分としては、特に限定されな!ヽが、賦形剤、希釈剤、増粘剤、崩壊剤、 安定剤、保存剤、緩衝材、乳化剤、芳香剤、着色剤、甘味剤、粘調剤、溶解補助剤 等の担体等が挙げられる。これらの任意成分によれば、錠剤、丸剤、散剤、顆粒剤、 注射剤、液剤、カプセル剤、トロー剤、エリキシル剤等の様々な形態の医薬組成物を 容易に調整できる。
[0055] <形質転換動物 >
本発明の DNAを非ヒト動物に導入、変異、又はノックアウトすることにより、非ヒト形 質転換動物を作製できる。
この非ヒト形質転換動物によれば、本発明の DNAが導入、変異、又はノックアウトさ れているから、この動物体内における遺伝子発現の態様が変化する。このため、この 形質転換動物は、本発明の DNAの動物体内における機能の解析手段や、この機能 を調節する物質のスクリーニング系等として用いることができる。
[0056] 非ヒト動物としては、特に限定されな!、が、マウス、ラット、モルモット、ハムスター、ゥ サギ、ャギ、ブタ、ィヌ、ネコ等が挙げられる。
[0057] 非ヒト形質転換動物の作製方法は、例えば、次の通りである。まず、本発明の DNA
、 DNAの変異、又は DNAと相同組換えされる DNAを非ヒト哺乳動物の受精卵に導 入する。そして、この受精卵を雌個体子宮に移植して発生させることにより、本発明の
DNAが形質転換された非ヒト形質転換動物を作製できる。
[0058] 非ヒト形質転換動物の作製は、より具体的には、例えば、次のように行うことができる 即ち、まず、ホルモン投与により過剰排卵させた後の雌個体を、雄と交配する。次 いで、交配後 1日目の雌個体の卵管から受精卵を摘出し、本発明の DNA、 DNAの 変異、又は DNAと相同組換えされる DNAを含むベクターを、この受精卵にマイクロ インジェクション等の方法により導入する。そして、導入後の受精卵を適当な方法で 培養した後、生存している受精卵を、偽妊娠させた雌個体 (仮親)の子宮に移植し、 新生仔を出産させる。この新生仔において DNAが形質転換されている力否かは、こ の新生仔の細胞カゝら抽出した DNAについて、サザン解析により確認できる。
[0059] その他、胚性幹細胞 (ES細胞)株において遺伝子導入及び選別を行った後、生殖 系列に寄与したキメラ動物を作製し、交配することによって、非ヒト形質転換動物を作 製してちょい。
[0060] <検査方法、検査薬 >
本発明の DNAは、神経筋接合部位の異常に由来する疾病(例えば、先天性筋無 力症候群)に罹患して 、る力否かにっ 、ての検査に利用できる。
即ち、神経筋接合部位の異常に由来する疾病 (例えば、先天性筋無力症候群)の 検査方法は、被験者の細胞カゝら DNAを抽出する抽出手順と、;抽出された DNAを 铸型とし、配列番号 2記載の塩基配列力 なる DNA又はその発現制御領域の DNA の一部又は全部を特異的に増幅できるプライマーを用いてポリメラーゼ連鎖反応を 行う増幅手順と、;増幅された DNAの塩基配列を解読する解読手順と、;解読された 塩基配列を、配列番号 2記載の塩基配列と比較する比較手順と;を含む。
[0061] この検査方法によれば、先天性筋無力症候群の被疑者の有する Dok— 7遺伝子 の DNA塩基配列を、正常者の有する Dok— 7遺伝子の DNA塩基配列(配列番号 2 記載)と比較する。この比較の結果、被疑者の有する Dok— 7遺伝子の DNA塩基配 列が、正常者の有する Dok— 7遺伝子の DNA塩基配列(配列番号 2記載)と相違す る場合、被疑者が神経筋接合部位の異常に由来する疾病 (例えば、先天性筋無力 症候群)に罹患しているものと判断し得る。
[0062] また、本発明の検査方法は、例えば、増幅手順において増幅された DNAを、筋管
(例えば、野生型筋管、 MuSK欠損筋管)等に導入し、筋特異的チロシンキナーゼ が活性化されるか否かを判断する判断手順を更に備えてもよい。これにより、増幅さ れた DNAの塩基配列と配列番号 2記載の塩基配列との差異が単なる多型である場 合等を排除できるので、検査精度が向上する。
[0063] なお、この検査方法において、 Dok— 7遺伝子の他、先天性筋無力症候群に関与 することが既に知られている遺伝子(コリンァセチルトランスフェラーゼ、 AChRs、ァ セチルコリンエステラーゼ、 Rapsyn, MuSK等)についても、併せて塩基配列を比較 してもよい。これにより、先天性筋無力症候群の診断の精度が、より高まる(例えば、 A. G. Engel and S. M. Sine著、「Current Opinion PharmacologyJ、 5、 3 08 (2005)参照)。
[0064] 別の検査方法は、被験者の細胞における配列番号 2記載の塩基配列を有する DN Aの発現量を検出する検出手順と、;検出された DNAの発現量を、健常者における 配列番号 2記載の DNAの発現量と比較する比較手順と、を含む。
[0065] ここで「DNAの発現」には、転写レベル(mRNAの発現)及び翻訳レベル(タンパク 質の発現)が含まれる。
[0066] この検査方法によれば、被験者及び健常者の間で、配列番号 2記載の塩基配列を 有する DNAの発現量を比較する。この比較の結果、被験者における DNAの発現量 力 健常者における DNAの発現量と有意に相違する場合、被疑者が神経筋接合部 位の異常に由来する疾病(例えば、先天性筋無力症候群)に罹患しているものと判 断し得る。
[0067] また、神経筋接合部位の異常に由来する疾病 (例えば、先天性筋無力症候群)の 検査薬は、配列番号 2記載の塩基配列の一部又は全部を有する DNAを特異的に 増幅できるプライマー、又は、上述した抗体又は抗体フラグメントを有効成分として含 有する。
[0068] <治療薬の候補化合物のスクリーニング方法 >
本発明のポリペプチドは、神経筋接合部位の異常に由来する疾病(例えば、先天 性筋無力症候群)の治療薬の候補ィ匕合物のスクリーニング方法に利用できる。 即ち、スクリーニング方法は、上述したポリペプチドと被検物質とを接触させる手順 と、ポリペプチドと被検物質との結合を検出する手順と、を含む。
[0069] このスクリーニング方法によれば、ポリペプチドとの結合が検出された被検物質を、 治療薬の候補化合物として特定できる。
[0070] また、別のスクリーニング方法は、上述した被検物質の存在下及び非存在下にお
V、て、配列番号 1記載のアミノ酸配列力 なるポリペプチド又は筋特異的チロシンキ ナーゼと結合活性を有するその断片と、筋特異的チロシンキナーゼとを接触させる手 順と;被検物質の存在下における結合活性と、被検物質の非存在下における結合活 性とを比較する手順と;を含む。
[0071] このスクリーニング方法によれば、被検物質の存在下における結合物質の結合活 性が、被検物質の非存在下における結合物質の結合活性と異なることが検出された 被検物質を、治療薬の候補化合物として特定できる。
[0072] また、別のスクリーニング方法は、配列番号 2記載の塩基配列を有する DNAを発 現する細胞と被検物質とを接触させる手順と、; DNAの発現量の変化を検出する手 順と、を含む。
[0073] ここで「DNAの発現」には、転写レベル(mRNAの発現)及び翻訳レベル(タンパク 質の発現)が含まれる。
[0074] このスクリーニング方法によれば、細胞内の DNA発現量の変化が検出された被検 物質を、治療薬の候補化合物として特定できる。
[0075] また、別のスクリーニング方法は、上述した非ヒト形質転換動物に被検物質を投与 する手順と、;非ヒト形質転換動物における神経筋接合部位の異常の改善を検出す る手順と、を含む。
[0076] このスクリーニング方法によれば、非ヒト形質転換動物における神経筋接合部位の 異常の改善が検出された被検物質を、治療薬の候補ィ匕合物として特定できる。 [0077] 以上のスクリーニング方法に用いられるスクリーニング用キットは、本発明のポリべ プチドを備える。また、本発明は、以上のスクリーニング方法によって特定された治療 薬の候補化合物も包含する。
[0078] <その他 >
[記録媒体]
前述した DN Aの塩基配列、及び、ポリペプチドのアミノ酸配列は、コンピュータ読 み取り可能記録媒体に保存されてよい。この記録媒体によれば、保存されている本 発明のポリペプチドのアミノ酸配列、及び、 DNAの塩基配列を、コンピュータを用い てデータベース化することができる。このため、このアミノ酸配列や塩基配列を配列情 報としてち活用でさる。
[0079] 記録媒体としては、コンピュータ読み取り可能であれば、特に限定されず、フレキシ ブルディスク、ハードディスク、磁気テープ等の磁気媒体、 CD-ROM, MO、 CD— R、 CD-RW, DVD-R, DVD— RAM等の光ディスク、半導体メモリ等が挙げられ る。
[0080] [網羅的解析用ツール]
本発明の DNA及びポリペプチド、並びに、これらの部分断片は、基盤上に、担体と して結合させた状態で、使用することもできる。本発明のポリペプチドや DNA以外に
、更に、他のポリペプチドや DNAを結合させた基盤は、本発明のポリペプチドや DN
Aを含めた網羅的な解析に使用できる。
[0081] 基盤としては、特に限定されないが、ナイロン膜、ポリプロピレン膜等の榭脂基板、 ニトロセルロース膜、ガラスプレート、シリコンプレート等が挙げられる。また、ハイブリ ダイゼーシヨンの検出を、例えば蛍光物質と 、つた非放射性同位体物質を用いて行 う場合、基盤として、蛍光物質を含まないガラスプレート、シリコンプレート等を好まし く使用できる。
なお、ポリペプチドや DNAの基板上への結合は、公知の方法で行うことができる。 実施例
[0082] <実施例 1 > cDNAの作製
まず、 Dokファミリー分子において、高度に保存されている PTBドメインのアミノ酸 配列(約 100アミノ酸程度力も構成される)を既知のデータベース(例えば、 NCBIの BLASTSearch)に入力し、高い相同性を示すクローンを探索した。この探索の結果 得られたクローンの配列情報中の、翻訳開始コドン及び翻訳終止コドンの位置情報 を基に、 Dok— 7の ORF (タンパク質をコードする塩基配列領域)を推測した。そして 、 ORFの塩基配列情報を基に、以下に示すオリゴプライマーを設計し、常法に従い PCR法により、ヒト Dok— 7の ORF領域に相当する cDNAを単離した。単離された全 長 cDNAの塩基配列は、公知の方法により解読したところ、配列表の配列番号 2記 載の塩基配列であった。
5 ― atgaccgaggcggcgctggtgg― 3
5 ― tcaaggaggggggtttaccttg― 3 '
[0083] <実施例 2> cDNA挿入ベクターの作製
得られた cDNAを、哺乳動物細胞用発現ベクターである「pcDNA3. 1 (商品名)」( クロンテック社製)、「PCDNA3. 1— myc/His (商品名)」(クロンテック社製)、「pE GFP-N3 plasmidj (クロンテック社製)、及び、大腸菌細胞用発現ベクターである 「pGEX—4T—2」(アマシャムフアルマシア社製)に、配列番号 1記載のアミノ酸配列 力もなるポリペプチドを作成できる読み枠で挿入した。
[0084] この挿入は、挿入されるベクターのマルチクローユングサイト内の制限酵素部位に あわせて制限部位を付加して設計されたプライマーを用いた PCR手順と、 PCR後の 増幅産物及びベクターを制限酵素処理する手順と、制限酵素処理された増幅産物 及びベクターをリガーゼ処理する手順と、リガーゼ処理後のベクターを大腸菌に形質 転換する手順と、形質転換された前記大腸菌を所定期間培養し、培養後の前記大 腸菌からベクターを精製する手順と、力もなる周知の方法により行った。
[0085] 「pcDNA3. l—mycZHis」によれば、ポリペプチドは、その N末端にポリヒスチジ ンタグが融合され、その C末端に、 FLAGタグ及び mycタグが融合された形で合成さ れる。また、「pEGFP—N3 plasmid」によれば、ポリペプチドは、その C末端に、緑 色蛍光タンパク質 (EGFP)が融合された形で合成される。また、「pGEX—4T—2」 ( アマシャムフアルマシア社製)によれば、ポリペプチドは、その N末端にダルタチオン -S -トランスフェラーゼ(以下、「GST」とも称する)タグが融合された形で合成される 。これらのタグゃェピトープは、合成後の用途に応じ、例えば酵素処理することで、適 宜除去すればよい。
[0086] <実施例 3 > 形質転換体の作製
次のような手順で形質転換 C2筋原細胞株を作製した。即ち、まず、 ATCC (Amer ican Type Culture Collection)から入手した C2筋原細胞株(C2C 12)を、 20v ol%仔牛血清(FBS)を添カ卩したダルベッコ改良イーグル (DME)培地中で培養した 。次いで、適宜の細胞数まで培養した C2筋原細胞株に、「Lipofectamine2000」 ( インビトロジェン社製)を用いて、前述した本発明の DNAを含む「pcDNA3. 1— my c,His」を導入することにより、形質転換体を作製した。
[0087] また、次のような手順で形質転換 293T細胞株を作製した。即ち、まず、ヒト培養細 胞(非筋肉細胞)である 293T細胞株を、 10vol%FBSを添カ卩した DME培地中で培 養した。次いで、適宜の細胞数まで培養した 293T細胞株に、「Lipofectamine200 0」(インビトロジェン社製)を用いて、上述した DNAを含む「pcDNA3. 1— myc/H is」を導入することにより、形質転換体を作製した。
[0088] また、次のような手順で形質転換大腸菌を作製した。即ち、まず、 LB培地内で、適 宜の菌体濃度になるまで培養した大腸菌に、周知のヒートショック法により、上述した DNAを含む「pGEX— 4T— 2」を導入し、形質転換体を作製した。
[0089] <実施例 4 > ポリペプチドの作製
次のような手順で、本発明のポリペプチドを作製した。即ち、まず、上述した形質転 換大腸菌を、 LB培地内で適宜の菌体濃度になるまで培養し、培養後の菌体を遠心 分離により集めた。次に、集めた菌体を、 50mMリン酸緩衝液 (pH8. 0)に懸濁した 後、超音波により細胞壁を破砕した。次に、破砕物を遠心分離し、 目的のタンパク質 を含有する膜画分を得た。そして、この膜画分を界面活性剤「トリトン X— 100」を用い て可溶化して得た粗溶液から、常法に従 、ダルタチオンセファロース(アマシャムファ ルマシア社)を用いて、 目的のタンパク質を単離、精製した。
[0090] <実施例 5 > 抗体の作製
上述の方法により作製された、ヒト Dok— 7ポリペプチド断片 (配列表の配列番号 1 記載の 214番〜 291番のアミノ酸配列を含む)とグルタチオン Sトランスフェラーゼと の融合タンパク質を、抗原として、ゥサギ及びラットの各々に注射投与することで、抗 Dok— 7抗血清を得た。この抗血清は、ウェスタン解析の結果から、ヒト、マウス、ラット 由来 Dok— 7タンパク質を認識した力 トラフグ由来 Dok— 7タンパク質は認識しない ことが分かった(図示はして!/ヽな 、)。
[0091] <実施例 6 > Dok— 7遺伝子の解析
(A) Dok— 7遺伝子の mRNA局在性につ!、て
Dok— 7遺伝子の mRNAの概略的局在性を解析するため、ヒトの脳、心臓、骨格 筋、大腸、胸腺、脾臓、腎臓、肝臓、小腸、胎盤、肺、末梢白血球 (この順に、図 1中 の 1〜12に各々対応する)の各々力も抽出した RNAブロット(「ヒトマルチティッシュブ ロット」(クロンテック社製)を使用した)を被検体として、常法に従いノーザン解析を行 つた。この結果を図 1に示す。
[0092] 図 1に示されるように、ヒト Dok— 7遺伝子の転写活性は、心臓及び骨格筋におい てのみ検出された。なお、図 1下側は、 βーァクチンの解析結果 (対照区)を示す。
[0093] (B) Dok— 7タンパク質の局在性について
Dok— 7タンパク質の概略的局在性を解析するため、マウスの心筋 (CM)、大腿筋 (TM)、肝臓 (Lv)、脾臓 (Sp)、横隔膜筋 (DM)の各々力も抽出したタンパク質を被 検体として、常法に従いウェスタン解析を行った。なお、ウェスタン解析に使用した抗 体は、抗 Dok— 7抗血清、及び、抗 j8—ァクチン抗体「I 19」(サンタクルス社製)で あった。この結果を図 2に示す。
[0094] 図 2に示されるように、マウス Dok— 7タンパク質は、心筋と、骨格筋 (大腿筋及び横 隔膜筋)とにおいてのみ検出された。なお、図 2下側は、 βーァクチンの解析結果( 対照区)を示す。
[0095] 次に、 Dok— 7タンパク質の細胞レベルでの局在性を解析するため、常法に従い、 坐骨神経切除の前後におけるマウス腓腹筋の、筋神経筋接合部位のシナプス後領 域周辺における免疫染色を行った。なお、免疫染色に使用した抗体は、抗 Dok— 7 抗血清、抗シナブトフイシン抗体「SVP38」(サンタクルス社製)であった。
[0096] シナプトフイシン (SYN)は、シナプス前小胞の構成成分であり、シナプス前領域等 の位置を示す対照区である。バンガ口トキシン (Btx)は、 AChRの位置を示す対照区 である。この結果を図 3に示す。図 3左側は坐骨神経切除前の組織を用いた場合の 結果を、図 3右側は坐骨神経切除の 1週間後の組織を用いた場合の結果を示す。な お、 Dok— 7及び Btx各図を混合した図は図示していないが、図 3左側及び右側に おける各図は、同一切片の同一視野における図である。また、図 3中のバーは mに対応する。
[0097] 図 3に示されるように、シナプトフイシンは坐骨神経切除後には消失していたのに対 し、 Dok— 7タンパク質は AChRと共局在し、且つ、この共局在は神経切除の前後を 通じて保持されていた。
[0098] 以上の結果から、 Dok— 7は、神経ではなく筋肉で発現されるタンパク質であり、神 経筋接合部位のシナプス後領域にぉ 、て、 AChRに関連する機能を有することが示 唆された。
[0099] く実施例 7 > Dok— 7タンパク質の機能解析
Dokファミリーに属するタンパク質の分子内に存在する PTBドメインは、リン酸化チ 口シンキナーゼと相互作用する例が報告されている(F. Cong, B. Yuan and S. P. Goff, Mol. Cell Biol. 19, 8314 (1999); J. Grimm et al. , J. Cell Biol . 154, 345 (2001); R. J. Crowder, H. Enomoto, M. Yang, E. M. Jr. Johns on and J. Milbrandt, J. Biol. Chem. 279, 42072 (2004)等参照)。更に、 M uSK分子内の NPXYの 4アミノ酸(配列表の配列番号 1記載の 550〜553番)から構 成される PTBドメインターゲットモチーフは、 MuSK活性ィ匕に必須であると報告され ている(H. Zhou, D. J. Glass, G. D. Yancopoulos, &J. R. Sanes, J. Cell Bi ol. 146, 1133 (1999); R. Herbst and S. J. Burden, EMBO J. 19, 67 (20 00); R. Herbst, E. Avetisova and S. J. Burden, Development 129, 544 9 (2002)等参照)。そこで、 Dok— 7タンパク質と MuSKとの相互作用を通じて、 Do k— 7タンパク質の機能解析を行った。
[0100] (A)非筋肉細胞
293T細胞株に、ヒト Dok— 7、 mycタグに融合された、野生型(以下、「WT」とも称 する)マウス MuSK又はキナーゼ不活性型変異 MuSK (以下、「MuSK—KA」とも 称する)の各々の DNAが挿入されたベクターを、上述の方法により導入し、形質転 換 293T細胞株を作製した。なお、野生型 (WT)マウス MuSKの DNAは、特異的に 結合するプライマー対を用いた RT—PCR法により作製し、作製した DNAを、所望の アミノ酸配列の読み枠になるように、上述の方法に従い「pcDNA3. 1— mycZHis」 に挿入した。 MuSK— KAの DNAは、配列番号 3記載のアミノ酸配列における 608 番のリジンをァラニンに置換したアミノ酸配列をコードするよう、野生型 (WT)マウス M uSKの DNAに変異をカ卩えることで作製した。この変異は、周知の変異工学的手法 で行った。
[0101] 各々の形質転換された 293T細胞を、 10vol%FBSを添カ卩した DME培地中で、所 定の細胞数になるまで培養した後、 RIPA緩衝液(50mM トリス— HC1 pH8. 0、 1 50mM NaCl、 ImM Na3V04、 50mM NaFゝ 1% Nonidet P— 40、 0. 5% デォキシコール酸ナトリウム、 0. 1% SDS)に溶解させることで、全細胞可溶物 (W CL)を得た。次いで、この全細胞可溶物に対して、常法に従い、抗 mycタグ抗体(ひ myc)を用いた免疫沈降を行 、、免疫沈降物 (IP: a myc)を得た。
[0102] 各形質転換体から得られた、全細胞可溶物及び免疫沈降物の各々につ!、て、ゥェ スタン解析を行った。なお、ウェスタン解析に使用した、 Dok— 7抗体(IB : a Dok- 7 )は、上述の手順で得られた Dok— 7タンパク質で免疫したマウス血清カゝら精製され たポリクローナル抗体であった。また、抗リン酸化チロシン抗体 (IB : α ΡΥ)は「4G10 」(アップステートバイオロジー社製)、抗 mycタグ抗体(IB : a myc)は「9B11」(セル シグナリング社製)であった。この結果を図 4に示す。図 4の上側は、この解析に用い た各 293T細胞に導入されている DNAの組み合わせを示す。
[0103] 図 4に示されるように、 Dok— 7を 293T細胞内で強制発現させると、野生型 (WT) MuSKのチロシンリン酸ィ匕は強く促進された力 キナーゼ不活性型変異体である Mu SK— KAのチロシンリン酸化の促進は検出されなかった。
[0104] 同様の手順で、トラフグ Dok— 7 (F7)、及び、ヒト Dok— 1〜7の各々が導入された 形質転換 293T細胞株を用いて、ウェスタン解析を行った。なお、トラフグ Dok— 7、ヒ ト Dok—l〜6の各々の DNAは、各々に特異的に結合するプライマー対を用いた R T— PCR法により作製し、作製した DNAを、所望のアミノ酸配列の読み枠になるよう に、上述の方法に従い「pcDNA3. 1— myc/His」に挿入した。この結果を図 5に示 す。図 5の上側は、この解析に用いた各 293T細胞に導入されている DNAの組み合 わせを示す。
[0105] 図 5に示されるように、トラフグ Dok— 7タンパク質は、ヒト Dok— 7タンパク質と同様 に、 MuSKのチロシンリン酸ィ匕を促進できた。この結果から、 Dok— 7の性質は脊椎 動物に共通することが示唆された。一方、ヒト Dok— 1〜6のタンパク質については、 いずれも MuSKのチロシンリン酸化を検出できなかった。
従って、 Dok— 7は、脊椎動物一般に保存された、 MuSKの特異的活性化物質で あることが示唆された。
[0106] (B— 1)筋管
上述の手順で得た、ヒト Dok— 7が形質転換されたヒト C2筋原細胞を飽和細胞密 度にまで増殖させ、 2vol%馬血清を添カ卩した DME培地中で 5〜7日間培養し、筋管 (C2筋管)に分化させた。
[0107] この C2筋管を、 20vol%FBSを添カ卩した DME培地中で、所定の細胞数になるま で培養した後、アルカリ可溶化液(50mM トリス— HC1 pH9. 5、 ImM Na3V04 、 50mM NaF、 1% デォキシコール酸ナトリウム、 1% トリトン X100)に溶解さ せることで、全細胞可溶物 (WCL)を得た。次いで、この全細胞可溶物に対して、常 法に従い、抗 MuSK抗体「N— 19」及び「C— 19」(いずれも、サンタクルス社製)を 用いた免疫沈降、もしくは、 Btxを用いた AChR複合体のプルダウンを行い、各々の 沈降物を得た。
[0108] C2筋管力 得られた全細胞可溶物 (WCL)、及び、この全細胞可溶物に対して、 免疫沈降を行って得られた免疫沈降物(IP : a MuSK)、 Btxによるプルダウンを行 つて得られた単離物(BP)の各々について、ウェスタン解析を行った。なお、ゥエスタ ン解析に使用した、抗リン酸ィ匕チ口シン抗体 (IB : α ΡΥ)は「4G10」(アップステート バイオロジー社製)、抗 MuSK抗体(IB : a MuSK)は「AF562」(R&Dシステムズ 社製)、抗チロシンリン酸化 AChR |8 1抗体は「Tyr— 390」(サンタクルス社製)、抗 A ChR a 1抗体は「C— 18」(サンタクルス社製)、 Dok— 7抗体は上述の抗血清(IB : a Dok- 7)、 aチューブリン抗体(IB: aチューブリン)は「DM1A」(シグマ社製)、 であった。この結果を図 6に示す。なお、図 6左側は、挿入配列のない「pcDNA3. 1 — 1^じ7:¾3」をじ2筋原細胞に導入した場合における結果を示す対照区である。
[0109] 図 6に示されるように、 Dok— 7を筋管内で過剰発現させると、内在性 MuSKのチロ シンリン酸ィ匕が促進され、その基質である AChR |8 1のチロシンリン酸化も促進された
[0110] (B— 2) Dok— 7と AChRとの関係
様々な量の AChR含有プラスミドを形質導入した C2筋管における AChRの密集状 態を次の手順により調べた。即ち、まず、筋管を、 IngZmlの Alexa594結合 Btxと 1 時間反応させた後、洗浄し、 3. 7%PFAを混合した PBSで固定した。固定化した筋 管の画像は、「DFC350FX CCD camera」(ライカ社製)を接続した「DM6000B microscopej (ライカ社製)により収集した。対物 40倍の 10フィールドを無作為に 選択し、 AChRクラスター(直径 5 μ m以上)数を計測した。この結果を図 7に示す。 図 7に示されるように、 Dok— 7の強制発現によって AChRクラスターが誘導され、 AChRクラスター数は、 Dok— 7含有プラスミドの注入量に相関していた。
[0111] 次に、 EGFPに融合された Dok— 7を筋管内で強制発現させた際の局在性を、 AC hRと併せて、共焦点顕微鏡観察によって調査した。この結果を図 8に示す。なお、 A ChR及び Dok— 7各図を混合した図は図示していないが、各図は同一切片の同一 視野における図である。なお、図 8におけるバーは、 20 mを示す。
図 8に示されるように、強制発現された Dok— 7は AChRとともにクラスターを形成し ていた。この結果は、図 3に見られる結果とも一致する。
[0112] なお、 AChRは、 MuSKの活性化によって、筋管内で MuSKとともにクラスターを 形成することも知られている(Kummer, T. T. , Misgeld, T. , Lichtman, J. W. &Sanes, J. R. , J. Cell Biol. 164, 1077— 1087 (2004)、 Sander, A. , He sser, B. A. &Witzemann, V. J. Cell Biol. 155, 1287— 1296 (2001)参照
) o
[0113] (B— 3) AChRの密集
上述のヒト Dok— 7が導入された C2筋管、及び、挿入配列のない「pcDNA3. 1— myc/Hisjが導入された C2筋管 (対照区)における、 AChRの密集状態を上述した 手順により観察した。この結果の一部を図 9に示す。図 9中のバーは 200 mを示す [0114] 図 9に示されるように、ヒト Dok— 7が形質転換された C2筋管には、対照区に比べ て、はるかに多い AChRの密集が観察された。また、図示はしないが、ヒト Dok— 1〜 6が形質転換された C2筋管には、対照区と比べて、 AChRの密集についての有意な 差は観察されな力つた。
[0115] AChR j8サブユニットのチロシンリン酸化は、 MuSKの活性化に伴って起こることが 報告されている(例えば、 C. Fuhrer, J. E. Sugiyama, R. G. Taylor and Z. W . Hall, EMBO J. 16, 4951 (1997)参照)。この報告を踏まえれば、図 6及び図 9 に示す結果から、 Dok— 7タンパク質は、 MuSKのチロシンリン酸化を介して、 ACh R i8 1のチロシンリン酸ィ匕を促進し、 AChRの密集を促進できることが示唆された。
[0116] 次に、分化の過程で、 C2筋原細胞に対して、上述した形質転換 C2筋管、及び、 1 OngZmlの神経性ァグリンで 7日間処理した C2筋原細胞について、より詳細な観察 を行った。この結果を図 10に示す。図 10中のバーは 40 mを示す。
[0117] 図 10に示されるように、外来遺伝子である Dok— 7により誘導された AChR密集部 位は、高度に分岐化された複雑構造を有していた。また、 Dok— 7により誘導された AChR密集部位は、ァグリンにより誘導された密集部位、もしくは、 自発的に形成され た密集部位に比べ、大き力つた。なお、観察された密集部位の複雑構造は、インビト 口及びインビボで観察が報告された分ィ匕後のプレツチェル様 AChR密集構造 (例え ば、 T. T. Kummer, T. Misgeld, J. W. Lichtman and J. R. Sanes, J. Cell. Biol. 164, 1077 (2004)参照)【こ似て!/ヽた。
[0118] <実施例 8 > Dok—7mRNAの生体内局在
Dok— 7遺伝子の mRNAの生体内局在をより細力べ解析するため、 C57BLZ6由 来のマウス胚カゝら得られた横隔膜筋を被検体として、以下のような手順で、インサイチ ュハイブリダィゼーション解析を行つた。
[0119] マウス胚力 得られた横隔膜筋を PBS中の 4%パラホルムアルデヒドで固定し、プロ ティナーゼ Kで処理し、更に、マウス Dok— 7のジゴキシゲニン(DIG)標識されたァ ンチセンス又はセンスリボプローブによって、プローブした。これらのプローブは、マウ ス Dok— 7cDNA (AB220919)のヌクレオチド 1— 999に対応するものである。イン サイチュハイブリダィゼーシヨンを常法に従って行 、、アルカリフォスファタ一ゼ抱合 抗 DIG抗体によって検出されたシグナルを NBT及び BCIPによって現像した。撮影 は、カメラ「DP— 70」(オリンノス社製)が取り付けられた立体顕微鏡「MZ16」(ライカ 社製)を用いて行った。この結果を図 11に示す。なお、図 11中のバーは、 500 を示す。
[0120] 図 11に示されるように、アンチセンスリボプローブは、横隔膜の終板領域に特異的 に結合し、この終板領域にセンスリボプローブは結合していな力つた。従って、マウス Dok- 7の mRNAは、横隔膜の終板領域に特異的に発現して 、ることが示唆された
[0121] <実施例 9 > Dok— 7の変異株解析
Dok— 7の変異株、 MuSKの変異株を用いて、 Dok— 7タンパク質による MuSKの チロシンリン酸ィ匕に必須な部位の決定を試みた。
[0122] (A) MuSKについて
PTBドメインのターゲットモチーフであることが報告されている MuSKのアミノ酸配 列 (NPXY)に変異を有する変異型 MuSK (NA、 YF)、チロシンキナーゼ不活化変 異型 MuSK (KA)を発現する DNAを、常法に従って、点変異導入法により作製した 。そして、これらの DNA、及び、野生型 Dok— 7を発現する DNA、を各々発現する 形質転換 293T細胞株を、上述の方法と同様の手順により、作製した。ここで、 NAは 配列番号 3記載のアミノ酸配列 550番のァスパラギンをァラニンに置換した変異型で 、YFは配列番号 3記載のアミノ酸配列 553番のチ口シンをフエ-ルァラニンに置換し た変異型で、 KAは配列番号 3記載のアミノ酸配列 608番のリジンをァラニンに置換 した変異型である。なお、 MuSK及びその変異体には mycタグが融合されている。
[0123] 各々の形質転換細胞株から得られた全細胞可溶液 (WCL)に対して、抗 mycタグ 抗体を用いて免疫沈降を行い、免疫沈降物 (IP : a myc)を得た。そして、この全細 胞可溶液及び免疫沈降物について、ウェスタン解析を行った。使用した抗体は、上 述の抗体と同じ抗体であった。この結果を図 12に示す。なお、図 12の上側は、野生 型 MuSK、 NA変異体、 YF変異体に関する PTBドメインターゲットモチーフを含む 周辺のペプチド配列を示す。また、図 12の中央部は、この解析に用いた各 293T細 胞に導入されて 、る DNAの組み合わせを示す。
[0124] 図 12に示されるように、 293T細胞においては、野生型 MuSK (WT)は Dok—7と 結合し共沈降したことが確認された。一方、 YF、 NAのいずれも、 Dok—7と結合し 共沈降したことは確認されなカゝつた。この結果から、 NPXYを含む PTBドメインのター ゲットモチーフが、 Dok—7と MuSKとの結合に関与することが示唆された。更に、 2 93T細胞においては、 YF、 NAはいずれも、 Dok—7により誘導される MuSKのチロ シンリン酸ィ匕を妨害することはないことも示唆された。
[0125] (B) Dok—7について
まず、野生型ヒト Dok—7 (WT)、野生型ヒト Dok—7のうち N末端側に存在する PH ドメイン (配列番号 1記載のアミノ酸配列の 8〜 107番)の一部を欠損させた変異型 D ok— 7 ( Δ N)、野生型ヒト Dok— 7のうち C末端側領域を欠損させた変異型 Dok— 7 ( A C)、を各々発現し、且つ MuSKを強制発現する形質転換 293T細胞株を、上述 の方法と同様の手順により、作製した。ここで、 Δ Νは配列番号 1記載のアミノ酸配列 61〜504番にまで削除した変異型で、 A Cは配列番号 1記載のアミノ酸配列 1〜23 0番にまで削除した変異型である。なお、 Dok— 7及びその変異体には FLAGタグが 融合され、 MuSKには mycタグが融合されている。
[0126] そして、各々の形質転換細胞株から得られた全細胞可溶液につ!ヽて、ウェスタン解 析を行った。ゥヱスタン解析に用いた、抗 mycタグ抗体(IB: α myc)、抗 FLAGタグ 抗体 (IB : a FLAG)、抗リン酸ィ匕チ口シン抗体 (IB : a PY)は、総て、上述したものと 同じものであった。この結果を図 13に示す。図 13の上側は各 Dok— 7の構造概略図 である(詳細は図 26参照)。また、図 13の中央部は、この解析に用いた各 293T細胞 に導入されて 、る DNAの組み合わせを示す。
[0127] 図 13に示されるように、 MuSKのチロシンリン酸化は、野生型ヒト Dok— 7及び A C につ ヽては確認された力 PHドメインを欠損した Δ Nにつ!/ヽては確認されなかった。 この結果により、 PHドメイン力 MuSKのチロシンリン酸化に必須であることが示唆さ れた。
[0128] 次に、ヒト Dok— 7の PTBドメイン内のアミノ酸配列(配列番号 1記載のアミノ酸配列 の 109〜204番)中の 158、 159、 174番のァノレギニン力 Sァラニンに置換された変異 型 Dok— 7 (RA)の DNAを、常法に従って、点変異導入法により作製した。この RA 、野生型ヒト Dok— 7 (WT)を各々発現し、且つ MuSKを強制発現する形質転換 29 3T細胞株を、上述と同様の手順で、作製した。ここでも、 MuSKには mycタグが融合 されている。
[0129] そして、各々の形質転換細胞株から得られた全細胞可溶液 (WCL)に対して免疫 沈降を行い、得られた免疫沈降物(IP : a myc)についてウェスタン解析を行った。使 用した抗体は、上述の抗体と同じ抗体であった。この結果を図 14に示す。図 14の上 側は、この解析に用いた各 293T細胞に導入されて ヽる DNAの組み合わせを示す。
[0130] 図 14に示されるように、野生型ヒト Dok— 7は MuSKと結合し共沈降したのに対し、 PTBドメインに変異を有する RAは MuSKと結合し共沈降したことは確認されなかつ た。この結果から、 PTBドメイン力 Dok— 7と MuSKとの結合に関与することが示唆 された。
[0131] 一方、 Dok— 7の RAが MuSKのチロシンリン酸化を促進することから、少なくとも 2 93T細胞内では、 Dok— 7の PTBドメインが MuSKのチロシンリン酸化の誘導に重 要ではな!/、ことが示唆された。
[0132] 更に、同様の解析を、分ィ匕開始 3日後及び 6日後における各 C2筋管(Dok— 7の WT、 AC, RAの各々が既に遺伝子導入されている)カゝら得られた全細胞抽出液 (W CL)、及び、この全細胞抽出液に対して免疫沈降を行って得られた免疫沈降物 (IP : a MuSK)について行った。この結果を図 15に示す。なお、分化開始 3日後ではわ ずかな C2筋管しか形成されておらず、分ィ匕開始 6日後では分ィ匕が完了していた。 また、分ィ匕開始 7日後の各 C2筋管の AChRクラスター数を、上述の通りの手順で、 計測した。この結果を図 16に示す。
[0133] 図 15に示されるように、分ィ匕開始 3日後及び 6日後において、野生型 Dok— 7タン パク質は、内在性 MuSKのチロシンリン酸化を促進できた。一方、 RA、 A Cについ ては、分化開始 3日後(分化の途中)では内在性 MuSKのチロシンリン酸ィ匕を促進で きたが、分ィ匕開始 6日後(分ィ匕完了後)では内在性 MuSKのチロシンリン酸ィ匕を促進 しなかった。
[0134] また、図 16に示されるように、野生型 Dok— 7タンパク質は、 AChRクラスター数を 増加した。一方、 RA、 A Cについては、分ィ匕後の C2筋管における AChRクラスター 数の増加は、ほとんど見られな力つた。
[0135] これらの結果から、 PTBドメイン及び C末端領域は、分ィ匕後の C2筋管における Mu SKのチロシンリン酸化、 AChRの密集に必要であることが示唆された。また、図 13に 示される Dok— 7の Δ Nにつ!/、ては分化後の C2筋管にお!、ても MuSKのチロシンリ ン酸化を促進せず、 AChRの密集を誘導しなカゝつた(図示せず)。一般に、 PHドメイ ンはタンパク質の膜局在に関与することが知られて 、ること力ら、 MuSKのチロシンリ ン酸ィ匕に関して、 Dok— 7の膜局在が重要な役割を果たしていることが示唆された。
[0136] 以上の結果をまとめると、筋管への分化の過程で、 MuSKの活性ィ匕に対する細胞 内阻害要素が強化される機構が推測される。
[0137] <実施例 10 > 逆遺伝学的解析
(A)ァグリンとの関係
Dok- 7の発現を特異的に抑制する siRNA (siD - 7)及び、対照区に用 、た siRN A (対照区)の塩基配列は以下の通りであった ( 、ずれも、キアゲン社製)。
siD- 7 : 5 ' - CACCACTATGACACACCTCGA 3 '
対照区: 5 ' - AATTCTCCG AACGTGTC ACGT— 3 '
[0138] そして、この siRNAを C2筋原細胞に導入し、分ィ匕させることにより、 Dok— 7発現が 抑制された形質転換筋管を作製した。なお、この形質転換の方法は、 rLipofectami ne2000」の代わりに「X— tremeGENE siRNA reagent」(ロシュ社製)を使用し たことを除き、上述の方法と同様の手順で行った。
[0139] この形質転換筋管及び野生型筋管をそれぞれ、神経性ァグリン (Ag) lOngZmlで 15分間処理した後又は無処理の細胞可溶物に対して免疫沈降を行って得られた免 疫沈降物(IP: a MuSK, IP: a Dok— 7)、 Btxを用いたプルダウンを行って得られ た単離物(BP)の各々について、ウェスタン解析を行った。使用した抗体は、上述し た抗体と同じ抗体であった。リン酸ィ匕チ口シン抗体の検出は、検出時間を 10秒間、 1 分間として行った。この結果を図 17に示す。
[0140] また、神経性ァグリン (Ag) lOngZmlで 12時間処理を行った後、又は、無処理の 各筋管における AChRクラスター数を計測した。この結果を図 18に示す。 [0141] また、 C2筋管を神経性ァグリン lOng/mlで 30分間処理した際の、 MuSK及び D ok— 7のチロシンリン酸ィ匕の経時的変化 (処理開始後 1分、 5分、 10分、 30分)を、各 々の抗体による免疫沈降物(IP : MuSK, IP : a Dok— 7)をウェスタン解析するこ とにより調べた。この結果を図 19に示す。
[0142] 図 17に示されるように、 siD— 7により内在性 Dok— 7の発現が抑制されると、ァグリ ンの非存在下における MuSK及び AChR |8 1のチロシンリン酸ィ匕が妨げられた。同 様に、ァグリンに依存的な、 MuSK活性化、 AChR |8 1のリン酸化も妨げられた。
[0143] また、図 18に示されるように、 siD— 7により内在性 Dok— 7の発現が抑制されると、 ァグリン依存的及び非依存的な AChRの密集がともに妨げられた。
[0144] ちなみに、ァグリンによる AChRの密集化に MuSKが不可欠であることは、既知の 事実である(H. Zhou, D. J. Glass, G. D. Yancopoulos、 and J. R. Sanes著 、「Journal of Cell Biology」、 146、 1133 (1999)、 R. Herbst、 and S. J. Burden著、「EMBO Journal] , 19、 67 (2000)参照)。
[0145] これらの結果から、 Dok— 7は、筋管における MuSKの活性化及び MuSKに依存 した AChRの密集化に必須の役割を果たしていることが分力つた。
[0146] なお、図 19に示されるように、ァグリン刺激を施した C2筋管細胞において、内在性 MuSKのチロシンリン酸化、及び、内在性 Dok— 7のチロシンリン酸化は、同様の経 時的変化をたどっていた。このため、上述した結果にかかわらず、 Dok— 7が MuSK の関与するシグナル伝達経路の下流における役割を果たして 、る可能性は、否定で きないことが示唆された。
[0147] <実施例 11 > 逆遺伝学的解析 (個体レベル)
(A)ノックアウトマウスの作製
マウス dok— 7遺伝子座を含むバクテリア人工染色体(BAC)クローンは、 BACPA C Resource Centerより入手した(図 20上段)。組換えベクターは、 dok— 7遺伝 子の第 1、第 2ェキソン(各ェキソンは、番号 1〜7で表される)をネオマイシンフォスフ オトランスフェラーゼ遺伝子で置換し、このネオマイシンフォスフォトランスフェラーゼ 遺伝子 DNAが dok—7遺伝子DNAの5 '断片(l . 8kb)及び 3 '断片(7. 3kb)に隣 接するように、構築した(図 20中段)。このコンストラクトを直線ィ匕して、 129Z01a由 来の胚性幹細胞にエレクトロボレートし、 3つのホモ組換体を同定した。キメラの雄を C57BLZ6雌と交配し、キメラ生殖系列ひいてはヘテロ接合体を得た。図 20におい て、 Bは Bglll制限部位、 Xは Xhol制限部位を表し、 neoはネオマイシン耐性遺伝子 を表す。
[0148] 組換えベクターが挿入されたことを確認するために、野生型マウス、ヘテロマウス、 ヌルマウスの各々の尾から DNAを精製し、この DNAに Bglllによる制限処理を施し た後、図 20中段に示される配列に対応するプローブを用い、常法に従ってサザン解 析を行った。この結果を図 21に示す。
[0149] 図 21に示されるように、野生型マウス及びへテロマウスにおいては、 7. 6kbにバン ドが検出されたのに対して、ヌルマウスには、このバンドが検出されなかった。更に、 野生型マウスにおいては検出されなかった 3. 5kbのバンドがヘテロマウス及びヌル マウスにおいて検出された。以上の結果から、ヌルマウスにおいては、組換えべクタ 一によつてェキソン 1及び 2が相同組換えされ、ヌル対立遺伝子となっていることが確 f*i¾ れ 。
[0150] 更に、野生型マウス及びヌルマウスの各々の筋肉抽出液を試料とし、ェキソン 6及 び 7の部分に対応するペプチドを検出可能な抗 Dok— 7抗体を用いたウェスタン解 析を行った。この結果を図 22に示す。
[0151] 図 22に示されるように、野生型マウスでは Dok— 7と予想されるバンドが検出された のに対して、ヌルマウスでは何のバンドも検出されなかった。従って、ヌルマウスにお V、ては、 Dok— 7タンパク質が合成されて!、な!/、ことが確認された。
[0152] (B)呼吸について
同腹仔である野生型マウス及びへテロマウスは正常な状態を示したのに対して、 D ok— 7ヌルマウスは、誕生時において動けず、生後すぐに死亡した。また、ヌルマウス には呼吸不全が予想されたため、ヌルマウスの肺を、へマトキシリン'ェォシン染色し た後、観察した。この結果を図 23に示す。
[0153] 図 23に示されるように、肺胞のエアサックが野生型マウスでは広がっていたのに対 して、ヌルマウスでは広がっていなかった。この結果から、ヌルマウスにおける呼吸不 全が確認された。 [0154] (C) NMJについて
野生型マウス及びヌルマウスの各々の胚(14. 5日胚、 18. 5日胚)から、横隔膜筋 を調整し、この横隔膜筋に、杭-ユーロフィラメント染色及び Btx染色を行うことで、神 経及び AChRをそれぞれ可視化した。可視化された横隔膜筋を観察した結果を図 2 4に示す。なお、図 24中のバーは 100 mを示す。
[0155] 図 24に示されるように、野生型マウス及びヌルマウスの、 14. 5日胚及び 18. 5日胚 の双方において、横隔膜筋の終板領域には AChRクラスターが検出されなカゝつた。 一般に、 14. 5日胚では神経 Zァグリンに非依存的に発生期 AChRクラスターが形 成され、 18. 5日胚では神経 Zァグリンに依存的に AChRが密集化することから、い ずれのタイプの MuSK依存的シナプス後特化にも Dok— 7が必要であることが示唆 される。更に、ヌルマウス 18. 5日胚において、運動神経幹から延びる軸索側枝は、 横隔膜の終板領域において異常に長ぐ神経幹近傍で終結しな力つた。
[0156] これらの異常性は、 MuSK欠損マウスにおいて見られる異常性と区別できないこと から、 Dok— 7は、神経筋シナプス形成という MuSK依存的生体プロセスにおいて、 必須の役割をインビボで果たしていることが示唆される。
[0157] <実施例 12> Dok— 7と先天性筋無力症候群との関係
先天性筋無力症候群は、 AChRを含めたシナプス後構造に影響を与える遺伝的 変化と関連することが報告されている (前述の非特許文献 1、 2参照)。そして、先天 性筋無力症候群の原因となった遺伝的変化の一例として、 MuSK遺伝子の点変異 が報告されている(例えば、 F. Chevessier et al. , Hum. Mol. Genet. 13, 32 29 (2004)参照)。この報告された点変異によれば、変異型 MuSK遺伝子は、無発 現対立遺伝子と、 MuSK— VMと、からなる。そこで、 Dok— 7と MuSK— VMとの相 互作用につ 、て調査することとした。
[0158] MuSK— VM (mycタグ標識)及びヒト Dok— 7を、上述の方法で、 293T細胞に導 入し、形質転換 293T細胞を作製した。次いで、この形質転換 293T細胞カゝら得られ た全細胞可溶物 (WCL)と、この全細胞可溶物に対して免疫沈降を行って得られた 免疫沈降物 (IP : a myc)とについて、ウェスタン解析を行った。使用した抗体は、上 述した抗体と同じ抗体であった。この結果を図 25に示す。図 25の上側は、この解析 に用いた各 293T細胞に導入されて!、る DNAの組み合わせを示す。
[0159] 図 25に示されるように、 Dok— 7を強制発現する形質転換 293T細胞においては、 野生型 MuSKタンパク質 (WT)が野生型 Dok— 7タンパク質と結合するのに対して、 変異型 MuSKタンパク質 (VM)は野生型 Dok— 7タンパク質とほとんど結合しな力 た。
[0160] 以上の結果をまとめると、先天性筋無力症候群の機構として、次のような機構を推 測できる。即ち、 MuSK及び Z又は Dok— 7における遺伝的変化により、 MuSKと D ok— 7との相互作用が減少する。この結果、筋管内における AChRの密集化が阻害 されるために、先天性筋無力症候群の症状が表れる。
産業上の利用可能性
[0161] Dok— 7遺伝子 DNA内における変異により先天性筋無力症候群に罹患している 患者に対して、本発明のポリペプチド及び Z又は DNAを投与することにより、 MuS Kのチロシンリン酸化、 AChR jS 1のリン酸化を介して AChRの密集化が促進され、 結果として先天性筋無力症候群を治療又は予防し得る。また、本発明の DNA塩基 配列を決定することにより、先天性筋無力症候群を検査できる。

Claims

請求の範囲
[1] 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードする以下の(a) から (d)の!、ずれかに記載の DNA。
(a)配列番号 2記載の塩基配列を有する DNA
(b)配列番号 2記載の塩基配列とストリンジェントな条件下でハイブリダィズできる塩 基配列を有する DNA
(c)配列番号 1記載のアミノ酸配列において 1もしくは複数のアミノ酸が置換、欠失 及び Z又は付加されたアミノ酸配列をコードする塩基配列を有する DNA
(d)配列番号 2記載の塩基配列と 90%以上の相同性を有する塩基配列からなる D NA
[2] 請求項 1記載の DNAを含むベクター。
[3] 請求項 2記載のベクターが導入された形質転換体。
[4] 請求項 1記載の DNAによりコードされるポリペプチド。
[5] 請求項 3記載の形質転換体を培養し、この形質転換体又はその培養液から合成さ れたポリペプチドを回収する手順を含む請求項 4記載のポリペプチドの製造方法。
[6] 請求項 4記載のポリペプチドに結合する抗体又は抗体フラグメント。
[7] 配列番号 2記載の塩基配列力 なる DNA又はその発現制御領域の DNAの少なく とも一部が欠損又は変異された非ヒト形質転換動物。
[8] 請求項 1記載の DNA又は請求項 4記載のポリペプチドを有効成分として含む医薬 組成物。
[9] 神経筋接合部位の異常に由来する疾病の検査方法であって、
被験者の細胞から DNAを抽出する抽出手順と、
抽出された前記 DNAを铸型とし、配列番号 2記載の塩基配列力 なる DNA又は その発現制御領域の DNAの一部又は全部を特異的に増幅できるプライマーを用い てポリメラーゼ連鎖反応を行う増幅手順と、
増幅された DNAの塩基配列を解読する解読手順と、
解読された前記塩基配列を、配列番号 2記載の塩基配列と比較する比較手順と、 を含む検査方法。
[10] 神経筋接合部位の異常に由来する疾病の検査方法であって、
被験者の細胞における配列番号 2記載の塩基配列を有する DNAの発現量を検出 する検出手順と、
検出された前記 DNAの発現量を、健常者における配列番号 2記載の DNAの発現 量と比較する比較手順と、を含む検査方法。
[11] 配列番号 2記載の塩基配列力 なる DNA又はその発現制御領域の DNAの一部 又は全部を特異的に増幅できるプライマー、又は、請求項 6記載の抗体又は抗体フ ラグメントを有効成分とする神経筋接合部位の異常に由来する疾病の検査薬。
[12] 神経筋接合部位の異常に由来する疾病の治療薬の候補ィ匕合物のスクリーニング 方法であって、
請求項 4記載のポリペプチドと被検物質とを接触させる手順と、
前記ポリペプチドと前記被検物質との結合を検出する手順と、を含むスクリーニング 方法。
[13] 神経筋接合部位の異常に由来する疾病の治療薬の候補ィ匕合物のスクリーニング 方法であって、
被検物質の存在下及び非存在下にお 、て、配列番号 1記載のアミノ酸配列力 な るポリペプチド又は筋特異的チロシンキナーゼとの結合活性を有するその断片と、筋 特異的チロシンキナーゼとを接触させる手順と、
前記被検物質の存在下における前記結合活性と、前記被検物質の非存在下にお ける前記結合活性とを比較する手順と、を含むスクリーニング方法。
[14] 神経筋接合部位の異常に由来する疾病の治療薬の候補ィ匕合物のスクリーニング 方法であって、
配列番号 2記載の塩基配列を有する DNAを発現する細胞と被検物質とを接触さ せる手順と、
前記 DNAの発現量の変化を検出する手順と、を含むスクリーニング方法。
[15] 神経筋接合部位の異常に由来する疾病の治療薬の候補ィ匕合物のスクリーニング 方法であって、
請求項 7記載の非ヒト形質転換動物に被検物質を投与する手順と、 前記非ヒト形質転換動物における神経筋接合部位の異常の改善を検出する手順と 、を含むスクリーニング方法。
PCT/JP2007/059050 2006-06-07 2007-04-26 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna WO2007141971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008520460A JP5339246B2 (ja) 2006-06-07 2007-04-26 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna
EP07742485.1A EP2031062B1 (en) 2006-06-07 2007-04-26 Dna encoding polypeptide capable of modulating muscle-specific tyrosine kinase activity
US12/329,208 US8222383B2 (en) 2006-06-07 2008-12-05 DNA encoding polypeptide capable of modulating muscle-specific tyrosine kinase activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006158987 2006-06-07
JP2006-158987 2006-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/329,208 Continuation US8222383B2 (en) 2006-06-07 2008-12-05 DNA encoding polypeptide capable of modulating muscle-specific tyrosine kinase activity

Publications (1)

Publication Number Publication Date
WO2007141971A1 true WO2007141971A1 (ja) 2007-12-13

Family

ID=38801236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059050 WO2007141971A1 (ja) 2006-06-07 2007-04-26 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna

Country Status (4)

Country Link
US (1) US8222383B2 (ja)
EP (1) EP2031062B1 (ja)
JP (1) JP5339246B2 (ja)
WO (1) WO2007141971A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152413A1 (ja) * 2014-04-03 2015-10-08 地方独立行政法人東京都健康長寿医療センター 加齢または筋萎縮の診断用バイオマーカー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202010894D0 (en) 2020-07-15 2020-08-26 Univ Oxford Innovation Ltd Gene therapy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129599A (ja) 1997-02-27 1999-02-02 Japan Tobacco Inc 細胞間接着及びシグナル伝達を媒介する細胞表面分子
JP2003135075A (ja) * 2001-11-05 2003-05-13 Research Association For Biotechnology 新規な全長cDNA
WO2005014813A1 (ja) * 2003-08-08 2005-02-17 Astellas Pharma Inc. 糖尿病改善薬のスクリーニングに利用できる新規蛋白質

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002068605A2 (en) * 2001-02-26 2002-09-06 The Regents Of The University Of California Non-oligomerizing tandem fluorescent proteins
EP1308459A3 (en) 2001-11-05 2003-07-09 Research Association for Biotechnology Full-length cDNA sequences
US7193069B2 (en) * 2002-03-22 2007-03-20 Research Association For Biotechnology Full-length cDNA
AU2005206389A1 (en) * 2004-01-27 2005-08-04 Compugen Ltd. Methods of identifying putative gene products by interspecies sequence comparison and biomolecular sequences uncovered thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129599A (ja) 1997-02-27 1999-02-02 Japan Tobacco Inc 細胞間接着及びシグナル伝達を媒介する細胞表面分子
JP2003135075A (ja) * 2001-11-05 2003-05-13 Research Association For Biotechnology 新規な全長cDNA
WO2005014813A1 (ja) * 2003-08-08 2005-02-17 Astellas Pharma Inc. 糖尿病改善薬のスクリーニングに利用できる新規蛋白質

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
A. G. ENGEL; K. OHNO; S. M. SINE, NATURE REVIEWS NEUROSCIENCE, vol. 4, 2003, pages 339
A. G. ENGEL; S. M. SINE, CURRENT OPINION PHARMACOLOGY, vol. 5, 2005, pages 308
A. VINCENT ET AL., ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, vol. 998, 2003, pages 324
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
BEESON D. ET AL.: "Dok-7 mutations underlie a neuromuscular junction synaptopathy", SCIENCE, vol. 313, 29 September 2006 (2006-09-29), pages 1975 - 1978, XP003020115 *
CROWDER R.J. ET AL.: "Dok-6, a novel p62 Dok family member, promoter Ret-mediated neurite outgrowth", J. BIOL. CHEM., vol. 279, 2004, pages 42072 - 42081, XP003020113 *
D. J. GLASS ET AL., CELL, vol. 85, 1996, pages 513
DALBADIE-MCFARLAND, G. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 6413
DATABASE BIOSIS [online] FRIESE M.B. ET AL.: "A yeast 2-hybrid screen for proteins that bind activated MuSK", XP003020111, Database accession no. (2004:160157) *
DATABASE GENBANK [online] INTERNATIONAL HUMAN GENOME SEQUENCING CONSORTIUM: "Finishing the euchromatic sequence of the human genome", XP003020110, Database accession no. (NC_000004) *
DATABASE GENBANK [online] STRAUSBERG R.L. ET AL.: "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequence", XP003020109, Database accession no. (BC089590) *
F. CHEVESSIER ET AL., HUM. MOL. GENET., vol. 13, 2004, pages 3229
F. CONG; B. YUAN; S. P. GOFF, MOL. CELL BIOL., vol. 19, 1999, pages 8314
H. ZHOU ET AL., J. CELL BIOL., vol. 146, 1999, pages 1133
H. ZHOU ET AL., JOURNAL OF CELL BIOLOGY, vol. 146, 1999, pages 1133
HERBST R. AND BURDEN S.J.: "The juxtamembrane region of MuSK has a crucial role in agrin-mediated signaling", EMBO J., vol. 19, 2000, pages 67 - 77, XP003020112 *
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SCI. U. S. A., vol. 85, 1988, pages 5879 - 5883
J. GRIMM ET AL., J. CELL BIOL., vol. 154, 2001, pages 345
J. R. SANES; J. W. LICHTMAN, NATURE REVIEWS NEUROSCIENCE, vol. 2, 2001, pages 791
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495
KUMMER, T. < T. ET AL., J. CELL BIOL., vol. 164, 2004, pages 1077 - 1087
MARK, D. F. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
NATURE, vol. 431, no. 7011, 2004, pages 931 - 945 *
OKADA K. ET AL.: "The muscle protein Dok-7 is essential for neuromuscular synaptogenesis", SCIENCE, vol. 312, 23 June 2006 (2006-06-23), pages 1802 - 1805, XP003020114 *
PROC. NATL. ACAD. SCI. U.S.A., vol. 99, no. 26, 2002, pages 16899 - 16903 *
R. HERBST; E. AVETISOVA; S. J. BURDEN, DEVELOPMENT, vol. 129, 2002, pages 5449
R. HERBST; S. J. BURDEN, EMBO J., vol. 19, 2000, pages 67
R. HERBST; S. J. BURDEN, EMBO JOURNAL, vol. 19, 2000, pages 67
R. J. CROWDER ET AL., J. BIOL. CHEM., vol. 279, 2004, pages 42072
S. J. BURDEN, GENES AND DEVELOPMENT, vol. 12, 1998, pages 133
SANDER, A.; HESSER, B. A.; WITZEMANN, V., J. CELL BIOL., vol. 155, 2001, pages 1287 - 1296
See also references of EP2031062A4
SOCIETY FOR NEUROSCIENCE ABSTRACT VIEWER AND ITINERARY PLANNER, 2003, pages ABSTR. NO. 36.7 *
T. M. DECHIARA ET AL., CELL, vol. 85, 1996, pages 501
T. MISGELD ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, U.S.A, vol. 102, 2005, pages 11088
T. T. KUMMER ET AL., J. CELL. BIOL., vol. 164, 2004, pages 1077
W. LIN ET AL., NATURE, vol. 410, 2001, pages 1057
W. LIN ET AL., NEURON, vol. 46, 2005, pages 569
WANG, A. ET AL., SCIENCE, vol. 224, pages 1431 - 1433
X. YANG ET AL., NEURON, vol. 30, 2001, pages 399
ZOLLER, M. J.; SMITH, M., NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 - 6500

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152413A1 (ja) * 2014-04-03 2015-10-08 地方独立行政法人東京都健康長寿医療センター 加齢または筋萎縮の診断用バイオマーカー
JPWO2015152413A1 (ja) * 2014-04-03 2017-04-13 地方独立行政法人東京都健康長寿医療センター 加齢または筋萎縮の診断用バイオマーカー

Also Published As

Publication number Publication date
EP2031062A4 (en) 2009-09-30
US20090158448A1 (en) 2009-06-18
EP2031062B1 (en) 2018-10-24
JP5339246B2 (ja) 2013-11-13
EP2031062A1 (en) 2009-03-04
JPWO2007141971A1 (ja) 2009-10-15
US8222383B2 (en) 2012-07-17

Similar Documents

Publication Publication Date Title
Childs et al. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein
AU2008333810B2 (en) Compositions and methods to modulate cell membrane resealing
JPH11512285A (ja) 小脳由来成長因子、及びそれに関連する利用
CN110446785A (zh) Hsd17b13变体及其应用
Albiston et al. Gene knockout of insulin-regulated aminopeptidase: loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory
NZ529560A (en) Pharmaceutical compositions and methods of using secreted frizzled related protein
CN108777951B (zh) 具有包括改造的多样性簇的免疫球蛋白重链可变区的非人动物及其用途
JP5339246B2 (ja) 筋特異的チロシンキナーゼの活性を制御するポリペプチドをコードするdna
JP2000512484A (ja) ヒト・ヒアルロナン・レセプター
US7314716B2 (en) Gustducin γ subunit materials and methods
CA2539132A1 (en) Methods for identifying modulators of protein kinase c-epsilon (pkc.epsilon.) and method of treatment of aberrant glucose metabolism associated therewith
EP2221065B1 (en) Therapeutic or prophylactic agent, detection method and detection agent for metabolic syndrome, and method for screening of candidate compound for therapeutic agent for metabolic syndrome
JP2002542774A (ja) タンパク質−タンパク質相互作用
EP1497305A2 (en) Insulin-responsive dna binding protein-1 and methods to regulate insulin-responsive genes
WO2001016315A1 (fr) Transporteur de choline a forte activite
WO2003052096A1 (fr) Procede d&#39;analyse de l&#39;expression genique
JP5099534B2 (ja) Kank3遺伝子の癌治療及び癌検出並びに創薬への利用
JPWO2002064770A1 (ja) 新規スカベンジャー受容体クラスa蛋白質
JP5114765B2 (ja) Kank2遺伝子の癌治療及び癌検出並びに創薬への利用
JP5099535B2 (ja) Kank4遺伝子の癌治療及び癌検出並びに創薬への利用
US20060142222A1 (en) Novel gene relating to fibrotic conditions
CA2589098A1 (en) Method for diagnosing and treating bone-related diseases
Korsgaard et al. Sodium channel rNa v 1.5 a
US20090276863A1 (en) Protein formulations comprising s1-5
WO2004081039A1 (ja) 新規タンパク質およびそのdna

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008520460

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007742485

Country of ref document: EP