WO2005008978A1 - 送信主導型フロー制御装置 - Google Patents

送信主導型フロー制御装置 Download PDF

Info

Publication number
WO2005008978A1
WO2005008978A1 PCT/JP2003/009199 JP0309199W WO2005008978A1 WO 2005008978 A1 WO2005008978 A1 WO 2005008978A1 JP 0309199 W JP0309199 W JP 0309199W WO 2005008978 A1 WO2005008978 A1 WO 2005008978A1
Authority
WO
WIPO (PCT)
Prior art keywords
credit
counter
value
flow control
difference
Prior art date
Application number
PCT/JP2003/009199
Other languages
English (en)
French (fr)
Inventor
Tomoyuki Yamaguchi
Shinji Wakasa
Yasuyuki Mitsumori
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/009199 priority Critical patent/WO2005008978A1/ja
Priority to JP2005504381A priority patent/JP4111974B2/ja
Publication of WO2005008978A1 publication Critical patent/WO2005008978A1/ja
Priority to US11/284,669 priority patent/US7222784B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/39Credit based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/18End to end

Definitions

  • the present invention relates to a flow control technique in data transmission / reception between a transmitting apparatus and a receiving apparatus, and in particular, a transmission-driven type flow control technique (credit-based (credit-based) in data transmission / reception between a transmitting apparatus and a receiving apparatus having a redundant configuration.
  • a transmission-driven type flow control technique credit-based (credit-based) in data transmission / reception between a transmitting apparatus and a receiving apparatus having a redundant configuration.
  • C redit Base flow control technology
  • Flow control in data transmission and reception between a transmitting device and a receiving device generally means that data is transmitted from a transmitting device (transmitting side) to a receiving device (receiving side) in a fixed-length or variable-length packet format. Sometimes, this is an operation in which data transmission from the transmitting side is stopped before the receiving side becomes unreceivable.
  • the type of flow control includes self-monitoring of the state of the receiving side (for example, data storage state), and the receiving side sends to the transmitting side the status of data reception enabled or disabled. (Such as R dy / Ful 1 and XON / XOF F), and transmission-driven flow control such as credit-based flow control, which is the object of the present invention. is there.
  • the receiving side is notified of the receivable state or unreceivable state of the receiving side by another line (a line different from the packet transmission route), Notify by an expand (any field in the packet).
  • the state of the receiving side is whether or not data can be transmitted from the transmitting side.
  • any notification is continuously sent from the receiving side, regardless of the adoption of the redundant configuration, the problem is And flow control works.
  • This flow control is often used in the flow control receiver-driven, buffer on the reception side: threshold (buffer memory B uff) It is necessary to self-monitor and control the data, so it is necessary to provide a buffer with sufficient memory capacity on the receiving side, and the latency of status notification is even one minute It is necessary to consider the buffer strength. Therefore, an increase in the memory capacity of the buffer is inevitable.
  • the credit value is decremented by 1 j every time data is transmitted on the transmission side.
  • the credit value becomes “0”, control is performed to prevent further data transmission.
  • the receiving side instructs the transmitting side to perform a credit update (credit update) operation and set the credit value to +1.
  • the credit value on the transmitting side is set and controlled, so that the buffer amount on the receiving side can be reduced. Another advantage is that it is easy to limit the traffic on the transmitting side, so that it has high compatibility with bandwidth control applications.
  • the credit value must be managed compared to the reception-driven flow control, the control becomes complicated, and if used between transmitting and receiving devices with a redundant configuration, the receiving device will be There is a problem that the credit value differs depending on the degree of reading of the data of each system from the buffer, and so it is not applied as the flow control of the redundant configuration device.
  • the traffic manager (Traffic Manager) from the transmitting side changes to the receiving side from the receiving side.
  • the cell as a fixed-length packet is copied to the main switch (Ma in Switch) side of the N-multiplex configuration.
  • the cell transmission status between the ACT system (active system) and SBY system (standby system / standby system) due to the congestion state of the cells in the main switch and the frequency error of the oscillator of each main switch. are different.
  • An object of the present invention is to provide a transmission-initiated port that avoids the occurrence of a mismatch between credit values between redundantly configured receiving devices and a failure in flow control when a current system and a standby system switchover occur.
  • An object of the present invention is to provide a control technology.
  • the transmission-driven flow control device of the present invention uses a credit value when performing data transmission and reception in a packet form between a transmission device and a reception device having a redundant configuration, and uses a credit-based flow control in flow units.
  • a transmission-driven flow control device that performs:
  • a first credit counter that is provided in common for the working system and the protection system of the receiving device and manages the credit value of the working system
  • Second and third credit counters for counting credit values for each of an active system and a standby system of the receiving device
  • a difference counter for holding a difference between a credit value counted by the second credit counter and a credit value counted by the third credit counter; the first counter according to the difference held by the difference counter; The credit value between the credit counter and the second credit counter or the credit value between the first credit counter and the third credit counter is used for the new active system after the receiving device has been disconnected.
  • Control means for matching the credit value corresponding to the receiving device And a step.
  • the difference counter is configured to count the credit value by the second credit counter and the credit value by the third credit counter at the time of system switching of the receiving device. The difference from is retained.
  • the transmitting device is a traffic manager having a traffic processing function and a routing processing function on a per-flow basis
  • the receiving device is a switch for switching a bucket stored in a buffer memory on a fixed-length bucket basis.
  • control means may be configured to determine a credit value of the first credit counter and the second credit counter or a credit value of the first credit counter and the first credit counter in accordance with the difference held by the difference counter.
  • the credit value with the credit counter of 3 is matched with the credit value corresponding to the number of buckets remaining in the buffer memory of the receiving device of the new active system after the system switching of the receiving device.
  • the new active receiving device sends a credit update bucket to the transmitting device.
  • the difference counter indicates a positive value as the difference
  • the credit value corresponding to the new active system receiving device the credit value of the first credit counter, and the new active system
  • the credit updating bucket transmitted from the new active receiving device is discarded in the transmitting device.
  • credit information collection data is transmitted from the transmitting device to the receiving device.
  • a credit value corresponding to the active receiving device is collected, and the credit value of the first credit counter is collected according to the collected result.
  • the credit value of the second or third credit counter corresponding to the active system is transmitted from the transmitting device to the receiving device.
  • Fig. 1 is a diagram for explaining the reception-driven flow control
  • Figure 2 is a diagram for explaining the flow control of the transmission initiative
  • FIG. 3 is a block diagram showing an outline of a transmission-driven flow control device according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing an overview of the traffic manager and main switch in Figure 3;
  • FIG. 5 is a block diagram showing details of the traffic manager and the main switch in FIG. 3 (including the first operation example);
  • FIG. 6 is a block diagram showing details of the traffic manager and the main switch in FIG. 3 (including the first operation example);
  • Fig. 7 is a block diagram showing details of the traffic manager and main switch in Fig. 3 (including the first operation example);
  • FIG. 8 is a block diagram showing details of the traffic manager and the main switch (including the second operation example) in FIG. 3;
  • Figure 9 is a block diagram showing the details of the traffic manager and main switch in Figure 3 (including the second example of operation);
  • FIG. 10 is a block diagram showing details of the traffic manager and the main switch (including the second operation example) in FIG. 3;
  • Figure 11 is a diagram for explaining the credit update cell
  • Figure 12 is a diagram for explaining the credit update cell
  • Figure 13 is a diagram for explaining the credit counter synchronization process using the credit information collection command
  • Figure 14 is a diagram for explaining credit information collection data
  • Figure 15 is a diagram for explaining credit information collection data.
  • FIG. 3 shows a configuration of an edge nolator 1 as a transmission-driven flow control device (data transmission device) to which the present invention is applied.
  • This edge router 1 is a router for Internet Service Providers (ISPs) or carriers (communication carriers or carriers), and is located at the entrance or exit of an IP (Internet Protocol) network. Is done.
  • ISPs Internet Service Providers
  • IP Internet Protocol
  • the edge router 1 includes a plurality of line cards (Line Card (A)) 2 each accommodating a line connected to a subscriber (subscriber terminal), not shown, and a traffic processing function for each flow. ⁇ Multiple traffic managers (Traffic Managers (B)) 3 each having a routing processing function, and multiple main switches (Main Switch (C),) that perform switching in fixed-length packet (cell) units C ')) 4).
  • Line card 2 terminates OC 3 (Optical Carier Level 3) / OC 1 2 (Optical Carier Level 12) / GbE (Gigabit Ethernet) / 100 M, 100 M Ether system lines It is possible.
  • the traffic manager 3 and the main switch 4 constitute a transmitting device (transmitting side) and a receiving device (receiving side) in the transmission-driven flow control device exemplified here.
  • Each of the line card 2, the traffic manager 3, and the main switch 4 can have a redundant configuration. Is shown.
  • each traffic manager 3 is connected to N (N ⁇ 3) main switches 4, the main switch 4 has an N (N ⁇ 3) redundant configuration.
  • N (N ⁇ 3) redundant configuration I can.
  • one of the N main switches 4 dynamically operates as an ACT system (active system), and all others operate as SBY systems (standby system / standby system). (Hot standby operation), but only one of these SBY main switches 4 actually functions, so it is defined as a duplex configuration.
  • FIG. 4 is a block diagram showing a detailed configuration of the traffic manager 3 and the main switch 4 in FIG.
  • the traffic manager 3 in the edge nolator 1 has a traffic processing function and a routing processing function in units of flows, and includes a processing unit (D) 5 including a credit counter 50 described later in detail and a credit synchronization unit (E). ) 6.
  • a plurality of cells (strictly speaking, an IP packet composed of a plurality of cells) input from the line card 2 (see FIG. 3) to the traffic manager 3 are subjected to predetermined routing processing and traffic in the processing unit 5.
  • the data is copied to the N main switches 4 by the cell copy unit 60 of the credit synchronization unit 6.
  • the cells input from the credit synchronizer 6 to each main switch 4 are temporarily stored in a buffer (queue) 7 and then stored in a switch 8 based on the switching tag information embedded in the cell header. Switching is performed in units and output to the corresponding traffic manager 3.
  • FIG. 5 is a block diagram showing a more detailed configuration of the traffic manager 3 in FIG. Note that in FIG. 5 and subsequent drawings to be referred to after FIG. 5, the main switch 4 is limited to two of the ACT system and the SBY system.
  • the processing unit 5 in the traffic manager 3 has a single configuration including a credit counter (F) 50.
  • the credit synchronization unit 6 in the traffic manager 3 includes a credit counter (G, H) 62, 63 for each of the ACT and SBY systems, and a difference between the credit counters of the respective systems (that is, the credit counter).
  • a difference counter (I) 64 that holds the difference between the count value of the counter 62 and the count value of the credit counter 63.
  • these credit counters 62 and 63 are provided corresponding to the number of buffers 7 .
  • the credit counter 50 is incremented by 1 for each cell "+1" Is done.
  • the input cell is copied to the main switch (C, C ′) 4 of the ACT and SBY systems by the function of the cell copy unit 60 (see FIG. 4) of the credit synchronization unit 6.
  • the cells copied to each main switch 4 are input to the buffer 7 of each main switch 4 through the credit counters 62, 63.
  • the credit counters 62 and 63 are incremented by ⁇ + 1 J.
  • a predetermined threshold value is set in advance in the credit counter 50 of the processing unit 5, and if the main switch 4 does not dequeue the buffer 7 due to congestion or the like, a credit update instruction is issued. Will not be.
  • the processing unit 5 stops sending cells, and as a result, the traffic manager 3 as a transmitting device and the main switch 4 as a receiving device Transmission-driven flow control (credit-based flow control) between the two is realized.
  • the counter value (K) “4” corresponding to the number of cells remaining in the SBY buffer 7 and the The counter value "4" of the credit counter (H) 63 and the counter value “8" of the credit counter (F) 50 in the traffic manager 3 are always different, and in the traffic manager 3 shown in FIG.
  • the credit counters 62, 63 and the cell control units 65, 66 of the credit synchronization unit 6 adopt a double redundant configuration. Other configurations and operations are as described above with reference to FIG.
  • FIG. 6 shows the state transition of each component immediately after system switching has been performed from the state shown in FIG.
  • the difference counter (I) 64 of the credit synchronization section 6 holds the difference “1 4” between the counter values of the target counter 62 and the credit counter 63 immediately after system switching.
  • the counter value “4” of the credit counter 63 corresponding to the new ACT system is “4” smaller than the counter value “8” of the credit counter 62 corresponding to the old ACT system, so the difference is absorbed. In this case, it is necessary to decrement the value of the credit counter 50 of the processing unit 5 by “1”.
  • the cell controller (L) 66 corresponding to the new ACT system which receives the difference “1 4” between the power counter values of the credit counters 6 2 and 6 3 from the differential power counter 64, as shown in FIG. 4 extra update cells are generated and transmitted.
  • the four credit update cells transmitted from the cell control unit 66 are input to the credit counter 50 through the ACT system selection unit 61. Accordingly, the power counter value of the credit counter 50 becomes the same value “4” as the power counter value of the credit counter 63 of the new ACT system and the counter value corresponding to the number of cells remaining in the buffer 7 of the new ACT system.
  • the counter value “8” corresponding to the number of cells remaining in the old ACT buffer 7 and the counter value “8” of the credit counter 62 are cleared to “0” by initialization at the time of system switching.
  • FIG. 9 shows the state transition of each component immediately after system switching from the state shown in FIG.
  • the example shown in FIG. 9 is opposite to the case shown in FIG. 6 described above, where the credit value of the new ACT system is larger than that of the old ACT system.
  • the difference counter 64 of the credit synchronization unit 6 Holds the difference “+3” between the power counter values of the counter 62 and the credit counter 63.
  • the counter value “6” of the credit counter 63 supporting the new ACT system is “3” larger than the counter value “3” of the credit counter 62 supporting the old ACT system, so the difference is absorbed.
  • the value of the credit counter 50 of the processing unit 5 needs to be set to “+3”.
  • the difference between the counter values of the credit counters 62 and 63, “13”, is input from the difference counter 64 to the new ACT-compatible cell controller 66, as shown in FIG. Discard three credit update cells input from the main switch 4 so that the credit counter 50 is not updated three times. As a result, the counter value of the credit counter 50 becomes the same value “6” as the counter value of the credit counter 63 of the new ACT system and the counter value corresponding to the number of cells remaining in the buffer 7 of the new ACT system.
  • the counter value “3” corresponding to the number of cells remaining in the old ACT buffer 7 and the counter value “3” of the credit counter 62 are cleared to “0” by initialization at the time of system switching.
  • each credit counter 50, 62, 63 can be set to an arbitrary value by firmware from outside, so that the state of cell transmission is controlled. Irrespective of this, it is possible to perform a credit counter test and traffic control such as applying back pressure to the collar.
  • the credit update cell includes a credit update information area in one specific byte (second byte).
  • This credit update information area consists of a 6-bit (0th to 5th bit) credit update flow identification ID (transmit flow ID) and a 2-bit (6th and 7th bit).
  • Operation instruction information For example, a VPI (Virtual Path Identifier) or a VCI (Virtual Cannel Identifier) is set as the flow identification ID to be updated.
  • the operation instruction information is “0 1”, it indicates an update instruction, and when the operation instruction information is “0 0”, the NOP (N o O peration).
  • the credit update cell is transmitted from the ACT main switch 4 in the edge nolator 1 and the cell control units 65 and 66 of the traffic manager 3.
  • Figure 13 shows the credit counter synchronization process using the credit information collection command.
  • Credit-based flow control is performed based on credit update information in the flow control area in the header of the cell. As shown in Fig. 13, cell loss between the traffic manager 3 and the main switch 4 is performed. In such a case, the credit update information is discarded, and the credit update may not be performed normally.
  • the processing unit 5 of the traffic manager 3 uses the available slots of the main signal and periodically collects credit information collection data (cells, etc.) in a predetermined format on the ACT main switch 4. Send to The ACT main switch 4 writes its credit value (counter value corresponding to the number of cells remaining in the ACT buffer 7) “K” into the data. This writing process is performed by a control unit (not shown) in the main switch 4.
  • the credit information collection data in which the credit value “ ⁇ ” is written is returned from the ACT main switch 4 to the traffic manager 3 (return).
  • the traffic manager 3 updates the counter value of the credit counter 50, 62 from “L” to "K” based on the credit value "KJ" in the returned credit information collection data.
  • the returned credit information collection data is input to the processing unit 5 via the cell control unit 65 and the ACT system selection unit 61 for updating the counter value of the credit counter 50.
  • Figures 14 and 15 show examples of the specific format of credit information collection data described above (in the case of cells).
  • the credit information collection data has the credit information collection data flag “0xAA” in the first byte, and the third byte.
  • the first and second credit information collection areas are located at the 4th and 4th pits.
  • the flow ID to be collected is set in the first credit information collection area, and the credit value (counter value) is set in the second credit information collection area.
  • the number of transmitted data and the updated credit value are managed separately from the traffic manager used as the transmitting device for flow control, and the credit is updated. Avoids an abnormal state of flow control due to an error in the default value.
  • the transmission-driven flow control technology (credit-based flow control technology) of the present invention is particularly applicable to routers that perform switching based on fixed-length or variable-length buckets, and traffic in units of flows in data transmission devices such as exchanges.
  • the present invention is applicable to flow control between a traffic manager as a transmitting device for performing control and routing control and a main switch as a receiving device having a redundant configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

送信主導型フロー制御装置は、送信装置と冗長構成を採る受信装置との間でパケット形態によるデータ送受信を行うときにクレジット値を利用し、フロー単位でクレジットベースのフロー制御を行う。この送信主導型フロー制御装置は、前記受信装置の現用系及び予備系に対して共通に設けられ、現用系のクレジット値を管理する第1のクレジットカウンタと;前記受信装置の現用系及び予備系の各系毎のクレジット値を計数する第2及び第3のクレジットカウンタと;前記第2のクレジットカウンタによる計数クレジット値と前記第3のクレジットカウンタによる計数クレジット値との差分を保持する差分カウンタと;前記差分カウンタが保持している差分に応じて、前記第1のクレジットカウンタと前記第2のクレジットカウンタとのクレジット値または前記第1のクレジットカウンタと前記第3のクレジットカウンタとのクレジット値を前記受信装置の系切り替え後の新現用系の前記受信装置対応のクレジット値に一致させる制御手段とを備える。

Description

明 細 書
送信主導型フロー制御装置 技術分野
本発明は送信装置及び受信装置間のデータ送受信におけるフロー制御技術に関 し、 特に送信装置と冗長構成を採る受信装置との間のデータ送受信における送信 主導型のフ口一制御技術 (クレジッ トベース (C r e d i t B a s e) のフロ 一制御技術) に関する。 背景技術
送信装置及び受信装置間のデータ送受信におけるフロー制御とは、 一般的に送 信装置 (送信側) から受信装置 (受信側) へデータを固定長または可変長のパケ ッ ト形態などで送っているときに、 受信側で受信不可能状態になる前に送信側か らのデータの送信を止めてもらう動作をいう。
フロー制御の種類としては、 受信側の状態 (例えば、 データ蓄積状態など) を 自己監視し、 受信側より送信側へデータの受信可能状態または受信不可能状態を 再開信号または一時停止 (待ち) 信号 (R d y/F u l 1や XON/XOF Fな ど) で通知する受信主導型のフロー制御と、 本発明で対象にしているクレジッ ト ベース · フロー制御のような送信主導型のフロー制御とがある。
受信主導型のフロー制御の場合 (図 1参照) 、 受信側の受信可能状態または受 信不可能状態を送信側に対して、 別線 (パケット伝送ルートとは別のライン) で 通知したり、 インパンド (パケッ トのいずれかのフィールド) で通知する。
このフロー制御においては、 受信側の状態は送信側からデータを送信できるか 否かであり、 受信側より継続的にいずれかの通知が行われている限り、 冗長構成 の採用に拘わらず、 問題なくフロー制御は機能する。 また、 動作も単純である為、 ルータ及び交換機などのデータ伝送装置では、 このフロー制御がよく用いられる c ただし、 受信主導型のフロー制御では、 受信側でバッファ (バッファメモリ : B u f f ) の閾値を自己監視し、 制御する必要がある為、 それに耐えうるメモリ 容量のバッファを受信側に備える必要があり、 かつ状態通知のレイテンシ一分も バッファ耐力に考慮する必要がある。 そのため、 バッファのメモリ容量の増大を 免れない。
一方、 本発明で対象にしている送信主導型のフロー制御、 つまりクレジッ トべ ース ' フロー制御 (図 2) では、 送信側でデータ送信を行う度にクレジッ ト値を 「一 1 j し、 クレジッ ト値が 「0」 となると、 それ以上のデータ送信を実施しな いように制御を行う。 受信側では、 送信側から送信されてきたデータの処理が終 了すると、 クレジッ ト更新 (C r e d i t Up d a t e) の動作を行ってクレ ジッ ト値を 「+ 1」 するように送信側に指示を行う。
このフロー制御においては、 送信側のクレジット値を設定して制御することに なる為、 受信側でのバッファ量は少なくすることができる。 また、 送信側でトラ フィ ックの制限を行うことが、 簡単に実現できるため、 帯域制御のアプリケーシ ョンとの親和性が高いというメ リ ッ トがある。
ただし、 受信主導型のフロー制御と比較してクレジッ ト値を管理する必要があ る為、 制御が複雑となり、 かつ冗長構成を採っている送受信装置間で使用すると、 系切り替えの際、 受信装置のそれぞれの系のデータのバッファからの読み出しの 度合いに応じてクレジッ ト値が異なってしまうなどの問題があるので、 冗長構成 装置のフロー制御としては適用されていない。
なお、 従来、 2重ィ匕された ATM (Asynchronous Transfer Mode) スィッチ等 において、 セルロスを生じることなぐ系切り替えする技術が存在するが、 それら はいかにセルを廃棄しないようにできるかの提案に留まっている。
ここで、 クレジッ トベース ' フロー制御を N (N≥ 2) 重化構成のデータ伝送 装置としてのエッジルータに適用することを想定すると、 送信側である トラフィ ックマネージャ (T r a f f i c Ma n a g e r) 側から受信側である N重化 構成のメインスィツチ (Ma i n Sw i t c h) 側へ固定長パケッ トとしての セルがコピーされる。
その際、 メインスィッチ内でのセルの輻輳状態や、 それぞれのメインスィッチ の発振器の周波数誤差等で ACT系 (現用系) と S BY系 (予備系/待機系) と の間でセルの透過状況が異なる。
これにより、 ACT系メインスィッチと S BY系メインスィッチとでクレジッ ト値の差分が生じるが、 この状態で系切り替えが発生すると、 トラフィックマネ ージャのクレジッ ト値はもともと旧 A C T系メインスィッチのクレジッ ト値と同 期していた為、 新 A C T系メインスィツチのクレジッ ト値との間で不一致が生じ る。 このクレジッ ト値の不一致により、 系切り替え後のメインスィッチ内でのス ループッ トの低下や、 F I F O (First in First out) バッファメモリのォーノく 一フローまたはアンダーフローの問題が発生する。
〔特許文献 1〕
特開平 3 - 1 2 8 5 4 7号公報
〔特許文献 2〕
特開平 5 - 5 6 0 6 5号公報 発明の開示
本発明の課題は、 現用及び予備の系切り替えが発生した場合、 冗長構成の受信 装置間でクレジッ ト値が不一致を起こし、 フロー制御が正常に機能しなくなるこ とを回避する送信主導型フ口一制御技術を提供することにある。
本発明の送信主導型フロー制御装置は、 送信装置と冗長構成を採る受信装置と の間でパケッ ト形態によるデータ送受信を行うときにクレジッ ト値を利用し、 フ ロー単位でクレジッ トベースのフロー制御を行う送信主導型フロー制御装置であ つて ;
前記受信装置の現用系及び予備系に対して共通に設けられ、 現用系のクレジッ ト値を管理する第 1のクレジッ トカウンタと ;
前記受信装置の現用系及び予備系の各系毎のクレジッ ト値を計数する第 2及び 第 3のクレジットカウンタと ;
前記第 2のクレジッ トカウンタによる計数クレジッ ト値と前記第 3のクレジッ トカウンタによる計数クレジッ ト値との差分を保持する差分カウンタと ; 前記差分カウンタが保持している差分に応じて、 前記第 1のクレジッ トカウン タと前記第 2のクレジッ トカウンタ.とのクレジッ ト値または前記第 1のクレジッ トカウンタと前記第 3のクレジッ トカウンタとのクレジッ ト値を前記受信装置の 系切り巷え後の新現用系の前記受信装置対応のクレジッ ト値に一致させる制御手 段とを備える。
この構成を採る送信主導型フロー制御装置において、 前記差分カウンタは、 前 記受信装置の系切り替え時に、 前記第 2のクレジットカウンタによる計数クレジ ッ ト値と前記第 3のクレジッ トカウンタによる計数クレジッ ト値との差分を保持 する。
また、 前記送信装置は、 フロー単位でのトラフィック処理機能及びルーティン グ処理機能を有する トラフィックマネージャであり、 前記受信装置は、 バッファ メモリに蓄積状態のバケツ トを固定長バケツ ト単位でスィツチングを行うスィッ チである。
また、 前記制御手段は、 前記差分カウンタが保持している差分に応じて、 前記 第 1のクレジッ トカウンタと前記第 2のクレジッ トカウンタとのクレジッ ト値ま たは前記第 1のクレジッ トカウンタと前記第 3のクレジットカウンタとのクレジ ッ ト値を、 前記受信装置の系切り替え後の新現用系の前記受信装置におけるバッ ファメモリ内に残存するバケツ ト数対応のクレジッ ト値に一致させる。
また、 前記差分カウンタが前記差分としてマイナスの値を示しているときは、 前記新現用系の受信装置対応のクレジッ ト値と、 前記第 1のクレジッ トカウンタ のクレジッ ト値と、 前記新現用系対応の前記第 2または第 3のクレジッ トカウン タのクレジッ ト値とを一致させるために、 前記新現用系の受信装置から前記送信 装置にクレジッ ト更新バケツ トを送出する。
また、 前記差分カウンタが前記差分としてプラスの値を示しているときは、 前 記新現用系の受信装置対応のクレジッ ト値と、 前記第 1のクレジットカウンタの クレジッ ト値と、 前記新現用系対応の前記第 2または第 3のクレジッ トカウンタ のクレジッ ト値とを一致させるために、 前記送信装置において前記新現用系の受 信装置から送出されたクレジッ ト更新バケツ トを廃棄する。
さらに、 前記送信装置から前記受信装置にクレジッ ト情報収集データを送出し. 前記現用系の受信装置対応のクレジッ ト値を収集し、 この収集結果に応じて、 前 記第 1のクレジッ トカウンタのクレジッ ト値及び前記現用系対応の前記第 2また は第 3のクレジッ トカウンタのクレジッ ト値を一致させる。 図面の簡単な説明
図 1は受信主導型のフロー制御を説明するための図 ;
図 2は送信主導型のフロー制御を説明するための図 ;
図 3は本発明の一実施の形態の送信主導型フロー制御装置の概要を示すプロッ ク図 ;
図 4は図 3における トラフィックマネージャ及びメインスィツチの概要を示す プロック図 ;
図 5は図 3における トラフィックマネージャ及びメインスィツチの詳細 (第 1 の動作例を含む) を示すブロック図 ;
図 6は図 3における トラフィックマネージャ及びメィンスィツチの詳細 (第 1 の動作例を含む) を示すプロック図;
図 7は図 3における トラフィックマネージャ及びメインスィツチの詳細 (第 1 の動作例を含む) を示すブロック図 ;
図 8は図 3における トラフィックマネージャ及ぴメインスィツチの詳細 (第 2 の動作例を含む) を示すプロック図 ;
図 9は図 3における トラフィックマネージャ及びメインスィツチの詳細 (第 2 の動作例を含む) を示すプロック図 ;
図 1 0は図 3における トラフィックマネージャ及ぴメインスィツチの詳細 (第 2の動作例を含む) を示すブロック図 ;
図 1 1はクレジッ ト更新セルを説明するための図 ;
図 1 2はクレジッ ト更新セルを説明するための図 ;
図 1 3はクレジッ ト情報収集コマンドを用いたクレジッ トカウンタの同期処理 について説明するための図 ;
図 1 4はクレジッ ト情報収集データを説明するための図 ;及び
図 1 5はクレジッ ト情報収集データを説明するための図である。 発明を実施するための最良の形態
次に、 本発明の実施の形態について、 図面を参照して説明する。
〔送信主導型フロー制御装置の概要〕 図 3は、 本発明が適用される送信主導型フロー制御装置 (データ伝送装置) と してのエッジノレータ 1の構成を示す。 このエッジルータ 1は、 インターネッ トサ 一ビスプロバイダ ( I S P : Internet Service Provider) またはキャリア (通信 キャリアまたは通信事業者) 向けのルータであり、 I P (Internet Protocol) ネ ッ トワークの入口箇所または出口箇所に配置される。
このエッジルータ 1は、 図示省略の加入者 (加入者端末) と接続される回線を それぞれ収容する複数のラインカード (L i n e C a r d (A) ) 2と、 フロ 一単位でのトラフィック処理機能及ぴルーティング処理機能をそれぞれ有する複 数のトラフィックマネージャ (T r a f f i c Ma n a g e r (B) ) 3と、 固定長パケッ ト (セル) 単位でスィツチングを行う複数のメインスィッチ (M a i n S w i t c h (C) , (C' ) ) 4とから構成されている。
ラインカード 2は、 O C 3 (Optical Carier Level 3) /OC 1 2 (Optical Carier Level 12) /G b E (Gigabit Ethernet) / 1 0 M, 1 0 0 Mの E t h e r系などの回線を終端することが可能である。 トラフィックマネージャ 3及びメ インスイッチ 4は、 ここで例示する送信主導型フロー制御装置における送信装置 (送信側) 及び受信装置 (受信側) を構成する。
ラインカード 2、 トラフイツクマネージャ 3及ぴメィンスィツチ 4はいずれも 冗長構成を採ることが可能であるが、 ここでは受信装置としてのメインスィッチ 4のみが冗長構成、 つまり 2重化構成を採っている例を示している。
図 3に示すように、 各トラフィックマネージャ 3と N (N≥ 3 ) 個のメインス イッチ 4とが接続されているので、 メインスィッチ 4は N (N≥ 3) 重化構成を 採っていると云える。 このエッジルータ 1においては、 N個のメインスィッチ 4 の内のいずれか 1つが動的に ACT系 (現用系) として動作し、 かつ他の全てが S BY系 (予備系/待機系) として動作 (ホットスタンバイ動作) するが、 これ らの S BY系のメインスィツチ 4のいずれか 1つだけが実際には機能するので、 2重化構成と定義している。
〔トラフィックマネージャ及びメインスィツチの概要〕
図 4は図 3における トラフィックマネージャ 3及ぴメインスィツチ 4の詳細構 成を示すプロック図である。 エッジノレータ 1における トラフィックマネージャ 3は、 フロー単位でのトラフ ィック処理機能及びルーティング処理機能を有するとともに、 後に詳述するクレ ジッ トカウンタ 5 0を含む処理部 (D ) 5と、 クレジッ ト同期化部 (E ) 6とを 備える。
ラインカード 2 (図 3参照) から トラフィックマネージャ 3に入力された複数 のセル (厳密には、 複数のセルから構成される I Pパケッ ト) は、 処理部 5にお いて所定のルーティング処理及ぴトラフィック処理が行われた後、 クレジッ ト同 期化部 6のセルコピー部 6 0により N個のメインスィツチ 4宛にコピーされる。 クレジッ ト同期化部 6から各メインスィツチ 4に入力されたセルは、 バッファ (キュー) 7に一時的に蓄積された後、 セルのヘッダ内に埋め込まれたスィッチ ングタグ情報に基づいてスィツチ 8においてセル単位でスィツチングされ、 対応 する トラフィックマネージャ 3宛へ出力される。
各メインスィッチ 4から トラフィックマネージャ 3に入力されたスィツチング 後のセルは、 クレジッ ト同期化部 6内の A C T系選択部 6 1にて A C T系のセル のみが選択され、 再ぴ処理部 5を経由して、 ラインカード 2に出力される。
〔トラフィックマネージャ及びメインスィッチの詳細 (第 1の動作例) 〕 図 5は図 4における トラフィックマネージャ 3の更に詳細構成を示すプロック 図である。 なお、 図 5及ぴ後に参照する図 6以降の図面においては、 メインスィ ツチ 4は A C T系及び S B Y系の 2個に限定して示している。
トラフィックマネージャ 3における処理部 5はクレジッ トカウンタ (F ) 5 0 を含む一重化構成である。 また、 トラフィックマネージャ 3におけるクレジッ ト 同期化部 6は、 A C T系及び S B Y系の各系毎のクレジッ トカウンタ (G, H ) 6 2 , 6 3と、 それぞれの系のクレジッ トカウンタの差分 (つまり、 クレジッ ト カウンタ 6 2の計数値とクレジッ トカウンタ 6 3の計数値との差分) を保持する 差分カウンタ ( I ) 6 4とを備えている。 なお、 メインスィッチ4が 3個以上存 在する冗長構成である場合、 これらクレジッ トカウンタ 6 2 , 6 3はバッファ 7 の数に対応して設けることになる。
ラインカード 2 (図 3参照) から トラフィックマネージャ 3の処理部 5にセル が入力されると、 クレジッ トカウンタ 5 0が 1セル毎にインクリメント 「+ 1」 される。
次に、 入力セルは、 クレジット同期化部 6のセルコピー部 6 0 (図 4参照) の 機能により、 ACT系及び S BY系のメインスィッチ (C, C ' ) 4宛にコピー される。 各メインスィッチ 4宛にコピーされたセルは、 クレジッ トカウンタ 6 2, 6 3を通して、 各メインスィツチ 4のバッファ 7に入力される。 このとき、 クレ ジッ トカウンタ 6 2, 6 3がインクリメント Γ+ 1 J される。
その後、 各メインスィッチ 4において、 バッファ 7内に蓄積されているセルが デキューされる (つまり、 スィッチ 8に出力される) と、 各メインスィッチ 4内 の制御部 (図示省略) から トラフィックマネージャ 3にクレジッ ト更新指示がク レジッ ト更新セル (C r e d i t Up d a t e C e l l ) の送信により行わ れる。
このクレジッ ト更新指示に基づいて、 トラフィックマネージャ 3内の全てのク レジッ トカウンタ 5 0, 6 2 , 6 3がデクリメント 「_ 1」 される。 この処理が セル単位で毎回行われる。
ここで、 処理部 5のクレジットカウンタ 50には、 予め所定の閾値が設定され ており、 メインスィッチ 4が輻輳等の原因により、 バッファ 7のデキューが行わ れないと、 クレジッ ト更新指示が行われないことになる。 これにより、 クレジッ トカウンタ 5 0のカウンタ値がその設定された閾値を超えると、 処理部 5はセル の送出を停止するので、 結果として送信装置としてのトラフィックマネージャ 3 と受信装置としてのメインスィツチ 4との間での送信主導型のフロー制御 (クレ ジッ トベース . フロー制御) が実現される。
通常、 ACT系及び S BY系の 2重化冗長構成を採るメインスィッチ (C, C , ) 4においては、 それぞれの内部のマスタークロック (発振器) の周波数の差 またはトラフィックのかかり具合の差により、 ACT系バッファ 7及ぴ S BY系 バッファ 7のデキューの状況が異なる。 その為、 図 5に示す例における AC T系 バッファ 7内に残存するセル数対応のカウンタ値 (J) 「8」 と、 トラフィック マネージャ 3内のクレジッ トカウンタ (F) 50及びクレジッ トカウンタ (G) 6 2のカウンタ値 「8」 とは、 常に等しい。 しかし、 S BY系バッファ 7内に残 存するセル数対応のカウンタ値 (K) 「4」 及びトラフィックマネージャ 3内の クレジッ トカウンタ (H) 6 3のカウンタ値 「4」 と、 トラフイツクマネージャ 3内のクレジッ トカウンタ (F) 50のカウンタ値 「8」 とは、 異なるのが常で 図 5に示すトラフィックマネージャ 3においては、 クレジッ ト同期化部 6のク レジッ トカウンタ 6 2, 6 3及ぴセル制御部 6 5, 6 6は、 2重化冗長構成を採 つている。 他の構成及ぴ動作は図 4を参照した上述のとおりである。
図 6は図 5に示す状態から系切り替えが行われた直後の各構成要素の状態遷移 を示している。
クレジッ ト同期化部 6の差分力ゥンタ ( I ) 64は、 系切り替え直後に、 タレ ジットカウンタ 6 2とクレジッ トカウンタ 6 3とのカウンタ値の差分 「一 4」 を 保持する。 この場合、 新 ACT系対応のクレジッ トカウンタ 6 3のカウンタ値 「4」 は、 旧 ACT系対応のクレジッ トカウンタ 6 2のカウンタ値 「8」 に比較 して 「4」 小さい為、 その差分を吸収するには、 処理部 5のクレジッ トカウンタ 5 0の値を 「一 4」 する必要がある。
クレジッ トカウンタ 6 2, 6 3の力ゥンタ値の差分 「一 4」 を差分力ゥンタ 6 4から入力された新 A C T系対応のセル制御部 (L) 6 6は、 図 7に示すように、 クレジッ ト更新セルを 4個余分に生成して送出する。 セル制御部 6 6から送出さ れた 4個のクレジッ ト更新セルは、 AC T系選択部 6 1を通してクレジッ トカウ ンタ 50に入力される。 これにより、 クレジッ トカウンタ 50の力ゥンタ値が新 ACT系のクレジッ トカウンタ 6 3の力ゥンタ値及ぴ新 ACT系のバッファ 7内 に残存するセル数対応のカウンタ値と同じ値 「4」 となる。
なお、 旧 ACT系バッファ 7内に残存するセル数対応のカウンタ値 「8」 及び クレジッ トカウンタ 6 2のカウンタ値 「8」 は、 系切り替え時に初期化により 「0」 にクリアされる。
〔トラフィ ックマネージャ及びメインスィッチの詳細 (第 2の動作例) 〕 図 9は図 8に示す状態から系切り替えが行われた直後の各構成要素の状態遷移 を示している。 図 9に示す例は、 上述した図 6に示す場合と逆で、 新 ACT系の クレジッ ト値が旧 ACT系に比較して大きい場合である。
クレジッ ト同期化部 6の差分カウンタ 64は、 系切り替え直後に、.クレジッ ト カウンタ 6 2とクレジッ トカウンタ 6 3との力ゥンタ値の差分 「 + 3」 を保持す る。 この場合、 新 A C T系対応のクレジッ トカウンタ 6 3のカウンタ値 「6」 は、 旧 A C T系対応のクレジットカウンタ 6 2のカウンタ値 「3」 に比較して 「3」 大きい為、 その差分を吸収するには、 処理部 5のクレジッ トカウンタ 5 0の値を 「+ 3」 する必要がある。
クレジッ トカウンタ 6 2, 6 3の力ゥンタ値の差分 「十 3」 を差分カウンタ 6 4から入力された新 A C T系対応のセル制御部 6 6は、 図 1 0に示すように、 新 A C T系のメインスィツチ 4から入力されたクレジッ ト更新セルを 3個分廃棄し、 クレジッ トカウンタ 5 0に対してクレジッ ト更新を 3回分行わないようにする。 これにより、 クレジッ トカウンタ 5 0のカウンタ値が新 A C T系のクレジッ トカ ゥンタ 6 3の力ゥンタ値及び新 A C T系のバッファ 7内に残存するセル数対応の カウンタ値と同じ値 「6」 となる。
なお、 旧 A C T系バッファ 7内に残存するセル数対応のカウンタ値 「3」 及び クレジッ トカウンタ 6 2のカウンタ値 「3」 は、 系切り替え時に初期化により 「0」 にクリアされる。
上述した送信主導型フ口一制御を行うデータ伝送装置としてのエツジルータ 1 において、 各クレジッ トカウンタ 5 0, 6 2, 6 3は、 外部からファームウェア により任意の値に設定できる為、 セルの透過の状況によらず、 クレジッ トカウン タの試験や、 バックプレッシャをかけつばなしにする等のトラフィック制御を行 うことが可能-である。
〔クレジッ ト更新セル〕
上述したクレジッ ト更新セルの具体的フォーマット例を図 1 1及び図 1 2に示 す。 この例に示すように、 クレジッ ト更新セルは、 特定の 1つのバイ ト (2バイ ト目) にクレジッ ト更新情報領域を含んでいる。 このクレジッ ト更新情報領域は、 6 ビッ ト分 ( 0〜 5 ビッ ト目) のクレジッ ト更新すベきフロ一識別 I D (送信フ ロー I D ) と、 2ビッ ト分 (6, 7ビット目) の動作指示情報とを含んでいる。 クレジッ ト更新すべきフロー識別 I Dには、 例えば V P I (Virtual Path Ide ntifier) または V C I (Virtual Cannel Identifier) などが設定される。 また、 動作指示情報は、 「0 1」 のときは更新指示を示し、 「0 0」 のときは N O P (N o O p e r a t i o n) を示す。 このクレジッ ト更新セルはエッジノレータ 1における ACT系メインスィツチ 4及びトラフィックマネージャ 3のセル制御 部 6 5 , 6 6から送出される。
〔クレジッ ト情報収集コマンド〕
図 1 3はクレジッ ト情報収集コマンドを用いたクレジッ トカウンタの同期処理 について示している。
クレジッ トベース · フロー制御は、 セルのヘッダ内のフロー制御領域のクレジ ッ ト更新情報を基に実施されるが、 図 1 3に示すように、 トラフィックマネージ ャ 3とメインスィツチ 4との間でセルロス等が発生すると、 そのクレジッ ト更新 情報が廃棄されてしまい、 クレジッ ト更新が正常に行われない可能性がある。 この問題に対処するために、 トラフィックマネージャ 3の処理部 5は、 主信号 の空きスロッ トを使用し、 予め定めたフォーマツ トのクレジット情報収集データ (セルなど) を定期的に ACT系メインスィツチ 4宛に送出する。 ACT系メイ ンスィツチ 4はそのデータ内に自分のクレジット値 (ACT系バッファ 7内に残 存するセル数対応のカウンタ値) 「K」 を書き込む。 この書き込み処理はメイン スィツチ 4内の図示省略の制御部よつて行われる。
クレジッ ト値 「Κ」 を書き込まれたクレジッ ト情報収集データは、 ACT系メ インスイッチ 4から トラフィックマネージャ 3に返却 (返送) される。 トラフィ ックマネージャ 3においては、 返却されたクレジッ ト情報収集データ内のクレジ ッ ト値 「KJ を基に、 クレジットカウンタ 50, 6 2のカウンタ値を 「L」 から 「K」 に更新する。 クレジッ トカウンタ 5 0のカウンタ値の更新のために、 返却 されたクレジット情報収集データは、 セル制御部 6 5及び ACT系選択部 6 1を 介して処理部 5に入力される。
これにより、 送信装置としてのトラフィックマネージャ 3と受信装置とじての メィンスィツチ 4とのセルロスによるクレジッ ト値の不一致を防止することが可 能である。
上述したクレジッ ト情報収集データの具体的フォーマッ ト例 (セルの場合) を 図 1 4及び図 1 5に示す。 この例に示すように、 クレジッ ト情報収集データは、 第 1バイ ト目にクレジッ ト情報収集データフラグ 「0 xAA」 を有し、 第 3バイ ト目及び第 4パイ ト目に第 1及び第 2のクレジッ ト情報収集領域を有する。 第 1 のク レジット情報収集領域には収集対象フロー I Dが設定され、 第 2のクレジッ ト情報収集領域にはクレジッ ト値 (カウンタ値) が設定される。
〔効果〕
上述した一実施の形態の送信主導型フ口一制御手法においては、 現用及び予備 の系切り替えが発生した場合、 冗長構成の受信装置 (メインスィ ッチ) 間でタ レ ジッ ト値が不一致を起こし、 フロー制御が正常に機能しなくなることを回避する ことができる。
つまり、 それぞれの系のクレジッ ト値に対して、 送信装置としてのトラフイツ クマネージャがフロー制御で使用することとは別に、 送信されたデータ数とクレ ジッ ト更新された値とを管理し、 クレジッ ト値が異常となることによるフロー制 御の異常状態を回避する。
また、 クレジッ ト値を系毎に管理し、 系切り替え後にクレジッ ト値の同期化を 行うことにより、 切り替え後にトラフィックマネージャ側とメィンスィツチ側と でクレジット値が一致しなくなるのを防ぐことができる。
また、 クレジッ ト値の不一致により、 系切り替え後のメインスィッチ内でのス ノレープッ トの低下や、 バッファメモリのオーバーフローまたはアンダーフローの 問題が発生することを防止できる。
さらに、 セルロス等でクレジッ ト値の不一致が発生した場合でも、 メインスィ ツチ側のクレジッ ト値をクレジッ ト情報収集コマンドにより監視し、 その結果を 基にクレジッ トカウンタを一致させることにより、 クレジッ トカウンタの不一致 を防ぐことができる。 産業上の利用可能性
本発明の送信主導型のフロー制御技術 (クレジットベースのフロー制御技術) は、 特に固定長または可変長バケツトベースでのスィツチングを行うルータ及ぴ 交換機等のデータ伝送装置におけるフロ一単位でのトラフィック制御及びルーテ ィング制御を行う送信装置としてのトラフィックマネージャと、 冗長構成を採る 受信装置としてのメインスィツチとの間のフロー制御に適用可能である。

Claims

請求の範囲
1 . 送信装置と冗長構成を採る受信装置との間でバケツ ト形態によるデータ送 受信を行うときにクレジット値を利用し、 フロー単位でクレジッ トベースのフロ 一制御を行う送信主導型フ口一制御装置であって ;
前記受信装置の現用系及び予備系に対して共通に設けられ、 現用系のクレジッ ト値を管理する第 1のクレジッ トカウンタと ;
前記受信装置の現用系及び予備系の各系毎のクレジッ ト値を計数する第 2及び 第 3のク レジッ トカウンタと ;
前記第 2のクレジッ トカウンタによる計数クレジッ ト値と.前記第 3のクレジッ トカウンタによる計数クレジッ ト値との差分を保持する差分カウンタと ; 前記差分カウンタが保持している差分に応じて、 前記第 1のクレジッ トカウン タと前記第 2のクレジッ トカウンタとのクレジッ ト値または前記第 1のクレジッ トカウンタと前記第 3のクレジッ トカウンタとのクレジッ ト値を前記受信装置の 系切り替え後の新現用系の前記受信装置対応のクレジッ ト値に一致させる制御手 段と ;
を備える送信主導型フ口一制御装置。
2 . 前記差分カウンタは、 前記受信装置の系切り替え時に、 前記第 2のク レジ ッ トカウンタによる計数クレジッ ト値と前記第 3のクレジッ トカウンタによる計 数クレジッ ト値との差分を保持する
請求項 1記載の送信主導型フロ一制御装置。
3 . 前記送信装置は、 フロー単位でのトラフィック処理機能及びルーティング 処理機能を有する トラフィックマネージャであり、
前記受信装置は、 バッファメモリに蓄積状態のバケツ トを固定長バケツ ト単位 でスィツチングを行うスィツチである
請求項 1記載の送信主導型フロ一制御装置。
4 . 前記制御手段は、 前記差分カウンタが保持している差分に応じて、 前記第 1のクレジッ トカウンタと前記第 2のクレジッ トカウンタとのクレジッ ト値また は前記第 1のクレジッ トカウンタと前記第 3のクレジッ トカウンタとのクレジッ ト値を、 前記受信装置の系切り替え後の新現用系の前記受信装置におけるバッフ ァメモリ内に残存するパケッ ト数対応のクレジット値に一致させる
請求項 1記載の送信主導型フロ一制御装置。
5 . 前記差分カウンタが前記差分としてマイナスの値を示しているときは、 前 記新現用系の受信装置対応のクレジッ ト値と、 前記第 1のクレジッ トカウンタの クレジッ ト値と、 前記新現用系対応の前記第 2または第 3のクレジッ トカウンタ のクレジッ ト値とを一致させるために、 前記新現用系の受信装置から前記送信装 置にクレジッ ト更新バケツ トを送出する
請求項 1記載の送信主導型フロ一制御装置。
6 . 前記差分カウンタが前記差分としてプラスの値を示しているときは、 前記 新現用系の受信装置対応のクレジッ ト値と、 前記第 1のクレジッ トカウンタのク レジッ ト値と、 前記新現用系対応の前記第 2または第 3のクレジッ トカウンタの クレジッ ト値とを一致させるために、 前記送信装置において前記新現用系の受信 装置から送出されたクレジッ ト更新バケツ トを廃棄する
請求項 1記載の送信主導型フロ一制御装置。
7 . 前記送信装置から前記受信装置にクレジット情報収集データを送出し、 前 記現用系の受信装置対応のクレジッ ト値を収集し、 この収集結果に応じて、 前記 第 1のクレジッ トカウンタのクレジッ ト値及び前記現用系対応の前記第 2または 第 3のクレジッ トカウンタのクレジッ ト値を一致させる
請求項 1記載の送信主導型フロ一制御装置。
PCT/JP2003/009199 2003-07-18 2003-07-18 送信主導型フロー制御装置 WO2005008978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/009199 WO2005008978A1 (ja) 2003-07-18 2003-07-18 送信主導型フロー制御装置
JP2005504381A JP4111974B2 (ja) 2003-07-18 2003-07-18 送信主導型フロー制御装置
US11/284,669 US7222784B2 (en) 2003-07-18 2005-11-22 Transmission base flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009199 WO2005008978A1 (ja) 2003-07-18 2003-07-18 送信主導型フロー制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/284,669 Continuation US7222784B2 (en) 2003-07-18 2005-11-22 Transmission base flow control device

Publications (1)

Publication Number Publication Date
WO2005008978A1 true WO2005008978A1 (ja) 2005-01-27

Family

ID=34074117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009199 WO2005008978A1 (ja) 2003-07-18 2003-07-18 送信主導型フロー制御装置

Country Status (3)

Country Link
US (1) US7222784B2 (ja)
JP (1) JP4111974B2 (ja)
WO (1) WO2005008978A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536430A (ja) * 2005-04-13 2008-09-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子デバイス及びフロー制御方法
JP2011507085A (ja) * 2007-12-14 2011-03-03 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ 制御タイプの実行モードとデータフロータイプの実行モードとの組み合わせによりタスクを並列に実行可能な複数の処理ユニットを有するシステム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111974B2 (ja) * 2003-07-18 2008-07-02 富士通株式会社 送信主導型フロー制御装置
CN101199156A (zh) * 2005-06-13 2008-06-11 皇家飞利浦电子股份有限公司 利用时钟域进行数据传输的方法和接收机
JP5056762B2 (ja) * 2006-10-24 2012-10-24 富士通株式会社 データパケット送受信システム、データパケット送受信方法およびデータパケット送受信プログラム
CA2621904A1 (en) * 2007-02-22 2008-08-22 Nec Corporation Bandwidth control apparatus, bandwidth control system, and bandwidth control method
US7975027B2 (en) * 2007-08-06 2011-07-05 International Business Machines Corporation Credit depletion notification for transmitting frames between a port pair
US7787375B2 (en) * 2007-08-06 2010-08-31 International Business Machines Corporation Performing a recovery action in response to a credit depletion notification
US7827325B2 (en) * 2007-10-31 2010-11-02 International Business Machines Corporation Device, system, and method of speculative packet transmission
GB2465595B (en) * 2008-11-21 2010-12-08 Nokia Corp A method and an apparatus for a gateway
US8395988B2 (en) * 2009-03-30 2013-03-12 Alcatel Lucent Method and system for providing voice survivability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139726A (ja) * 1994-11-04 1996-05-31 Nec Corp Atmスイッチシステム
JPH1127291A (ja) * 1997-06-20 1999-01-29 Digital Equip Corp <Dec> オンチップfifoのローカルメモリへの拡張のための方法及び装置
JPH11510328A (ja) * 1995-07-19 1999-09-07 フジツウ ネットワーク コミュニケーションズ,インコーポレイテッド 冗長交換機システム及びその動作方法
JP2000232477A (ja) * 1999-02-10 2000-08-22 Fuji Xerox Co Ltd データ通信方式

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720570B2 (ja) 1989-07-17 1998-03-04 日本電気株式会社 Atmスイッチネットワークの糸切替制御方式
JPH0556065A (ja) 1991-08-22 1993-03-05 Fujitsu Ltd スイツチ同期切替方式
US5497377A (en) * 1993-03-31 1996-03-05 Mitsubishi Denki Kabushiki Kaisha Communication system and method of detecting transmission faults therein
AU703349B2 (en) * 1994-02-04 1999-03-25 Ic One, Inc. Method and system for allocating and redeeming incentive credits
US5583301A (en) * 1994-11-09 1996-12-10 National Environmental Products Ltd., Inc. Ultrasound air velocity detector for HVAC ducts and method therefor
US6236940B1 (en) * 1995-09-08 2001-05-22 Prolink, Inc. Display monitor for golf cart yardage and information system
US5983260A (en) * 1995-07-19 1999-11-09 Fujitsu Network Communications, Inc. Serial control and data interconnects for coupling an I/O module with a switch fabric in a switch
EP0944976A2 (en) * 1996-12-04 1999-09-29 Alcatel USA Sourcing, L.P. Distributed telecommunications switching system and method
US6249756B1 (en) * 1998-12-07 2001-06-19 Compaq Computer Corp. Hybrid flow control
US6940873B2 (en) * 2000-12-27 2005-09-06 Keen Personal Technologies, Inc. Data stream control system for associating counter values with stored selected data packets from an incoming data transport stream to preserve interpacket time interval information
JP4111974B2 (ja) * 2003-07-18 2008-07-02 富士通株式会社 送信主導型フロー制御装置
US20050047405A1 (en) * 2003-08-25 2005-03-03 International Business Machines Corporation Switching device for controlling data packet flow
JP2005332250A (ja) * 2004-05-20 2005-12-02 Toshiba Corp データ処理装置およびフロー制御方法
US7710922B2 (en) * 2004-12-30 2010-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Flow control at cell change for high-speed downlink packet access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139726A (ja) * 1994-11-04 1996-05-31 Nec Corp Atmスイッチシステム
JPH11510328A (ja) * 1995-07-19 1999-09-07 フジツウ ネットワーク コミュニケーションズ,インコーポレイテッド 冗長交換機システム及びその動作方法
JPH1127291A (ja) * 1997-06-20 1999-01-29 Digital Equip Corp <Dec> オンチップfifoのローカルメモリへの拡張のための方法及び装置
JP2000232477A (ja) * 1999-02-10 2000-08-22 Fuji Xerox Co Ltd データ通信方式

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536430A (ja) * 2005-04-13 2008-09-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子デバイス及びフロー制御方法
JP2011507085A (ja) * 2007-12-14 2011-03-03 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ 制御タイプの実行モードとデータフロータイプの実行モードとの組み合わせによりタスクを並列に実行可能な複数の処理ユニットを有するシステム

Also Published As

Publication number Publication date
US7222784B2 (en) 2007-05-29
JPWO2005008978A1 (ja) 2006-09-07
US20060077898A1 (en) 2006-04-13
JP4111974B2 (ja) 2008-07-02

Similar Documents

Publication Publication Date Title
US7222784B2 (en) Transmission base flow control device
US7304987B1 (en) System and method for synchronizing switch fabric backplane link management credit counters
US7263066B1 (en) Switch fabric backplane flow management using credit-based flow control
EP1228595B1 (en) Method and system for discarding and regenerating acknowledgment packets in adsl communications
US7760625B2 (en) Exchange node and exchange node control method
US7151744B2 (en) Multi-service queuing method and apparatus that provides exhaustive arbitration, load balancing, and support for rapid port failover
US7346001B1 (en) Systems and methods for limiting low priority traffic from blocking high priority traffic
JP4070610B2 (ja) データ・ストリーム・プロセッサにおけるデータ・ストリームの操作
JP3866425B2 (ja) パケットスイッチ
JP3606941B2 (ja) フロー制御装置及びフロー制御方法
US20030026267A1 (en) Virtual channels in a network switch
US20030189935A1 (en) Systems and methods for providing quality of service (QoS) in an environment that does not normally support QoS features
US20050138238A1 (en) Flow control interface
EP1832052A2 (en) In-order fibre channel packet delivery
US6810424B2 (en) Link layer device and method of translating packets between transport protocols
JPH07321842A (ja) パケット交換ネットワークを複数個のデータ端末にインタフェースする装置、フレームリレーパケットを交換するシステムに複数個のエンドポイントをインタフェースするモジュール、ならびにデータパケットを交換するシステムに端末をインタフェースする方法
JP2000013385A (ja) セルブリッジ装置及びセルブリッジ方法並びにセルブリッジ装置を有する情報伝送システム
CA2493506C (en) Methods and apparatus for credit-based flow control
US7447229B2 (en) Method for providing prioritized data movement between endpoints connected by multiple logical channels
US7433365B1 (en) System architecture for linking channel banks of a data communication system
WO2011074052A1 (ja) 通信装置、統計情報収集制御装置および統計情報収集制御方法
JP6099412B2 (ja) スイッチ装置、通信システムおよび転送制御方法
JP2003273902A (ja) パケット通信装置、および、パケット通信網の回線切替方法
US6804242B1 (en) Method and apparatus for the channelization of cell or packet traffic over standard PC buses
US7551549B1 (en) Method and apparatus for line card redundancy in a communication switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 11284669

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005504381

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 11284669

Country of ref document: US