WO2005005783A1 - Dampfturbine - Google Patents

Dampfturbine Download PDF

Info

Publication number
WO2005005783A1
WO2005005783A1 PCT/EP2004/006555 EP2004006555W WO2005005783A1 WO 2005005783 A1 WO2005005783 A1 WO 2005005783A1 EP 2004006555 W EP2004006555 W EP 2004006555W WO 2005005783 A1 WO2005005783 A1 WO 2005005783A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
sub
steam turbine
medium
rotor
Prior art date
Application number
PCT/EP2004/006555
Other languages
English (en)
French (fr)
Inventor
Wilfried Härter
Heinrich STÜER
Frank Truckenmüller
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP04763006A priority Critical patent/EP1644613A1/de
Publication of WO2005005783A1 publication Critical patent/WO2005005783A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • F01D9/065Fluid supply or removal conduits traversing the working fluid flow, e.g. for lubrication-, cooling-, or sealing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine

Definitions

  • the invention relates to a steam turbine, the first
  • Partial turbine which is fluidly connected to one another with a second partial turbine via a transition region.
  • Power usually carried out as a single or double-casing sub-turbines.
  • One embodiment of a single-part turbine type is distinguished, for example, by the fact that a medium-pressure turbine and a low-pressure turbine are accommodated in a common housing.
  • Medium pressure turbine different from the low pressure turbine.
  • the rotor must have heat-resistant properties in the medium-pressure turbine and cold-resistant properties in the low-pressure turbine.
  • the rotor diameters in the area between the medium-pressure turbine and the low-pressure turbine are different.
  • the rotor diameter at the outlet of a medium-pressure turbine is significantly smaller than the rotor diameter at the inlet of a low-pressure turbine.
  • the different material properties of the rotor are compensated for the smaller outflow surfaces by tempering the rotor.
  • the shaft is welded between the medium-pressure and low-pressure turbine for reasons of cost and strength.
  • this area between the medium pressure turbine and the low pressure turbine posed. It is also required axial space to z. B. for quality assurance measures such. B. ultrasonic testing or laser radiation to have space.
  • the transition from the medium-pressure turbine to the low-pressure turbine takes place in steps, since the low-pressure turbine diameter of the rotor is generally larger than the diameter of the rotor of the medium-pressure turbine. So far, the area between the medium-pressure and low-pressure turbines has not been bladed for the aforementioned reasons, nor has it been shaped as an extensive transition area to the low-pressure turbine.
  • the object of the present invention is to provide a steam turbine with a first sub-turbine and a second sub-turbine with a shortened axial length.
  • the advantage of the invention can be seen, inter alia, in the fact that in the transition region of the steam turbine, despite the shortened axial length, there is sufficient space for e.g. quality assurance measures are in place and the axial length of the steam turbine is shortened.
  • the further development of the invention described in subclaim 5 shows the advantage that a flow medium can be deflected in a targeted manner.
  • FIG. 1 shows a longitudinal section through a transition region between a first and a second turbine part.
  • FIG. 1 shows a section through a transition region 1 between a first sub-turbine 2 and a second sub-turbine 3.
  • the first sub-turbine 2 is designed as a medium-pressure sub-turbine and the second sub-turbine 3 is designed as a low-pressure sub-turbine.
  • the first sub-turbine 2 could be designed as a high-pressure sub-turbine and the second sub-turbine 3 as a medium-pressure sub-turbine.
  • a flow medium flows through a flow channel of the first sub-turbine 2 and emerges from the first sub-turbine 2 after the last stage, which consists of a guide vane 4 and a rotor blade 5.
  • a rotor 7 rotatably mounted about an axis of rotation ⁇ comprises a first longitudinal section 8 which is arranged in the region of the first sub-turbine 2 and a second longitudinal section 9 which is arranged in a region of the second sub-turbine 3.
  • the rotor 7 has heat-resistant properties in the first longitudinal section 8 and cold-tough properties in the second longitudinal section 9.
  • the first longitudinal section 8 and the second longitudinal section 9 are connected to an outer region 10 of the rotor 7 by means of a weld seam 11.
  • the rotor 7 has a diameter 12 in the area of the weld seam 11.
  • the outer region 10 can be found at the end of the diameter 12.
  • the transition region 1 has a flow deflection arrangement 13.
  • the flow deflection arrangement 13 comprises a first guide blade 14 of a row of guide blades arranged around the rotor 7 and an associated shaft cover 15.
  • the flow medium predominantly flows in a direction that is parallel to the axis of rotation 6.
  • Flow deflection arrangement 13 is inclined by an angle ⁇ with respect to the direction 16, which is essentially parallel to the axis of rotation 6.
  • the angle ⁇ can assume values between 0 ° and 90 ° and is essentially 45 °.
  • the flow medium flows through the transition region 1 past the first guide vane 14 to the first rotor blade 17 of the second partial turbine.
  • the shaft cover 15 is designed in such a way that the flow medium is deflected to the first guide vane 14 and is fastened to the guide vane 14.
  • transition area 1 makes it possible to save axial installation space.
  • the requirements for the welding technology can be met for the weld 11.
  • the axial installation space for the first row of guide vanes is saved for the second turbine part.
  • the advantage of this arrangement is that the flow in this transition area 1 can be influenced in a targeted manner.
  • the inflow to the first row of blades of the low-pressure turbine and the flow separation can be optimized or suppressed. It is also possible to form the angle ⁇ over 45 °, which leads to an additional saving of axial installation space.
  • This design leads to a reduction in the axial overall length even with tempered rotors. Weight reduction of the rotor and a housing is also possible. This enables the use of lighter bearings.
  • the first guide vane 14 in the transition region 1, which is designed as the flow deflection arrangement 13, is designed with a smaller diameter than the rotor 7, lower gap losses are obtained.
  • the efficiency of the steam turbine is increased by the flow deflection arrangement 13 in the transition region 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Dampfturbine, die eine erste Teilturbine (2) aufweist, die mit einer zweiten Teilturbine (3) über einen Übergangsbereich (1) strömungstechnisch miteinander verbunden ist wobei der Übergangsbereich (1) eine Strömungsumlenkanordnung (13) aufweist, die eine erste Leitschaufel (14) und eine Wellenabdeckung (15) umfasst.

Description

Beschreibung
Dampfturbine
Die Erfindung betrifft eine Dampfturbine, die eine erste
Teilturbine aufweist, die mit einer zweiten Teilturbine über einen Übergangsbereich strömungstechnisch miteinander verbunden ist.
Im Dampfturbinenbau werden Dampfturbinen mit mittlerer
Leistung üblicherweise als eingehäusige oder zweigehäusige Teilturbinen ausgeführt. Eine Ausführungsform eines eingehäusigen Teilturbinentyps zeichnet sich zum Beispiel dadurch aus, dass eine Mitteldruck-Turbine und eine Niederdruck-Turbine in einem gemeinsamen Gehäuse untergebracht sind.
An den Übergangsbereich zwischen der Mitteldruck-Turbine und der Niederdruck-Turbine werden besondere Anforderungen gestellt. Die Eigenschaften des Rotors sind in der
Mitteldruck-Turbine anders als in der Niederdruck-Turbine. Zum Beispiel muss der Rotor in der Mitteldruck-Turbine warmfeste Eigenschaften und in der Niederdruck-Turbine kaltfeste Eigenschaften aufweisen. Des weiteren sind die Rotordurchmesser im Bereich zwischen der Mitteldruck-Turbine und der Niederdruck-Turbine verschieden. Der Rotordurchmesser am Austritt einer Mitteldruck-Turbine ist bei Turbinen mit großem Abdampfvolumenstrom deutlich kleiner als der Rotordurchmesser am Eintritt einer Niederdruck-Turbine.
Die unterschiedlichen Materialeigenschaften des Rotors werden für kleinere Abströmflächen durch Vergüten des Rotors ausgeglichen. Bei großen Abströmflächen wird aus Kosten- und Festigkeitsgründen die Welle zwischen Mitteldruck- und Niederdruck-Turbine verschweißt. Wenn die Welle verschweißt wird, werden noch weitere Anforderungen an diesen Bereich zwischen der Mitteldruck-Turbine und der Niederdruck-Turbine gestellt. Es wird hierbei zusätzlich axialer Raum benötigt, um z. B. für qualitätssichernde Maßnahmen, wie z. B. Ultraschallprüfung oder Laserbestrahlung, Platz zu haben.
Des weiteren erfolgt der Übergang von der Mitteldruck-Turbine zur Niederdruck-Turbine stufenartig, da der Niederdruck- Turbinendurchmesser des Rotors in der Regel größer ist als der Durchmesser des Rotors der Mitteldruck-Turbine. Bisher wurde der Bereich zwischen der Mitteldruck- und Niederdruck- Turbine aus den vorgenannten Gründen nicht beschaufelt und auch nicht als ausgedehnter Übergangsbereich zur Niederdruck- Turbine ausgeformt.
Aufgabe der vorliegenden Erfindung ist es, eine Dampfturbine mit einer ersten Teilturbine und einer zweiten Teilturbine anzugeben mit einer verkürzten axialen Baulänge.
Die Aufgabe wird gelöst durch die kennzeichnenden Merkmale des Patentanspruchs 1.
Vorteilhafte Weitergestaltungen sind in den Unteransprüchen beschrieben.
Der Vorteil der Erfindung ist unter anderem darin zu sehen, dass in dem Übergangsbereich der Dampfturbine trotz verkürzter axialer Baulänge genügend Platz für z.B. qualitätssichernde Maßnahmen vorhanden ist und das die axiale Baulänge der Dampfturbine verkürzt wird. Die im Unteranspruch 5 beschriebene Weitergestaltung der Erfindung zeigt den Vorteil, dass ein Strömungsmedium gezielt umlenkbar ist.
Die im Unteranspruch β beschriebene Weitergestaltung der Erfindung zeigt den Vorteil, dass eine Wellenabdeckung günstig an eine erste Leitschaufel anbringbar ist. Anhand der nachfolgenden Beschreibung werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die Zeichnungen noch näher erläutert.
Dabei zeigt:
Figur 1 einen Längsschnitt durch einen Übergangsbereich zwischen einer ersten und einer zweiten Teilturbine.
In Figur 1 ist ein Schnitt durch einen Übergangsbereich 1 zwischen einer ersten Teilturbine 2 und einer zweiten Teilturbine 3 dargestellt. Die erste Teilturbine 2 ist als Mitteldruck-Teilturbine und die zweite Teilturbine 3 ist als Niederdruck-Teilturbine ausgebildet. Genauso könnte in einem weiteren Ausführungsbeispiel die erste Teilturbine 2 als Hochdruck-Teilturbine und die zweite Teilturbine 3 als Mitteldruck-Teilturbine ausgebildet sein. Ein Strömungsmedium strömt durch einen Strömungskanal der ersten Teilturbine 2 und tritt nach der letzten Stufe, die aus einer Leitschaufel 4 und einer Laufschaufel 5 besteht aus der ersten Teilturbine 2 aus. Ein um eine Rotationsachse β drehbar gelagerter Rotor 7 umfasst einen ersten Längsabschnitt 8, der im Bereich der ersten Teilturbine 2 angeordnet ist und einen zweiten Längsabschnitt 9, der in einem Bereich der zweiten Teilturbine 3 angeordnet ist.
Für den Fall, dass die erste Teilturbine 2 als eine Mitteldruck-Turbine und die zweite Teilturbine 3 als Niederdruck-Turbine ausgebildet ist, weist der Rotor 7 im ersten Längsabschnitt 8 warmfeste und im zweiten Längsabschnitt 9 kaltzähe Eigenschaften auf. Der erste Längsabschnitt 8 und der zweite Längsabschnitt 9 werden an einem äußeren Bereich 10 des Rotors 7 mittels einer Schweißnaht 11 verbunden. Der Rotor 7 weist im Bereich der Schweißnaht 11 einen Durchmesser 12 auf. Der äußere Bereich 10 ist am Ende des Durchmessers 12 zu finden. Der Übergangsbereich 1 weist eine Strömungsumlenkanordnung 13 auf. Die Strömungsumlenkanordnung 13 umfasst eine erste Leitschaufel 14 einer um den Rotor 7 angeordneten Leitschaufelreihe und eine zugeordnete Wellenabdeckung 15.
Das Strömungsmedium strömt überwiegend in eine Richtung die parallel zur Rotationsachse 6 liegt. Die
Strömungsumlenkanordnung 13 ist um einen Winkel α gegenüber der Richtung 16, die im wesentlichen parallel zur Rotationsachse 6 ist, geneigt. Der Winkel α kann Werte annehmen zwischen 0° und 90° und beträgt im Wesentlichen 45°.
Das Strömungsmedium strömt durch den Übergangsbereich 1 an der ersten Leitschaufel 14 vorbei zur ersten Laufschaufel 17 der zweiten Teilturbine.
Die Wellenabdeckung 15 ist derart gestaltet, dass das Strömungsmedium zur ersten Leitschaufel 14 umgelenkt wird, und an der Leitschaufel 14 befestigt ist.
Durch diese Gestaltung des Übergangsbereiches 1 ist es möglich, axialen Bauraum einzusparen. Für die Schweißnaht 11 können die Anforderungen an die Schweißtechnik eingehalten werden. Es wird für die zweite Teilturbine der axiale Bauraum für die erste Leitschaufelreihe eingespart. Ein weiterer
Vorteil dieser Anordnung ist es, dass die Strömung in diesem Übergangsbereich 1 gezielt beeinflusst werden kann. Die Zuströmung zur ersten Laufschaufelreihe der Niederdruck- Turbine als auch die Strömungsablösung kann optimiert bzw. unterdrückt werden. Es ist auch möglich, den Winkel α über 45° auszubilden, was zu einer zusätzlichen Einsparung von axialem Bauraum führt. Diese Ausführung führt auch bei vergüteten Rotoren zu einer Reduzierung der axialen Baulänge. Genauso ist eine Gewichtsreduzierung von dem Rotor und einem Gehäuse möglich. Dadurch ist ein Einsatz von leichteren Lagern ermöglicht. Da die erste Leitschaufel 14 im Übergangsbereich 1 die als die Strömungsumlenkungsanordnung 13 ausgebildet ist, gegenüber dem Rotor 7 über einen niedrigeren Durchmesser ausgebildet ist, erhält man niedrigere Spaltverluste. Darüber hinaus wird durch die Strömungsumlenkungsanordnung 13 in dem Übergangsbereich 1 der Wirkungsgrad der Dampfturbine erhöht.

Claims

Patentansprüche
1. Dampfturbine, die eine erste Teilturbine (2) aufweist, die mit einer zweiten Teilturbine (3) über einen Übergangsbereich (1) strömungstechnisch miteinander verbunden ist, d a d u r c h g e k e n n z e i c h n e t, dass der Übergangsbereich (1) eine Strömungsumlenkanordnung (13) aufweist.
2. Dampfturbine nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Strömungsumlenkanordnung (13) eine erste Leitschaufei (14) der zweiten Teilturbine (3) umfasst.
3. Dampfturbine nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass die erste Leitschaufel (14) unter einem Winkel gegenüber einer Rotationsachse (6) eines in der Dampfturbine drehbar gelagerten Rotors (7) geneigt ist.
4. Dampfturbine nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass der Winkel α Werte im Bereich von 10° bis 80° hat.
5. Dampfturbine nach einem der Ansprüche 1 bis 4 : r, d a d u r c h g e k e n n z e i c h n e t, dass die Strömungsumlenkanordnung (13) eine Wellenabdeckung (15) aufweist.
6. Dampfturbine nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, dass die Wellenabdeckung (15) an der ersten Leitschaufel (14) angebracht ist.
7. Dampfturbine nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass die Dampfturbine einen zwei Materialien aufweisenden und im Übergangsbereich (1) verschweißten Rotor (7) aufweist.
8. Dampfturbine nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass die erste Teilturbine (2) eine Mitteldruck-Teilturbine und die zweite Teilturbine (3) eine Niederdruck-Teilturbine ist.
9. Dampfturbine nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass die erste Teilturbine (2) eine Hochdruck-Teilturbine und die zweite Teilturbine (3) eine Mitteldruck-Teilturbine ist.
PCT/EP2004/006555 2003-07-08 2004-06-17 Dampfturbine WO2005005783A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04763006A EP1644613A1 (de) 2003-07-08 2004-06-17 Dampfturbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03015386.0 2003-07-08
EP03015386A EP1496196A1 (de) 2003-07-08 2003-07-08 Dampfturbine

Publications (1)

Publication Number Publication Date
WO2005005783A1 true WO2005005783A1 (de) 2005-01-20

Family

ID=33442757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006555 WO2005005783A1 (de) 2003-07-08 2004-06-17 Dampfturbine

Country Status (2)

Country Link
EP (2) EP1496196A1 (de)
WO (1) WO2005005783A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456680C (zh) * 2006-12-30 2009-01-28 华为技术有限公司 一种编码方法和编码器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ302698B6 (cs) * 2009-05-19 2011-09-07 Ceské vysoké ucení technické v Praze Prechodový díl lopatkového stroje
EP3128128A1 (de) * 2015-08-06 2017-02-08 Siemens Aktiengesellschaft Verschraubter rotor für eine strömungsmaschine, insbesondere dampfturbine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190929119A (en) * 1909-12-13 1910-12-08 Charles Algernon Parsons Improvements in and relating to Turbines.
JPS5982501A (ja) * 1982-11-02 1984-05-12 Toshiba Corp 蒸気タ−ビン
EP0534686A1 (de) * 1991-09-23 1993-03-31 General Electric Company Bürstendichtung in einer Riffe angeordnet
EP0985803A1 (de) * 1998-09-10 2000-03-15 Asea Brown Boveri AG Turbinenstufe mit radialer Zuströmung und axialer Abströmung
US6499946B1 (en) * 1999-10-21 2002-12-31 Kabushiki Kaisha Toshiba Steam turbine rotor and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439347A (en) * 1994-08-31 1995-08-08 Brandon; Ronald E. Turbine tip seal damage protection means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190929119A (en) * 1909-12-13 1910-12-08 Charles Algernon Parsons Improvements in and relating to Turbines.
JPS5982501A (ja) * 1982-11-02 1984-05-12 Toshiba Corp 蒸気タ−ビン
EP0534686A1 (de) * 1991-09-23 1993-03-31 General Electric Company Bürstendichtung in einer Riffe angeordnet
EP0985803A1 (de) * 1998-09-10 2000-03-15 Asea Brown Boveri AG Turbinenstufe mit radialer Zuströmung und axialer Abströmung
US6499946B1 (en) * 1999-10-21 2002-12-31 Kabushiki Kaisha Toshiba Steam turbine rotor and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 191 (M - 322) 4 September 1984 (1984-09-04) *
See also references of EP1644613A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456680C (zh) * 2006-12-30 2009-01-28 华为技术有限公司 一种编码方法和编码器

Also Published As

Publication number Publication date
EP1644613A1 (de) 2006-04-12
EP1496196A1 (de) 2005-01-12

Similar Documents

Publication Publication Date Title
EP2092174B1 (de) Turbolader
DE102008017844A1 (de) Strömungsmaschine mit Fluid-Injektorbaugruppe
DE2436635C3 (de) Hydraulische Maschine
DE10233032A1 (de) Strömungsarbeitsmaschine mit integriertem Fluidzirkulationssystem
EP1733123A1 (de) Geschweisste turbinenwelle und verfahren zur deren herstellung
DE102009043889A1 (de) Dampfturbinen-Rotationslaufschaufel für einen Niederdruckabschnitt einer Dampfturbine
WO2011124214A2 (de) Leitschaufel einer strömungsmaschine
EP1624192A1 (de) Verdichterschaufel für einen Verdichter und Verdichter
DE102008037554A1 (de) Schwalbenschwanzbefestigung zur Verwendung mit Turbinenanordnungen und Verfahren zur Montage von Turbinenanordnungen
DE10016068A1 (de) Dampfturbine
CH714432A2 (de) Radialverdichter.
EP2802748B1 (de) Strömungsmaschine mit schraubenkühlung
EP0532907B1 (de) Axialdurchströmte Turbine
EP3034788A2 (de) Kompressorschaufel einer gasturbine
EP2526263A2 (de) Gehäusesystem für eine axialströmungsmaschine
WO2005005783A1 (de) Dampfturbine
EP2196628A1 (de) Leitschaufelträger
EP2090751A1 (de) Laufschaufel für eine Turbomaschine
CH714650A2 (de) Radialverdichter.
EP2220342A1 (de) Erosionsschutzschild für laufschaufeln
EP2454451B1 (de) Rotor mit kopplungselementen zur mechanischen kopplung von schaufeln
WO2002055884A1 (de) Laufrad für eine wasserturbine oder wasserpumpe
AT502999A2 (de) Laufrad eines ventilators
DE102012018066A1 (de) Wasserturbine
EP1574667B1 (de) Verdichterdiffusor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004763006

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004763006

Country of ref document: EP