EP1574667B1 - Verdichterdiffusor - Google Patents

Verdichterdiffusor Download PDF

Info

Publication number
EP1574667B1
EP1574667B1 EP20040004895 EP04004895A EP1574667B1 EP 1574667 B1 EP1574667 B1 EP 1574667B1 EP 20040004895 EP20040004895 EP 20040004895 EP 04004895 A EP04004895 A EP 04004895A EP 1574667 B1 EP1574667 B1 EP 1574667B1
Authority
EP
European Patent Office
Prior art keywords
constriction
diffuser
gas turbine
wall
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20040004895
Other languages
English (en)
French (fr)
Other versions
EP1574667A1 (de
Inventor
Christian Dr. Cornelius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP20040004895 priority Critical patent/EP1574667B1/de
Publication of EP1574667A1 publication Critical patent/EP1574667A1/de
Application granted granted Critical
Publication of EP1574667B1 publication Critical patent/EP1574667B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps

Definitions

  • the invention relates to a gas turbine with a compressor diffuser and there a measure for optimizing a radial mass flow distribution at the inlet of the compressor diffuser.
  • the invention also relates to a diffuser itself.
  • a diffuser is known in its most general form, a component of a pipeline in which the cross-section grows gradually. This increase in cross-section causes a decrease in the velocity of the medium flowing through it, while the static pressure increases simultaneously.
  • a diffuser is usually arranged at the outlet of the gas turbine, in particular immediately after the turbine, and / or at the outlet of the compressor.
  • the invention is concerned with the mass flow or total pressure distribution required for optimum operation of the diffuser.
  • the compressor outlet diffuser shown there is designed as an axial diffuser and thus comprises an annular channel.
  • the inner, hub-side contour of the annular channel is cylindrical and the outer wall is conical, so that the cross-sectional enlargement of the diffuser along its axial extent is formed mainly by the increase of the radius of the outer wall.
  • Immediately upstream of the diffuser freestanding vanes are placed as a Nachleitrad, the free ends of the inner wall of the diffuser are facing gap formation.
  • a use of freestanding guide vanes leads, in particular in the case of larger radial gaps, to a considerable drop in the velocity of the flowing working medium, that is to say of the heated gas, in the hub region of a turbine shaft at the outlet of a secondary guide wheel.
  • the speed drop is accompanied by a total pressure drop.
  • the velocity and pressure distribution is especially unfavorable when a cross-sectional widening takes place within the diffuser exclusively via a reduction of the hub radius of the hub-side inner contour of the diffuser.
  • a weakened velocity profile in the region of the hub-side inner contour then leads to lossy flow separations on the inner contour of the diffuser. This significantly limits the pressure recovery of the diffuser and thus its overall efficiency.
  • a turbine outlet diffuser with a provided on its outer wall constriction known.
  • the constriction of the diffuser channel is located immediately downstream of the trailing edge of the last turbine stage blade, on the diffuser outer wall.
  • the EP 1 227 217 treats such a constriction downstream of the last blade of the turbine.
  • the invention is therefore based on the object of specifying a gas turbine optimized with a view to avoiding or reducing the abovementioned disadvantages with a diffuser.
  • the advantage of the invention is that a modification of the mass flow in the direction of the hub of the turbine rotor is caused by the modification of the inner contour of the diffuser housing just in a compressor diffuser through the constriction. In the area of the hub thus increases the speed level.
  • the speed drop caused by the hub-side radial gaps, that is to say by the distance between the upstream of the diffuser and the stationary rotor vanes and the hub of the turbine rotor, is thus largely compensated.
  • the constriction is located on the inside of the outer wall of the diffuser housing.
  • the constriction can be caused by material being deposited on the inside of the outer wall of the diffuser housing. Another possibility of forming such a constriction is that an adapted, the constriction-containing shaping of the outer wall of the diffuser housing is selected.
  • the constriction in the interior of the diffuser gradually decreases in the direction of flow of the medium flowing through, so that the constriction does not influence the intended mode of operation of the diffuser (speed reduction and pressure increase for the medium flowing through) negligibly or negligibly.
  • the constriction at the inlet of the diffuser is not abrupt but continuous and in a manner in which in the direction of the medium flowing through an increase of the constriction up to a maximum constriction is such that the increase in constriction to the maximum constriction significantly larger is as the decrease in the constriction following the maximum constriction.
  • a gas turbine has a compressor for combustion air, a combustion chamber and a turbine for driving both the compressor and a working machine, for.
  • a generator on.
  • the turbine and the compressor are arranged on a common, also referred to as a turbine rotor turbine shaft, with which the machine is connected, and which is rotatably mounted about its longitudinal axis.
  • the combustion chamber is equipped with at least one burner for the combustion of a liquid or gaseous fuel.
  • the compressor as well as the turbine each have a number of rotatable blades connected to the turbine shaft.
  • the blades are arranged in a ring on the turbine shaft and thus form a number of blade rows.
  • both the compressor and the turbine include a number of stationary vanes which are also annularly mounted to form vanes rows on an inner wall of the housing of the compressor or turbine.
  • the blades serve to drive the turbine shaft by momentum transfer from the turbine flowing through the working fluid.
  • the guide vanes serve to guide the flow of the working medium between two respective rows of blades or rotor blade rings viewed in the flow direction of the working medium.
  • a successive pair of a ring of vanes or a row of vanes and a ring of blades or a blade row is also referred to as a turbine stage or as a compressor stage.
  • the compressor or turbine housing Between the blades and the inner contour of the respective surrounding housing, so the compressor or turbine housing remains a radial gap whose size is dimensioned so that during operation of the gas turbine even with thermal expansion of the respective materials stripping of the blades is excluded at the respective inner housing.
  • a radial gap remains between the stationary vanes and the turbine shaft. This is also such that a contact between the vanes and the turbine shaft is excluded.
  • FIG. 1 shows a sectional view of a gas turbine with a arranged at the output of its compressor diffuser 1 with a diffuser housing 2.
  • the diffuser housing 2 has in a connection region 3, ie in the region of the transition from the compressor of the gas turbine to the diffuser 1, a constriction 5 reducing the inner radius of the housing 2 on.
  • a portion of the diffuser 1 belonging to the connection region 3 is referred to as the inlet 4 of the diffuser 1.
  • the inlet 4 has an annular space contour. The dimensions of the inlet 4 are determined essentially by its inner radius.
  • the flow space of the diffuser 1 is bounded radially on the outside by an outer wall of the diffuser housing 2 and radially inward by a hub-side inner contour.
  • the constriction 5 decreases gradually within the diffuser 1 in the flow direction of the medium flowing through, ie the compressed air.
  • the flow direction runs from left to right.
  • At the inlet 4 of the diffuser 1 takes place - also in the direction of the medium flowing through - an increase in the constriction to a maximum constriction 5 such that the increase in constriction to the maximum constriction 5 is significantly greater than the decrease in constriction following the maximum Constriction 5.
  • the quantification of an aspect ratio between a distance during which the constriction at the inlet 4 initially increases to the maximum constriction 5 and a distance during which the constriction within the diffuser 1 then decreases again is possible as follows:
  • the length of a distance along the Outer contour of the diffuser housing 2 parallel to the flow direction of the medium, during which the constriction increases to the maximum constriction 5, is less than one fifth of the length of a distance during which the constriction decreases from the maximum constriction 5 again.
  • the one-sided on the inside of the diffuser housing 2, in particular in the region of the Diffusoreinlasses 4, made radius reduction (constriction 5) causes a redistribution of the mass flow in the direction of the hub of the turbine rotor. This increases the speed level in the hub area (see also FIG. 2 ). Overall, there is a substantially improved velocity and total pressure distribution at the inlet 4 of the diffuser 1. Increasing the near-net velocity level causes the hub boundary layer to run at a substantially higher pressure, thus improving the pressure recovery and overall compressor efficiency.
  • FIG. 2 shows a graphical representation of a theoretically calculated speed increase in the region of the hub of a turbine runner.
  • the abscissa shows the increase in the axial velocity compared to the unmodified design.
  • r * as the radius, the distance from the hub of the turbine rotor is removed. It can be seen the significant increase in speed in the immediate hub area, ie in the area in which so far due to a caused by the radial gap at the outer end of the vanes slit flow a drop in speed was observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Gasturbine mit einem Verdichterdiffusor und dort eine Maßnahme zur Optimierung einer radialen Massenstromverteilung am Eintritt des Verdichterdiffusors. Die Erfindung betrifft ebenfalls einen Diffusor selbst.
  • Gasturbinen mit Verdichterdiffusor, im Folgenden kurz als Diffusor bezeichnet, sind allgemein bekannt. Ein Diffusor ist in seiner allgemeinsten Form bekanntlich ein Bauteil einer Rohrleitung, in dem der Querschnitt allmählich wächst. Dies Zunahme des Querschnitts bedingt eine Abnahme der Geschwindigkeit des hindurch strömenden Mediums, während der statische Druck gleichzeitig ansteigt. Bei einer Gasturbine mit einem Verdichter, einer Brennkammer und einer Turbine ist ein Diffusor üblicherweise am Ausgang der Gasturbine, insbesondere unmittelbar im Anschluss an die Turbine, und/oder am Ausgang des Verdichters angeordnet.
  • Die Erfindung befasst sich mit der Massenstrom- oder Totaldruckverteilung, die für eine optimale Wirkungsweise des Diffusors erforderlich ist.
  • Eine vorgenannte Gasturbine ist beispielsweise aus der japanischen Patentanmeldung 2000-256139 bekannt. Der dort gezeigte Verdichterausgangsdiffusor ist als Axialdiffusor ausgebildet und umfasst folglich einen Ringkanal. Die innere, nabenseitige Kontur des Ringkanals ist zylindrisch und die Außenwand ist kegelförmig, so dass die Querschnittserweiterung des Diffusors entlang seiner Axialerstreckung hauptsächlich durch die Vergrößerung des Radius der Außenwand gebildet wird. Unmittelbar stromauf des Diffusors sind freistehende Leitschaufeln als Nachleitrad platziert, deren freie Enden der Innenwand des Diffusors unter Spaltbildung gegenüber stehen.
  • Eine Verwendung freistehender Leitschaufeln führt insbesondere bei größeren Radialspalten zu einem erheblichen Geschwindigkeitseinbruch des strömenden Arbeitsmediums, also des erwärmten Gases, im Nabenbereich einer Turbinenwelle am Austritt eines Nachleitrades. Der Geschwindigkeitseinbruch geht mit einem Totaldruckeinbruch einher.
  • Die Geschwindigkeits- und Druckverteilung ist vor allem dann ungünstig, wenn eine Querschnittserweiterung innerhalb des Diffusors ausschließlich über eine Reduktion des Nabenradius der nabenseitigen Innenkontur des Diffusors erfolgt. Ein geschwächtes Geschwindigkeitsprofil im Bereich der nabenseitigen Innenkontur führt dann zu Verlust behafteten Strömungsablösungen an der Innenkontur des Diffusors. Dies begrenzt signifikant den Druckrückgewinn des Diffusors und damit dessen Gesamtwirkungsgrad.
  • Zur Lösung dieses Problems ist bisher nur eine spezielle Formgebung der unmittelbar stromauf des Diffusors gelegenen Leitschaufeln in Betracht gezogen worden. Diese Maßnahme bewirkt allerdings nur sehr begrenzt eine Kompensation des durch die Spaltströmung bedingten Geschwindigkeitseinbruchs, so dass bisher die Querschnittserweiterung des Diffusors und damit der erreichbare Druckrückgewinn auf einen der ungünstigen Zuströmung entsprechenden Wert begrenzt bleiben musste. Dies ist insbesondere dann ungünstig, wenn ausreichend axialer Bauraum für große Querschnittserweiterungen bei erträglichen Verzögerungen zur Verfügung steht.
  • Ferner ist aus der EP 1 253 295 ein Turbinenaustritts-Diffusor mit einer an seiner Außenwand vorgesehenen Einschnürung bekannt. Die Einschnürung des Diffusorkanals ist unmittelbar stromab der Hinterkante der Laufschaufel der letzten Turbinenstufe, an der Diffusoraußenwand vorgesehen. Zur Vermeidung von Schockwellen kann mittels der Einschnürung eine schaufelspitzenseitige Verzögerung des Strömungsmediums erreicht werden. Auch die EP 1 227 217 behandelt eine derartige Einschnürung stromab der letzten Laufschaufel der Turbine.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine im Hinblick auf eine Vermeidung oder Reduzierung der oben genannten Nachteile optimierte Gasturbine mit einem Diffusor anzugeben.
  • Diese Aufgabe wird erfindungsgemäß mit einer Gasturbine mit den Merkmalen des Anspruchs 1 gelöst.
  • Der Vorteil der Erfindung besteht darin, dass durch die Modifikation der Innenkontur des Diffusorgehäuses gerade bei einem Verdichterdiffuser durch die Einschnürung eine Umverteilung des Massenstromes in Richtung der Nabe des Turbinenläufers hervorgerufen wird. Im Bereich der Nabe steigt damit das Geschwindigkeitsniveau. Der durch die nabenseitigen Radialspalte, also durch den Abstand zwischen den stromauf des Diffusors liegenden, feststehenden Leitschaufeln und der Nabe des Turbinenläufers bedingte Geschwindigkeitseinbruch wird auf diese Weise zu einem großen Teil kompensiert. Die Einschnürung befindet sich dazu am Innern der Außenwand des Diffusorgehäuses.
  • Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
  • Die Einschnürung kann dadurch hervorgerufen werden, dass Material auf der Innenseite der Außenwand des Diffusorgehäuses angelagert ist. Eine andere Möglichkeit der Ausbildung einer solchen Einschnürung besteht darin, dass eine angepasste, die Einschnürung beinhaltende Formgebung der Außenwand des Diffusorgehäuses gewählt wird.
  • Vorteilhaft nimmt die Einschnürung im Innern des Diffusors in Strömungsrichtung des durchströmenden Mediums allmählich ab, so dass die Einschnürung die beabsichtigte Wirkungsweise des Diffusors (Geschwindigkeitsreduktion und Druckerhöhung für das durchströmende Medium) nicht oder nur unwesentlich negativ beeinflusst.
  • Vorteilhaft erfolgt die Einschnürung am Einlass des Diffusors nicht abrupt sondern kontinuierlich und zwar in einer Art und Weise, bei der in Richtung des durchströmenden Mediums eine Zunahme der Einschnürung bis zu einer maximalen Einschnürung derart erfolgt, dass die Zunahme der Einschnürung bis zur maximalen Einschnürung deutlich größer ist als die Abnahme der Einschnürung im Anschluss an die maximale Einschnürung.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Einander entsprechende Gegenstände oder Elemente sind in allen Figuren mit den gleichen Bezugszeichen versehen.
  • Darin zeigen:
  • FIG 1
    eine schematische Darstellung einer Ringraumkontur am Einlass eines Diffusors, und
    FIG 2
    eine graphische Darstellung eines theoretisch berechneten Geschwindigkeitsanstiegs im Bereich der Nabe eines Turbinenläufers.
  • Eine Gasturbine und deren Arbeitsweise ist allgemein bekannt. Demnach weist eine Gasturbine einen Verdichter für Verbrennungsluft, eine Brennkammer sowie eine Turbine zum Antrieb sowohl des Verdichters wie auch einer Arbeitsmaschine, z. B. eines Generators, auf. Dazu sind die Turbine und der Verdichter auf einer gemeinsamen, auch als Turbinenläufer bezeichneten Turbinenwelle angeordnet, mit der auch die Arbeitsmaschine verbunden ist, und die um ihre Längsachse drehbar gelagert ist. Die Brennkammer ist mit mindestens einem Brenner zur Verbrennung eines flüssigen oder gasförmigen Brennstoffs bestückt.
  • Der Verdichter wie auch die Turbine weisen jeweils eine Anzahl von mit der Turbinenwelle verbundenen, rotierbaren Laufschaufeln auf. Die Laufschaufeln sind kranzförmig an der Turbinenwelle angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst sowohl der Verdichter als auch die Turbine eine Anzahl von feststehenden Leitschaufeln, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einer Innenwand des Gehäuses von Verdichter bzw. Turbine befestigt sind. In der Turbine dienen die Laufschaufeln zum Antrieb der Turbinenwelle durch Impulsübertrag vom die Turbine durchströmenden Arbeitsmedium. Die Leitschaufeln dienen hingegen zur Strömungsführung des Arbeitsmediums zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelkränzen. Ein aufeinanderfolgendes Paar aus einem Kranz von Leitschaufeln oder einer Leitschaufelreihe und aus einem Kranz von Laufschaufeln oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bzw. als Verdichterstufe bezeichnet. Zwischen den Laufschaufeln und der Innenkontur des jeweils umgebenden Gehäuses, also des Verdichter- oder Turbinengehäuses verbleibt ein Radialspalt, dessen Größe so bemessen ist, dass beim Betrieb der Gasturbine auch bei Temperaturdehnungen der jeweiligen Materialien ein Anstreifen der Laufschaufeln am jeweiligen Innengehäuse ausgeschlossen ist. Ebenso verbleibt zwischen den feststehenden Leitschaufeln und der Turbinenwelle ein Radialspalt. Auch dieser ist so bemessen, dass ein Kontakt zwischen den Leitschaufeln und der Turbinenwelle ausgeschlossen ist.
  • FIG 1 zeigt eine Schnittdarstellung einer Gasturbine mit einem am Ausgang ihres Verdichters angeordneten Diffusor 1 mit einem Diffusorgehäuse 2. Das Diffusorgehäuse 2 weist in einem Anschlussbereich 3, also im Bereich des Übergangs vom Verdichter der Gasturbine zum Diffusor 1, eine den Innenradius des Gehäuses 2 verringernde Einschnürung 5 auf. Ein zum Anschlussbereich 3 gehöriger Abschnitt des Diffusors 1 wird als Einlass 4 des Diffusors 1 bezeichnet. Der Einlass 4 weist eine Ringraumkontur auf. Die Ausmaße des Einlasses 4 sind im Wesentlichen durch dessen Innenradius bestimmt. Der Strömungsraum des Diffusors 1 wird radial außen durch eine Außenwand des Diffusorgehäuses 2 und radial innen durch eine nabenseite Innenkontur begrenzt.
  • Die Einschnürung 5 befindet sich am Innern einer Außenwand des Gehäuses 2. Sie ergibt sich aus der Differenz einer konventionellen Ringraumkontur 6 des Diffusorgehäuses 2 und einer die Einschnürung hervorrufenden, modifizierten Ringraumkontur 7. Die Einschnürung 5 ist entweder Materialanlagerung auf der Innenseite der Außenwand oder durch eine angepasste Formgebung der Außenwand hervorgerufen.
  • Die Einschnürung 5 nimmt innerhalb des Diffusors 1 in Strömungsrichtung des durchströmenden Mediums, also der verdichteten Luft, allmählich ab. In der Darstellung in FIG 1 verläuft die Strömungsrichtung von links nach rechts. Am Einlass 4 des Diffusors 1 erfolgt - ebenfalls in Richtung des durchströmenden Mediums - eine Zunahme der Einschnürung bis zu einer maximalen Einschnürung 5 derart, dass die Zunahme der Einschnürung bis zur maximalen Einschnürung 5 deutlich größer ist als die Abnahme der Einschnürung im Anschluss an die maximale Einschnürung 5. Die Quantifizierung eines Längenverhältnisses zwischen einer Strecke während derer die Einschnürung am Einlass 4 zunächst bis zur maximalen Einschnürung 5 zunimmt und eine Strecke während derer die Einschnürung innerhalb des Diffusors 1 dann wieder abnimmt, ist wie folgt möglich: Die Länge einer Strecke entlang der Außenkontur des Diffusorgehäuses 2 parallel zur Strömungsrichtung des Mediums, während derer die Einschnürung bis zur maximalen Einschnürung 5 zunimmt, beträgt weniger als ein Fünftel der Länge einer Strecke, während derer die Einschnürung ausgehend von der maximalen Einschnürung 5 wieder abnimmt.
  • Die einseitig an der Innenseite des Diffusorgehäuses 2, insbesondere im Bereich des Diffusoreinlasses 4, vorgenommene Radienreduktion (Einschnürung 5) bewirkt eine Umverteilung des Massenstroms in Richtung auf die Nabe des Turbinenläufers. Damit steigt das Geschwindigkeitsniveau im Nabenbereich (vgl. auch FIG 2). Insgesamt kommt es zu einer wesentlich verbesserten Geschwindigkeits- und Totaldruckverteilung am Einlass 4 des Diffusors 1. Die Erhöhung des nabennahen Geschwindigkeitsniveaus bewirkt, dass die Nabengrenzschicht gegen einen wesentlich höheren Druck laufen kann, so dass der Druckrückgewinn und der Gesamtwirkungsgrad des Verdichters verbessert wird. Dargestellt ist dazu auch eine unmittelbar stromauf des Diffusors 1 gelegene Leitschaufel 8, wobei ein nicht dargestellter Radialspalt am freien Ende einer solchen Leitschaufel 8 oder sämtlichen solcher Leitschaufeln 8 der Grund für die ungünstige Druck- und Geschwindigkeitsverteilung ist, die durch das Vorsehen der Einschnürung 5 am Diffusoreinlass 4 kompensiert wird.
  • FIG 2 zeigt eine graphische Darstellung eines theoretisch berechneten Geschwindigkeitsanstiegs im Bereich der Nabe eines Turbinenläufers. Auf der Abszisse ist dabei die Zunahme der Axialgeschwindigkeit im Vergleich zur nicht modifizierten Ausführung abgetragen. Auf der Ordinate ist mit r* als Radius der Abstand von der Nabe des Turbinenläufers abgetragen. Man erkennt die deutliche Geschwindigkeitszunahme im unmittelbaren Nabenbereich, also in dem Bereich, in dem bisher aufgrund einer durch die Radialspalte am äußeren Ende der Leitschaufeln bedingten Spaltströmung ein Geschwindigkeitseinbruch beobachtet wurde.

Claims (6)

  1. Gasturbine mit einem am Ausgang ihres Verdichters angeordneten Diffusor (1) mit einem Diffusorgehäuse (2),
    wobei das Diffusorgehäuse (2) mit einer radial außen liegenden Außenwand und einer radial innen angeordneten Innenkontur eine Ringraumkontur (6) begrenzt und im Bereich des Übergangs vom Verdichter zum Diffusor (1) einen Anschlussbereich (3) aufweist,
    mit unmittelbar stromauf des Diffusors (1) in einem Kranz angeordneten Leitschaufeln (8), deren jeweiliges freie Ende jeweils unter Bildung eines Radialspalts der Innenkontur gegenüberliegt,
    dadurch gekennzeichnet, dass
    im Anschlussbereich (3) eine sich am Inneren der Außenwand befindende umlaufende Einschnürung (5) vorgesehen ist, um eine Umverteilung des Massenstroms in Richtung der Innenkontur zu bewirken und dadurch den durch die Radialspalte verursachten Geschwindigkeitseinbruch im Bereich der Innenkontur zu einem großen Teil zu kompensieren.
  2. Gasturbine nach Anspruch 1,
    wobei die Einschnürung (5) durch Materialanlagerung auf der Innenseite der Außenwand hervorgerufen ist.
  3. Gasturbine nach Anspruch 1 oder 2,
    wobei die Einschnürung (5) durch eine angepasste Formgebung der Außenwand hervorgerufen ist.
  4. Gasturbine nach einem der vorangehenden Ansprüche,
    wobei die Einschnürung (5) in Strömungsrichtung des durchströmenden Mediums allmählich abnimmt.
  5. Gasturbine nach Anspruch 4,
    wobei am Einlass (4) des Diffusors (1) in Richtung des durchströmenden Mediums eine Zunahme der Einschnürung bis zu einem maximalen Einschnürung (5) derart erfolgt, dass die Zunahme der Einschnürung bis zur maximalen Einschnürung (5) deutlich größer ist als die Abnahme der Einschnürung im Anschluss an die maximale Einschnürung (5).
  6. Gasturbine nach Anspruch 5,
    wobei die Länge einer Strecke entlang der Außenkontur des Diffusorgehäuses (2) parallel zur Strömungsrichtung des Mediums während derer die Einschnürung bis zur maximalen Einschnürung (5) zunimmt, weniger als ein Fünftel der Länge einer Strecke beträgt, während derer die Einschnürung ausgehend von der maximalen Einschnürung (5) wieder abnimmt.
EP20040004895 2004-03-02 2004-03-02 Verdichterdiffusor Expired - Lifetime EP1574667B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20040004895 EP1574667B1 (de) 2004-03-02 2004-03-02 Verdichterdiffusor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20040004895 EP1574667B1 (de) 2004-03-02 2004-03-02 Verdichterdiffusor

Publications (2)

Publication Number Publication Date
EP1574667A1 EP1574667A1 (de) 2005-09-14
EP1574667B1 true EP1574667B1 (de) 2013-07-17

Family

ID=34814245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040004895 Expired - Lifetime EP1574667B1 (de) 2004-03-02 2004-03-02 Verdichterdiffusor

Country Status (1)

Country Link
EP (1) EP1574667B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2194231A1 (de) * 2008-12-05 2010-06-09 Siemens Aktiengesellschaft Ringdiffusor für eine Axialturbomaschine
DE102012215412A1 (de) * 2012-08-30 2014-03-06 Rolls-Royce Deutschland Ltd & Co Kg Baugruppe einer Axialturbomaschine und Verfahren zur Herstellung einer solchen Baugruppe
CN115962154A (zh) * 2023-03-17 2023-04-14 潍柴动力股份有限公司 过渡段子午流道在机匣侧变窄的压气机、发动机和汽车

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1448244A (fr) * 1965-06-23 1966-08-05 Procédé et dispositif pour l'exploitation d'une installation de turbine à vapeur
US3625630A (en) * 1970-03-27 1971-12-07 Caterpillar Tractor Co Axial flow diffuser
US3879939A (en) * 1973-04-18 1975-04-29 United Aircraft Corp Combustion inlet diffuser employing boundary layer flow straightening vanes
US4180972A (en) * 1978-06-08 1980-01-01 General Motors Corporation Combustor support structure
JPS5520607U (de) * 1978-07-26 1980-02-08
GB2057672B (en) * 1979-07-04 1983-05-18 Rolls Royce Gas turbine combustion chamber
SU1657672A1 (ru) * 1986-07-28 1991-06-23 Производственное объединение "Невский завод" им.В.И.Ленина Диффузор турбомашины
DE19803161C2 (de) * 1998-01-28 2000-03-16 Alstom Energy Syst Gmbh Gasturbinenschalldämpfer mit Diffusor
JP4107765B2 (ja) * 1999-06-15 2008-06-25 三菱重工業株式会社 ガスタービン圧縮機吐出空気の抽気方法
US6442939B1 (en) * 2000-12-22 2002-09-03 Pratt & Whitney Canada Corp. Diffusion mixer
JP3912989B2 (ja) * 2001-01-25 2007-05-09 三菱重工業株式会社 ガスタービン
JP3564420B2 (ja) * 2001-04-27 2004-09-08 三菱重工業株式会社 ガスタービン

Also Published As

Publication number Publication date
EP1574667A1 (de) 2005-09-14

Similar Documents

Publication Publication Date Title
EP1706597B1 (de) Strömungsmaschine mit einem axial verschiebbaren rotor
EP2024606B1 (de) Ringförmiger strömungskanal für eine in axialrichtung von einem hauptstrom durchströmbare strömungsmaschine
EP1621733B1 (de) Strömungsstruktur für einen Übergangskanal einer Gasturbine
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
DE112015001237B4 (de) Abgasturbolader
DE602004002049T2 (de) Niederdruck-Turbine einer Turbomaschine
EP2304186B1 (de) Axialturbomaschine mit geringen spaltverlusten
DE60211061T2 (de) Axialturbine mit einer Stufe in einem Abströmkanal
EP2561187B1 (de) Abgasdiffusor einer Gasturbine
CH688867A5 (de) Axialdurchstroemte Turbine.
CH703553A2 (de) Profilierter axial-radialer Auslassdiffusor.
DE102014100085A1 (de) Innenkühlkreise in Turbinenschaufeln
EP3064706A1 (de) Leitschaufelreihe für eine axial durchströmte Strömungsmaschine
DE10016068A1 (de) Dampfturbine
EP1012445B2 (de) Schaufel für eine strömungsmaschine
EP3431708A1 (de) Umströmungsanordnung, zugehörige strömungsmaschine und verwendung
EP3495639B1 (de) Verdichtermodul für eine strömungsmaschine, das die grenzschicht in einem verdichterzwischengehäuse abbaut
EP1574667B1 (de) Verdichterdiffusor
AT512653B1 (de) Läufer und radial durchströmbare Turbine
EP3498972B1 (de) Turbinenmodul für eine strömungsmaschine
EP3327258A1 (de) Eintrittsleitrad für eine turbomaschine
WO2014012725A1 (de) Paralleldiffusor für eine fluidmaschine
WO2013120588A1 (de) Verstellbarer leitapparat für eine turbine eines abgasturboladers und turbine für einen abgasturbolader
WO2012130879A1 (de) Wirkungsgraderhöhung einer regelstufe einer gleichdruckturbine
DE3919606C2 (de) Axialkraftübertragung vom Verdichteraustrittsleitschaufelkranz auf das Triebwerksaußengehäuse eines Gasturbinentriebwerks unter Minimierung der Schaufeltorsionsbeanspruchung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060306

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 20070426

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014264

Country of ref document: DE

Effective date: 20130905

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014264

Country of ref document: DE

Effective date: 20140422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150513

Year of fee payment: 12

Ref country code: CH

Payment date: 20150602

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160310

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160329

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014264

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170302