WO2005003750A1 - ピロリン酸検出センサ、核酸の検出方法、および塩基種判別方法 - Google Patents

ピロリン酸検出センサ、核酸の検出方法、および塩基種判別方法 Download PDF

Info

Publication number
WO2005003750A1
WO2005003750A1 PCT/JP2004/009787 JP2004009787W WO2005003750A1 WO 2005003750 A1 WO2005003750 A1 WO 2005003750A1 JP 2004009787 W JP2004009787 W JP 2004009787W WO 2005003750 A1 WO2005003750 A1 WO 2005003750A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection sensor
pyrophosphate
fixed layer
sample solution
hydrogen ion
Prior art date
Application number
PCT/JP2004/009787
Other languages
English (en)
French (fr)
Inventor
Tetsuo Yukimasa
Hidenobu Yaku
Hiroaki Oka
Shin Ikeda
Takahiro Nakaminami
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005511429A priority Critical patent/JP3761569B2/ja
Priority to US10/536,014 priority patent/US20060269915A1/en
Publication of WO2005003750A1 publication Critical patent/WO2005003750A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/42Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Definitions

  • the present invention relates to a sensor for simply and highly sensitively detecting pyrophosphate in a sample, and a method for detecting nucleic acid light and a method for determining a base type using the sensor.
  • Pyrophosphate is known to be deeply involved in enzymatic reactions in cells. For example, in the course of protein synthesis, pyrophosphoric acid is generated in a reaction in which amino acids form aminoacyl-tRNA via aminoacyladenylic acid. In addition, for example, in the process of starch synthesis found in plants and the like, pyrophosphate is produced when ADP-glucose is produced by the reaction of glucose-1 monophosphate with ATP. In addition to these, pyrophosphate has been implicated in various enzyme reactions. Therefore, the technique for quantitatively detecting pyrophosphate is an important technique for analyzing the cell state or the above-mentioned enzyme reaction.
  • the first method is a method in which pyrophosphate is allowed to act on pyruvate orthophosphate dikinase in the presence of phosphoenolpyruvate and adenosine monophosphate. This reaction produces pyruvic acid, By measuring the amount of pyruvic acid, the amount of pyrophosphate can be calculated.
  • Two methods have been proposed for measuring the amount of pyruvic acid. One is a method of colorimetrically determining the decrease in NADH when pyruvate is reduced with NADH using the catalysis of lactate dehydrogenase. The other is a method for colorimetrically determining the amount of pyruvate produced by reacting pyruvate oxidase with the resulting hydrogen peroxide and directing it to a dye.
  • the second method is to cause pyrophosphate to act on glycerol-13-phosphocytosidyltransferase in the presence of cytidine niringlycerol.
  • This reaction produces glycerol triphosphate. Therefore, the amount of pyrophosphate can be calculated by measuring the amount of glycerol triphosphate produced.
  • Two methods have been proposed for measuring the amount of glycerol triphosphate.
  • One is a method for colorimetric determination of the increase in NAD (P) H when glyceryl monophosphate is oxidized by NAD (P) using the catalysis of glycerol-3-phosphate dehydrogenase. It is.
  • the other is a method in which glycerol-3-phospho-toxidase is allowed to act on the produced glycerol triphosphate, and the hydrogen peroxide produced is led to a pigment to be colorimetrically determined.
  • a third method is to react pyrophosphate with ribitol-51-phosphate cytidyltransferase in the presence of cytidine diphosphate ribitol.
  • This reaction produces D-libritol-l-phosphate, so that the amount of pyrophosphate can be measured by measuring the amount of the generated phosphate.
  • the method for measuring D-ribitol-5-phosphate is to measure the increase in NADH (or NAD PH) by the action of ribitol-5-phosphate dehydrogenase in the presence of NAD (or NAD P). A method of doing this has been proposed.
  • JP-A-2002-3696998 discloses that pyrophosphata After hydrolyzing pyrophosphoric acid to phosphoric acid with phosphatase, the phosphoric acid is reacted with inosine or xanthosine with purine nucleoside phosphorylase, and the resulting hypoxanthine is oxidized with xanthine oxidase to form xanthine, and further oxidized.
  • a method is described in which uric acid is generated, and hydrogen peroxide generated in the oxidation process by xanthine oxidase is used to develop a color former using peroxidase.
  • the elongation reaction of nucleic acid is also one of the important biological reactions involving pyrophosphate.
  • genetic polymorphism is particularly important. Just as our faces and body types vary, so do the genetic information of each person in a considerable part. Of these differences in genetic information, those whose nucleotide sequence changes occur at a frequency of 1% or more of the population are called genetic polymorphisms. It is said that these genetic polymorphisms are not only related to the shape of the individual's face, but also to the causes of various genetic diseases, physical constitution, drug responsiveness, side effects of drugs, etc. The relationship with such is being investigated rapidly.
  • SNP Single nucleotide polymorphism
  • SNP is a gene that differs from the nucleotide sequence of genetic information by only one base. It is said that there are 2-3 million SNPs in human genomic DNA, and it is easy to use as a marker for genetic polymorphisms. Applications are expected.
  • SNP-related technologies SNP typing technology for discriminating the bases of SNP sites is being developed, along with studies on the location of SNPs in the genome and the relationship between SNPs and diseases.
  • SNP typing techniques such as those using hybridization, those using restriction enzymes, those using enzymes such as ligase.
  • the simplest technique uses a primer extension reaction.
  • SNP typing is performed by determining whether or not a primer-elongation reaction occurs.
  • the present invention has been made in order to solve the above-mentioned problems, and a pyrophosphate detection sensor which detects pyrophosphate in a sample solution easily and with high sensitivity and has a simple configuration, and a nucleic acid using the same. It is an object of the present invention to provide a method for detecting and a method for determining a base species.
  • the present invention provides a pyrophosphate detection sensor for detecting pyrophosphate in a sample solution, the sample solution receiving portion receiving the sample solution, and a H sensor having H + -pyrophosphatase.
  • the spheroid hydrolyzes pyrophosphoric acid in the sample solution, and is arranged so as to change the hydrogen ion concentration in the fixed layer.
  • the fixed layer in which the concentration of hydrogen ions is changed by H + -pyrophosphatase also has a function of fixing the H + poorly permeable membrane.
  • the fixing layer fixes the H + poorly permeable membrane on the upper surface or inside thereof.
  • the H + poorly permeable membrane is a membrane vesicle
  • the fixed layer is configured to fix the H + poorly permeable membrane therein.
  • the measurement means includes a hydrogen ion-sensitive electrode in contact with the fixed layer, and a reference electrode arranged to be in contact with the sample liquid while receiving the sample liquid. Configuration. And Preferably, the measuring means is configured to measure a change in a potential difference between the hydrogen ion sensitive electrode and the reference electrode.
  • the pyrophosphate detection sensor has a configuration in which the fixed layer is made of a polymer gel or a self-assembled monolayer (hereinafter, also referred to as a SAM film).
  • the polymer gel can fix the H + poorly permeable membrane due to its retention ability.
  • the fixed layer contains a material in which an oxidation-reduction reaction occurs due to a change in hydrogen ion concentration, and the measuring means receives the polarizable electrode in contact with the fixed layer, and the sample liquid. And a reference electrode arranged to be in contact with the sample liquid in a state. And it is preferable that the measuring means is configured to measure a change in current between the polarizable electrode and the reference electrode.
  • the fixed layer is formed of a polymer gel or a self-assembled monolayer containing a mediator in which an oxidation-reduction reaction is caused by a change in hydrogen ion concentration, and the H + In this configuration, the permeable membrane is fixed.
  • the fixed layer is made of an electropolymerized material in which an oxidation-reduction reaction occurs due to a change in hydrogen ion concentration.
  • the present invention also provides a method for detecting a nucleic acid having a specific base sequence using the pyrophosphate detection sensor, wherein the primer comprises a sample and a base sequence including a complementary binding region that binds to the nucleic acid complementarily. (A) preparing a sample solution containing a nucleotide; and (b) placing the sample solution under conditions under which the extension reaction of the primer occurs, and generating pyrophosphate when the extension reaction occurs.
  • the present invention also provides a method for determining a base type in a base sequence of a nucleic acid using the pyrophosphate detection sensor, wherein the primer has a base sequence including a nucleic acid and a complementary binding region that binds to the nucleic acid complementarily.
  • step (C) bringing the sample solution into a state in which the sample solution is received by the sample solution receiving portion of the pyrophosphate detection sensor;
  • a step (d) of measuring a chemical change a step (e) of detecting the elongation reaction based on the measurement result of the step (d), and a salt of the nucleic acid based on the detection result of the step (e).
  • FIG. 1 is a diagram schematically showing H + -pyrophosphatase in a state of being internalized in the vacuolar membrane of a plant.
  • FIG. 2 is a cross-sectional view schematically illustrating a configuration of the pyrophosphate detection sensor according to the first embodiment.
  • FIG. 3 is a cross-sectional view schematically illustrating a configuration of a pyrophosphate detection sensor according to the second embodiment.
  • FIG. 4 is a cross-sectional view schematically illustrating a configuration of a pyrophosphate detection sensor according to the third embodiment.
  • FIG. 5 is a cross-sectional view schematically illustrating a configuration of a pyrophosphate detection sensor according to the fourth embodiment.
  • FIG. 6 schematically shows a configuration of a pyrophosphate detection sensor according to the fifth embodiment.
  • FIG. 7 is a cross-sectional view schematically illustrating a configuration example 1 of the pyrophosphate detection sensor.
  • FIG. 8 is a cross-sectional view schematically illustrating a configuration example 2 of the pyrophosphate detection sensor.
  • FIG. 9 is a cross-sectional view schematically illustrating a configuration example 3 of the pyrophosphate detection sensor.
  • FIG. 10 is a new front view schematically showing Configuration Example 4 of the pyrophosphate detection sensor.
  • FIG. 11 is a diagram showing a reaction system in the case where the SNP sites in the DNA to be detected coincide with those in the DNA probe.
  • FIG. 12 is a diagram showing a reaction system when the SNP sites do not match between the DNA to be detected and the DNA probe.
  • FIG. 13A shows two types of primers C and D that can completely hybridize to a specific base sequence of ⁇ D ⁇ ⁇
  • Fig. 13B shows the composition of PCR reactions G and H.
  • FIG. 13C is a flowchart showing the reaction temperature conditions at which the PCR reaction was performed.
  • Figure 14A shows a diagram showing wild-type ⁇ DNA, mutant ⁇ DNA and typing primer
  • Figure 14B shows a table showing the composition of PCR reaction solutions I and J
  • Figure 14C shows a PCR reaction.
  • 5 is a flowchart showing the reaction temperature conditions at which the reaction was performed.
  • H + -pyrophosphatase is used for qualitatively or quantitatively detecting pyrophosphate.
  • Figure 1 shows H + -pyrophospha inside the plant vacuolar membrane.
  • FIG. 2 is a diagram schematically showing a enzyme.
  • H + -pyrophosphatase 11 is a membrane protein that is usually present in the vacuolar membrane 13 of a plant, etc.
  • the vacuolar membrane 13 is impermeable or difficult to pass through from the outside (front surface 13a side) to the inside of the vacuolar membrane 13 (back surface). It has the property of transporting hydrogen ions toward the 13b side). Therefore, the hydrogen ion concentration inside the vacuolar membrane 13 increases and the hydrogen ion concentration outside the vacuolar membrane 13 decreases due to the enzymatic reaction of H + -pyrophosphorase.
  • the pyrophosphate is detected by utilizing the above-mentioned properties of H + -pyrophosphatase and the form of being a membrane protein. That is, by separating the regions with a membrane holding H + -pyrophosphatase and measuring the change in at least one of the hydrogen ion concentrations, the H + -pyrophosphatase contributes to the hydrolysis of The amount of acid can be detected.
  • the pyrophosphate detection sensor according to each embodiment detects pyrophosphate by detecting a change in the concentration of hydrogen ions directly involved in the action of H + -pyrophosphatase. Therefore, simple and highly sensitive detection is possible.
  • H + -pyrophosphoase is a membrane protein. In some cases, that form can be used for region separation. This contributes to simplification of the configuration of the pyrophosphate detection sensor.
  • the sample solution containing the phosphoric acid is contained in an H + poorly permeable membrane such as a vacuolar membrane 13 isolated from a plant cell or the like. In contact with H + -pyrophosphatase in the condition.
  • FIG. 2 is a cross-sectional view schematically illustrating a configuration of the pyrophosphate detection sensor according to the present embodiment.
  • the pyrophosphoric acid detection sensor 31 has an insulating substrate 22, a solution holding part 32 formed by a solution holding member 25 fixed on the insulating substrate 22, and a measuring means.
  • the solution holding section 32 is a fixed layer 51 formed on the substrate 22, a H + impervious film 21 fixed to the upper surface of the fixed layer 51, and an area where these are not formed. And a sample liquid receiving part 33.
  • the measuring means includes a hydrogen ion-sensitive electrode 23 disposed immediately above the substrate 22 so as to be in contact with the fixed layer 51, and a sample liquid 26 with the sample liquid receiving portion 33 filled with the sample liquid 26. And a reference electrode 27 arranged in contact with the reference electrode 27.
  • the H + poorly permeable membrane 21 has H + -pyrophosphatase 11.
  • the H + poorly permeable membrane 21 is a membrane that is hardly permeable to hydrogen ions except for the H + -pyrophosphatase 11 portion, for example, a natural vacuolar membrane or a human lipid bilayer membrane is used. it can.
  • the active site that hydrolyzes the pyrophosphate of H + -port phosphatase 11 is exposed on the sample liquid receiving part 33 side.
  • the fixed layer 51 is formed of a material that can sufficiently transmit hydrogen ions and retain moisture.
  • the fixing layer 51 is formed of a material that can fix the H + poorly permeable film 21 on the upper surface thereof.
  • the fixed layer 51 is a gel that fixes the H + poorly permeable membrane 21 on the upper surface by using its retention ability, or a SAM film that fixes the H + poorly permeable membrane 21 to the upper surface by using a crosslinking reaction. Can be formed.
  • a polymer gel such as agarose gel, a material containing a fullerene-like compound, or the like can be used.
  • the hydrogen ion sensitive electrode 23 can function as a normal pH sensor. Glass electrodes, ISFET electrodes (ionsensitive FETs, ion-sensitive FETs using an ion-sensitive membrane for the gate), LAPS (right-adjustable potential sensor), etc. can be used. .
  • a standard hydrogen electrode, a silver Z silver chloride electrode, a saturated calomel electrode, or the like can be used as the reference electrode 27 .
  • the insulating substrate 22 and the solution holding member 25 need only be formed of a material that does not affect the hydrolysis reaction of pyrophosphoric acid, and may be formed of glass, silicon, plastic, or the like.
  • a method for detecting pyrophosphoric acid contained in the sample solution 26 using the pyrophosphoric acid detection sensor 31 and the principle thereof will be described.
  • the sample solution 26 is filled in the sample solution receiving portion 33.
  • pyrophosphoric acid is contained in the sample solution 26, pyrophosphoric acid is hydrolyzed to phosphoric acid by the activity of H + -pyrophosphatase 11, and the hydrogen ion concentration in the fixed layer 51 increases accordingly. .
  • the concentration of pyrophosphate in the measurement solution 26 can be detected.
  • the change in the hydrogen ion concentration in the fixed layer 51 is measured by measuring the change in the potential difference between the hydrogen ion-sensitive electrode 23 and the reference electrode 27, and the measurement is performed based on the measurement result. Detect the concentration of pyrophosphate in liquid 26.
  • the H + poorly permeable membrane 21 may contain H + -pyrophosphatase in which an active site for hydrolyzing pyrophosphate is exposed on the fixed layer 51 side (inside).
  • the concentration of pyrophosphate in the fixed layer 51 is determined by the sample solution 2 It is preferable that the concentration of pyrophosphoric acid is lower than that of 6, and it is most preferable that the fixed layer 51 does not contain pyrophosphoric acid.
  • the transport of hydrogen ions from the fixed layer 51 to the sample solution 26 is reduced or stopped, and the The transport of hydrogen ions to the fixed layer 51 becomes dominant, and the change in the hydrogen ion concentration in the fixed layer 51 is almost limited to that caused by pyrophosphoric acid contained in the sample solution 26. Therefore, the amount of pyrophosphate contained in the sample solution 26 can be accurately estimated.
  • the pyrophosphoric acid detection sensor 31 does not have a configuration in which the entire interface between the fixed layer 51 and the sample liquid receiving portion 33 is covered with the H + poorly permeable membrane 21, so that the H + poorly permeable membrane 2 Hydrogen ions can be transferred between the sample solution 26 and the fixed layer 51 from the boundary portion not covered with 1, and hydrogen ions diffuse from this portion to maintain an equilibrium state. Since the movement of hydrogen ions is slower than the movement of hydrogen ions due to the activity of H + -pyrophosphatase 11, the change in the concentration of hydrogen ions measured by the hydrogen ion-sensitive electrode 23 is almost equal to that of H + -pyrophosphatase. It can be attributed to the activity of Ze11.
  • FIG. 3 is a cross-sectional view schematically illustrating a configuration of the pyrophosphate detection sensor according to the present embodiment.
  • the pyrophosphate detection sensor 34 of the present embodiment is different from the pyrophosphate detection sensor 31 of the first embodiment in that the fixed layer 51 is formed in the entire area immediately above the insulating substrate 22, and the fixed layer 51 The only difference is that the H + impermeable membrane 21 is disposed in the entire boundary region between the sample and the sample solution receiving section 33.
  • Other configurations are the same as those of the pyrophosphoric acid detection sensor 31 of the first embodiment, and a description thereof will be omitted.
  • FIG. 4 is a cross-sectional view schematically illustrating a configuration of the pyrophosphate detection sensor according to the present embodiment.
  • the difference from the first embodiment is that the H + poorly permeable membrane is formed by the membrane vesicles 71 and the position where the H + poorly permeable membrane, which is the membrane vesicle 71, is fixed. is there.
  • the first embodiment only different points from the first embodiment will be described.
  • the membrane vesicle 71 has H + -pyrophosphatase 11 and is fixed in the fixed layer 51.
  • the immobilization layer 51 is made of a material capable of immobilizing the membrane vesicles 71 therein, for example, by the ability to retain a gel.
  • the membrane vesicle 71 one prepared from a vacuole isolated from a cell can be used.
  • the membrane vesicles 71 may contain H + -pyrophosphatase isolated and purified in membranes that are impermeable or difficult to pass hydrogen ions, such as artificially formed lipid bilayer membranes and LB membranes. The one formed by restructuring may be used.
  • the membrane of the membrane vesicle 71 may contain a protein other than H + -pyrophosphatase. However, it is preferable that these proteins do not react with pyrophosphate or have low reactivity. That is, when pyrophosphate reacts with proteins other than H + -pyrophosphatase in the membrane of membrane vesicles 71, the amount of piaphophosphate that reacts with H + -pyrophosphatase decreases, and This is because the transport amount of H + decreases accordingly.
  • the substance that reacts with the protein is a sample. It is preferable that the solution 26 is hardly contained.
  • the membrane of the membrane vesicle 71 contains ATPase, which is a protein that hardly reacts with pyrophosphate and transports hydrogen by reacting with ATP, It is preferable that the sample solution 26 contains almost no ATP.
  • the sample solution 26 is filled in the sample solution receiving portion 33.
  • pyrophosphate is present in the sample solution 26.
  • pyrophosphate is diffused into the fixed layer 51.
  • the pyrophosphoric acid diffused into the fixed layer 51 becomes phosphorous due to the activity of H + -pyrophosphophosphate 11. It is hydrolyzed to an acid, and accordingly the hydrogen concentration in the internal solution 24 of the membrane vesicle 71 increases, and around the H + -pyrophosphatase 11, the hydrogen ion concentration increases accordingly. Decrease.
  • FIG. 5 is a cross-sectional view schematically illustrating a configuration of the pyrophosphate detection sensor of the present embodiment.
  • the pyrophosphate detection sensor 36 differs from the second embodiment only in the configuration of the fixed layer and the configuration of the measurement electrode.
  • the measurement electrode is composed of a polarizable electrode 81 formed on an insulating substrate 22.
  • the polarizable electrode 81 can be composed of an electrode that can be used for normal electrochemical measurement of gold, platinum, carbon, or the like.
  • an electrode having a very simple configuration can be used. This contributes to simplifying the overall configuration of the pyrophosphate detection sensor.
  • the reference electrode 27 in addition to a standard hydrogen electrode, a silver Z silver chloride electrode, a saturated calomel electrode, and the like, electrodes such as gold, platinum, and carbon can be used. This can contribute to simplification of the overall configuration of the pyrophosphate detection sensor.
  • a fixed layer 83 including a media 82 is formed on the surface of the polarizing electrode 81.
  • the fixed layer 83 for example, a SAM film (se1f—assembly1edmonolayer) using linear carbon having a thiol group at one end can be used.
  • the fixing layer 83 is not limited to this as long as it is formed of a material capable of fixing the H + poorly permeable membrane 21, and a gel for fixing the H + poorly permeable membrane 21 by its holding ability. It may be formed by.
  • the media an oxidized form of a hydrogen ion-sensitive substance can be used. On the fixed layer 83 formed in this way, Immobilize H + poorly permeable membrane 21 containing phosphoric acid.
  • the H + impermeable membrane 21 can be fixed on the upper surface of the fixed layer 83 by a thiol group crosslinking reaction.
  • the H + poorly permeable membrane 21 is a lipid membrane
  • the fixed layer 83 and the hydrophobic portion of the lipid membrane face each other, and the hydrophilic portion of the lipid membrane forms the membrane surface.
  • H + -pyrophosphatase 11 is fixed inside the fixed layer 83 and the membrane formed by the hydrophobic part of the lipid membrane. At this time, the pyrophosphate of H + -pyrophosphatase 11 is hydrolyzed. The active site to be exposed is exposed outside the H + poorly permeable membrane 21.
  • a method for detecting pyrophosphoric acid contained in the sample solution 26 using the pyrophosphoric acid detection sensor 36 and its principle will be described.
  • the sample solution 26 is filled in the sample solution receiving portion 33.
  • pyrophosphate is present in the sample solution 26
  • pyrophosphate is hydrolyzed to phosphoric acid by the activity of H + -pyrophosphatase 11, and the hydrogen ion concentration in the fixed layer 83 increases accordingly.
  • if there is an oxidized form of mediae 82, which is sensitive to hydrogen ions a reduced form of mediae 82 is generated by the redox reaction.
  • the current according to the concentration of the reducing substance of the media 82 can be measured. Therefore, it is possible to detect the concentration of pyrophosphate in the sample solution 26.
  • FIG. 6 is a cross-sectional view schematically illustrating a configuration of the pyrophosphate detection sensor according to the present embodiment.
  • the pyrophosphoric acid detection sensor 37 of the present embodiment differs from the fourth embodiment in that the H + poorly permeable membrane is formed by the membrane vesicles 71 and the H + The position where the poorly permeable membrane is fixed and the configuration of the fixed layer.
  • the fourth embodiment differs from the fourth embodiment in that the H + poorly permeable membrane is formed by the membrane vesicles 71 and the H + The position where the poorly permeable membrane is fixed and the configuration of the fixed layer.
  • Membrane vesicle 7 1 has H + —pyrophosphatase 11 1 and is in fixed bed 9 1 It is fixed.
  • the fixed layer 91 is made of an electrolytic polymer film.
  • the method of fixing the membrane vesicles by the electrolytic polymerization membrane can be formed, for example, by mixing a monomer before polymerization with the membrane vesicles 71 and applying a predetermined voltage.
  • Electrochemically active materials can be selected as the electropolymerized material for forming the electropolymerized film.
  • poly (aniline), poly (0-phenylenediamine), poly (N-methylaniline), poly (N-methylaniline) (Pyrrole), poly (N-methylpyrrolyl), poly (thiophene) and the like can be used.
  • the sample solution 26 is filled in the sample solution receiving portion 33.
  • pyrophosphoric acid is present in the sample solution 26
  • pyrophosphoric acid is diffused into the fixed layer 91, and pyrophosphoric acid is hydrolyzed to phosphoric acid by the activity of H + -pyrophosphatase 11.
  • the hydrogen ion concentration in the internal solution 24 increases with the hydrolysis of pyrophosphate, and the hydrogen ion concentration decreases around H + _ pyrophosphatase 11.
  • This change in the hydrogen ion concentration causes an oxidation-reduction reaction of the electrolytically polymerized film, which is the fixed layer 91, and the electron transfer is measured by the polarizable electrode 81, whereby the concentration of pyrophosphate in the sample solution 26 is reduced. Can be detected.
  • the H + -impermeable membrane containing H + -pyrophosphatase and the measurement electrode hydroogen ion sensitive electrode 23
  • the hydrogen ions or the oxidant of the hydrogen ion-sensitive media can be present in ionic form.
  • an aqueous solution of bulk can be used.
  • a bulk aqueous solution to exist between the H + poorly permeable membrane and the measurement electrode, for example, as shown in Japanese Patent Application Laid-Open No. It is necessary to make a sensor after the process.
  • the senor can be stored only in an aqueous solution.
  • a pyrophosphate detection sensor when used as a DNA detection sensor, its handling method and storage method are extremely special, and considering the complexity of the manufacturing method, it is suitable for use in, for example, disposable clinical tests. Absent.
  • the field where the above-mentioned hydrogen ion or the oxidant of the hydrogen ion-sensitive medium can be present in the form of an ion consists of a fixed layer.
  • a fixed layer can be formed of, for example, a SAM film or an electropolymerized film, and a sensor can be manufactured by a relatively simple method.
  • a sensor using a polymer gel as a fixed layer can be stored while retaining water molecules, handling and storage are extremely simple. Even when the fixed layer is formed of other materials, handling and storage are very simple compared to the case where the above-mentioned field is constituted by a bulk aqueous solution. Therefore, a device suitable for use in, for example, a disposable clinical test can be configured. Furthermore, by making the thickness of the fixed layer as thin as possible, it is possible to increase the rate of change of the hydrogen ion concentration and improve the sensitivity.
  • FIG. 7 is a cross-sectional view schematically illustrating a configuration example of a pyrophosphate detection sensor.
  • the first embodiment is different from the first embodiment in that the periphery of the hydrogen ion-sensitive electrode 23 is filled with the internal liquid 24, and that the H + poorly permeable membrane 21 covers the hydrogen ion-sensitive electrode 23. The only difference is that it is fixed on 22.
  • the points different from the first embodiment will be described.
  • the method of fixing the H + poorly permeable membrane 21 may be any method as long as the H + poorly permeable membrane 21 covers the entire surface of the hydrogen ion-sensitive electrode 23, for example, ribosome.
  • a method of transferring to a SAM film using LB or a LB method can be used.
  • Solution holding part 3 2 separated by H + poorly permeable membrane 2 1 The region containing the hydrogen ion-sensitive electrode 23 in the region inside is filled with the internal liquid 24.
  • a method for detecting pyrophosphoric acid contained in the sample solution 26 using the pyrophosphoric acid detection sensor 38 and the principle thereof will be described.
  • the sample solution 26 is filled in the sample solution receiving portion 33.
  • pyrophosphate is contained in sample solution 26
  • pyrophosphoric acid is hydrolyzed to phosphoric acid by the activity of H + -pyrophosphophosphate 11 and the hydrogen ion concentration in internal solution 24 increases accordingly. I do.
  • the concentration of pyrophosphate in the measurement solution 26 can be detected.
  • the internal solution 24 is not particularly limited. However, in the H + poorly permeable membrane 21, the active site of the phosphoric acid is exposed to the region on the side of the hydrogen ion sensitive electrode 23 (inside). In the case where the internal solution 24 is contained, the concentration of pyrophosphate in the internal solution 24 is preferably lower than the concentration of pyrophosphate in the sample solution 26, and it is most preferable that the internal solution 24 does not contain pyrophosphate. .
  • the transport of hydrogen ions from the internal solution 24 to the sample solution 26 is reduced or stopped, and the transport of hydrogen ions from the sample solution 26 to the internal solution 24 becomes dominant, and the internal solution 24
  • the change in the concentration of hydrogen ions in the sample solution 26 is almost limited to that caused by pyrophosphate contained in the sample solution 26. Therefore, the amount of pyrophosphate contained in the sample solution 26 can be accurately estimated.
  • FIG. 8 is a cross-sectional view schematically illustrating a configuration example of a pyrophosphate detection sensor. Only the method of fixing the H + poorly permeable membrane 21 is different from the above configuration example 1. Hereinafter, only the differences from the configuration example 1 will be described.
  • the H + poorly permeable membrane 21 of the pyrophosphate detection sensor 39 of this configuration example is fixed on the insulating substrate 22 via the linear carbon compound 31.
  • FIG. 9 is a cross-sectional view schematically showing one configuration example of a pyrophosphate detection sensor.
  • Both ends of the H + poorly permeable membrane 21 of the pyrophosphate detection sensor 40 of this configuration example are fixed to the solution holding member 25.
  • FIG. 10 is a cross-sectional view schematically illustrating a configuration example of a pyrophosphate detection sensor.
  • the H + poorly permeable membrane 21 is fixed to a through hole formed in the insulating substrate 22.
  • a hydrogen ion-sensitive electrode 23 is provided inside the H + impermeable membrane 21, and a reference electrode 27 is provided outside.
  • the hydrogen ion sensitive electrode 23 and the reference electrode 27 may be formed on the insulating substrate 22.
  • the internal solution 24 and the sample solution 26 can be in contact with the hydrogen ion sensitive electrode 23 and the reference electrode 27, respectively, and can be in contact with the H + poorly permeable membrane 21.
  • the direction of H + -pyrophosphatase is the same as in the first embodiment.
  • the method of fixing the H + hardly permeable membrane 21 to the through-hole can be performed by, for example, a known method applying the Langmuir-B 1 odgette method (Yoshioka Shoten, Yasunobu Okada, “New Patch” Clamping Experiment Technique ”P. 214). Further, the method of forming a through hole and a hole on the insulating substrate 22 and the method of forming an electrode on the insulating substrate 22 can be performed by, for example, etching a silicon substrate. 4-1 122 5).
  • the method for detecting pyrophosphoric acid in the sample solution 26 and the principle thereof are the same as those in the configuration example 1, and the description is omitted.
  • the sixth embodiment is a method for detecting DNA having a specific sequence using the pyrophosphate sensor according to the present invention.
  • a DNA probe having a sequence complementary to the sequence of the target DNA, a DNA polymerase The sample is provided to a reaction system containing
  • the “reaction system” refers to a series of nucleic acid extension reactions described below and places where such reactions are performed.
  • the “reaction system” contains the components necessary to carry out a series of reactions.
  • the “reaction system” is usually a mixture of the above components in a suitable solvent (eg, Tris-HC1 buffer, any buffer commonly used in a nucleic acid extension reaction or a nucleic acid amplification reaction (in a commercially available kit). ) May be provided in the form of a solution dissolved therein.
  • a suitable solvent eg, Tris-HC1 buffer, any buffer commonly used in a nucleic acid extension reaction or a nucleic acid amplification reaction (in a commercially available kit).
  • the DNA polymerase can be any DNA polymerase that is commercially available or can be prepared by one of skill in the art. Preferably, Taq polymerase may be used, but is not limited thereto.
  • the deoxynucleotide can be each deoxynucleoside triphosphate (also referred to as dNTP: including deoxycytosine triphosphate, deoxyguanine triphosphate, deoxyadenine triphosphate, and deoxythymidine triphosphate), and is usually It is a substance that can be used as a direct precursor of DNA synthesis. This causes the DNA probe to elongate, where pyrophosphate is generated along with the elongation reaction of the DNA probe. This reaction will be described using Chemical Reaction Formula 1.
  • the DNA probe hybridizes with the target DNA, it is elongated by the DNA polymerase present in the reaction system by taking in one doxynucleotide (dNTP in the chemical reaction formula 1) in the reaction system.
  • dNTP doxynucleotide
  • One mouth phosphoric acid is produced.
  • n + 1 indicates that the n-based DNA probe has been extended to the n + 1 base.
  • the pyrophosphoric acid thus generated is detected using the pyrophosphoric acid detection sensor of each of the above embodiments. Thus, DNA having a specific sequence in a sample solution can be detected.
  • the step (f) of detecting the DNA the DNA having the specific sequence can be detected.
  • the DNA probe used in the present embodiment is designed so as to have a sequence complementary to the DNA sequence to be detected.
  • This DNA probe when hybridized with the sequence of the DNA to be detected, serves as a primer for extension of the DNA probe.
  • the length of the DNA probe is long enough to serve as a primer for the extension reaction.
  • it can be at least 10 bases, at least 12 bases, at least 15 bases, at least 20 bases, at least 30 bases in length.
  • the length of the base is preferably from 20 to 25 in consideration of sufficient hybridization and primer extension and ease of preparation.
  • the DNA probe used in the method of the present invention can be any length as long as it specifically hybridizes to the DNA to be detected and acts as a primer for elongation of the DNA probe. .
  • the DNA probe specifically hybridizes to the target DNA in the sample solution and acts as a primer, if the sequence to be detected is known, it is completely complementary to this sequence. That is, it can be designed to have a sequence (A-T or C-G pair) that exactly corresponds to the base in the sequence. If there is no DNA having the specific sequence of interest in the sample solution, hybridization with the DNA probe naturally occurs. I won't. Therefore, by using the present reaction system, it is possible to detect the presence of a sequence that is completely complementary to the DNA probe, regardless of whether the sequence to be detected is known or unknown.
  • the hybridization and extension reaction can be carried out under any conditions under which the hybridization of DNA and the extension reaction of DNA with primers and deoxynucleotides under the action of DNA polymerase are performed.
  • Hybridization between a DNA probe and a target DNA is described, for example, in Sambrook et al. (1989) Molecular C 1 oning: AL aboratory Manual, 2nd edition, volumes 1-3, Cold S It is performed by a method described in an experiment book such as spring Harbor Laboratory, and this method is known to those skilled in the art.
  • the amount of the DNA probe, polymerase, and deoxynucleotide that can be contained in the reaction system can be appropriately determined by those skilled in the art.
  • one pyrophosphate is generated for each extension of a deoxynucleotide, so that the length of both DNA and DNA probes having the specific sequence of interest (base If) is known, it is possible to quantitatively detect DNA having the specific sequence of interest.
  • PCR amplification is well known in the art (PCR Technology: Princiles and Applications for DNA Amplification, edited by HA Erlich, Freeman Press, New York, NY (1992); PCRP rotocols: AG uideto M ethodsand Applications, Innis, Gelfland, Snisky, and Wite, A cadem ic Press, San Diego, CA (1990); Mattila et al. (1991) Nucleic Acids Res.
  • the seventh embodiment of the present invention is a method for determining the base type of DNA in a measurement system using the pyrophosphate detection sensor according to the present invention, more specifically, a method for rapidly typing SNP.
  • FIGS. 11 and 12 show the reaction system when the SNP site was matched between the DNA to be detected and the DNA probe
  • Fig. 12 shows the SNP between the DNA to be detected and the DNA probe. The reaction system when the sites do not match is shown.
  • 1 is the DNA probe
  • 2 is the DNA having the specific sequence of interest
  • 3a is the matched SNP site
  • 3b is the unmatched SNP site
  • 4 is the DNA polymerase
  • 5 is the DNA polymerase.
  • d Indicates NTP.
  • a DNA probe 1, a DNA polymerase 4, and a deoxynucleotide 5 having a sequence complementary to the sequence of the target DNA and having an SNP site at the 3 ′ end are prepared.
  • the sample is provided to the reaction system containing the sample.
  • the DNA probe 1 is extended, and pyrophosphate is generated here along with the extension reaction of the DNA probe 1.
  • the DNA probe 1 used in the present embodiment can be designed so that it is complementary to the target sequence and the 3 ′ end is an SNP site.
  • DNA probe 1 can be designed in the same manner as in the sixth embodiment described above, except that the 3 ′ end is an SNP site.
  • DNA polymerase 4 and deoxynucleotide 5 used in the second embodiment may be the same as those in the sixth embodiment described above.
  • the conditions for hybridization and extension in this embodiment can also be the same as those in the above-described sixth embodiment.
  • the DNA probe in the present embodiment may be any probe as long as the base species at the SNP site can be typed, and is not limited to the probe designed as described above.
  • the DNA probe 1 hybridizes to the target DNA 2, and Serves as a primer for extension.
  • the DNA polymerase 1 present in the reaction system causes one DNA nucleotide 5 to extend to the DNA probe 1 to generate one pyrophosphate.
  • the DNA probe 1 Can be hybridized with DNA probe 1, but does not act as a primer for elongation of probe 1 because the 3 'end of DNA probe 1 becomes mismatched. In this case, as shown in Fig. 12, even if DNA polymerase 4 and the necessary dexnucleotide 5 are present in the reaction system, the reaction of Chemical Reaction Formula 1 does not occur, and pyrophosphate Is not generated.
  • DNA 2 and DNA probe having the specific sequence of interest in the sample solution are detected. 1 can be determined to be a perfect match, including the SNP position. If at most four types of probes 1 at the SNP site are used, it is possible to type the SNP of DNA 2 having a specific sequence in the sample for four types of bases.
  • a method for typing SNP by detecting pyrophosphate in a sample solution after a DNA extension reaction using the pyrophosphate detection sensor of each of the above-described embodiments, more specifically, any of the above-described pyrophosphate A step (c) of filling the sample liquid containing pyrophosphoric acid into the sample liquid receiving portion 33 of the acid detection sensor (c), and electrochemically measuring a change in the hydrogen ion concentration of the fixed layer by the measuring means of the pyrophosphate detection sensor ( d), a step (e) of detecting the elongation reaction of the DNA based on the measurement result of the step (d), and discriminating the base type of the SNP site in the base sequence of the DNA based on the detection result of the step (e) (F).
  • sample solution used in the present invention refers to any sample solution that can contain pyrophosphate.
  • the sample solution may contain DNA from which pyrophosphate is generated by an extension reaction.
  • the “sample solution” can be derived from any analyte that can contain the target DNA.
  • an analyte can be a cell, tissue, organ, or blood affected by the disease if the DNA of interest can be associated with the disease.
  • the method of the present invention can be used in any field without being limited to clinical use, and thus, such an analyte is one in which the DNA of interest is expressed or its presence is confirmed.
  • DNA can be extracted from such analytes using conventional methods such as phenol extraction and alcohol precipitation.
  • the purity of the DNA can affect the efficiency of the reaction, and procedures for purifying the DNA are also known to those skilled in the art.
  • a pyrophosphate detection sensor capable of performing high-sensitivity, high-speed, and quantitative measurement of pyrophosphate, and a method of detecting diffusion and a method of determining a base type using the same.
  • the presence or absence of a target nucleic acid can be quantitatively measured without labeling the target DNA in a sample by measuring pyrrolic acid generated during the elongation reaction of DNA. Can be done.
  • the typing of the target SNP can be measured with high sensitivity and high speed.
  • the pyrophosphate detection sensor according to the fourth embodiment is manufactured.
  • the gold electrode (polarizable electrode 81) was immersed in an ImM n-octanethiol / ethanol solution and allowed to stand at room temperature for 4 hours, so that the octanethiol SAM film (fixed layer 83 ) Formed.
  • the octanethiol-modified electrode was immersed in a 10 mM aqueous solution of thionine and allowed to stand at room temperature for 1 hour to immobilize thionine (media 82) between the SAM membranes.
  • H + -pore phosphatase was immobilized on the surface of the fixed layer 83, and H + —A pyrophosphatase electrode was constructed.
  • the sodium pyrophosphate solution was contacted with ⁇ + -pyrophosphatase so that the final concentrations of sodium pyrophosphate were 20 ⁇ , 40 ⁇ , 60 ⁇ , 8 ⁇ and 100 ⁇ ⁇ ⁇ ⁇ ⁇ , respectively.
  • the hydrolysis reaction of pyrophosphoric acid by ⁇ + —pi-phosphatase was started.
  • the concentration of sodium pyrophosphate in the sample solution As the reference electrode 27, the concentration of sodium pyrophosphate in the sample solution The current value of the gold electrode when a potential of 20 OmV was applied using a silver / silver chloride electrode was almost linear. From this, it was found that the amount of pyrophosphate can be measured by the present method.
  • Example 2 the pyrophosphate detection sensor according to the first embodiment is manufactured.
  • the ISFET electrode (modified ISFET electrode) on which the fixed layer 51 was formed was immersed in a 5 mg / ml H + -pyrophosphatase solution, allowed to stand at 4 ° C for 24 hours, and the H + -pyrophosphatase was Ize was fixed to the gate electrode of the ISFET.
  • the final concentration of sodium pyrophosphate should be 20 ⁇ , 40 ⁇ , 60 ⁇ , 80 ⁇ , and 100 ⁇ for this H + -pyrophosphoase-immobilized ISFET electrode, respectively.
  • a sodium pyrophosphate solution was added to the mixture, and the hydrolysis reaction of pyrophosphate with ⁇ + monopyrophosphatase was started.
  • a pyrophosphate detection sensor according to the fifth embodiment is manufactured.
  • vacuolar membrane H + -pyrophosphatase derived from the seed of Capocia was purified.
  • the final concentration of sodium pyrophosphate was 2 ⁇ m, 40 ⁇ m, 60 ⁇ m, and 80 ⁇ m, respectively, with respect to the thus obtained H + -pyrophosphonase-immobilized polypyrrole membrane-modified electrode.
  • Sodium pyrophosphate solution was added so as to be ⁇ and 100 ⁇ , respectively, and the hydrolysis reaction of pyrophosphate with ⁇ + -pyrophosphoase was started.
  • the concentration of sodium pyrophosphate and the current indicated by the ⁇ + -pyrophosphatase-immobilized polypyrrole membrane-modified electrode when a silver / silver chloride electrode was used as the reference electrode 27 and a potential of 30 O mV was applied were almost the same.
  • the result was a linear relationship. This indicates that the amount of pyrophosphate can be measured by this method.
  • X DNA in the sample (the entire base sequence of ⁇ DNA is GenBank data overnight accession No. V 0 6 36, J 0 2 4 5 9, Ml 7 2 3 3, see X 0 9 0 6) Ivy
  • a sample solution 26A in which ⁇ DN ⁇ (manufactured by Takara Shuzo Co., Ltd.) was dissolved in distilled water at a concentration of 10 ng / ⁇ L, and a sample solution 26B consisting of distilled water alone were prepared.
  • two types of primer C (SEQ ID NO: 1) and primer D (SEQ ID NO: 2) that can completely hybridize to a specific base sequence of ⁇ DNA were each distilled water.
  • Primer solutions ⁇ and F (20 ⁇ for both) were prepared.
  • each of the PCR reaction solutions G and H was prepared using the H + -pyrophosphatase electrode described in Example 1 above and a silver / silver chloride electrode as a reference electrode in the same manner as in Example 1;
  • a current of 0 OmV was applied and the current was measured, 1 (4)
  • the current value of the reaction solution 11 was clearly large. In other words, it can be seen that the primer-elongation reaction progressed in the 01 ⁇ reaction solution 0. Therefore, it was found that the target nucleic acid can be detected by this method.
  • ⁇ DNA (manufactured by Takara Shuzo Co., Ltd.) (SEQ ID NO: 3), ⁇ DNA (SEQ ID NO: 4) was prepared.
  • Mutant ⁇ DNA is defined as GC base pairs (regions in the figure) existing in the double-stranded DNA sequence of ⁇ DNA (hereafter, normal ⁇ D ⁇ ⁇ ⁇ is referred to as wild-type ⁇ D ⁇ )). R! was artificially replaced with an AT base pair (region R 2 in the figure) by a method well known to those skilled in the art.
  • a taipin double primer (SEQ ID NO: 5) shown in FIG. 14A was prepared.
  • a typing primer solution was prepared by dissolving the typing primer in distilled water to a final concentration of 20 ⁇ 2.
  • the typing primer shown in FIG. 14 ⁇ completely hybridizes to the single-stranded DNA described in the lower column of wild-type X DNA.
  • the G at the 3 'end of the typing primer cannot hybridize to the single-stranded DNA described in the lower row of the mutant ⁇ DNA. Therefore, when a primer-extension reaction is performed using this typing primer, the reaction proceeds favorably in the case of wild-type ⁇ DNA, but the reaction does not proceed much in the case of the mutation ⁇ D D.
  • PCR reaction solutions I and J PCR reactions were performed under the reaction temperature conditions shown in FIG. 14C, respectively.
  • each PCR reaction solution was introduced into a modified ISFET electrode on which H + -pyrophosphatase was immobilized.
  • the modified ISFET electrode is the same as that used in Example 2 above.
  • a silver-silver chloride electrode was used as a reference electrode in the same manner as in Example 2, and a voltage of 4.0 V was applied between the source and the drain of the H + -pyrophosphatase-fixed ISFET electrode.
  • the gate voltage was measured while maintaining the current value during this period at 400 ⁇ A, the PCR reaction solution I clearly had a higher voltage value than the PCR reaction solution J. That is,? In Reaction Solution 1, it can be seen that the primer extension reaction has progressed.
  • this example shows that the method of the present invention is extremely effective for discriminating a specific nucleotide sequence, such as discriminating the nucleotide type at the SNP site and mutation of one base pair due to mutation. It is.
  • the sensor for detecting pipolinic acid according to the present invention for example, It can be used for discrimination, and is therefore useful for tailor-made medicine such as administration of drugs based on SNP typing. Further, the pyrophosphate detection sensor according to the present invention is useful for analyzing mutations in the base sequence of DNA, and the results of such analysis can be used for drug discovery and clinical practice.
  • the pyrophosphate detection sensor according to the present invention can be used for detecting a nucleic acid having a specific base sequence.
  • the detection of the nucleic acid can be carried out by diagnosing a genetic disease, testing for contamination of food by bacteria, viruses, and the like; It is useful for testing for infections.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、試料液中のピロリン酸を検出するピロリン酸検出センサであって、前記試料液を受容する試料液受容部と、H+−ピロホスファターゼを有するH+難透過性膜と、前記H+難透過性膜を固定する固定層と、前記固定層の水素イオン濃度変化に伴う電気化学的変化を測定する測定手段と、を備える構成であり、前記H+−ピロホスファターゼは、前記試料液中のピロリン酸を加水分解し、これに伴って固定層の水素イオン濃度に変化をもたらすように配されている。

Description

ピロリン酸検出センサ、 核酸の検出方法、 および塩基種判別方法
〔技術分野〕
本発明は、 試料中のピロリン酸を簡便かつ高感度で検出するセンサ、 ならびにこれを用いた核酸明の検出方法および塩基種判別方法に関する。
〔技術背景〕
ピロリン酸は、 細胞内における酵素反応に深く関与していることが知 られている。 例えば、 タンパク質の合成過程において、 アミノ酸がアミ ノアシルアデ二ル酸を経由してアミノアシル t RN Aを形成する反応に おいてピロリン酸が生成される。 また、 例えば、 植物などに見られるデ ンプン合成の過程では、 グルコース— 1一リン酸と AT Pとの反応によ つて AD P—グルコースが生成される際に、 ピロリン酸が生成される。 これら以外にも、 種々の酵素反応においてピロリン酸が関与しているこ έτ^ Πられている。 従って、 ピロリン酸を定量的に検出する技術は、 細 胞状態、 あるいは上記の酵素反応等を解析する上で重要な技術である。 従来のピロリン酸測定方法として、 G r i n d 1 e yらの化学的方法 (G. B . G r i n d l e y a n d C.A. N i c h e l , A n a 1. B i o c h e m, vol 3 3. l 1 4 ( 1 9 7 0 ) 参照) が知られて いる。 しかし、 この方法では濃硫酸を用いるので、 非常に危険が伴う。 特開昭 6 1 - 1 2 3 0 0号公報では、 濃硫酸などの危険な薬品を用い ずに、 酵素を利用した三種類のピロリン酸測定方法が開示されている。 それらに関して以下に説明する。
第 1の方法は、 ピロリン酸をホスホェノールピルビン酸およびアデノ シン一リン酸の存在下で、 ピルべ一トオルソホスフエ一トジキナーゼを 作用させる方法である。この反応によつてピルビン酸が生成されるので、 ピルビン酸の量を測定することによってピロリン酸の量を算出すること ができる。 なお、 ピルビン酸の量を測定する方法は二種類の方法が提案 されている。 1つは、 ラクテートデヒドロゲナーゼの触媒作用を利用し てピルビン酸を NAD Hで還元する際に、 N ADHの減少を比色定量す る方法である。 もう 1つは、 生成したピルビン酸にピルべ一トォキシダ ーゼを作用させて生成する過酸化水素を色素に導く ことによって比色定 量する方法である。
第 2の方法は、 ピロリン酸をシチジンニリングリセロールの存在下で グリセロール一 3—ホスフエ一トシチジルトランスフエラーゼに作用さ せる方法である。この反応によってグリセロール三リン酸が生成される。 従って、 グリセロ一ル三リン酸の生成量を測定することでピロリン酸の 量を算出することができる。 グリセロール三リン酸の量を測定する方法 は二種類の方法が提案されている。 1つは、 グリセロール— 3—ホスフ エートデヒドロゲナーゼの触媒作用を利用してグリセ口一ル三リン酸を NAD (P ) で酸化する際に、 NAD ( P ) Hの増加を比色定量する方 法である。 もう 1つは、 生成したグリセロール三リン酸にグリセ口一ル — 3—ホスフエ一トォキシダ一ゼを作用させて生成する過酸化水素を色 素に導きこれを比色定量する方法である。
第 3の方法は、 ピロリン酸をシチジン二リン酸リビトールの存在下で リビトールー 5一ホスフェートシチジルトランスフェラ一ゼを作用させ る方法である。 この反応によって D—リビ卜一ルー 5—リン酸が生成さ れるため、 その生成量を測定することでピロリン酸量を測定することが できる。 D—リビトール— 5—リン酸を測定する方法は、 NAD (また は NAD P ) の存在下でリビトール— 5—ホスフエ一トデヒドロゲナ一 ゼを作用させて NADH (または NAD P H) の増加を比色定量する方 法が提案されている。
その他にも特開 2 0 0 2— 3 6 9 6 9 8号公報には、 ピロホスファタ ーゼによりピロリン酸をリン酸に加水分解した後、 プリンヌクレオシド ホスホリラ一ゼによりリン酸をイノシンまたはキサントシンと反応させ、 生じたヒポキサンチンをキサンチンォキシダーゼにより酸化してキサン チンとし、 さらに酸化して尿酸を生成させ、 このキサンチンォキシダー ゼによる酸化過程で生じる過酸化水素をペルォキシダーゼを用いて発色 剤を発色させる方法が示されている。
一方、 核酸の伸長反応もピロリン酸が関与する重要な生体反応の一種 である。
近年、 遺伝子情報に関する技術が盛んに開発されている。 医療分野で は、 疾患関連遺伝子を解析することにより、 疾患の分子レベルでの治療 が可能となってきている。 また、 遺伝子診断により、 患者個人ごとに対 応したテーラ一メード医療も可能となってきた。 製薬分野においては、 遺伝子情報を使用して、 抗体やホルモンなどのタンパク分子を特定し、 薬品として利用している。 農業や食品分野などにおいても、 多くの遺伝 子情報を利用した製品が作り出されている。
これらの遺伝子情報の中でも、 遺伝子多型は特に重要である。 我々の 顔や体型などが様々であるように、 一人一人の遺伝子情報もかなりの部 分で異なっている。 これらの遺伝情報の違いのうち、 塩基配列の変化が 人口の 1 %以上の頻度で存在するものを遺伝子多型と呼んでいる。 これ らの遺伝子多型が、 個人の顔かたちだけでなく、 様々な遺伝子疾患の原 因や、 体質、 薬剤応答性、 薬剤の副作用などに関連していると言われ、 現在この遺伝子多型と疾患などとの関連が急速に調べられている。
この遺伝子多型の中で、 近年、 特に注目されているのが S N P ( S i n g 1 e n u c l e o t i d e p o l ym o r p h i s m である。 S N Pは、 遺伝子情報の塩基配列の中で、 一塩基のみが異なっている遺 伝子多型のことを指す。 S N Pはヒトゲノム DNA内に 2〜 3百万ある と言われており、 遺伝子多型のマーカ一として利用しやすく、 臨床への 応用が期待されている。 現在では、 S N P関連技術として、 ゲノム中の S N Pの位置同定および S N Pと疾患との関連性等の研究とともに、 S N P部位の塩基を判別する S N Pタイビング技術の開発が行われている。
S N Pタイピングの技術は、 ハイブリダィズを利用したもの、 制限酵 素を利用したもの、 リガーゼ等の酵素を利用したもの等様々な種類のも のがある。 それらの技術のうち、 最も簡便な技術としてプライマー伸長 反応を利用するものがある。 この技術では、 プライマ一伸長反応が起こ るか否かを判定することによって、 S NPタイピングを行なう。
プライマー伸長反応を利用した S N Pタイビング技術の検出には、 実 際の D N Aの増幅産物を蛍光色素を用いて検出する方法や、 固定化プロ ーブを用いる方法の他に、 DNAポリメラ一ゼによる核酸合成の副産物 であるピロリン酸を検出する方法も考案されている。 この方法では、 伸 長反応の進行の差を検出するために、 プライマー伸長反応の進行に伴つ て生成されるピロリン酸を AT Pに変換し、 その後ルシフェラーゼ反応 を利用してピロリン酸の量を測定する方法を用いている ( J . I mm u n o 1 o g i c a 1 M e t h o d , 1 5 6 , 5 5 - 6 0 , 1 9 9 2参照)。 しかしながら上述した方法よるピロリン酸の測定方法においては、 プ ライマー伸長反応において d AT Pを用いる場合、 d AT Pは AT Pと 同様にルシフェラ一ゼ反応の基質になる。 このため、 正確な S N P部位 の塩基種の判別ができない。 従って、 d AT Pの代わりに DN Aポリメ ラーゼの基質として作用し、 且つルシフェラ一ゼ反応の基質としては作 用しない特殊な d AT Pアナログを用いる必要があるという課題があ つ 7こ
また、 他のピロリン酸の測定技術においても、 複数種の酵素、 試薬な どを必要とし、 コストが増大し、 工程が複雑化してしまうという不具合 がある。 また、 これらの測定方法においては、 上記の理由からキッ ト化 および小型センサとしてのデバイス化が困難であるという課題があつ た。
さらにこれらの方法のほとんどは光学式検出法であるため、 測定装置 が大型化してしまうという問題点もあった。 〔発明の開示〕
本発明は上記課題を解決するためになされたものであり、 試料液中の ピロリン酸を簡便かつ高感度でピロリン酸を検出し、 かつ構成が簡便な ピロリン酸検出センサ、 ならびにこれを用いた核酸の検出方法および塩 基種判別方法を提供することを目的とする。
これらの目的を達成するために、 本発明は、 試料液中のピロリン酸を 検出するピロリン酸検出センサであって、 前記試料液を受容する試料液 受容部と、 H +—ピロホスファターゼを有する H +難透過性膜と、 前記 H +難透過性膜を固定する固定層と、 前記固定層の水素イオン濃度変化に 伴う電気化学的変化を測定する測定手段と、 を備え、 前記 H +—ピロホ スファ夕一ゼは、 前記試料液中のピロリン酸を加水分解し、 これに伴つ て固定層の水素イオン濃度に変化をもたらすように配されている。 この ような構成においては、 H +—ピロホスファターゼにより水素イオンの 濃度変化がもたらされる固定層が、 H +難透過性膜を固定する機能をも 有するので、 ピロリン酸検出センサを簡便に構成することができる。 上記ピロリン酸検出センサの一形態は、 前記固定層がその上面又はそ の内部に H +難透過性膜を固定する構成である。
上記ピロリン酸検出センサの一形態は、 前記 H +難透過性膜が膜小胞 であり、 前記固定層は前記 H +難透過性膜をその内部に固定する構成で ある。
上記ピロリン酸検出センサの一形態は、 前記測定手段が、 前記固定層 に接する水素イオン感受性電極と、 前記試料液を受容した状態で前記試 料液に接するように配された参照電極とを有する構成である。 そして、 前記測定手段は、 前記水素イオン感受性電極と前記参照電極との電位差 の変化を測定するように構成することが好ましい。
上記ピロリン酸検出センサの一形態は、 前記固定層が高分子ゲルまた は自己組織化単分子膜(以下、 S A M膜とも称す)からなる構成である。 高分子ゲルは、 その保持能により前記 H +難透過性膜を固定しうる。 上記ピロリン酸検出センサの一形態は、 前記固定層が水素イオン濃度 の変化により酸化還元反応が生じる材料を含み、 前記測定手段が前記固 定層に接する分極性電極と、 前記試料液を受容した状態で前記試料液に 接するように配された参照電極とを有する構成である。 そして、 前記測 定手段は、 前記分極性電極と前記参照電極との間の電流の変化を測定す るように構成することが好ましい。
上記ピロリン酸検出センサの一形態は、 前記固定層が水素イオン濃度 の変化により酸化還元反応が生じるメディエー夕を含む高分子ゲルまた は自己組織化単分子膜からなり、 その上面に前記 H +難透過性膜を固定 する構成である。
上記ピロリン酸検出センサの一形態は、 前記固定層が水素イオン濃度 の変化により酸化還元反応が生じる電解重合材料からなる構成である。 また、 本発明は、 上記ピロリン酸検出センサを用いる、 特定の塩基配 列を有する核酸の検出方法であって、 試料と、 前記核酸に相補的に結合 する相補結合領域を含む塩基配列を有するプライマーと、 ヌクレオチド とを含む試料液を調製する工程 ( a ) 、 前記試料液を前記プライマーの 伸長反応が生じる条件下におき、 前記伸長反応が生じた場合にピロリン 酸を生成する工程 (b ) 、 前記ピロリン酸検出センサの前記試料液受容 部に前記試料液が受容された状態とする工程 ( c ) 、 前記ピロリン酸検 出センサの前記測定手段により前記固定層の水素イオン濃度変化に伴う 電気化学的変化を測定する工程 (d ) 、 工程 (d ) の測定結果に基づい て前記伸長反応を検出する工程 ( e ) 、 および工程 ( e ) の検出結果に 基づいて前記核酸を検出する工程 ( f ) を包含する。
また、 本発明は、 上記ピロリン酸検出センサを用いる、 核酸の塩基配 列中の塩基種判別方法であって、 核酸と、 前記核酸に相補的に結合する 相補結合領域を含む塩基配列を有するプライマーと、 ヌクレオチドとを 含む試料液を調製する工程 ( a ) 、 前記試料液を前記プライマーの伸長 反応が生じる条件下におき、 前記伸長反応が生じた場合にピロリン酸を 生成する工程 (b ) 、 前記ピロリン酸検出センサの前記試料液受容部に 前記試料液が受容された状態とする工程 (c ) 、 前記ピロリン酸検出セ ンサの前記測定手段により前記固定層の水素イオン濃度変化に伴う電気 化学的変化を測定する工程 (d ) 、 工程 (d ) の測定結果に基づいて前 記伸長反応を検出する工程 ( e ) 、 および工程 ( e ) の検出結果に基づ いて前記核酸の塩基配列中の塩基種を判別する工程 ( f ) を包含する。 本発明の上記目的、他の目的、 特徴、 及び利点は、添付図面参照の下、 以下の好適な実施態様の詳細な説明から明らかにされる。
〔図面の簡単な説明〕
図 1は、植物の液胞膜に内在された状態の H +—ピロホスファタ一ゼを 模式的に表す図である。
図 2は、 第 1の実施形態のピロリン酸検出センサの構成を模式的に示 す断面図である。
図 3は、 第 2の実施形態のピロリン酸検出センサの構成を模式的に示 す断面図である。
図 4は、 第 3の実施形態のピロリン酸検出センサの構成を模式的に示 す断面図である。
図 5は、 第 4の実施形態のピロリン酸検出センサの構成を模式的に示 す断面図である。
図 6は、 第 5の実施形態のピロリン酸検出センサの構成を模式的に示 す断面図である。
図 7は、 ピロリン酸検出センサの構成例 1を模式的に示す断面図であ る。
図 8は、 ピロリン酸検出センサの構成例 2を模式的に示す断面図であ る。
図 9は、 ピロリン酸検出センサの構成例 3を模式的に示す断面図であ る。
図 1 0は、 ピロリン酸検出センサの構成例 4を模式的に示す新面図で める。
図 1 1は、 検出を目的とする DNAと DNAプロ一ブとにおいて S N P部位が一致した場合の反応系を示す図である。
図 1 2は、 検出を目的とする DNAと DNAプローブとにおいて S N P部位が一致しない場合の反応系を示す図である。
図 1 3 Aは λ D Ν Αの特定の塩基配列に完全にハイプリダイズし得る 2種類のプライマ一 Cおよびプライマ一 Dを表す図、 図 1 3 Bは P C R 反応液 Gおよび Hの組成を表す表を示す図、 図 1 3 Cは P C R反応を行 なった反応温度条件を表すフローチヤ一トである。
図 1 4 Aは野性型 λ D N A、 変異型 λ D N Aおよびタイピングプライ マーを表す図、 図 1 4 Bは P C R反応液 Iおよび Jの組成を表す表を示 す図、 図 1 4 Cは P C R反応を行なった反応温度条件を表すフローチヤ ートである。
〔発明を実施するための最良の形態〕
以下、 本発明の実施形態について、 図面を参照しながら説明する。 まず、 図 1を用いて本発明の反応原理を説明する。 本発明では、 ピロ リン酸を定性的又は定量的に検出するために、 H +—ピロホスファターゼ を用いる。 図 1は、 植物の液胞膜に内在された状態の H +—ピロホスファ ターゼを模式的に表す図である。 図 1に示すように、 H +—ピロホスファ タ一ゼ 1 1は通常、 植物等の液胞膜 1 3内に存在する膜夕ンパク質であ り、 1分子のピ口リン酸 1 0から 2分子のリン酸 1 2を生成する加水分 解反応に伴って、 水素イオンを通さない、 あるいは通しにくい液胞膜 1 3の外側 (表面 1 3 a側) から液胞膜 1 3の内側 (裏面 1 3 b側) に向 けて水素イオンを輸送する性質を有する。 このため、 H +—ピロホスファ 夕一ゼの酵素反応によって、 液胞膜 1 3の内部では水素イオン濃度が増 大し、 液胞膜 1 3の外部では水素イオン濃度が減少する。
各実施形態にかかるピロリン酸検出センサでは、 H +—ピロホスファタ ーゼの上記性質及び膜タンパク質であるという形態を利用して、 ピロリ ン酸の検出を行う。 すなわち、 H +—ピロホスファターゼを保持する膜で 領域を分離し、 少なくともいずれか一方の水素イオン濃度の変化を測定 することにより、 H +—ピロホスファ夕ーゼが加水分解に寄与したピ口リ ン酸の量を検出することができる。 このように、 各実施形態にかかるピ 口リン酸検出センサでは、 H +—ピロホスファタ一ゼの作用に直接的にか かわった水素イオンの濃度変化を検出することにより、 ピロリン酸の検 出を行うので、 簡便かつ高感度の検出が可能である。 また、 上述の検出 を行うためには、 水素イオンの輸送元の領域と、 水素イオンの輸送先の 領域との分離が必須要件となるが、 H +—ピロホスファ夕ーゼは膜タンパ ク質であることにより、その形態を領域の分離に利用することができる。 このことは、 ピロリン酸検出センサの構成の簡素化に寄与する。
各実施形態のピロリン酸検出センサを用いた検出工程においては、 ピ 口リン酸を含む試料液を、 植物細胞等から単離してきた液胞膜 1 3等の H +難透過性膜に内在している状態の H +—ピロホスファターゼに接触 させる。
この後、 H +難透過性膜の内側あるいは H +難透過性膜の外側の水素ィ オン濃度の変化を測定する。 このことによって、 試料液中のピロリン酸 の有無あるいは量を測定し、 ピロリン酸の定性的検出あるいは定量的検 出を行う。
(第 1の実施形態)
本実施形態は、 ピロリン酸検出センサに係るものである。 図 2は、 本 実施形態のピロリン酸検出センサの構成を模式的に示す断面図である。 ピロリン酸検出センサ 3 1は、 絶縁基板 2 2と、 絶縁基板 2 2上に固定 された溶液保持部材 2 5によって形成される溶液保持部 3 2と、 測定手 段とを有する。 溶液保持部 3 2は、 基板 2 2上に形成された固定層 5 1 と、 前記固定層 5 1上面に固定された H +難透過性膜 2 1 と、 これらが 構成されていない領域である試料液受容部 3 3 とからなる。測定手段は、 固定層 5 1 と接するように基板 2 2直上に配された水素イオン感受性電 極 2 3と、 試料液受容部 3 3に試料液 2 6が満たされた状態で、 試料液 2 6に接するように配された参照電極 2 7 とを有する。
H +難透過性膜 2 1は、 H +—ピロホスファターゼ 1 1を有する。 H + 難透過性膜 2 1は、 H +—ピロホスファターゼ 1 1の部分を除いて水素 イオンを透過させにくい膜からなり、 例えば天然の液胞膜、 もしくは人 ェの脂質二重膜等が利用できる。 H +難透過性膜 2 1において、 H +—ピ 口ホスファターゼ 1 1のピロリン酸を加水分解する活性部位は、 試料液 受容部 3 3側に露出している。
固定層 5 1は、 水素イオンを十分透過させ水分を保持し得る材料で形 成されている。 また、 固定層 5 1は、 その上面に H +難透過性膜 2 1 を 固定可能な材料で形成されている。 固定層 5 1は、 その保持能を利用し て H +難透過性膜 2 1を上面に固定するゲルや、架橋反応を利用して H + 難透過性膜 2 1を上面に固定する S A M膜で形成することができる。 こ のような材料として、 ァガロースゲル等の高分子ゲル、 フラーレン様化 合物を含む材料、 等を用いることができる。
水素イオン感受性電極 2 3としては、 通常の p Hセンサとして機能で きるものであればよく、 ガラス電極、 I S F E T電極 ( i o n s e n s i t i v e F E T、 ゲートにイオン感受性膜を使用したイオン感受 性 F ET) 、 LAP S (L i g h t -A d d r e s s a b l e P o t e n t i om e t r i c S e n s o r ) 等が利用できる。
参照電極 2 7には、 標準水素電極、 銀 Z塩化銀電極、 飽和カロメル電 極等が利用できる。
絶縁基板 2 2と溶液保持部材 2 5は、 ピロリン酸の加水分解反応に影 響しない材料で形成されていればよく、 ガラス、 シリコン、 プラスチッ ク等で形成され得る。
ピロリン酸検出センサ 3 1を用いて、 試料液 2 6中に含まれるピロリ ン酸を検出する方法及びその原理について説明する。 まず、 試料液 2 6 を試料液受容部 3 3に満たす。試料液 2 6にピロリン酸が含まれる場合、 H +—ピロホスファタ一ゼ 1 1の活性により、 ピロリン酸がリン酸へと 加水分解され、それに伴って固定層 5 1内の水素イオン濃度が上昇する。 それを、 水素イオン感受性電極 2 3を用いて測定することによって、 測 定液 2 6中のピロリン酸濃度を検出することができる。 具体的には、 水 素イオン感受性電極 2 3と参照電極 2 7 との電位差の変化を測定するこ とによって、 固定層 5 1内の水素イオン濃度変化を測定し、 かかる測定 結果に基づいて測定液 2 6中のピロリン酸濃度を検出する。
なお、 H +難透過性膜 2 1は、 ピロリン酸を加水分解する活性部位が 固定層 5 1側 (内部) に露出している H +—ピロホスファタ一ゼを含ん でいても良い。 ただし、 ピロリン酸を加水分解する活性部位が内部に露 出している H +—ピロホスファターゼを有する H+難透過性膜 2 1 を用 いる場合、 固定層 5 1のピロリン酸の濃度は、 試料液 2 6のピロリン酸 の濃度よりも低く しておく ことが好ましく、 固定層 5 1にはピロリン酸 を含まないことが最も好ましい。 このことによって、 固定層 5 1から試 料液 2 6への水素イオン輸送が減少あるいは停止し、 試料液 2 6から固 定層 5 1への水素イオンの輸送が優勢となって、 固定層 5 1の水素ィォ ン濃度の変化が、 試料液 2 6中に含まれるピロリン酸によるものにほぼ 限定される。 したがって、 試料液 2 6中に含まれるピロリン酸の量を正 確に見積もることができる。
ピロリン酸検出センサ 3 1は、 固定層 5 1の試料液受容部 3 3との境 界面全てが H +難透過性膜 2 1で被覆されている構成ではないので、 H + 難透過性膜 2 1で被覆されていない境界部分から試料液 2 6と固定層 5 1 との間の水素イオンの移動が可能であり、 平衡状態を保つべく この部 分から水素イオンが拡散するが、 拡散による水素イオンの移動は、 H + 一ピロホスファタ一ゼ 1 1の活性による水素イオンの移動と比較して遅 いので、 水素イオン感受性電極 2 3によって測定される水素イオンの濃 度変化はほぼ H +—ピロホスファタ一ゼ 1 1の活性によるものとするこ とができる。
(第 2の実施形態)
本実施形態は、 ピロリン酸検出センサに係るものである。 図 3は、 本 実施形態のピロリン酸検出センサの構成を模式的に示す断面図である。 本実施形態のピロリン酸検出センサ 3 4は、 第 1の実施形態のピロリン 酸検出センサ 3 1 とは、 固定層 5 1が絶縁基板 2 2直上の全領域に形成 されており、 固定層 5 1 と試料液受容部 3 3 との全境界領域に H +難透 過性膜 2 1が配されている点が異なるのみである。 その他の構成は、 第 1の実施形態のピロリン酸検出センサ 3 1 と同じなので、 説明を省略す る。
(第 3の実施形態)
本実施形態は、 ピロリン酸検出センサに係るものである。 図 4は、 本 実施形態のピロリン酸検出センサの構成を模式的に示す断面図である。 第 1の実施形態と異なる点は、 H +難透過性膜が膜小胞 7 1で形成され ている点と、 膜小胞 7 1である H +難透過性膜の固定されている位置で ある。 以下、 第 1の実施形態と異なる点のみ説明する。
膜小胞 7 1は H +—ピロホスファタ一ゼ 1 1を有し、固定層 5 1内に固 定されている。 固定層 5 1は、 例えばゲルの保持能によって膜小胞 7 1 を内部に固定し得る材料からなる。 膜小胞 7 1 としては、 細胞から単離 された液胞から調製されたものを用いることができる。 また、 膜小胞 7 1 としては、 人工的に形成した脂質二重層膜や L B膜などの水素イオン を通さない、あるいは通しにくい膜内に単離および精製した H +—ピロホ スファターゼを内在するように再構築することによって形成されたもの を用いてもよい。
膜小胞 7 1の膜には、 H +—ピロホスファタ一ゼ以外のタンパク質が含 まれていてもよい。 但し、 これらのタンパク質は、 ピロリン酸と反応し ない、 あるいは反応性の低いタンパク質であることが好ましい。 すなわ ち、ピロリン酸が膜小胞 7 1の膜中にある H +—ピロホスファタ一ゼ以外 のタンパク質と反応する場合、 H +—ピロホスファターゼと反応するピ口 リン酸の量が減少し、 それに伴って H +の輸送量が減少するからである。 また、 ピロリン酸とは反応せず、 且つピロリン酸以外の物質との反応に よって水素イオンを輸送するタンパク質が膜小胞 7 1の膜に含まれてい る場合、 そのタンパク質が反応する物質が試料液 2 6中にほとんど含ま れていないことが好ましい。例えば、具体的には、膜小胞 7 1の膜には、 ピロリン酸とほとんど反応せず、 且つ A T Pとの反応によって水素ィォ ンを輸送するタンパク質である A T P a s eが含まれている場合、 試料 液 2 6中に A T Pをほとんど含まないようにすることが好ましい。
ピ口リン酸検出センサ 3 5を用いて、 試料液 2 6中に含まれるピロリ ン酸を検出する方法及びその原理について説明する。 まず、 試料液 2 6 を試料液受容部 3 3に満たす。 試料液 2 6中にピロリン酸が存在する場 合、 ピロリン酸は固定層 5 1に拡散される。 そして、 固定層 5 1に拡散 されたピロリン酸は、 H +—ピロホスファ夕一ゼ 1 1の活性により、 リン 酸へと加水分解され、 それに伴って膜小胞 7 1の内部液 2 4の水素ィォ ン濃度が上昇し、 H +—ピロホスファタ一ゼ 1 1の周辺では、 それに伴つ て水素イオン濃度が減少する。 H +—ピロホスファターゼが水素イオン感 受性電極 2 3のごく近傍に存在したとき、 水素イオン濃度の減少が水素 イオン感受性電極 2 3により測定され、 試料液 2 6中のピロリン酸濃度 を測定することができる。
(第 4の実施形態)
本実施形態は、 ピロリン酸検出センサに係るものである。 図 5は、 本 実施形態のピロリン酸検出センサの構成を模式的に示す断面図である。 ピロリン酸検出センサ 3 6は、 第 2の実施形態とは、 固定層の構成と、 測定電極の構成が異なるのみである。 以下、 この点について説明する。 測定電極は、 絶縁基板 2 2上に形成された分極性電極 8 1からなる。 分極性電極 8 1は、 金、 白金、 カーボン等の通常の電気化学測定に使用 できる電極で構成することができる。 分極性電極 8 1には、 非常に簡便 な構成の電極を利用することができる。 このことは、 ピロリン酸検出セ ンサの全体構成の簡便化に寄与する。 さらに、 本実施形態の場合、 参照 電極 2 7としては、 標準水素電極、 銀 Z塩化銀電極、 飽和カロメル電極 等に加え、 金、 白金、 力一ボン等の電極も利用することができ、 さらな るピロリン酸検出センサの全体構成の簡便化に寄与しうる。
分極性電極 8 1表面には、 メデイエ一夕 8 2を含む固定層 8 3が形成 されている。 固定層 8 3としては、 例えば一端にチオール基を持つ直鎖 状炭素を利用した S A M膜 ( s e 1 f — a s s e m b 1 e d m o n o l a y e r ) などが利用できる。 ただし、 固定層 8 3は H +難透過性膜 2 1を固定可能な材質で形成されていればこれに限定されることなく、 その保持能により H +難透過性膜 2 1 を固定するゲルで形成されていて も良い。 メデイエ一夕 8 2としては、 水素イオン感受性物質の酸化体を 使用することができる。このように形成された固定層 8 3上に H +—ピロ ホスファ夕一ゼを含む H +難透過性膜 2 1 を固定する。 固定層 8 3に上 述した S A M膜を利用した場合、 チオール基の架橋反応により H +難透 過性膜 2 1 を固定層 8 3上面に固定することができる。 H +難透過性膜 2 1が、 脂質膜である場合、 固定層 8 3および脂質膜の疎水性部分が対 向し、 脂質膜の親水性部分が膜表面を形成する。 H +—ピロホスファタ一 ゼ 1 1は固定層 8 3および脂質膜の疎水性部分が形成する膜の内部に固 定されるが、 このとき、 H +—ピロホスファターゼ 1 1のピロリン酸を加 水分解する活性部位は、 H +難透過性膜 2 1の外部に露出している。
ピロリン酸検出センサ 3 6を用いて、 試料液 2 6中に含まれるピロリ ン酸を検出する方法及びその原理について説明する。 まず、 試料液 2 6 を試料液受容部 3 3に満たす。 試料液 2 6中にピロリン酸が存在する場 合、 H +—ピロホスファターゼ 1 1の活性により、 ピロリン酸がリン酸へ と加水分解され、 それに伴って固定層 8 3内の水素イオン濃度が上昇す る。 このとき水素イオン感受性のメディェ一夕 8 2の酸化体が存在した 場合、 酸化還元反応によりメデイエ一夕 8 2の還元体が生成される。 分 極性電極 8 1にメデイエ一夕 8 2の酸化還元電位より十分に高い電位を 加えておく ことにより、 メデイエ一夕 8 2の還元物質の濃度に応じた電 流を測定することができる。 よって、 試料液 2 6中のピロリン酸の濃度 を検出することが可能である。
(第 5の実施形態)
本実施形態は、 ピロリン酸検出センサに係るものである。 図 6は、 本 実施形態のピロリン酸検出センサの構成を模式的に示す断面図である。 本実施形態のピロリン酸検出センサ 3 7の第 4の実施形態と異なる点は、 H +難透過性膜が膜小胞 7 1で形成されている点と、 膜小胞 7 1である H +難透過性膜の固定されている位置と、 固定層の構成である。 以下、 第 4の実施形態と異なる点のみ説明する。
膜小胞 7 1は H + —ピロホスファターゼ 1 1 を有し、 固定層 9 1内に 固定されている。 固定層 9 1は、 電解重合膜からなる。 電解重合膜によ つて膜小胞を固定する方法は、 例えば重合前のモノマーと膜小胞 7 1を 混合しておき、 所定の電圧を加えることで形成できる。 電解重合膜を形 成する電解重合材料としては電気化学的に活性なものが選択でき、 例え ばポリ (ァニリン) 、 ポリ ( 0—フエ二レンジァミン) 、 ポリ (N —メ チルァ二リン) 、 ポリ (ピロール) 、 ポリ (N —メチルピロ一ル) 、 ポ リ (チォフェン) 等が使用できる。
ピロリン酸検出センサ 3 7を用いて、 試料液 2 6中に含まれるピロリ ン酸を検出する方法及びその原理について説明する。 まず、 試料液 2 6 を試料液受容部 3 3に満たす。 試料液 2 6中にピロリン酸が存在する場 合、 ピロリン酸が固定層 9 1に拡散され、 H +—ピロホスファタ一ゼ 1 1 の活性により、 ピロリン酸がリン酸へと加水分解される。 ピロリン酸の 加水分解に伴って内部液 2 4の水素イオン濃度が上昇し、 H + _ピロホス ファターゼ 1 1の周辺では水素イオン濃度が減少する。 この水素イオン 濃度の変化により、 固定層 9 1である電解重合膜の酸化還元反応が起こ り、 その電子移動を分極性電極 8 1で測定することによって、 試料液 2 6中のピロリン酸濃度を検出することができる。
本発明にかかるピロリン酸検出センサにおいては、 図 1を用いて説明 した反応原理からわかるように、 H +—ピロホスファターゼを含む H +難 透過性膜と測定電極 (水素イオン感受性電極 2 3、 分極性電極 8 1 ) と の間に、水素イオンもしくは水素イオン感受性メディェ一夕の酸化体が、 イオンの状態で存在しうる場が必要である。 このような場として、 バル クの水溶液を用いることも可能である。 しかしながら、 H +難透過性膜 と測定電極との間に、 バルクの水溶液を存在させるためには、 例えば特 開平 6— 9 0 7 3 6号公報に示されているような、 非常に複雑な工程を 経て、 センサを作製する必要がある。 さらに、 このように作製したセン サでは、 一旦作製してしまうと水溶液中でしか保存することができず、 例えばピロリン酸検出センサを D N A検出センサとして用いた場合、 そ の取扱方法や保存方法も極めて特殊なものとなり、 作製方法の複雑さも 考慮すると、 例えばディスポ一ザブル形式の臨床検査等の使用には適さ ない。一方、第 1〜第 5の実施形態のピロリン酸検出センサにおいては、 上述した水素イオンもしくは水素イオン感受性メディェ一夕の酸化体が、 イオンの状態で存在しうる場は、 固定層からなる。 かかる固定層は、 例 えば S A M膜や電解重合膜で形成することができ、 比較的簡便な方法で センサを作製することができる。 また、 高分子ゲルを固定層としたセン サでは、 水分子を保持したまま保存することが可能であるので、 取扱や 保存が極めて簡便となる。 その他の材料で固定層を形成する場合であつ ても、 バルクの水溶液で前記場を構成する場合と比較して、 取扱や保存 が非常に簡便である。 したがって、 例えばデイスポーザブル形式の臨床 検査等の使用にも適したものを構成することができる。 さらに、 固定層 の厚さをできる限り薄くすることによって、 水素イオン濃度の変化率を 上げ、 感度を向上させることも可能である。
以下、 H +—ピロホスファタ一ゼを用いたピロリン酸検出センサの他の 構成例を示す。
<ピロリン酸検出センサの構成例 1 >
図 7は、 ピロリン酸検出センサの一構成例を模式的に示す断面図であ る。 第 1の実施形態とは、 水素イオン感受性電極 2 3の周囲が内部液 2 4で満たされている点と、 H +難透過性膜 2 1が水素イオン感受性電極 2 3を覆うように絶縁基板 2 2上に固定されている点のみが異なる。 以 下、 第 1の実施形態と異なる点のみ説明する。
H +難透過性膜 2 1の固定方法は、 H +難透過性膜 2 1が水素イオン感 受性電極 2 3の表面をすベて覆っていればどのような方法でもよく、 例 えばリボソームを利用して S A M膜に転写する方法や、 L B法を用いる ことができる。 H +難透過性膜 2 1によって分離された溶液保持部 3 2 内の領域のうちの水素イオン感受性電極 2 3が含まれた領域には、 内部 液 2 4が満たされているようにする。
ピロリン酸検出センサ 3 8を用いて、 試料液 2 6中に含まれるピロリ ン酸を検出する方法及びその原理について説明する。 まず、 試料液 2 6 を試料液受容部 3 3に満たす。試料液 2 6にピロリン酸が含まれる場合、 H +—ピロホスファ夕一ゼ 1 1の活性により、 ピロリン酸がリン酸へと 加水分解され、それに伴って内部液 2 4内の水素イオン濃度が上昇する。 それを、 水素イオン感受性電極 2 3を用いて測定することによって、 測 定液 2 6中のピロリン酸濃度を検出することができる。
内部液 2 4は特に限定されないが、 H +難透過性膜 2 1において、 ピ 口リン酸の活性部位が水素イオン感受性電極 2 3側 (内側) の領域に露 出している H +—ピロホスファタ一ゼを含む場合、内部液 2 4のピロリン 酸の濃度は、 試料液 2 6のピロリン酸の濃度よりも低くしておくことが 好ましく、 内部液 2 4にはピロリン酸を含まないことが最も好ましい。 このことによって、 内部液 2 4から試料液 2 6への水素イオン輸送が減 少あるいは停止し、 試料液 2 6から内部液 2 4への水素イオンの輸送が 優勢となって、 内部液 2 4の水素イオンの濃度の変化が、 試料液 2 6中 に含まれるピロリン酸によるものにほぼ限定される。 従って、 試料液 2 6中に含まれるピロリン酸の量を正確に見積もることができる。
くピロリン酸検出センサの構成例 2 >
図 8は、 ピロリン酸検出センサの一構成例を模式的に示す断面図であ る。上述の構成例 1 とは、 H +難透過性膜 2 1の固定方法のみが異なる。 以下、 構成例 1 と異なる点のみ説明する。
本構成例のピロリン酸検出センサ 3 9の H +難透過性膜 2 1は、 直鎖 状炭素化合物 3 1を介して絶縁基板 2 2上に固定されている。
くピロリン酸検出センサの構成例 3 >
図 9は、 ピロリン酸検出センサの一構成例を模式的に示す断面図であ る。上述の構成例 1 とは、 H +難透過性膜 2 1の固定方法のみが異なる。 以下、 構成例 1 と異なる点のみ説明する。
本構成例のピロリン酸検出センサ 4 0の H +難透過性膜 2 1は、 溶液 保持部材 2 5に両端が固定されている。
くピロリン酸検出センサの構成例 4 >
図 1 0は、 ピロリン酸検出センサの一構成例を模式的に示す断面図で ある。 本構成例のピロリン酸検出センサ 4 1において、 H +難透過性膜 2 1は、 絶縁基板 2 2に形成された貫通孔に固定されている。 H +難透 過性膜 2 1の内側には水素イオン感受性電極 2 3が備えられ、 外側には 参照電極 2 7が備えられている。 水素イオン感受性電極 2 3および参照 電極 2 7は、 絶縁基板 2 2上に形成されていてもよい。 内部液 2 4およ び試料液 2 6は、 それぞれ水素イオン感受性電極 2 3および参照電極 2 7に接しかつ H +難透過性膜 2 1に接し得る。 H +—ピロホスファターゼ の方向性については、 第 1の実施形態と同様である。 貫通孔への H +難 透過性膜 2 1の固定方法は、 例えば、 L a n g m u i r— B 1 o d g e t t e法を応用した公知の方法によって行うことが可能である (吉岡書 店、 岡田泰伸編 「新パッチクランプ実験技術法」 P . 2 1 4参照) 。 ま た、 絶縁基板 2 2上への貫通孔およびゥエルの形成および絶縁基板 2 2 上への電極の形成方法は、 例えばシリコン基板のエッチング等により行 うことが可能である (特開 2 0 0 4— 1 2 2 1 5号公報参照) 。
試料液 2 6中のピロリン酸の検出方法及びその原理は構成例 1 と同様 であるので、 説明を省略する。
(第 6の実施形態)
第 6の実施形態は、 本発明に係るピロリン酸センサを用いて特定配列 を持つ D N Aを検出する方法である。
本実施形態においては、 まず、 目的とする D N Aの配列に相補的な配 列を持つ D N Aプローブ、 D N Aポリメラーゼ、 デォキシヌクレオチド を含む反応系に試料が供せられる。 ここで 「反応系」 とは、 以下に説明 するような一連の核酸伸長反応およびこのような反応が実施される場を いう。 「反応系」 には、 一連の反応が実施されるのに必要な成分が存在 する。 「反応系」 は、 通常、 上記成分が適切な溶媒 (例えば、 T r i s 一 HC 1緩衝液、 核酸伸長反応または核酸増幅反応で通常使用され得る いずれもの緩衝液 (市販による入手可能なキッ ト中の緩衝液を含む) ) 中に溶解された溶液の形態で提供され得る。 DNAポリメラーゼは、 市 販により入手可能な、 または当業者により調製可能な、 任意の DNAポ リメラ一ゼであり得る。 好ましくは、 T a qポリメラ一ゼが使用され得 るが、 これに限定されない。 デォキシヌクレオチドは、 各デォキシヌク レオシド三リン酸(d NT Pとも称される : デォキシシトシン三リン酸、 デォキシグァニン三リン酸、 デォキシアデニン三リン酸、 およびデォキ シチミジン三リン酸を含む) であり得、 通常、 DNA合成の直接の前駆 物質として使用され得る物質である。 これにより、 DNAプローブを伸 長させ、 ここでピロリン酸がこの DNAプローブの伸長反応に伴って生 成される。 この反応について、 化学反応式 1を用いて説明する。
この DN Aプローブは目的の DN Aとハイブリダイズすると、 反応系 中に存在する D N Aポリメラーゼによって、 反応系中の 1つのデォキシ ヌクレオチド (化学反応式 1中、 d NT P) を取り込んで伸長され、 ピ 口リン酸が 1つ生成される。
[化学反応式 1 ]
DNA (n) + d NT P DNA (n + 1) + P P i 化学反応式 1中、 添え字の n + 1は、 nベースの D N Aプローブが n + 1ベースに伸長したことを示す。 このようにして生成されたピロリン 酸を、 上述の各実施形態のピロリン酸検出センサを用いて検出すること により、試料液中の特定配列を持つ D N Aを検出することが可能である。 具体的には、 上述のいずれかのピロリン酸検出センサの試料液受容部 3 3にピロリン酸を含む前記試料液を満たす工程 ( c ) 、 ピロリン酸検 出センサの測定手段により固定層の水素イオン濃度の変化を馕気化学的 に測定する工程 (d) 、 工程 (d) の測定結果に基づいて D N Aの伸長 反応を検出する工程 ( e) 、 および工程 ( e ) の検出結果に基づいて前 記 DNAを検出する工程 ( f ) を経て、 特定配列を持つ D N Aを検出す ることができる。
本実施の形態で使用される DNAプローブは、 検出を目的とされる D N Aの配列に対して相補的な配列を有するように設計される。 この DN Aプロ一ブは、 検出を目的とされる D N Aの配列とハイブリダィズした 場合に、 当該 D N Aプローブの伸長のためのプライマ一として働く。 し たがって、 DN Aプローブの長さは、 伸長反応のためのプライマ一とし て働くのに十分な長さである。 例えば、 少なくとも 1 0塩基、 少なくと も 1 2塩基、 少なくとも 1 5塩基、 少なくとも 2 0塩基、 少なくとも 3 0塩基の長さであり得る。 ハイブリダイゼーションおよびプライマー伸 長を十分に行い得、 かつその調製の容易さを考慮すると、 2 0〜 2 5塩 基の長さが好ましい。 本発明の方法で使用される DNAプローブは、 検 出を目的とされる DN Aに特異的にハイブリダィズし、 かつ当該 DNA プローブの伸長のためのプライマ一として働く限り、 いずれの長さでも あり得る。
DN Aプローブは、 試料液中の目的の D N Aと特異的にハイブリダイ ズし、 かつプライマ一として働くため、 検出しょうとする配列が既知で ある場合、 この配列に対して完全に相補的である、 すなわち、 配列中の 塩基に対して正確に対応する (A— Tまたは C一 Gペア) 配列を有する ように設計され得る。 試料液中に目的の特定配列を有する DN Aが存在 しない場合、 当然のことながら D N Aプローブとのハイブリダィズは起 こらない。 したがって、 本反応系を使用することにより、 検出しようと する配列が既知または未知であるに関わらず、 この D N Aプローブに完 全に相補的である配列の存在を検出し得る。
ハィブリダイゼ一ションおよび伸長反応は、 D N Aのハイブリダイゼ ーシヨン、 ならびに DN Aポリメラーゼの作用によるプライマーおよび デォキシヌクレオチドによる D N Aの伸長反応が行われる任意の条件下 で実施され得る。 DNAプローブと目的 DNAとのハイブリダイゼーシ ヨンは、 例えば、 S amb r o o kら ( 1 9 8 9) M o l e c u l a r C 1 o n i n g : A L a b o r a t o r y M a n u a l、 第 2版、 第 1〜 3巻、 C o l d S p r i n g H a r b o r L a b o r a t o r yなどの実験書に記載される方法によって行なわれ、 本方法は当業 者に公知である。
反応系中に含み得る DN Aプローブ、 ポリメラ一ゼ、 デォキシヌクレ ォチドの量は、 当業者によって適宜決定され得る。
また、 化学反応式 1に示すように、 デォキシヌクレオチドが 1つ伸長 する度にピロリン酸が 1つ生成されるので、 目的の特定配列を持つ DN Aおよび D N Aプローブの両方の長さ (ベース) が既知であれば、 目的 の特定配列を持つ DN Aを定量的に検出することが可能である。
さらに、 化学反応式 1の反応を P C R等の核酸増幅反応と置き換える ことにより、 試料中の目的の特定配列を持つ D N Aの量を飛躍的に増加 させることができる。 P C R増幅の方法は、 当該分野で周知である (P C R T e c h n o l o g y : P r i n c i l e s a n d A p p l i c a t i o n s f o r DNA Amp l i f i c a t i o n、 HA E r l i c h編、 F r e e m a n P r e s s、N e wY o r k、 NY( 1 9 9 2 ) ; P C R P r o t o c o l s : A G u i d e t o M e t h o d s a n d A p p l i c a t i o n s、 I n n i s、 G e l f l a n d、 S n i s k y、 および Wh i t e編、 A c a d e m i c P r e s s、 S a n D i e g o , CA ( 1 9 9 0 ) ; M a t t i l aら ( 1 9 9 1 ) Nu c l e i c A c i d s R e s . 1 9 : 4 9 6 7 ; E c k e r t、 K. A. および Ku n k e l、 T. A. ( 1 9 9 1 ) P C R M e t h o d s a n d A p p l i c a t i o n s 1 : 1 7 ; P C R、 M c P h e r s o n、 Q u i r k e s、 および T a y l o r、 I R L P r e s s、 O x f o r d) 。 P C R等の核酸増 幅反応を用いることにより、 極微量の D N Aの検出も可能である。
(第 7の実施形態)
本発明の第 7の実施形態は、 本発明に係るピロリン酸検出センサを用 いて測定系の D N Aの塩基種を判別する方法、 より具体的には S NPを 高速にタイピングする方法である。
第 7の実施形態について図 1 1および図 1 2を用いて説明する。 図 1 1は、 検出を目的とする DNAと D NAプロ一ブとにおいて S N P部位 がー致した場合の反応系を示し、 図 1 2は、 検出を目的とする DNAと DN Aプローブとにおいて S N P部位が一致しない場合の反応系を示す。 図 1 1および図 1 2中、 1は DNAプローブ、 2は目的の特定配列を持 つ DNA、 3 aは一致した S NP部位、 3 bは一致しない S N P部位、 4は DNAポリメラーゼ、 そして 5は d N T Pを表す。
本実施形態においては、 まず、 目的とする DNAの配列に相補的な配 列を持ち、 かつ 3 ' 末端が S N P部位である DNAプロ一ブ 1、 DNA ポリメラ一ゼ 4、 デォキシヌクレオチド 5を含む反応系に試料が供せら れる。 これにより、 DNAプローブ 1が伸長され、 ここでピロリン酸が、 この DNAプロ一ブ 1の伸長反応に伴って生成される。
本実施形態で使用される D N Aプローブ 1は、 目的の配列に相補的で あり、 かつ 3 ' 末端が S NP部位であるように設計され得る。 本実施形 態において、 DNAプローブ 1は、 3 ' 末端が S N P部位であることを 除いては、 上述の第 6の実施形態と同様に設計され得る。 本実施形態に おいて使用される D N Aポリメラーゼ 4およびデォキシヌクレオチド 5 は、 上述の第 6の実施形態と同様であり得る。 本実施の形態におけるハ ィプリダイゼ一ションおよび伸長の条件もまた、 上述の第 6の実施形態 と同様であり得る。 なお、 本実施の形態における D N Aプローブは、 S N P部位における塩基種のタイビングが可能であればどのようなもので もよく、 上記により設計されたプロ一ブに限られるものではない。
試料液中の目的の DNA 2および DNAプロ一ブ 1の塩基配列が、 S N P部位も含めて完全に相補する場合、 当該 DN Aプローブ 1は目的の D N A 2にハイブリダィズし、 かつ当該プローブ 1のさらなる伸長のた めのプライマーとして働く。 この場合、 図 1 1に示されるように、 反応 系中に存在する DNAポリメラ一ゼ 4によって、 DNAプローブ 1にデ ォキシヌクレオチド 5が 1つ伸長されて、ピロリン酸が 1つ生成される。 一方、試料液中の目的の D N A 2および D N Aプローブ 1の塩基配列が、 S N P部位において相補的でない場合 (たとえ他の部分において相補的 であったとしても) 、 DNAプローブ 1は、 目的の DNA 2とハイブリ ダイズは行い得るが、 DNAプローブ 1の 3 ' 末端がミスマツチとなる ため、 当該プロ一ブ 1の伸長のためのプライマ一として働かない。 この 場合、 図 1 2に示されるように、 反応系中に DN Aポリメラ一ゼ 4およ び必要なデォキシヌクレオチド 5が存在しても、 化学反応式 1の反応は 起こらず、 ピロリン酸は生成されない。
よって、 DNAの伸長反応後の試料液中のピロリン酸を、 上述の各実 施形態のピロリン酸検出センサを用いて検出することにより、 試料液中 の目的の特定配列を持つ D N A 2および D N Aプローブ 1は、 S N P部 位も含め完全に一致していると判別できる。 S N P部位における多くと も 4種類のプローブ 1を用いれば、 試料中の特定配列を持つ D N A 2の S N Pを 4種類の塩基についてタイビングすることが可能である。
なお、 S N P部位における塩基の種類が既知の場合、 そのタイピング に必ずしも 4種類のプローブが必要でないことは言うまでもない。
D N Aの伸長反応後の試料液中のピロリン酸を、 上述の各実施形態の ピロリン酸検出センサを用いて検出することにより S N Pをタイピング する方法は、 より具体的には、 上述のいずれかのピロリン酸検出センサ の試料液受容部 3 3にピロリン酸を含む前記試料液を満たす工程( c )、 ピロリン酸検出センサの測定手段により固定層の水素イオン濃度の変化 を電気化学的に測定する工程 (d ) 、 工程 (d ) の測定結果に基づいて D N Aの前記伸長反応を検出する工程 ( e ) 、 および工程 ( e ) の検出 結果に基づいて D N Aの塩基配列中の S N P部位の塩基種を判別するェ 程 ( f ) を有する。
本発明で使用される 「試料液」 とは、 ピロリン酸を含み得るいずれの 試料液をもいう。 第 6及び第 7の実施形態においては、 伸長反応により ピロリン酸が生成される D N Aを含み得る試料液である。 特に D N Aの 検出に関する方法 (第 6又は第 7の実施形態) においては、 「試料液」 は、 目的とする D N Aを含み得る任意の被分析物に由来し得る。 このよ うな被分析物は、 目的とする D N Aが疾患と関連し得る場合、 疾患によ つて罹患された細胞、 組織、 器官、 または血液であり得る。 もちろん、 本発明の方法は、 臨床用途に限定されることなく、 あらゆる分野におい て使用され得、 従って、 このような被分析物は、 目的とする D N Aが発 現しているかまたはその存在が確認されている細胞、 組織、 器官、 また は血液であり得る。 D N Aは、 このような被分析物から、 フエノ一ル抽 出法およびアルコール沈殿のような常法を用いて抽出され得る。 D N A の純度は反応の効率に影響を与え得、 D N Aの精製の手順もまた当業者 に公知である。
以上説明したように、 本発明によれば、 ピロリン酸の高感度、 高速、 かつ定量的な測定が可能となるピロリン酸検出センサならびにこれを用 いた拡散の検出方法および塩基種判別方法を提供する。 また、 本発明によれば、 DNAの伸長反応に伴って生成されるピロリ ン酸を測定することによって、試料中の目的 D N Aを標識することなく、 目的の核酸の有無を定量的に測定することが出来る。 さらには、 目的の S NPのタイピングを、 高感度かつ高速に測定することが出来る。
(実施例 1 )
本実施例は、 第 4の実施形態に係るピロリン酸検出センサを作製する ものである。
まず、 S h i z u o Y o s h i d a等の方法 (M a s a y o s h i M a e s h i m a a n d S h i z u o Y o s h i d a . ^ 1 9 8 9 ) J .B i o l .C h e m.2 6 4 ( 3 3 ) ,2 0 0 6 8— 2 0 0 7 3 ) に 準じて、 ヤエナリ由来の液胞膜 1 3からなる膜小胞を T r i s /M e s バッファー (濃度 5 mM、 p H 7. 0 ) 、 s o r b i t o l (濃度 0. 2 5 M) 、 D TT (濃度 2 mM) からなる溶液中に溶かし、 H +—ピロホ スファターゼを含む液胞膜 1 3からなる膜小胞の懸濁液とした。
一方、 金電極 (分極性電極 8 1 ) を I mM n—オクタンチオール/ エタノール溶液中に浸漬し、 室温で 4時間放置して、 金電極表面にォク タンチオールの S AM膜 (固定層 8 3 ) を形成した。 次に、 オクタンチ オール修飾電極を 1 0 mMチォニン水溶液中に浸漬し、 室温で 1時間静 置して、 S AM膜間にチォニン (メディエー夕 8 2 ) を固定化した。
こうして作製したチォニン/ォクタンチオール修飾電極に、 H +—ピロ ホスファタ一ゼを含む膜小胞の懸濁液を滴下することによって、 H +—ピ 口ホスファターゼを固定層 8 3表面に固定し、 H +—ピロホスファタ一 ゼ電極を構成した。 ピロリン酸ナトリウムの各終濃度がそれぞれ 2 0 μ Μ、 4 0 μΜ、 6 0 μΜ、 8 Ο μΜおよび 1 0 0 μ Μとなるようにピロ リン酸ナトリウム溶液を Η +—ピロホスファターゼに接触させ、 Η +—ピ 口ホスファタ一ゼによるピロリン酸の加水分解反応を開始した。
サンプル液中のピ口リン酸ナトリゥムの濃度と、 参照電極 2 7 として 銀/塩化銀電極を用い、 2 0 OmVの電位をかけたときの金電極の示し た電流値は、ほぼ直線関係であるという結果が得られた。このことから、 本方法によりピロリン酸の量を測定できることがわかった。
(実施例 2 )
本実施例は、 第 1の実施形態にかかるピロリン酸検出センサを作製す るものである。
まず、 M a s a s u k e Y o s h i d a等の方法 (M a s a H.S a t o, M a s a h i k o K a s a h a r a, N o r i y u k i I s h i i , H a r u o H om a r e d a, H i d e o M a t s u i a n d M a s a s u k e Y o s h i d a. ( 1 9 9 4) J . B i o l . C h e m.2 6 9 ( 9 ) , 6 7 2 5— 6 7 2 8 ) に準じ、 カポチヤの種から 液胞膜 H +—ピロホスファターゼの精製を行なった。
一方、 0. 1 gポリビニルプチラル樹脂と 1 gへキサメチレンジアミ ンをジクロロメタンに溶解し、 室温で 3 0分間撹拌した溶液を、 I S F ETのゲート電極 (水素イオン感受性電極 2 3 ) に滴下した後、 5 %グ ルタルアルデヒドに浸漬し、 室温で 2 4時間放置した。 このようにして I S F E T電極上に固定層 5 1を形成した。 そして、 固定層 5 1が形成 された I S F E T電極 (修飾 I S F E T電極) を、 5 m g/m l の H + —ピロホスファターゼ溶液に浸漬し、 4°Cで 2 4時間静置し、 H +—ピロ ホスファタ一ゼを I S F E Tのゲート電極に固定した。この H +—ピロホ スファ夕ーゼ固定 I S F E T電極に対してピロリン酸ナトリゥムの各終 濃度がそれぞれ 2 0 μ Μ、 4 0 μΜ、 6 0 μ Μ、 8 0 μ Μおよび 1 0 0 μΜとなるようにピロリン酸ナトリゥム溶液を添加し、 ピロリン酸の Η + 一ピロホスファタ一ゼによる加水分解反応を開始した。
サンプル液中のピロリン酸ナトリウムの濃度と、 参照電極 2 7 として 銀 Ζ塩化銀電極を用い、 Η +—ピロホスファタ一ゼ固定 I S F Ε Τ電極の ソース一 ドレイン間に 4. 0 Vの電圧をかけ、 ソース一ドレイン間の電 流値を 40 0 μ Aに保ったときのゲート電圧値は、 ほぼ直線関係である という結果が得られた。 このことから、 本方法によりピロリン酸の量を 測定できることがわかった。
(実施例 3 )
本実施例は、 第 5の実施形態のピロリン酸検出センサを作製するもの である。
まず、上記実施例 2 と同様にカポチヤの種由来の液胞膜 H +—ピロホス ファターゼを精製した。
次に、上述した液胞膜 H +—ピロホスファタ一ゼ 5 0 m g /m 1 と、 0. 1 Mのピロールと、 1 Mの塩化カリウムとを混合し、 電解重合用混合液 を得た。 この電解重合用混合液に、 分極性電極 8 1である白金電極と、 参照電極 2 7として銀ノ塩化銀電極を浸漬し、 白金電極に + 1 Vの定電 圧を 6分間印加し、電解重合により H +—ピロホスファターゼ固定化ポリ ピロール膜修飾電極を得た。このようにして得られた H +—ピロホスファ 夕ーゼ固定化ポリピロ一ル膜修飾電極に対してピロリン酸ナトリゥムの 各終濃度がそれぞれ 2 Ο μ Μ、 4 0 μΜ、 6 0 μ Μ、 8 0 μΜおよび 1 0 0 μΜとなるようにピロリン酸ナトリウム溶液を添加し、 ピロリン酸 の Η +—ピロホスファ夕ーゼによる加水分解反応を開始した。
ピロリン酸ナトリゥムの濃度と、 参照電極 2 7 として銀/塩化銀電極 を用い、 3 0 O mVの電位をかけたときの Η +—ピロホスファタ一ゼ固定 化ポリピロール膜修飾電極の示した電流は、 ほぼ直線関係であるという 結果が得られた。 このことから、 本方法によってピロリン酸の量を測定 できることがわかった。
(実施例 4)
本実施例では、 試料中における X DNA (λ D N Aの全塩基配列は、 G e n B a n kデ一夕ベースの A c c e s s i o n N o . V 0 0 6 3 6、 J 0 2 4 5 9 , M l 7 2 3 3、 X 0 0 9 0 6を参照) の検出を行な つた
まず、 λ D N Α (宝酒造 (株) 製) が 1 0 n g /μ Lの濃度で蒸留水 中に溶解されている試料液 2 6 A、 および蒸留水のみからなる試料液 2 6 Bを用意した。 また、 図 1 3 Aに示すように、 λ D NAの特定の塩基 配列に完全にハイブリダィズし得る 2種類のプライマ一 C (配列番号 : 1 ) およびプライマー D (配列番号: 2 ) をそれぞれ蒸留水に溶かした プライマ一溶液 Εおよび F (いずれも 2 0 μ Μ) を用意した。
上記試料液 2 6 Αおよび 2 6 Βそれぞれに、 T a K a R a L a T a q ( 5 U/μ L、 宝酒造 (株) 製) 、 T a K a R a L a T a qの 専用バッファーである 2 xG C b u f f e r I (宝酒造 (株) 製) 、 d N T P m i x t u r e (各濃度 2. 5 mM、 宝酒造 (株) 製) 、 な らびにプライマー溶液 Eおよび Fを添加して、 図 1 3 Bに示す組成の P C R反応液 Gおよび Hを調製した。
次に、 P C R反応液 Gおよび Hのそれぞれについて、 図 1 3 Cに示す 反応温度条件で P C R反応を行なった。
P C R反応終了後、 P C R反応液 Gおよび Hのそれぞれを、 上記実施 例 1に記載の H +—ピロホスファターゼ電極を用いて、実施例 1 と同様に 参照電極として銀/塩化銀電極を用い、 2 0 O mVの電位を印加して電 流を測定したところ、 じ 1 反応液0の方が、 ?〇 反応液11ょりも明 らかに電流値が大きかった。 つまり、 01^反応液0では、 プライマ一 伸長反応が進行したことがわかる。 従って、 本方法により標的核酸の検 出ができることがわかった。
(実施例 5 )
本実施例では、 λ D NAの塩基配列内におけるある塩基を人為的に他 の塩基に置換した変異型 X D NAを作製し、 通常の X D NAと変異 X D N Aとを判別できるか否かについて検討した。
まず、 λ D NA (宝酒造 (株) 製) (配列番号 : 3 ) を用いて変異型 λ DNA (配列番号 : 4) を作製した。 変異型 λ DNAは、 λ DNA (以 下、 通常の λ D Ν Αのことを野性型 λ D Ν Αと記す) の二本鎖 DN A配 列内に存在する G C塩基対 (図中の領域 R !) を当業者に周知の方法で 人為的に AT塩基対 (図中の領域 R 2) に置換した。
次に、 野性型 λ D N Aおよび変異型 λ D N Aのそれぞれを最終濃度 1
0 n g/μ Lとなるように蒸留水に溶解したものをそれぞれ野性型 λ D
Ν Α液および変異型 λ D Ν Α液とした。
次に、 上記の塩基の違いを判別するために、 図 1 4 Aに示すタイピン ダプライマ一 (配列番号 : 5 ) を用意した。 続いて、 タイピングプライ マーを最終濃度 2 0 μΜとなるように蒸留水に溶解したタイピンダプラ イマ一溶液を調製した。
なお、 図 1 4 Αに示すタイピングプライマ一は、 野性型 X DNAの下 の段に記した一本鎖 DN Aに完全にハイブリダィズする。 しかし、 この タイピングプライマ一の 3 ' 末端の Gは、 変異 λ D N Aの下の段に記し た一本鎖 DN Aにハイブリダィズできない。 従って、 このタイピングプ ライマーを用いてプライマ一伸長反応を行なうと、 野性型 λ DNAの場 合は良好に反応が進行するが、 変異 λ D Ν Αの場合は反応があまり進行 しない。
また、 上記実施例 4で用いたプライマー溶液 Fも用意した。
次に、野性型 λ D Ν Α液および変異型 λ D Ν Α液のそれぞれについて、 T a K a R a T a q ( 5 U/μ L 宝酒造 (株) 製) 、 および T a K a R a T a q専用の l O xP C R u f f e r (宝酒造 (株) 製) 、 および d NT P m i t u r e (各濃度 2. 5 mM、宝酒造(株)製)、 およびタイピングプライマー溶液およびプライマー溶液 Fを用いて、 図 1 4 Bに示す組成の P C R反応液 Iおよび Jを調製した。
そして、 P C R反応液 Iおよび Jにおいて、 それぞれ図 1 4 Cに示す 反応温度条件で P C R反応を行なった。 P C R反応終了後、各 P C R反応液を H +—ピロホスファタ一ゼを固定 した修飾 I S F E T電極に導入した。 修飾 I S F E T電極は、 上記実施 例 2で用いたものと同様である。
この修飾 I S F E T電極を用いて、 実施例 2 と同様に参照電極として 銀 塩化銀電極を用い、 H +—ピロホスファターゼ固定 I S F E T電極の ソース一ドレイン間に 4 . 0 Vの電圧をかけ、 ソース一ドレイン間の電 流値を 4 0 0 μ Aに保ったときのゲート電圧を測定したところ、 P C R 反応液 I の方が、 P C R反応液 Jよりも明らかに電圧値が大きかった。 つまり、 ?じ 反応液 1では、 プライマ一伸長反応が進行したことがわ かる。 これは、 反応液 Jでは伸長反応が起きなかったが、 変異型 X D N Aを含む伸長反応液 Iでは d A T Pによる 1塩基伸長反応が起こり、 そ の結果、生成されるピロリン酸が修飾 I S F E T電極上の H +—ピロホス ファターゼと反応し、 水素イオンが修飾 I S F E T電極側に輸送された ためと考えられる。
従って、 本実施例によれば、 D N Aの特定の塩基配列中の 1塩基対の 違いを判別できることがわかった。 すなわち、 本実施例は、 本発明の方 法が、 S N P部位の塩基種の判別、突然変異による 1塩基対の変異など、 特定の塩基配列を判別するために非常に有効であることを示すものであ る。
上記説明から、 当業者にとっては、 本発明の多くの改良や他の実施形 態が明らかである。 従って、 上記説明は、 例示としてのみ解釈されるべ きであり、 本発明を実行する最良の態様を当業者に教示する目的で提供 されたものである。 本発明の精神を逸脱することなく、 その構造及び Z 又は機能の詳細を実質的に変更できる。
〔産業上の利用の可能性〕
本発明に係るピ口リン酸検出センサは、 例えば S N P部位の塩基種の 判別に利用することができ、 従って S N Pタイピングに基づいた薬の投 与といったテーラーメード医療に有用である。 また、 本発明に係るピロ リン酸検出センサは、 D N Aの塩基配列中の突然変異の解析に有用であ り、 かかる解析結果を創薬や臨床に利用することができる。
さらに、 本発明に係るピロリン酸検出センサは、 特定の塩基配列を有 する核酸の検出に利用することができ、 核酸の検出は、 遺伝病の診断、 細菌およびウィルス等による食品の汚染検査、 人体への感染検査に有用 である。 [配列表のフリ一テキスト]
配列番号 1のく 223〉: プライマー
配列番号 2のく 223>: プライマー
配列番号 3のく 223〉: 二本鎖 D N A
配列番号 4の〈223>: 二本鎖 D N A
配列番号 5のく Π 3>: プライマー

Claims

請 求 の 範 囲
1 . 試料液中のピロリン酸を検出するピロリン酸検出センサであって、 前記試料液を受容する試料液受容部と、
H +—ピロホスファタ一ゼを有する H +難透過性膜と、
前記 H +難透過性膜を固定する固定層と、
前記固定層の水素イオン濃度変化に伴う電気化学的変化を測定する測 定手段と、 を備え、
前記 H +—ピ ホスファタ一ゼは、 前記試料液中のピ口リン酸を加水 分解し、 これに伴って固定層の水素イオン濃度に変化をもたらすように 配されている、 ピロリン酸検出センサ。
2 . 前記固定層は、 その上面又はその内部に H +難透過性膜を固定す る、 請求の範囲第 1項に記載のピロリン酸検出センサ。
3 . 前記 H +難透過性膜は膜小胞であり、 前記固定層は前記 H +難透過 性膜をその内部に固定する、 請求の範囲第 1項に記載のピロリン酸検出 センサ。
4 . 前記測定手段は、 前記固定層に接する水素イオン感受性電極と、 前記試料液を受容した状態で前記試料液に接するように配された参照電 極とを有する、 請求の範囲第 1項に記載のピロリン酸検出センサ。
5 . 前記測定手段は、 前記水素イオン感受性電極と前記参照電極との 電位差の変化を測定する、 請求の範囲第 4項に記載のピロリン酸検出セ ンサ。
6 . 前記固定層は高分子ゲルまたは自己組織化単分子膜からなる、 請 求の範囲第 4項に記載のピロリン酸検出センサ。
7 . 前記固定層は、 水素イオン濃度の変化により酸化還元反応が生じ る材料を含み、
前記測定手段は、 前記固定層に接する分極性電極と、 前記試料液を受 容した状態で前記試料液に接するように配された参照電極とを有する、 請求の範囲第 1項に記載のピロリン酸検出センサ。
8 . 前記測定手段は、 前記分極性電極と前記参照電極との間の電流の 変化を測定する、 請求の範囲第 7項に記載のピロリン酸検出センサ。
9 . 前記固定層は、 水素イオン濃度の変化により酸化還元反応が生じ るメディェ一タを含む高分子ゲルまたは自己組織化単分子膜からなり、 その上面に前記 H +難透過性膜を固定する、 請求の範囲第 7項に記載の ピロリン酸検出センサ。
1 0 . 前記固定層は、 水素イオン濃度の変化により酸化還元反応が生 じる電解重合材料からなる、 請求の範囲第 7項に記載のピロリン酸検出 センサ。
1 1 . 請求の範囲第 1項に記載のピロリン酸検出センサを用いる、 特 定の塩基配列を有する核酸の検出方法であって、 該方法は以下の工程を 包含する ;
試料と、 前記核酸に相補的に結合する相補結合領域を含む塩基配列を 有するプライマ一と、ヌクレオチドとを含む試料液を調製する工程( a )、 前記試料液を前記プライマーの伸長反応が生じる条件下におき、 前記 伸長反応が生じた場合にピロリン酸を生成する工程 (b) 、 前記ピロリン酸検出センサの前記試料液受容部に前記試料液が受容さ れた状態とする工程 (c ) 、
前記ピロリン酸検出センサの前記測定手段により前記固定層の水素ィ オン濃度変化に伴う電気化学的変化を測定する工程 (d) 、
工程(d) の測定結果に基づいて前記伸長反応を検出する工程( e ) 、 および
工程 ( e ) の検出結果に基づいて前記核酸を検出する工程 ( f ) 。
1 2. 請求の範囲第 1項に記載のピロリン酸検出センサを用いる、 核 酸の塩基配列中の塩基種判別方法であって、 該方法は以下の工程を包含 する ;
核酸と、 前記核酸に相補的に結合する相補結合領域を含む塩基配列を 有するプライマーと、ヌクレオチドとを含む試料液を調製する工程( a )、 前記試料液を前記プライマーの伸長反応が生じる条件下におき、 前記 伸長反応が生じた場合にピロリン酸を生成する工程 (b) 、
前記ピロリン酸検出センサの前記試料液受容部に前記試料液が受容さ れた状態とする工程 ( c ) 、
前記ピロリン酸検出センサの前記測定手段により前記固定層の水素ィ オン濃度変化に伴う電気化学的変化を測定する工程 (d) 、
工程(d) の測定結果に基づいて前記伸長反応を検出する工程( e;) 、 および
工程 ( e ) の検出結果に基づいて前記核酸の塩基配列中の塩基種を判 別する工程 ( f ) 。
PCT/JP2004/009787 2003-07-02 2004-07-02 ピロリン酸検出センサ、核酸の検出方法、および塩基種判別方法 WO2005003750A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005511429A JP3761569B2 (ja) 2003-07-02 2004-07-02 ピロリン酸検出センサ、核酸の検出方法、および塩基種判別方法
US10/536,014 US20060269915A1 (en) 2003-07-02 2004-07-02 Pyrophosphate acid detection sensor, method of detection of nucleic acid, and method of discrimination of base type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-190121 2003-07-02
JP2003190121 2003-07-02

Publications (1)

Publication Number Publication Date
WO2005003750A1 true WO2005003750A1 (ja) 2005-01-13

Family

ID=33562319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009787 WO2005003750A1 (ja) 2003-07-02 2004-07-02 ピロリン酸検出センサ、核酸の検出方法、および塩基種判別方法

Country Status (4)

Country Link
US (1) US20060269915A1 (ja)
JP (1) JP3761569B2 (ja)
CN (1) CN100453651C (ja)
WO (1) WO2005003750A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233050A (ja) * 2007-03-23 2008-10-02 Hitachi Ltd Dna分析方法および分析装置
WO2013118894A1 (ja) * 2012-02-09 2013-08-15 富山県 対象物質の定量方法
JP2017075942A (ja) * 2015-10-15 2017-04-20 アークレイ株式会社 バイオセンサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647779A1 (en) * 2018-11-05 2020-05-06 Imec VZW Field-effect transistor-based biosensor comprising electrolyte-screening layer
CN111349555B (zh) * 2018-12-21 2023-07-18 成都万众壹芯生物科技有限公司 一种基于微孔阵列芯片的数字pcr扩增装置及其使用方法
EP3674702A1 (en) * 2018-12-27 2020-07-01 Imec VZW Method for sequencing a polynucleotide using a biofet
CN112525957A (zh) * 2020-10-09 2021-03-19 安徽大学 一种区分磷的不同价态含氧酸磷酸及亚磷酸的方法
CN113333042B (zh) * 2021-06-21 2022-04-22 太原理工大学 一种用于核酸检测的微流控芯片及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056337A (ja) * 1999-08-19 2001-02-27 Hitachi Ltd Dna分析装置
JP2002369698A (ja) * 2001-06-14 2002-12-24 Fuji Photo Film Co Ltd ピロ燐酸定量用試薬及び乾式分析素子
JP2003000299A (ja) * 2001-06-18 2003-01-07 Fuji Photo Film Co Ltd ターゲット核酸断片の検出方法及びターゲット核酸断片の検出キット
JP2003174900A (ja) * 2001-12-11 2003-06-24 Miyagi Prefecture ピロリン酸と核酸の定量方法およびその装置
JP2004141158A (ja) * 2002-10-01 2004-05-20 Matsushita Electric Ind Co Ltd プライマーの伸長反応検出方法、塩基種判別方法、塩基種判別装置、ピロリン酸の検出装置、核酸の検出方法および試料溶液導入チップ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL93020A (en) * 1990-01-09 1995-06-29 Yeda Res & Dev Biosensors comprising a lipid bilayer doped with ion channels anchored to a recording electrode by bridging molecules
GB9604292D0 (en) * 1996-02-29 1996-05-01 Hybaid Ltd Estimation of a nucleic acid
GB0105831D0 (en) * 2001-03-09 2001-04-25 Toumaz Technology Ltd Method for dna sequencing utilising enzyme linked field effect transistors
US20030031911A1 (en) * 2001-04-13 2003-02-13 Rosalyn Ritts Biocompatible membranes and fuel cells produced therewith
JP2002306180A (ja) * 2001-04-16 2002-10-22 Hitachi Ltd 核酸塩基配列解析法および核酸塩基配列解析試薬キットおよび核酸塩基配列解析装置
US6652720B1 (en) * 2001-05-31 2003-11-25 Instrumentation Laboratory Company Analytical instruments, biosensors and methods thereof
US7374944B2 (en) * 2001-10-03 2008-05-20 Purdue Research Foundation Device and bioanalytical method utilizing asymmetric biofunctionalized membrane
CN1500887A (zh) * 2002-10-01 2004-06-02 松下电器产业株式会社 引物伸长反应检测方法、碱基种类判别方法及其装置
US20050032246A1 (en) * 2002-11-14 2005-02-10 Mcmaster University Method of immobilizing membrane-associated molecules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056337A (ja) * 1999-08-19 2001-02-27 Hitachi Ltd Dna分析装置
JP2002369698A (ja) * 2001-06-14 2002-12-24 Fuji Photo Film Co Ltd ピロ燐酸定量用試薬及び乾式分析素子
JP2003000299A (ja) * 2001-06-18 2003-01-07 Fuji Photo Film Co Ltd ターゲット核酸断片の検出方法及びターゲット核酸断片の検出キット
JP2003174900A (ja) * 2001-12-11 2003-06-24 Miyagi Prefecture ピロリン酸と核酸の定量方法およびその装置
JP2004141158A (ja) * 2002-10-01 2004-05-20 Matsushita Electric Ind Co Ltd プライマーの伸長反応検出方法、塩基種判別方法、塩基種判別装置、ピロリン酸の検出装置、核酸の検出方法および試料溶液導入チップ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008233050A (ja) * 2007-03-23 2008-10-02 Hitachi Ltd Dna分析方法および分析装置
US7960113B2 (en) 2007-03-23 2011-06-14 Hitachi, Ltd. DNA analysis method and DNA analyzer
US8246810B2 (en) 2007-03-23 2012-08-21 Hitachi, Ltd. DNA analysis method and DNA analyzer
WO2013118894A1 (ja) * 2012-02-09 2013-08-15 富山県 対象物質の定量方法
US9708639B2 (en) 2012-02-09 2017-07-18 Toyama Prefecture Method for quantifying amino acids with pyrophosphate
JP2017075942A (ja) * 2015-10-15 2017-04-20 アークレイ株式会社 バイオセンサ

Also Published As

Publication number Publication date
JPWO2005003750A1 (ja) 2006-08-17
CN100453651C (zh) 2009-01-21
CN1705878A (zh) 2005-12-07
US20060269915A1 (en) 2006-11-30
JP3761569B2 (ja) 2006-03-29

Similar Documents

Publication Publication Date Title
US11674174B2 (en) Nucleic acid sequences using tags
US20230392157A1 (en) Aptamer method
US20110045484A1 (en) Method of detecting target molecule by using aptamer
US7632392B2 (en) Sensor of pyrophosphate and SNP typing sensor using the same
EP1378575A1 (en) Method of detecting inorganic phosphoric acid, pyrophosphoric acid and nucleic acid and method of typing snp sequence of dna
JP3761569B2 (ja) ピロリン酸検出センサ、核酸の検出方法、および塩基種判別方法
US20200377944A1 (en) Compositions and methods for unidirectional nucleic acid sequencing
US20170275687A1 (en) Nucleic acid sequencing by electrochemical detection
Downs et al. Optical and electrochemical detection of DNA
JP3866277B2 (ja) ピロリン酸測定方法及びプライマー伸張反応検出方法、並びにこれら方法を実施するための装置
WO2021133340A1 (en) Ready-to-use diagnostic kit based on electrochemical nanobiosensor for antibiotic resistance gene determination
Zheng et al. A highly sensitive nanopore platform for measuring RNase A activity
CN112204154A (zh) Dna-孔隙-聚合酶复合物的酶促富集
Guan et al. A Highly Sensitive Nanopore Platform for Measuring Rnase a Activity

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005511429

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006269915

Country of ref document: US

Ref document number: 20048013449

Country of ref document: CN

Ref document number: 10536014

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10536014

Country of ref document: US