WO2005003567A1 - 遠心式羽根車及びその設計方法 - Google Patents

遠心式羽根車及びその設計方法 Download PDF

Info

Publication number
WO2005003567A1
WO2005003567A1 PCT/JP2004/009121 JP2004009121W WO2005003567A1 WO 2005003567 A1 WO2005003567 A1 WO 2005003567A1 JP 2004009121 W JP2004009121 W JP 2004009121W WO 2005003567 A1 WO2005003567 A1 WO 2005003567A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
impeller
fluid
blades
shape
Prior art date
Application number
PCT/JP2004/009121
Other languages
English (en)
French (fr)
Inventor
Yukinori Sakata
Original Assignee
Yukinori Sakata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yukinori Sakata filed Critical Yukinori Sakata
Publication of WO2005003567A1 publication Critical patent/WO2005003567A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Definitions

  • the present invention relates to a centrifugal impeller used for a compressor and a blower, and a design method thereof.
  • a centrifugal compressor or blower compresses or blows a gas by applying speed and pressure to gas using the centrifugal force of an impeller.
  • the work is performed by the pressure on the discharge side.
  • a fluid gas and liquid
  • a fluid passes through a flow path formed between the blades. It is guided from the suction side (rotational center side) to the discharge side (outer circumference side) to obtain a compression effect by the pressure on the discharge side.
  • Patent Document 2 a technique of forming a curved surface that is convex in the rotation direction (see Patent Document 2) or a multi-arc configuration (see Patent Document 3) is known. Further, there is a type in which a flow path formed between the blades is formed such that the relative velocity of a fluid passing therethrough is substantially constant (see Patent Document 4).
  • Fig. 27 is a schematic diagram showing a conventional centrifugal impeller
  • Fig. 28 is a plan view showing the conventional centrifugal impeller rotating
  • Fig. 29 is a side sectional view showing the conventional centrifugal impeller covered with an outer wall.
  • Fig. 30 is a view showing the state where the discharge side is closed
  • Fig. 31 is an explanatory view showing the generation process of the induced velocity in the impeller
  • Fig. 32 is a view showing a conventional centrifugal impeller
  • Fig. 33 is a conventional It is a figure which shows a centrifugal impeller.
  • a rotating shaft 105 as shown in FIGS. 27 to 29 is provided, and twelve trapezoidal plate-shaped blades 103 are attached to a disc-shaped base 102 at equal angular intervals in the circumferential direction.
  • a centrifugal impeller (impeller) 101 having a simple structure radially arranged is used as an example.
  • the impeller 101 is covered with an outer wall 109, and the motor 107 is rotated around a rotation shaft 105. The case will be described.
  • the blade surface of the blade 103r compresses the fluid between the adjacent blades 103f and 103r at the front side in the traveling direction of the blade 103r.
  • the back of the blade (the rear surface in the traveling direction) of the blade 103f has a negative pressure (substantially vacuum), which is shown in FIGS.
  • the flow of the fluid is interrupted by the vortex (hereinafter referred to as the induced velocity in the impeller) generated as the rotational speed of the impeller 101 increases.
  • FIGS. 32 and 33 a general blade shape of an impeller used in many spiral pumps, centrifugal compressors, blowers, and the like that are currently in practical use will be described with reference to FIGS. 32 and 33.
  • the pitch P between blades shown in FIG. 32A is widened from the suction side to the discharge side. Therefore, even when the blade height (the height of the blade 113 in the protruding direction with respect to the surface of the base 112) is taken into consideration, the fluid passage area increases from the suction side to the discharge side.
  • 113c indicates the suction surface blade height
  • 113d indicates the discharge surface blade height
  • a ratio of a flow passage area of a discharge side to a suction side is shown. Is about 1/2, and the area change rate from the suction side to the discharge side is almost constant.
  • the pitch between the blades increases from the suction side to the discharge side, phenomena such as the induced speed in the impeller during high-speed rotation as described above occur. For this reason, if the acceleration of the molecular flow is delayed, or if there is a difference in the static pressure between the suction side and the discharge side, the flow of the fluid will be delayed. In other words, dynamic compression can be performed, but static compression cannot.
  • 123c indicates the suction surface blade height
  • 123d indicates the discharge surface blade height.
  • the term "dynamic pressure” refers to the pressure generated when a fluid moves out of the pressure indicated by a fluid, that is, the part related to the velocity of the flow.It is the kinetic energy density, not the pressure itself. Means the pressure increase obtained when damming.
  • the “static pressure” is the normal pressure, that is, the stress perpendicular to the surface acting on the assumed surface in a stationary fluid, and in the case of a moving fluid, the pressure in each direction is It means the average value of the normal component.
  • the present invention provides a centrifugal impeller used for a centrifugal compressor or the like, which has been used in various applications in recent years and is required to improve performance by increasing the pressure ratio, from the suction side of the flow path. Compression efficiency is improved by making the rate of change of the fluid passage area to the discharge side constant, and when designing the blade shape, the three-dimensional regularity is obtained by using the hyperbolic shape and the rate of change.
  • a centrifugal blade that can be freely designed for any application by using a unified method of geometric drawing without using complicated equations by forming a wing shape with A vehicle and a method for designing the same are provided.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-349487
  • Patent Document 2 JP-A-2002-332993
  • Patent Document 3 JP-A-5-39799
  • Patent Document 4 JP-A-9-168197
  • the blade is curved in a blade height direction and in a forward direction with respect to a rotation direction.
  • At least one of the elements of the outer shape line, the inner shape line, the wing height direction warp, and the wing length direction warp constituting the blade is formed from a hyperbolic shape or a curve using the change rate thereof. Is what is done.
  • a centrifugal impeller having a plurality of blades whose shapes are determined by elements, wherein at least one of the elements forming the blades is designed using a hyperbolic shape or a rate of change thereof. is there.
  • the centrifugal impeller by making the distance between adjacent blades constant from the suction surface to the discharge surface of the fluid, the circumferential compression of the fluid is improved, which occurs during high-speed rotation. Turbulent flow can be suppressed, and the compression effect can be improved. In addition, by gradually reducing the distance between the blades from the suction surface to the discharge surface of the fluid, the circumferential compression of the fluid is improved, and the occurrence of turbulence generated during high-speed rotation can be prevented. A more efficient compression effect can be obtained.
  • the blades are curved in the blade height direction and in the forward direction with respect to the rotation direction, the fluid does not come into contact with portions other than the blade surface, and the passage of the fluid is limited to the blade surface. As a result, the flow becomes smooth without sudden deflection due to collision of molecules, and turbulence can be prevented.
  • At least one of the elements of the outer shape line, the "inner shape line”, the “sledge in the blade height direction” and the “sledge in the blade length direction” constituting the blade is formed from a hyperbolic shape or a curve using the change rate thereof. Therefore, it is possible to design a blade shape in which the rate of change of the fluid passage area from the suction side to the discharge side of the flow path formed by the blades is constant. In addition, since the suction surface passage area and the discharge surface passage area can be arbitrarily adjusted, it is possible to design a centrifugal impeller with improved compression efficiency according to various use purposes and use conditions.
  • a centrifugal impeller having a plurality of blades whose shapes are determined by elements, wherein at least one of the elements forming the blades is designed using a hyperbolic shape or a rate of change thereof. Based on one basic curve, the hyperbola, the suction side force of the flow path formed by the blades and the fluid flowing to the discharge side are obtained by a unified and three-dimensionally regular and highly flexible design method.
  • FIG. 1 is a diagram showing an embodiment of a centrifugal impeller according to the present invention.
  • A is a plan view.
  • B is a side sectional view.
  • FIG. 2 is a view showing one embodiment of a centrifugal impeller according to the present invention.
  • A is a plan view.
  • B is a side sectional view.
  • FIG. 3 is an explanatory diagram showing a fluid passage area in the centrifugal impeller shown in FIG. 1.
  • FIG. 4 is an explanatory diagram showing a passage area of a fluid in the centrifugal impeller shown in FIG. 2.
  • FIG. 5 is a diagram schematically showing a passage area of a fluid.
  • FIG. 6 is a diagram showing a change in a fluid passage area.
  • FIG. 7 is an explanatory diagram showing compression of a fluid in a circumferential direction.
  • FIG. 8 is an explanatory diagram showing compression of a fluid in a rotation axis direction.
  • FIG. 9 is a view showing deflection of a fluid by a wall surface.
  • FIG. 10 is a view as seen from an arrow E in FIG. 9 showing deflection of fluid by the wing surface.
  • FIG. 11 is a diagram showing a hyperbola used in the method for designing a centrifugal impeller according to the present invention.
  • FIG. 12 is a view showing an embodiment of an outer shape of an impeller.
  • FIG. 13 is a diagram showing an embodiment of an impeller outer shape.
  • FIG. 14 is a diagram showing an embodiment of a method for designing an outer shape of an impeller.
  • FIG. 15 is a diagram showing an embodiment of a method for designing an outer shape of an impeller.
  • FIG. 16 is an explanatory diagram showing a change in the angle of a hyperbola.
  • FIG. 17 is an explanatory diagram showing a method of deriving a basic center line.
  • FIG. 18 is an explanatory view showing one embodiment of a method of designing a shape in the blade length direction.
  • FIG. 19 is an explanatory view showing one embodiment of a method for designing a shape in the blade length direction.
  • FIG. 20 is an explanatory view showing one embodiment of a method of designing a shape in the blade length direction.
  • FIG. 21 is an explanatory diagram showing a three-dimensional deployment method of the warp in the blade length direction.
  • FIG. 22 is a perspective view showing one embodiment of a centrifugal impeller according to the present invention.
  • FIG. 23 is a plan view showing a centrifugal impeller having 18 blades.
  • FIG. 24 is a side view of the same.
  • FIG. 25 is a plan view showing a centrifugal impeller having 12 blades.
  • FIG. 26 is a plan view showing a centrifugal impeller having 24 blades.
  • FIG. 27 is a schematic view showing a conventional centrifugal impeller.
  • FIG. 28 is a plan view showing a conventional centrifugal impeller rotating.
  • FIG. 29 is a side sectional view showing a state in which a conventional centrifugal impeller is covered with an outer wall.
  • FIG. 30 is a view showing a state where the discharge side is closed.
  • FIG. 31 is an explanatory diagram showing a generation process of an induced velocity in an impeller.
  • FIG. 32 is a view showing a conventional centrifugal impeller.
  • A is a plan view.
  • B is a side sectional view.
  • FIG. 33 is a view showing a conventional centrifugal impeller.
  • A is a plan view.
  • B is a side sectional view. Explanation of reference numerals
  • centrifugal impeller of the present invention will be described with reference to FIGS.
  • description will be made using two typical types of centrifugal impellers as shown in FIGS.
  • centrifugal impeller 1 a centrifugal impeller according to the present invention
  • An impeller 1 according to the present invention is provided with a base 2 having a circular shape in a plan view, which is fixed to a rotating shaft 5, and provided on the base 2 in a circumferential direction (radial direction) from a center portion in a circumferential direction (rotation direction).
  • a plurality of blades 3 are provided at intervals, and the base 2 and the plurality of blades 3 form an outer shape.
  • the blade 3 forms a curved surface protruding from the base 2 from the center to the outer periphery of the base 2, and the length of the blade 3 from the center to the outer periphery is referred to as “wing length”. And The blades 3 are curved in the blade length direction in the direction opposite to the one rotation of the impeller (retreating direction), and the curvature of the blades 3 shown in a plan view is referred to as “swing in the blade length direction”.
  • the blade 3 protrudes from the base 2, and the height of the blade 3 in the protruding direction and the side thereof are referred to as "wing height”.
  • the blade 3 can have a curved shape also in this blade height direction. This curvature in the wing height direction is referred to as “swing in the wing height direction”. In the case of forming the blade in the blade height direction, the blade is curved in the rotation direction (forward direction) of the impeller 1.
  • the front surface of the blade 3 in the one rotation direction of the impeller is referred to as “wing surface”, the rear surface thereof is referred to as “wing back”, and the distance between adjacent blades is referred to as “blade pitch P”.
  • the distance between adjacent blades means a line perpendicular to a tangent line at an arbitrary point on the blade surface, and the intersection of this line with the back surface of the blade 3 on the front side in the rotation direction and the arbitrary point Refers to distance.
  • the blade 3 has an outer shape line 3a, an inner shape line 3b which is a boundary line with the base 2, and a blade height at a suction surface (described later).
  • the two-dimensional shape in side view is determined by the suction surface blade height 3c and the discharge surface blade height 3d which is the blade height at the discharge surface (described later).
  • the three-dimensional shape is determined by the addition of the warp.
  • the two typical shapes of the centrifugal impeller described above are those in which the blade height of the blade 3 is perpendicular to the horizontal plane as shown in FIG. 1 and FIG.
  • the “vertical type” and the blades 3 whose blade height is parallel to the horizontal plane as shown in FIG. 2 (hereinafter referred to as “parallel type”).
  • the fluid passage area is the area of a surface of the flow path formed by the blades 3 perpendicular to the direction in which the fluid travels, and is not the space between a pair of adjacent blades and the entire circumference of the impeller 1. From the suction side to the discharge side. That is, assuming that the figure which is a trajectory when the suction surface blade height 3c is rotated about the rotation axis 5 is the suction surface S1, the area of the suction surface S1 is the suction surface passage area, and similarly, If the discharge surface blade height 3d is rotated around the rotation axis 5 and the figure is a discharge surface S2, the area of the discharge surface S2 is the discharge surface passage area.
  • the suction surface S1 and the discharge surface S2 are substantially cylindrical side surfaces, respectively, as shown by the hatched portion shown in FIG. 3, and the suction surface passage area is equal to the suction surface S1.
  • D1 X ⁇ X is obtained from the suction surface blade height 3c.
  • the discharge surface passage area is determined by D2 X ⁇ X discharge surface blade height 3d, where D2 is the diameter of a circle having the shape of the discharge surface S2 in plan view.
  • the suction surface S1 and the discharge surface S2 correspond to the suction surface blade height 3c and the discharge surface blade height 3d, and the rotation axis 5
  • the area of each shape that becomes a trajectory when rotated about the center is the suction surface passage area and the discharge surface passage area.
  • the passage area in the middle of the flow path between the suction surface S1 and the discharge surface S2 is also a circle along the surface of the base 2 at a position in the radial direction. It is determined by the product of the circumference length and the blade height of blade 3.
  • the blade 3 only plays a role of partitioning the flow path of the impeller 1 determined by the shape of the blade 3.
  • the change in the fluid passage area that is, the change in the area of the flow path from the suction surface S1 to the discharge surface S2 is determined by the shape of the blade 3. Therefore, the effect of the change in the fluid passage area on the fluid will be described.
  • the fluid passage in the impeller 1 is schematically regarded as a cylindrical flow path, and this cylindrical In the flow paths, the flow direction of the fluid is set with the right side of the drawing as the suction side and the left side as the discharge side, and the cross-sectional area perpendicular to the fluid traveling direction will be described as the passage area at each position.
  • the first variation pattern of the passage area of the fluid is a case where the fluid gradually spreads from the suction side to the discharge side. That is, as shown in FIG. 6 (a), in the impeller, the area of the discharge surface S2 is larger than the area of the suction surface S1 of the fluid, and the passage area gradually increases from the suction side to the discharge side. Has become wider. This is remarkably seen in a device that works with negative pressure on the suction side, such as a blower-pump using an impeller having a blade shape generally called a spiral type.
  • the following shows a case where the fluid passage areas are all the same from the suction surface S1 to the discharge surface S2. That is, as shown in FIG. 4D, when shown in a schematic diagram, the cylinder becomes a complete cylinder, and has the same passage area from the suction surface S1 to the middle flow path and the discharge surface S2. In this case, since the density deviation of the fluid does not occur, the compression effect can be obtained by the accelerated dynamic pressure. However, when the static pressure outside the discharge surface S2 rises, the fluid density becomes unstable, and it is possible to compress only the energy converted from the dynamic pressure into the static pressure.
  • the compression of the fluid by the impeller 1 can be considered as being divided into compression in the circumferential direction (rotation direction) and compression in the rotation axis direction.
  • the compression in the circumferential direction will be described with reference to FIG. 7 by showing the fluid in a space between a pair of adjacent blades.
  • a pair of blades adjacent to each other in the one rotation direction of the impeller will be referred to as a blade 3f
  • a rear blade will be referred to as a blade 3r.
  • the molecules of the fluid passing between the blades are always subjected to inertial force, which is a relative apparent force, by the blades 3.
  • This inertial force always acts in the direction perpendicular to the fluid molecules from the blade surface of the blade 3r, as shown in Fig. 3 (b), and becomes a circumferential compressive force in such a manner as to press the fluid molecules against the blade surface. . Therefore, as shown in FIG. 3C, the fluid molecules move so as to fill the gaps between the molecules at a place where the static pressure is reduced and the molecular density is low.
  • the fluid sucked from the suction side increases the static pressure and the dynamic pressure is applied, and is compressed or pumped and discharged. It is discharged to the side.
  • the fluid molecules are biased between the blades according to the three rules of the blade. In other words, the fluid molecules between the blades are unevenly distributed due to the two forces described above, and are affected by the centrifugal force. Therefore, the induced speed in the impeller at the time of high-speed rotation occurs.
  • a spatial force formed between the blades is unevenly distributed between the blades due to the rotation of the impeller 1, that is, the density of the fluid flow between the blades ( (Static pressure).
  • the blades 3f are formed and arranged so that the space between the blades compensates for the uneven distribution of the fluid, and the density of the fluid between the blades during high-speed rotation is constant. Is required. That is, as shown in FIG. 3 (f), the blade 3f is moved to the blade 3r side, and the pitch P between the blades 3f and 3r is smoothly narrowed from the fluid suction side to the fluid discharge side.
  • the airfoil is shaped like a continuation.
  • the blades arranged to compensate for the uneven distribution of fluid between the blades are blades 3f ', the blade 3f' and the blades 3f 'and the blades 3r Since the pitch P is determined and the blades 3f 'are theoretically arranged so that the fluid density between the blades is constant, the blade pitch surface (blade back surface) of the blade 3f' is I can also say.
  • the setting of the pitch P between the blades to compensate for the uneven distribution of fluid between the blades due to the high-speed rotation of the impeller 1 depends on the rotational speed of the compressor used and the required compression capacity. Shall be considered.
  • the centrifugal force acting on the fluid molecules during one rotation of the impeller shows the stepwise movement of the fluid from the suction side to the discharge side for a very short time, as shown in Fig. 8 (a).
  • the density of fluid molecules decreases toward the fluid discharge side (outer peripheral side), and the static pressure decreases accordingly.
  • FIG. 3D shows an ideal fluid flow.
  • the impeller 1 of the present invention avoids collision of the molecules with the wall surface 9a by providing a warp in the blade height direction of the blade 3 as shown in FIG. That is, the sled of the blade 3 in the blade height direction is curved in the forward direction with respect to the rotation direction.
  • a centrifugal impeller that conveys or compresses a fluid by using centrifugal force has a shape in which spiral wings are circumferentially arranged as shown in FIG. Further, in order to obtain a higher compression effect, the shape is used for a turbo-type centrifugal compressor as shown in FIG.
  • the common point between these two basic wing shapes is that there is a suction side and a discharge side of the fluid. The difference is that the angle of the suction surface wing height (113c'123c) to the horizontal plane is vertical or parallel.
  • the problems with these shapes can be broadly divided into two points: improper passage area as described above and generation of induced velocity in the impeller.
  • the wing shape of the blade 3 of the impeller 1 is based on a design drawing created by expanding the hyperbola into a 'conversion' and utilizing the shape of the hyperbola and the rate of change thereof. It is formed to enable a proper reduction of the fluid passage area from the suction side to the discharge side of the fluid, and a proper reduction of the pitch between the blades to prevent the generation of the induced velocity in the impeller.
  • this design method will be sequentially described.
  • FIGS. 6 (e), 7 (f) and 10 by designing a curve forming a wing shape by applying a hyperbola as in the design method according to the present invention.
  • the conditions that is, the appropriate reduction of the fluid passage area and the pitch between blades from the fluid suction side to the discharge side, and the formation of blade height-direction warpage that suppresses the generation of turbulence are all satisfied.
  • the entire blade has a three-dimensionally regular shape, and exhibits an ideal compression effect.
  • the blade shape can be continuously processed by a relatively simple method.
  • the stages of designing the blade shape will be described in three stages: “impeller outer shape (inner line 'outer line' passage area)", “swing in the blade length direction”, and “swing in the blade height direction”.
  • the shape (rate of change) of the hyperbola differs depending on how the asymptote is taken, in this embodiment, a right-angle hyperbola (a hyperbola whose asymptote is orthogonal) as shown in FIG. 11 is used as the hyperbola.
  • a right-angle hyperbola a hyperbola whose asymptote is orthogonal
  • the impeller outer shape can be rephrased as a two-dimensional shape of the impeller 1 in a side view. That is, as shown in FIG. 1 (b), the outer shape of the impeller is • Inlet surface blade height 3c ⁇ Determined by outlet surface blade height 3d and base 2 shape.
  • a rectangular hyperbola (hereinafter, referred to as “hyperbolic H”) as a basic hyperbola in the present embodiment shown in FIG. 11 has, as its basic property, an absolute value of a product of an X coordinate and a Y coordinate at a point on the hyperbola H. Sometimes it is always constant.
  • the basic properties of the hyperbola are used for designing the wing shape.
  • the hyperbola H is surrounded by an arbitrary rectangle R having a base on the X-axis and passing through a vertex C of the hyperbola H in principle, and an intersection P1 of the rectangle R and the hyperbola H on the origin side in the X-axis direction (in this case, the vertex C ) And perpendicular to the X axis from the intersection P2 on the opposite side of the X axis direction.
  • These two perpendiculars, the hyperbola between the perpendiculars and the portion surrounded by the X axis are the blade shapes of the blades 3 in the impeller outer shape in this case. .
  • the outer shape of the blade 3 determined in the second quadrant in this manner is copied symmetrically with respect to the Y axis, and the shapes shown in the first and second quadrants are the outer shapes of the blade 3 in this case.
  • the shape is as shown in FIG. In other words, as shown in FIG. 12, the perpendicular on the X-axis direction origin side becomes the suction surface blade height 3c, and the perpendicular on the X-axis direction counter-origin side becomes the discharge surface blade height 3d.
  • the portion becomes the outer shape line 3a, and a part of the X axis becomes the inner shape line 3b.
  • the X coordinate at an arbitrary point on the hyperbola H is the distance from the rotation center of the impeller 1 to the radial direction
  • the Y coordinate is the blade height of the blade 3 at that position.
  • the rotation axis is the Y axis.
  • the impeller having such an outer shape is suitable for a general pump blower because the work is easy.
  • the suction surface passage area is 2 ⁇ 'xl'yl as described above. .
  • the shape of the impeller created in the first and second quadrants is copied to the X axis symmetrically, as shown in FIG. It becomes. Also in this case, the passage area of the fluid is constant, and the fluid can be absorbed from both sides in the direction of the rotating shaft.
  • the impeller profile shown in Fig. 12 and Fig. 13 has the suction surface blade height 3c perpendicular to the horizontal plane, and corresponds to the vertical type impeller shown in Fig. 1.
  • the force S that uses the hyperbola H in determining the impeller outer shape, and the movement and rotation of the hyperbola H, the area ratio between the suction surface passage area and the discharge side passage area It is possible to arbitrarily set the inclination with respect to the horizontal plane, the height of the suction surface blade and the height of the discharge surface blade, and in this case, the rate of change in the force from the suction area to the discharge area is always constant.
  • an inner shape line 3b formed by only the outer shape line 3a is also formed by a part of the hyperbola H2.
  • the hyperbola H2 is translated in the X-axis direction toward the anti-origin side until it crosses the focal point F of the hyperbola H2, and the hyperbola after this movement is used as a part of the outline 3a. It is translated in the axial direction toward the origin, and the hyperbola after this translation is regarded as a part of the inner line.
  • the suction surface wing height 3c is a straight line connecting the origin O and the vertex C (in the case of this hyperbola H2, a line forming 45 ° with respect to the horizontal plane), and the discharge surface wing height 3d is set to an arbitrary slope.
  • the outer shape of the impeller is as shown in FIG.
  • the inner shape line 3b has a gentler and gentler inclination than the impeller of the shape shown in Fig. 12, and the passage area is about 1Z2 on the discharge side with respect to the suction side. Therefore, it is suitable for an impeller used for a high-pressure pump or the like that pumps liquid.
  • FIG. 14 (a) the hyperbolic curve H2, which has been moved in the X-axis direction to the anti-origin side and the origin side, is rotated to change its inclination, thereby obtaining the suction surface blade height 3c and the discharge surface blade height. 3d can be adjusted.
  • FIG. 14 (c) shows a case in which the discharge surface passage area is adjusted to be the same as the suction surface passage area. It has a shape like this
  • the impeller is suitable for an impeller used for a general-purpose pump or the like.
  • the hyperbola H2 is inclined counterclockwise by an arbitrary angle (15 ° in this embodiment) about the origin O, and the inclined hyperbola H2 ′ is X It is moved horizontally in the axial direction to the origin side and the opposite origin side, and these are used for forming the outline and the inner shape.
  • the outer shape of the impeller thus formed is as shown in FIG. 15 (b).
  • the suction surface blade height 3c is horizontal.
  • the impeller becomes a horizontal impeller as shown in FIG. 2, and the impeller having such a shape becomes an impeller with a high suction speed in the axial direction and a high flow efficiency, and also in this case, from the suction side to the discharge side. Is constant.
  • FIG. 15 (c) is almost the same as the impeller outer shape shown in FIG. 15 (b), but the passage area on the discharge side is reduced to about 1/2 in order to increase the compression efficiency.
  • the area of the discharge surface is about 1Z2 as shown in FIG. In this way, by rotating and tilting the hyperbola H2 ', which is translated in the X-axis direction, the suction surface blade height 3c and the discharge surface blade height 3d of the blade 3 can be adjusted.
  • the impeller with a narrow discharge surface as shown in Fig. 15 (c) is effective when the inflow velocity from the axial direction is high or the density of the fluid is high, and the high-pressure pump, centrifugal compressor , Turbo and the like.
  • the rate of change of the fluid passage area from the suction side to the discharge side is kept constant, and the suction direction, discharge direction, and outer shape of the fluid by the impeller are set.
  • Each of the line 3a and the inner shape line 3b, the suction surface blade height 3c, and the discharge surface blade height 3d can change the passage area of the flow path to any shape corresponding to the type, density, inflow velocity, compression ratio, etc. of the fluid. It is possible to design the impeller with a high degree of freedom.
  • the product of the X and Y coordinates of a point on the hyperbola is always Is constant.
  • an arbitrary point on the hyperbola H2 is taken, and the area of the rectangle (square) determined by the perpendicular to the X and Y axes from this point is always constant.
  • the stable relationship between the X coordinate and the Y coordinate at this point on the hyperbola is used as the angle change rate of the tangent at each point on the hyperbola.
  • the angle change rate is a rate of the angle change
  • the angle change is a change in the inclination of the tangent line at each of two arbitrary points on the hyperbola.
  • the angle change of the point m2 with respect to the point ml Means the angle of tangent t2 to tangent tl.
  • one curve is derived while associating the angle change of the point on the hyperbola H2 along the X-axis direction with a circle having the X coordinate of an arbitrary point on the hyperbola H2 as a radius.
  • one curve derived by narrowing the interval between the peripheral circuits becomes a basic center line that determines the warp of one blade 3 in the blade length direction.
  • a straight line having the same slope as the slope of the tangent at the previous (center side) point is added (rotated) to the slope of the tangent at that point as an angle, and
  • the interval between peripheral circuits is reduced.
  • the basic center line formed in this way depends on the number of blades 3 If they are arranged on the circumference, the wing shape of the impeller 1 in plan view is determined.
  • the force that is important in determining the warp of the blade 3 in the blade length direction is the pitch between blades.
  • the pitch between the wings is determined by the relative position with respect to the adjacent blade 3, and the pitch between the wings can be changed by transferring the point on the hyperbola H2 described on FIG. 17 (a) to the X axis. What is necessary is just to change the displacement angle (the angle due to the rotation about the origin ⁇ ) of this hyperbola H2.
  • the basic center line derived based on the hyperbola obtained by rotating the hyperbola H2 in FIG. 17 (a) by 15 ° about the origin O is shown in FIG. ) Is the basic center line Q.
  • the blades 3 are arranged at equal intervals in the circumferential direction based on the basic center line Q (shifted by an equal angle with respect to the center of the base 2), the same figure (b).
  • the pitch P between the blades is substantially the same from the center to the outer periphery, that is, from the suction side to the discharge side.
  • the basic center line Q shown in FIG. 18 is rotated by an arbitrary angle to obtain this basic center line Q ′.
  • the outer diameter is the same as that in FIG. 18, a part of the basic center line Q 'protrudes to the outer peripheral side, and the blade length can be set shorter by the protruding portion.
  • the blade length of the blade 3 can be adjusted.
  • the blades 3 are arranged on the basis of the basic center line Q ', the blade shape is as shown in FIG. 18B, and the pitch P between the blades is substantially the same over the entire length. Compared with that shown in (b), the blade length is set shorter.
  • the blade length can be adjusted by rotating the basic center line Q, and the pitch between the blades can be adjusted by moving the basic center line Q in parallel.
  • the X-axis is made to correspond to the radial direction of the impeller 1, and by using the rate of change of the angle of the hyperbola H2 with respect to the X-axis, the warp in the blade length direction of the blade 3 is formed.
  • the basic center line that determines the visual shape can be arbitrarily determined, and the basic center line can be rotated. * By moving the blade, the blade length and pitch between blades can be freely adjusted. When Therefore, it is possible to freely design the two-dimensional wing shape of the blade 3.
  • the blade length warp of the blade 3 determined in this way is two-dimensional, and the impeller outer shape shown in Figs. 14 (b) and (c) and Figs. 15 (b) and (c) is used.
  • the inner line 3b is a curved line, and when the blade is warped in the blade height direction, the blade 3 has a twisted shape.
  • the design basis is the same as the two-dimensional shape design.
  • the basic differences between the impeller shapes shown in Figs. 14 (b) and (c) and Figs. 15 (b) and (c) are similar to those shown in Fig. 14 (a). Note that this is caused only by the inclination of the hyperbola H2 used for the blade center line of the blade 3 due to the rotation about the origin O.
  • the principle of the design of the impeller 1 is that how each element of the three-dimensional change of the blade shape of the blade 3 (wing height-blade length).
  • the shape of the hyperbolic curve is determined depending on whether it is synchronized or not.
  • the rate of change of this hyperbola is selected to adapt to various purposes such as fluid type 'density', speed, pressure, temperature, etc. Although there are no umbrellas, it is possible to design according to each use condition.
  • Fig. 21 (b) Since the frusto-conical slope shown in Fig. 21 (b) is represented by a straight line in the side view, its development can be shown by one plane as shown in Fig. 21 (a). It is. Then, even when the portion corresponding to the slope in the side view is a curve as shown in FIGS. 15 (b) and (c), for example, as described with reference to FIG. It is only necessary to create a development diagram differentially for each interval of the peripheral line in, and to continue these.
  • the base line K on the two-dimensional development view as shown in Fig. 21 (a) can be transferred if it is linked with the peripheral lines of the development plan 'plan view and side view. Show me. That is, by plotting the distance on the circumference from the baseline N to the baseline K in Fig. 21 (a) and the distance on the same circumference from the baseline ⁇ in Fig. 21 (b), the base line K 'is drawn on the truncated cone. That can be S. Therefore, it is possible to replace the two-dimensional curve with a complicated three-dimensional change of the curve, and it is also possible to create machining data such as the impeller according to the present invention.
  • the blade height direction warp is the shape of the blade height between the inner shape line and the outer shape line of the blade shape of the blade 3, that is, the curvature in the blade height direction.
  • FIG. 23 and FIG. 24 show the case where the number of blades 3 of the impeller 1 of the ideal shape actually designed using the centrifugal impeller design method of the present invention is 18
  • FIG. 25 shows a plan view when the number of blades 3 is 12
  • FIG. 26 shows a plan view when the number of blades 3 is 24.
  • the impeller 1 shown in these figures satisfies all of the appropriate reductions in the fluid passage area and the pitch between the blades from the suction side to the discharge side of the fluid, and the formation of the blade height warpage that suppresses the generation of turbulence. Therefore, the blade shape is ideal for the fluid between the blades during high-speed rotation.
  • the entire blade has a three-dimensionally regular shape, exhibiting an ideal compression effect. Furthermore, since there is consistent regularity over the entire blade, even during processing, the blade shape can be continuously reduced by a relatively simple method, and the production efficiency can be improved.
  • the centrifugal impeller described above has two typical shapes of the centrifugal impeller described above.
  • the present invention is not limited to the (vertical type'parallel type), and the design method is not limited to the above-described embodiment.
  • a circular base in a plan view, and provided on the base in a direction from the center to the outer periphery and arranged at equal intervals in the circumferential direction, and have an outer shape line, an inner shape line, a blade height, and a blade length.
  • a centrifugal impeller having a plurality of blades whose shape is determined by each element of the above, wherein at least one of the elements forming the blade is designed using a hyperbolic shape or a rate of change thereof.
  • any one, two, three or all of the outer shape or inner shape of the blade, the warp in the blade length direction, and the warp in the blade height direction are determined based on the hyperbola which is the basic curve.
  • the basic curve used in this design method is not limited to the above-described hyperbola, and a cycloid curve, an involute curve, an arc, or the like can be used as an approximate curve.
  • the centrifugal impeller (impeller) according to the present invention can be used for various applications such as a general pump blower, a high-pressure pump, a centrifugal compressor, and a turbo by matching the outer shape. Therefore, it is industrially useful.
  • a centrifugal impeller of the present invention it is possible to make the fluid into any shape corresponding to the type and density of the fluid, the inflow speed, the compression ratio, and the like. Degree of freedom Industrially useful because high design is possible

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 近年、様々な用途に用いられ、高圧力比化による性能の向上が求められている遠心圧縮機などに使用される遠心式羽根車において、流路の吸入側から吐出側へかけての流体通過面積の変化率を一定にすることによって圧縮効率を向上し、また、あらゆる用途に対応できる自由な設計を可能とした遠心式羽根車及びその設計方法を提供する。  そこで、平面視円状の基部2と、該基部2上に中心部から外周方向に設けられ、周方向に等間隔を隔てて配設される複数の羽根3とを有する遠心式羽根車(インペラ1)において、前記羽根3を双曲線の形状またはその変化率を用いた曲線を基に形成し、複数の羽根3によって形成される流路の流体通過面積を、流体の吸入面から吐出面にかけて、一定の変化率で縮小し、または一定とした。

Description

明 細 書
遠心式羽根車及びその設計方法
技術分野
[0001] 本発明は、圧縮機や送風機に用いられる遠心式羽根車及びその設計方法に関す る。
^景技術
[0002] 一般に、遠心式の圧縮機や送風機は、羽根車の遠心力を利用して気体に速度と 圧力とを加えて圧縮または送風するものである。そして、遠心圧縮機においては、そ の吐出側の圧力によって仕事をさせるものであり、羽根車を回転駆動させることで流 体 (気体'液体)を、羽根間に形成される流路を通過させて吸入側(回転中心側)から 吐出側(外周側)へ導き、吐出側の圧力による圧縮効果を得るしくみとなっている。
[0003] このような遠心圧縮機においては、その羽根車の損失を減少して圧縮効率を向上 するために、隣り合う羽根間に中間翼 (補助翼)を設けたり、ディフューザを設けたり することが一般的に行われている。そして、羽根を途中で分割し、これらを回転方向 にずらして配置する技術がある(特許文献 1参照)。
また、羽根の形状については、回転方向に対して凸面となる曲面としたり(特許文 献 2参照)、多円弧で構成したり(特許文献 3参照)する技術が公知となっている。また 、羽根間に形成される流路を、通過する流体の相対速度がほぼ一定となるように形 成したものもある(特許文献 4参照)。
[0004] しかし、上述したような従来の遠心圧縮機に用いられる羽根車においては、その羽 根の形状から必然的に、隣り合う羽根間の距離 (翼間ピッチ)が、流体の吸入側から 吐出側(羽根車の回転中心部から外周部)にかけて徐々に広くなつてしまう。この翼 間ピッチの広がりは、乱流などを発生させ遠心圧縮機における圧縮性能に限界をも たらす要因となっている。そこで、この翼間ピッチの広がりを緩和するため、上述した ように羽根間に中間翼 (補助翼)を設けたり、また、ディフーザを設けたりする方法もあ るが、これらの方法によっては羽根全体の形状が複雑となったり流路の摩擦抵抗の 増大を招いたりし、十分な効果も得られるとは言えない。 [0005] そこで、従来の遠心式羽根車 (インペラ)における羽根の形状上の問題点について 説明する。
図 27は従来の遠心式羽根車を示す模式図、図 28は従来の遠心式羽根車の回転 時を示す平面図、図 29は従来の遠心式羽根車を外壁で覆った状態を示す側面断 面図、図 30は同じく吐出側が閉鎖された状態を示す図、図 31は翼車内誘起速度の 発生過程を示す説明図、図 32は従来の遠心式羽根車を示す図、図 33は従来の遠 心式羽根車を示す図である。
図 27から図 29に示す如ぐ回転軸 105を有し、台形板状の 12枚の羽根 103を、円 盤状の基部 102に周方向に対して等角度間隔に、該基部 102の回転中心に対して 放射状に配置した単純な構造の遠心式羽根車 (インペラ) 101を例に用レ、、このイン ペラ 101を外壁 109で覆レ、、モータ 107で回転軸 105を中心に回転させた場合につ いて説明する。
この場合、低速回転においては、吸入側(回転中心側)と吐出側(外周側)との間に 圧力差が無い限り、吸入側より吸入された流体 (気体'液体)は、インペラ 101の回転 による遠心力によって吐出側に排出される。ところが、高速回転にしていくと、回転数 の上昇に伴い乱流などが発生して流体の流れが悪くなつていく。このようなインペラ 1 01の高速回転時における流体の流れの悪化は、例えば図 30に示すような、羽根 10 3の吐出側が閉鎖壁 108によって密閉状態とされている場合においては、インペラ 1 01が高速回転となると吸入側と吐出側との圧力が等しくなり、それ以上流体は圧縮さ れることなく逆に吸入側へ流体が噴出するという逆流現象を発生させてしまう。こうし た現象は、流体が気体の場合に顕著であり、液体の場合は、ある程度静圧は上昇す る力 キヤビテーシヨンの発生が多くなり不安定となる。
[0006] このような現象の原因としては、以下のようなことが考えられる。一つは、図 31 (a)に 示すように、羽根 103rの翼表(進行方向前面)は、該羽根 103rの進行方向前側に おいて隣り合う羽根 103fと羽根 103rとの間の流体を圧縮して吐出側へ吐出するの であるが、羽根 103fが通り過ぎた後の該羽根 103fの翼裏 (進行方向後面)は負圧( 略真空)となり、同図(b)及び (c)に示すように、インペラ 101の回転数の増加に伴つ て発生する渦(以下、翼車内誘起速度)によって、流体の流れが滞ってしまうこと。もう 一つは、羽根間に形成される流路の流体通過面積 (スロート面積)は吸入側から吐出 側へ向力うにつれて広くなつており、この羽根間の空間が拡大することで、気体の場 合は吐出側の分子が逆流することによって分子密度が低下し、液体の場合は気泡の 発生による流れの悪化によって真空スポットが発生することである。そして、これらの 現象は高速回転になればなる程より顕著になる。
[0007] 続いて、現在実用化されている多くの渦巻きポンプや遠心圧縮機や送風機などに 用いられる羽根車の一般的な翼形状について図 32及び図 33を用いて説明する。 図 32に示すインペラ 111 (基部 112、羽根 113)におレ、ては、図中(a)に示す翼間 ピッチ P力 吸入側から吐出側にかけて広くなつている。そのため、翼高(羽根 113の 基部 112表面に対する突出方向の高さ)を考慮しても、流体通過面積は吸入側から 吐出側にかけて広くなつている。つまり上述したように、インペラ 111が高速回転する 場合、気体においては分子の拡散により速度が下がって翼車内誘起速度が発生し、 液体においては真空スポットが発生して流量の低下を招くことになる。なお、図 32に おいて 113cは吸入面翼高を示し、 113dは吐出面翼高を示す。
[0008] また、図 33に示すような、 自動車のターボ加速器やジェットエンジンに使用されるタ イブのインペラ 121 (基部 122、羽根 123)においては、吐出側の吸入側に対する流 体通過面積の比は約 1/2となっており、その吸入側から吐出側にかけての面積変 化率も略一定となっている。しかし、この場合も翼間ピッチが吸入側から吐出側にか けて広くなつているため、上述したような高速回転時における翼車内誘起速度などの 現象が発生する。このため、分子の流れの加速が遅れたり、吸入側と吐出側との静 圧の差があると流体の流れが滞ったりする。つまり、動圧圧縮はできても静圧圧縮は できないということである。なお、図 33において 123cは吸入面翼高を示し、 123dは 吐出面翼高を示す。
ここで、「動圧」とは、流体が示す圧力のうち、運動すると発生する圧力、つまり、流 れの速度に関係する部分であり、運動エネルギーの密度であって圧力そのものでは ないが、流れをせき止めたときに得られる圧力上昇を意味する。これに対し「静圧」と は、本来の圧力、つまり、静止流体中で想定した面にはたらぐ面に垂直な応力であ り、運動している流体の場合は、各方向の圧力の法線成分の平均値を意味する。 [0009] このように、従来の遠心式羽根車においては、羽根を反らしたり羽根の枚数を増や したりすることによって、そのはたらきの効率を高めてはいるが、流体通過面積につい て、その面積変化が不安定であったり、吸入側よりも吐出側の方が広くなつていたり するので、一定以上の高速回転になると上述のような問題が発生し、その状態から吐 出量を増やすことも吐出側の圧力を高めることもできなくなってしまう事がある。
[0010] そこで本発明は、近年、様々な用途に用いられ、高圧力比化による性能の向上が 求められている遠心圧縮機などに使用される遠心式羽根車において、流路の吸入 側から吐出側へかけての流体通過面積の変化率を一定にすることによって圧縮効率 を向上し、また、翼形状を設計する際、双曲線の形状及びその変化率を利用して三 次元的に規則性を持った翼形状を形成することで、複雑な方程式などを用レ、ることな ぐ幾何学的な作図による統一的な手法によって、あらゆる用途に対応できる自由な 設計を可能とした遠心式羽根車及びその設計方法を提供する。
特許文献 1:特開 2002 - 349487号公報
特許文献 2:特開 2002 - 332993号公報
特許文献 3:特開平 5 - 39799号公報
特許文献 4:特開平 9一 68197号公報
発明の開示
発明が解決しょうとする課題
[0011] 解決しょうとする問題点は、従来の遠心式羽根車においては、流体通過面積につ いて、その面積変化が不安定であったり、吸入側よりも吐出側の方が広くなつていた りすることから、流体の理想的な圧縮効果が得られなレ、点である。
課題を解決するための手段
[0012] 本発明の解決しょうとする課題は以上の如くであり、次にこの課題を解決するため の手段を説明する。
[0013] 即ち、平面視円状の基部と、該基部上に中心部から外周方向に設けられ周方向に 等間隔を隔てて配設される複数の羽根とを有する遠心式羽根車において、前記羽根 によって形成される流路の流体通過面積を、流体の吸入面から吐出面にかけて、一 定の変化率で縮小し、または一定としたものである。 [0014] また、平面視円状の基部と、該基部上に中心部から外周方向に設けられ周方向に 等間隔を隔てて配設される複数の羽根とを有する遠心式羽根車において、隣り合う 羽根間の距離を、流体の吸入面から吐出面にかけて、一定とし、または徐々に狭くし たものである。
[0015] また、前記羽根を、翼高方向、かつ、回転方向に対して前進方向に湾曲させたもの である。
[0016] また、前記羽根を構成する外形線'内形線'翼高方向のそり'翼長方向のそりの各 要素うち、少なくとも一つが、双曲線の形状またはその変化率を用いた曲線から形成 されるものである。
[0017] また、平面視円状の基部と、該基部上に中心部から外周方向に設けられ周方向に 等間隔を隔てて配設され外形線'内形線 ·翼高 ·翼長の各要素によって形状が決定 される複数の羽根とを有する遠心式羽根車であって、前記羽根を形成する各要素の うち、少なくとも一つを、双曲線の形状またはその変化率を用いて設計するものであ る。
発明の効果
[0018] 本発明の効果として、以下に示すような効果を奏する。
[0019] 即ち、遠心式羽根車において羽根によって形成される流路の流体通過面積を、流 体の吸入面から吐出面にかけて一定の変化率で縮小することにより、静圧を高めな 力 ¾動圧を得ることが可能となり、理想的な圧縮効果を得ることができる。また、前記 流体通過面積を、流体の吸入面から吐出面にかけて一定とすることにより、流体の密 度的な偏りの発生を防止でき、加速された動圧分だけ圧縮効果を得ることが可能とな り圧縮効果の向上が図れる。
[0020] また、遠心式羽根車において隣り合う羽根間の距離を、流体の吸入面から吐出面 にかけて一定とすることにより、流体に対しての周方向の圧縮が向上し、高速回転時 に発生する乱流の発生を抑制でき、圧縮効果の向上が図れる。また、前記羽根間の 距離を、流体の吸入面から吐出面にかけて徐々に狭くすることにより、流体に対して の周方向の圧縮が向上し、高速回転時に発生する乱流の発生を防止でき、より効率 の良い圧縮効果を得ることができる。 [0021] また、前記羽根を、翼高方向、かつ、回転方向に対して前進方向に湾曲させたの で、流体が翼面以外の部分に接することがなくなり流体の通過が翼面内に限られ、 分子の衝突による急激な偏向がなくスムーズな流れとなり、乱流の発生を防止するこ とができる。
[0022] また、前記羽根を構成する外形線'内形線'翼高方向のそり'翼長方向のそりの各 要素うち、少なくとも一つが、双曲線の形状またはその変化率を用いた曲線から形成 されるので、羽根によって形成される流路の吸入側から吐出側にかけての流体通過 面積の変化率が一定となる翼形状の設計が可能となる。また、任意に吸入面通過面 積と吐出面通過面積の調整をすることができるので、様々な使用目的や使用条件に 応じて圧縮効率を向上させた遠心式羽根車の設計が可能となる。
[0023] また、平面視円状の基部と、該基部上に中心部から外周方向に設けられ周方向に 等間隔を隔てて配設され外形線'内形線 ·翼高 ·翼長の各要素によって形状が決定 される複数の羽根とを有する遠心式羽根車であって、前記羽根を形成する各要素の うち、少なくとも一つを、双曲線の形状またはその変化率を用いて設計することにより 、一つの基本曲線である双曲線に基づいて、一元化され、かつ三次元的に規則性を 持った自由度の高い設計方法によって、前記羽根によって形成される流路の吸入側 力 吐出側にかけての流体通過面積の変化率が一定となる翼形状の設計が可能と なる。また、任意に吸入面通過面積と吐出面通過面積の調整をすることができ、様々 な使用目的や使用条件に応じて理想的な圧縮効果が得られる自由な翼形状の設計 が可能となる。
図面の簡単な説明
[0024] [図 1]本発明に係る遠心式羽根車の一実施の形態を示す図。 (a)は平面図。 (b)は 側面断面図。
[図 2]本発明に係る遠心式羽根車の一実施の形態を示す図。 (a)は平面図。 (b)は 側面断面図。
[図 3]図 1に示す遠心式羽根車における流体の通過面積を示す説明図。
[図 4]図 2に示す遠心式羽根車における流体の通過面積を示す説明図。
[図 5]流体の通過面積を模式的に示す図。 [図 6]流体の通過面積の変化を示す図。
[図 7]流体の周方向の圧縮を示す説明図。
[図 8]流体の回転軸方向の圧縮を示す説明図。
[図 9]壁面による流体の偏向を示す図。
[図 10]翼面による流体の偏向を示す図 9における E矢視図。
[図 11]本発明に係る遠心式羽根車の設計方法に用いる双曲線を示す図。
[図 12]インペラ外形の一実施の形態を示す図。
[図 13]インペラ外形の一実施の形態を示す図。
[図 14]インペラ外形の設計方法の一実施例を示す図。
[図 15]インペラ外形の設計方法の一実施例を示す図。
[図 16]双曲線の角度変化を示す説明図。
[図 17]基本中心線の導出方法を示す説明図。
[図 18]翼長方向の形状の設計方法の一実施例を示す説明図。
[図 19]翼長方向の形状の設計方法の一実施例を示す説明図。
[図 20]翼長方向の形状の設計方法の一実施例を示す説明図。
[図 21]翼長方向のそりの三次元展開方法を示す説明図。
[図 22]本発明に係る遠心式羽根車の一実施の形態を示す斜視図。
[図 23] 18枚の羽根を有する遠心式羽根車を示す平面図。
[図 24]同じく側面図。
[図 25] 12枚の羽根を有する遠心式羽根車を示す平面図。
[図 26]24枚の羽根を有する遠心式羽根車を示す平面図。
[図 27]従来の遠心式羽根車を示す模式図。
[図 28]従来の遠心式羽根車の回転時を示す平面図。
[図 29]従来の遠心式羽根車を外壁で覆った状態を示す側面断面図。
[図 30]同じく吐出側が閉鎖された状態を示す図。
[図 31]翼車内誘起速度の発生過程を示す説明図。
[図 32]従来の遠心式羽根車を示す図。 (a)は平面図。 (b)は側面断面図。
[図 33]従来の遠心式羽根車を示す図。 (a)は平面図。 (b)は側面断面図。 符号の説明
[0025]
2
3 羽根
3a 外形線
3b 内形線
3c 吸入面翼高
3d 吐出面翼高
H 双曲線
H2 双曲線
S1 吸入面
S2 吐出面
発明を実施するための最良の形態
[0026] 次に、発明の実施の形態を図面に基づいて説明する。
まず、本発明の遠心式羽根車について図 1及び図 2を用いて説明する。なお、本実 施例においては、図 1及び図 2に示すような遠心式羽根車の代表的な二種類の形状 を用いて説明していく。
はじめに、図 1及び図 2を用いて本発明に係る遠心式羽根車 (以下「インペラ 1」とす る)の概略構成にっレ、て説明する。
本発明に係るインペラ 1は、回転軸 5に固定される平面視円状の基部 2と、該基部 2 上に中心部から外周方向(径方向)に設けられ、周方向(回転方向)に等間隔を隔て て配設される複数の羽根 3とを備え、これら基部 2及び複数の羽根 3によってその外 形が形成されている。
[0027] 前記羽根 3は、基部 2の中心部から外周部にかけて、該基部 2から突設した曲面を 形成しており、この中心部から外周部にかけての羽根 3の長さを「翼長」とする。また、 羽根 3は翼長方向において、インペラ 1回転方向と逆向き(後退方向)に湾曲しており 、この平面視において表れる羽根 3の湾曲を「翼長方向のそり」とする。そして、該羽 根 3は基部 2から突設しているが、この羽根 3の突設方向の高さ及びその辺を「翼高」 とし、羽根 3はこの翼高方向に対しても湾曲した形状とすることができる。この翼高方 向の湾曲を「翼高方向のそり」とする。なお、この翼高方向のそりを形成する場合は、 インペラ 1の回転方向(前進方向)に向けて湾曲させる。
また、インペラ 1回転方向において羽根 3の前側の面を「翼表」、後側の面を「翼裏」 とし、隣り合う羽根間の距離を「翼間ピッチ P」とする。ここで、隣り合う羽根間の距離と は、翼表の任意の点における接線に直交する線を引き、この線と回転方向前側の羽 根 3の裏面との交点と、前記任意の点との距離をいう。
このような構成のインペラ 1が回転軸 5を中心に回転駆動することによって、流体が インペラ 1の中心部から回転軸方向に吸入され、羽根 3によって形成される流路を通 過して、該インペラ 1の外周部から回転軸と垂直方向に吐出され、その圧力によって 圧縮効果を得るしくみとなっている。
[0028] 図 1 (b)及び図 2 (b)に示すように、前記羽根 3は、外形線 3a、基部 2との境界線で ある内形線 3b、吸入面(後述)における翼高である吸入面翼高 3c及び吐出面(後述) における翼高である吐出面翼高 3dによってその側面視における二次元的な形状が 決まり、さらに、翼長と翼長方向のそり及び翼高方向のそりが加わることによって三次 元的な形状が決定される。
つまり、上述した遠心式羽根車の代表的な 2種類の形状とは、図 1及び図 22に示 すような、羽根 3の翼高が水平面に対して垂直方向となっているもの(以下、「垂直型 」とする)と、図 2に示すような、羽根 3の翼高が水平面に対して平行となっているもの( 以下、「平行型」とする)である。
[0029] 次に、インペラ 1における流体通過面積について図 3及び図 4を用いて説明する。
ここでレ、う流体通過面積とは、羽根 3によって形成される流路における流体進行方 向に対して垂直な面の面積であり、隣り合う一対の羽根間のものではなぐインペラ 1 の全周に亘る吸入側から吐出側にかけてのことである。すなわち、前記吸入面翼高 3 cを回転軸 5を中心に回転させた場合の軌跡となる図形を吸入面 S1とすると、この吸 入面 S1の面積が吸入面通過面積となり、同様にして前記吐出面翼高 3dを回転軸 5 を中心に回転させた場合の軌跡となる図形を吐出面 S2とすると、この吐出面 S2の面 積が吐出面通過面積となるのである。 [0030] よって、垂直型のインペラ 1の場合は、図 3に示す斜線部のように、吸入面 S1及び 吐出面 S2はそれぞれ略円筒形状の側面となり、吸入面通過面積は、吸入面 S1の平 面視形状となる円の直径を D1とすると、 D1 X π X吸入面翼高 3cによって求められ る。同様にして吐出面通過面積は、吐出面 S2の平面視形状となる円の直径を D2と すると、 D2 X π X吐出面翼高 3dによって求められる。
同様に、図 4に示す平行型のインペラ 1の場合も、図中の斜線部のように、吸入面 S 1及び吐出面 S2は吸入面翼高 3c及び吐出面翼高 3dを、回転軸 5を中心に回転させ た場合の軌跡となる形状それぞれの面積が吸入面通過面積及び吐出面通過面積と なっている。
また、垂直型及び平行型それぞれのインペラ 1において、吸入面 S1と吐出面 S2と の間の流路における途中の通過面積も、その径方向における位置での、基部 2の表 面に沿った円周の長さと、羽根 3の翼高との積によって決まる。
つまり、流体通過面積という面から見ると、羽根 3というのは、該羽根 3の形状によつ て決まるインペラ 1の流路の仕切りの役割を果たすに過ぎないこととなる。
[0031] このように定義される流体通過面積において、この流体通過面積の変化、即ち吸入 面 S1から吐出面 S2にかけての流路の面積変化は羽根 3の形状によって決まる。そこ で、この流体通過面積の変化によって流体が受ける影響について説明する。なお、 インペラ 1内の流体の分子の流れを概念的に認識しやすくするため、図 5に示すよう に、模式的にインペラ 1における流体通過部を円筒状の流路に見立て、この円筒状 とした流路において、紙面右側を吸入側、左側を吐出側として流体が流れる方向を 設定し、この流体進行方向に垂直な断面積がそれぞれの位置における通過面積とし て説明する。
[0032] 以下、図 6を用いて、羽根 3の形状から取り得る流体通過面積変化の典型的なバタ ーンに基づき、それぞれの場合における適正や問題点を説明する。
まず、最初に挙げる流体の通過面積変化のパターンは、吸入側から吐出側にかけ て徐々に広がっている場合である。つまり、図 6 (a)に示すように、インペラ内におい て、流体の吸入面 S1の面積よりも吐出面 S2の面積方が広くなつており、吸入側から 吐出側に向かって通過面積が徐々に広くなつている。 これは、一般的に渦巻き式と呼ばれる翼形状を有する羽根車を用いた送風機ゃポ ンプ等のように、吸入側の負圧で仕事をするようなものに顕著に見られる。しかし、こ の場合は吸入面 S1よりも吐出面 S2の方が広いため、吐出面 S2において流体の分 子密度が外部よりも低くなり、流体が渦を卷いて逆流し、サージングと呼ばれる不安 定現象が発生して圧縮機に用いる場合は十分な圧縮効果を得難い。
[0033] 次に示すのは、吸入面 S1の面積と吐出面 S2の面積は略同一となっている力 そ の間の通過面積が中央部において広がっている場合である。つまり同図(b)に示す ように、流路がその中央部において中膨れ状態となっており、この場合はこの通過面 積の広がった中央部において流体の密度が変化するため乱流が発生し、圧縮効率 が良くない。
[0034] 今度は逆に、同図(c)に示すように、流路の中央部の通過面積が狭くなつている場 合である。この場合は中央部において流体の密度が高くなり、吸入面 S1及び吐出面 S2近傍で逆流現象が発生し、流体力 Sスムーズに流れない状態となる。
[0035] 続いて示すのは、流体通過面積が吸入面 S1から吐出面 S2にかけて全て同じにな つている場合である。つまり、同図(d)に示すように、模式図で示した場合完全な円 筒となり、吸入面 S1から途中の流路、そして吐出面 S2にかけて同一の通過面積とな つている。この場合、流体の密度的な偏りは発生しないため、加速された動圧分だけ 圧縮効果を得ることが可能となる。しかし、吐出面 S2外部の静圧が上昇してくると、 流体密度が不安定になり動圧によるエネルギーを静圧に変換した分しか圧縮しない こと力ある。
[0036] 最後に示すのが、同図(e)に示すように吸入側から吐出側にかけて通過面積が徐 々に狭くなつている場合である。この場合、通過面積の変化を適正なものとすれば、 理想的な圧縮効果を得ることができる。つまり、静圧を高めながら動圧を得ることが可 能となり、理論的には吸入面 S1の面積と吐出面 S2の面積との面積比によって圧縮 比が決定される。ターボ型の遠心圧縮機などにおいては、流体通過面積はこのような 関係となっているが、インペラの回転が高速になると、上述したような翼車内誘起速 度が発生し、十分な圧縮効果を得ることができない場合も生じる。
[0037] 以上の考察より、流体の通過面積という面から見ると、理想的な圧縮効果を得るた めには、図 6 (e)を用いて説明したパターンが最も適していることとなる。しかし、流体 通過面積が、吸入側から吐出側に向かって徐々に狭くなつていくという条件を満足す るだけでは、高速回転になると理想的な圧縮効果を得ることはできない。つまり、本発 明に係るインペラ 1の羽根 3の翼形状は、流体通過面積が図 6 (e)に示すような条件 を満足した上で更に、後述するように流体の圧縮という面から見ても理想的な形状を 満たしているのである。
[0038] 流体を圧送することでより高い圧縮効果を得るためには、上述したように吸入側から 吐出側にかけて通過面積が狭くなるという条件を満足しなければならなレ、。そのため 、インペラ 1において羽根 3の吸入面翼高 3c及び吐出面翼高 3dを調整することによ つて流体通過面積を調整することは可能である。しかし、回転体であるインペラの外 形上、平面視においてその外形が円形状になるため、外周側に行くに従い上述した 翼間ピッチ Pが広がってしまい、ましてやこの翼間ピッチ Pが外周側に行くに従って狭 くなるように羽根 3を形成することは困難であった。これにより、インペラの回転が高速 になればなるほど上述したような従来の翼形状における不具合が発生して圧縮効率 が低下してしまうこととなる。
[0039] このようなインペラの高速回転による圧縮効果の低下は、羽根 3の翼形状及びこの 翼形状によって決まる流路の流体通過面積の変化具合が原因で生じる。そこで、本 発明の翼形状を考案するに至った過程として、まず、「流体の圧縮の原理」について 説明する。なお、本説明においても説明の明確化と表現の抽象化のため、模式的な 図を用いてその概念について説明する。
[0040] 流体の圧縮の原理において、インペラ 1による流体の圧縮は、周方向(回転方向) の圧縮と、回転軸方向の圧縮とに分けて考えられる。
まず、周方向の圧縮について、図 7を用いて隣り合う一対の羽根間内の流体を示し て説明する。なお、便宜上隣り合う一対の羽根において、インペラ 1回転方向の前側 の羽根を羽根 3f、後側の羽根を羽根 3rとして説明する。
[0041] 回転体 (インペラ 1)が回転して羽根 3によって流体を圧送する際、この流体には主 として二方向の力がはたらく。それは遠心力と慣性力である。
流体にはたらく遠心力の特徴として、径方向の外側に行くに従い大きくなるというこ と力 Sある。そのため、図 7 (a)に示すように、流体分子の微小時間の段階的な動きで 見ると、インペラ 1の回転によって生じる遠心力により外周側に先行する分子にかけ てその間隔が広がり、静圧が低下する。
[0042] また、羽根間を通過する流体の分子は、羽根 3によって常に相対的な見かけの力 である慣性力を受けている。この慣性力は、同図(b)に示すように、常に羽根 3rの翼 面から流体分子に対して垂直方向にはたらき、流体分子を翼面に押し付けるような 形で周方向の圧縮力となる。そのため、同図(c)に示すように、流体分子は静圧の低 下した分子密度の低いところに分子間の隙間を埋めるようにして移動する。
[0043] このような上記二つの力、即ち遠心力と慣性力との複合作用によって、吸入側から 吸入された流体は、静圧を高めるとともに動圧が加えられ、圧縮または圧送されて吐 出側へ吐出される。し力 この際、同図(d)に示すように、羽根間において羽根 3 則 に流体分子が偏ってしまう。つまり、上述の二つの力によって羽根間の流体分子が偏 在し、遠心力の影響を受けその特徴から外周側に行くに伴いこの偏りは顕著になる。 よって、高速回転時における翼車内誘起速度が発生してしまう。
[0044] そこで、この翼車内誘起速度の発生を抑えるためには、羽根間に形成される空間 力 インペラ 1の回転によって生じる羽根間の流体分子の偏在、即ち羽根間における 流体の流れの密度(静圧)に沿うように羽根を形成する必要がある。つまり同図(e)に 示すように、羽根間の空間が流体の偏在を補うように羽根 3fを形成及び配置し、高 速回転時における羽根間の流体の密度が一定となるようにすることが必要となる。す なわち、同図(f)に示すように、羽根 3fを羽根 3r側へ移動し、羽根 3fと羽根 3rとの間 の翼間ピッチ Pが、流体の吸入側から吐出側にかけて滑らかに狭くなつていくような 翼形とするのである。
この羽根間の流体の偏在を補うように配置した羽根を羽根 3f 'とすると、羽根 3rの 翼表に対しては、羽根 3f 'の翼裏によつて羽根 3f 'と羽根 3rとの翼間ピッチ Pが決まり 、羽根 3f 'は理論的に羽根間の流体の密度が一定となるように配置されているため、 該羽根 3f 'の翼間ピッチ面 (翼裏面)は、静圧変化面と言うこともできる。
なお、このようにインペラ 1の高速回転にともなう羽根間における流体の偏在を補う ための翼間ピッチ Pの設定は、使用する圧縮機の回転速度や必要な圧縮能力に応 じたものとする。
以上の説明のように、翼間ピッチ Pを設定することにより、流体に対しての周方向の 圧縮は、十分にその効果を得ることができる。
[0045] 次に、回転軸方向の圧縮について図 8から図 10を用いて説明する。
この場合も、インペラ 1回転時に流体分子に対してはたらく遠心力の作用によって、 吸入側から吐出側へ向けての流体の微小時間の段階的な動きを見ると、図 8 (a)に 示すように、遠心力の特徴から、流体の吐出側 (外周側)にかけて流体分子の密度が 低くなり、それに伴い静圧が低下する。
そして、同図(b)に示すように、遠心力によって円周方向に向けて加速された流体 分子の、翼高よりも高い部分は外壁 (ファンケース) 9に衝突して進行方向が偏向され る。この偏向は粘性流での現象でなく分子レベルの話であって、この分子を偏向する 力のベクトルは次々に伝播して行き、全体的には静圧を高める作用を持つ。
この流体分子が外壁 9に衝突して受けた反発力は、静圧の圧力変化として伝播さ れ、同図(c)に示すように、遠心力によって密度が低下した部分の分子間の間隔を 坦めることで静圧を高める。このため、流体分子の乱流が発生し、安定した流体の流 れを得ることができない。つまり、同図(d)が理想的な流体の流れとなる。
[0046] また、乱流発生の原因としては他に、インペラ 1の羽根 3が水平面に対して垂直に 立設し、羽根 3の外形面(回転時に外形線 3aが描く軌跡)が開放されている場合の、 羽根 3と外壁 9の壁面 9aとの摩擦や、前記外形面と壁面 9aとの隙間からの漏れによ る乱流の発生がある。これは、外壁 9がインペラ 1と一体的に回転する構造であれば 相当改善されるが、壁面 9aによって軸方向の静圧圧縮を行うため、この壁面 9aによ る軸方向の圧縮力のベクトルと遠心力のベクトルとの角度が大きくなるため、摩擦抵 抗が大きくなつてしまう。
[0047] 乱流発生の原因はもう一つあり、それは、羽根 3の設計上の外形線 3aの不適切な 選定によるものである。つまり、外形線 3aを適切に選定しない場合、図 6 (b)に示した ように、流路の中央部が膨らむ等の不具合が生じ、流体通過面積の変化が、模式的 に示した図 8 (e)のようなパターンとなり、流体の壁面 9aに対する反射角が不適当に なって乱流が発生し、流体の圧縮が行われなくなる。 この場合の乱流の原因を詳しく分析してみると、適切な流体通過面積を持った外形 面に衝突した流体分子は、図 9 (a)に示すように連続して緩やかに偏向角を変化させ ていくが、通過面積の変化が不適切で外径面の角度変化が不適切であると、図 9 (b )に示すように、分子が外径面に衝突したときの偏向角に影響し、静圧バランスを崩し て乱流発生の原因となる。
[0048] 以上述べてきた二つの不具合、つまり、外形面が分子の衝突の反発力によって静 圧圧縮を行うために発生する摩擦抵抗と、通過面積変化の不適切による反発方向の 分子の偏向角の不適切とが乱流を発生させ、圧縮効率の低下の原因となっている。 これらの原因を解消するため、本発明のインペラ 1は、図 10に示すように、羽根 3の 翼高方向にそりを持たせることで、分子の前記壁面 9aとの衝突を避けている。すなわ ち、羽根 3の翼高方向のそりを、回転方向に対して前進方向に湾曲させているのであ る。これにより、流体が翼面以外の部分に接することなぐ流体の通過が翼面内に限 られ、分子の衝突による急激な偏向がなくスムーズな流れとなり、乱流の発生を防止 すること力 Sできる。
[0049] 以上説明したような、遠心式羽根車において理想的な圧縮効果を得るための羽根 形状の三つの条件、即ち、流体通過面積の吸入側から吐出側にかけての適正な減 少、周方向の圧縮効果を得るための翼間ピッチの吸入側から吐出側にかけての適正 な減少、及び軸方向の圧縮効果を得るための適正な翼高方向のそり、これらの条件 を満たした遠心式羽根車を提供すベぐそのような形状の羽根を有する遠心式羽根 車の設計方法について、以下において説明していく。
[0050] まず、本発明に係るインペラ 1の設計方式の骨子について説明する。
一般的に、遠心力を利用して流体を搬送または圧縮する遠心式羽根車は、図 32 に示すように渦巻き状の翼を円周状に配置する形状となる。また、より高い圧縮効果 を得るためには、図 33に示すようなターボ型の遠心圧縮機などに用いられる形状と なる。これら二種類の基本的な翼形状における共通点は、流体の吸入側と吐出側が あることであり、相違点は吸入面翼高(113c ' 123c)の水平面に対する角度が垂直 か平行かである。これらの形状における問題点は、大別すると上述したような通過面 積の不適正化と翼車内誘起速度の発生という二点に尽きる。 [0051] 本発明においては、遠心式羽根車を用いて流体の搬送'圧縮をするための翼形状 の問題点を全て解決し、基本的な指針に基づいた一元化された設計方式を開発し た。この設計方式を用いた設計方法とは、一つの基本曲線に基づいて行う。その基 本曲線とは双曲線である。
つまり、本発明に係るインペラ 1の羽根 3の翼形状は、この双曲線をカ卩ェ '変換 '展 開し、双曲線の形状及びその変化率を利用することによって作成される設計図に基 づいて形成され、流体の吸入側から吐出側にかけての流体通過面積の適正な減少 と、翼車内誘起速度の発生を防止するための翼間ピッチの適正な減少を可能として いる。以下、この設計方法について順次説明していく。
[0052] 本発明に係る設計方法のように、双曲線を応用して翼形状を形成する曲線を設計 することにより、図 6 (e)、図 7 (f)、及び図 10で示したような条件、即ち流体の吸入側 から吐出側にかけての流体通過面積及び翼間ピッチの適正な減少と、乱流の発生を 抑制する翼高方向のそりの形成をすベて満足し、高速回転時における羽根間の流 体に対して理想的な翼形状を設計することが可能となる。その結果、羽根全体が三 次元的に規則性を持った形状となり、理想的な圧縮効果を発揮する。さらに、羽根全 体に一貫した規則性が存在するため、加工時においても、比較的簡単な方法で連 続的に翼形状を加工することができる。
[0053] この羽根形状の設計段階として、「インペラ外形(内形線 '外形線'通過面積)」、「翼 長方向のそり」、「翼高方向のそり」の三段階に分けて説明していく。なお、双曲線は 漸近線の取り方によってその形状 (変化率)が異なるが、本実施例においては、この 双曲線として図 11に示すような直角双曲線 (漸近線が直交する双曲線)を用レ、た設 計例について説明する。この直角双曲線は、 XY= ± a2/2を満たし、以下の説明に おいては、この直角双曲線の形状そのもの及びその変化率(曲率)をインペラ 1の形 状の設計に用いているため、 aの値は実際に設計するインペラ 1の大きさ(直径)に応 じたものとし、また、グラフ上の点の座標等は全て絶対値として考える。
[0054] まず、「インペラ外形」の設計方法にっレ、て説明する。
インペラ外形とは、インペラ 1の側面視における二次元形状と言い換えることができ る。つまり、このインペラ外形は、図 1 (b)に示すように、羽根 3の外形線 3a ·内形線 3b •吸入面翼高 3c ·吐出面翼高 3d及び基部 2の形状によって決定される。 図 11に示す本実施例における基本双曲線となる直角双曲線 (以下、「双曲線 H」と する)は、その基本性質として、該双曲線 H上の点における X座標と Y座標との積の 絶対値が常に一定であるということがある。本発明においては、この双曲線の基本性 質を翼形状の設計に利用しているのである。
[0055] その具体的な例として、双曲線 Hの第 2象限を用いた場合について説明する。
この双曲線 Hを、底辺を X軸上に持ち、原則として双曲線 Hの頂点 Cを通る任意の 長方形 Rで囲み、この長方形 Rと双曲線 Hとの X軸方向原点側の交点 P1 (この場合 頂点 C)及び X軸方向反原点側の交点 P2からそれぞれ X軸対して垂線を下ろす。こ の 2本の垂線、これらの垂線によって挟まれた部分の双曲線及び X軸で囲まれた部 分(図 11中の斜線部)、これがこの場合のインペラ外形における羽根 3の翼形状とな る。
このようにして第 2象限において決定された羽根 3の外形を、 Y軸を対称に複写し、 これら第 1象限及び第 2象限に示された形状が、この場合の羽根 3の外形となり、図 1 2に示すような形状となる。つまり図 12に示すように、前記 X軸方向原点側の垂線が 吸入面翼高 3cとなり、 X軸方向反原点側の垂線が吐出面翼高 3dとなり、これらの間 に挟まれた双曲線の一部が外形線 3aとなり、 X軸の一部が内形線 3bとなるのである 。言い換えると、双曲線 H上の任意の点における X座標をインペラ 1の回転中心から 径方向に対する距離、 Y座標をその位置での羽根 3の翼高としているのである。なお 、この場合回転軸は Y軸となる。
このような外形を有するインペラは、工作が容易となるので、一般的なポンプ送風機 に向いている。
[0056] このようにして決定されるインペラ外形においては、交点 P1 (頂点 C)の座標を (xl 、yl)とすると、吸入面通過面積は上述したように、 2 π 'xl 'ylとなる。同様に吐出面 通過面積も、交点 P2の座標を (x2、y2)とすると、 2 π 'x2 'y2となる。つまり、これら 交点 P1及び P2は双曲線 H上の点であるため、 xl 'yl =x2 'y2となり、吸入面通過 面積と吐出面通過面積とは等しくなる。これは、図 3等に示した吸入面 S1と吐出面 S 2の間の通過面積においても等しくなる。つまり、吸入側から吐出側にかけての流体 の通過面積が常に一定となってレ、るのである。
[0057] また、この方法を第 3、 4象限まで拡張して考えると、第 1、 2象限にて作成されたィ ンペラ外形を X軸対称に複写した形状となり、図 13に示すようなものとなる。この場合 も流体の通過面積は一定となり、回転軸方向両側から流体を吸収できるので、用途と しては大風量の気体圧送に適してレ、る。
これら図 12及び図 13に示したインペラ外形は、吸入面翼高 3cが水平面に対して 垂直となっており、種類としては図 1で示した垂直型のインペラにあたる。
[0058] このように、インペラ外形を決定するにあたり双曲線 Hを用いるのである力 S、この双 曲線 Hを移動 ·回転させることによって、吸入面通過面積と吐出側通過面積との面積 比や、それぞれの水平面に対する傾きや、吸入面翼高及び吐出面翼高を任意に設 定することが可能となり、し力、もこの場合、吸入面積から吐出面積までの面積変化率 が常に一定となる。
このようなインペラ外形のレ、くつかの変形例を図に従って説明していく。なお、便宜 上双曲線 Hの第 2象限の部分 (以下、双曲線 H2)を用いて説明する。
[0059] 図 14においては、外形線 3aだけでなぐ内形線 3bも双曲線 H2の一部によって形 成されている。この場合、双曲線 H2を、該双曲線 H2の焦点 Fに交わるまで X軸方向 に反原点側へ平行移動し、この移動後の双曲線を外形線 3aの一部に用レ、、同じく 双曲線 H2を X軸方向に原点側へ平行移動し、この移動後の双曲線を内形線の一部 としている。そして、吸入面翼高 3cは、原点 Oと頂点 Cとを結ぶ直線 (この双曲線 H2 の場合は水平面に対して 45° をなす直線)としており、吐出面翼高 3dは任意の傾き にしている。すなわち図 14 (b)に示すようなインペラ外形となる。この形状のインペラ の場合、図 12に示した形状のインペラと比較すると、内形線 3bがなだら力、な傾斜を 有するインペラ外形となり、通過面積は吸入側に対して吐出側は約 1Z2程度となつ ており、液体を圧送する高圧ポンプ等に用いられるインペラに適している。
また、図 14 (a)において、双曲線 H2を X軸方向に反原点側及び原点側へ移動し たものを、それぞれ回転させてその傾きを変えることにより、吸入面翼高 3c及び吐出 面翼高 3dを調整することができる。この一例として、吐出面通過面積が吸入面通過 面積と同じになるように調整した場合を、図 14 (c)に示す。このような外形を有するィ ンペラは、汎用ポンプ等に用いられるインペラに適している。
[0060] 続いては、図 15 (a)に示すように、双曲線 H2を原点 Oを中心に左回りに任意の角 度(本実施例では 15° )傾け、この傾けた双曲線 H2'を X軸方向に原点側及び反原 点側に水平に移動させて、これらを外形線及び内形線の形成に用いる。このようにし て形成されるインペラ外形は、図 15 (b)に示すようなものとなる。この場合、吸入面翼 高 3cが水平となる。つまり、図 2に示したような水平型のインペラとなり、このような形 状のインペラは、軸方向の吸入速度の速い流路効率の良レ、インペラとなり、この場合 も吸入側から吐出側にかけての通過面積は一定となる。
また、図 15 (c)に示すのは、同図(b)に示したインペラ外形と略同一であるが、圧縮 効率を上げるために、吐出側の通過面積を約 1/2にしている。つまり、吐出面の面 積が同図(b)に示したものの約 1Z2となっているのである。このように、前記双曲線 H2'を X軸方向に平行移動したものを回転させて傾けることによって、羽根 3の吸入 面翼高 3c及び吐出面翼高 3dを調節することができる。
図 15 (c)に示すような吐出面を狭くしたインペラは、軸方向からの流入速度が高速 であったり、流体の密度が大きかったりする場合に有効なものとなり、高圧ポンプ、遠 心圧縮機、ターボ等に利用されることが考えられる。
[0061] 以上例示したように、双曲線 Hを用いてインペラ外形を形成することによって、吸入 側から吐出側にかけての流体通過面積の変化率を一定とし、インペラによる流体の 吸入方向及び吐出方向、外形線 3a及び内形線 3b、吸入面翼高 3c及び吐出面翼高 3dの何れもが、流路の通過面積を、流体の種類や密度、流入速度、圧縮比などに対 応したあらゆる形状にすることが可能となり、インペラ外形の自由度の高い設計が可 能となる。
[0062] 次に、「翼長方向のそり」について説明する。
この翼長方向のそりを設計する上で重要な点は、羽根 3と羽根 3と間の距離、即ち 翼間ピッチの設定である。この翼間ピッチを自由に設定可能とすることが本設計方法 の目的である。なお、ここでは翼長方向のそりについてのみを説明するため、翼高方 向のそりがなレ、インペラについて説明する。
双曲線においては上述したように、その双曲線上の点の X座標と Y座標との積が常 に一定となる。つまり、双曲線 H2上の任意の点を取り、この点からの X軸及び Y軸に 対しての垂線によって決定される長方形(正方形)の面積は常に一定となる。
そこで、翼長方向のそりを設定する場合において、この双曲線上の点における X座 標と Y座標との安定した関係を、双曲線上の各点における接線の角度変化率として 利用する。
[0063] この角度変化率とは角度変化の割合であり、この角度変化とは、双曲線上の任意 の二点を取り、それぞれの点における接線の傾きの変化である。つまり、図 16に示す ように、双曲線 H2上のある点 mlにおける接線を tlとし、点 mlよりも X軸方向反原点 側の点 m2における接線を t2とすると、点 m2の点 mlに対する角度変化とは、接線 t2 の接線 tlに対する角度ひのことを言う。
すなわち、双曲線 H2上の点の X軸方向に沿った前記角度変化を、該双曲線 H2上 の任意の点の X座標を半径とする円に対応させながら一つの曲線を導出するのであ る。
[0064] 具体的には、図 17 (a)に示すように、インペラ外形を形成する際に外形線 3aとした 双曲線 H2の一部上に複数の任意の点 Μ1 ·Μ2 · · ·を取り、これらの点を X軸に転写 し、それぞれの点に対応する X座標を半径とする各周回線 L1 'L2—を作図する。こ れらの周回線 LI 'L2 ' · ·は双曲線 H2上の任意の点 Ml ·Μ2 · · ·に同期して対応し ており、同図(b)に示すように、吸入面 S1と水平線 (X軸)との交点 mOから、原点 Oに 対する点 mOの角度変化 α 0の傾きを持つ直線を引き、この直線が周回線 L1と交わ る点 mlで、この点 mlの mOに対する角度変化 α 1だけ屈曲する。このようにして順次 屈曲していく。つまり、点 mOから水平線に対して α θの傾きを持つ直線を描き、この 直線が周回線と交わる度に、その交点に対する次の点における角度変化の分を加え 、その直線を屈曲させながら吐出面 S2の位置まで連続していくのである。このような 方法において周回線の間隔を狭くして導出される一本の曲線が、一枚の羽根 3の翼 長方向のそりを決める基本中心線となる。言い換えると、双曲線 Η2上において、前 の(中心側の)点における接線の傾きと同じ傾きを持った直線に、その点における接 線の傾きを角度として加えて(回転させて)行き、滑らかな曲線とするために周回線の 間隔を狭くするのである。このようにして形成される基本中心線を羽根 3の枚数に応じ て円周上に配置すれば、インペラ 1の平面視における翼形状が決定される。
[0065] 次に、羽根 3の翼長方向のそりを決定する際に重要なの力 翼間ピッチである。この 翼間ピッチは、隣り合う羽根 3との相対位置で決まり、この翼間ピッチを変化させるに は、図 17 (a)を用いて説明した、双曲線 H2上の点を X軸に転写する際のこの双曲線 H2の変位角(原点〇を中心とした回転による角度)を変えればよい。
この翼間ピッチを変化させる一例として、例えば、図 17 (a)における双曲線 H2を、 原点 Oを中心に 15° 回転させた場合の双曲線を基に導出される基本中心線は、図 18 (a)に示す基本中心線 Qとなる。この基本中心線 Qに基づいて羽根 3を周方向に 等間隔を隔てて (基部 2の中心に対して等角度ずつずらせて)配置させると、同図(b
)に示すような配置となり、この場合は中心部から外周部、即ち吸入側から吐出側に 力、けて翼間ピッチ Pが略同じとなる。
[0066] また、図 19 (a)に示すように、図 18に示した基本中心線 Qを任意の角度回転させ、 この基本中心線 Q'とする。この場合、図 18と同じ外径とすると、基本中心線 Q'の一 部が外周側にはみ出て、このはみ出た分だけ翼長が短く設定できる。つまり、このよう に基本中心線 Qを回転させることで羽根 3の翼長を調整することができるのである。こ の基本中心線 Q'を基に羽根 3を配置した場合は、同図(b)に示すような羽根形状と なり、翼間ピッチ Pは全長に亘つて略同じになっている力 図 18 (b)に示したものと比 較すると、翼長は短く設定されている。
さらに、図 20 (a)に示すように、図 18に示した基本中心線 Qを径方向外側に平行 移動させた基本中心線 Q' 'を用いることによって、翼間ピッチ Pを回転中心側から外 周にかけて減少させることが可能となる、そして、この基本中心線 Q"を基に羽根 3を 配置した場合は、同図(b)に示すような配置となる。
すなわち、前記基本中心線 Qを回転させることで翼長を、また、平行移動させること で翼間ピッチをそれぞれ調整することができるのである。
[0067] このように、 X軸をインペラ 1の径方向に対応させ、双曲線 H2の X軸に対する角度 変化率を利用して羽根 3の翼長方向のそりを形成することで、羽根 3の平面視形状( 二次元形状)を決定する基本中心線を任意に決めることができ、さらに、この基本中 心線を回転 *移動させることで、翼長及び翼間ピッチを自由に調整することが可能と なるので、羽根 3の二次元的な翼形状の自由な設計が可能となる。
[0068] こうして決められた羽根 3の翼長方向のそりは二次元的なものであり、図 14 (b)、(c )や図 15 (b)、 (c)に示したようなインペラ外形では内形線 3bが曲線であり、これに翼 高方向のそりが加わると羽根 3はねじれたような形状となる。しかし、その設計の基本 は、二次元形状の設計と原則は同じである。つまり、図 14 (b)、(c)や図 15 (b)、(c) に示したようなそれぞれのインペラ外形も、その形状の基本的な違いは、図 14 (a)に 示したような、羽根 3の翼中心線に用いている双曲線 H2の、原点 Oを中心とする回 転による傾きにのみ起因している。
つまり、インペラ 1の設計の原則は、羽根 3の翼形状の三次元変化の各要素(翼高- 翼長 ·翼長方向のそり'翼高方向のそり)にどのように双曲線の変化率を同期させて 行くかによつてその形状が決定され、この双曲線の変化率は、流体の種類 '密度'速 度-圧力 ·温度など、様々な使用目的に適応すべく選定され、万能のインペラ形状と レ、うものは存在しなレ、ものの、各使用条件に応じた設計が可能となる。
[0069] 次に、翼長方向のそりの三次元展開方法について説明する。
始めに、双曲線の三次元曲面への展開方法について説明する。
図 21 (b)に示すような略円錐形状の斜面に、その展開図である同図(a)上の基線 K (前記基本中心線 Q)を転写して行くには、この基線 Kに任意(略半径方向に同間 隔)の点をプロットして周回線を作図し、この周回線の開始点、即ち基線 Kとインペラ 1におレ、て吸入面 S 1にあたる円との交点 klを通る垂直線からの周回線の周長(太線 部分)と同じ長さを平面図上にとり、この平面図上の対応している周回線上のポイント をつなげる。そうすると展開平面図上の基線 Kの転写が完了する。
[0070] 図 21 (b)に示した円錐台形状の斜面は、側面図において直線で表されるので、そ の展開図は同図(a)に示すように一つの平面によって示すことが可能である。そして 、例えば図 15 (b)、(c)等に示すように側面図の斜面に対応する部分が曲線である 場合も、図 21を用いて説明したように、基線 K上の任意の各点における周回線の間 隔毎に微分的に展開図を作成し、これらを連続させて行けば良い。
これらのことは、図 21 (a)に示すような二次元展開図上の基線 Kは、展開図'平面 図 ·側面図それぞれの周回線と連動してレヽれば転写が可能であることを示してレ、る。 すなわち、図 21 (a)における基線 Nから基線 Kまでの周回線上の距離を、図 21 (b) における基線 Νから同じ周回線上の距離をプロットすることで、円錐台上に基線 K'を 描くこと力 Sできる。よって、二次元から曲線の複雑な三次元変化に置き換えることが可 能であり、本発明に係るインペラのような加工データも作成可能であるということであ る。
[0071] 続いて、「翼高方向のそり」について説明する。
翼高方向のそりとは、羽根 3の翼形状の内形線から外形線までの間の翼の高さの 形状、即ち翼高方向の湾曲具合である。
現在、一般的に使用されている遠心式羽根車においては、そのほとんどの翼高形 状は平面であり殆ど曲面とはなっていなレ、(但し、翼長方向は曲面となる場合はある) 。しかし、図 10を用いて説明したように、翼高方向にそりを形成することは、流体の圧 縮効率の向上を図るためには不可避となってくる。ところが、この翼高方向のそりを形 成するには、形状の策定上、及び加工方法上、三次元非ユークリッド幾何学的な構 造解析や、 6軸 · 8軸機械切削加工などの問題があり、非常な困難が伴っている。そ れでいてその統一された設計方法は定まっておらず、各者各様の設計方式とボール エンドミル加工などの加工時間の力かる方法で試行錯誤的に行われているのが現状 である。
[0072] そこで、本発明のように、双曲線を利用することにより、翼高方向のそりを統一的な 手法によって設計するが可能となるのである。
つまり、翼高方向のそりを形成する際においても、上述した翼長方向のそりと同様 に、基本双曲線となる直角双曲線の変化率を、翼高方向に同期させて行くことによつ て、理想的な翼高方向のそりを形成することが可能となる。これにより、インペラ 1の回 転による遠心力で径方向に動圧をカ卩えられた流体は、図 9等に示したように壁面 9a に衝突することなぐ翼面上を滑らかに流れて行くこととなるのである。
[0073] 本発明の遠心式羽根車の設計方法を用いて、実際に設計した理想的な形状のィ ンペラ 1について、羽根 3の数が 18枚の場合を図 23及び図 24に、また、羽根 3の数 が 12枚の場合の平面図を図 25に、羽根 3の数が 24枚の場合の平面図を図 26にそ れぞれ示す。 これらの図に示すインペラ 1は、流体の吸入側から吐出側にかけての流体通過面 積及び翼間ピッチの適正な減少と、乱流の発生を抑制する翼高方向のそりの形成を すべて満足し、高速回転時における羽根間の流体に対して理想的な翼形状となって いる。つまり、これらは同じ双曲線を用いた設計方法によって形成され、羽根全体が 三次元的に規則性を持った形状となっており、理想的な圧縮効果を発揮する。さらに 、羽根全体に一貫した規則性が存在するため、加工時においても、比較的簡単な方 法で連続的に翼形状をカ卩ェすることができ、製造能率の向上が図れる。
[0074] 以上説明した遠心式羽根車は、上述した遠心式羽根車の代表的な二種類の形状
(垂直型'平行型)に限定されるものではなぐまた、設計方法についても上述の実施 例に限定されるものではない。
以上のように、平面視円状の基部と、該基部上に中心部から外周方向に設けられ、 周方向に等間隔を隔てて配設され、外形線'内形線 ·翼高 ·翼長の各要素によって形 状が決定される複数の羽根とを有する遠心式羽根車であって、前記羽根を形成する 各要素のうち、少なくとも一つを、双曲線の形状またはその変化率を用いて設計する ことにより、言い換えると、羽根の外形または内形、翼長方向のそり、翼高方向のそり のいずれか一つ、または二つ、または三つ、または全てを、基本曲線である双曲線に 基づいて、三次元的に規則性を持った設計方法によって設計することにより、様々な 使用条件、使用用途に応じて効率の良い圧縮効果が得られる翼形状の設計が可能 となる。
なお、この設計方法に用いる基本曲線としては、上述したような双曲線に限定され ず、サイクロイド曲線やインボリユート曲線、また円弧等を近似曲線として用いることも 可能である。
産業上の利用可能性
[0075] 本発明に係る遠心式羽根車 (インペラ)は、その外形を対応させることにより、一般 的なポンプ送風機をはじめとして、高圧ポンプ、遠心圧縮機、ターボ等あらゆる用途 に利用することが可能であるので産業上有用である。また、本発明の遠心式羽根車 の設計方法を用いることにより、流体の種類や密度、また、流入速度や圧縮比などに 対応したあらゆる形状にすることが可能となり、用途に応じたインペラ外形の自由度 の高い設計が可能となるので産業上有用である

Claims

請求の範囲
[1] 平面視円状の基部と、該基部上に中心部から外周方向に設けられ周方向に等間 隔を隔てて配設される複数の羽根とを有する遠心式羽根車において、前記羽根によ つて形成される流路の流体通過面積を、流体の吸入面から吐出面にかけて、一定の 変化率で縮小し、または一定としたことを特徴とする遠心式羽根車。
[2] 前記羽根を、翼高方向、かつ、回転方向に対して前進方向に湾曲させたことを特 徴とする請求項 1記載の遠心式羽根車。
[3] 前記羽根を構成する外形線'内形線'翼高方向のそり'翼長方向のそりの各要素う ち、少なくとも一つが、双曲線の形状またはその変化率を用いた曲線から形成される ことを特徴とする請求項 1または請求項 2記載の遠心式羽根車。
[4] 平面視円状の基部と、該基部上に中心部から外周方向に設けられ周方向に等間 隔を隔てて配設される複数の羽根とを有する遠心式羽根車において、隣り合う羽根 間の距離を、流体の吸入面から吐出面にかけて、一定とし、または徐々に狭くしたこ とを特徴とする遠心式羽根車。
[5] 前記羽根を、翼高方向、かつ、回転方向に対して前進方向に湾曲させたことを特 徴とする請求項 4記載の遠心式羽根車。
[6] 前記羽根を構成する外形線'内形線'翼高方向のそり'翼長方向のそりの各要素う ち、少なくとも一つが、双曲線の形状またはその変化率を用いた曲線から形成される ことを特徴とする請求項 4または請求項 5記載の遠心式羽根車。
[7] 平面視円状の基部と、該基部上に中心部から外周方向に設けられ周方向に等間 隔を隔てて配設され外形線 ·内形線 ·翼高 ·翼長の各要素によって形状が決定される 複数の羽根とを有する遠心式羽根車であって、前記羽根を形成する各要素のうち、 少なくとも一つを、双曲線の形状またはその変化率を用いて設計することを特徴とす る遠心式羽根車の設計方法。
PCT/JP2004/009121 2003-07-02 2004-06-28 遠心式羽根車及びその設計方法 WO2005003567A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-270449 2003-07-02
JP2003270449A JP3727027B2 (ja) 2003-07-02 2003-07-02 遠心式羽根車及びその設計方法

Publications (1)

Publication Number Publication Date
WO2005003567A1 true WO2005003567A1 (ja) 2005-01-13

Family

ID=33562619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009121 WO2005003567A1 (ja) 2003-07-02 2004-06-28 遠心式羽根車及びその設計方法

Country Status (2)

Country Link
JP (1) JP3727027B2 (ja)
WO (1) WO2005003567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879193B2 (en) 2007-09-06 2011-02-01 Voith Patent Gmbh Structured forming fabric and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024568A1 (de) * 2009-06-08 2010-12-09 Man Diesel & Turbo Se Verdichterlaufrad
JP5730649B2 (ja) * 2011-04-13 2015-06-10 株式会社日立製作所 羽根車及びそれを有するターボ機械
CN104067073B (zh) * 2012-09-14 2016-04-13 海信(北京)电器有限公司 离心风机冰箱的风道设计方法
KR101776132B1 (ko) 2017-04-17 2017-09-08 효성아쿠아텍(주) 고효율 볼텍스 임펠러
EP3696425B1 (en) * 2017-10-11 2023-05-03 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Impeller for centrifugal rotating machine, and centrifugal rotating machine
WO2019235421A1 (ja) * 2018-06-05 2019-12-12 株式会社村田製作所 送風装置、流体制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029510U (ja) * 1973-07-12 1975-04-03
JPH03130598A (ja) * 1989-10-16 1991-06-04 Eiichi Sugiura 流体機械用インペラ
JP2000310197A (ja) * 1999-04-27 2000-11-07 Kioritz Corp 送風用遠心羽根車
JP2002332993A (ja) * 2001-05-09 2002-11-22 Toyota Central Res & Dev Lab Inc 遠心圧縮機のインぺラ
JP2002349487A (ja) * 2001-05-28 2002-12-04 Mitsubishi Heavy Ind Ltd 羽根車および遠心圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029510U (ja) * 1973-07-12 1975-04-03
JPH03130598A (ja) * 1989-10-16 1991-06-04 Eiichi Sugiura 流体機械用インペラ
JP2000310197A (ja) * 1999-04-27 2000-11-07 Kioritz Corp 送風用遠心羽根車
JP2002332993A (ja) * 2001-05-09 2002-11-22 Toyota Central Res & Dev Lab Inc 遠心圧縮機のインぺラ
JP2002349487A (ja) * 2001-05-28 2002-12-04 Mitsubishi Heavy Ind Ltd 羽根車および遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAMAI T.: "Enshin jikuryu sofuki to asshukuki", DAI 16 BAN, KABUSHIKI KAISHA ASAKURA SHOTEN, 1 September 1973 (1973-09-01), pages 140 - 141, XP002985336 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879193B2 (en) 2007-09-06 2011-02-01 Voith Patent Gmbh Structured forming fabric and method

Also Published As

Publication number Publication date
JP2005023901A (ja) 2005-01-27
JP3727027B2 (ja) 2005-12-14

Similar Documents

Publication Publication Date Title
US7517193B2 (en) Centrifugal compressor and manufacturing method for impeller
JP5479316B2 (ja) 遠心圧縮機のスクロール構造
JP5316365B2 (ja) ターボ型流体機械
KR101383993B1 (ko) 초음속 터빈 동익 및 축류 터빈
JP5766595B2 (ja) 遠心ターボ機械
JP5351941B2 (ja) 遠心圧縮機とその羽根車およびその運転方法、羽根車の設計方法
JP2010151126A (ja) 遠心圧縮機およびその設計方法
WO1999061800A1 (en) Turbomachinery impeller
JP6034162B2 (ja) 遠心式流体機械
US9995311B2 (en) Centrifugal fan
JP2013104417A (ja) 遠心式流体機械
JP6945739B2 (ja) 多翼送風機及び空気調和装置
WO2005003567A1 (ja) 遠心式羽根車及びその設計方法
JP2005023901A5 (ja)
JP2005098307A (ja) 遠心式羽根車及びその設計方法
JP2010150945A (ja) 軸流ファンおよび空気調和機の室外機
US10844863B2 (en) Centrifugal rotary machine
WO2021010338A1 (ja) インペラ及びそれを用いた遠心圧縮機
JP4402503B2 (ja) 風力機械のディフューザおよびディフューザ
JP6860331B2 (ja) ディフューザ、吐出流路、および遠心ターボ機械
KR100901204B1 (ko) 원심 임펠러
JP2021004584A (ja) 二相流タービンの動翼及びこの動翼を備える二相流タービン
JP7409246B2 (ja) ターボファン
WO2017090713A1 (ja) 静止ベーンおよび当該静止ベーンを備えた遠心圧縮機
JP2020122444A (ja) 回転機械

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (FORM 1205A DATED 19.05.06)

122 Ep: pct application non-entry in european phase