WO2005002758A1 - 遠心鋳造設備における注湯方法及び注湯システム - Google Patents

遠心鋳造設備における注湯方法及び注湯システム Download PDF

Info

Publication number
WO2005002758A1
WO2005002758A1 PCT/JP2003/008606 JP0308606W WO2005002758A1 WO 2005002758 A1 WO2005002758 A1 WO 2005002758A1 JP 0308606 W JP0308606 W JP 0308606W WO 2005002758 A1 WO2005002758 A1 WO 2005002758A1
Authority
WO
WIPO (PCT)
Prior art keywords
pouring
ladle
molten metal
mold
centrifugal
Prior art date
Application number
PCT/JP2003/008606
Other languages
English (en)
French (fr)
Inventor
Masaru Ishikawa
Kunio Seino
Hideto Takasugi
Shinichi Kasahara
Shunichi Kawanami
Original Assignee
Nippon Chutetsukan K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chutetsukan K.K. filed Critical Nippon Chutetsukan K.K.
Priority to AU2003304269A priority Critical patent/AU2003304269A1/en
Priority to PCT/JP2003/008606 priority patent/WO2005002758A1/ja
Publication of WO2005002758A1 publication Critical patent/WO2005002758A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/107Means for feeding molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/12Controlling, supervising, specially adapted to centrifugal casting, e.g. for safety reasons

Definitions

  • the present invention relates to a technology relating to a step of injecting molten metal into a mold of a centrifugal forming apparatus when manufacturing a steel pipe in a centrifugal forming apparatus, and after receiving molten metal from a ladle for hot water distribution,
  • the present invention relates to a manufacturing technique for improving productivity by improving the work efficiency up to the injection into a mold, and for obtaining a manufactured pipe having stable dimensions and quality.
  • a holding furnace 1 for holding a predetermined amount of molten metal at a predetermined temperature Dispense the molten metal 2a to the ladle 3 for hot water distribution, and collect the molten metal 2b from the ladle 3 for hot water distribution to the stationary ladle 5 installed near the designated centrifugal machine 13 From the fixed ladle 5 to the triangular ladle 6 as a ladle for pouring, and into the mold 7 provided in the centrifugal machine 13, the molten metal 2 c to be poured once is poured out.
  • Reference numeral 6 denotes a pouring trough 8 through a chute (“pouring chute” in the present specification) 25, and the molten metal 2 d has a slight inclination angle 0 with respect to the horizontal, and Inject into the rotating mold 7 with, and centrifuge the tube 9.
  • the pouring from the triangular ladle 6 to the ⁇ -type 7 is performed by tilting the triangular ladle 6 about its rotation axis.
  • reference numeral 4 denotes a trough bogie.
  • the steel pipe 9 is pulled out of the steel mold 7 to maintain the steel mold 7 and the pouring trough 8 is maintained, and then, the production cycle of the next steel pipe is continued. to go into.
  • the molten metal poured from the stationary ladle 5 to the triangular ladle 6 during that time, and the triangular ladle 6 injects the molten metal 2 d into the mold 7 via the pouring shot 25, and Centrifuge 9 While continuing the work of the production cycle, the molten metal 2b is supplied from the ladle 3 for hot water distribution to the ladle 5 for stationary use during the period, and is prepared for tapping into the triangular ladle 6.
  • the operation of pouring the molten metal 2d from the triangular ladle 6, which is a ladle for pouring, into the mold 7 involves the injection flow rate of the molten metal (to the mirror mold per unit time). It is particularly important to control the injection temperature of the molten metal 2d) and the pouring temperature with high precision in controlling the thickness of the pipe 9. If the injection flow rate of the molten metal is too large, the pipe thickness will be too thick, and machining will be required in the post-process, increasing the number of steps and reducing the yield.On the other hand, the injection flow rate of the molten metal will be too small. And the pipe thickness becomes too thin, resulting in defective products.
  • the pouring temperature is a factor that governs the viscosity of the molten metal, and has a significant effect on the control of the injection flow rate, and also has an effect on the quality of the metal structure, etc. of the tube-forming products.
  • Japanese Patent Application Laid-Open No. H11-1179512 discloses that the tilting speed of a triangular ladle 6 as a ladle for pouring is controlled, and the thickness of the formed pipe is made uniform by controlling the tilting speed.
  • the following technologies are disclosed as technologies for achieving this.
  • the tilting device is configured so that the supply amount of hydraulic oil to the drive cylinder device that tilts the triangular ladle can be controlled, and the tilting speed of the triangular ladle can be controlled to control the triangular ladle.
  • Japanese Patent Application Laid-Open No. 5-2777110 discloses that the temperature control of the molten metal in the holding furnace 1 is automated, so that there is no problem.
  • the following technology is disclosed as a technology for preventing the occurrence of a variation in the pouring temperature due to the variation between them.
  • an automatic pouring device was installed from the holding furnace.
  • a ladle device that receives a fixed amount of molten metal and cuts out a predetermined amount of the molten metal, receives the molten metal supplied from the ladle device, and raises and maintains the temperature.
  • a heating furnace device that is configured to be able to cut into a triangular pot, which is a ladle for pouring into a mold, at a predetermined cutting flow rate (cutting amount per unit time)
  • a predetermined cutting flow rate cutting amount per unit time
  • prior art 2 the precision of the amount of molten metal remaining in the ladle device is controlled (hereinafter referred to as prior art 2).
  • Patent No. 3790190 discloses a triangular ladle conventionally used as a ladle for pouring a mold 7 for centrifugal production. (6) As with the unique shape, the surface area of the molten metal in the ladle when pouring into the mold (7) is almost constant, without using a ladle in which the vertical cross-sectional shape passing through the tap hole is fan-shaped.
  • Prior Art 3 an automatic pouring method in which the pouring can be performed without depending on the fluctuation of the pouring streamline of the molten metal accompanying the tilting of the ladle. According to the method of Prior Art 3, it is said that safe and reliable automatic pouring operation can be performed.
  • the present inventors have conducted intensive studies in order to solve the above problems.
  • Prior Art 1 and Prior Art 3 are effective for controlling the pouring flow from the ladle for pouring into the mold ⁇ , but the techniques disclosed in Prior Art 1 and Prior Art 3 are effective. It is difficult to sufficiently suppress the drop in the final pouring temperature during the pouring from the ladle for pouring into the mold. The reason is that the molten metal required to produce one steel pipe is poured into the ladle for pouring, which is the so-called triangular ladle, so that The specific surface area of the molten metal (weight of the molten metal / (upper surface area of the molten metal + total contact area with the inner surface of the ladle)) becomes relatively large, and its minimum specific surface area is limited. Therefore, there is a limit to the suppression of heat dissipation from the molten metal.
  • an object of the present invention is to solve the above-mentioned unresolved problems comprehensively, to perform a stable operation while ensuring high productivity, and to obtain a steel pipe having a uniform pipe thickness and a stable quality.
  • An object of the present invention is to provide a pouring method and a pouring apparatus in a centrifugal smelting facility that can be used.
  • the present inventors have conducted intensive tests and studies to solve the above-mentioned problems. Got. .
  • the specific surface area of the molten metal in the ladle for pouring decreases to the value calculated by the 2 Z 3 power of the rate of increase in the capacity of the ladle for pouring. It gets smaller accordingly. Therefore, it is possible to remarkably suppress the temperature drop during the last stage of pouring into the mold ⁇ , and at the same time, to use a conventional ladle (see reference numeral 5 in FIG. 6) and a triangular ladle (reference numeral 6 in FIG. 6).
  • the heat loss chance of the molten metal in two stages (see the reference, the capacity is the amount of molten metal for one pipe) is only the heat loss chance in one stage of the ladle for large capacity pouring. Therefore, there is a possibility that the control level value of the molten metal temperature in the holding furnace can be lowered. Furthermore,
  • the ladle exchange truck is of the type that rotates around the center of the circle, and these two large-capacity ladles are placed facing 180 degrees around the center of the circle. What is necessary is just to configure it. By doing so, the following effects can be exhibited.
  • two large-capacity ladles like the ladle changing device described above are used. If the ladle for hot water is placed, the molten metal in one ladle for pouring is poured into the mold by the pouring device while the other is placed in the ladle changing device.
  • the ladle can be replenished with molten metal from a ladle for hot water distribution and prepared. Therefore, there is an increase in the chance that a further effect will be exhibited in eliminating the pouring wait described in 1) above.
  • a ladle changing device is provided for a pouring device and a forging device of a plurality of lines, a design is made such that three or more large-capacity ladles for pouring are arranged.
  • a pouring device is installed to receive the large-capacity pouring ladle described above and to enable automatic pouring operation to the centrifugal machine. To stabilize the automatic pouring operation, tilt the large-capacity pouring ladle to set the target position at which the pouring streamline collides with the inside of the pouring chute into which the molten metal falls. However, it is effective to provide a control mechanism to drop and inject this target point. Furthermore, it is desirable to provide a control mechanism for the injection flow rate (the amount of molten metal injected into the mold per unit time) poured into the mold via the pouring chute.
  • the present invention has been made based on the above findings and ideas, and the gist is as follows.
  • the method for pouring molten metal in a centrifugal fab according to claim 1 is necessary for producing a plurality of brewed pipes in a step of injecting a molten metal into a mold of a centrifugal fab in a centrifugal fab for iron pipe production.
  • the present invention is characterized in that a molten metal in a ladle for pouring having a capacity for accommodating a suitable molten metal is automatically poured into the mold of the centrifugal squirrel machine using a pouring device.
  • the pouring ladle containing the molten metal to be used for the next mirroring operation is transferred to the pouring device described above, and the pouring ladle transferred to the pouring device is transferred to the pouring device.
  • the molten metal in the pot is poured into the above-mentioned mold of the centrifugal brewing machine using the pouring device by automatic operation.
  • the ladle for pouring the molten metal necessary for producing a plurality of forged pipes in both the previous and next forging operations is stored as the ladle for pouring. It has a feature in that the molten metal for each of a plurality of steel pipes is injected into a cylindrical shape by automatic operation using a material having performance.
  • the pouring method for a centrifugal brewing facility according to claim 3 is the method according to claim 1 or 2 for pouring a molten metal having a capacity to accommodate a molten metal necessary for mirror-fabricating a plurality of fab pipes.
  • the ladle for pouring is tilted in advance to an angle just before the start of pouring, It is characterized in that the injection of the molten metal into the mold ⁇ is started immediately.
  • the pouring method in the centrifugal fab according to claim 4 is the pouring method according to any one of claims 1 to 3, further comprising: After the pouring is completed or the pouring is interrupted, the pouring ladle is moved in a direction perpendicular to the longitudinal direction of the line of the centrifugal machine, and then the pouring ladle is moved at the time of the pouring. Tilting in the opposite direction to the tilting direction, and adding an operation to a predetermined remaining hot water pot to discharge the remaining hot water and the residue in the ladle for pouring or the molten metal and the residue to be poured into the mold (1) It is characterized by
  • the pouring method in the centrifugal brewing facility according to claim 5 is the method according to any one of claims 1 to 4, wherein the molten metal in the pouring ladle using the pouring device is The object to be automatically controlled when the above-mentioned centrifugal machine is automatically injected into the mold (2) is to perform the injection while automatically controlling the pouring flow to drop to the target position in the pouring chute into the mold (2). It is characterized in particular.
  • the pouring method in the centrifugal brewing facility according to claim 6 is the method according to any one of claims 1 to 5, wherein the molten metal in the pouring ladle using the pouring device is The object of automatic control performed when automatically injecting into the mold (2) of the centrifugal fabrication apparatus described above is characterized in that the molten metal is injected into the mold (2) while automatically controlling the injection flow rate. .
  • the pouring method in the centrifugal fab according to claim 7 is the pouring method according to any one of claims 4 to 6, wherein the pouring flow is in the pouring chute into the mold ⁇ .
  • the pouring ladle is controlled to rotate around the axis of the rotation axis of the pouring ladle, and the tilt angle of the pouring ladle And the position on the absolute coordinate axis of the molten metal drop starting point from the pouring port of the pouring ladle at the start of the pouring, or the virtual initial molten metal pouring center point close to the molten metal drop starting point.
  • the pouring method in the centrifugal fab according to claim 8 is the pouring method according to claim 6 or 7, wherein the pouring method is a method for automatically controlling a flow rate of the molten metal to be injected into the mold. It is characterized in that the rotation angle speed of the pouring ladle is automatically controlled according to the surface area of the molten metal in the ladle.
  • the pouring system in the centrifugal production facility according to claim 9 is a pouring system in a centrifugal production facility for steel pipe construction, and comprises the following devices (a), (b) and (c). It is a pouring system in a centrifugal production facility having features. That is,
  • the ladle for pouring which has been emptied by pouring the molten metal into the mold during the previous construction operation, is delivered to the ladle changing device.
  • Receiving the other pouring ladle containing the molten metal, injecting a predetermined amount of the molten metal from the other pouring ladle into the mirror mold in the next construction operation, and then emptying A pouring device configured to transfer the other ladle for pouring to the ladle changing device, and
  • the molten metal in the one pouring ladle is injected into the mold by the pouring device, and then the molten metal in the other pouring ladle is poured by the pouring device.
  • a centrifugal fabrication device configured to be injected into a mold to fabricate the mirror tube.
  • the pouring system in the centrifugal brewing facility according to claim 10 is the invention according to claim 9, wherein the pouring ladle includes the pouring ladle with respect to a line longitudinal direction of the centrifugal fab. There is a ladle traversing mechanism for pouring that moves in a right angle direction. The hot water and the residue in the pouring ladle, perpendicular to the traversing direction of the pouring ladle by the ladle traversing mechanism and opposite to the installation side of the centrifugal machine. It is characterized in that a remaining hot water pot for discharging water is provided.
  • the pouring system in the centrifugal brewing facility according to claim 11 is the invention according to claim 9 or claim 10, wherein the pouring device further comprises: A rotating and tilting mechanism that rotates and tilts around the axis of the rotating shaft of the hot water ladle and a vertical and horizontal moving mechanism that moves the other pouring ladle vertically and horizontally are provided. Is characterized by the fact that
  • the pouring system in the centrifugal brewing facility according to claim 12 is the invention according to claim 11, wherein the rotation tilt mechanism of the other pouring ladle controls the rotation tilt operation.
  • a ladle tilting control device is provided, and a ladle movement control device for controlling the movement of the other ladle for pouring in each direction to the vertical and horizontal movement mechanism of the ladle for other ladles. It is characterized in that the device is provided.
  • the pouring system in the centrifugal production facility according to claim 13 is the invention according to any one of claims 9 to 12, wherein the one pouring ladle and the other pouring ladle are: In each case, the ability to receive the required amount of molten metal from the ladle for distributing molten metal from the ladle for distributing the molten metal and to store the molten metal until the molten metal is poured into the mold is required.
  • the feature is that it is provided.
  • FIG. 1 is a schematic side view showing an example of a pouring system according to the present invention.
  • FIG. 2 is a schematic side view of the example of the pouring system of the present invention shown in FIG.
  • FIG. 3 is a configuration and automatic control flow chart of an example of a pouring apparatus according to the present invention.
  • FIG. 4 shows the distance in the front-rear direction and the vertical direction of the tap hole reference point that is displaced when the large-capacity pouring ladle is tilted in controlling the movement of the large-capacity pouring ladle in the present invention.
  • FIG. FIG. 5 is a detailed enlarged view of the vicinity of the tap hole in FIG.
  • FIG. 6 is an example of a schematic view of a forging process of forged pipes by conventional centrifugal forging equipment.
  • FIG. 1 is a schematic side view of a pouring system according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic plan view of the system.
  • 11 is a ladle changing device
  • 12 is a pouring device
  • 13 is a centrifugal brewing device.
  • the molten metal held at the predetermined temperature is received from the holding furnace (see reference numeral 1 in FIG. 6), and the molten metal is transferred from the ladle 3 for hot water distribution, which has been transported to the ladle changing device 11.
  • a fixed amount of molten metal 2e is supplied to a large-capacity pouring ladle 14a.
  • the amount of molten metal received by the large capacity pouring ladle 14a is the multiple times of the pouring volume into the mold 7 (of the centrifugal brewing device 13), for example, five cycling pipes are manufactured.
  • the shape of the ladle for large-capacity pouring is not limited to a triangular or fan-shaped longitudinal cross-section in the front-rear direction, but may be a ladle of any other shape, for example, a cylindrical pouring ladle. Good. The reason is that if the relationship between the inclination angle of the ladle and the upper surface area of the molten metal in the ladle is clear, the tapping flow rate by the tilting operation of the ladle (when pouring into the ⁇ type, , Which corresponds to the injection flow rate).
  • the ladle 14a for large-capacity pouring containing the molten metal 2e is placed at a predetermined position on the turntable 16 of the ladle exchanging device 11 by a predetermined carrier such as a crane 15 (see FIGS. 1 and 2). Position (A)).
  • the ladle changing device 11 includes a turntable 16 that rotates in a horizontal plane about a central rotation axis 16a, and a drive unit that rotationally drives the turntable 16 via a table roller 16 (not shown). ) And a table bogie 17 on which the rails 17b are mounted and travel in a predetermined direction.
  • This ladle changing device 1 1 With the two large-capacity ladles placed on the bull 16, the turntable is rotated 1,80 degrees to exchange the ladle positions. That is, the large-capacity pouring ladle 14a containing the molten metal placed at the position (A) on the turntable 16 and the turntable 16 around the rotating shaft 16a.
  • the ladle 14b for large capacity pouring is an empty ladle as described below.
  • Such a repositioning of the ladle for large capacity pouring is based on the following necessity.
  • the pouring equipment 1 2 was poured into the mold 7 in the previous construction work, and as a result, the molten metal became empty, resulting in a large-capacity pouring ladle 14 b
  • the ladle changing device 1 1 is such that the pouring device 1 2 is used for handing the empty large-capacity pouring ladle 14 b ′ and the large-capacity pouring ladle 1 4 a with molten metal.
  • the turning operation of the turntable 16 performed by the ladle changing device 11 1 is performed manually by remote control, or is loaded on the wheels 17 a of the table bogie 17 on which the turntable 16 is mounted.
  • the wheel load is measured, and the measurement is carried out by automatic operation using a computer controller (not shown).
  • a ceiling-mounted type is shown in FIGS. 1 and 2, but may be a ground-mounted type.
  • the pouring device 1 2 hands over the large-capacity pouring ladle 1 4 b ′ with the empty molten metal to the ladle changing device 11 1, as well as the large-capacity molten metal for the next production operation.
  • This ladle for large capacity pouring with molten metal 1 4 During the movement of a, the pouring device 12 is wound up by the lifting frame 19 and the lifting drive unit 20 installed on the longitudinal carriage 18, and the longitudinal carriage 18 is centrifuged by the centrifugal machine 1. Move it forward in the direction of 3 (left direction in the figure), wind it down at a predetermined position, and place it near the upper part of the pouring shout 25. Align and prepare for the next manufacturing operation.
  • FIG. 3 shows a configuration of the pouring device and a flow chart of automatic control.
  • the pouring device has a moving device 27 for the large capacity pouring ladle 14 and a moving control means.
  • a tilting device 29 and tilt control means 30 are provided.
  • the moving device 27 performs pouring of the pouring flow during pouring into the mold ⁇ .
  • the moving device 27 has a movement adjusting function for appropriately setting the position of the large capacity pouring ladle 14.
  • the direction of movement can be divided into a vertical direction, a front-rear direction in the horizontal plane (the structure line direction, X direction in Fig. 2), and a left-right direction (Y direction in Fig. 2).
  • An elevating frame 19 and an elevating drive unit 20 are provided as the vertical moving device 27a, and a front and rear moving truck 18 and a front and rear moving drive unit 31 are provided as the front and rear moving device 27b, and the left and right movement is performed.
  • a left-right moving carriage 21 and a left-right moving driving unit 32 are provided.
  • the tilting device 29 controls the tilt angle and tilting speed of the large-capacity pouring ladle 14 to control the injection flow rate (the amount of pouring per unit time) during pouring into the mold ⁇ . And has a tilt adjustment function.
  • the pouring equipment also includes a load cell 33 as a device for measuring the weight of molten metal in the large-capacity pouring ladle 14, and an encoder as a measuring device for the inclination angle of the large-capacity pouring ladle 14.
  • the moving device 27 and the tilting device 29 are controlled as follows by the moving control device 28 and the tilt control device 30 during pouring into the mirror mold.
  • the control operation of the movement device 27 by the movement control means 28 is as follows.
  • the moving device 27 is moved to a predetermined position above the pouring chute 25.
  • a large-capacity pouring ladle 14 is tilted by driving its tilting rotary shaft at a predetermined tilting speed in response to a pouring start signal to the mold ⁇ .
  • the tilting of the large-capacity pouring ladle 14 is measured by the encoder 34 for detecting the tilting angle of the rotating shaft, and according to the tilting angle, the longitudinal carriage 18 and the lifting frame In 19, move the large capacity pouring ladle 14 by distance x in the front-to-back direction (X direction in Fig. 1 and Fig.
  • the analog signal detected by the encoder 34 is converted to a digital signal by the AD converter 37 and sent to the storage operation device 35.
  • the memory computing device 35 has a relational expression between the inclination angle ⁇ of the large-capacity pouring ladle 14 and the displacement of a virtual fixed point Oi near the taphole 24 of the ladle 14 (described above).
  • the derived equations (1) and (2)) are stored, and the position of the large-capacity pouring ladle 14 is corrected by the digital signal of the tilt angle and the arithmetic storage signal.
  • the captured position of the ladle 14 is transmitted to the front-rear drive unit 31 and the elevation drive unit 20 via the DA converter 39.
  • the signal generated by the position movement command device 41 is input to the storage operation device 35, the signal is corrected by the ladle position correction signal stored here, and is passed through the DA converter 39. It is transmitted to the front-rear movement drive unit 31 and the lifting drive unit 20 of the large capacity pouring ladle 14.
  • the position of the large-capacity pouring ladle 14 is shifted to the left and right with respect to the axis of the pouring shout 25 at the start of production, based on information from the pan position detecting device 36.
  • the storage arithmetic unit 35 transmits the centering signal of the large-capacity pouring ladle 14 to the left and right movement drive unit 32.
  • the movement control means 28 controls the movement device 27.
  • FIG. 10 is an explanatory diagram of a situation when the temperature changes to a value, and a virtual initial tapping center set close to a position at which the molten metal falls from the tap hole 24 at the start of pouring into the mold at the initial position. It is a figure explaining displacement of point Oi.
  • FIG. 5 is a detailed enlarged view of the vicinity of the tap hole 24 in FIG.
  • the horizontal direction is the X-axis direction
  • the vertical above the center point Oi is the Z-axis direction
  • the X-Z axis is absolute.
  • the coordinates are assumed to be the coordinate axes, and the above-mentioned hypothetical initial tapping center Oi is the origin (0, 0).
  • the inclination angle of the large capacity pouring ladle 14 is 0 to 0 + 0.
  • the above equations (1) and (2) are obtained, as is clear from FIG. L, L. Is the center of rotation C of the large capacity pouring ladle 14. It is the distance between the virtual initial hot water supply center Oi.
  • the initial movement direction of the tapping flow from the tap hole 24 is always horizontal. Therefore, when the initial speed is constant, when the inclination angle increases by 0, the position of the large capacity pouring ladle 14 is moved by y in the X-axis direction and by z in the Z-axis direction. By doing so, the pouring flow into the ⁇ mold can be dropped to a certain position in the pouring chute. In this case, the center of rotation C of the large capacity pouring ladle 14.
  • the analog signal detected by the encoder 34 is converted into a digital signal by the AD converter 37, and sent to the storage operation device 35 '.
  • the relationship between the inclination angle of the ladle 14 for large-capacity pouring and the surface area of the molten metal in the ladle 14 is stored in the storage arithmetic unit 35 ', and the digital signal of the inclination angle and the pouring
  • the tilting speed at the place is corrected by the signal from the speed command device 38 and the above-mentioned arithmetic storage signal.
  • the storage method may be to input the change in the surface area of the molten metal into the storage arithmetic unit 35 ′ by calculation, or to actually store the molten metal stored in the large-capacity pouring ladle 14 in a ⁇ shape. It is a so-called teaching play pack system in which the relationship between the angle of inclination obtained by the pouring operation, the pouring speed and the pouring time is stored.
  • the tilting speed of the large-capacity pouring ladle 14 is corrected so that the injection flow rate (pouring volume per unit time) from the ladle 14 into the mold is constant during pouring. .
  • the captured tilt speed signal is transmitted to the tilt drive unit 23 via the DA converter 39 '.
  • the speed signal generated by the pouring speed command device 38 is input to the storage operation device 35 ', the speed signal is corrected by the tilt speed correction signal stored here, and the D-A converter 39' is operated. It is transmitted to the tilt drive unit 23 of the large capacity pouring ladle 14 via the control unit and controls the tilt device 29.
  • the tilting of the large capacity pouring ladle 14 is stopped, and the pouring is stopped by tilting the ladle 14 in the opposite direction by a predetermined tilt angle.
  • the horizontal large-capacity ladle 14 rolled up by the pouring device 12 has a pouring port 24 near the upper side of the pouring shot 25 also by the pouring device 12.
  • a tilting device 29 composed of a tilting frame 22 and a tilting drive unit 23.
  • the molten metal in the ladle for pouring 14 is poured into the mold 7 mounted on the trolley 10 through the pouring chute 25 and the pouring trough 8.
  • a large-capacity pouring ladle 14 capable of producing a plurality of steel pipes with one ladle is used. Therefore, when the first cast pipe is made by the molten metal in the pouring ladle 14, the pouring ladle 14 is used by the tilting device 29 for pouring into the mold 7. It is necessary to tilt the ladle from the horizontal state to the pouring angle, and this ladle tilting requires a certain amount of time. As a result, the cycle time becomes longer, which leads to a decrease in production efficiency, and furthermore, a heat loss may cause a decrease in the temperature of the molten metal poured into the mold 7.
  • a horizontal large-capacity pouring rolled up by the pouring device 12 is used.
  • the ladle 14a ' is tilted in advance to the angle just before the start of pouring as shown by the dotted line in Fig. 1, and when the mold 7 mounted on the trolley 10 arrives at the predetermined position.
  • pouring into the mirror mold 7 is started immediately. That is, since the amount of pouring into the mold 7 changes depending on the diameter of the as-produced pipe, the ladle for pouring 14 should be removed before starting pouring according to the pouring amount at that time. Tilt to the previous angle. In this way, the molten metal in the ladle 14 can be poured into the mold 7 at a substantially fixed time.
  • the cycle time is shortened, and a decrease in production efficiency can be prevented. Further, a decrease in the temperature of the molten metal due to heat loss can be prevented.
  • the pouring ladle 14 is already at a predetermined angle for the previous forging of the forged pipe. Tilting, usually pre-tilt as described above It is not necessary to perform this, but if necessary, it is, of course, preferable to incline in advance.
  • pre-tilt angle [(total ladle weight – melt weight) / (constant according to pot capacity)] (set tilt angle) .
  • the next pouring is started by the above-described procedure.
  • the molten metal and slag remaining in the large-capacity pouring ladle 14 are removed as shown in FIG. It is discharged to the remaining hot water pot indicated by reference numeral 42 inside.
  • the remaining hot water pot 42 is provided as a part of the pouring device 12, and the large-capacity pouring ladle 14 is connected to the centrifugal machine 13 in the longitudinal direction of the line.
  • the ladle 14 for large-capacity pouring is arranged in a direction perpendicular to the traversing direction (the left-right direction) of the ladle for large-capacity pouring and opposite to the installation side of the centrifugal structure 13.
  • the location of the remaining hot water pot 42 is to avoid the area adjacent to the centrifugal machine 13 as described above, thereby securing a place for installing the auxiliary mechanism of the centrifugal mirror manufacturing apparatus 13 and a place for storing the accessory parts. It is more advantageous.
  • the pouring equipment 1 2 handed the large capacity pouring ladle 1 4 with the remaining hot water and residue empty to the ladle changing apparatus 1 1, and the large capacity pouring ladle 1 with molten metal for the next production 1 Receiving 4 and start the next construction work.
  • the remaining hot water pot 42 stops the construction work urgently when the pouring work to the mold ⁇ is abnormal. Also, a function as a device for preventing cooling and solidification of the molten metal for large-capacity pouring is also provided by quickly processing the remaining molten metal.
  • 10a is a rail for a built-in trolley
  • 18a is a rail for a front-rear trolley
  • 18b is a trolley on a front-rear trolley
  • 21b is a rail on a left-right trolley
  • 2 6 is a trough body.
  • the large capacity pouring ladle 14 is fan-shaped in shape, has a melting capacity of 1350 kg, and has 150, 200 and 25 O mm ⁇ general-purpose pipes of various sizes. It has a capacity to accommodate 5 melts for quake-resistant and seismic pipes. It also had a ladle lid to prevent the heat from dissipating.
  • a test of a comparative example in which a forged pipe was manufactured using a centrifugal manufacturing facility outside the scope of the present invention was also performed.
  • the main configuration and operating conditions of the centrifugal production facility in the comparative example are those having a centrifugal production facility configuration similar to that of the conventional facility shown in Fig. 6, and in particular, a ladle changing device is not provided, and
  • the capacity of the triangular ladle 6 (see Fig. 6), which is a ladle for pouring water into the tub, has a capacity of one molten metal for general-purpose pipes and earthquake-resistant pipes of various sizes.
  • the molten metal conveyed from the holding furnace 1 by the hot water ladle 3 and distributed to the stationary ladle 5 is supplied from the stationary ladle 5 to each of the steel pipes (each of the 1 ⁇ type pouring). It is.
  • the pouring operation to the mold ⁇ was performed manually by visual pouring.
  • Stability of production work and productivity of pipe production Effects of switching from visual pouring to automatic pouring, development of large capacity pouring ladle system, development of ladle changing equipment system, etc.
  • the construction work stability has been significantly improved, the operation stability has been improved, and the original capabilities of the centrifugal production equipment have been fully demonstrated, the production cycle time has been shortened, and Has improved.
  • Quality of production pipes and yield Suppress and reduce the drop in pouring temperature at the end of construction into a mold by developing a ladle system for large-capacity pouring and a ladle changing system.
  • the present invention it is possible to improve the stability of the production work and the productivity of the pipe production, to reduce the occurrence of defective products in the pipe production, to improve the quality and the product yield, and to pour the molten metal. It will be possible to improve the work environment and effectively allocate personnel, and it will be possible to reduce the manufacturing cost of centrifugal pipes, secure the elasticity of the production capacity, and improve the hot work environment. It is possible to provide a pouring method and a pouring system in such a centrifugal smelting facility, which has an industrially beneficial effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

複数本の鋳造管を鋳造し得る大容量の注湯取鍋14を使用し、前回鋳造作業から次回鋳造作業に移るときに、迅速に取鍋交換可能な装置11と、注湯取鍋14からシュート25への溶湯落下位置及び注湯速度を的確に制御する手段とを用いて行う。溶湯の落下位置は取鍋傾動に伴う出湯口24の定点変位を考慮して制御し、注湯流量は、取鍋内溶湯表面積に基づいて制御し、少なくとも1本目の鋳造管を鋳造する際には、注湯取鍋14を注湯開始直前の角度まで傾動させておき、残湯滓処理は、注湯取鍋14を横行させ反転して残湯ポットに排出する。

Description

明 細 書 遠心鎵造設備における注湯方法及び注湯システム 技術分野
この発明は、 遠心鎵造設備で錄鉄管を製造するに当たり、 遠心鍚造装置の錄型へ 溶湯を注入する工程に関する技術であって、 配湯用取鍋から溶湯を受湯して以降、 溶湯を鎳型へ注入するまでの作業効率を向上させて生産性向上を図ると共に、 寸法 及び品質が安定した鎵造管を得るための铸造技術に関するものである。 背景技術
従来、 遠心铸造設備で铸鉄管を製造するに当たり、 遠心錄造装置で錶造管を铸造 する場合に、 図 6に例示するように、 所定量の溶湯を所定の温度に保持する保持炉 1から溶湯 2 aを配湯用取鍋 3に払い出し、 配湯用取鍋 3から溶湯 2 bを指定され た遠心鎳造装置 1 3に近接して設置されている定置取鍋 5に捕給し、 定置取鍋 5か ら注湯用取鍋としての三角取鍋 6 へ、 遠心鎳造装置 1 3に設けられた鐯型 7へ注湯 すべき 1回分の溶湯 2 cを出湯し、 三角取鍋 6は注湯トラフ 8のシュート (本明細 書で 「注湯シュート」 ) 2 5を経由して溶湯 2 dを水平に対して僅かな傾斜角 0を 有し、 鍚型台車 1 0上の高速で回転する鍚型 7へ注入し、 錶造管 9を遠心铸造する 。 三角取鍋 6から铸型 7への注湯は、 三角取鍋 6をその回転軸を中心として傾動さ せることにより行なう。 図中、 符号 4はトラフ台車である。
こうして、 铸造管 1本の铸造が終了後、 この錶造管 9を铸型 7から引き抜いて鍚 型 7を整備すると共に、 注湯トラフ 8を整備した後、 引き続き、 次の铸造管の铸造 サイクルに入る。 即ち、 その間に定置取鍋 5から三角取鍋 6に出湯された溶湯を、 三角取鍋 6は注湯シユート 2 5を経由して溶湯 2 dを錶型 7へ注入し、 次の錶造管 9を遠心铸造する。 かかる铸造サイクルの作業を継続していくが、 その間適宜、 配 湯用取鍋 3から定置取鍋 5へ溶湯 2 bを捕給して、 三角取鍋 6への出湯に備えてお く。
上記遠心铸造設備における注湯工程においては、 注湯用取鍋である三角取鍋 6か ら溶湯 2 dを铸型 7へ注入する操作においては、 溶湯の注入流量 (単位時間当たり の鏡型への溶湯 2 dの注入量) 及び注湯温度を高精度に管理することが、 铸造管 9 の管厚寸法の管理上特に重要である。 溶湯の注入流量が大き過ぎると管厚が厚くな り過ぎ、 後工程における機械加工が必要となって工程数が増加したり、 歩留が低下 したりし、 一方、 溶湯の注入流量が小さ過ぎると管厚が薄くなり過ぎ、 不良品にな る。 注湯温度は、 溶湯の粘性を支配する要因であり、 注入流量の制御に対して大き く影響すると共に、 铸造管製品の金属組織等品質に対しても影響を及ぼす。
そこで、 従来、 铸型への溶湯の注入流量を制御すると共に、 注湯温度を制御する 技術が提案されている。 特開平 1 1一 1 7 9 5 1 2号公報には、 注湯用取鍋として の三角取鍋 6の傾動速度を制御すると共に、 形成される管厚を当該傾動速度の制御 により均一にするための技術として、 下記技術が開示されている。 即ち、 三角取鍋 を傾動させる駆動シリンダー装置への作動油の供給量を制御することができるよう に、 その傾動装置を構成して、 三角取鍋の傾動速度を制御することにより錄型への 溶湯の注入流量 (単位時間当たりの铸型への注湯量) の制御を可能とし、 その上で 、 注湯温度が相対的に高く湯流れのよい注湯初期段階には溶湯の注入流量を相対的 に小さくし、 注湯温度が低下して湯流れが低下する注湯終期には溶湯の注入流量を 相対的に大きくすることにより、 管長手方向の管厚の均一化を図っている (以下、 先行技術 1という) 。
また、 特開平 5— 2 7 7 7 1 0号公報には、 保持炉 1では溶湯の温度管理を自動 化しているので問題なしとしながらも、 その保持炉 1を出てから铸造するまでの時 間のバラツキによる注湯温度のバラツキ発生を防止するための技術として、 下記技 術が開示されている。 即ち、 保持炉より後に、 自動注湯装置として、 保持炉から所 定量の溶湯を受け入れると共に、 その溶湯を所定量切り出す取鍋装置と、 この取鍋 装置から供給される溶湯を受け入れてこれを昇温 ·保持すると共に、 この昇温 ·保 持された溶湯を、 所定の切出し流量 (単位時間当たりの切出し量) で、 铸型への注 湯用取鍋である三角敢鍋に切り出すことを可能とするように構成された昇温炉装置 とを配備することにより、 鍚型への注湯温度を制御すると共に、 上記取鍋装置に残 留する溶湯量の高精度管理を図っている (以下、 先行技術 2という) 。
更に、 特開平 9— 1 3 2 0号公報 (特許第 3 0 7 9 0 1 8号) には、 遠心铸造用 の铸型 7への注湯用取鍋として従来用いられている三角取鍋 6特有の形状のように 、 铸型 7への注湯時の取鍋内の溶湯の表面積が、 ほぼ一定となるように、 出湯口を 通る鉛直断面形状が扇形となる取鍋を用いなくても、 一般的な取鍋から鎵型への注 湯の際に、 その铸型の上部に配置されて、 これの内部に溶湯が注入される、 所謂铸 型枠湯口の一定位置をめがけて溶湯を注入することを、 取鍋の傾動に伴なう溶湯の 注湯流線の変動に依存せずになし得るという自動注湯方法が開示されている (以下 、 先行技術 3という) 。 先行技術 3の方法によれば、 安全で確実な自動注湯作業を 行なうことができるとされている。
しかしながら、 上記先行技術をもってしても、 本発明者等が目的とする遠心铸造 設備における注湯方法及び注湯装置を開発するために必要な下記課題を解決するの は困難である。 即ち、
遠心鐯造設備により、 高生産性を確保しつつ安定した操業を行ない、 且つ管厚が 均一で安定した品質特性を有する鎳造管を得るためには、
( 1 ) 保持炉から払い出された所定温度範囲内に管理された溶湯を、 配湯用取鍋 に受け入れた後、 鐯型へ注湯するまでの溶湯の温度降下を如何にして抑制するかと 共に、 鎳型への注湯中における溶湯温度の変動を如何に抑制するかが重要な課題で あり、 更に、
( 2 ) 注湯用取鍋から铸型への注湯流を如何に制御する力 \ 即ち、 ①単位時間当 たりの鎳型への注湯量である注入流量 (あるいは所謂鎵込速度) の制御、 並びに、 ②注湯流線と注湯流の注湯シユートへの流入開始位置との制御を如何にして行なう 、 が重要な課題である。 しかも、
( 3 ) 上記 (1 ) 及び (2 ) の課題解決に際しては、 設備コスト及び操業コスト の抑制ないし低減を図ることが重要である。
本発明者等は、 上記課題の解決を図るために、 鋭意検討を行なった。
先ず、 注湯用取鍋から铸型への注湯流の制御については、 先行技術 1及び先行技 術 3に開示されている技術が効果的であるが、 しかし、 铸造管 1本分の溶湯を注湯 用取鍋から錄型に注入する間における末期の注湯温度の低下を十分に抑制するのは 困難である。 その理由は、 鍚造管 1本を鎳造するのに要する溶湯量が受容された注 湯用取鍋、 即ち所謂三角取鍋から铸型に注湯されるので、 注湯用取鍋内の溶湯の比 表面積 (溶湯重量/溶湯の (上表面積 +取鍋内面との全接触面積) ) が相対的に大 きくなり、 その最小比表面積に限界がある。 従って、 溶湯からの熱放散の抑制に限 界があるからである。
この対策として、 先行技術 2を適用すれば、 当該注入末期における注湯温度の低 下抑制にかなりの効果が得られるが、 注湯用取鍋として鏡造管 1本分の溶湯収容能 力を有する取鍋を用いる限り、 なおもその効果は十分であるとはいえない。 また、 先行技術 2によれば、 上記昇温炉装置の配備により、 注湯用取鍋である三角取鍋毎 の溶湯温度は所定温度範囲内に制御することが可能となり、 効果的であるが、 昇温 炉装置の取鍋本体には溶湯昇温用付帯装置、 例えば高周波加熱装置を新たに設ける 必要が生じるので、 高価な設備コストを付加しなければならい。
従って、 この発明の目的は、 上記未解決の課題を総合的に解決して、 高生産性を 確保しつつ安定した操業を行ない、 且つ管厚が均一で品質の安定した铸造管を得る ことができる、 遠心铸造設備における注湯方法及び注湯装置を提供することにある 発明の開示
本発明者等は、 上記問題を解決するため鋭意試験 ·研究を重ねた結果、 下記知見 を得た。 .
1 . 铸型へ溶湯を注入するための注湯用取鍋の溶湯受容能力を拡大して、 鐯造管 を複数本鏡造するのに要する溶湯を受容することができるものに変更する。 その際 、 注湯用取鍋の容量は、 铸造管の寸法諸元等を考慮すると共に、 遠心铸造設備全体 を構成する他の関連設備 ·装置の設備能力及び工程計画等とのパランスも考慮する
。 こうすることにより、 次の効果が発揮され得る。 従来のように、 铸造管 1本分の 溶湯が収容された注湯用取鍋から注湯する場合に比べて、
①注湯用取鍋内の溶湯の比表面積は、 注湯用取鍋の容量増加割合の 2 Z 3乗で算 出される数値に減少するので、 溶湯温度低下の経時変化量はこの算出値に応じて小 さくなる。 従って、 铸型への注湯末期における注湯温度降下を著しく抑制すること が可能となると同時に、 従来の定置取鍋 (図 6中、 符号 5参照) と三角取鍋 (図 6 中、 符号 6参照、 容量は鎳造管 1本分の溶湯量) との 2段階にわたる溶湯の熱ロス チャンスが、 大容量注湯用取鍋の 1段階のみにおける熱ロスチャンスで済む。 よつ て、 保持炉における溶湯温度の管理水準値を低温にすることができる可能性もある 。 更に、
②所定の 1本の鐯造管の铸造終了から次の鏡造管の鐯造開始可能までの所要時間 が、 大幅に短くなるので、 従来作業形態において注湯用取鍋内の溶湯準備が、 次の 铸造管の鏡造開始可能タイミングの律速となる場合における注湯待ちが解消され、 铸造サイクル時間が短縮される。 このようにして、 本発明者等は、 従来容量の数倍 であって、 適切な大容量注湯用取鍋 (例えば、 従来の三角取鍋の 5倍程度容量の注 湯用取鍋) の採用とその付帯設備の改造により、 あるいは、 新設遠心铸造設備の建 設時における大容量注湯用取鍋方式設備の採用により、 注湯温度の制御及ぴ铸造サ ィクル時間の短縮に効果を発揮し得ることに着眼した。
2 . 上記 1項において述べた大容量注湯用取鍋を、 前回の铸造作業に用い、 所定 の複数本の鎊造管を铸造して、 溶湯が空となった大容量注湯用取鍋を、 所定の注湯 装置から受け取り、 引き続き、 次回の铸造作業に用いる溶湯入りの、 同じく上記 1 項において述べた大容量注湯用取鍋を、 上記注湯装置に引き渡すか、 あるいは引き 取ってもらうかの、 大容量注湯用取鍋の交換操作を迅速に行なうことができるよう · に構成された取鍋交換装置を設計 ·設置する。 基本設計として、 前回の铸造作業に 用いて空となった大容量注湯用取鍋を、 取鍋交換装置が受け取った後、 これを受湯 が完了している次回の鎳造作業に用いる大容量注湯用取鍋と速やかに相互の配置位 置を相互に交換する機構とする。 例えば、 円形テーブル状の台車イメージであって
、 円中心の周りに回転駆動する形式の取鍋交換台車とし、 これら 2個の大容量注湯 用取鍋を円中心に対して 1 8 0度方向の円周上に向き合わせて載置し得るように構 成すればよい。 こうすることにより、 次の効果が発揮され得る。 従来の定置取鍋と 三角取鍋 (それぞれ図 6中、 符号 5と符号 6参照) との組合せによる注湯工程に比 ベて、 上述した取鍋交換装置のように、 2個の大容量注湯用取鍋を載置するように すれば、 一方の注湯用取鍋内の溶湯を、 注湯装置により鎳型に注入中に、 取鍋交換 装置に載置された他方の注湯用取鍋に、 配湯用取鍋から溶湯を補給し、 準備してお くことができる。 従って、 上記 1項の②で述べた注湯待ちの解消に一層の効果が発 揮されるチャンスが増える。 また、 複数ラインの注湯装置と铸造装置とに対してこ のような取鍋交換装置を設ける場合には、 3個以上の大容量注湯用取鍋を配置する ように設計する。
3 . 上述した大容量注湯用取鍋を受け取って、 これより遠心铸造装置の鎵型に自 動注入操作を可能とするための注湯装置を配設する。 自動注入操作を安定して行な うためには、 大容量注湯用取鍋を傾動させて、 溶湯を落下注入する注湯シュート内 部に、 注湯流線が衝突すべき目標位置を設定し、 この目標点に落下注入するような 制御機構を設けることが効果的である。 更に、 注湯シュートを経由して铸型に注湯 される注入流量 (単位時間当たりの錶型への溶湯の注入量) の制御機構を設けるこ とが望ましい。 そして、 注入流線の落下注入位置の制御及ぴ鎵型への注入流量の制 御機構を構成するためには、 大容量注湯用取鍋の回転傾斜駆動手段、 並びに鉛直方 向及び水平方向への移動駆動手段を設けると共に、 所定の上記各制御用プログラム を実行するための制御装置を設けることにより、 安定した自動注入操作を行なうこ とができることに着眼した。
この発明は、 上記知見及び着想によりなされたものであり、 その要旨は次の通り である。
請求項 1記載の遠心鍚造設備における注湯方法は、 铸鉄管製造用の遠心铸造設備 における遠心鎳造装置の錄型への溶湯の注入工程において、 铸造管を複数本铸造す るのに必要な溶湯を収容する容量を有する注湯用取鍋内の溶湯を、 注湯装置を用い て遠心鎵造装置の前記铸型に自動操作により注入することに特徴を有するものであ る。
請求項 2記載の遠心铸造設備における注湯方法は、 铸鉄管製造用の遠心铸造設備 における遠心铸造装置の錄型への溶湯の注入工程において、 配湯用取鍋から、 所定 の取鍋交換装置に搭載された次回の铸造作業において用いる注湯用取鍋に溶湯を配 湯し、 その配湯された注湯用取鍋内の溶湯を上記鏡型へ注入するに先立ち、 前回の 铸造作業においてその铸型への注湯に用いて溶湯が空となった注湯用取鍋を、 所定 の注湯装置から前記取鍋交換装置に移載して戻した後、 その取鍋交換装置に搭載さ れている上記次回の鏡造作業に用いる溶湯が収容されている上記注湯用取鍋を、 上 記注湯装置に移送し、 そして、 その注湯装置に移送された上記注湯用取鍋内の溶湯 を、 その注湯装置を用いて遠心鐯造装置の上記铸型に自動操作により注入する方法 であって、 しかも、 上記注湯用取鍋として、 上記前回の铸造作業及び上記次回の铸 造作業のいずれにおいても、 鎳造管を複数本鎵造するのに必要な溶湯を収容する能 ガを有するものを用い、 それぞれの複数本の鎳造管分の溶湯を鐃型に自動操作によ り注入することに特徴を有するものである。
請求項 3記載の遠心铸造設備における注湯方法は、 請求項 1又は請求項 2に記載 の発明において、 複数本の鎳造管を鏡造するのに必要な溶湯の収容能力を有する注 湯用取鍋内の溶湯を、 鍚型に注入するに際し、 少なくとも 1本目の铸造管を铸造す るときには、 前記注湯用取鍋を、 注湯開始直前の角度まで事前に傾動させておき、 直ちに前記鑤型への溶湯注入を開始することに特徴を有するものである。 請求項 4記載の遠心铸造設備における注湯方法は、 請求項 1から請求項 3のいず れかに記載の注湯方法に、 更に、 上記注湯用取鍋内の溶湯を上記铸型に注入を完了 した後、 又はその注入を中断した後、 上記注湯用取鍋を上記遠心铸造装置のライン 長手方向に対して直角方向に移動させ、 次いでその注湯用取鍋を上記注入時の傾動 方向に対して反対側に傾動し、 所定の残湯ポットに、 上記注湯用取鍋内の残湯及び 残滓、 又は上記錄型への注入予定溶湯及び残滓を排出する操作を付加することに特 徴を有するものである。
請求項 5記載の遠心铸造設備における注湯方法は、 請求項 1から請求項 4のいず れかに記載の発明において、 上記注湯装置を用いて上記注湯用取鍋内の溶湯を、 上 記遠心鍚造装置の上記鍚型に自動操作により注入するに際して行なう自動制御対象 は、 注湯流がその鎵型への注湯シュート内の目標位置に落下するように自動制御し つつ注入することに特徴を有するものである。
請求項 6記載の遠心铸造設備における注湯方法は、 請求項 1から請求項 5のいず れかに記載の発明において、 上記注湯装置を用いて上記注湯用取鍋内の溶湯を、 上 記遠心錶造装置の上記鐯型に自動操作により注入するに際して行なう自動制御対象 は、 上記鎊型内へ注入される溶湯の注入流量を自動制御しつつ注入することに特徴 を有するものである。
請求項 7記載の遠心錶造設備における注湯方法は、 請求項 4から請求項 6のいず れかに記載の注湯方法において、 上記注湯流が上記铸型への注湯シュート内の目標 位置に落下するように自動制御する方法として、 上記注湯用取鍋の回転軸の軸芯線 を中心とし、 その注湯用取鍋を制御回転駆動させてその注湯用取鍋の傾斜角を制御 すると共に、 その注湯開始時におけるその注湯用取鍋の出湯口からの溶湯落下開始 点の絶対座標軸上位置を、 又はその溶湯落下開始点に近接して仮想の初期出湯中心 点を設定し、 この設定された仮想の初期出湯中心点の絶対座標軸上位置を、 その注 湯用取鍋の支持機構により鉛直方向及び水平方向、 又は鉛直方向もしくは水平方向 に制御移動させることにより行なうことに特徴を有するものである。
請求項 8記載の遠心铸造設備における注湯方法は、 請求項 6又は請求項 7に記載 の注湯方法において、 上記铸型内へ注入される溶湯の注入流量を自動制御する方法 として、 上記注湯用取鍋内の溶湯の表面積に応じて、 その注湯用取鍋の回転角速度 を自動制御することにより行なうことに特徴を有するものである。
請求項 9記載の遠心铸造設備における注湯システムは、 铸鉄管铸造用の遠心铸造 設備における注湯システムであって、 下記 (a ) 、 ( b ) 及ぴ (c ) の装置からな ることに特徴を有する遠心铸造設備における注湯システムである。 即ち、
( a ) 前回の鎊造作業において铸型に溶湯を注入して空になった一の注湯用取鍋 を、 注湯装置から受け渡されて搭載すると共に、 次回の錶造作業において上記铸型 に注入するための溶湯を、 配湯用取鍋から受湯し、 その受湯した溶湯が収容された 他の注湯用取鍋を搭載し、 そして、 上記一の注湯用取鍋を前記注湯装置から受け取 つた後に、 上記溶湯が収容された当該他の注湯用取鍋を前記注湯装置が受け取るよ うに構成された取鍋交換装置、
( b ) 上記前回の鎵造作業において前記铸型に溶湯を注入して空になった上記一 の注湯用取鍋を、 上記取鍋交換装置へ引き渡し、 次いで、 その取鍋交換装置から前 記溶湯が収容された上記他の注湯用取鍋を受け取り、 上記次回の铸造作業において 当該他の注湯用取鍋からその溶湯を上記鏡型に所定量注入し、 そして、 こうして空 になった当該他の注湯用取鍋を上記取鍋交換装置に引き渡すように構成された注湯 装置、 及び、
( c ) 上記注湯装置により、 上記一の注湯用取鍋内の上記溶湯が上記铸型に注入 され、 次いで、 上記注湯装置により上記他の注湯用取鍋内の上記溶湯がその鎵型に 注入されて、 上記鏡造管が錶造されるように構成された遠心鍚造装置。
請求項 1 0記載の遠心铸造設備における注湯システムは、 請求項 9に記載の発明 において、 上記注湯装置には、 上記注湯用取鍋を上記遠心铸造装置のライン長手方 向に対して直角方向に移動させる注湯用取鍋横行機構が設けられており、 その注湯 用取鍋横行機構によるその注湯用取鍋の横行方向に対して直角方向であって、 その 遠心鎵造装置の設置側とは反対側に、 その注湯用取鍋内の残湯及び残滓を排出する 残湯ポットが配設されていることに特徴を有するものである。
請求項 1 1記載の遠心铸造設備における注湯システムは、 請求項 9又は請求項 1 0に記載の発明において、 上記注湯装置には、 受け取った上記他の注湯用取鍋を、 その注湯用取鍋の回転軸の軸芯線を中心として回転傾斜させる回転傾斜機構と、 こ の他の注湯用取鍋を鉛直方向及び水平方向に移動させる鉛直 ·水平移動機構とが設 けられていることに特徴を有するものである。
請求項 1 2記載の遠心铸造設備における注湯システムは、.請求項 1 1に記載の発 明において、 上記他の注湯用取鍋の回転傾斜機構には、 その回転傾斜の動作を制御 する取鍋傾動制御装置が設けられ、 そして、 この他の注湯用取鍋の鉛直 ·水平移動 機構に、 この他の注湯用取鍋のそれぞれの方向への動作を制御する取鍋移動制御装 置が設けられていることに特徴を有するものである。
請求項 1 3記載の遠心铸造設備における注湯システムは、 請求項 9から請求項 1 2のいずれかに記載の発明において、 上記一の注湯用取鍋及び上記他の注湯用取鍋 がいずれも、 上記鍀造管を複数本铸造するのに必要な量の溶湯を上記配湯用取鍋か ら受湯し、 そしてこの溶湯を上記鎵型へ注湯するまで収容しておく能力を備えたも のであることに特徴を有するものである。 図面の簡単な説明
図 1は、 この発明の注湯システム例を示す概略側面図である。
図 2は、 図 1に示すこの発明の注湯システム例の概略側面図である。
図 3は、 この発明における注湯装置例の構成及ぴ自動制御フロー図である。
図 4は、 この発明において大容量注湯用取鍋の移動制御をするに当たり、 大容量 注湯用取鍋を傾動させたときに変位する出湯口基準点の前後方向及ぴ鉛直方向への 距離を説明する図である。 図 5は、 図 4中の出湯口近傍の詳細拡大図である。
図 6は、 従来の遠心铸造設備による鎵造管の铸造工程概要図の例である。 発明を実施するための最良の形態
次に、 この発明に係る遠心錶造設備における注湯装置及ぴ注湯システムの実施形 態を説明する。
図 1に、 この発明の望ましい実施形態における注湯システムの概略側面図を示し 、 図 2に当該システムの概略平面図を示す。 図 1及ぴ 2において、 1 1は取鍋交換 装置、 1 2は注湯装置、 そして 1 3は遠心铸造装置である。
所定の温度に保持された溶湯を保持炉 (図 6中、 符号 1参照) から受け容れ、 そ して、 その溶湯を取鍋交換装置 1 1まで搬送してきた配湯用取鍋 3から、 所定量の 溶湯 2 eを大容量注湯用取鍋 1 4 aに給湯する。 その際、 大容量注湯用取鍋 1 4 a が受湯する溶湯量は、 (遠心铸造装置 1 3の) 铸型 7への注湯量の複数回分、 例え ば鐃造管を 5本铸造するのに必要な溶湯量である。 ここで、 大容量注湯用取鍋の形 状は、 前後方向の縦断面形状が 3角形あるいは扇形を呈するものでなく、 その他の 形状の取鍋、 例えば、 円筒状の注湯用取鍋でもよい。 その理由は、 当該取鍋の傾斜 角度と当該取鍋内溶湯の上表面積との関係が明らかとなっていれば、 当該取鍋の傾 動操作による出湯流量 (铸型への注湯時においては、 注入流量に相当する) を制御 することができるからである。
上記溶湯 2 e入りの大容量注湯用取鍋 1 4 aを、 クレーン 1 5等所定の搬送機で 、 取鍋交換装置 1 1のターンテーブル 1 6上の所定位置 (図 1及び図 2の位置 (A ) ) に载置する。
取鍋交換装置 1 1は、 中心部の回転軸 1 6 aを中心として水平面内で回転するタ ーンテーブル 1 6と、 テーブルローラー 1 6 を介してターンテーブル 1 6を回転 駆動させる駆動部 (図示省略) と、 これらを搭載してレール 1 7 b上を所定方向に 走行移動するテーブル台車 1 7とからなる。 この取鍋交換装置 1 1は、 ターンテー ブル 1 6上に 2つの大容量注湯用取鍋を載置した状態でこのターンテーブルを 1 ,8 0度回転させ、 当該取鍋の相互位置を入れ替える。 即ち、 ターンテーブル 1 6上の 位置 (A) に載置された上記溶湯入り大容量注湯用取鍋 1 4 aと、 これに対して回 転軸 1 6 aを中心としてターンテーブル 1 6の縁部 (図 1及ぴ図 2中、 位置 (B ) ) に対置される大容量注湯用取鍋 1 4 bとを、 ターンテーブル 1 6を 1 8 0度回転 させることにより、 相互位置を入れ替える。 但し、 大容量注湯用取鍋 1 4 bは、 次 に述べる通りの溶湯が空となった取鍋である。
このような、 大容量注湯用取鍋の相互位置入れ替えは、 次の必要性に基づくもの である。 即ち、 鏡造作業を継続していくために、 注湯装置 1 2は、 前回の铸造作業 で錄型 7に注湯した結果、 溶湯が空となった大容量注湯用取鍋 1 4 b ' を手渡し、 次いで、 次回の铸造作業に必要な溶湯が収容された大容量注湯用取鍋 1 4 aを受け 取って、 鎳型 7に注湯する必要がある。 そこで、 取鍋交換装置 1 1は、 このように 注湯装置 1 2が、 空の大容量注湯用取鍋 1 4 b ' の手渡し動作と、 溶湯入り大容量 注湯用取鍋 1 4 aの受取り動作とを、 迅速に行なうことができるように、 注湯装置 1 2から受け取ったターンテーブル上の空の大容量注湯用取鍋 1 4 bと、 溶湯入り の大容量注湯用取鍋 1 4 aとの位置を迅速に入れ替える装置として導入したもので あ 。
ここで、 取鍋交換装置 1 1が行なうターンテーブル 1 6の回転操作は、 遠隔手動 操作で行なうか、 あるいはターンテーブル 1 6を搭載しているテーブル台車 1 7の 車輪 1 7 aに負荷される輪重を計測し、 その測定値情報によりコンピューター制御 装置 (図示省略) で行なう自動操作で行なう。
注湯装置 1 2として、 天井上架設置型のものを図 1及び図 2に例示するが、 これ は地上設置型でもよい。 注湯装置 1 2は上述したように、 溶湯が空となった大容量 注湯用取鍋 1 4 b ' を取鍋交換装置 1 1へ手渡すと共に、 次回の铸造作業用の溶湯 入り大容量注湯用取鍋 1 4 aを受け取って、 これを鎵造作業可能な位置に移動させ る (同図中、 大容量注湯用取鍋 1 4 a ' 参照) 。 この溶湯入り大容量注湯用取鍋 1 4 aの移動に際して、 注湯装置 1 2は、 前後移動台車 1 8に設置された昇降フレー ム 1 9及び昇降駆動部 2 0によりそれを巻き上げ、 前後移動台車 1 8を遠心鎊造装 置 1 3の方向に前進移動させ (同図中、 左方向) 、 所定位置でそれを卷き下げて、 注湯シユート 2 5上方近傍に大容量注湯用取鍋 1 4 a ' の出湯口 2 4を位置合わせ をして、 次回铸造作業の準備態勢に入る。
図 3に、 注湯装置の構成及び自動制御フロー図を示す。 注湯装置には、 自動注湯 制御を可能とするために、 大容量注湯用取鍋 1 4の移動装置 2 7及び移動制御手段
2 8、 並びに傾動装置 2 9及び傾動制御手段 3 0が設けられている。
移動装置 2 7は、 前述したように、 铸造開始準備操作として、 大容量注湯用取鍋 1 4を所定位置へ移動させる動作機能に加えて、 铸型へ注湯中、 注湯流の注湯シュ ート 2 5内落下位置を所定の位置に制御するために、 大容量注湯用取鍋 1 4の位置 を適切にするための移動調整機能を有するものである。 その移動方向は、 鉛直方向 と水平面内の前後方向 (铸造ライン方向、 図 2中の X方向) 及び左右方向 (図 2中 の Y方向) とに分けられる。 鉛直移動装置 2 7 aとして、 昇降フレーム 1 9及び昇 降駆動部 2 0が設けられ、 前後移動装置 2 7 bとして、 前後移動台車 1 8及び前後 移動駆動部 3 1が設けられ、 そして左右移動装置 2 7 cとして、 左右移動台車 2 1 及び左右移動駆動部 3 2が設けられている。
一方、 傾動装置 2 9は、 铸型へ注湯中、 注入流量 (単位時間あたりの注湯量) を 制御するために、 大容量注湯用取鍋 1 4の傾斜角度及び傾動速度を制御するもので あり、 傾動調整機能を有するものである。
また、 注湯装置には、 大容量注湯用取鍋 1 4内の溶湯重量計測装置としてロード セル 3 3を、 そして大容量注湯用取鍋 1 4の傾斜角度の測定器としてエンコーダー
3 4が設けられている。 そして、 移動装置 2 7及び傾動装置 2 9は、 鏡型への注湯 中、 移動制御手段 2 8及び傾動制御手段 3 0により、 次のように制御される。
移動制御手段 2 8による移動装置 2 7の制御動作は次の通りである。
鍋位置検出装置 3 6からの情報に基づき、 大容量注湯用取鍋 1 4を、 注湯準備の ために移動装置 2 7で注湯シュート 2 5上方の所定位置に移動させる。 次いで、 铸 型への注湯開始信号により、 大容量注湯用取鍋 1 4を、 所定の傾動速度でその傾動 回転軸を駆動させて傾動させる。 この傾動と同時に、 大容量注湯用取鍋 1 4の傾動 回転軸の傾斜角度を、 傾斜角度検出用のエンコーダー 3 4で測定し、 その傾斜角度 に応じて、 前後移動台車 1 8及び昇降フレーム 1 9で大容量注湯用取鍋 1 4を、 前 後方向 (図 1及ぴ図 2中の X方向) に距離 x、 鉛直方向 (図 1中の Z方向) に距離 zだけ移動させることにより、 注湯流が注湯シユート 2 5の所定位置に落下するよ うに調節する。 ここで、 傾斜角度に応じて移動制御する大容量注湯用取鍋 1 4の鉛 直方向及び前後方向への移動距離 X及び zは、 下記の導出式 ( 1 ) 及び (2 ) によ る。
X = L0 cos θ 0 — L0 cos + · · · · ( 1
z = L0 sin ( θ + Θ 0 ) ― L0 sin 0。 · ' · · ( 2 )
伹し、 L。、 0。、 0は後述する図 4中に示す通りであり、 後に (1 ) 及び (2 ) 式 の導出過程と共に、 。 、 θ。 、 0を説明する。
上記において、 エンコーダー 3 4により検出されたアナログ信号は、 A— D変換 器 3 7によりディジタル信号に変換され、 記憶演算装置 3 5に送られる。 記憶演算 装置 3 5には、 大容量注湯用取鍋 1 4の傾斜角度 Θと当該取鍋 1 4の出湯口 2 4近 傍の後述する仮想上の定点 Oi の変位との関係式 (上記導出式 (1 ) 及び (2 ) ) を 記憶させておき、 上記傾斜角度のディジタル信号と、 上記演算記憶信号とにより、 大容量注湯用取鍋 1 4の位置が補正される。 捕正された取鍋 1 4の位置は、 D— A 変換器 3 9を介して前後移動駆動部 3 1及び昇降駆動部 2 0に送信される。 位置移 動指令装置 4 1が発する信号は、 記憶演算装置 3 5に入力されると、 ここに記憶さ れている取鍋位置補正信号により補正され、 D— A変換器 3 9を介して、 大容量注 湯用取鍋 1 4の前後移動駆動部 3 1及び昇降駆動部 2 0に伝達される。
なお、 異常ケースとして、 鍋位置検出装置 3 6からの情報により、 錶造開始時に 大容量注湯用取鍋 1 4の位置が注湯シユート 2 5の軸芯線に対して左右方向にずれ ていたことが検知されたときには、 記憶演算装置 3 5, は、 左右移動駆動部 3 2に 大容量注湯用取鍋 1 4の芯合わせ信号を伝達する。
以上のようにして、 移動制御手段 2 8は、 移動装置 2 7を制御する。
図 4は、 初期状態が水平方向に対して 0。 の傾斜角度にある大容量注湯用取鍋 1 4 が、 この取鍋 1 4の回転軸 4 0の中心 C。 を回転中心として、 更に 0だけ回転してそ の傾斜角度が 0から 0 + 0。 に変化した場合の状況の説明図であって、 初期位置にお ける铸型への注湯開始時における出湯口 2 4からの溶湯落下開始位置に近接して設 定された仮想の初期出湯中心点 Oi の変位を説明する図である。 図 5は、 図 4中の出 湯口 2 4近傍の詳細拡大図である。 上記仮想の初期出湯中心点 Oi を通り、 前進方向 (遠心錶造装置側) 水平方向を X軸方向とし、 その中心点 Oi を通る鉛直上方を Z軸 方向とし、 且つ、 X— Z軸を絶対座標軸とし、 上記仮想の初期出湯中心 Oi をその原 点 (0, 0 ) とする。 ここで、 大容量注湯用取鍋 1 4の傾斜角度が 0から 0 + 0。 に 変化した後における初期出湯中心 の位置を Oi , とし、 その座標を (一 x, - y ) とすると、 図 4から明らかなように、 上述した (1 ) 及び (2 ) 式が得られる。 伹し、 L。 は、 大容量注湯用取鍋 1 4の回転中心 C。 と仮想の初期出湯中心 Oi との 間の距離である。
一方、 大容量注湯用取鍋 1 4内溶湯の表面形状は常に実質的に水平面を呈するの で、 出湯口 2 4からの出湯流の初期運動方向は、 常に水平方向となる。 従って、 そ の初速が一定である場合には、 傾斜角度が 0増加した場合には、 大容量注湯用取鍋 1 4の位置を、 X軸方向に y、 そして Z軸方向に zだけ移動させることにより、 铸 型への注湯流を、 注湯シュート内の一定位置に落下させることができる。 なお、 こ の場合は、 大容量注湯用取鍋 1 4の回転中心 C。 の軌跡は、 仮想の初期出湯中心 Oi が点 Oi ' へ変位するので、 仮想の初期出湯中心 Oi を中心とする円弧 Rよりも注湯 シュートから遠ざかる方向 (図 5中、 右方) に後退した軌跡 となる。 しかしなが ら、 上記出湯口 2 4からの出湯流の初速が、 例えば、 出湯流の温度低下に伴う粘性 増大等により低下する場合には、 上記軌跡 よりも注湯シュートへ近づく方向 (図 5中、 左方に前進した軌跡をとるように、 上記 (1 ) 及ぴ (2 ) 式は修正されなけ ればならない。
次に、 傾動制御手段による傾動装置 2 9の制御動作は次の通りである。
エンコーダー 3 4により検出されたアナログ信号は、 A— D変換器 3 7, により ディジタル信号に変換され、 記憶演算装置 3 5 ' に送られる。 記憶演算装置 3 5 ' には、 大容量注湯用取鍋 1 4の傾斜角度と当該取鍋 1 4内溶湯の表面積との関係を 記憶させておき、 上記傾斜角度のディジタル信号と、 注湯速度指令装置 3 8からの 信号と、 上記演算記憶信号とにより、 当所の傾動速度が捕正される。 なお、 当該記 憶方法としては、 上記溶湯の表面積の変化を計算により記憶演算装置 3 5 ' にイン プットする方法か、 あるいは鎵型に大容量注湯用取鍋 1 4の収容溶湯を実際に注湯 し、 当該注湯作業により得られた傾斜角度と注湯速度及び注湯時間との関係を記憶 させておく所謂ティーチングプレイパック方式とする。
大容量注湯用取鍋 1 4の傾動速度は、 その取鍋 1 4から铸型に注湯される注入流 量 (単位時間あたりの注湯量) が注湯中一定となるように補正される。 捕正された 傾動速度信号は、 D— A変換器 3 9 ' を介して傾動駆動部 2 3に送信される。 注湯 速度指令装置 3 8が発する速度信号は、 記憶演算装置 3 5 ' に入力されると、 ここ に記憶されている傾動速度捕正信号により捕正され、 D— A変換器 3 9 ' を介して 、 大容量注湯用取鍋 1 4の傾動駆動部 2 3に伝達され、 傾動装置 2 9を制御する。 このようにして、 大容量注湯用取鍋 1 4の傾斜角度及び傾動速度が制御されると 同時に、 前述した移動制御手段 2 8による移動装置 2 7の制御が行なわれ、 図 4中 に示した大容量注湯用取鍋 1 4の回転中心 C。 が、 出湯口 の仮想上の出湯中心 Oi の所定の円弧状軌跡 (例えば、 あるいは R2等) に沿って移動制御される。
溶湯が錶型に注入される過程において、 注湯装置 1 2に設けられている計量装置 のロードセル 3 3から、 1鐯型分の注湯量に相当する大容量注湯用取鍋 1 4内溶湯 重量の変位信号を記憶演算装置 3 5 ' が受けて、 大容量注湯用取鍋 1 4の傾動を停 止させ、 所定傾斜角度だけ反対方向に傾動させて注湯を停止する。 前述したように、 注湯装置 1 2によって巻き上げられた水平状態の大容量注湯用 取鍋 1 4は、 同じく注湯装置 1 2によってその出湯口 2 4が注湯シユート 2 5の上 方近傍に位置するように移動し、 次いで、 傾動フレーム 2 2及び傾動駆動部 2 3か らなる傾動装置 2 9により傾動する。 これによつて、 注湯用取鍋 1 4内の溶湯は、 注湯シュート 2 5及び注湯トラフ 8を経て、 铸造台車 1 0に搭載された铸型 7内に 注湯される。
この発明においては、 1つの取鍋で複数本の錶造管を製造し得る大容量注湯用取 鍋 1 4を使用している。 従って、 当該注湯用取鍋 1 4内の溶湯によって 1本目の鎳 造管を錶造する際、 铸型 7内への注湯のために、 傾動装置 2 9によって注湯用取鍋 1 4を水平状態から注湯角度まで傾動させることが必要であり、 この取鍋傾動のた めに、 一定の時間が必要になる。 その結果、 サイクルタイムが長くなって、 生産能 率の低下を招き、 更に、 放熱ロスによって、 铸型 7内に注湯される溶湯温度の低下 を招くおそれが生ずる。
そこで、 このような生産能率及び注湯温度の低下を防止するために、 少なくとも 1本目の铸造管を鏡造する際には、 注湯装置 1 2によって巻き上げられた水平状態 の大容量注湯用取鍋 1 4 a ' を、 図 1に点線で示すように、 事前に注湯開始直前の 角度まで傾動させておき、 鐯造台車 1 0に搭載された鎵型 7が所定位置に到着した ときに、 直ちに鏡型 7内への注湯が開始されるようにしておくことが好ましい。 即ち、 铸造すべき铸造管の管径によって、 铸型 7内への注湯量が変化することか ら、 そのときの注湯量に応じ、 注湯用取鍋 1 4を、 注湯開始までにその直前の角度 まで傾動させておく。 このようにすれば、 取鍋 1 4内の溶湯を、 ほぼ定められた時 間で铸型 7内に注湯することができる。
その結果、 サイクルタイムは短縮され、 生産能率の低下を防止することができ、 更に、 放熱ロスによる溶湯温度の低下も防止される。 なお、 当該注湯用取鍋 1 4の 溶湯によって、 2本目以降の鍚造管を铸造する際には、 注湯用取鍋 1 4は、 前回の 铸造管の铸造のために、 既に所定角度傾動しているので、 通常は上述した事前傾動 を行なわせなくてもよいが、 必要が生じた場合には、 勿論事前傾動させることが好 ましい。
次ぎに、 上述した注湯用取鍋 1 4の事前傾動角度の一例を示す。 即ち、 注湯装置 1 2によって、 溶湯の収容された注湯用取鍋 1 4が注湯位置に到着したときに、 注 湯装置 1 2に取り付けられたロードセル 3 3によって取鍋総重量を測定し、 その測 定値に基づいて、 事前傾動角度 = [ (取鍋総重量一溶湯重量) / (鍋の容量に応じ た常数) ] 一 (設定傾動角度) からなる式により事前傾動角度を算出する。
例えば、 取鍋総重量が 1 8 9 0 k g、 溶湯重量が 1 3 0 0 k g、 設定傾動角度が 9度の場合、 鍋の容量に応じた常数を 5 0とすると、 事前傾動角度は [ ( 1 8 9 0 — 1 3 0 0 ) / 5 0 ] — 9 = 3度となる。
連続したタクトサイクルタイムに従って、 次の鎵型が遠心鎳造装置に準備される と、 上述した手順で次の注湯を開始する。 こうして、 大容量注湯用取鍋 1 4から予 定された所定本数の錶造管の鏡造が終了したら、 当該大容量注湯用取鍋 1 4に残留 した溶湯及び溶滓を、 図 2中に符号 4 2で示した残湯ポットに排出する。 残湯ポッ ト 4 2は、 同図に示すように、 注湯装置 1 2の一部として配設されており、 大容量 注湯用取鍋 1 4を遠心錶造装置 1 3のライン長手方向に対して直角方向 (同図中、 Y軸方向) に移動させる注湯用取鍋横行機構の一部を構成する、 左右移動台車レー ル 2 1 a敷設位置の地上対応位置の近接位置であって、 当該大容量注湯用取鍋 1 4 の横行方向 (上記左右方向) に対して直角方向であって、 当該遠心铸造装置 1 3の 設置側とは反対側に配設されている。 なお、 残湯ポット 4 2の配設位置は、 このよ うに遠心铸造装置 1 3の隣接領域を避けることにより、 当該遠心鏡造装置 1 3の付 帯機構の配設場所や付帯部品置場の確保上有利となる。
注湯装置 1 2は、 残湯及び残滓が空となった大容量注湯用取鍋 1 4を取鍋交換装 置 1 1に手渡し、 次回铸造用の溶湯入り大容量注湯用取鍋 1 4を受け取り、 次回の 铸造作業に入る。
上記残湯ポット 4 2は、 铸型への注湯作業異常発生時に、 铸造作業を緊急停止し 、 迅速に残湯処理をすることにより、 大容量注湯用取鍋 1 4溶湯の冷却 ·凝固等を 防止するための装置としての機能も付与されている。 なお、 図 1及び図 2において 、 1 0 aは鎵造台車用レール、 1 8 aは前後移動台車用レール、 1 8 bは前後移動 台車上架梁、 2 1 bは左右移動台車上架梁、 2 6はトラフ本体である。
(実施例)
実施の形態で述べた取鍋交換装置 1 1、 注湯装置 1 2及び遠心铸造装置 1 3を備 えた遠心铸造設備を用いて、 铸造管を铸造する実施例の試験を行なった。 大容量注 湯用取鍋 1 4は、 形状が扇形であり、 その溶湯収容能力は 1 3 5 0 k gであり、 1 5 0、 2 0 0及ぴ 2 5 O mm φの各種サイズの一般管及び耐震管を対象として、 5 本分の溶湯収容能力を有するものである。 また、 これには溶湯の放熱防止用取鍋蓋 を備えた。
一方、 本発明の範囲外の遠心铸造設備を用いて铸造管を錄造した比較例の試験も 行なった。 比較例における遠心鍚造設備の主な構成及び操業条件は、 図 6に示した 従来設備に準じた遠心铸造設備構成を有するものであり、 特に、 取鍋交換装置を備 えていず、 鎊型への注湯用取鍋である三角取鍋 6 (図 6参照) の容量は、 各種サイ ズの一般管及び耐震管を対象として、 1本分の溶湯収容能力を有するものであり、 当該溶湯は、 保持炉 1から配湯取鍋 3で搬送され、 定置取鍋 5に配湯された溶湯が 、 この定置取鍋 5から铸造管 1本分ずつ (1鍚型注湯分ずつ) 供給されたものであ る。 そして、 铸型への注湯操作は、 目視注湯で手動で行なった。
実施例における遠心铸造管の試験操業結果を、 適宜、 比較例における遠心铸造管 の試験操業結果と比較してまとめると、 次の通りである。
1 . 铸造作業の安定性及ぴ铸造管の生産性: 目視注湯から自動制御注湯へ切り替 えたこと、 大容量注湯用取鍋システムの開発、 取鍋交換装置システムの開発等の効 果が大きく、 铸造作業の安定性が著しく向上し、 操業安定性が向上すると共に、 遠 心鏺造装置の本来の能力が十分に発揮され、 铸造サイクルタイムが短縮されて、 铸 造管の生産性が向上した。 2 . 錄造管の品質、 歩留:大容量注湯用取鍋システムの開発及び取鍋交換装置シ ステムの開発による、 铸型への錄造末期における注湯温度の低下の抑制及ぴ铸造ど うし間の注湯温度の変動の減少、 並びに、 上記各システムの開発と、 大容量注湯用 取鍋の移動制御及び傾動制御を主体とする自動注湯システムの開発とにより、 铸型 への溶湯の注入流量の一定化及ぴ注湯量の精度向上が得られ、 その結果、 铸造管の 管厚精度の向上により不良品発生が減少して品質が向上すると共に、 成品歩留が向 上した。
3 . 作業環境:本発明の自動注湯システムの開発により、 注湯作業環境が著しく 改善されると共に、 要員の有効配置にも寄与する。
以上の通り、 実施例により、 操業性、 生産性、 品質及び環境面において、 著しく 向上することが明らかとなった。
以上のように、 この発明によれば、 铸造作業の安定性及ぴ铸造管の生産性の向上 、 鐽造管の不良品発生の減少、 品質の向上及び成品歩留の向上、 並びに、 注湯作業 環境の改善及び要員の有効配置化を図ることが可能となり、 遠心铸造管の製造コス ト削減、 製造能力の弾力性の確保、 及び高熱作業環境の改善等が可能となる。 この ような遠心錶造設備における注湯方法及び注湯システムを提供することができ、 ェ 業上有益な効果がもたらされる。

Claims

請 求 の 範 囲
1 . 鎵鉄管製造用の遠心铸造設備における遠心铸造装置の鎳型への溶湯の注入ェ 程において、 铸造管を複数本鎳造するのに必要な溶湯を収容する能力を有する注湯 用取鍋内の溶湯を、 注湯装置を用いて遠心鎵造装置の前記铸型に自動操作により注 入することを特徴とする、 遠心鎳造設備における注湯方法。
2 . 铸鉄管製造用の遠心铸造設備における遠心錶造装置の鐃型への溶湯の注入ェ 程において、 配湯用取鍋から、 所定の取鍋交換装置に搭載された次回の铸造作業に おいて用いる注湯用取鍋に溶湯を配湯し、 当該配湯された注湯用取鍋内の溶湯を前 記錶型へ注入するに先立ち、 前回の铸造作業において前記铸型への注湯に用いて溶 湯が空となった注湯用取鍋を、 所定の注湯装置から前記取鍋交換装置に移载して戻 した後、 当該取鍋交換装置に搭載されている前記次回の铸造作業に用いる溶湯が収 容されている前記注湯用取鍋を、 前記注湯装置に移送し、 そして、 当該注湯装置に 移送された前記注湯用取鍋内の溶湯を、 当該注湯装置を用いて遠心铸造装置の前記 铸型に自動操作により注入する方法であって、 しかも、 前記注湯用取鍋として、 前 記前回の铸造作業及び前記次回の铸造作業のいずれにおいても、 錶造管を複数本铸 造するのに必要な溶湯を収容する能力を有するものを用い、 それぞれの当該複数本 の鍀造管分の溶湯を铸型に自動操作により注入することを特徴とする、 遠心錶造設 備における注湯方法。
3 . 前記複数本の鑤造管を鑤造するのに必要な溶湯の収容能力を有する注湯用取 鍋内の溶湯を、 铸型に注入するに際し、 少なくとも 1本目の铸造管を鐯造するとき には、 前記注湯用取鍋を、 注湯開始直前の角度まで事前に傾動させておき、 直ちに 前記鏺型への溶湯注入を開始することを特徴とする、 請求項 1又は請求項 2に記載 の遠心鑤造設備における注湯方法。
4 . 請求項 1から請求項 3のいずれかに記載の注湯方法に、 更に、 前記注湯用取 鍋内の溶湯を前記铸型に注入を完了した後、 又は当該注入を中断した後、 当該注湯 用取鍋を前記遠心铸造装置のライン長手方向に対して直角方向に移動させ、 次いで 当該注湯用取鍋を前記注入時の傾動方向に対して反対側に傾動し、 所定の残湯ポッ トに、 当該注湯用取鍋內の残湯及ぴ残滓、 又は前記铸型への注入予定溶湯及び残滓 を排出する操作を付加することを特徴とする、 遠心铸造設備における注湯方法。
5 . 前記注湯装置を用いて前記注湯用取鍋内の溶湯を、 前記遠心铸造装置の前記 铸型に自動注入するに際して行なう自動制御対象は、 注湯流が当該铸型への注湯シ ユート内の目標位置に落下するように自動制御しつつ注入することを特徴とする、 請求項 1から請求項 4のいずれかに記載の遠心铸造設備における注湯方法。
6 . 前記注湯装置を用いて前記注湯用取鍋内の溶湯を、 前記遠心鐯造装置の前記 鎳型に自動注入するに際して行なう自動制御対象は、 前記鏡型内へ注入される溶湯 の注入流量を自動制御しつつ注入することを特徴とする、 請求項 1から請求項 5の V、ずれかに記載の遠心鏡造設備における注湯方法。
7 . 請求項 4から請求項 6のいずれかに記載の注湯方法において、 前記注湯流が 前記铸型への注湯シュート内の目標位置に落下するように自動制御する方法は、 前 記注湯用取鍋の回転軸の軸芯線を中心とし、 当該注湯用取鍋を制御回転駆動させて 当該注湯用取鍋の傾斜角を制御すると共に、 当該注湯開始時における当該注湯用取 鍋の出湯口からの溶湯落下開始点の絶対座標軸上位置を、 又は当該溶湯落下開始点 に近接して設定された仮想の初期出湯中心点の絶対座標軸上位置を、 当該注湯用取 鍋の支持機構により鉛直方向及び水平方向、 又は鉛直方向もしくは水平方向に制御 移動させることにより行なうことを特徴とする、 遠心铸造設備における注湯方法。
8 . 請求項 6又は請求項 7に記載の注湯方法において、 前記铸型内へ注入される 溶湯の注入流量を自動制御する方法は、 前記注湯用取鍋内の溶湯の表面積に応じて 、 当該注湯用取鍋の回転角速度を自動制御することにより行なうことを特徴とする 、 遠心鏡造設備における注湯方法。
9 . 錄鉄管製造用の遠心鎳造設備における注湯システムであって、 下記 (a ) 、 ( b ) 及び (c ) の装置からなることを特徴とする、 遠心錶造設備における注湯シ ステム。
( a ) 前回の鎵造作業において铸型に溶湯を注入して空になった一の注湯用取鍋 を、 注湯装置から受け渡されて搭載すると共に、 次回の鑤造作業において前記鍚型 に注入するための溶湯を、 配湯用取鍋から受湯し、 当該受湯した溶湯が収容された 他の注湯用取鍋を搭載し、 そして、 前記一の注湯用取鍋を前記注湯装置から受け取 つた後に、 前記溶湯が収容された当該他の注湯用取鍋を前記注湯装置が受け取るよ うに構成された取鍋交換装置
( b ) 前記前回の錄造作業において前記鎵型に溶湯を注入して空になった前記一 の注湯用取鍋を、 前記取鍋交換装置へ引き渡し、 次いで、 当該取鍋交換装置から前 記溶湯が収容された前記他の注湯用取鍋を受け取り、 前記次回の铸造作業において 当該他の注湯用取鍋から当該溶湯を前記铸型に所定量注入し、 そして、 こうして空 になった当該他の注湯用取鍋を前記取鍋交換装置に引き渡すように構成された注湯
( c ) 前記注湯装置により、 前記一の注湯用取鍋内の前記溶湯が前記錄型に注入 され、 次いで、 前記他の注湯用取鍋内の前記溶湯が当該铸型に注入されて、 前記鎳 造管が铸造されるように構成された遠心鑤造装置。
1 0 . 前記注湯装置には、 前記注湯用取鍋を前記遠心铸造装置のライン長手方向 に対して直角方向に移動させる注湯用取鍋横行機構が設けられており、 当該注湯用 取鍋横行機構による当該注湯用取鍋の横行方向に対して直角方向であって、 当該遠 心鏡造装置の設置側とは反対側に、 当該注湯用取鍋内の残湯及び残滓を排出する残 湯ポットが配設されていることを特徴とする、 請求項 9に記載の遠心錶造設備にお ける注湯システム。
1 1 . 前記注湯装置には、 受け取った前記他の注湯用取鍋を、 当該注湯用取鍋の 回転軸の軸芯線を中心として回転傾斜させる回転傾斜機構と、 当該他の注湯用取鍋 を鉛直方向及び水平方向に移動させる鉛直 ·水平移動機構とが設けられていること を特徴とする、 請求項 9又は請求項 1 0に記載の遠心铸造設備における注湯システ ム。
1 2 . 前記他の注湯用取鍋の回転傾斜機構には、 当該回転傾斜の動作を制御する 取鍋傾動制御装置が設けられ、 そして、 当該他の注湯用取鍋の鉛直 ·水平移動機構 には、 当該他の注湯用取鍋の当該それぞれの方向への動作を制御する取鍋移動制御 装置が設けられていることを特徴とする、 請求項 1 1に記載の遠心鎵造設備におけ る注湯システム。
1 3 . 前記一の注湯用取鍋及び前記他の注湯用取鍋は、 前記鎊造管を複数本鏡造 するのに必要な量の溶湯を前記配湯用取鍋から受湯し、 そして当該溶湯を前記鎳型 へ注湯するまで収容しておく能力を備えたものであることを特徴とする、 請求項 9 から請求項 1 2のいずれかに記載の遠心铸造設備における注湯システム。
PCT/JP2003/008606 2003-07-07 2003-07-07 遠心鋳造設備における注湯方法及び注湯システム WO2005002758A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003304269A AU2003304269A1 (en) 2003-07-07 2003-07-07 Method and system for filling molten metal in centrifugal casting equipment
PCT/JP2003/008606 WO2005002758A1 (ja) 2003-07-07 2003-07-07 遠心鋳造設備における注湯方法及び注湯システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008606 WO2005002758A1 (ja) 2003-07-07 2003-07-07 遠心鋳造設備における注湯方法及び注湯システム

Publications (1)

Publication Number Publication Date
WO2005002758A1 true WO2005002758A1 (ja) 2005-01-13

Family

ID=33562093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008606 WO2005002758A1 (ja) 2003-07-07 2003-07-07 遠心鋳造設備における注湯方法及び注湯システム

Country Status (2)

Country Link
AU (1) AU2003304269A1 (ja)
WO (1) WO2005002758A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493124A (zh) * 2014-12-30 2015-04-08 河南宝天机电科技有限公司 电机转子自动离心铸造系统
CN116197404A (zh) * 2023-03-09 2023-06-02 上海电气集团股份有限公司 熔炼坩埚及用于真空气雾化制粉的翻转浇注熔炼系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884656A (ja) * 1981-11-12 1983-05-20 Kubota Ltd 遠心力鋳造法
JPH06218507A (ja) * 1991-05-29 1994-08-09 Kobe Steel Ltd 連鋳鋳込設備
JPH07171664A (ja) * 1991-05-29 1995-07-11 Kobe Steel Ltd 連鋳鋳込設備
US5758714A (en) * 1995-04-19 1998-06-02 Sato; Jiro Method of automatically pouring molten metal and apparatus therefor
JPH11179512A (ja) * 1997-12-25 1999-07-06 Kubota Corp 遠心力鋳造装置および遠心力鋳造方法
JP2002192331A (ja) * 2000-12-27 2002-07-10 Kubota Corp 取鍋への注湯装置
JP2003266163A (ja) * 2002-01-08 2003-09-24 Nippon Chutetsukan Kk 遠心鋳造設備における注湯方法及び注湯システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884656A (ja) * 1981-11-12 1983-05-20 Kubota Ltd 遠心力鋳造法
JPH06218507A (ja) * 1991-05-29 1994-08-09 Kobe Steel Ltd 連鋳鋳込設備
JPH07171664A (ja) * 1991-05-29 1995-07-11 Kobe Steel Ltd 連鋳鋳込設備
US5758714A (en) * 1995-04-19 1998-06-02 Sato; Jiro Method of automatically pouring molten metal and apparatus therefor
JPH11179512A (ja) * 1997-12-25 1999-07-06 Kubota Corp 遠心力鋳造装置および遠心力鋳造方法
JP2002192331A (ja) * 2000-12-27 2002-07-10 Kubota Corp 取鍋への注湯装置
JP2003266163A (ja) * 2002-01-08 2003-09-24 Nippon Chutetsukan Kk 遠心鋳造設備における注湯方法及び注湯システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493124A (zh) * 2014-12-30 2015-04-08 河南宝天机电科技有限公司 电机转子自动离心铸造系统
CN116197404A (zh) * 2023-03-09 2023-06-02 上海电气集团股份有限公司 熔炼坩埚及用于真空气雾化制粉的翻转浇注熔炼系统

Also Published As

Publication number Publication date
AU2003304269A1 (en) 2005-01-21

Similar Documents

Publication Publication Date Title
JP4564099B2 (ja) 自動注湯方法及び自動注湯装置
JP5957152B1 (ja) 注湯装置および注湯方法
JP5749723B2 (ja) 注湯装置及び注湯方法
KR101314755B1 (ko) 자동 주탕기의 제어 방법 및 그 제어 시스템
US20090230159A1 (en) Method for pouring off melt from a tiltable metallurgical vessel and installation for carrying out the method
US9289825B2 (en) Pouring equipment having melting furnace
US5203909A (en) Method and apparatus for slag free casting
JP5711132B2 (ja) 溶湯の溶解炉から処理取鍋への供給方法およびその装置
JP3079018B2 (ja) 自動注湯方法及び装置
JP4156263B2 (ja) 遠心鋳造設備における注湯方法及び注湯システム
WO2005002758A1 (ja) 遠心鋳造設備における注湯方法及び注湯システム
JPH08174194A (ja) 鋳造装置
JP3361369B2 (ja) 自動注湯方法及び装置
KR20060052714A (ko) 원심 주조 설비에 있어서 주탕 방법 및 주탕 시스템
JPH10235453A (ja) 注湯装置
JP2004169082A (ja) ダクタイル鋳物用溶融鋳鉄の溶製設備及び溶製方法
JP2002307163A (ja) 地金混合滓の除去方法およびその装置
CN220612288U (zh) 用于施加干颗粒材料形式的内衬组合物的装置
JPH10296415A (ja) 圧延用ロールの鋳造ライン
KR100299272B1 (ko) 턴디쉬의 틸팅장치
JPH05277710A (ja) 鋳造設備における自動注湯装置
JP2003027117A (ja) 溶融物傾注樋およびその交換方法
CN114674491A (zh) 一种转炉空炉重心位置及质量的在线测量方法
JPH01167578A (ja) 溶融物の定量出湯方法
JPS6311157Y2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057025008

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057025008

Country of ref document: KR

122 Ep: pct application non-entry in european phase