WO2005002205A1 - 画像処理装置、画像補正プログラム - Google Patents

画像処理装置、画像補正プログラム Download PDF

Info

Publication number
WO2005002205A1
WO2005002205A1 PCT/JP2004/008809 JP2004008809W WO2005002205A1 WO 2005002205 A1 WO2005002205 A1 WO 2005002205A1 JP 2004008809 W JP2004008809 W JP 2004008809W WO 2005002205 A1 WO2005002205 A1 WO 2005002205A1
Authority
WO
WIPO (PCT)
Prior art keywords
histogram
gradation
saturation
brightness
value
Prior art date
Application number
PCT/JP2004/008809
Other languages
English (en)
French (fr)
Inventor
Toru Ochiai
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2005002205A1 publication Critical patent/WO2005002205A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Definitions

  • Image processing device image correction program
  • the present invention relates to image correction processing for improving the appearance of a color image.
  • a device such as a scanner or a digital camera
  • light from a document or a subject is converted into a voltage signal corresponding to the amount of light by an imaging element such as a CCD, and the intensity of the voltage signal is converted into digital data.
  • an imaging element such as a CCD
  • the intensity of the voltage signal is converted into digital data.
  • an image having a low contrast in brightness and saturation may be a plain image with little merino and sight.
  • various image correction methods have been conventionally proposed.
  • a frequency distribution or cumulative frequency distribution is created for lightness gradations, and lightness gradations are corrected based on the distributions (Patent Documents 1 and 2), and image data is converted to hue, saturation, and lightness.
  • image data is converted to hue, saturation, and lightness.
  • Patent Document 1 JP-A-2000-306088
  • Patent Document 2 JP-A-5-80193
  • Patent Document 3 JP-A-8-32827
  • An image processing apparatus comprises: an input unit that inputs color image data; Conversion means for converting image data into hue, saturation and lightness, and histogram creation means for calculating the ratio of the number of pixels for each gradation to the total number of pixels for the saturation and lightness and creating a saturation histogram and a lightness histogram And correcting the saturation and the lightness based on the saturation histogram and the lightness histogram, respectively, thereby improving the contrast between the saturation and the lightness.
  • the saturation and the brightness are respectively corrected by changing the gradation width of the saturation histogram and the brightness histogram based on the ratio of the number of pixels at the gradation. ,.
  • a threshold value is set for each ratio of the number of pixels in each gradation of the saturation histogram and the brightness histogram, and if the ratio is less than the threshold value, the width of the gradation is compressed.
  • Compression means and a histogram enlargement means for enlarging the width of the entire gradation of the saturation histogram and the lightness histogram in which a part of the gradation width is compressed by the histogram compression means. It is more preferable to correct the saturation and the lightness respectively by the histogram enlargement means.
  • the histogram enlarging means includes a minimum and a maximum gradation value in which the ratio of the number of pixels in the saturation histogram and the brightness histogram before the gradation width is compressed by the histogram compression means is not zero.
  • the minimum and maximum gradation values in which the ratio of the number of pixels in the saturation histogram and the lightness histogram whose whole width of gradation is enlarged by the histogram enlargement means by the histogram enlargement means are not 0, and the gradation width is compressed.
  • the gradation value is determined to a value other than 0, and the saturation histogram or brightness before the gradation width is compressed. If the maximum gradation value in the histogram is not the full scale value, the gradation value is determined to a value other than the full scale value, and the determined minimum and maximum values are set. Based on the tone value, the saturation histogram and brightness histograms compressed part of the width of the gradation by histogram compression means, it is possible to enlarge the width of the entire gradations.
  • the histogram compression unit may determine that the ratio of the number of pixels that is less than the threshold value in the saturation histogram or the brightness histogram is equal to a predetermined value for the entire histogram. Harm
  • An image correction program for a color image includes an input step for inputting image data, a conversion step for converting the image data into hue, saturation, and brightness, and a total pixel count for saturation and brightness.
  • a histogram creation step of calculating the pixel count ratio for each gradation for each tone and creating a saturation histogram and a brightness histogram, and correcting the saturation and brightness based on the saturation histogram and the brightness histogram, respectively.
  • the saturation and the brightness are respectively corrected by changing the gradation width of the saturation histogram and the brightness histogram based on the ratio of the number of pixels in the gradation. preferable.
  • the correction step sets a threshold value for each of the pixel number ratios at each gradation of the saturation histogram and the brightness histogram.
  • the histogram enlargement step includes the minimum and maximum gradation values in which the ratio of the number of pixels in the saturation histogram and the lightness histogram before the gradation width is compressed by the histogram compression step is not zero.
  • the minimum and maximum gradation values in which the ratio of the number of pixels in the saturation histogram and the lightness histogram in which the width of the entire gradation is enlarged by the histogram enlargement step are not 0 are determined, and the gradation width is compressed.
  • the gradation value is determined to a value other than 0, and the gradation width in the saturation histogram or lightness histogram before the gradation width is compressed is determined. If the maximum gradation value is not the full scale value, the gradation value is determined to a value other than the full scale value, and the decision is made. Based on the minimum and maximum gradation values, a part of the gradation width is compressed by the histogram compression step, For a gram and a brightness histogram, the width of the entire gradation can be expanded.
  • the histogram compression step includes setting a threshold and a value so that the ratio of the number of pixels that is less than the threshold value in the saturation histogram or the brightness histogram is a predetermined ratio of the entire histogram. I'm sorry. The invention's effect
  • the saturation and the lightness are corrected based on the saturation histogram and the lightness histogram, respectively, the contrast of the saturation and the lightness is improved, and the color image is effectively improved. Appearance can be improved.
  • FIG. 1 is a diagram showing an embodiment of an image processing device according to the present invention.
  • FIG. 2 is a diagram showing a flowchart of an image correction processing program.
  • FIG. 3 is a view showing a flowchart of a subroutine process in brightness histogram compression.
  • FIG. 4 is a diagram showing an example of a created brightness histogram.
  • FIG. 5 is a diagram showing an example of a brightness histogram in which a gradation width is compressed.
  • FIG. 6 is a diagram showing an example of a brightness histogram in which a compressed gradation width is enlarged.
  • FIG. 8 is a diagram showing a state in which the present invention is applied to a personal computer.
  • FIG. 1 shows an embodiment of an image processing apparatus according to the present invention.
  • the image processing apparatus shown in FIG. 1 receives color image data such as a captured image and corrects both the saturation and brightness of the image data based on the respective histograms, thereby improving the appearance of the image.
  • This image processing apparatus has an input device 1, an interface 2, a CPU 3, a storage device 4, and a monitor 5, which are connected to each other by a bus line 6.
  • the input device 1 is a device that supplies image data to be input to the image processing device.
  • the input device for example, a scanner, a digital camera, a drive device of a storage device such as a CD-ROM or a memory card, or the like is used.
  • the image data supplied from the input device 1 is input to the CPU 3 via the interface 2.
  • the CPU 3 is a processor that executes an image correction processing program stored in the storage device 4 and performs correction processing on input image data.
  • the storage device 4 is a device that stores the image correction processing program and also stores the image data input to the CPU 3 from the input device 1 and the image data corrected by the CPU 3. For example, an HDD is used. It is. An image based on these image data is displayed on the monitor 5.
  • FIG. 2 shows a flowchart according to the image correction processing program executed in the CPU 3.
  • the RGBZHSV conversion of step S1 is performed.
  • R (red), G (green), and B (blue) values of input image data are converted to H (hue), S (saturation), and V (brightness) values.
  • a conversion method at this time a known method is used.
  • a histogram is created for the brightness of the image data converted by the RGB / HSV conversion in step S1.
  • the histogram shown in FIG. 4 has been created.
  • the horizontal axis represents the lightness gradation (up to i) up to 0 255
  • the vertical axis represents the pixel number ratio (Fi) at that lightness i.
  • the pixel number ratio is a ratio of the number of pixels of the lightness gradation to the total number of pixels of the image.
  • the pixel number ratio Fi is greater than or equal to the threshold value for each brightness tone i. Is determined, and the width of the lightness gradation in the portion less than the threshold value is compressed.
  • step S31 of FIG. 3 the variable TEMP in the temporary memory is reset to zero, and the process proceeds to step S32.
  • the lightness gradation i indicates the lightness gradation of the original histogram created before the compression of the lightness gradation width, that is, in the lightness histogram creation in step S2 in FIG.
  • the lightness gradation j indicates the lightness gradation of the lightness histogram after the lightness gradation width is compressed, that is, after the lightness gradation width is compressed by the processing of the flowchart of FIG.
  • step S33 the flag FLAG is set to FALSE which is an initial value.
  • step S34 the pixel number ratio Fi is compared with the calculated threshold value S.
  • This threshold value S is calculated based on the designation input of the threshold value (step S320) performed by the user. At this time, for example, it is possible to specify whether the threshold value is a constant according to the force ⁇ brightness gradation that is a constant. If it is a constant, the value input by the user is set as the threshold value S. On the other hand, when setting the threshold value according to the lightness gradation, the user specifies the threshold value S as a function S (i) of the lightness gradation i. With this function S (i), a threshold value is calculated according to the lightness gradation. Further, the threshold value may be automatically set according to the image without the user inputting or specifying the threshold value. For example, the threshold value S is set so as to be a predetermined ratio such as the total power S of the pixel number ratio Fi that is less than the threshold value or 10% of the entire histogram.
  • step S34 if the pixel number ratio Fi is less than the threshold value S, the flag FLAG is set to TRUE in step S35. Further, in step S36, the variable TEMP of the temporary memory is set to the current brightness gradation. Pixel number ratio Fi of i. Thereafter, in step S37, the variable TEMP is compared with the threshold value S. When step S37 is executed for the first time, the determination result is always N ⁇ .
  • step S37 If a negative determination is made in step S37, variable TEMP is stored in variable Gj in step S37A, and the flow advances to step S38.
  • step S38 1 is added to the lightness gradation i, and in step S39, it is determined whether the lightness gradation i is 255 or more. If step S39 is denied, the process returns to step S34. At this time, if a negative determination is made in step S34, steps S35 and S36 Repeat S37, S38, S39.
  • step S310 the value of variable TEMP is stored in variable Gj. That is, when the pixel number ratios Fi of a plurality of continuous lightness gradations are both less than the threshold value S, the pixel number ratios Fi are integrated in step S36. When this integral value becomes equal to or larger than the threshold value S, in step S310, this integral value is set as the pixel number ratio Gj in the brightness gradation j of the corrected histogram.
  • Step S310 force When the process proceeds to step S311, the variable TEMP is reset to zero, and in step S312, 1 is added to the lightness gradation j. Next, in step S319, the flag FLAG is set to FALSE. Thereafter, the process returns to step S34 via steps S38 and S39. If step S34 is denied, the operation is performed as described above.
  • step S34 if step S34 is affirmed, that is, if the pixel number ratio Fi to the current lightness gradation i is equal to or larger than the threshold value S, it is determined in step S313 whether the flag FLAG is TRUE.
  • This step S313 is based on the previous processing cycle, that is, whether or not the pixel number ratio Fi when the current brightness gradation is 1 smaller than the brightness gradation is equal to or larger than the threshold value S, and the subsequent processing procedure is determined. Provided to change.
  • step S313 If the pixel number ratio Fi in the previous processing cycle is equal to or larger than the threshold value S, a negative determination is made in step S313, and in step S314, the pixel number ratio Fi of the current lightness gradation i is stored in a variable Gj. In step S312, 1 is excluded from the brightness gradation j. Then, the process returns to step S34 via steps S319, S38, and S39. If a negative determination is made in step S313, the operation is performed as described above.
  • step S313 If the pixel number ratio Fi in the previous processing cycle is less than the threshold value S, an affirmative determination is made in step S313, and in step S315, the value of the variable TEMP is stored in the variable Gj.
  • step S316 the value of the pixel number ratio Fi is stored in the variable Gj + 1.
  • step S317 the variable TEMP is reset to zero, and in step S318, 2 is added to the brightness gradation j.
  • step S319 the flag FLAG is set to FALSE, and the process returns to step S34 via steps S38 and S39.
  • step S313 is affirmatively determined, the operation is performed as described above.
  • the processing is performed for all the brightness gradations i, and finally, the affirmative judgment is made in step S39. Then, the processing flow shown in FIG. 3 ends.
  • the pixel number ratio Fi that does not exceed the threshold value S is integrated in step S36, and is stored in the variable Gj in step S37A, S310, or S315.
  • the histogram of the pixel number ratio Fi for the lightness gradation i before the processing indicates that the pixel number ratio Fi is less than the threshold.
  • the width of the brightness gradation in a certain part is compressed.
  • FIG. 5 shows the brightness histogram of FIG. 4 compressed by the processing of the flowchart of FIG. 3 described above.
  • the horizontal axis represents the lightness gradation j
  • the vertical axis represents the pixel number ratio Gj based on the variable Gj.
  • the lightness gradations shown in FIGS. 5A and 5B are the minimum value and the maximum value of the lightness gradation j in which the pixel number ratio Gj is not 0, and are used in the processing of step S4 described below.
  • the gradation width of the brightness histogram compressed in the brightness histogram compression in step S3 is expanded. This is done as follows. First, in the lightness histogram of FIG. 4, that is, the lightness histogram before the compression of the gradation width, the minimum value and the maximum value of the lightness gradation i in which the pixel number ratio Fi is not 0 are obtained. Here, for example, it is assumed that the minimum value A and the maximum value B shown in FIG. 4 have been obtained.
  • the compressed gradation width is expanded based on the obtained minimum value A and maximum value B.
  • the lower limit value A and the upper limit value B are set to the minimum value A of the lightness gradation i in the original histogram or when the maximum value B is not the full scale.
  • the black and white do not exist even after the image correction processing, and the image is improved experimentally or statistically so that the image looks good. Determined by the required relationship.
  • the relationship can be represented, for example, by a curve 70 as shown in FIG. Based on this relationship, the gradation width expansion shown on the vertical axis is based on the minimum value A and maximum value B of the lightness gradation in the original histogram shown on the horizontal axis.
  • the lower limit A and the upper limit B of the lightness gradation at the time are determined. In this way, when black and white do not exist in the original image, black and white do not exist in the image after the correction processing.
  • the lightness gradation width of the frequency distribution to a full-scale value in the method described in Patent Document 1 to zero power or the like, an image that is originally black or white, However, it is possible to prevent black and white from being generated and to significantly change the appearance of the image.
  • the brightness gradation width of the histogram compressed in step S3 in FIG. 2 is expanded using the following conversion formula (1).
  • the value of the lightness gradation j is converted by the equation (1), and the value of the pixel number ratio Gj in the lightness gradation j is kept as it is, so that the width of the lightness gradation can be expanded.
  • “H” and “/ 3” in Equation (1) are the minimum value and the maximum value 13 of the lightness gradation j in which the pixel number ratio Gj in FIG. 5 is not 0.
  • FIG. 6 shows an enlarged gradation width of the histogram in FIG. 5 by this processing.
  • the same processing as for lightness is performed for saturation, including the creation of a saturation histogram in step S5, the saturation histogram compression in step S6, and the step.
  • the saturation histogram enlargement in S7 a saturation histogram based on the corrected saturation is created.
  • the vivid part is more vivid and the non-vibrant part is more vivid and less saturated.
  • the contrast is enhanced. This effect is especially In a colorful subject, for example, an image with colorful flowers on one side, only the colorful parts of the flowers are more vividly emphasized, and the other parts are less vivid, making them very attractive. This is where the image can be obtained, which is an effect that could not be achieved by the conventional method of applying a uniform level of saturation to the entire image. in this way
  • the value determined by the result of the lightness correction in the method described in Patent Document 3 can be adjusted to the saturation, so that the portion where the saturation is originally low is reduced. However, it is possible to prevent the saturation from being emphasized too much.
  • the image data based on the corrected brightness and saturation histograms are converted into HSV value RGB values. The converted image data is output from the CPU 3 and stored in the storage device 4 or the image is displayed on the monitor 5.
  • the ratio of the number of pixels that is less than the threshold Since the threshold value is set so as to be a fixed ratio, it is possible to easily execute the image correction processing that does not require the user to perform a troublesome operation.
  • the image correction processing program executed to realize the present invention is recorded on the recording medium of the storage device 4, and the CPU 3 executes the image correction processing program.
  • the image correction processing program described above may be stored in the input device 1 and executed.
  • the image correction processing program may be imported to a personal computer or an input device using a recording medium such as a CD-ROM.
  • the image correction processing program may be loaded into a personal computer or an input device as a data signal through an electric communication line such as the Internet.
  • FIG. 8 is a diagram showing this state.
  • the personal computer 500 can receive the image correction processing program via the CD-ROM 502.
  • the personal computer 500 has a function of connecting to the communication line 501, and an image correction processing program is provided from the server 400.
  • the communication line 501 is a communication line such as the Internet or personal computer communication, or a dedicated communication line.
  • Sarnoku 400 transmits the image correction processing program to the personal computer 500 via the communication line 501. That is, the image correction processing program is converted into a data signal on a carrier wave and transmitted via the communication line 501.
  • the image correction processing program can be supplied as various types of computer-readable computer program products such as recording media and carrier waves.
  • each component is not limited to the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)
  • Color Image Communication Systems (AREA)
  • Picture Signal Circuits (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

 入力装置1より画像データを取得し、CPU3において画像データのRGB値をHSV値に変換する。この画像データの明度と彩度についてそれぞれヒストグラムを作成し、画素数比率がしきい値以下の階調の幅を圧縮する。こうして階調幅の一部が圧縮されたヒストグラムの階調全体の幅を拡大して、彩度および明度をそれぞれ補正する。また、階調幅の圧縮前のヒストグラムにおいて画素数比率が0でない最小と最大の階調値のそれぞれが0またはフルスケール値でないときは、階調幅を拡大したときのヒストグラムにおいて画素数比率が0でない最小と最大の階調値のそれぞれを0またはフルスケール値以外の値とする。このようにして、明度と彩度を補正する。

Description

明 細 書
画像処理装置、画像補正プログラム
技術分野
[0001] 本発明は、カラー画像の見映えを向上する画像補正処理に関する。
背景技術
[0002] スキャナやデジタルカメラなどの装置では、原稿や被写体からの光を CCDなどの撮 像素子で光量に対応した電圧信号に変換し、その電圧信号の強度をデジタルデー タに変換して、画像データを得る。ところが、電圧信号の強度を変換したデジタルデ ータのままでは、明度や彩度のコントラストが少なぐその画像は見た目にメリノ、リの 少ない地味な画像となることがある。これを解決して画像の見映えを向上するため、 従来さまざまな画像補正の方法が提案されている。たとえば、明度階調に対して頻度 分布や累積頻度分布を作成し、その分布に基づいて明度階調の補正を行うもの(特 許文献 1、 2)や、画像データを色相、彩度および明度に変換し、明度の頻度分布を 用いて明度のダイナミックレンジを補正するとともに、その明度の補正結果に応じた 値を彩度に加えて、彩度を補正するもの(特許文献 3)がある。
[0003] 特許文献 1 :特開 2000— 306088号公報
特許文献 2:特開平 5 - 80193号公報
特許文献 3:特開平 8 - 32827号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、これらの画像補正方法を用いても、必ずしも効果的に画像の見映えを向上 できるわけではない。たとえば、特許文献 1または 2に記載の方法では、明度階調の みに対して補正を行っているため、彩度のコントラストを改善できなレ、。したがって、 彩度による影響が大きい色の華や力 ^を補正できず、見映えの向上には効果的でな レ、ことがある。
課題を解決するための手段
[0005] 本発明による画像処理装置は、カラー画像データを入力する入力手段と、カラー画 像データを色相、彩度および明度に変換する変換手段と、彩度および明度について 総画素数に対する各階調ごとの画素数比率をそれぞれ計算し、彩度ヒストグラムと明 度ヒストグラムを作成するヒストグラム作成手段とを備え、彩度ヒストグラムおよび明度ヒ ストグラムに基づいて彩度および明度をそれぞれ補正することにより、彩度および明 度のコントラストを改善するものである。
上記の画像処理装置では、彩度ヒストグラムおよび明度ヒストグラムの階調の幅をそ の階調における画素数比率に基づいて変更することにより、彩度および明度をそれ ぞれ補正することが好ましレ、。
また、上記の画像処理装置では、彩度ヒストグラムおよび明度ヒストグラムの各階調 における画素数比率に対してそれぞれしきい値を設定し、しきい値未満である場合 はその階調の幅を圧縮するヒストグラム圧縮手段と、ヒストグラム圧縮手段により階調 の幅の一部を圧縮された彩度ヒストグラムおよび明度ヒストグラムについて、その階調 全体の幅を拡大するヒストグラム拡大手段とをさらに備え、ヒストグラム圧縮手段およ びヒストグラム拡大手段により彩度および明度をそれぞれ補正することがさらに好まし レ、。
さらに、上記の画像処理装置では、ヒストグラム拡大手段は、ヒストグラム圧縮手段 により階調の幅を圧縮される前の彩度ヒストグラムおよび明度ヒストグラムにおける前 記画素数比率が 0でない最小と最大の階調値に基づいて、ヒストグラム拡大手段によ り階調全体の幅を拡大された彩度ヒストグラムおよび明度ヒストグラムにおける画素数 比率が 0でない最小と最大の階調値を決定し、階調の幅を圧縮される前の彩度ヒスト グラムまたは明度ヒストグラムにおける最小の階調値が 0でないときは、その階調値を 0以外の値に決定し、階調の幅を圧縮される前の彩度ヒストグラムまたは明度ヒストグ ラムにおける最大の階調値がフルスケール値でないときは、その階調値をフルスケー ル値以外の値に決定し、決定された最小および最大の階調値に基づいて、ヒストグラ ム圧縮手段により階調の幅の一部を圧縮された彩度ヒストグラムおよび明度ヒストグラ ムについて、その階調全体の幅を拡大することができる。
上記の画像処理装置において、ヒストグラム圧縮手段は、彩度ヒストグラムまたは明 度ヒストグラムにおいてしきい値未満となる画素数比率がそのヒストグラム全体の所定 害 |J合となるように、しきレ、値を設定することとしてもよレ、。
本発明によるカラー画像の画像補正プログラムは、画像データを入力する入力ステ ップと、画像データを色相、彩度および明度に変換する変換ステップと、彩度および 明度にっレ、て総画素数に対する各階調ごとの画素数比率をそれぞれ計算し、彩度ヒ ストグラムと明度ヒストグラムを作成するヒストグラム作成ステップと、彩度ヒストグラムお よび明度ヒストグラムに基づいて彩度および明度をそれぞれ補正することにより、彩度 および明度のコントラストを改善する補正ステップとをコンピュータに実行させるもの である。
上記の画像補正プログラムにおいて、補正ステップでは、彩度ヒストグラムおよび明 度ヒストグラムの階調の幅をその階調における画素数比率に基づいて変更することに より、彩度および明度をそれぞれ補正することが好ましい。
また、上記の画像補正プログラムにおいて、補正ステップは、彩度ヒストグラムおよ び明度ヒストグラムの各階調における画素数比率に対してそれぞれしきい値を設定し 、しきい値未満である場合はその階調の幅を圧縮するヒストグラム圧縮ステップと、ヒ ストグラム圧縮ステップにより階調の幅の一部を圧縮された彩度ヒストグラムおよび明 度ヒストグラムについて、その階調全体の幅を拡大するヒストグラム拡大ステップとから なり、ヒストグラム圧縮ステップおよびヒストグラム拡大ステップにより彩度および明度を それぞれ補正することがさらに好ましい。
さらに、上記の画像補正プログラムにおいて、ヒストグラム拡大ステップは、ヒストグラ ム圧縮ステップにより階調の幅を圧縮される前の彩度ヒストグラムおよび明度ヒストグ ラムにおける画素数比率が 0でない最小と最大の階調値に基づいて、ヒストグラム拡 大ステップにより階調全体の幅を拡大された彩度ヒストグラムおよび明度ヒストグラム における画素数比率が 0でない最小と最大の階調値を決定し、階調の幅を圧縮され る前の彩度ヒストグラムまたは明度ヒストグラムにおける最小の階調値が 0でないとき は、その階調値を 0以外の値に決定し、階調の幅を圧縮される前の彩度ヒストグラム または明度ヒストグラムにおける最大の階調値がフルスケール値でないときは、その 階調値をフルスケール値以外の値に決定し、決定された最小および最大の階調値 に基づいて、ヒストグラム圧縮ステップにより階調の幅の一部を圧縮された彩度ヒスト グラムおよび明度ヒストグラムについて、その階調全体の幅を拡大することができる。 上記の画像補正プログラムにおいて、ヒストグラム圧縮ステップは、彩度ヒストグラム または明度ヒストグラムにおいてしきい値未満となる画素数比率がそのヒストグラム全 体の所定割合となるように、しきレ、値を設定することとしてもよレ、。 発明の効果
[0006] 本発明によれば、彩度ヒストグラムおよび明度ヒストグラムに基づいて彩度および明 度をそれぞれ補正することとしたので、彩度および明度のコントラストを改善して、効 果的にカラー画像の見映えを向上することができる。
図面の簡単な説明
[0007] [図 1]本発明による画像処理装置の一実施形態を示す図である。
[図 2]画像補正処理プログラムのフローチャートを示す図である。
[図 3]明度ヒストグラム圧縮におけるサブルーチン処理のフローチャートを示す図であ る。
[図 4]作成された明度ヒストグラムの例を示す図である。
[図 5]階調幅を圧縮された明度ヒストグラムの例を示す図である。
[図 6]圧縮された階調幅を拡大した明度ヒストグラムの例を示す図である。
[図 7]元の明度ヒストグラムにおける画素数比率が 0でない明度階調の最小値および 最大値と、圧縮された階調幅を拡大するときの明度階調の最小値および最大値との 関係の例を示す図である。
[図 8]本発明をパーソナルコンピュータに適用した様子を示す図である。
符号の説明
[0008] 1 :入力装置
2 :インタフェース
3 : CPU
4 :記憶装置
5 :モニタ
6 :ノ スライン 発明を実施するための最良の形態
[0009] 本発明による画像処理装置の一実施形態を図 1に示す。図 1の画像処理装置は、 撮像された画像などのカラー画像データを入力し、この画像データの彩度と明度の 両方をそれぞれのヒストグラムに基づいて補正することにより、画像の見映えを向上 する装置である。この画像処理装置は、入力装置 1、インタフェース 2、 CPU3、記憶 装置 4およびモニタ 5を有し、これらはバスライン 6により互いに接続される。
[0010] 入力装置 1は、この画像処理装置に入力する画像データを供給する装置である。
入力装置 1には、たとえばスキャナ、デジタルカメラ、 CD—ROMやメモリカードなどの 記憶デバイスのドライブ装置、などが用いられる。入力装置 1より供給された画像デー タは、インタフェース 2を介して CPU3に入力される。
[0011] CPU3は、記憶装置 4に記憶された画像補正処理プログラムを実行し、入力された 画像データの補正処理を行うプロセッサである。記憶装置 4は、画像補正処理プログ ラムを記憶するとともに、入力装置 1より CPU3に入力された画像データや、 CPU3に より補正処理された画像データを記憶する装置であり、たとえば HDDなどが用いら れる。これらの画像データによる画像は、モニタ 5に表示される。
[0012] CPU3において実行される画像補正処理プログラムによるフローチャートを図 2に 示す。 CPU3に画像データが入力されると、ステップ S1の RGBZHSV変換を行う。 RGB/HSV変換では、入力された画像データの R (赤)、 G (緑)、 B (青)の値を、 H ( 色相)、 S (彩度)、 V (明度)の値に変換する。このときの変換方法には、周知の方法 が用いられる。
[0013] ステップ S2の明度ヒストグラム作成では、ステップ S1の RGB/HSV変換により変 換された画像データの明度について、ヒストグラムを作成する。ここでは、たとえば図 4 に示すヒストグラムが作成されたとする。この明度ヒストグラムは、横軸は 0 255まで の明度階調 (iとする)を表し、縦軸はその明度階調 iにおける画素数比率 (Fiとする) を表す。なお、画素数比率とは、その明度階調の画素数の、画像の全画素数に対す る比率である。
[0014] ステップ S3の明度ヒストグラム圧縮では、ステップ S2の明度ヒストグラム作成により 作成された明度ヒストグラムについて、明度階調 iごとに画素数比率 Fiがしきい値以上 であるか否力を判定し、しきい値未満である部分の明度階調の幅を圧縮する。これは
、図 3にフローチャートを示すサブルーチン処理により次のようにして行われる。
[0015] 図 3のステップ S31において、一時メモリの変数 TEMPをリセットしてゼロにし、ステ ップ S32へ進む。ステップ S32において、明度階調 i、 jを、 i = 0、かつ j = 0に設定す る。ここで明度階調 iは、明度階調幅の圧縮前、すなわち、図 2のステップ S2の明度ヒ ストグラム作成において作成された、元のヒストグラムの明度階調を示す。また、明度 階調 jは、明度階調幅の圧縮後、すなわち図 3のフローチャートの処理によって明度 階調の幅を圧縮された後の、明度ヒストグラムの明度階調を示す。ステップ S33では 、フラグ FLAGを初期値である FALSEに設定する。
[0016] その後、ステップ S34において、画素数比率 Fiを演算されたしきい値 Sと比較する。
このしきい値 Sは、あらカ^めユーザにより行われるしきい値の指定入力(ステップ S3 20)に基づいて演算されている。このとき、たとえばしきい値を定数とする力 \明度階 調に応じたしきい値とするかを指定することができる。定数ならば、ユーザにより入力 された値をしきい値 Sとする。一方、明度階調に応じたしきい値とする場合、ユーザは しきい値 Sを明度階調 iの関数 S (i)として指定する。この関数 S (i)により、明度階調に 応じてしきい値が演算される。さらに、ユーザがこのようなしきい値を入力または指定 せずに、画像に応じて自動的に設定されるようにしてもよい。たとえば、しきい値未満 となる画素数比率 Fiの合計力 S、ヒストグラム全体の 10%などの所定割合となるように、 しきい値 Sが設定される。
[0017] ステップ S34において、画素数比率 Fiがしきい値 S未満なら、ステップ S35におい て、フラグ FLAGを TRUEに設定し、さらに、ステップ S36において、一時メモリの変 数 TEMPに現在の明度階調 iの画素数比率 Fiをカ卩える。その後、ステップ S37にお いて、変数 TEMPとしきい値 Sとを比較する。ステップ S37をはじめて実行するとき、 その判定結果は必ず N〇となる。
[0018] ステップ S37が否定判定されるとステップ S37Aで変数 Gjに変数 TEMPを格納して ステップ S38へ進む。ステップ S38において、明度階調 iに 1を加え、ステップ S39に おいて、明度階調 iが 255以上であるか否か判定する。ステップ S39が否定されると、 ステップ S34に戻る。このとき、ステップ S34が否定判定されると、ステップ S35、 S36 、 S37、 S38、 S39を繰り返す。
[0019] ステップ S37が肯定されると、ステップ S310において、変数 TEMPの値を変数 Gj に格納する。つまり、連続する複数の明度階調の画素数比率 Fiがともにしきい値 S未 満であるときは、ステップ S36でそれらの画素数比率 Fiが積分される。この積分値が しきい値 S以上になると、ステップ S310でこの積分値を補正後のヒストグラムの明度 階調 jにおける画素数比率 Gjとする。
[0020] ステップ S310力 ステップ S311に進むと、変数 TEMPをリセットしてゼロにし、ステ ップ S312で、明度階調 jに 1を加える。次に、ステップ S319において、フラグ FLAG を FALSEに設定する。その後、ステップ S38、 S39を経由して、ステップ S34へ戻る 。ステップ S34が否定された場合は、以上説明したようにして動作する。
[0021] 一方、ステップ S34が肯定された場合、すなわち現在の明度階調 iに対する画素数 比率 Fiがしきい値 S以上ならば、ステップ S313において、フラグ FLAGが TRUEで あるか否か判定する。このステップ S313は、前回の処理サイクル、すなわち現在の 明度階調はりも 1小さい明度階調のときの画素数比率 Fiが、しきい値 S以上であった か否かにより、その後の処理手順を変更するために設けられている。前回の処理サイ クルにおける画素数比率 Fiがしきい値 S以上であれば、ステップ S313が否定判定さ れ、ステップ S314において、現在の明度階調 iの画素数比率 Fiを変数 Gjに格納し、 ステップ S312におレヽて、明度階調 jに 1をカロ免る。その後、ステップ S319、 S38、 S3 9を経由して、ステップ S34へ戻る。ステップ S313が否定判定された場合は、以上説 明したようにして動作する。
[0022] 前回の処理サイクルにおける画素数比率 Fiがしきい値 S未満であれば、ステップ S 313が肯定判定され、ステップ S315において、変数 TEMPの値を変数 Gjに格納す る。次に、ステップ S316に進み、画素数比率 Fiの値を変数 Gj + 1に格納する。さら に、ステップ S317で、変数 TEMPをリセットしてゼロにし、ステップ S318で明度階調 jに 2をカロえる。その後、ステップ S319においてフラグ FLAGを FALSEに設定し、ス テツプ S38、 S39を経由して、ステップ S34へ戻る。ステップ S313が肯定判定された 場合は、以上説明したようにして動作する。
[0023] このようにして全ての明度階調 iに対して処理を行レ、、最後にステップ S39が肯定判 定されて、図 3に示す処理フローが終了する。以上説明した処理において、ステップ S36でしきい値 Sを越えていない画素数比率 Fiが積分され、ステップ S37A、 S310 または S315で変数 Gjに格納される。明度階調 jに対してこの変数 Gjによる画素数比 率 Gjのヒストグラムを作成することにより、処理前の明度階調 iに対する画素数比率 Fi のヒストグラムにおいて、画素数比率 Fiがしきい値未満である部分の明度階調の幅が 圧縮される。
[0024] 以上説明した図 3のフローチャートの処理によって、図 4の明度ヒストグラムの階調 幅を圧縮したものを図 5に示す。図 5のヒストグラムにおいて、横軸は明度階調 j、縦軸 は変数 Gjによる画素数比率 Gjをそれぞれ表す。なお、図 5のひおよび /3に示す明度 階調は、画素数比率 Gjが 0でない明度階調 jの最小値および最大値であり、以降に 説明するステップ S4の処理において用いられる。
[0025] 図 2のステップ S4の明度ヒストグラム拡大では、ステップ S3の明度ヒストグラム圧縮 において圧縮された明度ヒストグラムの階調幅を拡大する。これは次のようにして行わ れる。はじめに、図 4の明度ヒストグラム、すなわち階調幅の圧縮前の明度ヒストグラム において、画素数比率 Fiが 0でない明度階調 iの最小値と最大値を求める。ここでは 、たとえば図 4に示す最小値 Aおよび最大値 Bが求められたとする。
0 0
[0026] 次に、求められた最小値 Aと最大値 Bに基づいて、圧縮された階調幅を拡大する
0 0
ときの明度階調 iの下限値 Aと上限値 Bを決定する。この下限値 Aと上限値 Bは、元の ヒストグラムにおいて明度階調 iの最小値 A力 SOでないときや最大値 Bがフルスケー
0 0
ル値でないとき、すなわち元の画像に黒や白が存在しない場合に、画像補正処理後 においても黒や白が存在せず、かつ画像の見映えが良くなるように、実験的または 統計的に求められた関係により決定される。その関係は、たとえば図 7に示すような 曲線 70によって表すことができる。この関係によって、横軸上に示す元のヒストグラム における明度階調の最小値 Aと最大値 Bに基づいて、縦軸上に示す階調幅拡大
0 0
時の明度階調の下限値 Aと上限値 Bが決定される。このようにして、元の画像に黒や 白が存在しない場合には、補正処理後の画像においても黒や白が存在しないように する。これにより、特許文献 1に記載の方法において頻度分布の明度階調幅をゼロ 力、らフルスケール値になるよう拡大することによって、本来黒や白のなレ、画像にぉレ、 ても黒や白が生成され、画像の見た目が大きく変化してしまうのを防ぐことができる。
[0027] このようにして決定された下限値 Aと上限値 Bに基づいて、図 2ステップ S3において 圧縮されたヒストグラムの明度階調幅を、下記の変換式(1)を用いて拡大する。このと き、明度階調 jの値を式(1)により変換し、その明度階調 jにおける画素数比率 Gjの値 はそのままとすることで、明度階調の幅を拡大することができる。なお、式(1)のひお よび /3は、図 5における画素数比率 Gjが 0でない明度階調 jの最小値ひおよび最大 値 13である。
C (j) = (j- a ) - { (B-A) / ( /3 - a ) } +A
ただし
C (j) :変換後の明度階調
[0028] 以上説明したようにして、圧縮された明度ヒストグラムの階調幅が拡大される。この 処理により、図 5のヒストグラムの階調幅を拡大したものを図 6に示す。このように階調 幅を拡大することで、画像内のヒストグラム頻度が高い部分すなわち、画像の主だつ た部分に関して、暗い部分をより暗ぐ明るい部分をより明るくするといつた具合にコ ントラストが強調され、見映えの良い画像とすることができる。
[0029] このようにして、ステップ S2の明度ヒストグラム作成、ステップ S3の明度ヒストグラム 圧縮、およびステップ S4の明度ヒストグラム拡大において、補正された明度による明 度ヒストグラムを作成する。次に、彩度のコントラスト強調について説明する。特に彩 度に関して従来は、画像全体に対して一律の彩度の強弱をつける制御が行われてき た。特許文献 3に記載の方法もその一つである。しかし、彩度のコントラストの強調、 すなわち色鮮やかな部分はより鮮やかさを増し、色鮮やかでない部分はより鮮やかさ を減らすといった処理を行うことは従来は行われていなかった。このような彩度のコン トラストの強調を実現するために、本発明では、彩度についても明度と同様の処理を 、ステップ S5の彩度ヒストグラム作成、ステップ S6の彩度ヒストグラム圧縮、およびス テツプ S7の彩度ヒストグラム拡大において行レ、、補正された彩度による彩度ヒストグラ ムを作成する。その結果、画像内のヒストグラム頻度が高い部分すなわち、画像の主 だった部分に関して、色鮮やかな部分はより色鮮やかに、色鮮やかでない部分はより 鮮ゃ力、さを減らすといった具合に彩度のコントラストが強調される。この効果は、特に 色鮮やかな被写体、例えば一面に色とりどりの花々が写っている画像において、花 の色鮮やかな部分だけがより色鮮やかに強調され、その他の部分は鮮やかさを抑え られるので、非常に見映えのよい画像を得られるところにあり、これは画像全体に対し て一律の彩度の強弱をつける従来の方法ではなし得なかった効果である。このように
、明度と彩度をそれぞれのヒストグラムにより補正することで、特許文献 3に記載の方 法における明度の補正結果により決まる値を彩度にカ卩えることにより、本来彩度が低 い部分に対しても彩度を強調しすぎてしまうのを防ぐことができる。ステップ S8の HS VZRGB変換では、この補正された明度および彩度ヒストグラムによる画像データを 、 HSV値力 RGB値に変換する。変換した画像データは CPU3より出力され、記憶 装置 4に記憶したり、その画像をモニタ 5に表示したりする。
以上説明した画像処理装置によれば、次の作用効果を奏する。
(1)彩度ヒストグラムおよび明度ヒストグラムに基づいて彩度および明度をそれぞれ補 正することにより、彩度および明度のコントラストを改善して、効果的に画像の見映え を向上できる。
(2)彩度ヒストグラムおよび明度ヒストグラムの階調の幅をその階調における画素数比 率に基づいて変更することにより、彩度および明度をそれぞれ補正する。このとき、ヒ ストグラムの各階調における画素数比率が設定したしきい値未満である場合はその 階調幅を圧縮し、これにより階調幅の一部が圧縮されたヒストグラムの階調全体の幅 を拡大して、彩度および明度をそれぞれ補正する。このようにしたので、彩度と明度 をそのヒストグラムの各階調における画素数比率に応じて補正することができるため、 彩度と明度のコントラストを画像に応じて適切に改善できる。
(3)階調幅の圧縮前のヒストグラムにおいて画素数比率が 0でない最小と最大の階調 値に基づいて、階調幅を拡大したときのヒストグラムにおいて画素数比率が 0でない 最小と最大の階調値を決定し、前者の階調値のそれぞれが 0またはフルスケール値 でないときは、後者の階調値のそれぞれを 0またはフルスケール値以外の値とする。 このようにしたので、元の画像に黒や白が存在しない場合に、画像補正処理後にお レヽても黒や白が存在せず、かつ画像の見映えを向上することができる。
(4)ヒストグラムにおいてしきい値未満となる画素数比率がそのヒストグラム全体の所 定割合となるようにしきい値を設定することとしたため、ユーザが面倒な操作を行うこ となぐ画像補正処理を簡単に実行できる。
[0031] なお、以上説明した実施の形態では、本発明を実現するために実行される画像補 正処理プログラムは記憶装置 4の記録媒体に記録されており、 CPU3においてこの 画像補正処理プログラムを実行する例について説明したが、本発明はこの内容に限 定されない。たとえば、以上説明したような画像補正処理プログラムが入力装置 1に 記憶されて実行されることとしてもよい。また、この画像補正処理プログラムを、 CD- ROMなどの記録媒体を用いてパソコンや入力装置に取り込んでもよレ、。あるいは、 この画像補正処理プログラムを、インターネットなどの電気通信回線を通じてデータ 信号としてパソコンや入力装置に取り込んでもよい。図 8はその様子を示す図である 。パーソナルコンピュータ 500は、 CD—ROM502を介して画像補正処理プログラム の提供を受けることができる。また、パーソナルコンピュータ 500は通信回線 501との 接続機能を有し、サーバ 400から画像補正処理プログラムを提供される。通信回線 5 01は、インターネット、パソコン通信などの通信回線、あるいは専用通信回線などで ある。サーノく 400は、通信回線 501を介して画像補正処理プログラムをパーソナルコ ンピュータ 500に送信する。すなわち、画像補正処理プログラムを搬送波上のデータ 信号に変換して、通信回線 501を介して送信する。このように、画像補正処理プログ ラムは、記録媒体や搬送波などの種々の形態のコンピュータ読み込み可能なコンビ ユータプログラム製品として供給できる。
[0032] 以上説明した実施の形態はあくまで一例であり、本発明の特徴が損なわれない限り
、各構成要素は上述の実施の形態に限定されない。
[0033] 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願 2003年第 180684号(2003年 6月 25日出願)

Claims

請求の範囲
[1] カラー画像データを入力する入力手段と、
前記カラー画像データを色相、彩度および明度に変換する変換手段と、 前記彩度および明度について総画素数に対する各階調ごとの画素数比率をそれ ぞれ計算し、彩度ヒストグラムと明度ヒストグラムを作成するヒストグラム作成手段とを 備え、
前記彩度ヒストグラムおよび明度ヒストグラムに基づいて前記彩度および明度をそれ ぞれ補正することにより、前記彩度および明度のコントラストを改善することを特徴と する画像処理装置。
[2] 請求項 1の画像処理装置において、
前記彩度ヒストグラムおよび明度ヒストグラムの階調の幅をその階調における画素数 比率に基づいて変更することにより、前記彩度および明度をそれぞれ補正する。
[3] 請求項 2の画像処理装置において、
前記彩度ヒストグラムおよび明度ヒストグラムの各階調における画素数比率に対して それぞれしきい値を設定し、しきい値未満である場合はその階調の幅を圧縮するヒス トグラム圧縮手段と、
前記ヒストグラム圧縮手段により階調の幅の一部を圧縮された彩度ヒストグラムおよ び明度ヒストグラムについて、その階調全体の幅を拡大するヒストグラム拡大手段とを さらに備え、
前記ヒストグラム圧縮手段およびヒストグラム拡大手段により前記彩度および明度を それぞれ補正する。
[4] 請求項 3の画像処理装置において、
前記ヒストグラム拡大手段は、前記ヒストグラム圧縮手段により階調の幅を圧縮され る前の彩度ヒストグラムおよび明度ヒストグラムにおける前記画素数比率が 0でない最 小と最大の階調値に基づいて、前記ヒストグラム拡大手段により階調全体の幅を拡大 された彩度ヒストグラムおよび明度ヒストグラムにおける前記画素数比率が 0でない最 小と最大の階調値を決定し、
前記階調の幅を圧縮される前の彩度ヒストグラムまたは明度ヒストグラムにおける前 記最小の階調値が 0でないときは、その階調値を 0以外の値に決定し、 前記階調の幅を圧縮される前の彩度ヒストグラムまたは明度ヒストグラムにおける前 記最大の階調値がフルスケール値でないときは、その階調値をフルスケール値以外 の値に決定し、
前記決定された最小および最大の階調値に基づレ、て、前記ヒストグラム圧縮手段 により階調の幅の一部を圧縮された彩度ヒストグラムおよび明度ヒストグラムについて 、その階調全体の幅を拡大する。
[5] 請求項 3または 4の画像処理装置において、
前記ヒストグラム圧縮手段は、前記彩度ヒストグラムまたは明度ヒストグラムにおいて 前記しきい値未満となる画素数比率がそのヒストグラム全体の所定割合となるように、 前記しきい値を設定する。
[6] 画像データを入力する入力ステップと、
前記画像データを色相、彩度および明度に変換する変換ステップと、
前記彩度および明度について総画素数に対する各階調ごとの画素数比率をそれ ぞれ計算し、彩度ヒストグラムと明度ヒストグラムを作成するヒストグラム作成ステップと
前記彩度ヒストグラムおよび明度ヒストグラムに基づいて前記彩度および明度をそれ ぞれ補正することにより、前記彩度および明度のコントラストを改善する補正ステップ とをコンピュータで実行するためのカラー画像の画像補正プログラム。
[7] 請求項 6の画像補正プログラムにおいて、
前記補正ステップでは、前記彩度ヒストグラムおよび明度ヒストグラムの階調の幅を その階調における画素数比率に基づいて変更することにより、前記彩度および明度 をそれぞれ補正する。
[8] 請求項 7の画像補正プログラムにおいて、
前記補正ステップは、前記彩度ヒストグラムおよび明度ヒストグラムの各階調におけ る画素数比率に対してそれぞれしきい値を設定し、しきい値未満である場合はその 階調の幅を圧縮するヒストグラム圧縮ステップと、
前記ヒストグラム圧縮ステップにより階調の幅の一部を圧縮された彩度ヒストグラム および明度ヒストグラムについて、その階調全体の幅を拡大するヒストグラム拡大ステ ップとからなり、
前記ヒストグラム圧縮ステップおよびヒストグラム拡大ステップにより前記彩度および 明度をそれぞれ補正する。
[9] 請求項 8の画像補正プログラムにおいて、
前記ヒストグラム拡大ステップは、前記ヒストグラム圧縮ステップにより階調の幅を圧 縮される前の彩度ヒストグラムおよび明度ヒストグラムにおける前記画素数比率が 0で ない最小と最大の階調値に基づいて、前記ヒストグラム拡大ステップにより階調全体 の幅を拡大された彩度ヒストグラムおよび明度ヒストグラムにおける前記画素数比率 力 ¾でなレ、最小と最大の階調値を決定し、
前記階調の幅を圧縮される前の彩度ヒストグラムまたは明度ヒストグラムにおける前 記最小の階調値が 0でないときは、その階調値を 0以外の値に決定し、
前記階調の幅を圧縮される前の彩度ヒストグラムまたは明度ヒストグラムにおける前 記最大の階調値がフルスケール値でないときは、その階調値をフルスケール値以外 の値に決定し、
前記決定された最小および最大の階調値に基づレ、て、前記ヒストグラム圧縮ステツ プにより階調の幅の一部を圧縮された彩度ヒストグラムおよび明度ヒストグラムについ て、その階調全体の幅を拡大する。
[10] 請求項 8または 9の画像補正プログラムにおいて、
前記ヒストグラム圧縮ステップは、前記彩度ヒストグラムまたは明度ヒストグラムにお レ、て前記しきレ、値未満となる画素数比率がそのヒストグラム全体の所定割合となるよう に、前記しきい値を設定する。
PCT/JP2004/008809 2003-06-25 2004-06-23 画像処理装置、画像補正プログラム WO2005002205A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-180684 2003-06-25
JP2003180684A JP2006237657A (ja) 2003-06-25 2003-06-25 画像処理装置、画像補正プログラムおよび記録媒体

Publications (1)

Publication Number Publication Date
WO2005002205A1 true WO2005002205A1 (ja) 2005-01-06

Family

ID=33549506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008809 WO2005002205A1 (ja) 2003-06-25 2004-06-23 画像処理装置、画像補正プログラム

Country Status (2)

Country Link
JP (1) JP2006237657A (ja)
WO (1) WO2005002205A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1750143A2 (en) * 2005-07-27 2007-02-07 Medison Co., Ltd. Ultrasound diagnostic system and method of automatically controlling brightness and contrast of a three-dimensional ultrasound image
CN101442678B (zh) * 2007-05-14 2011-06-29 奥林匹斯冬季和Ibe有限公司 用于内窥镜图像的图像处理的方法和设备
US8705152B2 (en) 2006-10-12 2014-04-22 Samsung Electronics Co., Ltd. System, medium, and method calibrating gray data
CN104268548A (zh) * 2014-09-01 2015-01-07 西南交通大学 一种基于道路图像的积雪检测方法
CN105118029A (zh) * 2015-08-11 2015-12-02 曲阜裕隆生物科技有限公司 一种基于人眼视觉特性的医学图像增强方法
CN116017171A (zh) * 2023-02-01 2023-04-25 北京小米移动软件有限公司 一种图像处理方法、装置、电子设备、芯片及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211521B2 (ja) 2007-03-26 2013-06-12 株式会社ニコン 画像処理装置、画像処理方法、画像処理プログラム、およびカメラ
JP5375494B2 (ja) * 2009-09-30 2013-12-25 セイコーエプソン株式会社 画像処理装置、画像出力装置、画像処理方法及びプログラム
JP2017139678A (ja) * 2016-02-05 2017-08-10 Necプラットフォームズ株式会社 画像データ変換装置、画像データ変換方法、画像データ変換用プログラム、pos端末装置、及びサーバ
CN113160087B (zh) * 2021-04-29 2024-03-19 平安科技(深圳)有限公司 图像增强方法、装置、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023279A (ja) * 1996-06-28 1998-01-23 Fuji Xerox Co Ltd 画像処理装置
JPH10198802A (ja) * 1996-11-13 1998-07-31 Seiko Epson Corp 画像処理装置、画像処理方法および画像処理プログラムを記録した媒体
JPH10210299A (ja) * 1996-11-21 1998-08-07 Seiko Epson Corp 画像処理装置、画像処理方法および画像処理プログラムを記録した媒体
JP2001209791A (ja) * 1999-11-16 2001-08-03 Nippon Software Prod:Kk コンピュータによる画像処理システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023279A (ja) * 1996-06-28 1998-01-23 Fuji Xerox Co Ltd 画像処理装置
JPH10198802A (ja) * 1996-11-13 1998-07-31 Seiko Epson Corp 画像処理装置、画像処理方法および画像処理プログラムを記録した媒体
JPH10210299A (ja) * 1996-11-21 1998-08-07 Seiko Epson Corp 画像処理装置、画像処理方法および画像処理プログラムを記録した媒体
JP2001209791A (ja) * 1999-11-16 2001-08-03 Nippon Software Prod:Kk コンピュータによる画像処理システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1750143A2 (en) * 2005-07-27 2007-02-07 Medison Co., Ltd. Ultrasound diagnostic system and method of automatically controlling brightness and contrast of a three-dimensional ultrasound image
EP1750143A3 (en) * 2005-07-27 2009-09-09 Medison Co., Ltd. Ultrasound diagnostic system and method of automatically controlling brightness and contrast of a three-dimensional ultrasound image
US8705152B2 (en) 2006-10-12 2014-04-22 Samsung Electronics Co., Ltd. System, medium, and method calibrating gray data
CN101442678B (zh) * 2007-05-14 2011-06-29 奥林匹斯冬季和Ibe有限公司 用于内窥镜图像的图像处理的方法和设备
CN104268548A (zh) * 2014-09-01 2015-01-07 西南交通大学 一种基于道路图像的积雪检测方法
CN105118029A (zh) * 2015-08-11 2015-12-02 曲阜裕隆生物科技有限公司 一种基于人眼视觉特性的医学图像增强方法
CN116017171A (zh) * 2023-02-01 2023-04-25 北京小米移动软件有限公司 一种图像处理方法、装置、电子设备、芯片及存储介质
CN116017171B (zh) * 2023-02-01 2023-06-20 北京小米移动软件有限公司 一种图像处理方法、装置、电子设备、芯片及存储介质

Also Published As

Publication number Publication date
JP2006237657A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
EP3280138B1 (en) Image processing apparatus, image projection apparatus, and image processing method
US8103119B2 (en) Image processing device, image processing method, image processing program product, and image-capturing device
JP3830747B2 (ja) 色再現域圧縮方法および色再現域圧縮装置
US6822762B2 (en) Local color correction
TW520601B (en) Method and system of local color correction using background luminance masking
JPH0974494A (ja) 色再現域補正方法、色再現域補正装置および記録媒体
JP2004030670A (ja) デジタル画像の色調特徴の強調方法
JP2000134486A (ja) 画像処理装置及び画像処理方法及び記憶媒体
US7613338B2 (en) Image processing method and apparatus, program, and storage medium
JP2006229925A (ja) 動的画像彩度処理装置
US20080062484A1 (en) Image processing device and image processing method
CN103380451B (zh) 视频显示装置
JP2018026794A (ja) 画像処理装置、画像投影装置、及び画像処理方法
JP4758999B2 (ja) 画像処理プログラム、画像処理方法、画像処理装置
US8290262B2 (en) Color processing apparatus and method thereof
WO2005002205A1 (ja) 画像処理装置、画像補正プログラム
JP4079814B2 (ja) 画像処理方法、画像処理装置、画像形成装置、撮像装置、及びコンピュータプログラム
US5978106A (en) Picture image processing method
JP4151225B2 (ja) 画像処理のための装置、方法及びプログラム
US6771815B2 (en) Image correction apparatus and recording medium for storing image correction program
CN105654925A (zh) 高动态范围图像处理方法及系统
JP4146506B1 (ja) モザイク画像生成装置、方法及びプログラム
JP4752912B2 (ja) 画像の質感を補正する画像処理装置、画像処理プログラム、画像処理方法、および電子カメラ
JP2002288650A (ja) 画像処理装置及びデジタルカメラ、画像処理方法、記録媒体
JPH118768A (ja) 画像処理装置、画像処理方法、画像処理制御プログラムを記録した媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP