WO2005002009A1 - 増幅媒体性能シミュレーションの装置および方法並びに光増幅器 - Google Patents

増幅媒体性能シミュレーションの装置および方法並びに光増幅器 Download PDF

Info

Publication number
WO2005002009A1
WO2005002009A1 PCT/JP2003/008219 JP0308219W WO2005002009A1 WO 2005002009 A1 WO2005002009 A1 WO 2005002009A1 JP 0308219 W JP0308219 W JP 0308219W WO 2005002009 A1 WO2005002009 A1 WO 2005002009A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal light
amplification medium
wavelength
input
power
Prior art date
Application number
PCT/JP2003/008219
Other languages
English (en)
French (fr)
Inventor
Masato Nishihara
Yasushi Sugaya
Etsuko Hayashi
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2005503228A priority Critical patent/JP3936958B2/ja
Priority to PCT/JP2003/008219 priority patent/WO2005002009A1/ja
Publication of WO2005002009A1 publication Critical patent/WO2005002009A1/ja
Priority to US11/187,938 priority patent/US7212335B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/073Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an out-of-service signal
    • H04B10/0731Testing or characterisation of optical devices, e.g. amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present invention relates to an apparatus and method for simulating the performance of an amplification medium and an optical amplifier.
  • wavelength multiplexing transmission technology which is a technology for increasing the speed and capacity of networks, and each wavelength transmitted by this wavelength multiplexing transmission technology, have been Attention is focused on technologies related to the photonic network, which is a network based on two communication paths.
  • the present invention relates to an apparatus and method for amplifying medium performance simulation suitable for use in simulating the performance of an amplifying medium applied when constructing a photonic network. This is related to an optical amplifier configured based on simulation results. Background art
  • Wavelength configuration The wavelength characteristics of amplification media used in conventional optical network systems that are not expected to change the number of wavelengths significantly, such as EDFA (Erbium Doped Fiber Amplifier), depend only on the population inversion ratio by single-band approximation. (See Non-Patent Document 1). In other words, the wavelength characteristic (gain spectrum) could be approximated and grasped according to the value of the population inversion ratio, with the entire amplification band of the EDFA as one unit. Specifically, as shown in Fig. 24, the pattern of the relative gain coefficient distribution as the wavelength characteristic over the entire EDFA amplification band (the wavelength of the input signal optical signal in the figure is 1500 nm to l580 nm) is expressed as the population inversion ratio.
  • EDFA Erbium Doped Fiber Amplifier
  • the wavelength flatness of the EDFA in the C band is controlled by constant gain control with constant population inversion ratio and gain according to relative gain coefficient distribution corresponding to constant population inversion distribution ratio. It has been realized by combining the control with
  • FIG. 25 shows a configuration example of an optical repeater 100 used in a conventional optical network system in which it is not assumed that the wavelength arrangement and the number of wavelengths change significantly.
  • the optical repeater 100 shown in FIG. 25 is configured by inserting a variable optical attenuator (VOA) 102 between two cascade-connected EDF A amplifiers 101-1 and 101-2. ing.
  • VOA variable optical attenuator
  • Each of the EDFA amplifiers 101-1 and 101-2 includes a branch coupler 101a, 101b, EDFAl Olc, a photo diode (PD) 101d, 101e, and a control circuit 101-101. It is configured with f.
  • the input / output power is monitored by the photodiodes 101d and 101e, and the gain is controlled by the EDFA 101c under the constant gain control in the control circuit 101f.
  • the optical signal is output.
  • the gains of the EDFA amplifiers 101-1 and 101-2 are kept constant.
  • the output power of the optical repeater 100 is made to be constant.
  • each EDFA 103c is kept constant.
  • the gain wavelength characteristic is always constant, and a gain equalizer with an appropriately designed loss characteristic is provided downstream of the amplifiers 101-1 and 101-2. Can be made flat.
  • Non-Patent Document 2 As an EDFA model considering SHB, a model that treats the absorption-emission process and the saturation process between levels formed by non-uniform spreading independently (see Non-Patent Document 2), however, a model has been reported in which the gain variation due to SHB is separately derived from the measurement results based on the gain wavelength characteristics obtained by the single-band approximation (see Non-Patent Document 3).
  • Patent Document 1 there is a technique described in Patent Document 1 and Patent Document 2 shown below.
  • the present invention has been made in view of such a problem, and by introducing a simple approximation formula, it is possible to model a gain fluctuation other than around a signal wave in a short time. It is an object of the present invention to provide a simulation device and method, and an optical amplifier.
  • Patent Document 1
  • Patent Document 2
  • an amplification medium performance simulation apparatus is characterized in that a characteristic of an amplification medium that is excited by excitation light from an excitation light source and amplifies signal light.
  • An apparatus for simulating an amplification medium performance comprising: a basic data holding unit for holding basic data on an amplification medium; and information relating to an input signal light to be input to the amplification medium to be simulated.
  • An input signal light information holding unit that holds a wavelength value and an optical power value of the input signal light; and the input signal light using the contents held by the basic data holding unit and the input signal light information holding unit.
  • the signal light power corresponding to the position of the signal light propagating through the amplifying medium in the longitudinal direction coordinate is obtained by sequentially adding the change of the signal light from the signal light input end to the signal light output end.
  • a signal light power calculation unit that calculates a local variation in a wavelength region of a starting level ion distribution in the amplification medium due to input of the input signal light, and a signal light power calculation unit that calculates The signal light output Signal output from the edge
  • An output processing unit that performs an output process on a calculation result of the optical power as a simulation result of the performance of the amplification medium can be provided.
  • At least one or more Gaussian functions are used as a function for calculating the inversion distribution rate change amount.
  • the inversion distribution ratio change amount calculation unit calculates a change amount of the inversion distribution ratio as a first function centered on a first wavelength band in a gain saturated state, and a first function operation unit;
  • a second function calculator for calculating a second function composed of a function centered on a second wavelength band specific to the body, and an adder for adding the calculation results from the first function calculator and the second function calculator It is good also as comprising.
  • the first function calculated by the first function calculation unit is constituted by a sum of Gaussian functions given according to the wavelength of the input signal light, and calculated by the second function calculation unit.
  • the second function can be constituted by the sum of a plurality of Gaussian functions.
  • the Gaussian function that is given according to the wavelength of the input signal light that forms the first function is such that the center wavelength is the wavelength of the input signal light, and the full width at half maximum is a value corresponding to the amplification medium.
  • Each Gaussian function that forms the second function is defined such that the center wavelength is a second wavelength band specific to the amplification medium, and the full width at half maximum is determined as a value corresponding to the amplification medium.
  • the full width at half maximum of each Gaussian function in the function and the second function can be stored in the basic data storage unit.
  • the inversion distribution rate ⁇ ( ⁇ ), the inversion distribution rate change amount ⁇ ⁇ ( ⁇ , ⁇ ⁇ ) calculated by the inversion distribution rate change amount calculation unit, and the basic data holding unit Using the stored basic data, Optical power change for each minute unit of length in the longitudinal direction
  • the simulation execution unit is configured to approximately calculate a gain deviation between signal light wavelengths caused by spectral holding.
  • the amplification medium performance simulation method of the present invention is an amplification medium performance simulation method for simulating the performance of an amplification medium that is excited by excitation light from an excitation light source to amplify signal light, wherein the signal light
  • An inversion distribution rate change amount calculation step for calculating an inversion distribution rate change amount that may be caused by local variation in the wavelength range of the initial level ion distribution of the amplification medium;
  • the change amount of the population inversion rate calculated in the change amount calculation step Based on the propagation equation of the amplification medium based on the corrected population inversion ratio corrected by the above, the change in the optical power of the signal light propagating through the amplification medium from the signal light input end of the amplification medium is calculated.
  • the change of the optical power in the minute propagation range is sequentially added from the signal light input end to the signal light output end, so that the output signal light power output from the amplification medium is
  • An input signal light information holding unit that holds a wavelength value and an optical power value of the input signal light; and the basic data holding unit and the input signal light information holding unit.
  • the output signal light power output from the amplification medium including the local variation in the wavelength region of the ion distribution of the initial level in the amplification medium due to the input of the input signal light, using the input contents Is calculated for each signal light wavelength, and the simulation result output from the amplification medium performance simulation device including a simulation execution unit configured to output the calculation result as a simulation result of the performance of the amplification medium.
  • An amplifying medium performance simulation device having a control unit, wherein the amplifying light source control unit simulates the performance of an amplifying medium that is excited by the exciting light from the exciting light source and amplifies the signal light;
  • a basic data holding unit for holding basic data on a medium; and a wavelength value and an optical power value of the input signal light as information on an input signal light to be input to an amplification medium to be simulated.
  • An input signal light information holding unit and using the contents held by the basic data holding unit and the input signal light information holding unit to input the input signal light.
  • the output signal light power output from the amplification medium including local fluctuations in the wavelength region of the ion distribution of the initial level in the amplification medium, is approximately calculated for each signal light wavelength.
  • a simulation execution unit that outputs a result as a simulation result of the performance of the amplification medium, based on the simulation result output from the amplification medium performance simulation apparatus configured to include the simulation result of the input signal light.
  • the pump light source is controlled so that a gain deviation due to a change in the ion distribution of a starting level in the amplification medium due to an input is compensated.
  • the pumping light source control unit includes a first power monitor that monitors the power of the input signal light and the output signal light, and a wavelength arrangement information acquisition unit that acquires wavelength arrangement information of the signal light propagating through the amplification medium.
  • a constant-gain control unit that outputs a signal for controlling the pumping light source such that the gain is constant from the power of the input / output signal light monitored by the first power monitor.
  • the excitation light source in the constant gain control unit is configured to reduce a gain deviation in a wavelength band due to the spectral hole panning based on the wavelength arrangement information acquired by the wavelength arrangement information acquisition unit.
  • a correction unit that corrects the control amount for.
  • the wavelength allocation information acquisition unit may be constituted by a spectrum analyzer that monitors the wavelength allocation of the signal light input or output to or from the amplification medium, or may be configured by a control signal light transmitted together with the signal light. It can be configured to acquire wavelength allocation information.
  • the excitation light source control unit obtains the power of the input signal light and the power of the output signal light for each of a plurality of bands divided based on the simulation result obtained by the amplification medium performance simulation device. Controlling the pumping light source based on the second power monitor and the input signal light and the output signal light of each band acquired by the second power monitor so that the average gains of the respective bands match. And an average gain constant control unit for outputting a signal for performing the operation.
  • the processing of the amplifying medium can be performed in a short time.
  • To output the gain deviation caused by local fluctuation of the ion distribution in the wavelength region at the initial level for each minute unit of length in the longitudinal direction as a simulation result, including the gain deviation other than around the signal wave There is an advantage that can be.
  • the initial level of the amplification medium in the amplification medium is determined based on the high-precision simulation result obtained from the simulation execution unit of the amplification medium performance simulation apparatus of the present invention in a short time.
  • the excitation light source can be controlled by the excitation light source control unit and the gain equalizer can be designed so that the gain deviation due to local ion distribution fluctuation in the wavelength region is compensated. There is an advantage that control stability can be dramatically increased.
  • the amplification characteristics can be stabilized in response to a large change in wavelength arrangement and wavelength number.
  • FIG. 1 is a block diagram showing an amplification medium performance simulation apparatus according to the first embodiment of the present invention.
  • FIGS. 2 and 3 are diagrams for explaining the arithmetic processing in the device 1 according to the present embodiment.
  • FIG. 4 shows an amplification medium performance simulation apparatus according to the first embodiment of the present invention. 4 is a flowchart for explaining the operation in the present embodiment.
  • FIGS. 5 to 7 are diagrams comparing the simulation results of the amplification medium performance simulation apparatus according to the first embodiment with the measured values obtained by experiments.
  • FIG. 8 is a block diagram showing an optical amplifier according to the second embodiment of the present invention.
  • FIG. 9 is a diagram for explaining gain equalization characteristics by a gain equalizer provided at a stage subsequent to E DFA as shown in FIG.
  • FIG. 10 is a block diagram showing an optical amplifier according to the third embodiment of the present invention.
  • FIG. 11 is a block diagram showing a modification of the third embodiment.
  • FIG. 12 is a flowchart for explaining the operation of the optical amplifier according to the third embodiment.
  • FIGS. 13 to 18 are diagrams for explaining the operation and effect of the optical amplifier according to the third embodiment when gain-constant control is superimposed with gain fluctuation correction by SHB.
  • FIG. 19 is a block diagram showing an optical amplifier according to the fourth embodiment of the present invention.
  • FIG. 20 is a block diagram showing an optical amplifier according to a fifth embodiment of the present invention.
  • FIG. 21 is a flowchart for explaining the operation of the optical amplifier according to the fifth embodiment of the present invention.
  • FIGS. 22 and 23 are diagrams for explaining the operation effect of the optical amplifier according to the fifth embodiment of the present invention.
  • FIG. 24 is a diagram for describing an example in which the wavelength characteristic (gain spectrum) is approximated and grasped according to the value of the population inversion ratio using the entire amplification band of the EDFA as one unit.
  • FIG. 25 is a block diagram showing a configuration example of an optical repeater used in a conventional optical network system in which it is not assumed that the wavelength arrangement and the number of wavelengths change significantly.
  • FIG. 26 is a diagram for explaining an example in which the output power of the optical repeater is kept constant by adjusting the loss amount of the variable optical attenuator shown in FIG.
  • FIG. 27 is a diagram showing gain deviation characteristics of the EDFA by SHB. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing an amplification medium performance simulation apparatus 1 according to the first embodiment of the present invention.
  • the amplification medium performance simulation apparatus 1 shown in FIG. 1 simulates the performance of an amplification medium that amplifies signal light.
  • EDF A can be used as an amplification medium on which a simulation is performed. In the following, a case where EDF A is used as an amplification medium will be described, but this does not preclude the use of any other amplification medium.
  • the gain deviation characteristic of the EDFA caused by the SHB described above is simulated. You can do it.
  • the principle of calculating the gain deviation characteristic of EDFA generated by SHB in the amplification medium performance simulation device 1 will be described.
  • the effect of uneven spread at the wavelength level in the gain-saturated state in the EDFA is particularly strong at the signal light wavelength and the 150-nm band.
  • the change amount of the population inversion ratio is calculated by paying attention to the influence on the band where the non-uniform spread is particularly strong.
  • the gain fluctuation that occurs around the board is called the main hole, and the gain fluctuation that occurs near 150 nm is called the second hole.
  • FIG. 2 and FIG. 3 are diagrams for explaining arithmetic processing in the device 1 according to the present embodiment.
  • the gain variation due to SHB at a certain wavelength is caused by a change in the number of Er 3 + ions at the starting level of the transition corresponding to the optical wavelength, that is, a change in the population inversion ratio from the average value.
  • Equation (2) the propagation equation of EDF 50 is as shown in equation (2).
  • the population inversion ratio 11 is defined as a function value n (z) corresponding to the longitudinal coordinate z of the EDF 50
  • the value of ⁇ n S HB is defined as the longitudinal coordinate of the EDF 50. It is expressed as a function of the signal light wavelength; I together with z.
  • Equation (2) g ( ⁇ ) is a gain coefficient at EDF 50, a
  • the above equation (3) has a configuration in which Gaussian functions representing changes in the population inversion rate corresponding to the main hole and the second hole are added.
  • the change of the population inversion rate corresponding to the main hole is caused by a single signal centered at the signal light wavelength (or the saturated signal wavelength). It can be expressed as the Gaussian function G1, and the change in the population inversion rate corresponding to the second hole can be expressed by adding the two Gaussian functions G2 and G3 centered on the wavelength in the 1530 nm band.
  • the first term represents the main hole and the second term represents the second hole.
  • is the signal light wavelength of channel i
  • L j is the center wavelength of the Gaussian function of the second hole
  • (z) is the signal power of channel i propagating at the position of coordinate z
  • tal (z) is the total power of the signal light propagating at the position of the coordinate Z
  • BWi and BWj are the full width at half maximum of each Gaussian An function.
  • C ( ⁇ i 5 (z), P total (z)) is a depth function that determines the depth of the main hole formed by the signal light of channel i
  • Dj Ptotal
  • n (z)) is a depth function that determines the depth of the second hole, and the depth increases with the increase in the total power of the signal light propagating at the position of the coordinate z.
  • a function can be used that saturates at a certain value or more.
  • the small change in the optical power calculated as described above may be used as the signal light power P ; ( ⁇ z) propagating at the position ⁇ z in addition to the input signal light power ⁇ ⁇ ; (0). it can.
  • the optical power after amplification by the EDF 50 can be obtained for each signal light wavelength by the arithmetic processing of the equations (2) and (3), the input signal light power and the signal light calculated as described above are obtained. From the optical power for each wavelength, The gain deviation gain characteristic can be calculated for each signal light wavelength.
  • the amplification medium performance simulation apparatus 1 includes an input interface (input IF) 10 including a keyboard, a storage unit 20 including a hard disk or a memory, an arithmetic processing unit 30 including a CPU (Central Processing Unit) and the like.
  • An output interface 40 including a display or a printer is provided.
  • the storage unit 20 stores a basic data holding unit 21 for storing basic data on the EDFA to be evaluated, and an input signal as information regarding an input signal light to be input to the EDFA to be evaluated.
  • An input signal light information holding unit 22 for holding the light wavelength value and the light power value is provided.
  • the basic data of the EDFA input from the input interface 10 and stored in the basic data storage unit 21 includes, for example, the EDFA to be used along with the fiber length L and the fiber diameter of the EDFA to be evaluated.
  • the coefficients, constants, or publicly known function information used in the arithmetic processing in the arithmetic processing unit 30 specified by the above can be included.
  • the gain coefficient g ( ⁇ ), absorption coefficient ⁇ ( ⁇ ), loss 1 (), population inversion ratio ⁇ ( ⁇ ), and second hole used in the arithmetic processing in the above equations (2) to (5) Center wavelength in the Gaussian function formula for the corresponding population inversion; I ? FWHM BWi of each Gaussian function, BWj, each engagement speed of a function of depth Gaussian function C l ⁇ c 4, d 1 d 2j ⁇ -, and d 3, j, E DF in the basic data storage unit 21 of the above It can be stored as 50 basic data.
  • the input signal light information held in the input signal light information holding unit 22 includes the wavelength data of the wavelength-multiplexed signal light, the power of the signal light of each wavelength, and the wavelength-multiplexed input light. Data on the total power of the signal light is stored.
  • the arithmetic processing unit 30 executes a program stored in the storage unit 20 and outputs an execution result to the output interface 40, and has a function as a simulation execution unit 31. That is, the function as the simulation execution unit 31 can be realized by expanding a program stored in a storage medium (not shown) into the storage unit 20 and executing the program in the arithmetic processing unit 30.
  • the simulation execution unit 31 includes an inversion distribution ratio change amount calculation unit 31-1, a signal light power change calculation unit 31-2, a signal light power calculation unit 31-3, an inversion before correction distribution ratio calculation unit 31-4, and an output. It has a processing unit 31-5.
  • the inversion distribution ratio change amount calculation unit 31-1 is configured to include the inversion distribution ratio calculated by the before-correction inversion distribution ratio calculation unit 31-4 described later, the basic data storage unit 21, and the input signal light information storage unit. Using the contents held at 22, the change amount of the population inversion ratio that can be caused by the change of the ion distribution at the initial level of the EDF 50 due to the input of the input signal light is calculated.
  • the population inversion rate change amount calculation unit 31-1 calculates the change amount of the population inversion rate by using at least one wavelength function having a peak or valley shape having a center wavelength and a width. Is calculated as a function of the wavelength of the input signal light and the longitudinal coordinates of the EDF 50.
  • the signal light power change calculator 3 1-2 includes the population inversion rate change amount calculator 3 1-
  • the signal light power change calculating section 31-2 uses the contents held in the basic data holding section 21 and the input signal light information holding section 22 to obtain the above equation (2). By acquiring the coefficient data or the constant data, it is possible to calculate the optical power change of the signal light propagating at the position of the longitudinal coordinate z of the EDF 50.
  • the above formulas (3) to (3) are used by using the contents held in the basic data holding unit 21 and the input signal light information holding unit 22.
  • the coefficient data or constant data in (5) is obtained so that the change ⁇ n SHB of the population inversion ratio used in the calculation in the signal light power change calculator 31-2 described above can be calculated. Has become.
  • the population inversion rate change amount calculation unit 31-1 calculates the change in the population inversion rate as the first function centered on the first wavelength band (signal light wavelength band) in the gain-saturated state.
  • Equation (3) as a second function consisting of a first function operation unit 311 that calculates the first term of) and a function centered on the second wavelength band (1550 nm band) unique to EDFA
  • a second function operation part 3 1 2 for calculating the second term of the first function operation part, and an addition part 3 13 for adding the calculation results from the first function operation part 3 11 1 and the second function operation part 3 12 It is configured.
  • the first function calculated by the first function calculator 3 1 1 is constituted by the sum of Gaussian functions given according to the wavelength of the input signal light; I i, and the second function calculator
  • the second function calculated in 312 is composed of the sum of a plurality (j in equation (3)) of Gaussian functions.
  • the Gaussian function that is given according to the wavelength of the input signal light and forms the first function is such that the center wavelength is defined as the wavelength of the input signal light; I; and the full width at half maximum BWi is determined as a value corresponding to the EDFA.
  • Each Gaussian function forming the two functions has a center wavelength as a second wavelength band (1530 nm band) unique to the amplification medium, a full width at half maximum BWj determined as a value corresponding to the EDFA, and a first function.
  • the basic data holding unit 21 holds the full width at half maximum BWi, BWj of each Gaussian function in the second function.
  • each Gaussian function forming the first function increases as the total power of the input signal light increases, and is defined by a depth function C (see Equation (4)) that saturates at a certain value or more.
  • the depth of each Gaussian function that forms the second function is also defined by the depth function D (see Equation (5)), which increases with the total power of the input signal light and saturates at a certain value or more.
  • the depth function for each Gaussian function given according to the wavelength of the input signal light which is the first function, is expressed by the wavelength ⁇ i of the input signal light and the input
  • each Gaussian function forming the second function propagates the wavelength of the second wavelength band; L j and the position of the longitudinal coordinate Z of the EDF A, as shown in the above equation (5).
  • the total power P total (z) of the signal light and the population inversion ratio n (z) of the EDFA are defined as a function.
  • the signal light power calculator 31-3 calculates the power of the input signal light held by the input signal light information holding unit 22 by adding the small propagation range calculated by the signal light power change calculator 31-2.
  • the change of the optical power in the EDFA is sequentially added up to the signal light output end from the signal light input end of the EDFA, so that the signal light corresponding to the position of the longitudinal coordinate z of the signal light propagating in the EDFA Calculates the power including the fluctuation of the ion distribution at the initial level in the EDFA due to the input of the input signal light. It is.
  • the pre-correction inversion distribution ratio calculation unit 31-4 calculates the inversion distribution ratio n (z) before correction using the fluctuation of the ion distribution of the initial level in the EDFA, which is used when calculating the optical power change. It is calculated as a rate. Specifically, based on the signal light power corresponding to the position of the longitudinal coordinate of the signal light propagating through the EDF A calculated by the signal light power calculation unit 31-3 described above, the basic data holding is performed. This is calculated by using the equation of n (z) held in the unit 21.
  • the inversion distribution ratio n (z) calculated in the inversion distribution ratio calculator before correction 31-4 and the inversion distribution ratio change amount calculator 31-1 are calculated.
  • the above equation (2) is used. Calculate the minute change d P ( ⁇ ) / ⁇ ⁇ of the optical power for each minute unit of length in the longitudinal direction of the EDF ⁇ .
  • the output processing unit 31-5 uses the calculation result of the signal light power output from the signal light output end in the EDF ⁇ calculated by the signal light power calculation unit 31-3 as a simulation result of the EDFA performance. Output processing is performed.
  • the operation of the amplifying medium performance simulation apparatus 1 according to the first embodiment of the present invention having the above configuration will be described below with reference to the flowchart shown in FIG.
  • the basic data of DFA and the data related to the input signal light are acquired (step Sl), and the basic data of the EDFA are stored in the basic data holding unit 21 and input.
  • the signal light data is held in the input signal light information holding unit 22.
  • a change ⁇ n S HB in the population inversion rate which can be caused by a change in the ion distribution at the initial level of A, is calculated.
  • the optical power change calculation step based on the propagation equation of the EDF ⁇ based on the corrected population inversion rate corrected based on the variation of the population inversion rate calculated in the population inversion rate change amount calculation step, Then, the change of the optical power of the signal light propagating from the signal light input end of the EDF A to the signal light propagating through the amplification medium is calculated in units of a minute propagation range from the signal light input end to the signal light output end.
  • the position of the minute portion ⁇ ⁇ at the signal light input end of the EDF 50 is propagated by using the equation (2).
  • the minute change in the optical power at that time is calculated (above, step S2, step S3).
  • the change in the optical power in the minute propagation range calculated in the optical power change calculating step is calculated based on the power value of the input signal light, and the signal light output terminal starting from the signal light input terminal.
  • the output signal light power output from within ⁇ DF ⁇ is calculated including the fluctuation of the ion distribution of the initial level in the amplification medium due to the input of the input signal light.
  • the small change of the light power calculated as described above is added to the input signal light power (0), and the signal light power P i propagating at the position ⁇ ⁇ is added. ( ⁇ z) (Step S4).
  • the output processing unit 31-5 outputs the signal from this output end.
  • the optical power at the point of time is output as a simulation result of the output characteristics of the EDFA (step S6).
  • the simulation execution unit 31 inputs the simulation result from the relationship between the signal light power at the time of input to the EDF A and the signal light power at the time of output of the EDF A for each signal light wavelength. Output as the dependence of the gain deviation on the wavelength spectrum according to the signal light power, output as the dependence of the gain deviation on the wavelength spectrum according to the saturated signal wavelength, and control of the constant gain control. It can also be output as the dependence of the gain deviation on the wavelength spectrum according to the target gain value.
  • 5 to 7 are diagrams comparing the simulation results (calculated values) obtained by executing the simulation in the simulation execution unit 31 as described above with the measured values (experimental values) obtained by experiments. is there.
  • FIG. 5 shows the dependence of the gain deviation on the wavelength spectrum according to the input signal light power.
  • “Hata” indicates the input signal light power is 2.3 dBm
  • “Mouth” indicates the input signal light power is 0 dBm
  • “ ⁇ ” indicates the input signal light power is 1 dBm.
  • Fig. 6 shows the dependence of the gain deviation on the wavelength spectrum according to the saturation signal wavelength.
  • indicates the saturation signal wavelength of 1529.7 nm
  • indicates the saturation signal wavelength.
  • "X” is a saturated signal wavelength of 156.7 nm
  • "picture” is a saturated signal wavelength of 154.7 nm
  • "mouth” is a saturated signal wavelength of 1544.7 nm
  • “me” is The experimental values are shown when the saturation signal wavelength is set to 1549.7 nm, and the solid line is the input signal light power corresponding to each experimental value. The simulation result is shown.
  • FIG. 7 shows the dependence of the gain deviation on the wavelength spectrum according to the target gain value of the constant gain control.
  • indicates a constant gain control target of 20 dB
  • Mouth indicates a constant gain control target of 25 dB
  • indicates a constant gain control target of 29.5 dB.
  • the experimental values are shown for the case of, and the solid line shows the simulation results when the input signal light power corresponds to each experimental value.
  • the simulation execution unit 31 introduces a simple approximation formula, so that the processing of the amplifying medium can be performed in a short time.
  • the gain deviation caused by the fluctuation of the ion distribution at the initial level for each minute unit of the length in the longitudinal direction can be output as a simulation result including the gain deviation other than around the signal wave.
  • FIG. 8 is a block diagram showing an optical amplifier 60 according to the second embodiment of the present invention.
  • reference numeral 61 denotes an excitation light source that outputs excitation light
  • 62 denotes an excitation light source from the excitation light source 61.
  • An EDFA 63 as a signal light amplifying medium that is amplified by the pump light and amplifies the input signal light is a gain equalizer that equalizes the gain of the output signal light output from the EDFA 62.
  • FIG. 9 is a diagram for explaining the gain equalization characteristics of the gain equalizer 63 provided at the subsequent stage of the EDFA 62 as shown in FIG. 8, in which the dotted line indicates the gain medium performance according to the first embodiment.
  • the gain equalization characteristics of the gain equalizer designed based on the gain deviation characteristics obtained by the simulation device 1.
  • the solid line is the gain equalizer when the gain characteristics of the EDFA are assumed to be a single band approximation. This shows the gain equalization characteristics of FIG.
  • the gain equalizer designed based on the gain deviation characteristics obtained by the amplification medium performance simulation device 1 can compensate for the gain deviation especially around 153 Onm. .
  • the gain equalization characteristics of the gain equalizer 63 are processed by the simulation execution unit 31 of the amplification medium simulation apparatus 1 in a short time. Since the design can be performed based on the high-precision simulation results obtained in the above, there is an advantage that the fluctuation of the ion distribution of the initial level in the EDF A 62 due to the input of the input signal light can be compensated.
  • the amplification characteristics can be stabilized in response to a large change in wavelength arrangement and wavelength number.
  • FIG. 10 is a block diagram showing an optical amplifier 7OA according to the third embodiment of the present invention.
  • reference numeral 71 denotes an excitation light source that outputs excitation light
  • 72 denotes an excitation light source.
  • EDFA as a signal light amplifying medium that is amplified by pumping light from the amplifier and amplifies the input signal light
  • 73 is a pumping light source controller that controls the pumping light source 71
  • 74 is a part of the signal light input to the EDFA 72.
  • a branching power plastic, 75 is a branching power plastic that branches a part of the output signal light output from the EDFA 72.
  • the pumping light source control unit 73 controls the pumping light source 71 so as to compensate for a gain deviation due to a change in the ion distribution of the starting level in the EDFA 72 due to the input of the input signal light.
  • Photodiode (PD) 73 a, start It consists of an analyzer (SAU) 73b, a constant gain control unit 73c and a correction unit 73d.
  • the photodiode 73 a monitors the power of the signal light branched by the branching power blur 74, and the spectrum analyzer 73 b controls the power of the output signal light branched by the branch coupler 75. ⁇ It monitors the arrangement information of the signal wavelength.
  • the photodiode 73 a and the spectrum analyzer 73 b function as a first power monitor for monitoring the power of the input signal light and the output signal light, and the spectrum analyzer 73 b serves as an amplifier. It also has a function as a wavelength arrangement information acquisition unit that acquires wavelength arrangement information of signal light propagating through the EDFA 72 as a medium.
  • the constant gain control section 73c has a constant gain based on the power of the input / output signal light monitored by the photodiode 73a as the first part monitor and the spectrum analyzer 73b.
  • a signal for controlling the excitation light source 71 is output as follows.
  • the correction unit 73 d uses a gain constant control unit to reduce the gain deviation in the wavelength band due to spectral hole burning based on the wavelength arrangement information acquired by the spectrum analyzer 73 b. This is to correct the control amount for the excitation light source 71 in the step 7 3 c.
  • a table 7 for holding pumping light control information for reducing a gain deviation is obtained from the result of the simulation performed in the amplification medium performance simulation apparatus 1 in the first embodiment.
  • the signal constant wavelength control information from the constant gain control unit 73 c, the information on the power ratio (gain) between the input signal light power and the output signal light, and the output power as a key are used in the table 73.
  • the search unit 73 d-2 is configured to retrieve pump light control information for reducing the gain deviation according to the signal light wavelength arrangement by searching d-1.
  • the pumping light control information retrieved by the retrieval unit 73 d-2 is given to the constant gain control unit 73 c so that the constant gain control unit 73 c
  • the control amount for the excitation light source 71 at 73c can be corrected.
  • the constant gain control unit 73c of the pump light source control unit 73 acquires the wavelength arrangement information of the signal light from the photodiode 73a and the spectrum analyzer 73b together with the input signal light power and the output signal light power (In step Al), the gain state of the EDFA 72 is calculated from the obtained data, and the target value of the output power is determined so that the gain is predetermined by the gain constant control.
  • the correction unit 73d receives the signal arrangement information, the gain information, and the monitor value of the output power from the constant gain control unit 73c, and performs the above-described table search to obtain the gain by the SHB from these values. It is determined whether or not fluctuation correction is necessary. If SHB correction is required, a correction amount to be added to the target value of the output power is determined from the signal arrangement information, gain, and output power (step A2).
  • the constant gain control unit 73c receives the correction amount for the pump light control determined by the correction unit 73d, determines the target output power of the pump light control, and A signal for controlling the intensity and the like of the pump light supplied from the pump light source 71 is output so that the output signal light power monitored at 75 becomes the target value.
  • the correction unit 73d corrects the pumping light control amount for compensating the gain fluctuation due to the SHB, the output power of the EDFA 72 increases or decreases from the initially desired value. Control the loss so that the desired output power is obtained (Step A3).
  • FIGS. 13 to 18 are diagrams for explaining the operation and effect of the optical amplifier 7 OA according to the third embodiment when the gain fluctuation correction by the SHB is superimposed on the optical amplifier gain constant control as described above. .
  • the optical amplification in pump power P A GC When the amplifier is driven by the constant gain control, the gain deviation of the AG is generated by the SHB.
  • the pump power corresponds to the correction amount in the correction unit 73d for the pump power P AGC .
  • the gain deviation AG ′ can be controlled so that AG> AG 7 by adding the change amount ⁇ PSHB of the pump power and changing the population inversion ratio of the optical amplifier 7 OA.
  • the gain equalizer can have a loss characteristic as shown in FIG. 13
  • the gain characteristic when a gain equalizer is inserted is A (with GEQ)
  • the gain characteristic when no gain equalizer is inserted is B (without GEQ).
  • the pump light source 71 supplies pump light having pump power of, for example, 53 mW forward pump light and 32 mW backward pump light to the EDFA 72.
  • FIG. 15 shows the gain-wavelength characteristic of the signal light in each wavelength arrangement when only the constant-gain control by the above-mentioned constant-gain control unit 73c is performed on the EDFA 72 that propagates the signal light in such a wavelength arrangement.
  • the wavelength arrangement of the signal light wavelength and the optical output power By controlling the pump light source 71 with the control amount corrected by the correction amount according to the above, the backward pump power from the pump light source 71 is reduced from 32 mW to 2 lmW. By doing so, for example, as shown in FIG. 16 (see the point “ ⁇ ” in FIG. 16), the average gain of the signal light is reduced, but the gain deviation is largely compensated. , About 0.09 dB. Note that the reduced average gain of the EDFA 72 is complemented by reducing the loss amount of the variable optical attenuator 76 (see the point “ ⁇ ” in FIG. 16).
  • a wavelength multiplexed signal with a wavelength allocation of 4 channels on the short wavelength side (1529.6 nm-1531.9 nm) and 1 channel on the long wavelength side (1556.6 nm) It is assumed that, when light is input, pumping light is controlled by constant gain control in constant gain control section 73c so that the average gain is constant.
  • the gain deviation was 0.03 dB between each channel.
  • the gain deviation is 0.5 dB, It can be seen that it is difficult to reduce the gain deviation sufficiently with constant gain control.
  • the correction unit 73d controls the pump light source 71 with a control amount corrected by the correction amount according to the wavelength arrangement of the signal light wavelength and the optical output power, so that the backward pump power from the excitation light source 71 is reduced by OmW. To 15 mW. In this way, for example, as shown by E 'in FIG. 18 (see the “fixed” point in FIG. 18), the average gain of the signal light increases, but the gain deviation greatly increases. By compensation, it can be reduced to about 0.11 dB.
  • the increased average gain of the EDFA 72 is complemented by increasing the loss of the variable optical attenuator 76 (see the point “ ⁇ ” in FIG. 18).
  • the gain deviation was reduced by correcting the backward pump power.
  • the pump power to be adjusted may be the forward pump power or the forward and backward pump powers. .
  • the pumping light source control unit 73 shortens the simulation execution unit 31 of the amplifying medium performance simulation device 1 of the first embodiment. Since the excitation light source 71 can be controlled based on the high-precision simulation results obtained by processing the time so as to compensate for the gain deviation due to the fluctuation of the ion distribution of the initial level in the EDF A 72, There is an advantage that the stability of the constant gain control can be dramatically increased. In particular, in an optical amplifier that is a component of a node in a photonic network in which the wavelength arrangement of signal light can dynamically fluctuate, the amplification characteristics can be stabilized in response to a large change in wavelength arrangement and wavelength number. There are advantages that can be achieved.
  • the SAU 73b is arranged on the input side of the EDFA 72, and the signal arrangement information is acquired on the input side.
  • the power of the output signal light to be output may be monitored by the photodiode 73a.
  • FIG. 19 is a block diagram illustrating an optical amplifier 80 according to the fourth embodiment of the present invention.
  • the optical amplifier 80 illustrated in FIG. 19 includes an excitation light source 71, an EDFA 72, a branching power plug 74, 75, and a VOA 76.
  • the third embodiment is similar to the third embodiment described above, but differs from the third embodiment in that a WDM (Wavelength Division Multiplexing) coupler 81 and an excitation light source controller 82 are provided. It is configured.
  • WDM Widelength Division Multiplexing
  • the WDM coupler 81 separates the control signal light having the wavelength assigned as the control signal and the signal light from the wavelength multiplexed light input to the optical amplifier 80. Is output to the excitation light source controller 83, The signal light is output to the branch coupler 7.
  • the pumping light source control unit 82 controls the pumping light source 71, and includes a photodiode (PD) 82a, 82b, a control signal analyzing unit 82c, and a constant gain control unit 73c. And a correction unit 73d.
  • PD photodiode
  • the photodiode 82a monitors the power of the signal light branched by the branch coupler 74
  • the photodiode 82b monitors the power of the output signal light branched by the branch coupler 75. Things. Therefore, the photodiodes 82a and 82b function as a first power monitor for monitoring the power of the input signal light and the output signal light.
  • control signal analyzer 8 2 c converts the control signal light transmitted together with the signal light into W
  • the light is received by the photodiode via the DM coupler 81, and the received light signal is analyzed to extract wavelength allocation information as control information.
  • the constant gain control section 73c has the same function as that of the third embodiment described above.
  • the input / output signals monitored by the photodiodes 82a and 82b as the first power monitors are provided. It outputs a signal for controlling the pump light source 71 so that the gain becomes constant from the power of light.
  • the correcting unit 73 d also uses the wavelength allocation information obtained by the control signal analyzing unit 82 c to determine the wavelength by spectral hole burning. In order to reduce the gain deviation in the band, the control amount for the pumping light source 71 in the constant gain control unit 73c is corrected, and a table 73d-1 and a search unit 73d-2 are provided. .
  • FIG. 8 With respect to the operation of the optical amplifier 80 according to the fourth embodiment having the above configuration, FIG. 8
  • the control signal analysis unit 82 c of the pump light source control unit 82 acquires the wavelength arrangement information of the signal light from the control signal light transmitted together with the signal light.
  • the monitor information of the input / output optical module is obtained from the photodiodes 82a and 82b ( (See step A1 in Figure 12).
  • the constant gain control unit 73c performs constant gain control based on the monitoring result of the input / output optical power from the photodiodes 82a and 82b (step A2).
  • the constant gain control unit for the pump light source 71 is used.
  • the control amount from 73 c is corrected to compensate for the gain deviation due to SHB.
  • the increased or decreased average gain of the EDFA 72 is complemented by adjusting the loss amount of the variable optical attenuator 76.
  • the excitation light source control unit 82 uses the EDFA 72 based on the high-precision simulation results obtained in a short time from the simulation execution unit 31 of the amplification medium performance simulation device 1 in the first embodiment described above. Since the pumping light source 71 can be controlled so as to compensate for the gain deviation due to the fluctuation of the ion distribution at the initial level, there is an advantage that the stability of the constant gain control can be drastically increased. In particular, in an optical amplifier that is a component of a node in a photonic network in which the wavelength arrangement of signal light can dynamically fluctuate, the amplification characteristics can be stabilized in response to a large change in wavelength arrangement and wavelength number. There are advantages that can be achieved.
  • the wavelength allocation information acquisition unit can be configured without using a spectrum analyzer, the cost for the device configuration can be reduced as compared with the optical amplifier 80 according to the third embodiment. it can.
  • FIG. 20 is a block diagram illustrating an optical amplifier 90 according to a fifth embodiment of the present invention.
  • the optical amplifier 90 illustrated in FIG. 20 includes an excitation light source 71, an EDFA 72, and a branching power plug 7. 4, 75 and VOA 76 are the same as those in the third embodiment described above, but include an excitation light source controller 91 different from that in the third embodiment. It is configured.
  • the excitation light source control unit 91 includes the band division filters 91a and 91b, the photodiodes 91a-1 and 91a-2 and 91b-1 and 91b-2 and the constant average gain control unit 91c. It is configured with it.
  • the band division filters 91a and 91b are divided into bands for the power splitters of the signal light on the input side of the EDFA72 and the signal light on the output side of the EDF A72 from the splitters 74 and 75, respectively.
  • a plurality (two in the case of the fifth embodiment) of signal light is used.
  • band division filters 91a and 91b based on the simulation result of the amplifying medium performance simulation apparatus 1 in the first embodiment described above, assuming the gain deviation due to the SHB, the average gain of each band is assumed.
  • the signal light is divided into bands in which is almost equal and stable.
  • the wavelength band can be divided into two as shown in FIGS.
  • the simulation results as shown in FIGS. 5 to 7 are obtained in the amplification medium simulation apparatus 1. From this simulation result, it can be seen that the influence of SHB is large especially for EDF A72 around 1530 nm.
  • Each of the photodiodes 91a-1 and 91a-2 monitors the signal light power of the signal light whose band is divided into two by the band division filter 91a.
  • each of the photodiodes 91b-1 and 9lb-2 monitors the signal light power of the signal light whose band is divided into two by the band division filter 91b.
  • the photodiodes 91a-1 and 9lb-1 receive the signal light divided into the first band described above
  • the photodiodes 91a-2 and 91b_2 receive the signal light divided into the second band. The received signal light is received.
  • the simulation results obtained by the amplifying medium performance simulation device 1 are obtained by the band division filters 91a and 91b and the photodiodes 91a-1, 91a-2, 91b-1 and 91b-2. It functions as a second power monitor that acquires the powers of the input signal light and the output signal light for each of a plurality of bands divided based on the power.
  • the constant average gain control unit 91c calculates the power of the input signal light and the output signal light of each band obtained by the photodiodes 91a_1, 91a-2, 91b-1 and 91b-2. Originally, a signal for controlling the pump light source 71 is output so that the average gains of the respective bands match.
  • the amplification band of the EDFA 72 is divided into a plurality of bands according to the strength of the SHB by the wavelength division filters 91a and 91b. By adjusting the excitation power so that the average gain becomes equal, the flatness of the gain can be maintained.
  • the signal light on the input side of the EDF A 72 is split by the splitter 74 into a first band and a second band by the band splitting filter 91a, and received by the photodiodes 91a-1 and 91a-2, respectively. I do.
  • the signal light on the output side of the EDFA 72 is also split by the splitting power bra 75 into the first band and the second band by the band splitting filter 91b, and each is split by the photodiodes 91b-1 and 91b_2. Receive light.
  • the constant average gain control section 91c receives the light receiving signal corresponding to the input signal light power from the photodiodes 91a-1 and 91a-2 and the light receiving signal from the photodiodes 91b-1 and 91b-2.
  • Step B1 First, conventional gain constant control is performed for the entire band (step B2).
  • the average gain control unit 91 c compares the average gain G of the first band and the calculated average gain G 2 of the second band, depending on the magnitude comparison result, the excitation light source 71 A control signal for increasing or decreasing the excitation power is output.
  • the average gain of the first band is greater than the average gain G 2 of the second band (G!> G 2) time reduces the pumping power as inversion rate is low, but G 2 is less than (Gi ⁇ G 2 ) At this time, a control signal is output to the pump light source 71 so as to increase the pump power so that the population inversion ratio becomes high (step B3).
  • FIGS. 22 and 23 show an example of compensating the gain deviation due to SHB in the optical amplifier 90 according to the fifth embodiment by controlling the pumping light source 71 by the constant average gain control section 91c.
  • Figure 22 shows the average gain when a gain deviation due to SHB occurs when one channel is input to the first band BND # 1 on the short wavelength side and eight channels are input to the second band BND # 2 on the long wavelength side. It shows the average gain of both bands calculated by the constant control section 91c. As shown in FIG. 22, the average gain 0 1 in the first band BND # 1 is 23.5 dB, the average gain G 2 in the second band BND # 2 is 23 dB, and the gain between the bands is A deviation of 0.5 dB is obtained.
  • the pumping light source control unit 91 controls the amplification medium in the first embodiment. Based on the high-precision simulation results obtained in a short time from the simulation execution unit 31 of the performance simulation device 1, the excitation light source 71 is adjusted so that the gain deviation due to the fluctuation of the ion distribution of the initial level in the EDFA 72 is compensated. Since control is possible, there is an advantage that the stability of constant gain control can be dramatically increased.
  • the amplification characteristics can be stabilized in response to a large change in wavelength arrangement and wavelength number.
  • the cost for the device configuration can be reduced without using a spectrum analyzer.
  • gain deviation can be corrected by SHB.
  • BW is defined. Where BWg is the half-width at half maximum of the Gaussian function, BW! Is the half-width at half maximum of the Lorentzian function, and ⁇ 0 is the center wavelength. It is.
  • a simulation is performed on the gain deviation characteristic in the EDFA.
  • the present invention is not limited to this, and the gain deviation due to the SHB for an amplification medium other than the EDFA is also described.
  • a simulation can be performed by executing an operation using at least one or more functions (for example, a Gaussian function) in the simulation execution unit 31.
  • the amplifying medium performance simulation apparatus of the present invention is useful for simulating the performance of the amplifying medium applied when constructing a photonic network. Suitable for performing simulations.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

簡略な近似計算式を導入して短時間で且つ信号波周辺以外の利得変動をモデル化できるようにした、増幅媒体性能シミュレーション装置である。 増幅媒体についての基本データを保持する基本データ保持部21と、シミュレーションの対象となる増幅媒体に入力すべき入力信号光に関する情報として、入力信号光の波長値および光パワー値について保持する入力信号光情報保持部22と、基本データ保持部21および入力信号光情報保持部22にて保持された内容を用いて、入力信号光の入力による増幅媒体における始準位のイオン分布の変動分を含めて、増幅媒体中から出力される出力信号光パワーを信号光波長ごとに近似算出して、この算出結果を該増幅媒体の性能のシミュレーション結果として出力するシミュレーション実行部31とをそなえて構成する。

Description

明 細 書 増幅媒体性能シミュレーションの装置および方法並びに光増幅器 技術分野
本発明は、 増幅媒体性能シミュレーションの装置および方法並びに光増幅器 に関するものである。
近年のインターネットの急速な普及に伴うデータ通信トラフィックの急増を 踏まえ、 ネットワークの高速 ·大容量化のための技術である波長多重伝送技術 や、 この波長多重伝送技術によって伝送される各々の波長を一つの通信パスに 見立てたネットワークであるフォトニックネットワークに関する技術が注目さ れている。
本発明は、 フォトニックネットワークを構築する際に適用される増幅媒体の 性能のシミュレーションを行なう際に用いて好適の、 増幅媒体性能シミュレー シヨンの装置おょぴ方法に関し、 更にこの装置で得られたシミュレーション結 果をもとに構成された光増幅器に関するものである。 背景技術
近年、 自由度の高い光ネットワーク (フォ トニックネットワーク) 実現への 期待が高まる中、 ネットワークを構成するノードでは、 通信パスに見立てられ た波長数が大幅に変化することに対応することが求められている。 特に、 ノー ドの構成要素となる光増幅器においては、 大幅な波長配置 ·波長数変化に対応 して、 増幅特性の安定化を図ることが求められている。
波長配置'波長数を大幅に変化することが想定されない従来の光ネットヮー クシステムに用いられる増幅媒体、 例えば E D F A (Erbium Doped Fiber Amplifier) の波長特性は、単一バンド近似によって反転分布率のみに依存する と仮定できた (非特許文献 1参照)。即ち、 E D F Aの増幅帯域全域を一つの単 位として、 反転分布率の値に応じて波長特性 (利得スぺク トラム) を近似して 把握することができた。 具体的には、 図 24に示すように、 EDFAの増幅帯域 (図中入力信号光信 号の波長 1500 n m〜l 580 n m) の全域にわたる波長特性としての相対 利得係数分布のパターンを、反転分布率ごとに把握することができた。従って、 Cバンド (Conventional Band) での E D F Aの波長平坦性は、 反転分布率一 定とする利得一定制御と、 一定に制御された反転分布率に対応する相対利得係 数分布に応じた利得等化制御とを組み合わせることで実現していた。
図 25に、波長配置'波長数を大幅に変化することが想定されない従来の光ネ ットワークシステムに用いられる光中継器 100の構成例を示す。 この図 25 に示す光中継器 100は、 縦続接続された 2段の EDF A増幅部 101— 1, 101— 2の間に光減衰器 (VOA; Variable Optical Attenuator) 102を 挿入することによって構成されている。
また、 各々の ED F A増幅部 101— 1 , 101— 2は、 ともに、 分岐カプ ラ 101 a, 101 b, EDFAl O l c, フォトダイォード ( P D ; Photo Diode) 101 d, 101 eおよび制御回路 101 f をそなえて構成されてい る。 これにより、 各々の EDFA増幅部 101— 1, 101— 2においては、 フォトダイオード 101 d, 101 eで入出力パワーをモニタし、 制御回路 1 01 f における利得一定制御を受けて EDFA 101 cで増幅された光信号を 出力するようになっている。
また、 例えば図 26に示すように、 光中継器 100の入力パワーが第 1レべ ノレから第 2レベルに変化したときは、 各 EDFA増幅部 101— 1, 101— 2での利得を一定に保ちつつ、可変光減衰器 102の損失量を調整することで、 光中継器 100の出力パワーを一定とするようにしている。
このとき、 各 EDFA増幅部 101— 1, 101— 2の EDFAl O l cの 増幅特性を、 単一バンドで近似できる光ネットワークであると仮定すれば、 各 EDFA103 cの利得を一定に保持することから利得波長特性は常に一定と なり、 £0? 増幅部101—1, 101— 2の後段に損失特性が適当に設計 された利得等化器を設けることによって、 入力パワーによらず光中継器 100 の利得波長特性を平坦にすることができる。
つまり、従来の光中継器においては、波長配置'波長数を大幅に変化すること が想定されない光ネットワークシステムに適用することを想定していたため、
E D F A増幅部 1 0 1— 1, 1 0 1—2後段に配置される利得等化器は、 上述 のごとき増幅媒体の波長特性を単一パンド近似することを前提として設計され ていたのである。
しかしながら、近年要求されているような、波長配置'波長数が大幅に変化す る光ネットワークにおいては、 特に光波長が狭い帯域に集中する波長配置とな つた場合などでは、 波長領域における局所的な利得飽和現象のスぺク トラルホ 一ルバ一ユング ( S H B; Spectral-Hole Burning) の影響による利得偏差が無 視できなくなる。 この S H Bによる影響は、 光ネットワーク中において想定さ れる波長配置に従って異なってくるため、 装置設計にあたっては予め想定され る波長配置に応じた S H Bに起因する利得偏差について解析しておく必要があ る。
図 2 7は、 E D F Aについての S H Bによる利得偏差特性を示している。 1 5 4 0 n mの飽和信号 (E D F Aの利得が飽和する信号) を入力した飽和状態 の利得波長特性 Aと、 飽和信号が入力していない非飽和状態の利得波長特性 B とを比較すると、 飽和状態では、 飽和信号波長周辺おょぴ 1 5 3 0 n m周辺の 利得が減少して (特性 A, B間の利得差 C参照)、ホールを形成していることが 確認できる。
そして、 この現象は、 不均一拡がりを持った利得媒体の局所的な利得飽和現 象によって発生する。 従来の単一バンド近似では、 この局所的な利得波長特性 の変化は無視されている。
これに対し、 S H Bを考慮した E D F Aモデルとして、 不均一拡がりによつ て形成される準位間の吸収'発光過程およぴ飽和過程をそれぞれ独立に扱つた モデル (非特許文献 2参照) や、 単一バンド近似によって得られた利得波長特 性から別途測定結果から導出した S H Bによる利得変動量を加えるモデルが報 告されている (非特許文献 3参照)。
また、 本願発明に関連する技術として、 以下に示す特許文献 1および特許文 献 2に記載された技術もある。
しかしながら、 非特許文献 2に記載された技術では、 利得偏差の解析のため の計算式が非常に複雑であり、 処理に時間がかかるという課題を持つ。 また、 非特許文献 3に記載された技術では、 信号波長周辺についてしか考慮されてお らず 1 5 3 0 n m周辺の利得変動をモデル化できないという課題を持っている。 また、 増幅媒体の増幅特性を測定する手法としては、 上述のごとく、 数値計 算によって計算する手法のほか、 実際に構成された光増幅器から増幅特性を測 定する手法 (ハ一ドウエアシミュレ一ション) がある。 しかし、 ハードウェア シミュレーシヨンによっては、 光中継器の広い動作条件全てについて測定を行 なうのは時間や手間がかかるという課題もある。
本発明は、 このような課題に鑑み創案されたもので、 簡略な近似計算式を導 入することにより、 短時間で且つ信号波周辺以外の利得変動をモデル化できる ようにした、 増幅媒体性能シミュレ一ションの装置および方法並びに光増幅器 を提供することを目的とする。
非特許文献 1
C.R.Giles, et al" "Modeling Erbium Doped Fiber Amplifiers," IEEE J. of Lightwave TchnoL, pp.271-283, vol. 9, no.2, Feb, 1991.
非特許文献 2
E. Desurvire, "ERBIUM-DOPED FIBER AMPLIFIERS Principles and Applications," John Wiley & Sons, Inc., Chapter4, 1994
非特許文献 3
T. Aizawa, et al, "Effect of Spectral-Hole Burning on Multi Channel EDFA Gain Profile, "OFC'99, WGl, 1999
特許文献 1
特開 2 0 0 0— 2 6 0 1 7 8号公報
特許文献 2
特開 2 0 0 0— 2 6 1 0 7 9号公報 発明の開示
前記の目的を達成するために、 本発明の増幅媒体性能シミュレーション装置 は、 励起光源からの励起光により励起されて、 信号光を増幅する増幅媒体の性 能のシミュレーションを行なう増幅媒体性能シミュレーション装置であって、 増幅媒体についての基本データを保持する基本データ保持部と、 前記シミュレ ーシヨンの対象となる増幅媒体に入力すべき入力信号光に関する情報として、 前記入力信号光の波長値および光パヮ一値について保持する入力信号光情報保 持部と、 前記の基本データ保持部および入力信号光情報保持部にて保持された 内容を用いて、 前記入力信号光の入力による該増幅媒体における始準位のィォ ン分布の波長領域における局所的な変動分を含めて、 該増幅媒体中から出力さ れる出力信号光パワーを信号光波長ごとに近似算出して、 この算出結果を該増 幅媒体の性能のシミュレーション結果として出力するシミュレーション実行部 とをそなえて構成されたことを特徴としている。
また、 シミュレーション実行部は、 増幅媒体中の長手方向座標の位置に応じ た信号光パワーに基づく反転分布率を算出する反転分布率算出部と、 該反転分 布率算出部にて算出された前記反転分布率と、 前記の基本データ保持部および 入力信号光情報保持部にて保持された内容とを用いて、 前記入力信号光の入力 により該増幅媒体の始準位のイオン分布が波長領域において局所的に変動する ことによって生じうる反転分布率の変化量を、 前記入力信号光の波長おょぴ該 増幅媒体の長手方向位置の関数として算出する反転分布率変化量算出部と、 該 反転分布率変化量算出部にて算出された反転分布率の変化量と、 前記の基本デ ータ保持部および入力信号光情報保持部にて保持された内容と、 を用いて定め られた微分方程式から、 該増幅媒体における信号光入力端から該増幅媒体中を 伝搬する信号光についての光パワーの変化を、 前記信号光入力端を起点として 信号光出力端まで微小伝搬範囲を単位として算出してゆく信号光パワー変化算 出部と、該入力信号光情報保持部にて保持された前記入力信号光のパワー値に、 該信号光パヮ一変化算出部にて算出される前記微小伝搬範囲での光パヮ一の変 化を、 前記信号光入力端を起点として信号光出力端まで順次加算していくこと により、 該増幅媒体中を伝搬する信号光の長手方向座標の位置に応じた信号光 パワーを、 前記入力信号光の入力による該増幅媒体における始準位のイオン分 布の波長領域における局所的な変動分を含めて算出する信号光パワー算出部と、 該信号光パワー算出部にて算出された、 前記信号光出力端から出力される信号 光のパワーの算出結果を、 該増幅媒体の性能のシミュレーション結果として出 力処理を行なう出力処理部をそなえて構成することができる。
さらに、 好ましくは、 該反転分布率変化量算出部においては、 前記反転分布 率の変化量を算出する関数として、 少なくとも一つ以上のガウシアン関数を用 いる。
また、 該反転分布率変化量算出部が、 該反転分布率の変化量を、 利得飽和状 態の第 1波長帯を中心とする第 1関数を演算する第 1関数演算部と、 該増幅媒 体に特有の第 2波長帯を中心とする関数からなる第 2関数を演算する第 2関数 演算部と、 該第 1関数演算部および第 2関数演算部からの算出結果について加 算する加算部とをそなえて構成することとしてもよい。
また、 好ましくは、 該第 1関数演算部で演算される該第 1関数が、 該入力信 号光の波長に応じて与えられるガウシアン関数の総和により構成され、 該第 2 関数演算部で演算される該第 2関数が、 複数のガウシァン関数の総和により構 成することができる。
この場合においては、 該第 1関数をなす該入力信号光の波長に応じて与えら れるガウシアン関数は、 中心波長を該入力信号光の波長とし、 半値全幅を該増 幅媒体に応じた値として定められるとともに、 該第 2関数をなす各ガウシアン 関数は、 中心波長を該増幅媒体に特有の第 2波長帯とし、 半値全幅を該増幅媒 体に応じた値として定められ、 且つ、 該第 1関数おょぴ第 2関数における各ガ ゥシアン関数の半値全幅を、 該基本データ保持部にて保持しておくようにする ことができる。
さらに、 前記の第 1又は第 2関数をなす各ガウシアン関数の深さは、 前記入 力信号光の総パワーの増加に伴って増加し、 一定値以上で飽和する深さ関数で 定義されるようにしてもよレ、。
この場合において、 前記の第 1関数をなす該入力信号光の波長に応じて与え られる各ガウシアン関数についての深さ関数を、 該入力信号光の波長; I iと、 該入力信号光の波長义 iについての該増幅媒体の長手方向座標 zにおける光パ ヮー P i ( z ) と、 該増幅媒体の長手方向座標 Zにおける入力信号光の総パヮ
- P total ( Z ) とを変数とする関数で定義し、前記の第 2関数をなす各ガウシァ ン関数についての深さ関数を、 前記第 2波長帯の波長; I jと、 該増幅媒体の長 手方向座標 zにおける、入力信号光の総パワー Ptotal ( z ) および該増幅媒体の 反転分布率 n (z ) とを変数とする関数で定義し、 且つ、 該第 1および第 2関 数をなす各ガウシアン関数についての深さ関数を定める係数を、 該基本データ 保持部にて保持しておくようにすることができる。
また、 該基本データ保持部を、 該増幅媒体の基本データとして、 少なくとも 該増福媒体についての全長と、 入力信号光波長についての関数式で表される利 得係数 g ( ), 吸収係数 α (λ) および損失 1 ( ) とともに、 該増幅媒体に おける前記始準位のイオン分布の波長領域における局所的な変動を加味しない 反転分布率 η (ζ) を保持するように構成し、 該信号光パワー変化算出部を、 該信号光パワー算出部にて算出される該増幅媒体中を伝搬する信号光の長手方 向座標の位置に応じた信号光パワーから前記反転分布率 η (ζ) を計算すると ともに、 前記反転分布率 η (ζ) と、 該反転分布率変化量算出部にて算出され た反転分布率の変化量 Δ η (λ, ζ) と、 該基本デ一タ保持部にて保持されて いる前記基本データとを用いた、 該増幅媒体の長手方向に対して長さの微小単 位ごとの光パワー変化
d P ( z) Zd z =
{ (g (λ) + a (λ)) (n (z ) + Δ n (λ, z )) - (a (λ) + 1 (λ)) } · P ( z )
を用いることにより、 該増幅媒体の長手方向座標 zの位置を伝搬する信号光に ついての光パワーの微少変化を算出していくようにすることもできる。
また、 好ましくは、 シミユレーション実行部を、 スぺク トラルホ一ルバ一二 ングによって生じる信号光波長間の利得偏差を近似算出するように構成する。 さらに、 本発明の増幅媒体性能シミュレーション方法は、 励起光源からの励 起光により励起されて、 信号光を増幅する増幅媒体の性能のシミュレーション を行なう増幅媒体性能シミュレーション方法であって、 前記信号光の入力によ り該増幅媒体の始準位のイオン分布が波長領域において局所的に変動すること によって生じうる反転分布率の変化量を算出する反転分布率変化量算出ステツ プと、 該反転分布率変化量算出ステップにて算出された反転分布率の変化量に よつて補正された補正後反転分布率に基づく該増幅媒体の伝搬方程式をもとに、 該増幅媒体の信号光入力端から該増幅媒体中を伝搬する信号光についての光パ ヮ一の変化を、 前記信号光入力端を起点として信号光出力端まで微小伝搬範囲 を単位として算出してゆく光パワー変化算出ステップと、 前記入力信号光のパ ヮー値に、 該光パワー変化算出ステップにて算出される前記微小伝搬範囲での 光パワーの変化を、 前記信号光入力端を起点として信号光出力端まで順次加算 していくことにより、 該増幅媒体中から出力される出力信号光パワーを、 前記 入力信号光の入力による該増幅媒体における始準位のイオン分布の波長領域に おける局所的な変動分を含めて算出する出力信号光パワー算出ステップと、 該 出力信号光パワー算出ステップにて算出された算出結果を該増幅媒体の性能の シミュレーシヨン結果として出力処理を行なう出力処理ステップと、 をそなえ て構成されたことを特徴としている。
また、 本発明の光増幅器は、 励起光を出力する励起光源と、 該励起光源から の励起光により励起されて、 入力信号光を増幅する信号光増幅媒体と、 該信号 光増幅媒体から出力された出力信号光の利得を等化する利得等化器とをそなえ、 該利得等化器の利得等化特性が、 励起光源からの励起光により励起されて、 信 号光を増幅する増幅媒体の性能のシミュレーションを行なう増幅媒体性能シミ ュレーション装置であって、 該増幅媒体についての基本データを保持する基本 データ保持部と、 前記シミュレーションの対象となる増幅媒体に入力すべき入 力信号光に関する情報として、 前記入力信号光の波長値および光パワー値につ いて保持する入力信号光情報保持部と、 前記の基本データ保持部および入力信 号光情報保持部にて保持された内容を用いて、 前記入力信号光の入力による該 増幅媒体における始準位のイオン分布の波長領域における局所的な変動分を含 めて、 該増幅媒体中から出力される出力信号光パワーを信号光波長ごとに近似 算出して、 この算出結果を該増幅媒体の性能のシミュレーション結果として出 力するシミュレーション実行部とをそなえて構成された増幅媒体性能シミュレ ーシヨン装置から出力された前記シミュレーション結果に基づいて、 前記入力 信号光の入力による該増幅媒体における始準位のイオン分布の変動による利得 偏差が補償されるように設計されていることを特徴している。 また、 本発明の光増幅器は、 励起光を出力する励起光源と、 該励起光源から の励起光により励起されて、 入力信号光を増幅する信号光増幅媒体と、 該励起 光源を制御する励起光源制御部とをそなえ、 該励起光源制御部が、 励起光源か らの励起光により励起されて、 信号光を増幅する増幅媒体の性能のシミュレー ションを行なう増幅媒体性能シミュレーション装置であって、 該増幅媒体につ いての基本データを保持する基本データ保持部と、 前記シミュレーションの対 象となる増幅媒体に入力すべき入力信号光に関する情報として、 前記入力信号 光の波長値および光パワー値について保持する入力信号光情報保持部と、 前記 の基本データ保持部および入力信号光情報保持部にて保持された内容を用いて、 前記入力信号光の入力による該増幅媒体における始準位のイオン分布の波長領 域における局所的な変動分を含めて、 該増幅媒体中から出力される出力信号光 パワーを信号光波長ごとに近似算出して、 この算出結果を該増幅媒体の性能の シミュレ一ション結果として出力するシミュレーション実行部とをそなえて構 成された増幅媒体性能シミュレーション装置から出力された前記シミュレーシ ョン結果に基づいて、 前記入力信号光の入力による該増幅媒体における始準位 のィオン分布の変動による利得偏差が補償されるように該励起光源を制御する ことを特徴としている。
この場合においては、 該励起光源制御部を、 前記入力信号光および出力信号 光のパワーをモニタする第 1パワーモニタと、 該増幅媒体を伝搬する信号光の 波長配置情報を取得する波長配置情報取得部と、 該第 1パワーモニタにてモニ タされた前記入出力信号光のパワーから、 利得が一定となるように、 該励起光 源を制御するための信号を出力する利得一定制御部と、 該波長配置情報取得部 にて取得された波長配置情報をもとに、 前記スぺク トルホールパーニングによ る波長帯における利得偏差を減少させるように、 該利得一定制御部における該 励起光源に対する制御量を補正する補正部と、 をそなえて構成してもよい。 また、 該波長配置情報取得部を、 該増幅媒体に入力または出力される信号光 の波長配置をモニタするスぺク トルアナライザにより構成したり、 該信号光と ともに伝送される制御信号光から、 波長配置情報を取得するように構成したり することができる。 また、 励起光源制御部を、 該増幅媒体性能シミュレーション装置により得ら れた前記シミュレーション結果をもとに分割された複数の帯域ごとに、 前記の 入力信号光および出力信号光のパワーをそれぞれ取得する第 2パワーモニタと、 該第 2パワーモニタにて取得した各帯域の入力信号光および出力信号光のパヮ 一をもとに、 前記各帯域の平均利得が一致するように、 該励起光源を制御する ための信号を出力する平均利得一定制御部と、 をそなえて構成することもでき る。
このように、 本発明の増幅媒体性能シミユレーションの装置おょぴ方法によ れば、 シミュレーション実行部において、 簡略な近似計算式を導入することに より、 短時間の処理で、 増幅媒体の長手方向に対して長さの微小単位ごとに始 準位の波長領域における局所的なイオン分布の変動によって生じる利得偏差を、 信号波周辺以外での利得偏差を含んでシミュレーション結果として出力するこ とができる利点がある。
また、 本発明の光増幅器によれば、 本発明の増幅媒体性能シミュレーション 装置のシミユレーション実行部から短時間の処理で得られる高精度のシミュレ ーシヨン結果に基づいて、 増幅媒体における始準位の波長領域における局所的 なイオン分布の変動による利得偏差が補償されるように、 励起光源制御部で励 起光源を制御したり、 利得等化器を設計したりすることができるので、 利得一 定制御の安定度を飛躍的に高めることができる利点がある。
特に、 信号光の波長配置がダイナミックに変動しうるフォトニックネットヮ ークにおけるノードの構成要素となる光増幅器において、 大幅な波長配置 ·波 長数変化に対応して、 増幅特性の安定化を図ることができる利点がある。 図面の簡単な説明
図 1は本発明の第 1実施形態にかかる増幅媒体性能シミュレーション装置を 示すブロック図である。
図 2および図 3はともに、 本実施形態にかかる装置 1における演算処理につ いて説明するための図である。
図 4は本発明の第 1実施形態にかかる増幅媒体性能シミュレーション装置に おける動作を説明するためのフローチヤ一トである。
図 5〜図 7はいずれも、 第 1実施形態にかかる増幅媒体性能シミュレーショ ン装置によるシミュレーション結果と、 実験により得られた測定値とを比較す る図である。
図 8は本発明の第 2実施形態にかかる光増幅器を示すブロック図である。 図 9は、 図 8に示すような E D F Aの後段に設けられる利得等化器による利 得等化特性について説明するための図である。
図 1 0は本発明の第 3実施形態にかかる光増幅器を示すプロック図である。 図 1 1は第 3実施形態の変形例を示すプロック図である。
図 1 2は第 3実施形態にかかる光増幅器の動作を説明するためのフローチヤ 一トである。
図 1 3〜図 1 8はいずれも、 第 3実施形態にかかる光増幅器において、 利得 —定制御に S H Bによる利得変動の補正を重畳したことによる作用効果を説明 するための図である。
図 1 9は本発明の第 4実施形態にかかる光増幅器を示すブロック図である。 図 2 0は本発明の第 5実施形態にかかる光増幅器を示すプロック図である。 図 2 1は本発明の第 5実施形態にかかる光増幅器の動作を説明するためのフ ローチャートである。
図 2 2, 図 2 3はともに、 本発明の第 5実施形態にかかる光増幅器による作 用効果を説明するための図である。
図 2 4は、 E D F Aの増幅帯域全域を一つの単位として、 反転分布率の値に 応じて波長特性 (利得スペク トラム) を近似して把握する例を説明するための 図である。
図 2 5は、波長配置'波長数を大幅に変化することが想定されない従来の光ネ ットワークシステムに用いられる光中継器の構成例を示すブロック図である。 図 2 6は、 図 2 5に示す可変光減衰器の損失量を調整することで、 光中継器 の出力パワーを一定とする例を説明するための図である。
図 2 7は、 E D F Aについての S H Bによる利得偏差特性を示す図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施の形態を説明する。
( a ) 本発明の第 1実施形態の説明
図 1は本発明の第 1実施形態にかかる増幅媒体性能シミュレーション装置 1 を示すブロック図であり、 この図 1に示す増幅媒体性能シミュレーション装置 1は、信号光を増幅する増幅媒体の性能をシミュレーションするものであって、 特に、 フォトニックネットワークを構成する装置に適用される光増幅器におけ る増幅媒体の出力パワー特性おょぴ利得特性の性能についてシミュレーション を実行することができるものである。
すなわち、波長配置'波長数が大幅に変化する光ネットワークに適用すること を想定した光増幅器を設計する際に、 この増幅媒体性能シミュレーション装置
1で得られるシミュレーション結果により、 評価対象となる増幅媒体について の利得波長特性を正確に把握することで、 入出力パワー特性や利得等化器の特 性を、利得平坦性を確保できるように設計することができるようになっている。 なお、 増幅媒体性能シミュレーション装置 1において、 シミュレーションを 実行する対象となる増幅媒体として、 例えば E D F Aを用いることができる。 以下においては、 増幅媒体として E D F Aを使用する場合について述べるが、 これ以外の増幅媒体を使用することを妨げるものではない。
そして、 第 1実施形態における増幅媒体性能シミュレーシヨン装置 1におい ては、 E D F Aの基本データと入力信号光の情報を与えることによって、 前述 の S H Bによって生じる E D F Aの利得偏差特性についてシミュレ一トするこ とができるようになつている。 以下においては、 この増幅媒体性能シミュレ一 シヨン装置 1において、 S H Bによって生じる E D F Aの利得偏差特性を算出 する原理について説明する。
前述の図 2 7に示したように、 E D F Aにおける利得飽和状態の波長レベル での不均一拡がりの影響は、 特に信号光波長と 1 5 3 0 n m帯において強いこ とがわかる。 本実施形態にかかる増幅媒体性能シミュレーシヨン装置 1におい ては、 この不均一拡がりが特に強い帯域についての影響に着目して反転分布率 の変化量を算出するようになっている。 以下においては、 信号光波長に発生す る利得変動をメインホールと'し、 1 5 3 0 nm近辺に発生する利得変動をセカ ンドホールと呼ぶこととする。
図 2および図 3は、 本実施形態にかかる装置 1における演算処理について説 明するための図である。 ある波長における SHBによる利得変動は、 その光波 長に相当する遷移の始準位の E r 3+イオン数が変化、 即ち反転分布率が平均値 から変化することによって起こる。
そこで、 EDF 5 0の長手方向についての座標 zから微小部分 Δ z (図 2参 照) だけ信号光が伝搬した場合における、 SHBによる利得変動を引き起こす 反転分布率変化量を A nSHBとすると、 この微小部分 Δ zでの光パワー P ( z + Δ ζ ) は、 式 (1 ) に示すようになる。 この式 (1 ) 中において、 ηは ED F 5 0の長手方向座標 ζにおける反転分布率、 Ρ ( ζ ) は EDF 5 0の長手方向 座標 ζにおける信号光パワー、 G (η) は、 反転分布率 ηの場合での ED F 5 0の利得を示している。
Ρ ( ζ+Δ z ) =P ( z ) +G (η +厶 nSHB) X Ρ ( ζ ) … ( 1 ) そして、 ED F 5 0の伝搬方程式は、 式 (2) に示すように表すことができ る。 尚、 式 (2) においては、 反転分布率 11を、 ED F 5 0の長手方向座標 z に応じた関数値 n ( z ) とし、 Δ nSHBの値を ED F 5 0の長手方向座標 zと ともに信号光波長; Iの関数として表記している。
d P ( z) /d z =
{ (g (λ) + a (λ)) (n ( z) + Δ n SHB ( λ , z )) - (α (X) + 1 (λ)) } · P ( z )
… (2) ここで、 式 (2) 中において、 g (λ) は ED F 5 0における利得係数、 a
(λ) は吸収係数、 1 (λ) は損失で、 それぞれ信号光の波長; Iに応じた関数 として予め与えられるものである。 この式 (2) から、 ED F 5 0の長手方向 座標 Ζにおける光パワーの微少変化量 d P ( z ) Zd zは、 当該座標 zにおけ る光パワー P ( z ) および n ( z ) +Δ nsHB を得ることで求めることができ る。 尚、 n ( z) については、 EDF Aの長手方向座標 zでの光パワー P ( z ) をもとに、 公知の計算式によって得ることができる (前述の非特許文献 1中 の式 (14) を参照)。
また、 メインホールの原因となる信号光波長帯での反転分布率の変化と、 セ カンドホールの原因となる 1530 nm近辺での反転分布率の変化に着目する ことにより、 式 (2) における Δ ηβΗΒ { , ζ ) を、 式 (3) のように表すこ とができる。
Figure imgf000016_0001
+Dj (Aj, 〖( , n(z))exP ) λ- jf
(3) 上述の式 (3) は、 メインホールおよびセカンドホールに対応する反転分布 率の変化を表すガゥシアン関数を足し合わせた構成となっている。
また、 メィンホールに対応する反転分布率変化の項 (後述の第 1関数) は、 信号光として伝送すべき信号光波長 (チャンネル) ごとに 1種類のガウシアン 関数で表された反転分布率の変化分の総和によってモデル化されている。更に、 セカンドホールに対応する反転分布率変化の項 (後述の第 2関数) は、 信号光 波長に依存しない複数 (j個) のガウシアン関数の和によってモデル化してい る。
たとえば、 信号光波長を 1波長とした場合においては、 図 3に示すように、 メインホールに対応する反転分布率の変化は、 信号光波長 (又は飽和信号波長 ) を中心波長とする単一のガウシアン関数 G 1として表すことができ、 セカン ドホールに対応する反転分布率の変化は 1530 nm帯の波長を中心波長とす る 2つのガウシアン関数 G 2, G3の足し合わせによって表すことができる。 ここで、 式 (3) において、 第 1項はメインホール、 第 2項はセカンドホー ルを表している。 ここで、 λ はチャンネル iの信号光波長、 L jはセカンドホ ールのガウシアン関数の中心波長、 (z) は座標 zの位置を伝播するチヤ ンネル iの信号パワー、 Pttal ( z ) は座標 Zの位置を伝播する信号光の総パヮ 一、 BWiおよび BWjは各ガウシンアン関数の半値全幅である。 また、 C (λ i 5 ( z ), Ptotal ( z )) はチャンネル iの信号光によって 形成されるメインホールの深さを決定する深さ関数であり、 Dj ( Ptotal
( z), n (z )) はセカンドホールの深さを決定する深さ関数であって、 とも に座標 zの位置を伝搬する信号光の総パワーの増加にともない深さが増加し、 パワーが一定値以上で飽和する関数を用いることができる。
これらの関数 C (X i 5 (z ), P al ( z )), D j (λ ), P totai ( z ), n ( z )) としては、 例えばそれぞれ以下に示す式(4), (5) に示すように表す ことができる。
Φ,. , PI (4 PMAL (z》 = [ ^? ,2 + c + c3 - exp (- c4Plolal (2))} … (4)
V 1
Dj ( J , PLOLAL
Figure imgf000017_0001
一 exp (- d3JPLOTAL … (5) 上述の式 (2) および (3) の関係から、 信号光が ED F 5 0に入力される 時点でのパワー (P i (0)) をもとに、 n ( z ) とともに式 (3) における Δ nSHB ( , 0) の値を計算し、 計算された A nSHB (λ, 0) を式 (2) に用 いることにより、 EDF 5 0の信号光入力端の微小部分 Δ ζの位置を伝搬する ときの光パワーの微少変化を算出することができる。
さらに、 上述のごとく算出された光パワーの微少変化を、 入力信号光パワー ¥ Ρ ; (0) に加えて、 位置 Δ zの位置を伝搬する信号光パワー P ; (Δ z ) と することができる。 これにより、 ED F 5 0の長手方向座標 ζ = Δ zから微小 部分 Δ ζだけ更に信号光が伝搬した場合における光パワー変化についても、 上 述の場合と同様に計算することができる。
このようにして、 上述したような計算を繰り返していくことで、 ED F 5 0 の信号光入力端 (ζ = 0) から出力端 (z =L) における長手方向座標 zから 微小部分 Δ zだけ更に信号光が伝搬した場合における光パワー変化を計算する ことができる。 そして、 信号光が ED F 5 0の出力端位置から出力される時点 での光パワーについても最終的に算出することができる。
すなわち、 式 (2) および (3) の演算処理によって、 信号光波長ごとの E D F 5 0による増幅後の光パワーを得ることができるので、 入力信号光パワー と、 上述のごとく算出される信号光波長ごとの光パワーとから、 ED F 5 0の 信号光波長ごとに利得偏差利得特性を算出することができるのである。
ついで、本実施形態にかかる増幅媒体性能シミュレーション装置 1において、 EDFAの基本データと入力信号光の情報に基づき、 上述のような原理に従つ て、 SHBによって生じる EDFAの利得偏差特性についてシミュレートする ための構成について説明を進める。
増幅媒体性能シミュレーション装置 1は、 図 1に示すように、 キーボード等 からなる入力インタフヱース (入力 I F) 10, ハードディスクまたはメモリ からなる記憶部 20, CPU (Central Processing Unit) 等からなる演算処理 部 30およびディスプレイまたはプリンタ等からなる出力インタフェース 40 をそなえて構成されている。
これにより、 増幅媒体性能シミュレーション装置 1においては、 入力インタ フェース 10を通じて、 評価対象とする EDFAについての基本データと ED FAに入力すべき入力信号光に関する情報とを入力して、 記憶部 20でこれら の基本データおよび入力信号光情報を保持するとともに、 記憶部 20に記憶さ れたデータを用いた演算処理部 30での演算処理を通じて、 EDFAの性能の シミュレーション結果について算出し、 出力インタフェース 40を通じて出力 するようになつている。
ここで、 記憶部 20は、 特性評価の対象の ED F Aについての基本データを 保持する基本データ保持部 21と、 特性評価の対象となる EDFAに入力すベ き入力信号光に関する情報としての入力信号光の波長値おょぴ光パワー値につ いて保持する入力信号光情報保持部 22と、 をそなえている。
なお、 上述の入力インタフェース 10から入力され基本データ保持部 21に て保持される EDFAについての基本データとしては、 例えば、 特性評価の対 象となる EDFAのファイバ長 L, ファイバ径とともに、 採用する EDFAに よって特定される、上述の演算処理部 30での演算処理において使用する係数, 定数又は公知の関数情報等を含めることができる。
すなわち、 上述の式 (2) 〜 (5) における演算処理において用いられる利 得係数 g (λ), 吸収係数 α (λ), 損失 1 ( ), 反転分布率 η (ζ) や、 セカ ンドホールに対応する反転分布率のガウシアン関数式における中心波長; I 各ガウシアン関数の半値全幅 BWi, BWj, 各ガウシアン関数の深さ関数の係 数 C l〜c4, d 1? d2j } -, d 3, jを、 上述の基本データ保持部 21において E DF 50の基本データとして保持しておくことができるようになつている。 また、 増幅媒体性能シミュレーション装置 1においては、 EDFAに波長多 重信号光を入力した場合にも対応して、 SHBによる利得特性の変化を算出す ることができる。 この場合においては、 入力信号光情報保持部 22において保 持する入力信号光情報としては、 波長多重された信号光をなす各波長データ, 各波長の信号光のパワーおょぴ波長多重された入力信号光の総パワーについて のデータを保持しておく。
演算処理部 30は、 記憶部 20に記憶されたプログラムを実行し実行結果に ついて出力インタフェース 40に出力するものであって、 シミュレーション実 行部 31としての機能を有している。 即ち、 シミュレーション実行部 31とし ての機能は、 図示しない記憶媒体に記憶されたプログラムを記憶部 20に展開 して、 このプログラムを演算処理部 30で実行することにより実現することが できる。
また、 シミュレーション実行部 31は、 基本データ保持部 21および入力信 号光情報保持部 22にて保持された内容を用いて、 入力信号光の入力により評 価対象とする EDF Aの始準位のイオン分布の変動分を含めて、 EDFAから 出力される信号光パヮ.一を信号光波長ごとに近似算出するものであり、 この算 出結果を、 EDFAの性能のシミュレーション結果として出力するようになつ ている。
さらに、シミュレーション実行部 31は、反転分布率変化量算出部 31— 1, 信号光パワー変化算出部 31— 2, 信号光パワー算出部 31— 3, 補正前反転 分布率算出部 31一 4および出力処理部 31-5をそなえて構成されている。 ここで、 反転分布率変化量算出部 31— 1は、 後述の補正前反転分布率算出 部 31— 4にて算出された反転分布率と、 基本データ保持部 21および入力信 号光情報保持部 22にて保持された内容とを用いて、 入力信号光の入力により EDF 50の始準位のイオン分布が変動することによって生じうる反転分布率 の変化量を算出するものである。 具体的には、 反転分布率変化量算出部 3 1— 1においては、 この反転分布率 の変化量を、 中心波長と幅を持つ山又は谷形の形状を有する少なくとも一つ以 上の波長関数を用いた演算を通じ、 入力信号光の波長および E D F 5 0の長手 方向座標の関数として算出するようになっている。
また、 信号光パワー変化算出部 3 1— 2は、 反転分布率変化量算出部 3 1—
1にて算出された反転分布率の変化量と、 基本データ保持部 2 1および入力信 号光情報保持部 2 2にて保持された内容とを用いて定められた微分方程式とか ら、 E D F 5 0における信号光入力端から E D F 5 0中を伝搬する信号光につ いての光パワーの変化を、 信号光入力端を起点として信号光出力端まで微小伝 搬範囲を単位として算出してゆくものである。
これにより、 信号光パワー変化算出部 3 1— 2においては、 基本データ保持 部 2 1および入力信号光情報保持部 2 2にて保持されている内容を用いること により、 上述の式 (2 ) における係数データないし定数データを取得して、 E D F 5 0の長手方向座標 zの位置を伝搬する信号光についての光パワー変化を 算出することができるようになつている。
また、 反転分布率変化量算出部 3 1 - 1においては、 基本データ保持部 2 1 および入力信号光情報保持部 2 2にて保持されている内容を用いることにより、 上述の式 ( 3 ) 〜 ( 5 ) における係数データないし定数データを取得して、 上 述の信号光パワー変化算出部 3 1 - 2における計算で使用する反転分布率の変 化量 Δ n SHBを算出することができるようになっている。
すなわち、 反転分布率変化量算出部 3 1— 1は、 反転分布率の変化量を、 利 得飽和状態の第 1波長帯 (信号光波長帯) を中心とする第 1関数としての式 ( 3 ) の第 1項を演算する第 1関数演算部 3 1 1と、 E D F Aに特有の第 2波長 帯 (1 5 3 0 n m帯) を中心とする関数からなる第 2関数としての式 (3 ) の 第 2項を演算する第 2関数演算部 3 1 2と、 第 1関数演算部 3 1 1および第 2 関数演算部 3 1 2からの算出結果について加算する加算部 3 1 3とをそなえて 構成されている。
また、 第 1関数演算部 3 1 1で演算される第 1関数が、 入力信号光の波長; I iに応じて与えられるガウシアン関数の総和により構成され、 第 2関数演算部 312で演算される第 2関数が、 複数の (式 (3) においては j個の) ガウシ アン関数の総和により構成されている。
さらに、 第 1関数をなす入力信号光の波長に応じて与えられるガウシアン関 数は、 中心波長を入力信号光の波長; I;とし、 半値全幅 BWiを EDFAに応じ た値として定められるとともに、 第 2関数をなす各ガウシアン関数は、 中心波 長を増幅媒体に特有の第 2波長帯 (1530 nm帯) とし、 半値全幅 BWjを EDFAに応じた値として定められ、 且つ、 第 1関数おょぴ第 2関数における 各ガウシアン関数の半値全幅 BWi, BWjを、 基本データ保持部 21にて保持 しておくように構成されている。
また、 第 1関数をなす各ガウシアン関数の深さは、 入力信号光の総パワーの 増加に伴って増加し、 一定値以上で飽和する深さ関数 C (式 (4) 参照) で定 義され、 第 2関数をなす各ガウシアン関数の深さについても、 入力信号光の総 パワーの増加に伴って増加し、 一定値以上で飽和する深さ関数 D (式 (5) 参 照) で定義される。
すなわち、 第 1関数をなす入力信号光の波長に応じて与えられる各ガウシァ ン関数についての深さ関数は、 前述の式 (4) に示すように、 入力信号光の波 長 λ iと、入力信号光の波長; L;についての EDFAの長手方向座標 zにおける 光パワー P i (z) と、 ED FAの長手方向座標 zの位置を伝搬する信号光の 総パワー: Ptotal (z) とを変数とする関数で定義される。
また、第 2関数をなす各ガゥシアン関数についての深さ関数は、前述の式( 5 ) に示すように、 第 2波長帯の波長; L jと、 EDF Aの長手方向座標 Zの位置を 伝搬する信号光の総パワー Ptotal (z) および ED FAの反転分布率 n (z) と を変数とする関数で定義される。
さらに、 信号光パワー算出部 31— 3は、 入力信号光情報保持部 22にて保 持された入力信号光のパワー値に、 信号光パワー変化算出部 31— 2にて算出 される微小伝搬範囲での光パヮ一の変化を、 E D F Aにおける信号光入力端を 起点として信号光出力端まで順次加算していくことにより、 EDFA中を伝搬 する信号光の長手方向座標 zの位置に応じた信号光パワーを、 入力信号光の入 力による EDFAにおける始準位のイオン分布の変動分を含めて算出するもの である。
補正前反転分布率算出部 31— 4は、 光パワー変化を算出する際に用いる、 E D F Aにおける始準位のイオン分布の変動を加味しなレ、反転分布率 n ( z ) を補正前反転分布率として算出するものである。 具体的には、 上述の信号光パ ヮー算出部 31— 3にて算出される EDF A中を伝搬する信号光の長手方向座 標の位置に応じた信号光パワーをもとに、 基本データ保持部 21にて保持され ている n (z) の式を用いることにより算出するものである。
これにより、 信号光パワー変化算出部 31— 2においては、 補正前反転分布 率算出部 31— 4において算出された反転分布率 n (z) と、 反転分布率変化 量算出部 31— 1にて算出された反転分布率の変化量 Δ η (λ, ζ) と、 基本 データ保持部 21にて保持されている前述の基本データとをもとにして、 前述 の式 (2) を用いることにより、 EDF Αの長手方向に対して長さの微小単位 ごとの光パワーの微少変化 d P (ζ) /ά ζを算出する。
さらに、 出力処理部 31— 5は、 信号光パワー算出部 31—3にて算出され た、 E D F Αにおける信号光出力端から出力される信号光パワーの算出結果を、 EDFAの性能のシミュレーション結果として出力処理を行なうものである。 上述の構成により、 本発明の第 1実施形態にかかる増幅媒体性能シミュレー ション装置 1における動作を、 図 4に示すフローチャートを用いて以下に説明 する。
まず、 入力インタフェース 10を通じて、 入力パラメータとして、 前述の E
DF Aの基本データと、 入力信号光に関するデータ (波長データおよび入力信 号光パワー) とを取得し (ステップ S l)、 EDFAの基本データについて基本 データ保持部 21で保持しておくとともに、 入力信号光データは入力信号光情 報保持部 22にて保持しておく。
ついで、 反転分布率変化量算出ステップとして、 信号光の入力により EDF
Aの始準位のイオン分布が変動することによって生じうる反転分布率の変化量 Δ nSHBを算出する。
まず、 補正前反転分布率算出部 31— 4では、 入力信号光情報保持部 22に おいて保持されている入力信号光情報をもとに、 EDF 50の信号光入力端に おける捕正前反転分布率としての n (z = 0) を算出する。
そして、 反転分布率変化量算出部 31— 1において、 上述の n (n = 0) と ともに基本データ保持部 21および入力信号光情報保持部 22にて保持されて いるデータをもとに、 上述の式 (3) を用いることにより、 AnSHB (λ, 0) の値を計算する。
そして、 光パワー変化算出ステップとして、 反転分布率変化量算出ステップ にて算出された反転分布率の変化量によつて補正された補正後反転分布率に基 づく EDF Αの伝搬方程式をもとに、 EDF Aの信号光入力端から該増幅媒体 中を伝搬する信号光についての光パワーの変化を、 信号光入力端を起点として 信号光出力端まで微小伝搬範囲を単位として算出してゆく。
具体的には、 信号光パワー変化算出部 31— 2において、 光パワー変化算出 ステップとして、 補正前反転分布率算出部 31—4にて算出された η (ζ = 0 ) の値とともに反転分布率変化量算出部 31— 1で計算された AnSHB {λ, 0 ) をもとにして、 式 (2) を用いることにより、 EDF 50の信号光入力端の 微小部分 Δ ζの位置を伝搬するときの光パワーの微少変化を算出する (以上、 ステップ S 2, ステップ S 3)。
さらに、 出力信号光パワー算出ステップとして、 入力信号光のパワー値に、 光パワー変化算出ステップにて算出される微小伝搬範囲での光パワーの変化を、 信号光入力端を起点として信号光出力端まで順次加算していくことにより、 Ε DF Α中から出力される出力信号光パワーを、 前記入力信号光の入力による該 増幅媒体における始準位のイオン分布の変動分を含めて算出する。
すなわち、 信号光パワー算出部 31— 3において、 上述のごとく算出された 光パワーの微少変化を、 入力信号光パワー (0) に加えて、 位置 Δ ζの位 置を伝搬する信号光パワー P i (Δ z) とする (ステップ S 4)。
これにより、 EDF 50の長手方向座標 z =Δ zから微小部分 Δ zだけ更に 信号光が伝搬した場合における光パワー変化についても、上述の場合と同様に、 A nsHB (λ, Δ ζ ) を計算した上で算出することができる。 このようにして、 上述したような計算を繰り返していくことで、 EDF 50の信号光入力端 (ζ -0) から出力端 (z = L) に至るまで、 微小伝搬範囲 Δ Zずつの光パヮ一変 化を計算することができる (ステップ S 5の NOルー卜からステップ S 3)。 そして: 出力処理ステップとして、 出力信号光パワー算出ステップにて算出 された算出結果を EDF Aの性能のシミュレーション結果として出力処理を行 なう。 即ち、 信号光パワー算出部 31— 3において、 信号光が EDF 50の出 力端位置から出力される時点での光パワーが得られると、 出力処理部 31—5 においては、 この出力端から出力される時点での光パワーを、 EDFAの出力 特性のシミュレーシヨン結果として出力する (ステップ S 6)。
また、 シミュレーション実行部 31においては、 信号光波長ごとの、 EDF Aに入力された時点での信号光パワーと、 EDF Aを出力する時点での信号光 パワーとの関係から、 シミュレーション結果を、 入力信号光パワーに応じた波 長スぺク トラムに対する利得偏差の依存性として出力したり、 飽和信号波長に 応じた波長スぺク トラムに対する利得偏差の依存性として出力したり、 利得一 定制御のターゲット (目標値) とする利得値に応じた波長スペクトラムに対す る利得偏差の依存性として出力したりすることもできる。
図 5〜図 7は、 上述のごときシミュレーション実行部 31におけるシミュレ ーシヨンの実行により得られたシミュレーション結果 (計算値) と、 実験によ り得られた測定値 (実験値) とを比較する図である。
ここで、 図 5は入力信号光パワーに応じた波長スぺクトラムに対する利得偏 差の依存性を示している。 図 5中、 「秦」 は入力信号光パワーを 2. 3 dBm、 「口」は入力信号光パワーを 0 d Bm、 「酾」は入力信号光パワーを一 5 d Bm
、 「X」 は入力信号光パワーを _ 10 d Bm、 「◊」 は入力信号光パワーを一 1 5 d B mとした場合の実験値を示しており、 実線はそれぞれの実験値に対応し た入力信号光パワーとした場合のシミュレーション結果を示している。
さらに、 図 6は飽和信号波長に応じた波長スぺクトラムに対する利得偏差の 依存性を示しており、 図 6中、 「♦」 は飽和信号波長を 1529. 7 nm、 「◊ 」 は飽和信号波長を 1534. 7 nm、 「X」 は飽和信号波長を 1536. 7 n m、 「画」 は飽和信号波長を 1540. 7 nm、 「口」 は飽和信号波長を 154 4. 7 nm、 「會」 は飽和信号波長を 1549. 7 n mとした場合の実験値を示 しており、 実線はそれぞれの実験値に対応した入力信号光パワーとした場合の シミュレ一ション結果を示している。
また、 図 7は利得一定制御のターゲットとする利得値に応じた波長スぺク ト ラムに対する利得偏差の依存性を示している。図 7中、 「♦」は利得一定制御の ターゲットを 2 0 d B、 「口」 は利得一定制御のターゲットを 2 5 d B、 「▲」 は利得一定制御のターゲットを 2 9 . 5 d Bとした場合の実験値を示しており、 実線はそれぞれの実験値に対応した入力信号光パワーとした場合のシミュレー ション結果を示している。
上述の図 5〜図 7に示すいずれのシミュレーション結果を用いた場合におい ても、 本実施形態にかかる増幅媒体性能シミュレーション装置 1においては S H Bによる利得変動を精度良く計算できることが確認できる。 このシミュレ一 ション結果をもとに E D F Aの入出力パワーや利得等化器による利得等化特性 を設計することによって、 光中継器の利得平坦性の精度を大幅に高くすること が可能となる。
このように、 本発明の第 1実施形態にかかる増幅媒体性能シミュレーション 装置によれば、 シミュレーション実行部 3 1において、 簡略な近似計算式を導 入することにより、 短時間の処理で、 増幅媒体の長手方向に対して長さの微小 単位ごとに始準位のイオン分布の変動によって生じる利得偏差を、 信号波周辺 以外での利得偏差を含んでシミュレーション結果として出力することができる 利点がある。
( b ) 第 2実施形態の説明
図 8は本発明の第 2実施形態にかかる光増幅器 6 0を示すプロック図であり、 この図 8において、 6 1は励起光を出力する励起光源、 6 2は励起光源 6 1かリ らの励起光により励起されて、 入力信号光を増幅する信号光増幅媒体としての E D F A、 6 3は E D F A 6 2から出力された出力信号光の利得を等化する利 得等化器である。
この利得等化器 6 3は、 前述の第 1実施形態におけるものと同様の増幅媒体 性能シミュレーション装置 1のシミュレーション実行部 3 1からのシミュレー シヨン結果に基づいて、 入力信号光の入力による E D F A 6 2における始準位 のイオン分布の変動による利得偏差が補償されるように設計されている。 図 9は、 図 8に示すような EDFA62の後段に設けられる利得等化器 63 による利得等化特性について説明するための図であり、 図中点線は前述の第 1 実施形態にかかる増幅媒体性能シミュレーション装置 1にて得られた利得偏差 特性をもとに設計された利得等化器の利得等化特性であり、 実線は E D F Aの 利得特性を単一パンド近似と想定した場合の利得等化器の利得等化特性を示し ている。
この図 9から、 増幅媒体性能シミュレーシヨン装置 1にて得られた利得偏差 特性をもとに設計された利得等化器によれば、 特に 153 Onm周辺の利得偏 差を補償できることが期待される。
このように、 本発明の第 2実施形態にかかる光増幅器 60によれば、 利得等 化器 63の利得等化特性を、 増幅媒体シミュレーション装置 1のシミュレーシ ョン実行部 31から短時間の処理で得られる高精度のシミュレーション結果に 基づいて設計することができるので、 入力信号光の入力による EDF A 62に おける始準位のイオン分布の変動を補償することができる利点がある。
特に、 信号光の波長配置がダイナミックに変動しうるフォトニックネットヮ ークにおけるノードの構成要素となる光増幅器において、 大幅な波長配置 ·波 長数変化に対応して、 増幅特性の安定化を図ることができる利点がある。
(c) 第 3実施形態の説明
図 10は本発明の第 3実施形態にかかる光増幅器 7 OAを示すブロック図で あり、 この図 10に示す光増幅器 7 OAにおいて、 71は励起光を出力する励 起光源、 72は励起光源 71からの励起光により励起されて、 入力信号光を増 幅する信号光増幅媒体としての EDFA、 73は励起光源 71を制御する励起 光源制御部、 74は EDFA72に入力される信号光の一部を分岐する分岐力 プラ、 75は EDFA 72から出力される出力信号光の一部を分岐する分岐力 プラ、 76は分岐カプラ 75からの出力信号光のパワーについて可変減衰する 可変光減衰器 (V〇A) である。
ここで、 励起光源制御部 73は、 入力信号光の入力による EDFA72にお ける始準位のィオン分布の変動による利得偏差が補償されるように励起光源 7 1を制御するようになっており、 フォトダイオード (PD) 73 a, スぺタ ト ルアナライザ (S AU) 7 3 b , 利得一定制御部 7 3 cおよび補正部 7 3 dを そなえて構成されている。
また、 フォトダイオード 7 3 aは、 分岐力ブラ 7 4によって分岐された信号 光のパワーをモニタするもので、 スペクトルアナライザ 7 3 bは、 分岐カプラ 7 5によって分岐された出力信号光のパワーおょぴ信号波長の配置情報をモニ タするものである。
したがって、 上述のフォトダイォード 7 3 aおよびスぺクトルアナライザ 7 3 bにより、 入力信号光および出力信号光のパワーをモニタする第 1パワーモ ニタとして機能するとともに、 スペク トルアナライザ 7 3 bは、 増幅媒体であ る E D F A 7 2を伝搬する信号光の波長配置情報を取得する波長配置情報取得 部としての機能も有している。
さらに、 利得一定制御部 7 3 cは、 第 1パヮ一モニタとしてのフォ トダイォ ード 7 3 aおよびスぺク トルアナライザ 7 3 bにてモニタされた入出力信号光 のパワーから、 利得が一定となるように、 励起光源 7 1を制御するための信号 を出力するものである。
さらに、 補正部 7 3 dは、 スペク トルアナライザ 7 3 bにて取得された波長 配置情報をもとに、 スぺクトルホールバーニングによる波長帯における利得偏 差を減少させるように、 利得一定制御部 7 3 cにおける励起光源 7 1に対する 制御量を補正するものである。
たとえば、 補正部 7 3 dにおいては、 前述の第 1実施形態における増幅媒体 性能シミュレーション装置 1においてシミュレーションが実行された結果から、 利得偏差を減少させるための励起光制御情報を保持しておくテーブル 7 3 d - 1をそなえるとともに、 利得一定制御部 7 3 cからの信号光波長配置情報, 入 力信号光パワーと出力信号光のパワー比 (利得) の情報, および出力パワーを キーとしてテーブル 7 3 d—1を検索することにより信号光波長配置に応じた 利得偏差を減少させるための励起光制御情報を取り出す検索部 7 3 d— 2をそ なえて構成されている。
すなわち、 補正部 7 3 dにおいては、 この検索部 7 3 d— 2にて検索された 励起光制御情報を利得一定制御部 7 3 cに与えることにより、 利得一定制御部 73 cにおける励起光源 71に対する制御量を補正できるようになつている。 上述の構成により、 第 3実施形態にかかる光増幅器 7 OAでは、 図 12に示 すように、 励起光源 71からの励起光が制御されて、 SHBによる利得偏差を 補償している。
励起光源制御部 73の利得一定制御部 73 cでは、 フォトダイオード 73 a およびスぺク トルアナライザ 73 bから入力信号光パワーおよび出力信号光パ ヮ一とともに、信号光の波長配置情報を取得し (ステップ Al)、 これら取得し たデータから、 EDFA 72の利得状態を算出し、 利得一定制御によりあらか じめ決められた利得となるように出力パワーの目標値を決定する。
このとき、 補正部 73 dでは、 信号配置情報, 利得情報および出力パワーの モニタ値を利得一定制御部 73 cから受け取るとともに、 上述のごときテープ ル検索を行なうことにより、 これらの値から SHBによる利得変動の補正が必 要か否かを判断し、 SHBの補正が必要な場合は、 信号配置情報、 利得、 出力 パワーから出力パヮ一の目標値に加える補正量を決定する (ステップ A 2 )。 これにより、 利得一定制御部 73 cでは、 補正部 73 dにて決定された励起 光制御用の補正量を受けて、 励起光制御の目標とする出力パワーを決定して、 スぺク トルアナライザ 75にてモニタされる出力信号光パワーが目標値となる ように、 励起光源 71が供給する励起光の強度等を制御するための信号を出力 する。
なお、 VOA76では、 補正部 73 dにおいて SHBによる利得変動を補償 するための励起光制御量の補正を行なった場合には、 EDFA72の出力パヮ 一が当初の所望していた値から増減するため、 所望の出力パワーがえられるよ うに損失量を制御する (ステップ A 3)。
図 13〜図 18は、 第 3実施形態にかかる光増幅器 7 OAにおいて、 上述の ごとく光増幅器利得一定制御に S H Bによる利得変動の補正を重畳したことに よる作用効果を説明するための図である。
波長配置がダイナミックに変化するような自由度の高い光通信システムにお いては、 SHBによる局所的な利得変動が生じ、 EDF Aの利得波長特性と利 得等化器の特性との間に誤差が生じる。 このとき、 励起パワー PAGCで光増幅 器を利得一定制御で駆動すると、 SHBによって AGの利得偏差が生じるが、 第 3実施形態にかかる光増幅器 7 OAのごとく、 励起パワー PAGCに対して補 正部 73 dにおける補正量に相当する励起パワーの変化量 Δ PSHBを加え、 光 増幅器 7 OAの反転分布率を変動させることにより、 利得偏差 AG' が AG> AG7 となるように制御することができる。
たとえば、 図 13に示すように、 40チャンネルの波長多重信号光に対して 利得波長特性が平坦になるような特性を持った利得等化器 (GEQ) を EDF A 72の後段に挿入することを想定する。 このときの利得等化器は図 14に示 すような損失特性とすることができる。 尚、 図 13中において、 利得等化器を 挿入した場合の利得特性を A (GEQあり) とし、 利得等化器を揷入しない場 合の利得特性を B (GEQなし) とする。
この EDFA72に対して、 長波長側に波長配置が集中する例として、 短波 長側 1チヤンネル (波長 1533. 5 nm)、 およぴ長波長側 8チヤンネル ( 1 555-1560. 6 nm) の波長配置を持つ波長多重信号光を入力した場合 において、 利得一定制御部 73 cで利得一定制御によって平均利得が一定とな るように励起光の制御を行なうことを想定する。
このような利得一定制御部 73 cによる利得一定制御のみを行なった場合に は、 励起光源 71においては、 例えば前方励起光 53mW、 後方励起光 32m Wの励起パワーを有する励起光を ED F A 72に供給する。 図 15は、 このよ うな波長配置の信号光を伝搬する E D F A 72に対して、 上述の利得一定制御 部 73 cによる利得一定制御のみを行なった場合の、 各波長配置における信号 光の利得波長特性について示す図である。
この図 15における Cとして示す 40チャンネル増幅時の利得波長特性 (図 中の 「令」 の点参照) においては、 利得偏差は各チャンネル間で 0. 03 dB であったが、 この図 15における Dとして示す (短波長側 1チャンネル +長波 長側 8チャンネル) 増幅の場合の利得波長特性 (図 15中の 「圏」 の点参照) においては、 利得偏差は 0. 51 d Bとなり、 利得一定制御では十分利得偏差 を小さくすることが困難なことがわかる。
そこで、 補正部 73 dにおいて、 信号光波長の波長配置および光出力パワー に応じた補正量で補正された制御量で励起光源 71を制御することにより、 励 起光源 71からの後方励起パワーを 32mWから 2 lmWに減少させる。 この ようにすれば、 例えば図 16における (図 16中の 「酾」 の点参照) のと して示すように、 信号光の平均利得は減少するものの、 利得偏差については大 幅に補償して、 0. 09 d B程度とすることができる。 尚、 減少した EDFA 72の平均利得分は可変光減衰器 76の損失量を減少させることによって補完 する (図 16における 、 「▲」 の点参照)。
同様に、 短波長側に波長配置が集中する例として、 短波長側 4チャンネル ( 1529. 6 nm- 1531. 9nm)、長波長側 1チヤンネル (1556. 6 nm) の波長配置を持つ波長多重信号光を入力した場合において、 利得一定制 御部 73 cで利得一定制御によって平均利得が一定となるように励起光の制御 を行なうことを想定する。
このとき、 利得一定制御部 73 cによる利得一定制御のみを行なった場合に は、 励起光源 71においては、 例えば前方励起光 81. 3mW、 後方励起光 0 mWの励起パワーを有する励起光を EDF A 72に供給する。 図 17は、 この ような波長配置の信号光を伝搬する EDF A 72に対して、 上述の利得一定制 御部 73 cによる利得一定制御のみを行なった場合の、 各波長配置における信 号光の利得波長特性について示す図である。
この図 17における Cとして示す 40チャンネル増幅時の利得波長特性 (図 17中の 「♦」 の点参照) においては、 利得偏差は各チャンネル間で 0. 03 dBであったが、 この図 1 7における Eとして示す (短波長側 4チャンネル + 長波長側 1チャンネル) 増幅の場合の利得波長特性 (図 17中の 「画」 の点参 照) においては、 利得偏差は 0. 5 d Bとなり、 利得一定制御では十分利得偏 差を小さくすることが困難なことがわかる。
そこで、 補正部 73 dにおいて、 信号光波長の波長配置および光出力パワー に応じた補正量で補正された制御量で励起光源 71を制御することにより、 励 起光源 71からの後方励起パワーを OmWから 15 mWに増加させる。 このよ うにすれば、 例えば図 18における E' (図 18中の 「固」 の点参照) として 示すように、 信号光の平均利得は増加するものの、 利得偏差については大幅に 補償して、 0. 1 1 d B程度とすることができる。 尚、 増加した EDFA72 の平均利得分は可変光減衰器 76の損失量を増加させることによって補完する (図 1 8における 、 「▲」 の点参照)。
なお、 上述の説明では後方励起パワーを補正することによって利得偏差を減 少させたが、 調整する励起パワーは前方励起パワーを調整しても、 前方後方の 両方の励起パワーを調整してもよい。
このように、 本発明の第 3実施形態にかかる光増幅器 7 OAによれば、 励起 光源制御部 73により、 前述の第 1実施形態における増幅媒体性能シミュレー ション装置 1のシミュレーション実行部 3 1から短時間の処理で得られる高精 度のシミュレ一シヨン結果に基づいて、 EDF A 72における始準位のイオン 分布の変動による利得偏差が補償されるように励起光源 71を制御することが できるので、利得一定制御の安定度を飛躍的に高めることができる利点がある。 特に、 信号光の波長配置がダイナミックに変動しうるフォトニックネットヮ ークにおけるノードの構成要素となる光増幅器において、 大幅な波長配置 ·波 長数変化に対応して、 増幅特性の安定化を図ることができる利点がある。
なお、第 3実施形態の変形例として、図 1 1に示す光増幅器 70 Bのように、 EDFA72の入力側に S AU 73 bを配置し入力側で信号配置情報を取得す るとともに、 EDFA72から出力される出力信号光のパヮーをフォ卜ダイォ ード 73 aでモニタするようにしてもよい。
(d) 第 4実施形態の説明
図 1 9は本発明の第 4実施形態にかかる光増幅器 80を示すプロック図であ り、 この図 1 9に示す光増幅器 80は、 励起光源 71, EDFA72, 分岐力 プラ 74, 75および VOA 76をそなえている点は前述の第 3実施形態にお けるものと同様であるが、 前述の第 3実施形態の場合とは異なり、 WDM (Wavelength Division Multiplexing) カプラ 81および励起光源制御部 82 をそなえて構成されている。
ここで、 WDMカプラ 8 1は、 光増幅器 80に入力された波長多重光のうち で、 制御信号として割り当てられた波長を有する制御信号光と信号光とを波長 分離するものであり、 制御信号については励起光源制御部 83に出力され、 信 号光については分岐カプラ 7 に出力される。
また、 励起光源制御部 8 2は、 励起光源 7 1を制御するものであるが、 フォ トダイォード (P D ) 8 2 a , 8 2 b , 制御信号解析部 8 2 c, 利得一定制御 部 7 3 cおよび補正部 7 3 dをそなえて構成されている。
ここで、 フォトダイオード 8 2 aは分岐カプラ 7 4によって分岐された信号 光のパワーをモニタするもので、 フォトダイオード 8 2 bは、 分岐カプラ 7 5 によって分岐された出力信号光のパワーをモニタするものである。 従って、 上 述のフォトダイオード 8 2 a, 8 2 bにより、 入力信号光および出力信号光の パワーをモニタする第 1パワーモニタとして機能する。
また、 制御信号解析部 8 2 cは、 信号光とともに伝送される制御信号光を W
D Mカプラ 8 1を介してフォトダイォードで受光するとともに、 この受光信号 を解析することにより、 制御情報としての波長配置情報を取り出すものであつ て、 増幅媒体である E D F A 7 2を伝搬する信号光の波長配置情報を取得する 波長配置情報取得部として機能する。 即ち、 制御信号解析部 8 2 cは、 信号光 とともに伝送される制御信号光から波長配置情報を取得するようになっている。 利得一定制御部 7 3 cは、 前述の第 3実施形態の場合と同様の機能を有する もので、 第 1パワーモニタとしてのフォトダイオード 8 2 a, 8 2 bにてモニ タされた入出力信号光のパワーから、 利得が一定となるように、 励起光源 7 1 を制御するための信号を出力するものである。
また、 補正部 7 3 dについても、 前述の第 3実施形態の場合と同様、 制御信 号解析部 8 2 cにて取得された波長配置情報をもとに、 スぺクトルホールバー ニングによる波長帯における利得偏差を減少させるように、 利得一定制御部 7 3 cにおける励起光源 7 1に対する制御量を補正するものであり、 テーブル 7 3 d - 1および検索部 7 3 d— 2をそなえている。
上述の構成による、 第 4実施形態にかかる光増幅器 8 0の動作について、 図
1 2のフローチャートを参照しながら説明する。
励起光源制御部 8 2の制御信号解析部 8 2 cにおいては、 信号光とともに伝 送される制御信号光から、 信号光の波長配置情報を取得する。 又、 入出力光パ ヮ一のモニタ情報についてはフォトダイオード 8 2 a, 8 2 bから取得する ( 図 1 2のステップ A 1参照)。
また、 利得一定制御部 7 3 cにおいては、 フォトダイオード 8 2 a, 8 2 b からの入出力光パワーのモニタ結果とに基づき利得一定制御を行なっているが (ステップ A 2 )、補正部 7 3 dにおいては、制御信号解析部 8 2 cからの波長 配置情報と、 フォトダイオード 8 2 a, 8 2 bからの入出力光パワーのモニタ 結果とに基づき、 励起光源 7 1に対する利得一定制御部 7 3 cからの制御量が 補正されて、 S H Bによる利得偏差を補償している。 尚、 増減した E D F A 7 2の平均利得分は可変光減衰器 7 6の損失量を調整することによつて補完する このように、 本発明の第 4実施形態にかかる光増幅器 8 0においても、 励起 光源制御部 8 2により、 前述の第 1実施形態における増幅媒体性能シミュレー ション装置 1のシミュレーション実行部 3 1から短時間の処理で得られる高精 度のシミュレーション結果に基づいて、 E D F A 7 2における始準位のイオン 分布の変動による利得偏差が補償されるように励起光源 7 1を制御することが できるので、利得一定制御の安定度を飛躍的に高めることができる利点がある。 特に、 信号光の波長配置がダイナミックに変動しうるフォトニックネットヮ ークにおけるノードの構成要素となる光増幅器において、 大幅な波長配置 ·波 長数変化に対応して、 増幅特性の安定化を図ることができる利点がある。
また、 波長配置情報取得部として、 スペク トルアナライザを用いずに構成す ることができるので、 第 3実施形態にかかる光増幅器 8 0に比して、 装置構成 のためのコストを削減させることができる。
( e ) 第 5実施形態の説明
図 2 0は本発明の第 5実施形態にかかる光増幅器 9 0を示すプロック図であ り、 この図 2 0に示す光増幅器 9 0は、 励起光源 7 1 , E D F A 7 2 , 分岐力 プラ 7 4, 7 5および V O A 7 6をそなえている点は前述の第 3実施形態にお けるものと同様であるが、 前述の第 3実施形態の場合とは異なる励起光源制御 部 9 1をそなえて構成されている。
励起光源制御部 9 1は、 第 1実施形態における増幅媒体性能シミュレーショ ン装置 1により得られたシミュレ一シヨン結果に基づいて設計されて、 入力信 号光の入力による EDF A 72における始準位のイオン分布の変動による利得 偏差が補償されるように EDF A 72を制御するものであるが、 第 3実施形態 および第 4実施形態の場合と異なり、 波長配置情報取得部としての機能を省略 している。
すなわち、 励起光源制御部 91は、 帯域分割フィルタ 91 a, 91 b, フォ トダイオード 91 a— 1, 91 a— 2, 91 b— 1, 91 b— 2および平均利 得一定制御部 91 cをそなえて構成されている。
ここで、 帯域分割フィルタ 91 a, 91 bはそれぞれ、 分岐力ブラ 74, 7 5からの EDFA72入力側の信号光および EDF A 72出力側の信号光のパ ヮー分岐光について、 帯域で分割された複数 (第 5実施形態の場合は 2つ) の 信号光とするものである。
この帯域分割フィルタ 91 a, 91 bにおいては、 前述の第 1実施形態にお ける増幅媒体性能シミュレーション装置 1におけるシミュレーション結果をも とに、 SHBによる利得偏差を想定して、 各々の帯域の平均利得がほぼ等しく 安定するような帯域に信号光を分割するようになっている。
たとえば、 波長分割フィルタ 91 a , 91 bにおいては、 後述の図 22, 図 23に示すように波長帯域を 2分割することができる。 増幅媒体として用いる EDFA72の SHBによる利得変動特性については、 増幅媒体シミュレ一シ ョン装置 1において、 前述の図 5〜図 7に示すようなシミュレーション結果が 得られている。 このシミュレーション結果から、 EDF A 72については特に 1530 nm周辺で SHBの影響が大きいことがわかる。
そこで、 SHBの強さに応じて、 EDFA72を短波長側の第 1帯域 (15 29 - 1536 nm程度) と長波長側の第 2帯域 (1536— 1561 n m程 度) の 2つの帯域に分割するのである。
また、 フォトダイオード 91 a— 1, 91 a— 2はそれぞれ、 帯域分割フィ ルタ 91 aにて帯域が 2分割された信号光の信号光パワーについてモニタする ものである。 同様に、 フォトダイオード 91 b— 1, 9 l b— 2はそれぞれ、 帯域分割フィルタ 91 bにて帯域が 2分割された信号光の信号光パワーについ てモニタするものである。 たとえば、 フォトダイオード 91 a— 1, 9 l b— 1は、 上述の第 1帯域に 分割された信号光を受光するとともに、 フォトダイオード 91 a— 2, 91 b _2は、 上述の第 2帯域に分割された信号光を受光するようになっている。 したがって、 上述の帯域分割フィルタ 91 a, 91 bおよびフォトダイォー ド 91 a— 1, 91 a— 2, 91 b— 1, 91 b— 2により、 増幅媒体性能シ ミュレーション装置 1により得られたシミュレーション結果をもとに分割され た複数の帯域ごとに、 入力信号光および出力信号光のパワーをそれぞれ取得す る第 2パワーモニタとして機能する。
また、 平均利得一定制御部 91 cは、 フォトダイオード 91 a _ 1, 91 a -2, 91 b - 1 , 91 b— 2にて取得した各帯域の入力信号光および出力信 号光のパワーをもとに、 各帯域の平均利得が一致するように、 励起光源 71を 制御するための信号を出力するものである。
S H Bによつて発生する利得変動は増幅帯域内の波長によってその大きさが 異なるため、利得偏差が生じる。従って、波長分割フィルタ 91 a, 91 bで、 EDFA72の増幅帯域を SHBの強さに応じて複数の帯域に分割しておき、 その上で、 平均利得一定制御部 91 cにおいて、 各々の帯域の平均利得が等し くなるように励起パヮ一を調整することによつて利得の平坦性を保つことがつ できるのである。
上述の構成による、 本発明の第 5実施形態にかかる光増幅器 90での動作に ついて、 図 21に示すフローチャートを参照しながら以下に説明する。
EDF A 72の入力側信号光は、 分岐力ブラ 74によって分岐後、 帯域分割 フィルタ 91 aによって第 1帯域と第 2帯域とに分割され、 フォトダイオード 91 a— 1, 91 a— 2によって各々受光する。 同様に E D F A 72の出力側 信号光についても、 分岐力ブラ 75によって分岐後、 帯域分割フィルタ 91 b によって第 1帯域と第 2帯域とに分割され、 フォトダイオード 91 b— 1, 9 1 b_2によって各々受光する。
そして、 平均利得一定制御部 91 cでは、 フォトダイォード 91 a— 1 , 9 1 a— 2からの入力信号光パワーに応じた受光信号と > フォトダイオード 91 b— 1, 91 b— 2からの出力信号光パワーに応じた受光信号とを受けると ( ステップ B 1)、まず帯域全体について従来よりの利得一定制御を行なう (ステ ップ B 2)。
すなわち、 フォトダイオード 91 a— 1, 91 b— 1からの第 1帯域につい ての入出力信号光から、 フォトダイオード 91 a— 2, 9 l b— 2からの第 2 帯域についての入出力信号光から、 第 1帯域と第 2帯域とを合わせた帯域全体 についての利得が一定となるように、 励起光源 71を制御する制御信号を出力 する。
その後、 平均利得一定制御部 91 cでは、 分割された第 1帯域, 第 2帯域ご とに平均利得を算出する。 SHBの効果によって利得偏差が生じると、 第 1帯 域の平均利得と第 2帯域の平均利得との間で偏差が生じてくる。 このとき、 各 帯域は S H Bの強さに応じて分割しているため、 第 1帯域内での利得偏差およ ぴ第 2帯域内での利得偏差は、 算出された分割帯域ごとの平均利得間の利得偏 差よりも小さくなる。
ここで、 平均利得一定制御部 91 cでは、 算出された第 1帯域の平均利得 G と第 2帯域の平均利得 G2との大小を比較し、 大小比較結果に応じて、 励起光 源 71における励起パワーを増減させるための制御信号を出力する。
すなわち、 第 1帯域の平均利得 が第 2帯域の平均利得 G2より大きい (G !>G2) ときは、 反転分布率が低くなるように励起パワーを減少させ、 が G2より小さい (Gi<G2) ときは、 反転分布率が高くなるように励起パワー を増加させるように、 励起光源 71に対して制御信号を出力する (ステップ B 3)。
これにより、 励起光源 71からの励起光パワーの増減制御により、 反転分布 率を低くまたは高くなるようにして、平均利得 および G2をほぼ均一にする ことができる。 尚、 励起光パワーの増減制御による出力信号光の利得利得変動 分については、 VOA 76の損失量を可変することによって減少分を補う (ス テツプ B 4)。
図 22および図 23は第 5実施形態における光増幅器 90において、 平均利 得一定制御部 91 cによる励起光源 71の制御によって SHBによる利得偏差 を補償する一例を示すものである。 図 22は、 短波長側の第 1帯域 BND# 1に 1チャンネル、 長波長側の第 2 帯域 BND# 2に 8チャンネルの信号を入力することで SHBによる利得偏差 が発生した場合の、 平均利得一定制御部 91 cで算出される両帯域の平均利得 を示すものである。 この図 22に示すように、 第 1帯域 BND# 1での平均利 得01は23. 5 d B、 第 2帯域 BND# 2での平均利得 G2は 23 d Bとなり 、 帯域間の利得偏差 0. 5 dBが得られる。
また、 第 1帯域 BND# 1の平均利得が第 2帯域 B N D # 2の平均利得より も大きい (G1〉G2) ことから、 平均利得一定制御部 91 cでは、 前方励起光 , 後方励起光またはその両方の励起パワーを減少制御する。 これにより、 図 2 3のように第 1帯域 BND# 1および第 2帯域 BND# 2双方の帯域の平均利 得がほぼ等しくなり、 SHBによる利得偏差を補正することができる。
なお、 この場合においては、 SHB補正後の利得は、 所望の利得よりも小さ くなるため、 VOA76の損失量を小さくすることによって減少分を補う。 このように、 本発明の第 5実施形態にかかる光増幅器 90においても、 前述 の第 3, 第 4実施形態の場合と同様に、 励起光源制御部 91により、 前述の第 1実施形態における増幅媒体性能シミュレーション装置 1のシミュレーション 実行部 31から短時間の処理で得られる高精度のシミュレーション結果に基づ いて、 EDFA72における始準位のイオン分布の変動による利得偏差が補償 されるように励起光源 71を制御することができるので、 利得一定制御の安定 度を飛躍的に高めることができる利点がある。
特に、 信号光の波長配置がダイナミックに変動しうるフォトニックネットヮ ークにおけるノードの構成要素となる光増幅器において、 大幅な波長配置 ·波 長数変化に対応して、 増幅特性の安定化を図ることができる利点がある。 また、 前述の第 4実施形態の場合と異なり、 制御信号に信号配置情報が含ま れていないシステムにおいても、 スぺク トルアナライザを用いることなく、 装 置構成のためのコストを低減させながら、 SHBによる利得偏差の補正を行な うことができる利点もある。
(f ) その他
なお、 上述した各実施形態に関わらず、 本発明の趣旨を逸脱しない範囲で種 々変形して実施することができる。
たとえば、 上述の第 1実施形態にかかる増幅媒体性能シミュレーシヨン装置 1においては、 EDFAにおける SHBによる反転分布率変化量を計算する際 に、 式 (3) のようにガウシアン関数を用いているが、 本発明によればこれに 限定されず、 例えばローレンツ (Lorentzian) 関数やフォークト (Voigt) 関数 等の、 中心波長と幅を持った山の形を持つ関数を用いて、 第 1関数および第 2 関数を構成することとしてもよい。
具体的には、 以下に示すような、 式 (3) における第 1関数をなすガウシァ ン関数 (式 (6) 参照) や、 第 2関数をなすガウシアン関数 (式 (7) 参照) を、 式 (8) に示すローレンツ関数や式 (9) に示すフォークト関数に適宜置 換することができる。
Figure imgf000038_0001
BW
(8) π (λ-λ0)2+ΒΨ0 2
Figure imgf000038_0002
のとき、
. -dt
π ·
BW,
BW, と定義する。 ここで、 BWgは、 ガウシアン (Gaussian) 関数の半値半幅であ り、 BW!は、 ローレンツ (Lorentzian) 関数の半値半幅であり、 λ0は中心波長 である。
さらに、 上述の本実施形態においては、 E D F Aにおける利得偏差特性につ いてシミュレーションを行なっているが、 本発明によればこれに限定されず、 E D F A以外の増幅媒体についての S H Bによる利得偏差についても、 本実施 形態に準じて、 少なくとも一つ以上の関数 (例えばガウシアン関数) を用いた 演算をシミュレーション実行部 3 1で実行することによって、 シミュレーショ ンを行なうことが可能である。
また、 本発明の各実施形態が開示されていれば、 当業者によって製造するこ とが可能である。 産業上の利用可能性
以上のように、 本発明の増幅媒体性能シミュレーション装置は、 フォトニッ クネットワークを構築する際に適用される増幅媒体の性能のシミュレーション を行なう際に有用であり、 特に E D F Aについての S H Bによる利得偏差特性 のシミュレーションを行なうのに適している。

Claims

請 求 の 範 囲
1 . 励起光源からの励起光により励起されて、 信号光を増幅する増幅媒体の 性能のシミュレーションを行なう増幅媒体性能シミュレーシヨン装置であって、 該増幅媒体についての基本データを保持する基本データ保持部と、
前記シミュレーションの対象となる増幅媒体に入力すべき入力信号光に関す る情報として、 前記入力信号光の波長値および光パワー値について保持する入 力信号光情報保持部と、
前記の基本データ保持部および入力信号光情報保持部にて保持された内容を 用いて、 前記入力信号光の入力による該増幅媒体における始準位のイオン分布 の変動分を含めて、 該増幅媒体中から出力される出力信号光パワーを信号光波 長ごとに近似算出して、 この算出結果を該増幅媒体の性能のシミュレーシヨン 結果として出力するシミュレーション実行部とをそなえて構成されたことを特 徴とする、 増幅媒体性能シミュレーション装置。
2 . 該シミュレーション実行部が、
該増幅媒体中の長手方向座標の位置に応じた信号光パワーに基づく反転分布 率を算出する反転分布率算出部と、
該反転分布率算出部にて算出された前記反転分布率と、 前記の基本データ保 持部および入力信号光情報保持部にて保持された内容とを用いて、 前記入力信 号光の入力により該増幅媒体の始準位のイオン分布が変動することによって生 じうる反転分布率の変化量を、 前記入力信号光の波長および該増幅媒体の長手 方向位置の関数として算出する反転分布率変化量算出部と、
該反転分布率変化量算出部にて算出された反転分布率の変化量と、 前記の基 本データ保持部および入力信号光情報保持部にて保持された内容と、 を用いて 定められた微分方程式から、 該増幅媒体における信号光入力端から該増幅媒体 中を伝搬する信号光についての光パワーの変化を、 前記信号光入力端を起点と して信号光出力端まで微小伝搬範囲を単位として算出してゆく信号光パワー変 化算出部と、
該入力信号光情報保持部にて保持された前記入力信号光のパワー値に、 該信 号光パヮ一変化算出部にて算出される前記微小伝搬範囲での光パワーの変化を、 前記信号光入力端を起点として信号光出力端まで順次加算していくことにより、 該増幅媒体中を伝搬する信号光の長手方向座標の位置に応じた信号光パワーを、 前記入力信号光の入力による該増幅媒体における始準位のイオン分布の変動分 を含めて算出する信号光パワー算出部と、
該信号光パワー算出部にて算出された、 前記信号光出力端から出力される信 号光のパワーの算出結果を、 該増幅媒体の性能のシミュレーション結果として 出力処理を行なう出力処理部をそなえて構成されたことを特徴とする、 請求の 範囲第 1項記載の増幅媒体性能シミュレ一ション装置。
3 . 該反転分布率変化量算出部においては、 前記反転分布率の変化量を算出 する関数として、 少なくとも一つ以上のガウシアン関数を用いることを特徴と する、 請求の範囲第 2項記載の増幅媒体性能シミュレーシヨン装置。
4 . 該反転分布率変化量算出部が、 該反転分布率の変化量を、 利得飽和状態 の第 1波長帯を中心とする第 1関数を演算する第 1関数演算部と、 該増幅媒体 に特有の第 2波長帯を中心とする関数からなる第 2関数を演算する第 2関数演 算部と、 該第 1関数演算部および第 2関数演算部からの算出結果について加算 する加算部とをそなえて構成されたことを特徴とする、 請求の範囲第 2項記载 の増幅媒体性能シミュレーション装置。
5 . 該第 1関数演算部で演算される該第 1関数が、 該入力信号光の波長に応 じて与えられるガウシアン関数の総和により構成され、 該第 2関数演算部で演 算される該第 2関数が、 複数のガウシアン関数の総和により構成されているこ とを特徴とする、請求の範囲第 4項記載の増幅媒体性能シミュレーション装置。
6 . 該第 1関数をなす該入力信号光の波長に応じて与えられるガウシアン関 数は、 中心波長を該入力信号光の波長とし、 半値全幅を該増幅媒体に応じた値 として定められるとともに、 該第 2関数をなす各ガウシアン関数は、 中心波長 を該増幅媒体に特有の第 2波長帯とし、 半値全幅を該増幅媒体に応じた値とし て定められ、 且つ、 該第 1関数および第 2関数における各ガウシアン関数の半 値全幅を、 該基本データ保持部にて保持しておくように構成されたこと特徴と する、 請求の範囲第 5項記載の増幅媒体性能シミュレーシヨン装置。
7 . 前記の第 1又は第 2関数をなす各ガウシアン関数の深さは、 前記入力信 号光の総パワーの増加に伴って増加し、 一定値以上で飽和する深さ関数で定義 されるように構成されたことを特徴とする、 請求の範囲第 5項記載の増幅媒体 性能シミユレーション装置。
8 . 前記の第 1関数をなす該入力信号光の波長に応じて与えられる各ガウシ アン関数についての深さ関数が、 該入力信号光の波長 I;と、 該入力信号光の 波長; I iについての該増幅媒体の長手方向座標 zにおける光パワー P ·, ( z )と、 該増幅媒体の長手方向座標 zにおける入力信号光の総パワー P total ( z ) とを変 数とする関数で定義され、
前記の第 2関数をなす各ガウシアン関数についての深さ関数が、 前記第 2波 長帯の波長; l jと、 該増幅媒体の長手方向座標 zにおける、 入力信号光の総パ ヮー P totai ( z ) および該増幅媒体の反転分布率 n ( z ) とを変数とする関数で 定義されるように構成され、
且つ、 該第 1および第 2関数をなす各ガウシアン関数についての深さ関数を定 める係数を、 該基本データ保持部にて保持しておくように構成されたことを特 徴とする、 請求の範囲第 7項記載の増幅媒体性能シミュレーション装置。
9 . 該基本データ保持部が、 該増幅媒体の基本データとして、 少なくとも該 増福媒体についての全長と、 入力信号光波長についての関数式で表される利得 係数 g ( λ ) , 吸収係数 α ( λ ) および損失 1 ( ) とともに、 該増幅媒体にお ける前記始準位のイオン分布の変動を加味しない反転分布率 η ( ζ ) を保持す るように構成され、
該信号光パヮ一変化算出部が、 該信号光パワー算出部にて算出される該増幅媒体中を伝搬する信号光の長手 方向座標の位置に応じた信号光パワーから前記反転分布率 n (z) を計算する とともに、
前記反転分布率 n (z) と、 該反転分布率変化量算出部にて算出された反転 分布率の変化量 Δ η (λ, ζ) と、 該基本データ保持部にて保持されている前 記基本データとを用いた、 該増幅媒体の長手方向に対して長さの微小単位ごと の光パワー変化
d P (z) / d z =
{ (g U) + a U)) (n (z) + Δ η U, z)) 一 (a U) + 1 (λ)) } · P (z)
を用いることにより、 該増幅媒体の長手方向座標 zの位置を伝搬する信号光に ついての光パワーの微少変化を算出していくことを特徴とする、 請求の範囲第 2項〜第 8項記載の増幅媒体性能シミュレーション装置。
1 0. 該シミュレーション実行部が、 スぺクトラルホールバーニングによつ て生じる信号光波長間の利得偏差を近似算出するように構成されたことを特徴 とする、請求の範囲第 1項〜第 9項記載の増幅媒体性能シミュレーション装置。
1 1. 励起光源からの励起光により励起されて、 信号光を増幅する増幅媒体 の性能のシミュレーションを行なう増幅媒体性能シミュレーション方法であつ て、
前記信号光の入力により該増幅媒体の始準位のィオン分布が変動することに よって生じうる反転分布率の変化量を算出する反転分布率変化量算出ステツプ と、
該反転分布率変化量算出ステップにて算出された反転分布率の変化量によつ て補正された補正後反転分布率に基づく該増幅媒体の伝搬方程式をもとに、 該 増幅媒体の信号光入力端から該増幅媒体中を伝搬する信号光についての光パヮ 一の変化を、 前記信号光入力端を起点として信号光出力端まで微小伝搬範囲を 単位として算出してゆく光パワー変化算出ステップと、 前記入力信号光のパワー値に、 該光パワー変化算出ステップにて算出される 前記微小伝搬範囲での光パワーの変化を、 前記信号光入力端を起点として信号 光出力端まで順次加算していくことにより、 該増幅媒体中から出力される出力 信号光パワーを、 前記入力信号光の入力による該増幅媒体における始準位のィ オン分布の変動分を含めて算出する出力信号光パワー算出ステップと、
該出力信号光パワー算出ステップにて算出された算出結果を該増幅媒体の性 能のシミュレーション結果として出力処理を行なう出力処理ステップと、 をそなえて構成されたことを特徴とする、増幅媒体性能シミュレーション方法。
1 2 . 励起光を出力する励起光源と、
該励起光源からの励起光により励起されて、 入力信号光を増幅する信号光増 幅媒体と、
該信号光増幅媒体から出力された出力信号光の利得を等化する利得等化器と をそなえ、
該利得等化器の利得等化特性が、
励起光源からの励起光により励起されて、 信号光を増幅する増幅媒体の性能 のシミュレーションを行なう増幅媒体性能シミュレーション装置であって、 該 増幅媒体についての基本データを保持する基本データ保持部と、 前記シミュレ ーションの対象となる増幅媒体に入力すべき入力信号光に関する情報として、 前記入力信号光の波長値および光パワー値について保持する入力信号光情報保 持部と、 前記の基本データ保持部および入力信号光情報保持部にて保持された 内容を用いて、 前記入力信号光の入力による該増幅媒体における始準位のィォ ン分布の変動分を含めて、 該増幅媒体中から出力される出力信号光パワーを信 号光波長ごとに近似算出して、 この算出結果を該増幅媒体の性能のシミュレ一 ション結果として出力するシミュレーション実行部とをそなえて構成された増 幅媒体性能シミュレーション装置から出力された前記シミュレーション結果に 基づいて、 前記入力信号光の入力による該増幅媒体における始準位のイオン分 布の変動による利得偏差が補償されるように設計されていることを特徴とする、 光増幅器。
1 3 . 励起光を出力する励起光源と、
該励起光源からの励起光により励起されて、 入力信号光を増幅する信号光増 幅媒体と、
該励起光源を制御する励起光源制御部とをそなえ、
該励起光源制御部が、
励起光源からの励起光により励起されて、 信号光を増幅する増幅媒体の性能 のシミュレーションを行なう増幅媒体性能シミュレーション装置であって、 該 増幅媒体にっレ、ての基本データを保持する基本データ保持部と、 前記シミュレ ーションの対象となる増幅媒体に入力すべき入力信号光に関する情報として、 前記入力信号光の波長値および光パワー値について保持する入力信号光情報保 持部と、 前記の基本データ保持部および入力信号光情報保持部にて保持された 内容を用いて、 前記入力信号光の入力による該増幅媒体における始準位のィォ ン分布の変動分を含めて、 該増幅媒体中から出力される出力信号光パワーを信 号光波長ごとに近似算出して、 この算出結果を該増幅媒体の性能のシミュレ一 ション結果として出力するシミュレーション実行部とをそなえて構成された増 幅媒体性能シミュレーション装置から出力された前記シミュレーション結果に 基づいて、 前記入力信号光の入力による該増幅媒体における始準位のイオン分 布の変動による利得偏差が補償されるように該励起光源を制御することを特徴 とする、 光増幅器。
1 4 . 該励起光源制御部が、
前記入力信号光および出力信号光のパワーをモニタする第 1パワーモニタと、 該増幅媒体を伝搬する信号光の波長配置情報を取得する波長配置情報取得部 と、
該第 1パワーモニタにてモニタされた前記入出力信号光のパヮ一から、 利得 が一定となるように、 該励起光源を制御するための信号を出力する利得一定制 御部と、
該波長配置情報取得部にて取得された波長配置情報をもとに、 前記スぺク ト ルホールバーニングによる波長帯における利得偏差を減少させるように、 該利 得一定制御部における該励起光源に対する制御量を補正する補正部と、 をそなえて構成されたことを特徴とする、請求の範囲第 1 3項記載の光増幅器。
1 5 . 該波長配置情報取得部が、 該増幅媒体に入力または出力される信号光 の波長配置をモユタするスぺク トルアナライザにより構成されたことを特徴と する、 請求の範囲第 1 4項記載の光増幅器。
1 6 . 該波長配置情報取得部が、 該信号光とともに伝送される制御信号光か ら、 波長配置情報を取得するように構成されたことを特徴とする、 請求の範囲 第 1 4項記載の光増幅器。
1 7 . 励起光源制御部が、
該増幅媒体性能シミュレーション装置により得られた前記シミュレーション 結果をもとに分割された複数の帯域ごとに、 前記の入力信号光および出力信号 光のパワーをそれぞれ取得する第 2パワーモニタと、
該第 2パワーモニタにて取得した各帯域の入力信号光および出力信号光のパ ヮーをもとに、 前記各帯域の平均利得が一致するように、 該励起光源を制御す るための信号を出力する平均利得一定制御部と、
をそなえて構成されたことを特徴とする、請求の範囲第 1 3項記載の光増幅器。
PCT/JP2003/008219 2003-06-27 2003-06-27 増幅媒体性能シミュレーションの装置および方法並びに光増幅器 WO2005002009A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005503228A JP3936958B2 (ja) 2003-06-27 2003-06-27 増幅媒体性能シミュレーションの装置および方法並びに光増幅器
PCT/JP2003/008219 WO2005002009A1 (ja) 2003-06-27 2003-06-27 増幅媒体性能シミュレーションの装置および方法並びに光増幅器
US11/187,938 US7212335B2 (en) 2003-06-27 2005-07-25 Apparatus and method for amplification medium performance simulation, and optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008219 WO2005002009A1 (ja) 2003-06-27 2003-06-27 増幅媒体性能シミュレーションの装置および方法並びに光増幅器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/187,938 Continuation US7212335B2 (en) 2003-06-27 2005-07-25 Apparatus and method for amplification medium performance simulation, and optical amplifier

Publications (1)

Publication Number Publication Date
WO2005002009A1 true WO2005002009A1 (ja) 2005-01-06

Family

ID=33549056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008219 WO2005002009A1 (ja) 2003-06-27 2003-06-27 増幅媒体性能シミュレーションの装置および方法並びに光増幅器

Country Status (3)

Country Link
US (1) US7212335B2 (ja)
JP (1) JP3936958B2 (ja)
WO (1) WO2005002009A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310708A (ja) * 2005-05-02 2006-11-09 Fujitsu Ltd 光増幅特性シミュレーション装置および方法
JP2008084923A (ja) * 2006-09-26 2008-04-10 Fujitsu Ltd 光増幅装置およびその制御方法
JP2011198978A (ja) * 2010-03-19 2011-10-06 Fujitsu Ltd 光増幅装置,利得制御方法,光伝送装置および利得制御装置
US8787495B2 (en) 2010-02-24 2014-07-22 Sumitomo Electric Industries, Ltd. Signal processing circuit and communication device having the same
JP2017208714A (ja) * 2016-05-18 2017-11-24 富士通株式会社 光伝送制御装置及び光信号波長決定方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002009A1 (ja) * 2003-06-27 2005-01-06 Fujitsu Limited 増幅媒体性能シミュレーションの装置および方法並びに光増幅器
US9059799B2 (en) * 2011-04-21 2015-06-16 Futurewei Technologies, Inc. Apparatus and method to calculate a noise figure of an optical amplifier for wavelength channels in a partial-fill scenario to account for channel loading

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036294A2 (en) * 1997-02-17 1998-08-20 Corning Incorporated Pump wavelength tuning of optical amplifiers
EP1033834A2 (en) * 1999-03-02 2000-09-06 Fujitsu Limited Wavelength division multiplexing optical amplifier and optical communication system
EP1089477A2 (en) * 1999-09-28 2001-04-04 Fujitsu Limited Inter-wavelength light power deviation monitoring method and optical equalizer and amplifier utilizing the method
US20020041433A1 (en) * 1998-02-04 2002-04-11 Fujitsu Limited Method for gain equalization, and device and system for use in carrying out the method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6144486A (en) * 1998-01-30 2000-11-07 Corning Incorporated Pump wavelength tuning of optical amplifiers and use of same in wavelength division multiplexed systems
JP2000261079A (ja) 1999-03-10 2000-09-22 Hitachi Cable Ltd 光増幅器
JP2000261078A (ja) 1999-03-10 2000-09-22 Hitachi Cable Ltd 光増幅器
US6631027B2 (en) * 2000-04-13 2003-10-07 Corning Incorporated Universal controller for an optical amplifier that operates over a wide dynamic range of optical signals and optical amplifiers utilizing such controllers
JP4281245B2 (ja) * 2000-12-15 2009-06-17 富士通株式会社 光増幅器
JP5226164B2 (ja) * 2001-06-14 2013-07-03 富士通株式会社 光増幅器
US6798567B2 (en) * 2002-03-07 2004-09-28 Lucent Technologies Inc. Method and apparatus for controlling power transients in an optical communication system
US6690508B2 (en) * 2002-03-26 2004-02-10 Fujitsu Network Communications, Inc. Control system and method for an optical amplifier
JP3989430B2 (ja) * 2003-02-12 2007-10-10 古河電気工業株式会社 光増幅方法、その装置およびその装置を用いた光増幅中継システム
WO2005002009A1 (ja) * 2003-06-27 2005-01-06 Fujitsu Limited 増幅媒体性能シミュレーションの装置および方法並びに光増幅器
JP4703164B2 (ja) * 2004-10-25 2011-06-15 富士通株式会社 光増幅器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036294A2 (en) * 1997-02-17 1998-08-20 Corning Incorporated Pump wavelength tuning of optical amplifiers
US20020041433A1 (en) * 1998-02-04 2002-04-11 Fujitsu Limited Method for gain equalization, and device and system for use in carrying out the method
EP1033834A2 (en) * 1999-03-02 2000-09-06 Fujitsu Limited Wavelength division multiplexing optical amplifier and optical communication system
EP1089477A2 (en) * 1999-09-28 2001-04-04 Fujitsu Limited Inter-wavelength light power deviation monitoring method and optical equalizer and amplifier utilizing the method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AIZAWA, T. ET AL.: "Effect of Spectral-Hole Burning on Multi-Channel EDFA Gain Profile", PROCEEDINGS OF CONFERENCE ON OPTICAL COMMUNICATION (OFC'99), 1999, pages 102 - 104, XP010334383 *
BECKER, P.C. ET AL.: "Erbium-Doped Fiber Amplifiers", FUNDAMENTALS AND TECHNOLOGY., ACADEMIC PRESS, 1999, pages 156/429 - 161/449, XP002973359 *
DESURVIRE, E.: "Erbium-Doped Fiber Amplifiers", DEVICE AND SYSTEM DEVELOPMENTS, JOHN WILEY & SONS, 2002, pages 265 - 277, XP002973358 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310708A (ja) * 2005-05-02 2006-11-09 Fujitsu Ltd 光増幅特性シミュレーション装置および方法
WO2006120769A1 (ja) * 2005-05-02 2006-11-16 Fujitsu Limited 光増幅特性シミュレーション装置および方法
US7551347B2 (en) 2005-05-02 2009-06-23 Fujitsu Limited Optical amplification characteristics simulation apparatus and optical amplification characteristics simulation method
JP2008084923A (ja) * 2006-09-26 2008-04-10 Fujitsu Ltd 光増幅装置およびその制御方法
US8787495B2 (en) 2010-02-24 2014-07-22 Sumitomo Electric Industries, Ltd. Signal processing circuit and communication device having the same
JP2011198978A (ja) * 2010-03-19 2011-10-06 Fujitsu Ltd 光増幅装置,利得制御方法,光伝送装置および利得制御装置
JP2017208714A (ja) * 2016-05-18 2017-11-24 富士通株式会社 光伝送制御装置及び光信号波長決定方法

Also Published As

Publication number Publication date
JP3936958B2 (ja) 2007-06-27
US7212335B2 (en) 2007-05-01
US20050254119A1 (en) 2005-11-17
JPWO2005002009A1 (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
JP6485189B2 (ja) 光伝送システムおよび光伝送装置
US7715092B2 (en) Dynamic raman tilt compensation
WO2012119495A1 (zh) 光功率调节方法和装置
JP4459277B2 (ja) ラマン増幅による雑音光のモニタ方法および装置、並びに、それを用いた光通信システム
US20090190205A1 (en) Raman amplifying device and control method
CN112585889A (zh) 一种建立数据模型的方法及装置
US7212335B2 (en) Apparatus and method for amplification medium performance simulation, and optical amplifier
US8908264B2 (en) Reducing transients in an optical amplifier
US8351112B2 (en) Optical amplifier
JP4635402B2 (ja) 光増幅器及び光増幅方法
EP2345116B1 (en) Optical network amplifier node and method of channel power depletion compensation
JP2008042096A (ja) 光増幅器および光伝送システム
JPWO2004077700A1 (ja) 波長多重励起ラマンアンプの制御装置、制御方法およびその制御プログラム
US6674568B2 (en) Method and apparatus for achieving flat broadband Raman gain
US8441721B2 (en) System and method of Raman amplifier pump control
US7068422B2 (en) Optical fiber amplification method and apparatus for controlling gain
JP6052295B2 (ja) ラマン増幅器および利得制御方法
JP5142024B2 (ja) 光増幅装置
JP3379104B2 (ja) 波長多重伝送用光増幅器
JP4316407B2 (ja) 光増幅装置の利得制御方法及びそれを用いた光増幅装置
CN103493403B (zh) 一种在考虑信道负载的部分填充场景中为波长信道计算光纤放大器噪音指数的装置和方法
JPH095212A (ja) 光ファイバ増幅器評価方法および装置
JP2023053406A (ja) 受信機
JPH09222381A (ja) 光ファイバ増幅器評価方法および装置
Menif et al. New method to equalize static and dynamic OSNR in cascades of EDFAs without in-line optical filters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005503228

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11187938

Country of ref document: US

122 Ep: pct application non-entry in european phase