WO2005001992A1 - 適応アンテナ受信方法および装置 - Google Patents

適応アンテナ受信方法および装置 Download PDF

Info

Publication number
WO2005001992A1
WO2005001992A1 PCT/JP2004/008801 JP2004008801W WO2005001992A1 WO 2005001992 A1 WO2005001992 A1 WO 2005001992A1 JP 2004008801 W JP2004008801 W JP 2004008801W WO 2005001992 A1 WO2005001992 A1 WO 2005001992A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
desired signal
signal
adaptive
antenna weight
Prior art date
Application number
PCT/JP2004/008801
Other languages
English (en)
French (fr)
Inventor
Shousei Yoshida
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2005511021A priority Critical patent/JP4618126B2/ja
Priority to US10/560,967 priority patent/US7565172B2/en
Priority to CN2004800159510A priority patent/CN1802771B/zh
Publication of WO2005001992A1 publication Critical patent/WO2005001992A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays

Definitions

  • the present invention relates to an adaptive antenna receiving apparatus, and in particular, adaptively forms an antenna directional beam in CDMA communication, receives a desired signal from a predetermined user, and generates an interference signal of another user power.
  • the present invention relates to an adaptive antenna receiving apparatus for suppressing.
  • CDMA Code division multiple access
  • An array antenna includes a plurality of antenna elements.
  • the array antenna can form a directional beam by controlling the amplitude and phase of the reception signal of each antenna element by weighting each antenna element with a complex number.
  • the array antenna receives the desired signal well and suppresses interference signals from other users.
  • An adaptive array antenna controls this directional beam adaptively.
  • the desired signal is received by the base station by multipath.
  • the adaptive array antenna not only directs a high beam gain in each path direction of the desired signal but a very low gain (null) point in the direction of the interference signal. By directing, the weighting is controlled so as to maximize the desired reception signal to interference noise power ratio (SI NR).
  • SI NR interference noise power ratio
  • Non-Patent Document 1 A conventional adaptive antenna receiving device is described in Non-Patent Document 1.
  • FIG. 1 is a block diagram showing a configuration of a conventional adaptive antenna receiving device.
  • a conventional adaptive antenna receiving apparatus includes a path receiving unit 101—111—101—L (L is a natural number. ), A combiner 106, a determiner 107, a switch 108, and a subtractor 109.
  • L number of path receiving units 101-1-1 101-L are provided to perform multipath combining corresponding to a plurality of transmission paths by multipath in a mobile communication environment.
  • the path receiving units 101-1 and 101-L all have the same configuration.
  • Path receiving section 101-1 includes beamformer 102-1, transmission path estimating section 103-1, complex shared operation 104-1, multipliers 105-1, 110-1, and antenna weight adaptive updating section 111. —1.
  • the beamformer 102-1 uses the spreading code of the desired user at the timing of path # 1 and each of the antenna elements # 1 to #N (N is the number of antenna elements included in the array antenna). N despread signals obtained by despreading the received signal are provided as inputs. The beamformer 102-1 forms a directional beam for path # 1 by weighting and combining the N despread signals.
  • FIG. 2 is a block diagram showing a configuration of a conventional beamformer.
  • the beamformer 102-1 includes a complex conjugate operation unit 112-1-1—112-1_N, a multiplier 11 3—1—1—113—1—N, and a combiner 114—1.
  • Other beamformers 102-2_2-L have the same configuration.
  • the complex conjugate operation unit 112-1-1-1 112-1-N calculates the complex conjugate of each of the N antenna weights (W) from the antenna weight adaptive updating unit 111-11, and outputs the result to the multiplier 113-1-1. 1— 1 1 113-1— Give to each of N.
  • Multipliers 113-1-1-1-1-1-1 -N represent each of the despread signals of path # 1 and the complex conjugate of the antenna weight given the power of each of the complex conjugate operation units 112_1_1—112_1_N. Is multiplied and given to the synthesizer 114-1.
  • the combiner 114_1 adds all outputs of the multipliers 113_1_1 to 113_1_N.
  • transmission channel estimating section 103-1 shown in FIG. 1 performs channel estimation from the output of beamformer 102-1 and converts the channel estimation value to complex conjugate operation section 104-1 and multiplier 110-1. -Give to one.
  • Transmission path estimation refers to estimating a change in the radio wave propagation state from the reception state of the path. The channel estimation value obtained in this way is used to compensate for changes in radio wave propagation conditions (channel compensation).
  • the complex conjugate operation unit 104-1 calculates the complex combination of the transmission channel estimation value from the transmission channel estimating unit 103-1 and supplies the calculated complex combination to the multiplier 105-1.
  • Multiplier 105-1 multiplies the output of beamformer 102-1 by the complex conjugate of the channel estimation value to correct phase fluctuation (channel correction) and weight for maximum ratio combining. I do.
  • Maximum ratio combining is a weighted combining method that maximizes the SINR of the signal after multipath combining.
  • the function of performing phase correction based on transmission path estimation is separated from antenna weight control. Therefore, in the antenna weight control, it is not necessary to correct the phase fluctuation due to the fading of the desired signal, and it is sufficient to correct the phase fluctuation depending only on the arrival direction of the signal, so that stable beam forming is possible.
  • the combiner 106 generates a demodulated signal by adding all of the outputs of the multipliers 105-1 105-L of the path receiving units 101-1 101-L and performing path combining.
  • Determiner 107 determines a transmission symbol having a high possibility from the demodulated signal obtained by combiner 106.
  • Switch 108 selects either a known reference signal or a transmission symbol from determinator 107, and supplies the selected signal to subtractor 109 as a reference signal. Switch 108 selects a known reference signal if given, and selects a transmission symbol of decision unit 107 if no known reference signal is given.
  • Subtractor 109 subtracts the demodulated signal from combiner 106 from the reference signal, and provides it as an error signal to multipliers 110-1-110-L of all path receiving sections 101-1-101-L. . At this time, a value obtained by multiplying the reference signal from the switch 108 by a reference signal level described later is used as the reference signal.
  • Multiplier 110-1 of path receiving section 101-1 multiplies the error signal from subtractor 109 by the transmission path estimation value from transmission path estimating section 103-1, and updates antenna weight adaptive updating section 111. Gives -1.
  • Antenna weight adaptive updating section 111-1 compares the error signal multiplied by the channel estimation value with the path
  • the antenna weight is adaptively calculated using the # 1 N despread signals and the beamformer (1) Give adaptive control to 102-1.
  • least mean square error control MMSE
  • LMS Least Mean Square
  • NLMS Normalized LMS
  • RLS Recursive Least Square
  • Non-Patent Document 1 describes that antenna weights are updated using an NLMS algorithm.
  • the antenna weight w (i, m) (where i is the path number and m is the symbol number) is calculated using the following update equation (Equation (1)).
  • x (i, m) is a despread signal of a signal received by each antenna.
  • p (i, m) is the total power of the despread signal of each antenna.
  • h (i, m) is a channel estimation value.
  • is the step size.
  • Equation (2) Indicates a conjugate complex number.
  • z (m) is a reference signal (known reference signal or determination signal).
  • a (m) is a reference signal level.
  • Reference signal level A (m) is calculated based on a despread signal for each antenna element input to beamformer 102-1 (for example, see Patent Document 1). Since the reception level of the despread signal input to the beamformer 102-1 is not affected by the beam gain, it is desirable as a reference for calculating the reference signal level A (m).
  • the antenna weights used for forming the directivity in the plurality of sub arrays are There has been proposed a form in which the adaptive control characteristic is improved by using the decision error signals of all the sub-arrays in the antenna weight control for the common antenna weight control (see Patent Document 2).
  • each path is detected by weighting and combining the despread output of each beam formed by the multi-beamformer to correct phase fluctuation, and further combining these paths to obtain a demodulated signal.
  • the weight of the weighting synthesis is adaptively updated using the decision error signal subjected to the inverse correction of the phase variation and the despread output of each beam (see Patent Document 3). This provides excellent path demodulation characteristics in addition to excellent path detection characteristics.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-77008
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-368520
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-368652
  • Non-Patent Document 1 Tanaka, Sawabashi, Adachi, et al., "Pilot Symbol-Assisted Decision—Dir ectea and oherent Adaptive Array Diversity for DS—CDMA Mobile Radio Reverse Link” (IEICE Trans., Vol. E80—A, pp. 2445) —2454, Dec. 1997)
  • a directional beam can be formed in the arrival direction of a desired signal. Further, according to various application forms as described in Patent Documents 2 and 3, a desired signal can be received more favorably. However, this is an effect obtained under the condition that the followability is good.
  • FIG. 3 is a diagram showing a relationship between a directional beam by an adaptive array antenna and an arrival direction of a desired signal.
  • FIG. 3 shows the case of the related art, and (b) shows the case of the present invention.
  • Traditional In the adaptive array antenna the direction of the directional beam is controlled so that the maximum gain is obtained in the direction of arrival of the desired signal, but no consideration is given to the followability, so that as shown in Fig. 3 (a) If the angle of the arrival direction changes, the arrival direction of the desired signal deviates from the beam direction, and the gain of the desired signal is greatly reduced. As a result, an accurate error signal is not detected, and the followability is impaired. In severe cases, there is a possibility that the desired signal cannot be tracked due to the inability to follow the angle change in the direction of arrival, resulting in loss of synchronization.
  • the present invention has been made by focusing on the followability of a directional beam, and an object of the present invention is to provide an adaptive antenna receiving apparatus with improved followability to an angle change in the arrival direction of a desired signal. It is.
  • an adaptive antenna receiving apparatus provides a multiplexed beam transmitted from a plurality of transmitting apparatuses by adaptively forming a directional beam of an array antenna including a plurality of antenna elements.
  • An adaptive antenna receiving apparatus for receiving a desired signal by suppressing an interference signal in a signal and correcting the desired signal based on a transmission path estimation, comprising: a signal received by each of the antenna elements; Antenna weight adaptive updating means for adaptively updating the antenna weight from the error signal obtained by using the desired signal corrected above,
  • An antenna weight direction constraining means for constraining the antenna weights obtained by the antenna weight adaptation updating means so that a beam gain becomes constant in the arrival direction of the desired signal
  • a beamformer that receives the desired signal at the array antenna using the antenna weights that have been subjected to the constraining processing by the antenna weight direction constraining means, and a transmission path estimation of the desired signal received by the beamformer. And a transmission path estimating means for correcting the desired signal using the estimation result.
  • the transmission path estimating means performs the transmission path correction
  • the antenna weight adaptive updating means adaptively controls the antenna weight using the reception signal of each antenna element
  • the antenna direction constraint means When the antenna weight is corrected, the transmission path correction is separated from the antenna weight control, so the antenna weight does not include the transmission path correction component.
  • the antenna weight direction constraining means can adjust the antenna weight so that the beam gain in the direction of arrival of the desired signal is kept constant.
  • the antenna weight direction constraining means may perform a constraining process on the antenna weights using a direction vector indicating a direction of arrival of the desired signal.
  • the antenna direction restricting means corrects the antenna weight so that the beam gain in the arrival direction of the desired signal is kept constant by the direction vector, so that the gain of the desired signal component of the beam output is kept constant. It is.
  • adjacent antenna correlation detecting means for calculating each correlation value between signals received by the adjacent antenna elements
  • Antenna correlation averaging means for calculating an average value of the correlation values obtained by the adjacent antenna correlation detection means
  • Arctangent calculating means for calculating the phase by taking the arctangent of the average value obtained by the antenna correlation averaging means
  • the apparatus may further include direction vector calculation means for obtaining the direction vector from the phase obtained by the arc tangent calculation means.
  • each correlation between adjacent antenna elements obtained by the adjacent antenna correlation detection means is averaged by the antenna correlation averaging means, and the arctangent calculation means and the direction vector calculation means obtain the direction vector from the average value.
  • the direction vector of a desired signal can be obtained by simple processing and configuration based on the correlation between adjacent antenna elements.
  • the transmission path estimating means performs transmission path correction
  • the antenna weight adaptive updating means adaptively controls the antenna weight using the reception signal of each antenna element
  • the antenna direction constraining means controls the antenna weight.
  • the antenna weight is adaptively controlled by phase correction that depends only on the direction of arrival of the signal without including the component of the channel correction.
  • the means can modify the antenna weight so that the beam gain in the arrival direction of the desired signal is kept constant, the gain of the desired signal component of the beam output is kept constant, and the followability of the directional beam is improved. It is possible to prevent loss of synchronization.
  • the antenna direction constraining means modifies the antenna weight so that the beam gain in the arrival direction of the desired signal is kept constant by the direction vector, the gain of the desired signal component of the beam output is kept constant.
  • each correlation between adjacent antenna elements obtained by the adjacent antenna correlation detecting means is averaged by the antenna correlation averaging means, and the arctangent calculating means and the direction vector calculating means obtain a direction vector from the average value.
  • the direction vector of a desired signal can be obtained by simple processing and configuration based on the correlation between adjacent antenna elements.
  • FIG. 4 is a block diagram illustrating a configuration of an adaptive antenna receiving apparatus according to an embodiment of the present invention.
  • the adaptive antenna receiving apparatus includes a path receiving unit 111_1_L, a synthesizer 6, a determiner 7, a switch 8, and a subtractor 9.
  • L path receiving units 111 are provided to perform multipath combining corresponding to multipath propagation paths in a mobile communication environment.
  • the path receivers 1_1-111 have the same configuration.
  • the path receiving units 111 are a beamformer 2-1, a transmission channel estimating unit 3-1, a complex conjugate operating unit 4-1, multipliers 5-1, 10-1, and an antenna weight adaptive updating unit 11 -1, an antenna weight direction constraint unit 12-1 and a direction vector generation unit 16-1.
  • Beamformer 2-1 uses the spreading code of the desired user to receive at each antenna element # 11- # N (N is the number of antenna elements included in the array antenna) at the timing of path # 1. N despread signals obtained by despreading the signal are provided as inputs.
  • the beamformer 2_1 forms a directional beam for pass # 1 by weighting and combining the N despread signals.
  • FIG. 5 is a block diagram showing a configuration of the beamformer shown in FIG.
  • the beamformer 2-1 has a complex conjugate operation unit 13-1-11-1-13-1_N, a multiplier 14-1-1-1-14-1-N, and a combiner 15-1. are doing.
  • Other beamformers 2-2-2-L have the same configuration.
  • the complex conjugate operation unit 13-1-1— 13-1—N calculates the complex conjugates of the N antenna weights W from the antenna weight direction constraint unit 12_1, and calculates the complex conjugates. 14-1 Give to each of N.
  • the multipliers 141-111-11-1141-111 N are each of the despread signal of the path # 1 and the complex conjugate operation unit.
  • the power of each of 13-1-1- 13-1-1-N is multiplied by the complex conjugate of the given antenna weight and given to the combiner 15-1.
  • the combiner 15-1 adds up all the outputs of the multipliers 14-1 1 1 1 1 1 4 1 1 N.
  • the transmission channel estimating unit 3-1 shown in FIG. 4 estimates a transmission channel based on the output power of the beamformer 2-1 and converts the transmission channel estimation value into the complex conjugate operation unit 4-1 and the multiplication. Give to container 10-1.
  • Transmission path estimation refers to estimating a change in the radio wave propagation state from the reception state of the path. As a result, the obtained channel estimation value is used to compensate for changes in radio wave propagation conditions (channel correction).
  • the complex conjugate operation unit 4-1 calculates the complex conjugate of the transmission channel estimation value from the transmission channel estimation unit 3-1 and supplies the calculated complex conjugate to the multiplier 5-1.
  • the multiplier 5-1 multiplies the output of the beamformer 2-1 by the complex conjugate of the channel estimation value to correct the phase fluctuation (channel correction) and the weight for maximum ratio combining. Make the attachment.
  • Maximum ratio combining is a weighted combining method that maximizes the SINR of the signal after multipath combining.
  • the function of correcting the phase based on the transmission path estimation is separated from the antenna weight control. Therefore, in the antenna weight control, it is not necessary to correct the phase fluctuation due to fading of the desired signal, so that it is possible to stably form a beam by correcting the phase fluctuation depending only on the arrival direction of the signal.
  • the combiner 6 generates a demodulated signal by adding all the outputs of the multipliers 5_1 5-L of the path receiving unit 1_1-111 L and performing path combining.
  • the determinator 7 determines a transmission symbol having a high possibility from the demodulated signal obtained by the combiner 6, and supplies the transmission symbol to the switch 8.
  • Switch 8 selects either a known reference signal or a transmission symbol from determinator 7, and supplies it to subtractor 9 as a reference signal. Switch 8 has a known reference signal If the known reference signal is not given, the transmission symbol from the decision unit 7 is selected.
  • the subtractor 9 subtracts the demodulated signal from the synthesizer 6 from the reference signal
  • the multiplier 10-1 of the path receiving unit 1-1 adds the error signal from the subtractor 9 to the transmission path estimating unit 3_
  • the result is multiplied by the transmission path estimation value from 1 and given to the antenna weight adaptive updating section 11-11.
  • the antenna weight adaptive updating unit 111-1 transmits the error signal multiplied by the channel estimation value to the path
  • the antenna weight W ' is adaptively calculated by using the # 1 N despread signals, and given to the antenna weight direction constraint unit 12_1.
  • the calculation of the antenna weight W ′ generally uses least mean square error control (MMSE).
  • MMSE least mean square error control
  • LMS is used for the adaptive update algorithm of the antenna weight coefficient using the error signal.
  • the antenna weight w (i, m) (where i is a path number and m is a symbol number) is calculated using the following update equation (Equation (1)). Is done.
  • Reference signal level A (m) is calculated based on the despread signal for each antenna element input to beamformer 2-1. Since the reception level of the despread signal input to beamformer 2-1 is not affected by the beam gain, it is desirable as a reference for calculating reference signal level A (m).
  • the direction vector generation unit 16-1 obtains a direction vector from the arrival direction of the desired signal. This direction vector is used for the direction constraint processing of the antenna weight.
  • the direction vector is a vector whose direction is the arrival direction of the desired signal and whose size is N.
  • FIG. 6 is a diagram showing a relationship between an array antenna and a direction of arrival of a desired signal.
  • Figure 6 Smell Hata indicates an antenna element, and an arrow indicates a desired signal.
  • the antenna elements are arranged at an interval d.
  • the direction of arrival of the desired signal can be expressed as ⁇ by indicating the angle between the antenna element arrangement direction and the vertical straight line.
  • Antenna number can be obtained by equation (3).
  • is a carrier wavelength
  • the direction vector c represented in this manner is also called a special signature, and is a signal representing a desired signal.
  • the direction vector c, from which influences such as modulation and level fluctuation are removed, represents only the arrival direction of the desired signal as described above.
  • the antenna weight direction constraint unit 12-1 performs a process (direction constraint process) of correcting the antenna weight so as to keep the beam gain of the desired signal constant in the arrival direction of the desired signal using the direction vector c. .
  • the direction vector is c (i, m)
  • the antenna weight from the antenna weight update unit 11-1 is w ′ (i, m).
  • the antenna weight w '(i, m) subjected to the direction constraint processing can be obtained by equation (4).
  • I is a unit matrix.
  • H indicates a Hermitian conjugation operation.
  • FIG. 7 is a diagram for explaining the direction constraint processing by the antenna weight direction constraint unit.
  • the direction constraint process is a process for obtaining an antenna weight vector W ′ by projecting the antenna weight vector W from the antenna weight adaptive updating unit 11-1 onto a constraint plane in an N-dimensional antenna weight vector space. This means that in FIG. 7, the antenna weight w (m + 1) force and the antenna weight w ′ (m + 1) are obtained. [0079]
  • This constraint plane can be expressed as in equation (5).
  • the gain of a desired signal received using antenna weight w ' can be represented by the correlation between antenna weight w' and direction vector c. Then, if the magnitude of the antenna weight w ′ is adjusted so as to make the correlation constant, that is, to satisfy the condition of Equation (5), the gain of the desired signal received using the antenna weight w ′ becomes It will be constant.
  • the direction of the antenna weight w ' coincides with the direction of the direction vector c if there is no interference, and deviates from the direction of the direction vector c if there is interference.
  • FIG. 8 is a block diagram showing a configuration of the antenna weight direction constraint unit.
  • the antenna weight direction constraint unit 12-1 includes a correlator 16-1, a divider 17-1, a multiplier 18-1, a subtractor 19-1, and an adder 20-1. I have.
  • the correlator 16-1 calculates the difference between the antenna weight w (i, m + 1) from the antenna weight adaptive update unit 11-1 and the direction vector c (i, m) from the direction vector generation unit 16-1. Find the correlation value (scalar).
  • Divider 17-1 divides direction vector c (i, m) by N.
  • Multiplier 18-1 multiplies the correlation value from correlator 16-1 by c (i, m) / N obtained by divider 17_1 to obtain a vector c (i, m) [c H (i, m) w (i, m + l)] / N.
  • the subtractor 19-1 calculates the vector c (i, m) [c H (i, m) w (i, m + l) obtained by the multiplier 18-1 from the antenna weight w (i, m). ] Subtract ZN.
  • Adder 20-1 adds c (i, m) / N from divider 17_1 to the output of subtractor 19_1 to obtain antenna weight w '(i, m + 1) whose direction is restricted. .
  • adaptive antenna weight updating section 111 1 adaptively controls the antenna weight using the despread signal of each antenna element, and restricts the antenna direction.
  • Unit 12-1 performs directional constraint processing on the antenna weights so as to keep the beam gain in the direction of arrival of the desired signal constant, and beamformer 2-1 uses the antenna weights subjected to adaptive control and directional constraint processing.
  • the despread signal of each antenna element is weighted and synthesized, and the transmission path estimation unit 3-1 obtains the complex conjugate of the transmission path estimation value obtained from the output of the beamformer 2-1 by the complex conjugate operation unit 4-1.
  • the adder 6 obtains a demodulated signal by multipath combining the received signal of each path which has been subjected to transmission path correction by multiplying the output of the beamformer 2-1 by multiplication. A force separate configuration.
  • the antenna weight does not include the component of the transmission path correction and is adaptively controlled by the phase correction depending on the signal arrival direction, that is, the phase correction using the direction vector, the antenna weight direction constraint unit 12-1 Direction constraint processing is now possible.
  • the beam gain in the arrival direction of the desired signal can be kept constant as shown in FIG. 3B by the direction constraint processing, and the gain of the desired signal component of the beam output is kept constant Therefore, it is possible to accurately extract an error signal, improve the followability of a directional beam, and prevent loss of synchronization.
  • FIG. 9 is a block diagram showing a configuration of an adaptive antenna receiving apparatus according to another embodiment of the present invention.
  • adaptive antenna receiving section 11 is different in that it has direction vector generating section 30-1 instead of force direction vector generating section 16-1 having the same configuration as that of FIG.
  • Direction vector generation section 30-1 includes signal-in-phase averaging section 31-1 for each antenna, adjacent antenna correlation detection section 32-1, antenna correlation averaging section 33-1, arctangent calculation section 34-1, and direction. It has a vector calculator 35-1.
  • the per-antenna signal in-phase averaging unit 31_1 improves the SINR of the received signal by vector-adding a plurality of symbols of the despread signal for each antenna element by adjusting the phase. At this time, if a known pilot signal is used, modulation is performed with a known symbol (known reference signal). Elimination enables in-phase addition. Also, the larger the number of in-phase average symbols, the greater the effect of improving the SINR, but the average number of symbols is limited when there is phase fluctuation due to fading or the like.
  • the adjacent antenna correlation detection section 32-1 detects the correlation between the received signals of the antenna elements in P contact. Specifically, the correlation is obtained by multiplying the reception signal of the antenna element of antenna number n by the complex conjugate signal of the reception signal of the antenna element of antenna number n-1. Therefore, the output (R (i, n, 1)) of the P-contact antenna correlation detection unit 32-1 is expressed by equation (6).
  • R (i, n, l) Z EL (i, n, l) Z * EL (, "1-1, /) (6)
  • i is a path number
  • n is an antenna number
  • 1 is an output number from the signal in-phase averaging unit 32-1 for each antenna.
  • Z (i, n, 1) is the path number i, antenna number n,
  • Antenna correlation averaging section 33-1 averages the output (R (i, n, 1)) of adjacent antenna correlation detecting section 33-1 according to equation (7).
  • the output (R (i, 1)) of equation (7) may be averaged over time. For example, oblivion
  • R AV (/, /) (1-) R AV (i, /) + R AV (8)
  • the arctangent calculation unit 34-1 calculates the phase ⁇ (i, 1) of R (i, 1) according to equation (9).
  • the direction vector calculation unit 35-1 calculates the direction vector c, 1) according to equation (10).
  • n is an antenna number
  • the arctangent calculation 34-1 and the direction vector calculation unit 35-1 record the correspondence of the output to the input in a table in advance, and if the table is referred to instead of the calculation, the calculation amount can be reduced. Can be reduced.
  • the signal in-phase averaging section 31-1 for each antenna improves the SINR of each despread signal
  • the adjacent antenna correlation detection section 32-1 sets the Each correlation is obtained
  • the antenna correlation averaging unit 33-1 obtains the average of those correlations
  • the arctangent calculation unit 34-1 obtains the average phase of the correlation
  • the direction vector calculation unit 35-1 obtains the phase Since the vector is obtained, the direction vector of the desired signal can be obtained by simple processing and configuration based on the correlation between adjacent antenna elements.
  • FIG. 1 is a block diagram showing a configuration of a conventional adaptive antenna receiving device.
  • FIG. 2 is a block diagram showing a configuration of a conventional beamformer.
  • FIG. 3 is a diagram showing a relationship between a directional beam by an adaptive array antenna and a direction of arrival of a desired signal.
  • FIG. 4 is a block diagram showing a configuration of an adaptive antenna receiving apparatus according to one embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a beam former shown in FIG. 1.
  • FIG. 6 is a diagram showing a relationship between an array antenna and a direction of arrival of a desired signal.
  • FIG. 7 is a diagram for explaining direction constraint processing by an antenna weight direction constraint unit.
  • FIG. 8 is a block diagram showing a configuration of an antenna weight direction constraint unit c.
  • FIG. 9 is a configuration diagram of an adaptive antenna receiving device according to another embodiment of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 希望信号の到来方向の角度変化に対する追従性を向上した適応アンテナ受信装置を提供する。  アンテナ重み適応更新手段11−1は、各アンテナ素子で受信した信号と伝送路推定に基づいて補正された希望信号とを用いて求められた誤差信号とからアンテナ重みを適応的に更新する。アンテナ重み方向拘束手段12−1は、希望信号の到来方向にビーム利得が一定となるように、アンテナ重み適応更新手段11−1で求めたアンテナ重みに拘束処理を施す。ビームフォーマー2−1は、アンテナ重み方向拘束手段12−1において拘束処理が施されたアンテナ重みを用いてアレーアンテナで希望信号を受信する。伝送路推定手段3−1は、ビームフォーマー2−1で受信された希望信号の伝送路推定を行い、推定結果を用いて希望信号を補正する。

Description

明 細 書
適応アンテナ受信方法および装置
技術分野
[0001] 本発明は、適応アンテナ受信装置に関し、特に、 CDMA通信においてアンテナ指 向性ビームを適応的に形成し、所定のユーザからの希望信号を受信すると共に他ュ 一ザ力 の干渉信号を抑圧する適応アンテナ受信装置に関する。
背景技術
[0002] 符号分割多重アクセス(CDMA)通信は、無線周波数に対する加入者容量の増大 が可能と言われており、移動通信セルラーシステムの無線アクセス方式として注目さ れている。
[0003] しかし、 CDMA通信では、所定のユーザからの希望信号を基地局で受信するとき 、同時に基地局にアクセスする他ユーザからの信号が干渉となるという問題がある。こ の干渉信号を除去して希望信号を良好に受信するための手段としてアレーアンテナ 力 sある。
[0004] アレーアンテナは複数のアンテナ素子からなる。アレーアンテナは、各アンテナ素 子に対して複素数の重み付けをすることにより各アンテナ素子の受信信号の振幅お よび位相を制御して指向性ビームを形成することができる。希望信号の受信に適す るように指向性ビームを形成することにより、アレーアンテナは希望信号を良好に受 信するとともに他ユーザからの干渉信号を抑圧する。この指向性ビームを適応制御 するのが適応アレーアンテナである。
[0005] 希望信号は基地局ではマルチパスで受信される力 適応アレーアンテナは、希望 信号の各パス方向に高いビーム利得を向けるだけでなぐ干渉信号の方向に利得の 極めて低いポイント(ヌル)を向けることにより、受信希望信号対干渉雑音電力比(SI NR)を最大とするよう重み付けを制御する。
従来の適応アンテナ受信装置として非特許文献 1に記載されたものがある。
[0006] 図 1は、従来の適応アンテナ受信装置の構成を示すブロック図である。図 1を参照 すると、従来の適応アンテナ受信装置は、パス受信部 101— 1一 101— L (Lは自然数 )、合成器 106、判定器 107、スィッチ 108、減算器 109を有している。
[0007] パス受信部 101— 1一 101— Lは、移動通信環境におけるマルチパスによる複数の 伝送路に対応してマルチパス合成を行うために L個が設けられている。
パス受信部 101—1 101—Lは全て同様の構成である。
[0008] パス受信部 101—1は、ビームフォーマー 102—1、伝送路推定部 103— 1、複素共 役操作 104-1、乗算器 105—1、 110-1、アンテナ重み適応更新部 111—1を有して いる。
[0009] ビームフォーマー 102—1には、希望ユーザの拡散符号を用いてパス # 1のタイミン グで各アンテナ素子 # 1一 # N (Nはアレーアンテナに含まれるアンテナ素子の数) での受信信号を逆拡散して得られた N個の逆拡散信号が入力として与えられる。ビ ームフォーマー 102—1は、 N個の逆拡散信号を重み付け合成することでパス # 1用 の指向性ビームを形成する。
[0010] 図 2は、従来のビームフォーマーの構成を示すブロック図である。図 2を参照すると 、ビームフォーマー 102-1は、複素共役操作部 112-1-1— 112-1_N、乗算器 11 3— 1— 1— 113— 1— N、および合成器 114— 1を有している。他のビームフォーマー 10 2_2— 102—Lも同様の構成である。
[0011] 複素共役操作部 112-1 - 1一 112-1 - Nは、アンテナ重み適応更新部 111一 1から の N個のアンテナ重み (W)の複素共役を各々計算し、乗算器 113-1— 1一 113-1— Nの各々に与える。
[0012] 乗算器 113 - 1一 1一 113 - 1一 Nは、パス # 1の逆拡散信号の各々と、複素共役操 作部 112_1_1— 112_1_Nの各々力 の与えられたアンテナ重みの複素共役とを 乗算して合成器 114一 1に与える。
[0013] 合成器 114_1は、乗算器 113_1_1— 113_1_Nの全ての出力を加算する。
[0014] また、図 1に示した伝送路推定部 103— 1は、ビームフォーマー 102— 1の出力から 伝送路推定を行い、伝送路推定値を複素共役操作部 104 - 1および乗算器 110 - 1 に与える。伝送路推定とは、パスの受信状況から電波伝搬状態の変化を推定するこ とである。これにより得られた伝送路推定値は電波伝搬状況の変化を補償 (伝送路 補正)するのに用いられる。 [0015] 複素共役操作部 104 - 1は、伝送路推定部 103 - 1からの伝送路推定値の複素共 役を計算し、乗算器 105— 1に与える。
[0016] 乗算器 105-1は、ビームフォーマー 102-1の出力に伝送路推定値の複素共役を 乗算することにより、位相変動を補正 (伝送路補正)するとともに最大比合成のための 重み付けを行う。最大比合成とは、マルチパス合成後の信号の SINRを最大とするよ うな重み付け合成方法である。
[0017] 図 1に示した従来のパス受信部 101-1では、伝送路推定に基づいて位相補正す る機能がアンテナ重み制御と分離されている。そのため、アンテナ重み制御において 、希望信号のフェージングによる位相変動を補正する必要が無ぐ信号の到来方向 のみに依存する位相変動を補正すればよいので、安定したビーム形成が可能となる
[0018] 合成器 106は、パス受信部 101—1 101—Lの各々の乗算器 105—1 105—Lの 出力の全てを加算してパス合成を行うことにより復調信号を生成する。
[0019] 判定器 107は、合成器 106で得られた復調信号から、可能性の高い送信シンボル を判定する。
[0020] スィッチ 108は、既知参照信号、または判定器 107からの送信シンボルのいずれか を選択し、参照信号として減算器 109に与える。スィッチ 108は、既知参照信号が与 えられていればそれを選択し、既知参照信号が与えられていなければ、判定器 107 力 の送信シンボルを選択する。
[0021] 減算器 109は、参照信号から、合成器 106からの復調信号を減算し、全てのパス 受信部 101-1— 101-Lの乗算器 110—1— 110-Lに誤差信号として与える。その 際、参照信号として、スィッチ 108からの参照信号に後述する参照信号レベルを乗じ た値を用いる。
[0022] パス受信部 101-1の乗算器 110-1は、減算器 109からの誤差信号に、伝送路推 定部 103—1からの伝送路推定値を乗算してアンテナ重み適応更新部 111-1に与 る。
[0023] アンテナ重み適応更新部 111—1は、伝送路推定値が乗じられた誤差信号と、パス
# 1の N個の逆拡散信号とを用いてアンテナ重みを適応的に計算し、ビームフォーマ 一 102-1に与えて適応制御を行う。適応制御において、一般に、最小二乗平均誤 差制御(MMSE)が用いられる。誤差信号を用いるアンテナ重み係数の適応更新ァ ルゴリズムには LMS (Least Mean Square) , NLMS (Normalized LMS)、 RL S (Recursive Least Square)アルゴリズムが知られている。
[0024] 例えば、非特許文献 1では、 NLMSアルゴリズムを用いてアンテナ重みを更新する ことが記載されている。アンテナ重み w (i, m) (ここで、 iはパス番号、 mはシンボル番 号である)は以下の更新式 (式(1) )を用いて計算される。
[0025] [数 1] w(i, m + i) = w(i, m) +——— - x i, m)h\i, m)e " (m) ( ι )
P\i, m)
[0026] ここで、 x (i, m)は各アンテナによる受信信号の逆拡散信号である。 p (i, m)は各ァ ンテナの逆拡散信号の逆拡散信号の総電力である。 h (i, m)は伝送路推定値である 。 λはステップサイズである。
誤差信号を e (m)、受信信号を z (m)とすると、誤差信号 e (m)は式 (2)のように表 すことができる。なお、 *は共役複素数を示す。
[0027] [数 2] e(m) = A(m) z(m) - z^m ( 2
ここで、 z(m)は参照信号 (既知参照信号または判定信号) である。 A(m)は参照信号レベルである。
[0028] 参照信号レベル A (m)は、ビームフォーマー 102—1に入力されるアンテナ素子毎 の逆拡散信号に基づいて計算される (例えば、特許文献 1参照)。ビームフォーマー 102—1に入力される逆拡散信号の受信レベルはビーム利得の影響を受けないため 参照信号レベル A (m)を算出する基準として望ましい。
[0029] また、適応アンテナ受信の応用形態として、フェージングが互いに独立した複数の アレーアンテナ(サブアレー)で符号分割多重アクセス信号を受信することにより指向 性を制御することによる効果とダイバーシチ効果とを得るという形態がある。
[0030] そして、それら複数のサブアレーにおいて指向性形成に用いられるアンテナ重みを 共通のものとするとともに、そのアンテナ重み制御に全てのサブアレーの判定誤差信 号を用いて適応制御特性を改善した形態が提案されてレ、る (特許文献 2参照)。
[0031] また、他の応用形態として、マルチビームフォーマーによってビーム形成された信 号を用いてパス検出するという形態がある。それによりアンテナ数が多くてもパス検出 特性が劣化しないという効果が得られる。
[0032] そして、そのマルチビームフォーマーで形成された各ビームの逆拡散出力を重み 付け合成して位相変動を補正することにより各パスを検出し、さらにそれらパスを合成 して復調信号を得るとともに、位相変動の逆補正を施した判定誤差信号と各ビームの 逆拡散出力とを用いて重み付け合成の重みを適応更新するとした形態が提案されて いる (特許文献 3参照)。これにより優れたパス検出特性に加えて優れた受信復調特
'性をも得ること力 Sできる。
特許文献 1:特開 2002 - 77008号公報
特許文献 2:特開 2002 - 368520号公報
特許文献 3:特開 2002 - 368652号公報
非特許文献 1 :田中、佐和橋、安達他、「Pilot Symbol-Assisted Decision— Dir ectea し oherent Adaptive Array Diversity for DS— CDMA Mobile R adio Reverse Link」(IEICE Trans. , vol. E80— A, pp. 2445—2454, De c. 1997)
発明の開示
発明が解決しょうとする課題
[0033] 図 1に示したものに代表されるような従来の適応アンテナ受信装置によれば、希望 信号の到来方向に指向性ビームを形成することができる。また、特許文献 2、 3に記 載されたような様々な応用形態によれば希望信号をさらに良好に受信することができ る。しかし、これは追従性が良いという条件下で得られる効果である。
[0034] 希望信号の到来方向の角度変化が大きい場合、希望信号の到来方向と指向性ビ ームのビーム方向がずれて希望信号の利得が低下する可能性がある。
[0035] 図 3は、適応アレーアンテナによる指向性ビームと希望信号の到来方向の関係を 示す図である。図 3において(a)は従来の場合、(b)は本発明の場合である。従来の 適応アレーアンテナでは、希望波の到来方向で最大利得が得られるように指向性ビ ームの方向が制御されるが追従性に考慮が払われていないため、図 3 (a)に示すよう に、到来方向の角度が変化した場合、希望信号の到来方向がビーム方向からずれ、 希望信号の利得が大きく低下してしまう。その結果、正確な誤差信号が検出されず、 追従性が損なわれる。また、ひどい場合には、到来方向の角度変化に追従できずに 希望信号を見失い、同期はずれを起こす可能性がある。
[0036] 本発明は、指向性ビームの追従性に着目してなされたものであり、その目的は、希 望信号の到来方向の角度変化に対する追従性を向上した適応アンテナ受信装置を 提供することである。
課題を解決するための手段
[0037] 上記目的を達成するために、本発明の適応アンテナ受信装置は、複数のアンテナ 素子からなるアレーアンテナの指向性ビームを適応的に形成することにより複数の送 信装置から送信された多重信号における干渉信号を抑圧して希望信号を受信し、該 希望信号を伝送路推定に基づいて補正する適応アンテナ受信装置であって、 前記各アンテナ素子で受信した信号と、前記伝送路推定に基づレ、て補正された前 記希望信号を用いて求められた誤差信号とからアンテナ重みを適応的に更新するァ ンテナ重み適応更新手段と、
前記希望信号の到来方向にビーム利得が一定となるように、前記アンテナ重み適 応更新手段で求めた前記アンテナ重みに拘束処理を施すアンテナ重み方向拘束手 段と、
前記アンテナ重み方向拘束手段において拘束処理が施された前記アンテナ重み を用いて前記アレーアンテナで前記希望信号を受信するビームフォーマーと、 前記ビームフォーマーで受信された前記希望信号の伝送路推定を行レ、、推定結 果を用いて前記希望信号を補正する伝送路推定手段とを有してレ、る。
[0038] したがって、本発明によれば、伝送路推定手段が伝送路補正を行い、アンテナ重 み適応更新手段が各アンテナ素子の受信信号を用いてアンテナ重みを適応制御し 、アンテナ方向拘束手段がアンテナ重みを修正するとレ、う伝送路補正がアンテナ重 み制御から分離された構成なので、アンテナ重みは、伝送路補正の成分を含まず、 信号到来方向のみに依存する位相補正により適応制御され、アンテナ重み方向拘 束手段が、希望信号の到来方向のビーム利得を一定に保つようにアンテナ重みを修 正すること力 Sできる。
[0039] また、前記アンテナ重み方向拘束手段において、前記希望信号の到来方向を示す 方向ベクトルを用いて前記アンテナ重みに拘束処理を施すこととしてもょレ、。
[0040] したがって、アンテナ方向拘束手段が方向べクトノレにより希望信号の到来方向のビ ーム利得を一定に保つようにアンテナ重みを修正するので、ビーム出力の希望信号 成分の利得が一定に保たれる。
[0041] また、隣接する前記アンテナ素子で受信した信号同士の各相関値を求める隣接ァ ンテナ相関検出手段と、
前記隣接アンテナ相関検出手段で求めた前記各相関値の平均値を求めるアンテ ナ相関平均手段と、
前記アンテナ相関平均手段で求めた平均値の逆正接を取って位相を求める逆正 接計算手段と、
前記逆正接計算手段で求めた位相から前記方向ベクトルを求める方向ベクトル計 算手段とをさらに有することとしてもよい。
[0042] したがって、隣接アンテナ相関検出手段が求めた隣接アンテナ素子間の各相関を アンテナ相関平均手段が平均化し、逆正接計算手段および方向ベクトル計算手段 がその平均値から方向べクトノレを求めるので、隣接アンテナ素子間の相関に基づい て簡易な処理および構成で希望信号の方向ベクトルを求めることができる。
発明の効果
[0043] 本発明によれば、伝送路推定手段が伝送路補正を行い、アンテナ重み適応更新 手段が各アンテナ素子の受信信号を用いてアンテナ重みを適応制御し、アンテナ方 向拘束手段がアンテナ重みを修正するという伝送路補正がアンテナ重み制御から分 離された構成なので、アンテナ重みは、伝送路補正の成分を含まず、信号到来方向 のみに依存する位相補正により適応制御され、アンテナ重み方向拘束手段が、希望 信号の到来方向のビーム利得を一定に保つようにアンテナ重みを修正することがで き、ビーム出力の希望信号成分の利得が一定に保たれ、指向性ビームの追従性が 向上し、同期はずれも防止できる。
[0044] また、アンテナ方向拘束手段が方向ベクトルにより希望信号の到来方向のビーム利 得を一定に保つようにアンテナ重みを修正するので、ビーム出力の希望信号成分の 利得が一定に保たれる。
[0045] また、隣接アンテナ相関検出手段が求めた隣接アンテナ素子間の各相関をアンテ ナ相関平均手段が平均化し、逆正接計算手段および方向ベクトル計算手段がその 平均値から方向ベクトルを求めるので、隣接アンテナ素子間の相関に基づいて簡易 な処理および構成で希望信号の方向ベクトルを求めることができる。
発明を実施するための最良の形態
[0046] 本発明の一実施形態について図面を参照して詳細に説明する。
図 4は、本発明の一実施形態による適応アンテナ受信装置の構成を示すブロック 図である。図 4を参照すると、適応アンテナ受信装置は、パス受信部 1一 1一 1_L、合 成器 6、判定器 7、スィッチ 8、減算器 9を有している。
[0047] パス受信部 1一 1一 1一 Lは、移動通信環境におけるマルチパス伝播路に対応してマ ルチパス合成を行うために L個が設けられている。パス受信部 1_1一 1一 Lは全て同 様の構成である。
[0048] パス受信部 1一 1は、ビームフォーマー 2— 1、伝送路推定部 3— 1、複素共役操作部 4-1,乗算器 5—1、 10-1,アンテナ重み適応更新部 11—1、アンテナ重み方向拘束 部 12— 1、および方向ベクトル生成部 16—1を有している。
[0049] ビームフォーマー 2—1には、希望ユーザの拡散符号を用いてパス # 1のタイミング で各アンテナ素子 # 1一 # N (Nはアレーアンテナに含まれるアンテナ素子の数)で の受信信号を逆拡散して得られた N個の逆拡散信号が入力として与えられる。ビー ムフォーマー 2_1は、 N個の逆拡散信号を重み付け合成することでパス # 1用の指 向性ビームを形成する。
[0050] 図 5は、図 4に示したビームフォーマーの構成を示すブロック図である。図 5を参照 すると、ビームフォーマー 2-1は、複素共役操作部 13— 1一 1— 13-1_N、乗算器 14 — 1— 1一 14— 1— N、および合成器 15—1を有している。他のビームフォーマー 2— 2— 2— Lも同様の構成である。 [0051] 複素共役操作部 13-1-1— 13-1— Nは、アンテナ重み方向拘束部 12_1からの N 個のアンテナ重み Wの複素共役を各々計算し、乗算器 14一 1-1一 14-1一 Nの各々 に与える。
[0052] 乗算器 14一 1一 1一 14一 1一 Nは、パス # 1の逆拡散信号の各々と、複素共役操作部
13—1—1— 13—1— Nの各々力 の与えられたアンテナ重みの複素共役とを乗算して 合成器 15— 1に与える。
[0053] 合成器 15—1は、乗算器 14一 1一 1一 14一 1一 Nの全ての出力を加算する。
[0054] また、図 4に示した伝送路推定部 3—1は、ビームフォーマー 2—1の出力力、ら伝送路 推定を行い、伝送路推定値を複素共役操作部 4 - 1および乗算器 10 - 1に与える。伝 送路推定とは、パスの受信状況から電波伝搬状態の変化を推定することである。これ により、得られた伝送路推定値は電波伝搬状況の変化を補償 (伝送路補正)するの に用いられる。
[0055] 複素共役操作部 4 - 1は、伝送路推定部 3 - 1からの伝送路推定値の複素共役を計 算し、乗算器 5-1に与える。
[0056] 乗算器 5— 1は、ビームフォーマー 2— 1の出力に伝送路推定値の複素共役を乗算 することにより、位相変動を補正 (伝送路補正)するとともに最大比合成のための重み 付けを行う。最大比合成とは、マルチパス合成後の信号の SINRを最大とするような 重み付け合成方法である。
[0057] パス受信部 1一 1では、伝送路推定に基づいて位相補正する機能がアンテナ重み 制御と分離されている。そのため、アンテナ重み制御において、希望信号のフェージ ングによる位相変動を補正する必要が無いので、信号の到来方向のみに依存する 位相変動を補正すればよぐ安定したビーム形成が可能となる。
[0058] 合成器 6は、パス受信部 1_1一 1一 Lの各々の乗算器 5_1 5— Lの出力の全てを 加算してパス合成を行うことにより復調信号を生成する。
[0059] 判定器 7は、合成器 6で得られた復調信号から、可能性の高い送信シンボルを判定 し、スィッチ 8に与える。
[0060] スィッチ 8は、既知参照信号、または判定器 7からの送信シンボルのいずれかを選 択し、参照信号として減算器 9に与える。スィッチ 8は、既知参照信号が与えられてい ればそれを選択し、既知参照信号が与えられていなければ、判定器 7からの送信シ ンボルを選択する。
[0061] 減算器 9は、参照信号から、合成器 6からの復調信号を減算し、全てのパス受信部
1-1一 1-Lの乗算器 10-1 10-Lに誤差信号として与える。その際、参照信号とし て、スィッチ 8からの参照信号に後述する参照信号レベルを乗じた値を用いる。
[0062] パス受信部 1-1の乗算器 10-1は、減算器 9からの誤差信号に、伝送路推定部 3_
1からの伝送路推定値を乗算してアンテナ重み適応更新部 11一 1に与える。
[0063] アンテナ重み適応更新部 11一 1は、伝送路推定値が乗じられた誤差信号と、パス
# 1の N個の逆拡散信号とを用いてアンテナ重み W'を適応的に計算し、アンテナ重 み方向拘束部 12_1に与える。
[0064] ここでアンテナ重み W'の算出には、一般に、最小二乗平均誤差制御(MMSE)が 用いられる。誤差信号を用いるアンテナ重み係数の適応更新アルゴリズムには LMS
(Least Mean square)、 NLMS (Normalized LMS)、 RLS (Recursive Lea st Square)アルゴリズムが知られている。
[0065] 上述したように、例えば、アンテナ重み w (i, m) (ここで、 iはパス番号、 mはシンポ ル番号である)は以下の更新式 (式(1) )を用いて計算される。
[0066] また、誤差信号を e (m)、参照信号をレベル A (m)とすると、誤差信号 e (m)は式(2
)のように表すことができる。
[0067] 参照信号レベル A (m)は、ビームフォーマー 2— 1に入力されるアンテナ素子毎の 逆拡散信号に基づいて計算される。ビームフォーマー 2 - 1に入力される逆拡散信号 の受信レベルはビーム利得の影響を受けないため参照信号レベル A (m)を算出す る基準として望ましい。
[0068] ここまでは図 1に示した従来のものと同様の構成である力 アンテナ重み方向拘束 部 12—1および方向べクトノレ生成部 16—1は本発明に特有のものである。
[0069] 方向ベクトル生成部 16—1は、希望信号の到来方向から方向ベクトルを求める。こ の方向ベクトルは、アンテナ重みの方向拘束処理に用いられる。ここで方向べクトノレ は、方向が希望信号の到来方向で、大きさが Nのべクトノレである。
[0070] 図 6は、アレーアンテナと希望信号の到来方向の関係を示す図である。図 6におい て秦はアンテナ素子を示し、矢印は希望信号を示す。アンテナ素子は間隔 dで配列 されている。アンテナ素子の配列方向に対して鉛直方向の直線との角度によって示 すと希望信号到来方向は Φと示すことができる。これらを用いると、方向ベクトル c= ( c , c , ··, c , ··, c )における、各アンテナ素子に対応する成分 c (nは #1一 #N
1 2 n N n
のアンテナ番号)は式(3)によって求めることができる。
[0071] [数 3] cn = exp[ ]2π{η - \){d / A)sim φ)λ (3)
[0072] ここで λはキャリア波長である。
[0073] このように表される方向ベクトル cは、 Special Signatureとも呼ばれ、希望信号を 代表する信号である。方向ベクトル cは、変調やレベル変動などによる影響が取り払 われ、上述したように希望信号の到来方向のみを表している。
[0074] アンテナ重み方向拘束部 12— 1は、方向ベクトル cを用いて、希望信号の到来方向 における、希望信号のビーム利得を一定に保つようアンテナ重みを補正する処理( 方向拘束処理)を行う。
[0075] パス番号 iのパスにおいてシンボル番号が mのときの、方向ベクトルを c(i, m)、アン テナ重み更新部 11-1からのアンテナ重みを w' (i, m)とすると、方向拘束処理が施 されたアンテナ重み w' (i, m)は式 (4)によって求めることができる。
[0076] [数 4]
W ,( ,m + 1) = (4)
Figure imgf000013_0001
[0077] ここで Iは単位行列である。 Hはエルミート共役操作を示す。
[0078] 図 7は、アンテナ重み方向拘束部による方向拘束処理を説明するための図である。
方向拘束処理とは、 N次元のアンテナ重みベクトル空間においてアンテナ重み適応 更新部 11-1からのアンテナ重みベクトル Wを拘束平面に投影したアンテナ重みべ タトル W'を求める処理である。これは図 7においてアンテナ重み w(m+l)力、らアン テナ重み w' (m+1)を求めることを示す。 [0079] この拘束平面は式(5)のように示すことができる。
[0080] [数 5]
W C = 1 ( 5 )
[0081] これにより、アンテナ重み w'と方向ベクトル cとの相関が一定に調整されることとなる
[0082] アンテナ重み w'を用いて受信される希望信号の利得は、アンテナ重み w'と方向 ベクトル cとの相関によって表すことができる。そして、その相関を一定にするように、 すなわち式(5)の条件を満たすようにアンテナ重み w'の大きさを調整すれば、アン テナ重み w'を用いて受信される希望信号の利得は一定となる。なお、アンテナ重み w'の方向は、干渉が無ければ、方向ベクトル cの方向と一致し、干渉があれば、方向 ベクトル cの方向からずれる。
[0083] 図 7の拘束平面上を動くアンテナ重みベクトル w' (i, m)は式(5)の条件を満たす ので、希望信号の到来方向のビーム利得が常に一定となり、ビーム出力の希望信号 成分の利得が一定となる。
[0084] 図 8は、アンテナ重み方向拘束部の構成を示すブロック図である。図 8を参照すると 、アンテナ重み方向拘束部 12-1は、相関器 16-1、除算器 17-1、乗算器 18-1、 減算器 19-1、および加算器 20-1を有している。
[0085] 相関器 16-1は、アンテナ重み適応更新部 11-1からのアンテナ重み w (i, m+ 1) と、方向ベクトル生成部 16-1からの方向ベクトル c (i, m)との相関値(スカラー)を求 める。
[0086] 除算器 17-1は、方向ベクトル c (i, m)を Nで除算する。
[0087] 乗算器 18-1は、相関器 16-1からの相関値と、除算器 17_1で求められた c (i, m) /Nとを乗算し、ベクトル c (i, m) [cH (i, m) w (i, m+ l) ] /Nを求める。
[0088] 減算器 19—1は、アンテナ重み w (i, m)から、乗算器 18—1で求まったベクトル c (i, m) [cH (i, m) w (i, m+ l) ] ZNを減算する。
[0089] 加算器 20—1は、減算器 19_1の出力に、除算器 17_1からの c (i, m) /Nを加算し て方向拘束されたアンテナ重み w' (i, m+ 1)を求める。 [0090] 以上説明したように、本実施形態の適応アンテナ受信装置によれば、アンテナ重み 適応更新部 11 1が各アンテナ素子の逆拡散信号を用いてアンテナ重みを適応制 御し、アンテナ方向拘束部 12— 1が希望信号の到来方向のビーム利得を一定に保 つようにアンテナ重みに対して方向拘束処理を施し、ビームフォーマー 2—1が適応 制御および方向拘束処理されたアンテナ重みを用いて各アンテナ素子の逆拡散信 号を重み付け合成し、伝送路推定部 3— 1がビームフォーマー 2—1の出力から求めた 伝送路推定値の複素共役を複素共役操作部 4一 1が求めてビームフォーマー 2— 1の 出力に乗算することにより伝送路補正を行った各パスの受信信号を加算器 6がマル チパス合成することにより復調信号を求めるという、伝送路補正がアンテナ重み制御 力 分離された構成である。
[0091] そのため、アンテナ重みは伝送路補正の成分を含まず、信号到来方向に依存する 位相補正、すなわち方向ベクトルによる位相補正により適応制御されているので、ァ ンテナ重み方向拘束部 12— 1による方向拘束処理が可能となってレ、る。
[0092] その結果、本実施形態では、方向拘束処理により図 3 (b)に示すように希望信号の 到来方向のビーム利得を一定に保つことができ、ビーム出力の希望信号成分の利得 が一定に保たれるので正確な誤差信号の抽出が可能となり、指向性ビームの追従性 が向上し、同期はずれも防止できる。
[0093] 本発明の他の実施形態について図面を参照して説明する。
[0094] 図 9は、本発明の他の実施形態の適応アンテナ受信装置の構成を示すブロック図 である。図 9を参照すると、適応アンテナ受信部 1 1は図 4のものと同様の構成であ る力 方向ベクトル生成部 16-1の代わりに方向ベクトル生成部 30-1を有する点で 異なる。
[0095] 方向ベクトル生成部 30— 1は、アンテナ毎信号同相平均部 31— 1、隣接アンテナ相 関検出部 32— 1、アンテナ相関平均部 33— 1、逆正接計算部 34— 1、および方向べク トル計算部 35—1を有している。
[0096] アンテナ毎信号同相平均部 31_1は、アンテナ素子毎に、逆拡散信号の複数のシ ンボルを位相を合わせてベクトル加算することにより受信信号の SINRを改善する。 その際、既知のパイロット信号を用いれば、既知シンボル (既知参照信号)で変調を 除去することにより同相加算が可能となる。また、同相平均シンボル数が大きいほど S INRの改善効果が大きいが、フェージングなどによる位相変動がある場合には平均 シンボル数は限られる。
[0097] 隣接アンテナ相関検出部 32— 1は、 P接するアンテナ素子の受信信号同士の相関 を検出する。具体的には、アンテナ番号 n— 1のアンテナ素子の受信信号の複素共役 信号を、アンテナ番号 nのアンテナ素子の受信信号に乗算することにより相関が求ま る。したがって、 P接アンテナ相関検出部 32— 1の出力(R(i, n, 1))は式 (6)で表さ れる。
[0098] [数 6]
R(i,n,l) = ZEL(i,n,l)Z *EL ( ,"一 1,/) (6)
[0099] ここで、 iはパス番号、 nはアンテナ番号、 1はアンテナ毎信号同相平均部 32-1から の出力番号である。 Z (i, n, 1)は、パス番号 i、アンテナ番号 n、アンテナ毎信号同
EL
相平均部 32— 1からの出力番号 1の受信信号の値である。 *はその共役複素数を示 す。
[0100] アンテナ相関平均部 33— 1は、隣接アンテナ相関検出部 33—1の出力(R(i, n, 1) ) を式 (7)に従って平均する。
[0101] [数 7]
R AV (/,/) =丄 ∑/?(/,",/) ( 7)
N -
[0102] さらに必要であれば式(7)の出力(R (i, 1))を時間平均してもよい。例えば、忘却
AV
係数 λによる加重平均を行うと、 R (i, 1)は式(8)で表される c
AV
[0103] 園
RAV (/, /) = (1 - )RAV (i, /) + RAV (8)
[0104] 逆正接計算部 34— 1は、式(9)に従って R (i, 1)の位相 Θ (i, 1)を計算する。
AV
[0105] [数 9]
Figure imgf000017_0001
[0106] 方向ベクトル計算部 35-1は、式(10)に従って方向ベクトル c , 1)を計算する。
[0107] [数 10] c n ) = exp[ j ( n 一 1 )0 ( 1 , 1 )] ( ι o )
[0108] ここで、 nはアンテナ番号である。
[0109] なお、逆正接計算 34— 1および方向ベクトル計算部 35— 1は、入力に対する出力の 対応を予めテーブルの記録しておき、計算の代わりにテーブルを参照することとすれ ば演算量を削減できる。
[0110] 以上説明したように、本実施形態によれば、アンテナ毎信号同相平均部 31— 1が各 逆拡散信号の SINRを改善し、隣接アンテナ相関検出部 32— 1が隣接アンテナ素子 間の各相関を求め、アンテナ相関平均部 33— 1がそれらの相関の平均を求め、逆正 接計算部 34— 1が相関の平均の位相を求め、方向ベクトル計算部 35-1がその位相 力 方向ベクトルを求めるので、隣接アンテナ素子間の相関に基づいて簡易な処理 および構成で希望信号の方向ベクトルを求めることができる。
図面の簡単な説明
[0111] [図 1]従来の適応アンテナ受信装置の構成を示すブロック図である。
[図 2]従来のビームフォーマーの構成を示すブロック図である。
[図 3]適応アレーアンテナによる指向性ビームと希望信号の到来方向の関係を示す 図である。
[図 4]本発明の一実施形態による適応アンテナ受信装置の構成を示すブロック図で める。
[図 5]図 1に示したビームフォーマーの構成を示すブロック図である。
[図 6]アレーアンテナと希望信号の到来方向の関係を示す図である。
[図 7]アンテナ重み方向拘束部による方向拘束処理を説明するための図である。 [図 8]アンテナ重み方向拘束部の構成を示すブロック図である c
[図 9]本発明の他の実施形態の適応アンテナ受信装置の構成 図であ る。
符号の説明
1-1- 1-L パス受信部
2— 1— 2—L ビームフォーマー
3 - 1一 3 - L 伝送路推定部
4一 1一 4一 L 複素共役操作部
5-1— 5-L, 10— 1一 10—: L, 14一 1— 14-L-N, 18- 18-L
6, 15 - 1一 15-L 合成器
7 判定器
8 スィッチ
9, 19-1-19-L 減算器
11-1- 11-L アンテナ重み適応更新部
12_1— 12—L アンテナ重み方向拘束部
13-1-1 -13-L-N 複素共役操作部
16— 1— 16—L 方向ベクトル生成部
17- 1 - 17-L 除算器
20—1— 20—L 加算器
30— 1— 30—L ベクトル生成部
31— 1 -31-L アンテナ毎信号同相平均部
32— 1一 32— L 隣接アンテナ相関検出部
33— 1— 33— L アンテナ相関平均部
34— 1一 34 - L 逆正接計算部
35— 1一 35— L 方向ベクトル計算部

Claims

請求の範囲
[1] 複数のアンテナ素子からなるアレーアンテナの指向性ビームを適応的に形成する ことにより複数の送信装置から送信された多重信号における干渉信号を抑圧して希 望信号を受信し、該希望信号を伝送路推定に基づいて補正する適応アンテナ受信 方法であって、
前記各アンテナ素子で受信した信号と、前記伝送路推定に基づレ、て補正された前 記希望信号を用いて求められた誤差信号とからアンテナ重みを適応的に更新する第 前記希望信号の到来方向にビーム利得が一定となるように、前記第 1のステップで 求めた前記アンテナ重みに拘束処理を施す第 2のステップと、
前記第 2のステップにおいて拘束処理が施された前記アンテナ重みを用いて前記 アレーアンテナで前記希望信号を受信する第 3のステップと、
前記第 3のステップで受信された前記希望信号の伝送路推定を行レ、、推定結果を 用レ、て前記希望信号を補正する第 4のステップとを有する適応アンテナ受信方法。
[2] 前記第 2のステップにおいて、前記希望信号の到来方向を示す方向ベクトルを用 いて前記アンテナ重みに拘束処理を施す、請求項 1記載の適応アンテナ受信方法。
[3] 隣接する前記アンテナ素子で受信した信号同士の各相関値を求める第 5のステツ プと、
前記第 5のステップで求めた前記各相関値の平均値を求める第 6のステップと、 前記第 6のステップで求めた平均値の逆正接を取って位相を求める第 7のステップ と、
前記第 7のステップで求めた位相から前記方向ベクトルを求める第 8のステップとを 有する、請求項 2記載の適応アンテナ受信方法。
[4] 前記第 1一第 4のステップを少なくとも 1つのパス毎に行レ、、前記第 4のステップに おいて補正された前記希望信号を合成してマルチパス合成された復調信号を生成 する、請求項 1記載の適応アンテナ受信方法。
[5] 複数のアンテナ素子からなるアレーアンテナの指向性ビームを適応的に形成する ことにより複数の送信装置から送信された多重信号における干渉信号を抑圧して希 望信号を受信し、該希望信号を伝送路推定に基づいて補正する適応アンテナ受信 装置であって、
前記各アンテナ素子で受信した信号と、前記伝送路推定に基づレ、て補正された前 記希望信号を用いて求められた誤差信号とからアンテナ重みを適応的に更新するァ ンテナ重み適応更新手段と、
前記希望信号の到来方向にビーム利得が一定となるように、前記アンテナ重み適 応更新手段で求めた前記アンテナ重みに拘束処理を施すアンテナ重み方向拘束手 段と、
前記アンテナ重み方向拘束手段において拘束処理が施された前記アンテナ重み を用いて前記アレーアンテナで前記希望信号を受信するビームフォーマーと、 前記ビームフォーマーで受信された前記希望信号の伝送路推定を行レ、、推定結 果を用いて前記希望信号を補正する伝送路推定手段とを有する適応アンテナ受信
[6] 前記アンテナ重み方向拘束手段において、前記希望信号の到来方向を示す方向 ベクトルを用いて前記アンテナ重みに拘束処理を施す、請求項 5記載の適応アンテ
[7] 隣接する前記アンテナ素子で受信した信号同士の各相関値を求める隣接:
相関検出手段と、
前記隣接アンテナ相関検出手段で求めた前記各相関値の平均値を求めるアンテ ナ相関平均手段と、
前記アンテナ相関平均手段で求めた平均値の逆正接を取って位相を求める逆正 接計算手段と、
前記逆正接計算手段で求めた位相から前記方向ベクトルを求める方向ベクトル計 算手段とをさらに有する、請求項 6記載の適応アンテナ受信装置。
[8] パス毎に受信した少なくとも 1つの前記希望信号をマルチパス合成して復調信号を 生成する合成手段をさらに有する、請求項 5記載の適応アンテナ受信装置。
PCT/JP2004/008801 2003-06-26 2004-06-23 適応アンテナ受信方法および装置 WO2005001992A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005511021A JP4618126B2 (ja) 2003-06-26 2004-06-23 適応アンテナ受信方法および装置
US10/560,967 US7565172B2 (en) 2003-06-26 2004-06-23 Adaptive antenna reception method and device
CN2004800159510A CN1802771B (zh) 2003-06-26 2004-06-23 自适应天线接收方法和自适应天线接收机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-182701 2003-06-26
JP2003182701 2003-06-26

Publications (1)

Publication Number Publication Date
WO2005001992A1 true WO2005001992A1 (ja) 2005-01-06

Family

ID=33549561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008801 WO2005001992A1 (ja) 2003-06-26 2004-06-23 適応アンテナ受信方法および装置

Country Status (4)

Country Link
US (1) US7565172B2 (ja)
JP (1) JP4618126B2 (ja)
CN (1) CN1802771B (ja)
WO (1) WO2005001992A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199213B (zh) * 2005-06-15 2011-10-26 华为技术有限公司 信道质量估计方法和系统
WO2018150517A1 (ja) * 2017-02-16 2018-08-23 三菱電機株式会社 伝送路推定装置および伝送路推定方法
CN112514277A (zh) * 2018-03-16 2021-03-16 华为技术有限公司 用于多径角度估计的接收器和发送器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7526321B2 (en) * 2005-12-08 2009-04-28 Accton Technology Corporation Wireless network apparatus and method of channel allocation for respective radios
US20070147533A1 (en) * 2005-12-23 2007-06-28 Motorola, Inc. Method and system for aggregate channel estimation for frequency-selective transmit beamforming
US7979775B2 (en) * 2006-10-30 2011-07-12 Motorola Mobility, Inc. Turbo interference suppression in communication systems
US8005238B2 (en) * 2007-03-22 2011-08-23 Microsoft Corporation Robust adaptive beamforming with enhanced noise suppression
US8005237B2 (en) * 2007-05-17 2011-08-23 Microsoft Corp. Sensor array beamformer post-processor
JP5345029B2 (ja) * 2009-09-10 2013-11-20 富士通テン株式会社 レーダ装置
CN103188009B (zh) * 2011-12-31 2018-01-09 中兴通讯股份有限公司 信号接收方法及装置
CN102932039B (zh) * 2012-10-17 2015-03-25 大唐移动通信设备有限公司 一种天线校准方法和系统
US9331760B2 (en) * 2014-05-28 2016-05-03 Qualcomm Incorporated Method and apparatus for leveraging spatial/location/user interaction sensors to aid in transmit and receive-side beamforming in a directional wireless network
US10705176B2 (en) * 2015-10-13 2020-07-07 Northrop Grumman Systems Corporation Signal direction processing for an antenna array
CN108872721A (zh) * 2018-03-27 2018-11-23 西安爱生技术集团公司 一种空间阵列天线在轨自校准方法
WO2021044625A1 (ja) * 2019-09-06 2021-03-11 日本電信電話株式会社 無線通信システム、無線通信方法、送信局装置および受信局装置
US11736180B2 (en) * 2020-01-10 2023-08-22 Qualcomm Incorporated Millimeter-wave multi-beams

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251964A (ja) * 1998-03-05 1999-09-17 Fujitsu Ltd アレーアンテナによる到来方向推定方法及び該方法を用いたds−cdma受信装置
JP2000332666A (ja) * 1999-05-24 2000-11-30 Toshiba Tec Corp 無線通信システム
JP2002077008A (ja) * 2000-08-25 2002-03-15 Nec Corp 適応アンテナ受信装置
JP2002237766A (ja) * 2001-02-08 2002-08-23 Nec Corp 適応アンテナ受信装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018643A (en) * 1997-06-03 2000-01-25 Texas Instruments Incorporated Apparatus and method for adaptively forming an antenna beam pattern in a wireless communication system
JP3406831B2 (ja) * 1998-03-19 2003-05-19 富士通株式会社 無線基地局のアレーアンテナシステム
US6141567A (en) * 1999-06-07 2000-10-31 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
JP3462826B2 (ja) * 2000-02-14 2003-11-05 三洋電機株式会社 無線基地局及び無線電話装置
JP3660209B2 (ja) * 2000-05-25 2005-06-15 松下電器産業株式会社 無線通信装置
JP3591581B2 (ja) * 2000-08-30 2004-11-24 日本電気株式会社 適応アンテナ受信装置
JP3558053B2 (ja) 2001-06-06 2004-08-25 日本電気株式会社 適応アンテナ受信装置
JP4152091B2 (ja) 2001-06-06 2008-09-17 日本電気株式会社 適応アンテナ受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251964A (ja) * 1998-03-05 1999-09-17 Fujitsu Ltd アレーアンテナによる到来方向推定方法及び該方法を用いたds−cdma受信装置
JP2000332666A (ja) * 1999-05-24 2000-11-30 Toshiba Tec Corp 無線通信システム
JP2002077008A (ja) * 2000-08-25 2002-03-15 Nec Corp 適応アンテナ受信装置
JP2002237766A (ja) * 2001-02-08 2002-08-23 Nec Corp 適応アンテナ受信装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101199213B (zh) * 2005-06-15 2011-10-26 华为技术有限公司 信道质量估计方法和系统
WO2018150517A1 (ja) * 2017-02-16 2018-08-23 三菱電機株式会社 伝送路推定装置および伝送路推定方法
JPWO2018150517A1 (ja) * 2017-02-16 2019-06-27 三菱電機株式会社 伝送路推定装置および伝送路推定方法
CN112514277A (zh) * 2018-03-16 2021-03-16 华为技术有限公司 用于多径角度估计的接收器和发送器
CN112514277B (zh) * 2018-03-16 2022-05-17 华为技术有限公司 用于多径角度估计的接收器和发送器

Also Published As

Publication number Publication date
CN1802771B (zh) 2011-03-02
US20060286955A1 (en) 2006-12-21
CN1802771A (zh) 2006-07-12
US7565172B2 (en) 2009-07-21
JP4618126B2 (ja) 2011-01-26
JPWO2005001992A1 (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
JP3888189B2 (ja) 適応アンテナ基地局装置
JP3580495B2 (ja) 適応アンテナ受信装置
US6657590B2 (en) Adaptive antenna reception apparatus using reception signals by arrays antennas
JP3092798B2 (ja) 適応送受信装置
US6069912A (en) Diversity receiver and its control method
JP3465739B2 (ja) Cdma適応アンテナ受信装置及び通信システム
US7161976B2 (en) Interference canceller
JP3591581B2 (ja) 適応アンテナ受信装置
JP3619729B2 (ja) 無線受信装置および無線受信方法
WO2005001992A1 (ja) 適応アンテナ受信方法および装置
JP2000082982A (ja) アレーアンテナ受信装置
US20030146870A1 (en) Apparatus for an methods of receiving a transmission signal
US6317611B1 (en) Communication device with adaptive antenna
JP3328930B2 (ja) 適応受信装置
EP1164735B1 (en) Interference signal removing device and interference signal removing method
JP2006041562A (ja) 基地局装置及び無線受信方法
EP1583258B1 (en) Array antenna radio communication apparatuses
JP2002359586A (ja) 適応送受信機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048159510

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006286955

Country of ref document: US

Ref document number: 10560967

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005511021

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10560967

Country of ref document: US