WO2005001185A1 - 編地見本の作成方法、ニットデザイン方法、糸径測定装置、及び編地見本の作成装置 - Google Patents

編地見本の作成方法、ニットデザイン方法、糸径測定装置、及び編地見本の作成装置 Download PDF

Info

Publication number
WO2005001185A1
WO2005001185A1 PCT/JP2004/008961 JP2004008961W WO2005001185A1 WO 2005001185 A1 WO2005001185 A1 WO 2005001185A1 JP 2004008961 W JP2004008961 W JP 2004008961W WO 2005001185 A1 WO2005001185 A1 WO 2005001185A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
knitted fabric
image
fabric sample
loop
Prior art date
Application number
PCT/JP2004/008961
Other languages
English (en)
French (fr)
Inventor
Keizo Koganeya
Takashi Makino
Original Assignee
Shima Seiki Manufacturing, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shima Seiki Manufacturing, Ltd. filed Critical Shima Seiki Manufacturing, Ltd.
Publication of WO2005001185A1 publication Critical patent/WO2005001185A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B37/00Auxiliary apparatus or devices for use with knitting machines
    • D04B37/02Auxiliary apparatus or devices for use with knitting machines with weft knitting machines

Definitions

  • the present invention relates to creation of a knitted fabric sample and design of a garment using the sample.
  • the present invention also relates to a knitted fabric sample preparation device and a yarn diameter measuring device required for preparing a knitted fabric sample.
  • Patent Document 1 discloses that a knitted fabric is knitted using a yarn whose yarn diameter is to be measured, and that the yarn is pulled in the ale direction so that the size in the course direction does not change. Discloses that 1/4 of the yarn diameter is used as the yarn diameter. In Patent Document 1, trial knitting is required to measure the yarn diameter.
  • a knitted fabric test piece is knitted, and a knitted fabric sample is used to evaluate what kind of image the knitted fabric will be made with using what kind of yarn.
  • the knitted fabric sample is necessary to obtain the image of the knitted fabric from the yarn, especially the texture of the knitted fabric, and is required before designing the garment.
  • Trial knitting is necessary to create a knitted fabric sample, and it takes time to select the gauge to be used and various knitting conditions before trial knitting.
  • Patent document 1 Japanese Patent Application Laid-Open No. 2000-1-2123365 Summary of the Invention
  • a basic object of the present invention is to create a reliable knitted fabric sample without actually knitting the knitted fabric.
  • An additional object of the present invention is to provide a reliable knitted fabric sample even if the loop shape differs depending on the material.
  • Another object of the present invention is to provide a knitted fabric sample that reflects the reduction of the knitted fabric by finishing.
  • An additional object of the present invention is to make the number of stitches necessary for knitting a garment of a desired size known from a knitted fabric sample.
  • a further object of the present invention is to facilitate the design of a knit product. Another object of the present invention, construction of Mel 0 invention to easily and accurately be able to measure the yarn diameter
  • the method for preparing a knitted fabric sample according to the present invention includes the steps of: determining a yarn diameter of a yarn; determining a gauge of a knitting machine suitable from the yarn diameter by a gauge conversion means; and determining a knitted fabric based on the yarn diameter by a loop shape conversion means. Then, a loop shape is obtained, a yarn image is input, and an image of a knitted fabric sample is created from the converted loop shape and the yarn image by loop simulation.
  • the loop shape is, for example, the length and width of the loop, and may include the loop length in order to determine other necessary yarn lengths.
  • the conversion condition for obtaining the loop shape from the yarn diameter can be changed, so that the conversion condition can be improved (grown or learned) so as to gradually obtain the actual loop shape.
  • Loop simulation is to create a knitted fabric image that represents each loop with a simulation image.
  • an enlarged image of the yarn is displayed, and the yarn main body and the hair at both ends in the thickness direction of the yarn are displayed.
  • the user accepts input of the boundary position with the wing on the enlarged image, and two boundary marks parallel to the length direction of the yarn are passed on the enlarged image so as to pass through the received boundary position.
  • the yarn diameter is determined from the interval between the two boundary marks.
  • the boundary mark is, for example, a mark including a linear boundary line.
  • a means for inputting a yarn material is provided, and the loop shape conversion means obtains a loop shape using the yarn material in addition to the yarn diameter.
  • the material of the yarn is, for example, wool or cotton.
  • a means for inputting the finishing condition and a means for storing the reduction ratio of the knitted fabric based on the finishing condition are obtained, and the image of the knitted fabric sample is corrected based on the finishing condition.
  • This correction is performed by, for example, correcting the loop shape under the finishing condition, or correcting the image of the knitted fabric sample under the finishing condition.
  • the knitted fabric sample in addition to the image of the knitted fabric sample, at least an image of a thread, a gauge of the matching knitting machine, and a loop size in the ale direction and the course direction are displayed. As a result, it becomes clear how many stitches are required to knit a knitted fabric of a desired size.
  • the design method according to the present invention is a method for designing a garment of a knit product, and is a method for a knitting machine adapted to obtain a yarn diameter for each of a plurality of yarns from a yarn diameter obtained by a gauge conversion means.
  • a gauge is obtained, and a loop shape conversion means obtains a loop shape of the knitted fabric based on the yarn diameter, further inputs an image of each yarn, and obtains a knitted fabric sample from the converted loop shape and the image of each yarn.
  • Images are created by loop simulation, and the loop size in the ale direction and course direction is displayed, and a knitted fabric sample is displayed for each yarn.
  • a knitted fabric sample is displayed for the yarn selected by the user from the knitted fabric sample for each yarn.
  • the garment is designed based on the loop size of the garment, and each loop in the garment design is displayed based on the yarn image and the loop shape.
  • Garments are knitted products such as sweaters, dresses, cardigans, and socks.
  • the knitted fabric sample creation apparatus includes a gauge converting means for converting the yarn diameter of the yarn into a gauge of a suitable knitting machine, and a loop for converting the yarn diameter into a loop shape in the knitted fabric.
  • the yarn diameter measuring device includes: a display unit for displaying an enlarged image of the yarn; and a boundary position between the yarn main body and the fluff portion at both ends in the thickness direction of the yarn.
  • Input means for receiving input, means for displaying two boundary marks parallel to the length direction of the yarn on the enlarged image so as to pass through the received boundary position, and And a yarn diameter calculating means for obtaining the yarn diameter from the interval between the boundary marks.
  • a gauge of a knitting machine that is suitable is obtained from the yarn diameter, and the yarn diameter is converted into a loop shape.
  • a knitted fabric sample is created by loop simulation using the obtained loop shape and yarn image. Therefore, a knitted fabric sample can be created without trial knitting (knitting of test pieces).
  • the created knitted fabric sample has a reliable loop shape based on the yarn diameter, and since the yarn image is used, the expression of the texture is real. For these reasons, it is easy to create a knitted fabric sample that previously required a lot of time. .
  • the yarn diameter is obtained, for example, from an enlarged image of the yarn.
  • a yarn has a yarn body and a fluff around it, and it is difficult to determine the boundary between the yarn body and the fluff by image recognition. If the boundary is simply specified by visual inspection on the screen, it is difficult to input the boundary between the yarn body and the fluff accurately because the yarn is wide and narrow due to twisting and the state of fluff varies depending on the location. . Therefore, a boundary mark parallel to the yarn length direction is displayed so as to pass through the boundary input by the user. If the boundary mark passes through the boundary between the fluff and the yarn body along the length direction of the yarn on average, it means that the boundary has been correctly input.
  • the appropriateness of the input of the boundary between the fluff portion and the yarn main body can be confirmed using the boundary mark.
  • the loop shape depends not only on the yarn diameter but also on the material of the yarn.
  • the largest factor that determines the loop shape is the yarn diameter, and the auxiliary factor is the material of the yarn. Therefore, if the loop shape is determined according to both the yarn diameter and the material, the loop shape can be obtained more accurately, and a more accurate sample of the knitted fabric can be obtained.
  • the size of the knitted fabric or loop expands and contracts by finishing, and generally shrinks by finishing. Therefore, if the finishing conditions can be entered and the loop shape is corrected by the finishing conditions, and the image of the knitted fabric sample is corrected, a knitted fabric sample that takes the finishing conditions into account is obtained.
  • the texture is determined using a knitted fabric sample, the yarn is selected, and the garment is designed. Since the size of the loop is known from the knitted fabric sample, by using this to determine the number of stitches in the course direction and the ale direction, a garment with a desired size and a desired texture can be easily designed.
  • FIG. 1 is a block diagram showing a configuration for reading a yarn diameter in an embodiment.
  • FIG. 2 is a block diagram showing a configuration for creating a knitted fabric sample in the embodiment.
  • FIG. 3 is a diagram illustrating an example of a knitted fabric sample created in the example.
  • FIG. 4 is a block diagram showing a configuration for garment design in the embodiment. Example
  • reference numeral 2 denotes a knit design device used for calculating a yarn diameter, creating a knitted fabric sample, designing a garment, and the like. In the design of the garment, sweaters, dresses, cardigans, etc. are designed and obtained.
  • the converted design data is converted into knitting data of a knitting machine such as a flat knitting machine.
  • Reference numeral 4 denotes a flatbed scanner, which captures a yarn image of the test yarn 10 passed over the jig 6, and 8 and 9 denote arms, for example, provided at both ends of the jig 6.
  • One end of the test yarn 10 for measuring the yarn diameter is fixed to the arm 8 with a fixing tool 12 such as an adhesive tape.
  • the predetermined load is a load required to keep the yarn in a constant state
  • the weight of the weight 13 is, for example, a weight corresponding to 250 m of the test yarn 10.
  • the flatbed scanner 4 is used in FIG. 1, a handy scanner or a microphone mouth scope may be used. Since a color image of the yarn is used for preparing a knitted fabric sample, a device capable of reading a color image is preferable. The higher the resolution, the better. In the embodiment, the flatbed scanner 4 captures two types of images: 320 DPI (high-resolution image) and 800 DPI (low-resolution image). When capturing a high-resolution image, a load is applied to the test yarn 10 as described above to keep the state constant, and when capturing a low-resolution image, no load is applied to the test yarn 10 or when compared to the case of a high-resolution image. Also reduce the load and capture an image with the test thread 10 in a relaxed state.
  • 320 DPI high-resolution image
  • 800 DPI low-resolution image
  • the loop simulation uses the image of the thread in a relaxed state rather than in a state of tension due to the load.
  • the flatbed scanner 4 When the brightness of the test thread 10 is high, it is convenient for the flatbed scanner 4 to read an image without a cover and to make the background black. If the brightness of the test yarn 10 is low, it is convenient to cover it with a white background.
  • the image of the test yarn 10 is input from the flatbed scanner 4 to the knit design device 2 at two resolutions of 800 DPI and 320 DPI.
  • the knit design device 2 includes a display unit 14 such as a high-resolution display and a design device main body 15.
  • the knit design device 2 is connected to a color printer 16.
  • the display unit 14 displays, for example, a high-resolution yarn image 18, and the yarn image 18 includes a yarn main body 19 and a fluff portion 20 around the yarn main body 19. It is difficult to find the boundary between the thread body 19 and the fluff 20 by pattern recognition, and Due to the twist in the yarn, the location of this boundary varies along the length of the yarn. Therefore, for example, a pair of guide lines 21 and 21 (a chain line in FIG. 1) is used so that this line is located at an average position on the boundary between the thread body 19 and the fluff portion 20.
  • the yarn length direction is passed through that point.
  • a guide line 21 is generated and displayed in parallel with. Since the yarn body 19 is twisted, the boundary between the yarn body 19 and the fluff portion 20 differs depending on the location.
  • the user uses the position input means 22 to change the guide line 21 so that the guide line 21 appears on the boundary between the yarn main body 19 and the fluff portion 20 on average along the length direction of the yarn. To move. In this way, each time the user touches and drags the guide line 21 by the position input means 22, the guide line 21 moves. Through this operation, confirm that the position of guide line 21 is correct.
  • the calculation of the yarn diameter is preferably performed by generating the guide line 21 in a wide range of the test yarn 10, for example, at a plurality of places in a range of about 5 cm or 1 Ocm.
  • FIG. 1 an image of only one point is shown as the yarn image 18.
  • the guide line indicating the boundary between the yarn main body 19 and the fluff portion 20 is literally displayed as a line, but the boundary between the yarn main body 19 and the fluff portion 20 can be seen, and is parallel to the yarn length direction. Any mark including a linear boundary may be used. For example, if the lightness, saturation, or color tone is changed between the inside and outside of the guide lines 21 and 21, the user can find out from where to what range has been designated as the area inside the thread body 19.
  • the guide line interval calculating means 23 calculates the interval between the guide lines 21 and 21 on both sides in the thickness direction of the yarn. For example, when the thickness of the yarn is measured at four force points, the guide lines 21 and 21 are used. There are also 4 pairs of 2 1 (pairs), and the thickness of each of these yarns can be obtained. Therefore, the averaging means 24 averages the thickness of these yarns to obtain the yarn diameter. For averaging, a simple average or geometric average may be used. If the variation in the yarn diameter obtained at four points, for example, the standard deviation is larger than a predetermined value, a warning is displayed on the display unit 14 and the guidance is given. You may be asked to re-enter the lines 21 and 21.
  • the yarn diameter is obtained by using the yarn count conversion means 25 from the yarn count.
  • the count is, for example, the length of the thread per specified weight or the weight of the thread per specified length.If the thread is commercially available, the count is displayed. Can be measured.
  • the conversion means 25 from the count to the yarn diameter is constituted by, for example, a conversion table from the count to the yarn diameter.
  • the conversion from yarn count to yarn diameter by the conversion means 25 is a matter of convenience, and whether this conversion is correct depends on the display size of the loop on the knitted fabric sample and the knitted fabric using this yarn actually. It becomes clear from the comparison with the loop size when Therefore, a conversion condition change input means 26 is provided so that the conversion condition of the conversion means 25 can be changed.
  • the yarn image storage unit 27 stores the yarn image read by the flatbed scanner 4 as, for example, two types of images, a high-resolution image and a low-resolution image. However, only the high-resolution image may be stored, reduced appropriately, and a low-resolution image may be generated each time.
  • the yarn diameter is increased at a predetermined ratio, in other words, the yarn thickness is increased to some extent and then reduced to be used for a loop simulation or the like.
  • the yarn diameter can be obtained for the test yarn 10 and the yarn image can be captured.
  • a microscope microscope
  • the yarn diameter can be obtained more easily and accurately than the boundary between the yarn main body 19 and the fluff portion 20 is obtained by image recognition or the like. In particular, fluctuations at the boundary of the yarn main body 19 due to twisting of the yarn can be easily and accurately processed.
  • Fig. 2 shows a configuration for outputting a knitted fabric sample using the yarn diameter.
  • Various input data are supplied to the bus 30.
  • these input means, for example, a keyboard, a mouse stylus, or a disk storing the input data may be used.
  • the yarn diameter should be corrected according to the number of multiple yarns. For example, if two yarns are used in piles, the weight per length will be doubled, so the yarn diameter will be treated as about 1.4 times larger.
  • the size of the loop (the length and width of the loop) is basically determined by the yarn diameter, but is also affected by the material.
  • the inventor considers that at least two types of materials, namely, wool and other animal fibers and their blends, and cotton and other cellulosic fibers and their blends, as the effect of the yarn material, can be used to make most of the yarn used. I found what I could do.
  • the yarn is preferably made of animal fiber such as wool and a blend thereof (wool), and cellulose fiber such as cotton and a blend thereof (hereinafter referred to as "cotton"). Are treated separately.
  • yarn materials There are many other types of yarn materials, but they are basically woolen or cotton-based and determine the correction factor for the loop size, which affects the length rather than the width of the loop.
  • inputting a material it is preferable to be able to input a material with a large shrinkage at the time of finishing, such as a spantex.
  • finishing conditions such as steam and washing.
  • a default value is provided and stored in the finishing condition or the material, it is preferable to provide an input for changing the default value.
  • the conversion from the yarn diameter and the material to the loop shape such as the loop width, loop length, and loop length is based on empirical rules, and the knitted fabric sample created with the knit design device 2 and the actual knitted fabric are used. From the comparison with, the rules can be gradually improved. Therefore, a conversion rule change input (loop shape change input) from the yarn diameter to the loop shape is provided to gradually improve the conversion accuracy from the yarn diameter divided by the material to the loop shape.
  • a standard gauge for the knitting machine that conforms to the yarn diameter will be determined.
  • the conversion from yarn diameter to gauge is also based on empirical rules, and a gauge change input is provided so that the conditions for conversion from yarn diameter to gauge can be gradually improved.
  • the conversion means 31 converts the yarn diameter into a loop shape, and preferably uses a material (two types of cotton or cotton) in addition to the yarn diameter to determine the loop length, loop width, and loop length. Convert to loop shape.
  • the conversion means 32 converts the yarn diameter into a gauge of a knitting machine suitable for the yarn. In the embodiment, a flat knitting machine is assumed as the knitting machine, but other types of knitting machines such as a circular knitting machine may be used.
  • the conversion means 33 outputs a reduction ratio for finishing conditions such as steam or washing. If enlargement occurs instead of reduction due to finishing, consider the reduction ratio to be 1 (minus). In addition, the effect of finishing varies depending on the material, especially in the case of spun tex, etc., because the size of the finish is large, so in the input of the material, besides wool or cotton, enter 3 types of special yarn such as spun tex It is preferable that the reduction ratio can be changed depending on the material. It is preferable that the conversion means 31 to 33 include, for example, conversion tables, so that conversion conditions in these conversion tables can be changed, and the conversion conditions are adjusted according to the actual conditions.
  • the conversion means 31 outputs the loop shape such as the loop length, loop width, and loop length to the loop simulation means 36, and the finishing condition conversion means 33 outputs the reduction rate by the finishing.
  • Correction to reduction by finishing may be performed by correcting the loop length, width, and loop length, or may be performed by reducing the entire image obtained by the loop simulation. Further, the reduction ratio by finishing may be different in the width direction and the height direction of the loop.
  • the loop simulation means 36 the effect of the shape and finish of the loop is input, and other low-resolution yarn images are input. Since the shape of each loop is determined, its size is determined, and the texture of the yarn is determined from the low-resolution yarn image, the loop simulation means 36 can output a color image simulating each loop of the knitted fabric.
  • the conversion means 32 outputs gauges and other data, such as loop shape data, and outputs a hard copy of the fabric sample 38 using a color printer 16 The same data is output to the display unit 14 In this case, the loop simulation image and other data may be displayed in the same window or in different windows. It is preferable to store the obtained knitted fabric sample and the associated data such as the loop shape and the gauge in the knitted fabric sample library 39.
  • Fig. 3 shows a print example of a knitted fabric sample.
  • Name and count of yarn and type and material of twist Enter the finishing conditions, etc.
  • the designation 2Z15 of the count indicates that the yarn is a double yarn obtained by twisting two single yarns of the 15th count with a wool count, and that 15 m of this yarn is equivalent to 2 g.
  • a hard copy of the knitted fabric sample 3 8 is displayed with a thread image (low-resolution image) and a loop simulation image of the knitted fabric sample.
  • the gauge shows an example of the gauge of the knitting machine that fits this thread.
  • a plurality of gauges, such as G, 10 G, etc., may be displayed.
  • the loop length before finishing is displayed to clarify the yarn length required for knitting control and knitting.
  • this loop length is a reference for creating knitting data.
  • the number of stitches column the number of stitches per 1 Ocm in the course direction (number of stitches in the horizontal direction) and the number of stitches per 1 Ocm in the ale direction (number of stitches in the vertical direction) are displayed. It turns out that the number of stitches is determined by the shape of the loop and the reduction rate by finishing is determined. In addition, since the loop length is known, the number of stitches per unit area is multiplied by the loop length to determine the yarn diameter and the specific gravity of the yarn estimated from the material. Display the weight.
  • Figure 4 shows the garment design after the knitted fabric sample is obtained.
  • the garment design library 40 stores many garment design data.
  • the knitted fabric sample library 39 stores a lot of data of the knitted fabric sample created in FIG. 4 2 is a design input means, such as a keyboard, stylus, or It is a mouse, etc., and performs input for garment design (input of pattern, pattern, knitting structure, etc.).
  • the knit design department 4 4 changes the design of the garment called from the library 40 from the design input means 42 and uses the knitted fabric sample called from the knitted fabric sample library 39, Create garment design data.
  • the knit design section 44 is provided with means for converting the garment design obtained into knitting data of a knitting machine such as a flat knitting machine.
  • a knitted fabric sample is called from the library 39 and displayed on the display unit 14, and the user selects a thread from this. Then, the applicable gauge and the number of stitches per predetermined length in the course direction and in the galle direction are determined.
  • the user calls a garment design suitable for the yarn from the library 40 with reference to the texture of the knitted fabric sample. Alternatively, call up the garment design and select the appropriate thread from the library 39 sample. Then, using the number of stitches in the knitted fabric sample, the garment design is reduced or enlarged to a desired size by using a predetermined grading rule or the like. Also, appropriate design changes are made using the design input means 42. In this way, the garment is designed for the yarn selected by the user.
  • the loop simulation means 36 performs a loop simulation on the designed design.
  • the loop image used in the loop simulation may be copied from the loop image created when the knitted fabric sample was created, or may be created again from the thread diameter and the material ⁇ , the loop shape and the thread image, etc. Is also good.
  • the loop simulation image can be output by a color printer 16 or the like, and can also be displayed on the display unit 14. If the loop size is corrected by taking into account the finishing conditions, for example, an image that is very close to the actual garment can be obtained on a color hard copy or on the screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

 糸の拡大画像を表示して、糸の太さ方向の両端での糸本体と毛羽部との境界位置を、前記拡大画像上でユーザが入力するのを受け付ける。受け付けた境界位置を通るように、糸の長さ方向に平行な2本の境界マークを前記拡大画像上に表示し、前記2本の境界マーク間の間隔から糸径を求める。ゲージ換算手段で求めた糸径から適合する編機のゲージを求める。ループ形状換算手段で前記糸径に基づき編地でのループ形状を求め、さらに糸の画像を入力して、換算したループ形状と糸の画像とから、編地見本の画像をループシミュレーションにより作成して、編地見本とする。

Description

明 細 書
編地見本の作成方法、 ニットデザイン方法、 糸径測定装置、
及び編地見本の作成装置 技術分野
この発明は、 編地見本の作成や、 これを用いたガーメントのデザイン等に関す る。 この発明はまた、 編地見本の作成装置や、 編地見本の作成に必要な糸径の測 定装置に関する。 背景技術
従来では鉛筆法と呼ばれる方法が用いられ、 円筒体に所定の回数密着巻きで糸 を卷き付けた際に、 巻き付けた糸が円筒体で占める巻き付け幅から糸径を求めて いる。 しかしこのような方法では、 糸に加える張力を一定にして張力による糸の 変形を一定にし、 かつ糸の間に隙間や重なりが生じないように、 正確に密着巻き をする必要がある。 そこで特許文献 1は、 糸径を測定しようとする糸を用いて編 地を編成し、 ゥエール方向に引いてコース方向のサイズが変化しなくなるように し、 この状態で求めたコース方向の編目サイズの 1 / 4を糸径とすることを開示 している。 特許文献 1では、 糸径を測定するために試編みが必要になる。
ところで編地のテストピースを編成し、 どのような糸を用いるとどのようなィ メージの編地となるのかを評価するための、 編地見本とすることが行われている。 編地見本は、 糸から編地のイメージ、 特に編地の風合いを得るために必要で、 ガ ーメントのデザィンを行う前に必要である。 編地見本を作成するには試編みが必 要で、 使用するゲージや種々の編成条件を選んでから試編みするため、 手間がか かる。
特許文献 1 特開 2 0 0 1— 1 2 3 3 6 4号公報 発明の概要
発明が解決しようとする課題. この発明の基本的課題は、 編地を実際に編成せずに、 信頼性のある編地見本を 作成することにある。
この発明での追加の課題は、 素材によりループ形状が異なっても、 信頼性のあ る編地見本が得られるようにすることにある。
また、 この発明での追加の課題は、 仕上げにより編地の縮小を反映した編地見 本を提供することにある。
また、 この発明での追加の課題は、 所望サイズのガーメントを編成するのに必 要な目数が、 編地見本から分かるようにすることにある。
さらに、 この発明の課題は、 ニット製品のデザインを容易にすることにある。 さらに、 この発明の課題は、 簡単かつ正確に糸径を測定できるようにすること にめる 0 発明の構成
この発明の編地見本の作成方法は、 糸の糸径を求めて、 ゲージ換算手段で前記 糸径から適合する編機のゲージを求め、 かつループ形状換算手段で前記糸径に基 づき編地でのループ形状を求め、 さらに糸の画像を入力して、 換算したループ形 状と糸の画像とから、 編地見本の画像をループシミュレーションにより作成する ようにしたものである。
この明細書で、 ループ形状は例えばループの丈と幅とし、 他に必要な糸長を求 めるためにループ長を含めても良い。
糸径からループ形状を求めるには、 例えばループの種々のモデルが公知なので、 ループはこのような公知モデルに従った形状をしているものと仮定し、 糸径をモ デルに当てはめてループ形状を得ても良い。 好ましくは、 糸径からループ形状を 求めるための換算条件を変更可能にして、 徐々に実際にあったループ形状が得ら れるように換算条件を改良 (成長ないしは学習) できるようにする。
ループシミュレーションは、 各ループをシミュレーション画像で表現した編地 の画像を作ることである。
好ましくは、 糸の拡大画像を表示して、 糸の太さ方向の両端部での糸本体と毛 羽部との境界位置を、 前記拡大画像上でユーザが入力するのを受け付け、 受け付 けた境界位置を通るように、 糸の長さ方向に平行な 2本の境界マークを前記拡大 画像上に表示すると共に、 前記 2本の境界マーク間の間隔から前記糸径を求める ようにする。 境界マークは例えば直線状の境界線を含むマークである。
また好ましくは、 糸の素材を入力するための手段を設けて、 前記ループ形状換 算手段では、 前記糸径の他に糸の素材を用いてループ形状を求めるようにする。 糸の素材は、 例えばウール系、 綿系などとする。
好ましくは、 仕上げ条件を入力するための手段と、 仕上げ条件による編地の縮 小率を記憶するための手段とを求めて、 編地見本の画像を仕上げ条件により補正 するようにする。 この補正は、 例えばループ形状を仕上げ条件で補正する、 編地 見本の画像を仕上げ条件で補正するなどで行う。
特に好ましくは、 編地見本には、 前記編地見本の画像の他に、 少なくとも糸の 画像、 前記適合する編機のゲージ、 及ぴゥエール方向とコース方向のループサイ ズを表示するようにする。 この結果、 所望のサイズの編地を編成するには、 どれ だけの目数が必要かが判明する。
この発明のデザィン方法は、 ニット製品のガーメントをデザィンするための方 法であって、 複数の各糸に対して、 糸径を求めてゲージ換算手段で求めた糸径か ら適合する編機のゲージを求め、 かつループ形状換算手段で前記糸径に基づき編 地でのループ形状を求め、 さらに各糸の画像を入力して、 換算したループ形状と 各糸の画像とから、 編地見本の画像をループシミュレーションにより作成すると 共に、 ゥエール方向とコース方向のループサイズを表示して、 糸毎の編地見本と し、 糸毎の編地見本からユーザが選択した糸に対して、 編地見本のループサイズ に基づいてガーメントをデザインし、 かつガーメントのデザィンでの各ループを 糸の画像とループ形状とに基づいて表示するようにしたものである。 なおガーメ ントは、 セーター、 ワンピース、 カーディガン、 ソックス、 などの編み製品であ る。
この発明の編地見本の作成装置は、 糸の糸径を適合する編機のゲージに換算す るためのゲージ換算手段と、 糸径を編地でのループ形状に換算するためのループ 形状換算手段と、 糸の画像を入力するための画像入力手段と、 換算したループ形 状と糸の画像とから、 編地見本の画像を作成するためのループシミュレーション 手段とを備えたものである。
この発明の糸径の測定装置は、 糸の拡大画像を表示するための表示手段と、 糸 の太さ方向の両端での糸本体と毛羽部との境界位置を、 前記拡大画像上でユーザ が入力するのを受け付けるための入力手段と、 受け付けた境界位置を通るように、 糸の長さ方向に平行な 2本の境界マークを前記拡大画像上に表示するための手段 と、 前記 2本の境界マーク間の間隔から糸径を求めるための糸径算出手段、 とを 設けたものである。 発明の作用と効果
この発明では、 糸径から適合する編機のゲージを求めると共に、 糸径をループ の形状に換算する。 求めたループ形状と糸の画像とを用いて、 編地見本をループ シミュレーションにより作成する。 このため試編み (テストピースの編成) 無し で編地見本を作成できる。 作成した編地見本は、 糸径に基づくのでループ形状に 信頼性があり、 糸画像を用いているので、 風合い (テクスチャ) の表現もリアル である。 これらのため、 従来多大の時間を要していた編地見本の作成を容易にで さる。 .
糸径は例えば糸の拡大画像から求める。 糸には糸の本体とその周囲の毛羽部と があり、 画像認識で糸本体と毛羽部との境界を求めるのは難しい。 かといつて画 面上で目視などにより単純に境界を指定すると、 糸には撚りによる広狭があり、 毛羽立ちの状態も場所によって異なるため、 正確に糸本体と毛羽の境界を入力す るのは難しい。 そこでユーザが入力した境界を通るように、 糸の長さ方向に平行 な境界マークを表示する。 境界マークが、 糸の長さ方向に沿って平均的に毛羽部 と糸本体との境界を通っていれば、 境界を正しく入力したことになる。 そこで境 界マークを用いて、 毛羽部と糸本体の境界の入力の適否を確認できる。 次に境界 マークは糸の太さ方向の両側に一対あり、 これらの間隔を求めると、 糸径を求め ることができる。 このためこの発明では、 簡単かつ正確に糸径を求めることがで ぎる。
ループ形状は、 糸径の他に、 糸の素材にも依存する。 ループ形状を定める最大 の因子は糸径で、 補助的な因子が糸の素材である。 そこで糸径と素材の双方に応 じてループ形状を定めるようにすると、 より正確にループ形状を求めることがで き、 より正確な編地見本を得ることができる。
編地やループのサイズは仕上げにより伸縮し、 一般的には仕上げにより縮む。 そこで仕上げ条件を入力できるようにして、 仕上げ条件によりループ形状を補正 する、 編地見本の画像を補正する、 などの補正を施すと、 仕上げ条件も考慮に入 れた編地見本が得られる。
編地見本にループサイズを表示し、 用いた糸の画像を表示し、 ゲージを表示す ると、 どのゲージの編みでどれだけのコース数とゥエール数を編成すると、 どの サイズの編地となるのかが、 試編み無しで予想できる。
この発明では、 編地見本を用いて風合いを判断し、 糸を選択しガーメントをデ ザィンする。 ループのサイズが編地見本から判るので、 これを用いてコース方向 ゃゥエール方向の目数を定めると、 所望のサイズで所望の風合いのガーメントを 簡単にデザインできる。 図面の簡単な説明
図 1は、 実施例での、 糸径の読み取りのための構成を示すブロック図である。 図 2は、 実施例での、 編地見本の作成のための構成を示すプロック図である。 図 3は、 実施例で作成した編地見本の例を示す図である。
図 4は、 実施例での、 ガーメントのデザインのための構成を示すブロック図であ る。 実施例
図 1〜図 4に実施例を示す。 これらの図において、 2はニットデザイン装置で 糸径の算出や編地見本の作成、 ガーメントのデザインなどに用いる。 ガーメント のデザィンでは、 セーターやワンピース, カーディガンなどをデザインし、 得ら れたデザィンデータを横編機などの編機の編成データに変換する。 4はフラット ベッドスキャナで、 治具 6に差し渡したテスト糸 1 0の糸画像を取り込み、 8 , 9はアームで、 例えば治具 6の両端に設ける。 糸径を測定するテスト糸 1 0の一 端を、 粘着テープなどの固定具 1 2により、 アーム 8に固定する。 テスト糸 1 0 を固定具 1 2から例えば数回アーム 8に沿って巻き回した後に、 フラットベッド スキャナ 4の読み取り面を横断するようにして、 反対側のアーム 9へと差し渡し、 他端に錘 1 3を取り付けて所定の荷重を加える。 この所定の荷重とは、 糸を一定 の状態にするために必要な荷重のことであり、 錘 1 3の重量は例えばテスト糸 1 0の 2 5 0 mに相当する重量とする。
図 1ではフラットべッドスキャナ 4を用いたが、 ハンディスキャナやマイク口 スコープなどを用いてもよく、 糸のカラー画像を編地見本の作成に用いるため、 カラー画像を読み取れるものが好ましい。 解像度は高いほど好ましく、 実施例で は 3 2 0 0 D P I (高解像度画像) と 8 0 0 D P I (低解像度画像) の 2種類の 画像を、 フラットベッドスキャナ 4により取り込む。 なお高解像度画像の取り込 みでは前記のようにテスト糸 1 0に荷重を加えて状態を一定にし、 低解像度画像 の取り込みではテスト糸 1 0に荷重を加えないか、 あるいは高解像度の場合より も荷重を小さく し、 テスト糸 1 0がリラックスした状態の画像を取り込む。 これ はループシミュレーションに、 荷重により緊張した状態ではなく、 リラックスし た状態の糸の画像を使用するためである。 テスト糸 1 0の明度が高い場合、 フラ ットベッドスキャナ 4は蓋をせずに画像を読み取り、 背景を黒にすると便利であ る。 またテスト糸 1 0の明度が低い場合、 蓋をして背景を白にすると便利である。 フラットべッドスキャナ 4からニットデザィン装置 2 へ、 テスト糸 1 0の画像が、 8 0 0 D P Iと 3 2 0 0 D P Iの 2つの解像度で入力される。
ニットデザイン装置 2には、 高解像度ディスプレイなどの表示部 1 4と、 デザ イン装置本体 1 5とが設けてある。 またニットデザイン装置 2はカラープリンタ 1 6に接続されている。 表示部 1 4には例えば高解像度の糸画像 1 8が表示され ており、 糸画像 1 8は糸本体 1 9とその周囲の毛羽部 2 0とから成っている。 そ して糸本体 1 9と毛羽部 2 0との境界をパターン認識で求めるのは難しく、 かつ 糸には撚りがあるため、 この境界の位置は糸の長さ方向に沿って変動する。 そこで例えば 1対の案内線 2 1 , 2 1 (図 1の鎖線) を用いて、 この線が糸本 体 1 9と毛羽部 2 0の境界の平均的な位置に位置するようにする。 マウスゃスタ ィラスなどの位置入力手段 2 2により、 ユーザが糸画像 1 8で、 糸本体 1 9と毛 羽部 2 0との境界の点を指定すると、 その点を通って糸の長さ方向に平行に案内 線 2 1が発生して表示される。 糸本体 1 9には撚りがあるため、 糸本体 1 9と毛 羽部 2 0との境界は場所によって異なる。 そこでユーザは、 位置入力手段 2 2に より、 糸の長さ方向に沿って平均的に、 案内線 2 1が糸本体 1 9と毛羽部 2 0と の境界に現れるように、 案内線 2 1を移動させる。 このように、 ユーザが位置入 力手段 2 2により、 案内線 2 1にタツチしてドラックする毎に、 案内線 2 1は移 動する。 この作業を通して、 案内線 2 1の位置が正しいことを確認する。
糸径の算出は、 テスト糸 1 0の広い範囲で、 例えば 5 cmあるいは 1 O cm程度の 範囲の複数の場所で、 案内線 2 1を発生させて行うのが好ましい。 図 1では、 糸 画像 1 8として 1力所のみの画像を示したが、 複数箇所の糸画像を表示部 1 4に 表示し、 これらにそれぞれ案内線 2 1 , 2 1をセットするのが好ましい。 実施例 では糸本体 1 9と毛羽部 2 0の境界を示す案内線を、 文字通り線として表示して いるが、 糸本体 1 9と毛羽部 2 0の境界が分かる、 糸の長さ方向に平行な線状の 境界を含むマークであればよい。 例えば案内線 2 1, 2 1の内側と外側で明度や 彩度あるいは色調などを変えると、 どこからどこまでの範囲を糸本体 1 9の内部 の領域として指定したかが、 ユーザに判明する。
案内線間隔算出手段 2 3は、 糸の太さ方向両側の案内線 2 1 , 2 1の間隔を求 め、 例えば糸の太さを 4力所で測定している場合、 案内線 2 1, 2 1のペア (組 み) も 4対あり、 これらに対してそれぞれ糸の太さが求まるので、 平均化手段 2 4でこれらの糸の太さを平均化して糸径を求める。 平均化には単純平均や幾何平 均などを用いてもよく、 また 4力所で求めた糸径のばらつき、 例えば標準偏差が 所定値よりも大きい場合、 表示部 1 4で警告して、 案内線 2 1, 2 1の再入力を 求めるなどのことをしてもよい。
テスト糸 1 0の燃りが甘い場合、 糸本体 1 9と毛羽部 2 0との境界が不明なこ とがある。 このような場合は、 糸画像 1 8から糸径を求めることができないので 番手から糸径への換算手段 2 5を用いて糸径を求める。 番手は例えば所定重量当 たりの糸の長さや、 所定長さあたりの糸の重量とし、 市販されている糸であれば 番手が表示されているし、 このような番手を利用できない場合でも、 簡単に測定 できる。 番手から糸径への換算手段 2 5は、 例えば番手から糸径への換算表な,ど で構成する。
換算手段 2 5による番手から糸径への換算は便宜的なものであり、 この換算が 正しいかどうかは、 編地見本でのループの表示サイズと、 実際にこの糸を用いて 編地を編成した際のループサイズ、 との比較から判明する。 そこで換算条件変更 入力手段 2 6を設けて、 換算手段 2 5の換算条件を変更できるようにする。 糸画 像記憶部 2 7にはフラットべッドスキャナ 4で読み込んだ糸画像を、 高解像度の 画像と低解像度の画像の例えば 2種類の画像として記憶する。 ただし高解像度画 像のみを記憶し、 これを適当に縮小して、 その都度、 低解像度画像を発生させる ようにしてもよい。 この場合、 糸径を所定の割合で増すように、 言い換えると糸 の太さをある程度太くしてから縮小して、 ループシミュレーションなどに用いる のが好ましい。 具体的には糸の長手方向と太さ方向とで縮小率を変え、 長手方向 の縮小率を太さ方向よりも大きくすると良い。
以上のようにすることにより、 テスト糸 1 0に対して糸径を求めると共に、 糸 画像を取り込むことができる。 糸画像の取り込みにはスキャナのほかにマイクロ スコープ (顕微鏡) などを用いてもよい。 また案内線 2 1, 2 1を用いると、 糸 本体 1 9と毛羽部 2 0との境界を画像認識などで求めるよりも、 簡単かつ正確に 糸径を求めることができる。 特に糸の撚りによる糸本体 1 9の境界の変動を、 簡 単かつ正確に処理できる。
図 2に、 糸径を用いて編地見本を出力するための構成を示す。 バス 3 0には様 々な入力データが供給され、 これらの入力手段には、 例えばキーボードやマウス スタイラス、 あるいは入力データを記憶したディスクなどを用いればよい。 多本 取り本数の入力では、 デフォールト値が 1で、 2〜4などの本数を指定すると、 糸を 2本〜 4本程度引き揃えて編地を編成することを指定したことになる。 この 場合糸径は、 多本取りの本数に応じて捕正する。 例えば糸を 2本重ねて用いると、 長さあたりの重量は 2倍になるので、 糸径が約 1 . 4倍になるものとして扱う。 3本取りや 4本取りの場合も、 糸の本数に応じて、 糸径が増すように同様に補正 する。 パス 3 0には図 1で求めた糸径が入力され、 他にループシミュレーション でのループ画像を作成するために、 低解像度の糸画像が入力される。
ループのサイズ (ループの丈や幅) は基本的に糸径で定まるが、 これ以外に素 材の影響も受ける。 発明者は糸の素材の影響として、 少なくともウールなどの動 物性繊維とその混紡と、 綿などのセルロース繊維とその混紡、 の 2種類の素材を 考慮すれば、 使用する糸の大部分を力パーできることを見い出した。 本実施例の 編地見本の作成では、 糸の素材は好ましくはウールなどの動物性繊維系とその混 紡 (ウール系) と、 綿などのセルロース繊維系とその混紡 (以下 「綿系」 ) の 2 種類に分けて扱われる。 糸の素材はこれ以外にも多種類有るが、 基本的にはウー ル系か綿系かで、 ループサイズへの補正因子が定まり、 これらはループの幅より も丈に影響する。 なお素材の入力時には、 スパンテックスなどのように、 仕上げ 時の縮みが大きい素材も入力できるようにすることが好ましい。 これ以外に、 ス チームや洗いなどの仕上げ条件を入力する。 また仕上げ条件や素材などに、 デフ オールト値を設けて記憶しておく場合、 デフオールト値の変更入力を設けるのが 好ましい。
また糸径と素材からのループ幅や、 ループ丈、 ループ長などのループ形状への 変換は、 経験的なルールに基づくものであり、 ニットデザイン装置 2で作成した 編地見本と実際の編地との比較から、 徐々にルールを改善できる。 そこで糸径な どからループ形状への変換ルールの変更入力 (ループ形状変更入力) を設けて、 糸径ゃ素材からのループ形状への変換精度を徐々に向上させるようにする。
また糸径に対して、 それに適合する編機の標準的なゲージを求めるようにする。 糸径からゲージへの変換も経験的なルールに基づくものであり、 ゲージ変更入力 を設けて、 糸径からゲージへの変換条件を徐々に改善できるようにする。
換算手段 3 1は糸径からループ形状へ換算し、 好ましくは糸径の他に素材 (ゥ ール系もしくは綿系の 2種類) を用いて、 ループ長, ループ幅, ループ丈などの ループ形状へ換算する。 換算手段 3 2は、 糸径をその糸に適合した編機のゲージ に換算する。 編機として実施例では横編機を想定するが、 丸編機などの他の種類 の編機でもよい。
換算手段 3 3は、 スチームまたは洗いなどの仕上げ条件に対して、 縮小率を出 力する。 なお仕上げにより縮小ではなく拡大が生じる場合、 縮小率を一 (マイナ ス) と考えればよレ、。 また仕上げの影響は素材により異なり、 特にスパンテック スなどの場合、 仕上げによる縮小が大きいので、 素材の入力ではウール系もしく は綿系の他に、 スパンテックスなどの特殊糸の 3種類を入力できるようにし、 縮 小率を素材により変更できるようにすることが好ましい。 換算手段 3 1〜3 3は 例えば換算表により構成し、 これらの換算表での換算条件を変更できるようにし て、 使用しながら実状に合わせていくのが好ましい。
換算手段 3 1はループ長やループ幅, ループ丈などのループ形状を、 ループシ ミュレーシヨン手段 3 6へ出力し、 仕上げ条件の換算手段 3 3は仕上げによる縮 小率を出力する。 仕上げによる縮小への補正は、 ループの丈や幅、 ループ長を補 正することによって行ってもよく、 ループシミュレーションにより得られた画像 を全体的に縮小することによって行ってもよい。 また仕上げによる縮小率は、 ル 一プの幅方向と高さ方向とで異なる値にしてもよい。
ループシミュレーション手段 3 6ではループの形状と仕上げによる影響が入力 され、 他に低解像度の糸画像が入力される。 各ループの形状が定まり、 そのサイ ズが定まり、 かつ糸の風合いが低解像度の糸画像から定まるので、 ループシミュ レーション手段 3 6では、 編地の各ループをシミュレーションしたカラー画像を 出力できる。 また換算手段 3 2では、 ゲージなどを出力し、 他にループ形状など のデータを加えてカラープリンタ 1 6で編地見本のハードコピー 3 8を出力する 表示部 1 4にも同様のデータを出力し、 この場合、 ループシミュレーション画像 と他のデータとを同じウィンドウで表示しても、 別のウインドウで表示してもよ レ、。 得られた編地見本やそれに伴うループ形状やゲージなどのデータは、 編地見 本のライブラリ 3 9に記憶するのが好ましい。
図 3に編地見本のプリント例を示す。 糸の名称と番手並びに撚りの種類や素材 仕上げ条件などを入力する。 例えば番手の 2 Z 1 5の表示は、 毛番手で 1 5番手 単糸を 2本撚つた双糸であり、 この糸の 1 5 mが 2 gに相当することを意味する。 編地見本のハードコピー 3 8にほ、 糸画像 (低解像度画像) と編地見本のループ シミュレーション画像とが表示され、 ゲージにはこの糸に適合する編機のゲージ の例が示され、 8 G , 1 0 Gなどのように複数のゲージを表示してもよい。 ルー プ長の欄には、 編成の制御並びに編成に必要な糸長を明らかにするため、 仕上げ 前のループ長を表示する。 編機で編地を編成する際に、 このループ長は編成デー タを作成する参考となる。 目数の欄には、 コース方向 1 O cm当たりの目数 (横方 向目数) と、 ゥエール方向 1 O cm当たりの目数 (縦方向目数) とを表示する。 目 数はループの形状が定まり、 仕上げによる縮小率が定まると判明する。 またルー プ長が判明しているので、 単位面積当たりの目数にループ長を掛け、 糸径と、 素 材から推定した糸の比重などを考慮して求めた、 編地の単位面積当たりの重量を 表示する。
このように図 3の編地見本のハードコピー 3 8を用いると、 ループシミュレー シヨン画像から、 この糸を用いるとどのような風合いの編地が得られるかを想像 できる。 また所定サイズのガーメントを作成するのに必要な目数や糸の長さが判 明し、 その重量も予測できる。 そして編成に適した編機のゲージやループ長も判 明する。 従来では、 図 3のような編地見本は、 実際にテストピースを編成し、 こ れを所定の用紙に貼り付けて作成していた。 また目数や重量は、 テストピースで の単位長さ当たりの目の数などを測定して、 あるいはテストピースの重量を測定 して表示していた。 このため編地見本の作成は大変な労力を要するものであった。 これに対して実施例では、 試編みなしでほぼ正確な風合いの編地見本を表示する と共に、 ゲージやループ長、 目数, 重量などのガーメントのデザインに必要なデ ータを得ることができる。
図 4に、 編地見本が得られた後のガーメントのデザインを示す。 ガーメントデ ザィンのライブラリ 4 0にはガーメントのデザィンデータが多数保存されてレ、る。 また編地見本のライブラリ 3 9には、 図 2で作成した編地見本のデータが多数保 存されている。 4 2はデザイン入力手段で、 キーボードやスタイラス、 あるいは マウスなどであり、 ガーメントのデザインのための入力 (パターンや柄、 編組織 などの入力) を行う。 ニットデザイン部 4 4は、 例えばライブラリ 4 0から呼び 出されたガーメントのデザインに、 デザイン入力手段 4 2からの変更を加え、 編 地見本のライブラリ 3 9から呼び出された編地見本を用いて、 ガーメントのデザ インデータを作成する。 またニットデザイン部 4 4には、 求めたガーメントのデ ザィンを、 横編機などの編機の編成データにデータ変換する手段が設けられてい る。
例えばライブラリ 3 9から編地見本を呼び出して表示部 1 4に表示し、 これか らユーザが糸を選択したとする。 すると適合するゲージ並びにコース方向ゃゥェ ール方向の所定長さ当たりの目数が判明する。 ユーザは、 ライブラリ 4 0から、 編地見本の風合いなどを参考にして、 糸に適したガーメントのデザィンを呼び出 す。 あるいは逆にガーメントのデザィンを呼び出して、 これに応じた糸をライブ ラリ 3 9の編地見本から選択する。 そして編地見本中の目数などを用いて、 所定 のグレーディングルールなどを用いて、 所望のサイズになるようにガーメントの デザインを縮小もしくは拡大する。 またデザイン入力手段 4 2を用いて、 適宜の デザィン変更を行う。 このようにすると、 ユーザが選択した糸に対するガーメン トのデザィンが行われる。
行われたデザインに対して、 ループシミュレーション手段 3 6はループシミュ レーシヨンを行う。 ループシミュレーションで用いるループの画像には、 編地見 本の作成時に作成したループ画像をコピーして用いてもよく、 あるいは糸径と素 材ゃ、 ループ形状と糸画像などから、 再度作成してもよい。 ループシミュレーシ ヨン画像はカラープリンタ 1 6などで出力でき、 表示部 1 4にも表示できる。 そ して例えば仕上げ条件なども加味してループサイズを補正すると、 実際のガーメ ントにきわめて近い画像を、 カラーハードコピーや画面上で得ることができる。 これらのため、 糸の風合いに応じたデザインをライブラリ 4 0から選択し、 実際 の編地に近いループシミュレーション画像を表示し、 目的サイズのガーメントを 得るためのゥエール数やコース数などを容易に求めることができる。 符号の説明
2 ニットデザイン装置、 4 フラッ トベッドスキャナ、 6 治具、
8, 9 アーム、 1 0 テス ト糸、 1 2 固定具、 1 3 錘、 14 表示部、
1 5 デザイン装置本体、 1 6 カラープリンタ、 1 8 高解像度の糸画像、
1 9 糸本体、 20 毛羽部、 2 1 案内線、 22 位置入力手段、
23 案内線間隔算出手段、 24 平均化手段、 25 換算手段、
26 換算条件変更入力手段、 27 糸画像記憶部、 30 パス、
3 1〜3 3 換算手段、 36 ループシミュレーション手段、
38 編地見本のハードコピー、 3 9 編地見本のライブラリ、
40 ガーメントデザィンのライブラリ、 42 デザィン入力手段、
44 ニットデザィン部

Claims

1 . 糸の糸径を求めて、 ゲージ換算手段で前記糸径から適合する編機のゲージ を求め、 かつループ形状換算手段で前記糸径に基づき編地でのループ形状を求め、 さらに糸の画像を入力して、 換算したループ形状と糸の画像とから、 編地見本の 画像をループシミュレーシヨンにより作成するようにした編地見本の作成方法。
2 . 糸の拡大画像を表示して一、 糸の太さ方向の両端部での糸本体と毛羽部との 青
境界位置を、 前記拡大画像上でユーザが入力するのを受け付け、 受け付けた境界 位置を通るように、 糸の長さ方向に平行な 2本の境界マークを前記拡大画像上に の
表示すると共に、 前記 2本の境界マーク間の間隔から前記糸径を求めるようにし たことを特徴とする、 請求の範囲第 1項の編地見本の作成方法。
3 . 糸の素材を入力するための手段を設けて、 前記ループ形状換算手段では、 前記糸径の他に糸の素材を用いてループ形状を求めるようにしたことを特徴とす る、 請求の範囲第 1項の編地見本の作成方法。
4 . 仕上げ条件を入力するための手段と、 仕上げ条件による編地の縮小率を記 憶するための手段とを求めて、 編地見本の画像を仕上げ条件により補正するよう にしたことを特徴とする、 請求の範囲第 1項の編地見本の作成方法。
5 . 編地見本には、 前記編地見本の画像の他に、 少なくとも糸の画像、 前記適 合する編機のゲージ、 及ぴゥエール方向とコース方向のループサイズを表示する ようにしたことを特徴とする、 請求の範囲第 1項の編地見本の作成方法。
6 . ニット製品のガーメントをデザィンするための方法であって、
複数の各糸に対して、 糸径を求めてゲージ換算手段で求めた糸径から適合する 編機のゲージを求め、 かつループ形状換算手段で前記糸径に基づき編地でのルー プ形状を求め、 さらに各糸の画像を入力して、 換算したループ形状と各糸の画像 とから、 編地見本の画像をループシミュレーションにより作成すると共に、 ゥェ ール方向とコース方向のループサイズを表示して、 糸毎の編地見本とし、
糸毎の編地見本からユーザが選択した糸に対して、 編地見本のループサイズに 基づいてガーメントをデザインし、 かつガーメントのデザィンでの各ループを、 糸の画像とループ形状とに基づいて表示するようにした、 ニットデザイン方法。
7 . 糸の糸径を適合する編機のゲージに換算するためのゲージ換算手段と、 糸 径を編地でのループ形状に換算するためのループ形状換算手段と、 糸の画像を入 力するための画像入力手段と、 換算したループ形状と糸の画像とから、 編地見本 の画像を作成するためのループシミュレーション手段とを備えた、 編地見本の作 成装置。
8 . 糸の拡大画像を表示するための表示手段と、 糸の太さ方向の両端での糸本 体と毛羽部との境界位置を、 前記拡大画像上でユーザが入力するのを受け付ける ための入力手段と、 受け付けた境界位置を通るように、 糸の長さ方向に平行な 2 本の境界マークを前記拡大画像上に表示するための手段と、 前記 2本の境界マー ク間の間隔から糸径を求めるための糸径算出手段、 とを設けた糸径の測定装置。
PCT/JP2004/008961 2003-06-26 2004-06-18 編地見本の作成方法、ニットデザイン方法、糸径測定装置、及び編地見本の作成装置 WO2005001185A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003183064A JP2005015958A (ja) 2003-06-26 2003-06-26 編地見本の作成方法、ニットデザイン方法、糸径測定装置、及び編地見本の作成装置
JP2003-183064 2003-06-26

Publications (1)

Publication Number Publication Date
WO2005001185A1 true WO2005001185A1 (ja) 2005-01-06

Family

ID=33549569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008961 WO2005001185A1 (ja) 2003-06-26 2004-06-18 編地見本の作成方法、ニットデザイン方法、糸径測定装置、及び編地見本の作成装置

Country Status (2)

Country Link
JP (1) JP2005015958A (ja)
WO (1) WO2005001185A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359762A (zh) * 2011-06-20 2012-02-22 东华大学 利用计算机图像处理技术检测熔喷超细纤维主体直径方法
CN106948078A (zh) * 2017-03-24 2017-07-14 嘉兴万源时装有限公司 一种针织物的处理装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256455A1 (en) 2008-03-18 2010-12-01 Shima Seiki Manufacturing., Ltd. Device, program and method for measuring yarn
CN102084050B (zh) * 2008-07-03 2012-06-13 株式会社岛精机制作所 针织产品的线圈数的决定方法和设计系统
WO2010001737A1 (ja) * 2008-07-03 2010-01-07 株式会社島精機製作所 ニット製品の編目数の決定方法とデザインシステム、デザインプログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219635A (ja) * 1986-12-06 1988-09-13 ローベルト・マーセン 糸またはロープの特性の測定および/または監視方法および装置
JPH058761B2 (ja) * 1985-05-09 1993-02-03 Tokina Optical
JPH0715370B2 (ja) * 1988-02-10 1995-02-22 ケイオー電子工業株式会社 寸法測定装置
JP2631946B2 (ja) * 1993-08-31 1997-07-16 株式会社島精機製作所 ニットデザインシステム
JPH09212664A (ja) * 1996-02-01 1997-08-15 Hidenori Ito 編目模様表示ソフトウェア
JP2676182B2 (ja) * 1993-11-08 1997-11-12 株式会社島精機製作所 ニット製品の生産方法
JP2001123364A (ja) * 1999-10-22 2001-05-08 Shima Seiki Mfg Ltd 編地の風合い算出方法および装置
WO2003032203A1 (fr) * 2001-10-05 2003-04-17 Shima Seiki Manufacturing Limited Procede et dispositif de conception d'un tricot

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058761B2 (ja) * 1985-05-09 1993-02-03 Tokina Optical
JPS63219635A (ja) * 1986-12-06 1988-09-13 ローベルト・マーセン 糸またはロープの特性の測定および/または監視方法および装置
JPH0715370B2 (ja) * 1988-02-10 1995-02-22 ケイオー電子工業株式会社 寸法測定装置
JP2631946B2 (ja) * 1993-08-31 1997-07-16 株式会社島精機製作所 ニットデザインシステム
JP2676182B2 (ja) * 1993-11-08 1997-11-12 株式会社島精機製作所 ニット製品の生産方法
JPH09212664A (ja) * 1996-02-01 1997-08-15 Hidenori Ito 編目模様表示ソフトウェア
JP2001123364A (ja) * 1999-10-22 2001-05-08 Shima Seiki Mfg Ltd 編地の風合い算出方法および装置
WO2003032203A1 (fr) * 2001-10-05 2003-04-17 Shima Seiki Manufacturing Limited Procede et dispositif de conception d'un tricot

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE TEXTILE MACHINERY SOCIETY OF JAPAN MEDIAS KENKYU IINKAI: "Medias gijutsu hisu(yoko ami hen)", THE TEXTILE MACHINERY SOCIETY OF JAPAN HAKKO, 25 February 1971 (1971-02-25), pages 85 - 86, XP002987042 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359762A (zh) * 2011-06-20 2012-02-22 东华大学 利用计算机图像处理技术检测熔喷超细纤维主体直径方法
CN106948078A (zh) * 2017-03-24 2017-07-14 嘉兴万源时装有限公司 一种针织物的处理装置
CN106948078B (zh) * 2017-03-24 2018-12-11 嘉兴万源时装有限公司 一种针织物的处理装置

Also Published As

Publication number Publication date
JP2005015958A (ja) 2005-01-20

Similar Documents

Publication Publication Date Title
KR100684863B1 (ko) 니트 디자인 방법 및 장치
US7386361B2 (en) Embroidery data creation device, embroidery data creation method, and embroidery data creation program
AU682537B2 (en) Method of producing knitted articles
KR101356987B1 (ko) 니트 디자인 장치와 디자인 방법, 디자인 프로그램
EP2921580B1 (en) Knit design system and knit design method
JPH063287A (ja) 織物への糸欠点の影響を判定する方法及び装置
US7289869B2 (en) Knitting method and system using stretch yarn
WO2005001185A1 (ja) 編地見本の作成方法、ニットデザイン方法、糸径測定装置、及び編地見本の作成装置
CN110017888A (zh) 一种基于plc的纱线缠绕称重传感器零点漂移校准方法
EP2921581B1 (en) Knit design system and knit design method
JP4408813B2 (ja) 撚り糸画像のシミュレーション方法および装置
JP4890036B2 (ja) ニットデータ作成方法及び装置並びにプログラム
JP2940230B2 (ja) 刺繍データ作成装置
JP5414672B2 (ja) ニット製品の編目数の決定方法とデザインシステム、デザインプログラム
CN111340759A (zh) 一种纱线三维模型的外观检测方法
JPS633060B2 (ja)
KR20150055332A (ko) 컴퓨터를 이용한 직물의 위경사 조직 분석 및 표시시스템
JP5595912B2 (ja) ニット製品の編目数の決定方法とデザインシステム、デザインプログラム
CN111461142B (zh) 基于纱线的面料模拟方法、系统及存储介质
JP2001123364A (ja) 編地の風合い算出方法および装置
Cooke et al. Hand knitting, frame knitting and rotary frame knitting in the 17th, 18th and 19th centuries. A question of identification
EP2131298A1 (en) Simulation device and simulation method of knit product
CN103245295A (zh) 基于数字图像处理的机织物接缝纱线滑移程度测量方法
Youn Textileworldasia. com
Ruan The Influence of Knit Structure on the Armscye Line of Fully-Fashioned Sweater Front.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase