WO2004114728A1 - プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置 - Google Patents

プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置 Download PDF

Info

Publication number
WO2004114728A1
WO2004114728A1 PCT/JP2004/008617 JP2004008617W WO2004114728A1 WO 2004114728 A1 WO2004114728 A1 WO 2004114728A1 JP 2004008617 W JP2004008617 W JP 2004008617W WO 2004114728 A1 WO2004114728 A1 WO 2004114728A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
conductive film
plasma generating
electrode
electrodes
Prior art date
Application number
PCT/JP2004/008617
Other languages
English (en)
French (fr)
Inventor
Masanobu Miki
Kenji Dosaka
Yukio Miyairi
Yasumasa Fujioka
Masaaki Masuda
Takeshi Sakuma
Tatsuhiko Hatano
Original Assignee
Ngk Insulators, Ltd.
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd., Honda Motor Co., Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP04746119A priority Critical patent/EP1638376A4/en
Priority to JP2005507239A priority patent/JP4746986B2/ja
Priority to US10/560,805 priority patent/US7635824B2/en
Publication of WO2004114728A1 publication Critical patent/WO2004114728A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • H01J37/32844Treating effluent gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a plasma generation electrode, a plasma generation device, and an exhaust gas purification device.
  • the present invention relates to a plasma generating electrode, a plasma generating device, and an exhaust gas purifying device. More specifically, the present invention relates to a plasma generating electrode and a plasma generating apparatus capable of generating uniform and stable plasma with low power. Further, the present invention relates to an exhaust gas purifying apparatus capable of purifying exhaust gas satisfactorily.
  • Silent discharge is generated by placing a dielectric between two electrodes and applying a high-voltage alternating current or a periodic pulse voltage, and active species, radicals, and ions are generated in the resulting plasma field. It is known that it promotes the reaction and decomposition of gases, which can be used to remove harmful components contained in engine exhaust gas and various incinerator exhaust gases.
  • the plasma generating electrode used to generate such plasma while being pressed has a local discharge starting from a point between a pair of electrodes arranged opposite to each other. There is a problem that uniform plasma cannot be generated as a whole.
  • the present invention has been made in view of the above-described problems, and provides a plasma generating electrode and a plasma generating apparatus capable of generating uniform and stable plasma with low power. Further, the present invention provides an exhaust gas purification device including the above-described plasma generation device and a catalyst, and capable of purifying exhaust gas satisfactorily.
  • a plasma generating electrode that includes at least a pair of electrodes disposed to face each other and is capable of generating plasma by applying a voltage between the electrodes, wherein at least one of the pair of electrodes is provided.
  • One has a plate-shaped ceramic body serving as a dielectric, and a cross-sectional shape cut in a plane provided inside the ceramic body and perpendicular to the film thickness direction and penetrated in the film thickness direction.
  • a plasma generation electrode (hereinafter, may be referred to as a "first invention") having a conductive film in which a plurality of through-holes having a shape including an arc are formed in a portion.
  • At least one metal selected from the group consisting of tungsten, molybdenum, manganese, chromium, titanium, dinoconium, nickel, iron, silver, copper, platinum, and palladium as a main component of the conductive film The plasma generating electrode according to any one of [1] to [6].
  • a plasma generation device provided with the plasma generation electrode according to any one of [1] to [7] (hereinafter, may be referred to as a "second invention").
  • An exhaust gas purification device comprising the plasma generator according to [8] and a catalyst, wherein the plasma generator and the catalyst are disposed inside an exhaust system of an internal combustion engine.
  • third invention it may be referred to as “third invention”.
  • FIG. 1 is a perspective view schematically showing one embodiment of a plasma generating electrode of the present invention (first invention).
  • FIG. 2 is a plan view schematically showing an example of a ceramic molded body and a conductive film constituting one of the electrodes in one embodiment of the plasma generating electrode of the present invention (first invention). It is.
  • FIG. 3 is a perspective view schematically showing another embodiment of the plasma generating electrode of the present invention (first invention).
  • FIG. 4 schematically shows another example of a ceramic molded body and a conductive film constituting one electrode in one embodiment of the plasma generating electrode of the present invention (first invention). It is a top view.
  • FIG. 5 (a) is a cross-sectional view of one embodiment of the plasma generator of the present invention (second invention), which is cut by a plane including a flow direction of a fluid to be processed. .
  • FIG. 5 (b) is a cross-sectional view taken along line AA of FIG. 5 (a).
  • FIG. 6 is an explanatory view schematically showing one embodiment of the exhaust gas purifying apparatus of the present invention (third invention).
  • FIG. 1 is a perspective view schematically showing one embodiment of the plasma generating electrode of the present invention (first invention), and FIG. 2 is a ceramic constituting one of the plasma generating electrodes.
  • FIG. 3 is a plan view schematically showing a body and a conductive film.
  • the plasma generating electrode 1 of the present embodiment includes at least a pair of electrodes 5 that are opposed to each other, and can generate plasma by applying a voltage between the electrodes.
  • a plasma generating electrode 1 in which at least one electrode 5a of a pair of electrodes 5 has a plate-shaped ceramic body 2 serving as a dielectric and a film provided inside the ceramic body 2.
  • a plurality of through-holes 4 with a cross-sectional shape cut through a plane perpendicular to the film thickness direction that penetrates in the thickness direction have arcs at the bottom And a conductive film 3 which is provided.
  • the configuration of the other electrode is not particularly limited, and a conventionally known metal electrode may be used as shown in FIG. 1, but as shown in FIG.
  • the other electrode 5b constituting the plasma generating electrode 1 also has a thickness direction It is preferable that the cross-section taken along a plane perpendicular to the film thickness direction penetrates the conductive film in which a plurality of through holes having a shape partially including an arc are formed. In the case of such a configuration, it is preferable that connection portions for passing a current to each of the one electrode 5a and the other electrode 5b are formed so as to be in opposite directions to each other. ,.
  • each of the P-contacted electrodes is a pair of electrodes.
  • FIG. 1 and 2 show the through-hole 4 having a circular cross-section taken along a plane perpendicular to the film thickness direction, but the present invention is not limited to this. It may be a shape or a shape in which the vertices of a polygon are rounded in an arc shape.
  • the plasma generation electrode 1 of the present embodiment is a barrier discharge type plasma generation electrode 1 having a ceramic body 2 serving as a dielectric and a conductive film 3 disposed inside the ceramic body 2.
  • the plasma generating electrode 1 is, for example, an exhaust gas processing device or a purifying device that processes a fluid to be processed such as exhaust gas through plasma generated between the pair of electrodes 5, and removes oxygen contained in air or the like. It can be suitably used for an ozonizer for purifying ozone by reacting.
  • this barrier discharge type electrode has a force S, which is considered to generate a relatively uniform plasma because a discharge is generated from the entire surface of the dielectric.
  • a conductive material conductive film
  • a local discharge starting from a point occurs at an unspecified part of the dielectric, and a uniform plasma is generated.
  • a uniform plasma is generated.
  • the conductor conductive film
  • the conductor was in a mesh shape, the discharge was concentrated at a position corresponding to the intersection of the meshes, and uniform plasma could not be generated.
  • a plurality of through-holes 4 having a cross section cut along a plane perpendicular to the thickness direction of the conductive film 3 forming the plasma generating electrode 1 have a shape partially including an arc.
  • the boundary between the formed conductive layer and the conductive film of the through hole 4 becomes the starting point of the discharge, and the discharge can be uniformly generated on the outer periphery of the through hole 4 and the plurality of the through holes 4 Since 4 is formed on the entire conductive film 3, it is stable and uniform between the pair of electrodes 5.
  • a uniform plasma can be generated. If the cross section of the through-hole 4 cut along a plane perpendicular to the film thickness direction is a polygon or the like, the discharge is concentrated on a portion corresponding to the vertex, and uniform plasma may be generated. Can not.
  • each of the through holes 4 has a diameter of 11 Omm. With such a configuration, the electric field concentration on the outer periphery of the through hole 4 becomes a condition suitable for discharge, and the discharge can be started well even if the voltage applied between the pair of electrodes 5 is not so high. it can. If the diameter of the through hole 4 is less than 1 mm, the size of the through hole 4 becomes too small, and the discharge generated on the outer periphery of the through hole 4 is similar to the local discharge starting from the above point. And may generate non-uniform plasma. Further, when the diameter of the through hole 4 exceeds 10 mm, discharge is unlikely to occur inside the through hole 4, and the density of plasma generated between the pair of electrodes 5 may be reduced.
  • the distance between the centers of adjacent through holes 4 is such that uniform and high-density plasma can be generated according to the diameter of through holes 4.
  • the length is appropriately determined, for example, for example, although not particularly limited, the distance between adjacent centers is preferably 1.5 to 20 mm.
  • the through hole 4 is preferably formed such that the outer circumference of the through hole 4 per unit area becomes longer.
  • the length of the region where the electric field is non-uniform per unit area that is, the length of the outer periphery serving as a plasma generation starting point can be increased, and many discharges can be generated per unit area. High-density plasma can be generated.
  • the specific length of the outer periphery of the through hole 4 per unit area (mm / (mm) 2 ) can be appropriately set according to the intensity of the plasma to be generated. In that case, it is preferable that it is 0.05-1.7mmZ (mm) 2 .
  • the perimeter of the through hole 4 per unit area is less than 0.05 mm / (mm) 2 , local discharge occurs, and it may be difficult to obtain a stable discharge space. If it is larger than 1.7, the resistance value of the conductive film may increase and the discharge efficiency may decrease.
  • the area of the conductive film 3 per unit area is 0.1-0.98. (mm) 2 / (mm) 2 force is preferable. If it is less than 0.1, the capacitance of the dielectric electrode is too small, and it may be difficult to obtain the discharge required for exhaust gas purification. A large listening than 0.98, it becomes difficult to obtain a uniform discharge effect by through holes, a local discharge is likely to occur a certain Rukoto force s.
  • the unit area Preferably, the perimeter of the through hole 4 per contact is 1. OmmZ (mm) 2 or less, and the area of the conductive film 3 per unit area is 0.2 (mm) 2 / (mm) 2 or more.
  • the perimeter of the through hole 4 per unit area is 0.2 mm / (mm) 2 or more and the conductive film per unit area
  • the area of 3 is preferably 0.9 (mm) V (mm) 2 or less.
  • the conductive film 3 has a thickness of 0.110 of the thickness of the ceramic body 2.
  • the thickness should be equivalent to / o.
  • the specific thickness of the conductive film 3 is 5-50 / im for reasons such as miniaturization of the plasma generating electrode 1 and reduction of the resistance of the fluid to be processed such as exhaust gas passing between the pair of electrodes 5. It is preferred that it is about. If the thickness of the conductive film 3 is less than 5 ⁇ , the reliability may be poor when the conductive film 3 is formed by printing or the like, and the resistance of the formed conductive film 3 may be high. Therefore, the plasma generation efficiency may be reduced. If the thickness of the conductive film 3 exceeds 50 ⁇ , the resistance of the conductive film 3 decreases, but it affects the unevenness of the surface of the ceramic body 2 and must be processed so that the surface becomes flat. Sometimes.
  • conductive film 3 constituting one electrode 5a is disposed inside ceramic body 2 such that the distance from both surfaces of ceramic body 2 is substantially equal.
  • conductive film 3 is disposed so that the distance from both surfaces of the ceramic body 2 is different, the capacitance of one electrode 5a on each surface changes, and the discharge characteristics on each surface differ. There is fear.
  • the conductive film 3 used in the present embodiment preferably contains a metal having excellent conductivity as a main component.
  • the main components of the conductive film 3 include tungsten, molybdenum, and manganese.
  • Preferred examples include at least one metal selected from the group consisting of chromium, titanium, zirconium, nickel, iron, silver, copper, platinum, and palladium.
  • the main component means a component that accounts for 60% by mass or more of the component.
  • the conductive film 3 contains two or more metals from the above-described group as main components, the conductive film 3 accounts for 60% by mass or more of the total force component of those metals.
  • a method of disposing the conductive film 3 inside the ceramic body 2 for example, a method of embedding and disposing the conductive film 3 such as a metal plate or a metal foil in a pressed compact formed by powder press molding is provided. And the like.
  • the above-described metal is mainly used so that the distance (distance in the thickness direction) of the pressed body from each other surface is equal.
  • a metal plate or metal foil as a component is buried. Since the embedded metal foil or the like may be deformed or cut due to shrinkage of ceramics during firing, it is preferable to perform firing so as to suppress mass transfer in a planar direction. With this configuration, it is possible to perform sintering by applying a pressing pressure in the thickness direction of the press-formed body.
  • the conductive film 3 may be provided by being applied to the ceramic body 2.
  • the coating method include, for example, screen printing, calendar roll, chemical vapor deposition, physical vapor deposition, and the like. According to such a method, it is possible to easily form the thin conductive film 3 having excellent smoothness on the surface after coating.
  • chemical vapor deposition and physical vapor deposition may be somewhat expensive, but a thinner conductive film can be easily arranged, and a smaller diameter and adjacent A through hole having a smaller distance between centers can be easily formed.
  • a conductive paste is formed by mixing a metal powder mentioned as a main component of the conductive film 3, an organic binder, and a solvent such as terpineol. Then, it can be formed by coating the ceramic body 2 by the method described above. Further, an additive may be added to the above-mentioned conductor paste as needed to improve the adhesion to the ceramic body 2 and the sinterability.
  • the conductive film 3 By adding the same components as those of the ceramic body 2 to the metal components of the conductive film 3, the conductive film 3 and the It is possible to improve the adhesion to the lamic body 2. Further, a glass component can be added to the ceramic component added to the metal component. By adding the glass component, the sinterability of the conductive film 3 is improved, and the denseness is improved in addition to the adhesion.
  • the total of the components and / or glass components of the ceramic body 2 other than the metal components is preferably 30% by mass or less. If it exceeds 30% by mass, the resistance value may decrease, and the function as the conductive film 3 may not be obtained.
  • the ceramic body 2 in the present embodiment has a function as a dielectric as described above, and is used in a state where the conductive film 3 is sandwiched between the ceramic bodies 2, so that the conductive body 3 (3) Compared to the case of performing discharge alone, biased discharge such as spark is reduced, and small discharge can be generated at a plurality of locations. Such a plurality of small discharges can reduce power consumption because a smaller amount of current flows compared to discharges such as sparks. The flowing current is limited, and non-thermal plasma with low energy consumption without temperature rise can be generated.
  • the above-mentioned ceramic body 2 preferably contains a material having a high dielectric constant as a main component.
  • a material having a high dielectric constant for example, aluminum oxide, dinoleconium oxide, silicon oxide, titanium-barium-based oxide, magnesium-calcium-titanium-based Oxides, cerium-titanium-zinc oxides, silicon nitride, aluminum nitride, and the like can be preferably used.
  • a material having excellent thermal shock resistance as a main component, it becomes possible to operate the plasma generating electrode 1 even under high temperature conditions.
  • the thickness of the ceramic body 2 is not particularly limited, but is preferably 0.1 to 3 mm. If the thickness of the ceramic body 2 is less than 0.1 mm, the electrical insulation of the electrode 5 may not be secured. Further, if the thickness of the ceramic body 2 exceeds 3 mm, it may hinder space saving as an exhaust gas purification system and increase the load voltage due to an increase in the distance between the electrodes, which may lower efficiency. .
  • a ceramic green sheet for a ceramic substrate can be suitably used as the ceramic body 2 used in the present embodiment.
  • the ceramic green sheet is formed by molding a slurry or paste for a green sheet to a predetermined thickness according to a conventionally known method such as a doctor blade method, a calendar method, a printing method, a reverse roll coater method, or the like. This Can be.
  • the ceramic green sheet thus formed is subjected to processing such as cutting, cutting, punching, and forming a communication hole, or is integrally formed by laminating a plurality of green sheets by thermocompression bonding or the like. It may be used as a laminate.
  • the above-mentioned slurry or paste for a green sheet is preferably prepared by mixing a predetermined ceramic powder with an appropriate binder, a sintering aid, a plasticizer, a dispersant, an organic solvent, and the like.
  • a sintering aid for example, preferred examples of the ceramic powder include powders of alumina, mullite, ceramic glass, zirconia, cordierite, silicon nitride, aluminum nitride and glass.
  • Preferred examples of the sintering aid include silicon oxide, magnesium oxide, calcium oxide, titanium oxide, and zirconium oxide.
  • the sintering aid is added in an amount of 310 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • plasticizer, dispersant, and organic solvent, plasticizers, dispersants, and organic solvents used in conventionally known methods can be suitably used.
  • a ceramic sheet produced by extrusion molding can be suitably used.
  • a plate-shaped ceramic molded body extruded from a kneaded product prepared by adding the above-mentioned ceramic powder and a molding aid such as methylcellulose or a surfactant or the like through a predetermined mold can be used.
  • the porosity force of the ceramic body 2 is preferably 0.1 to 35%, and more preferably 0.1 to 10%. With such a configuration, it is possible to efficiently generate plasma between the electrode 5a having the ceramic body 2 and the other electrode 5b which is arranged oppositely, and energy saving can be realized.
  • the distance between the pair of electrodes 5 is preferably a distance capable of effectively generating plasma between the pair of electrodes 5, and the force varies depending on the voltage or the like applied to the electrodes. 5 mm is preferable.
  • the through hole 4 formed in the conductive film 3 is formed such that a straight line connecting the centers of adjacent conductive lines becomes an equilateral triangle.
  • a straight line connecting the centers of adjacent ones may be a square.
  • a ceramic green sheet serving as the above-described ceramic body is formed.
  • at least one material selected from the group consisting of aluminum, mullite, ceramic glass, zirconia, cordierite, silicon nitride, aluminum nitride, and a glass group may be added to a sintering aid, a plasticizer resin, a cellulose resin, or the like.
  • a binder, plastics such as DOP and DBP, organic solvents such as toluene-butadiene, etc. are mixed together and mixed sufficiently using an alumina pot and alumina balls to prepare a slurry for a green sheet.
  • these materials may be mixed by ball milling using a monoball.
  • the obtained slurry for a green sheet is degassed by stirring under reduced pressure, and is further adjusted to have a predetermined viscosity.
  • the green sheet slurry thus adjusted is formed into a tape shape by a tape forming method such as a doctor blade method to form an unfired ceramic body.
  • a conductor paste for forming a conductive film disposed on one surface of the obtained unfired ceramic body is formed.
  • This conductor paste can be formed, for example, by mixing a solvent such as a binder and terpineol with silver powder and sufficiently mixing the mixture using a triroll mill.
  • the conductive paste thus formed is printed on the surface of the unfired ceramic body using screen printing or the like to form a conductive film having a predetermined shape. At this time, printing is performed on the conductive film so as to form a plurality of through holes having a circular cross section. In addition, after the conductive film is sandwiched between the ceramic bodies, the conductive film is printed so as to extend to the outer peripheral portion of the unfired ceramic body so that electricity can be supplied to the conductive film from the outside. Make sure to keep energized parts.
  • the unfired ceramic body on which the conductive film is printed and another unfired ceramic body are laminated so as to cover the printed conductive film.
  • the unfired ceramic body laminated with the conductive film sandwiched therebetween is fired to form a plate-like ceramic body serving as a dielectric, and a thickness direction of the ceramic body disposed inside the ceramic body.
  • An electrode is formed having a conductive film in which a plurality of through-holes are formed, the cross-sectional shape of which is cut along a plane perpendicular to the film thickness direction and partially includes an arc.
  • An electrode serving as a counter electrode is arranged on the electrode obtained in this manner, and a plasma generating electrode of the present embodiment is formed.
  • the electrode serving as the counter electrode an electrode obtained by the above-described manufacturing method may be used, or an electrode having another conventionally known configuration may be used.
  • a plasma generation device 10 of the present embodiment includes the plasma generation electrode 1 of the first invention.
  • the plasma generation device 10 includes a case body 11 containing a plasma generation electrode 1 and a pair of electrodes 5 constituting the plasma generation electrode 1 in a state where a fluid to be processed such as exhaust gas can pass therethrough. Is provided.
  • the case body has an inlet 12 into which the fluid to be treated flows, and an outlet 13 from which the inflowing fluid passes through the electrodes 5 and flows out the treated fluid.
  • the plasma generation device 10 of the present embodiment includes the plasma generation electrode 1 of the first invention, uniform and stable plasma can be generated with low power.
  • a case where a plurality of plasma generating electrodes 1 each having a pair of electrodes 5 are stacked is provided. It is preferably installed inside the body 11. 5 (a) and 5 (b) show a state in which five plasma generating electrodes 1 each including a pair of electrodes 5 are stacked for explanation. Is not limited to this. A spacer 14 for forming a predetermined gap is provided between the pair of electrodes 5 constituting the plasma generating electrode 1 and between the respective plasma generating electrodes 1.
  • the plasma generator 10 configured as described above can be used, for example, installed in an exhaust system of an automobile, and generates exhaust gas discharged from an engine or the like between the pair of electrodes 5. By passing through the plasma, harmful substances such as soot and nitrogen oxides contained in the exhaust gas can be reacted and discharged to the outside as harmless gas.
  • one electrode 5a of the electrode 5 constituting one plasma generating electrode la is connected to another adjacent plasma generating electrode lb which not only generates a discharge between the electrode 5b and the electrode 5b disposed oppositely. It is configured to be able to generate a discharge between the electrode 5b and the laminated plasma. It is preferable that the configuration is such that plasma can be generated between the generating electrodes 1.
  • the plasma generator of the present embodiment may further include a power supply for applying a voltage to the plasma generation electrode.
  • a power supply for applying a voltage to the plasma generation electrode.
  • a conventionally known power supply can be used as long as it can supply a current that can effectively generate plasma.
  • a pulse power supply using a thyristor and a power supply other than a thyristor can be used.
  • a pulse power supply using another transistor, a general AC power supply, or the like can be preferably used.
  • the plasma generator of the present embodiment may have a configuration in which a current is supplied from an external power source instead of the configuration including the power source as described above.
  • the current supplied to the plasma generating electrode used in the present embodiment can be appropriately selected and determined depending on the intensity of the generated plasma.
  • the DC current supplied to the plasma generation electrode is lkV or more
  • the peak voltage is lkV or more
  • the number of pulses per second is 100.
  • the noise current is at least 100 Hz or more
  • the alternating current has a peak voltage of lkV or more and the frequency power is at least SlOOHz, or a current obtained by superposing any two of them. With this configuration, it is possible to efficiently generate plasma.
  • FIG. 6 is an explanatory diagram schematically showing the exhaust gas purifying apparatus of the present embodiment.
  • an exhaust gas purifying apparatus 41 of the present embodiment includes a plasma generator 10 according to the second embodiment of the present invention described above and a catalyst 44, and the plasma generator 10 and the catalyst Reference numeral 44 denotes an exhaust gas purifying device 41 provided inside the exhaust system of the internal combustion engine.
  • the plasma generator 10 is disposed on the exhaust gas generation side (upstream side) of the exhaust system, and the catalyst 44 is disposed on the exhaust side (downstream side). Are connected via a pipe.
  • the exhaust gas purification device 41 of the present embodiment is, for example, a device that purifies N ⁇ in exhaust gas under an oxygen-excess atmosphere. That is, the plasma generated by the plasma generator Reforming so that NO can be easily purified by the downstream catalyst 44, or reforming HC (hide port carbon) in exhaust gas so that it can easily react with NO, and purifying NO by the catalyst 44. I do.
  • the plasma generator 10 used in the exhaust gas purifying apparatus 41 of the present embodiment is a plasma generating apparatus 10 that uses a plasma generated by combustion in an oxygen-excess atmosphere such as lean burn, a gasoline direct injection engine, or a diesel engine. Is converted from NO to NO. Also,
  • the plasma generator 10 generates active species from HC or the like in the exhaust gas, and a device configured in the same manner as the plasma generator 10 shown in FIG. 5A can be preferably used.
  • the catalyst 44 is disposed on the downstream side of the plasma generator 10 in the exhaust system as a catalyst unit 45 including a catalyst member including a support having a plurality of pores through which exhaust gas flows. Is established.
  • the catalyst member has a support and a catalyst layer formed so as to cover an inner wall surface surrounding a plurality of pores of the support.
  • the catalyst layer is generally produced by impregnating a support with a catalyst in the form of a slurry (catalyst slurry) as described later, and is therefore sometimes referred to as a "push coat (layer)".
  • the shape of the support is not particularly limited in the present invention as long as the support has a space through which the exhaust gas flows.
  • a honeycomb-shaped support having a plurality of pores is used. ing.
  • the support is preferably formed from a material having heat resistance.
  • a material having heat resistance examples include porous (ceramic) such as cordierite, mullite, silicon carbide (SiC) and silicon nitride (SiN), and metal (eg, stainless steel).
  • the catalyst layer is made of a porous carrier, and one or more selected from Pt, Pd, Rh, Au, Ag, Cu, Fe, Ni, Ir, Ga and the like supported on the surface of the porous carrier.
  • the main part is the combination of A plurality of continuous pores continuous with the pores of the support are formed inside the catalyst layer.
  • the porous carrier can be formed by appropriately selecting and using, for example, anoremina, zeolite, silica, titania, zirconia, silica alumina, ceria, and the like.
  • a catalyst that promotes the decomposition reaction of NO is used.
  • a plasma generator equipped with the plasma generating electrode 1 as shown in FIG. 1 was manufactured.
  • the plasma generating electrode is composed of a plate-shaped ceramic body serving as a dielectric made of an alumina tape, and a plane disposed in the ceramic body and penetrating in the film thickness direction and perpendicular to the film thickness direction.
  • two conductive electrodes each having a conductive film having a plurality of circular through-holes having a circular cross-sectional shape formed by opposing each other so as to have a mutual spacing force of Slmm.
  • One of the pair of electrodes constituting the plasma generating electrode was set to the voltage load side, and the other was set to the ground side.
  • the size of the above-mentioned ceramic body was 50 mm in length, 90 mm in width, and lmm in thickness, and the size of the conductive film was 40 mm in length, 80 mm in width, and 20 zm in thickness.
  • the size of the through holes was 3 mm in diameter, and the holes were uniformly formed so that the distance between the centers was 5 mm.
  • This conductive film was prepared by printing a metal paste of 95% by mass of tungsten on the surface of the ceramic body, arranging the paste together with the ceramic body, and firing the paste.
  • a pulse power supply using a thyristor was connected to the electrode on the voltage load side of the electrodes constituting the plasma generating electrode, and the electrode on the ground side was connected to the ground.
  • N and O are emptied in the plasma generated by the plasma generator of the present embodiment.
  • a mixed gas prepared by mixing N 2 gas with a gas adjusted to have the same ratio as 22 gases was passed, and the conversion efficiency of N 2 contained in the mixed gas to NO was evaluated.
  • NO is added to a gas flow of 50 NLZ at room temperature to prepare a mixed gas having a NO concentration of 200 ppm, and the mixed gas is generated using the plasma generator of the present embodiment.
  • the obtained mixed gas was passed through the plasma.
  • Conditions for generating plasma The voltage was 6 kV and 500 Hz.
  • the NO concentration of the mixed gas after passing through the plasma was 85 ppm.
  • a mixed gas with a NO concentration of 200 ppm was passed through a plasma generated at a voltage of 7 kV (power consumption 25 W)
  • the NO concentration became 2 ppm, and almost all the amount was converted to NO.
  • N ⁇ contained in exhaust gas is a catalyst for exhaust gas treatment, and it is difficult to convert it to N and O at low temperatures near room temperature.
  • N ⁇ ⁇ is converted into N ⁇ by passing through the plasma. By performing the replacement, the processing is facilitated, and a clean gas can be easily obtained (Comparative Example 1).
  • a plasma generator having the same configuration as that of the plasma generator of Example 1 was manufactured except that no through-hole was formed.
  • Example 1 As in Example 1, a pulsed power supply using a thyristor was used to supply electricity at a voltage of 7 kV under the conditions of 500 Hz, and the generated plasma was passed through a mixed gas having an NO concentration of 200 ppm. The power had only declined. In addition, when plasma was generated, discharge occurred at an arbitrary position on the surface of the electrode, and non-uniform plasma was generated without discharging the entire space. In addition, when the voltage was increased to 8 kV and high energy injection was performed, discharge occurred in the entire space, but higher voltage and power were required compared to electrodes with through holes.
  • a plasma generator having the same configuration as that of the plasma generator of Example 1 was manufactured except that the through-holes were circular with a diameter of 5 mm, and the centers of the through holes were arranged so as to be 6 mm.
  • Example 2 When a similar mixed gas was passed through the plasma generator of the present example (Example 2), the NO concentration became 3 ppm with 18 W of power consumption. This plasma generator was able to convert NO with lower power and was more energy efficient than the plasma generator of Example 1. From this, it became clear that the diameter of the through-hole, the distance between the centers of each, and the force affected the plasma power.
  • Example 3 A plasma generator was constructed in the same manner as the plasma generator of Example 1, except that one of the pair of electrodes constituting the plasma generating electrode was a stainless steel electrode.
  • Example 3 When a similar mixed gas was passed through the plasma generator of the present embodiment (Example 3), the mixture was energized at a voltage of 6 kV at 500 Hz, and a mixed gas having an NO concentration of 200 ppm was added to the generated plasma. After passing through, the N ⁇ concentration was 5 ppm. At this time, the electric power supplied to the plasma generating apparatus was 40 W, and the power consumption was increased compared to Example 1, and N ⁇ could be converted with high efficiency.
  • a plasma generator having the same configuration as the plasma generator of Example 1 was manufactured except that the distance between the opposed electrodes was set to 0.5 mm.
  • An exhaust gas purifying device was manufactured by disposing a catalyst on the downstream side of the plasma generating device of Example 1, and its NO purifying performance was evaluated.
  • the catalyst is a catalyst obtained by impregnating a commercially available ⁇ -A1 ⁇ with 5% by mass of Pt on a cordierite ceramic honeycomb.
  • the size of the honeycomb catalyst is 1 inch (about 2.54 cm) in diameter and 60 mm in length.
  • the thickness of the partition walls (rib thickness) is 4 mil (about 0.1 mm).
  • the plasma generation conditions and gas conditions are the same as in Example 1 (7 kV).
  • An exhaust gas purifying device was manufactured by disposing a catalyst similar to that used in Example 6 downstream of the plasma generating device of Comparative Example 1, and its NO purifying performance was evaluated.
  • the plasma generation conditions and gas conditions are the same as in Comparative Example 1.
  • the plasma generating electrode and the plasma generating apparatus of the present invention can generate uniform and stable plasma with low power. Further, since the exhaust gas purifying apparatus of the present invention includes the above-described plasma generator and a catalyst, it can be suitably used as, for example, a purifying apparatus for purifying exhaust gas discharged from an engine of an automobile or the like. Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)

Abstract

 本発明のプラズマ発生電極1は、一対の電極5のうちの少なくとも一方の電極5aが、誘電体となる板状のセラミック体2と、セラミック体2の内部に配設された、その膜厚方向に貫通した膜厚方向に垂直な方向の平面で切断した断面の形状が一部に円弧を含む形状の貫通孔4が複数形成された導電膜3とを有するものであり、均一かつ安定なプラズマを低電力で発生させることができる。

Description

明 細 書
プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置 技術分野
[0001] 本発明は、プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置に 関する。さらに詳しくは、均一かつ安定なプラズマを低電力で発生させることが可能 なプラズマ発生電極及びプラズマ発生装置に関する。また、排気ガスを良好に浄化 することが可能な排気ガス浄化装置に関する。
^景技術
[0002] 二枚の電極間に誘電体を配置し高電圧の交流、あるいは周期パルス電圧をかける ことにより、無声放電が発生し、これによりできるプラズマ場では活性種、ラジカル、ィ オンが生成され、気体の反応、分解を促進することが知られており、これをエンジン排 気ガスや各種の焼却炉排気ガスに含まれる有害成分の除去に利用できることが知ら れている。
[0003] 例えば、エンジン排気ガスや各種の焼却炉排気ガスを、プラズマ内を通過させるこ とによって、このエンジン排気ガスや各種の焼却炉排気ガス中に含まれる、例えば、 NO、カーボン微粒子、 HC、 C〇等を酸化して処理するプラズマ排ガス処理システム が開示されている(例えば、特開 2001—164925号公報参照)。
発明の開示
[0004] し力しながら、このようなプラズマを発生させるために使用されるプラズマ発生電極 は、対向配置された一対の電極の間に、点を起点とする局所的な放電が起こり、電 極全体に均一なプラズマを発生させることができないという問題があった。
[0005] 本発明は、上述した問題に鑑みてなされたものであり、均一かつ安定なプラズマを 低電力で発生させることが可能なプラズマ発生電極及びプラズマ発生装置を提供す る。また、上述したプラズマ発生装置と、触媒とを備え、排気ガスを良好に浄化するこ とが可能な排気ガス浄化装置を提供する。
[0006] 上述の目的を達成するため、本発明は、以下のプラズマ発生電極及びプラズマ発 生装置、並びに排気ガス浄化装置を提供するものである。 [0007] [1] 対向配置された少なくとも一対の電極を備え、これらの間に電圧を印加すること によってプラズマを発生させることが可能なプラズマ発生電極であって、前記一対の 電極のうちの少なくとも一方が、誘電体となる板状のセラミック体と、前記セラミック体 の内部に配設された、その膜厚方向に貫通した前記膜厚方向に垂直な方向の平面 で切断した断面の形状が一部に円弧を含む形状の貫通孔が複数形成された導電膜 とを有するプラズマ発生電極(以下、「第一の発明」ということがある)。
[0008] [2] 前記貫通孔の前記膜厚方向に垂直な方向の平面で切断した断面の形状が円 形である前記 [1]に記載のプラズマ発生電極。
[0009] [3] 複数の前記貫通孔が、前記導電膜に規則的に配列するように形成されたもの である前記 [1]又は [2]に記載のプラズマ発生電極。
[0010] [4] 前記導電膜が、前記セラミック成形体にスクリーン印刷、カレンダーロール、ス プレー、化学蒸着、又は物理蒸着されて配設されたものである前記 [1]一 [3]のいず れかに記載のプラズマ発生電極。
[0011] [5] 複数の前記貫通孔の、それぞれの直径が 1一 10mmである前記 [1]一 [4]の いずれかに記載のプラズマ発生電極。
[0012] [6] 複数の前記貫通孔の、隣接するそれぞれの中心間の距離が 1 · 5— 20mmで ある前記 [ 1]一 [5]のレ、ずれかに記載のプラズマ発生電極。
[0013] [7] 前記導電膜の主成分が、タングステン、モリブデン、マンガン、クロム、チタン、 ジノレコニゥム、ニッケル、鉄、銀、銅、白金、及びパラジウムからなる群から選ばれる少 なくとも一種の金属である前記 [1]一 [6]のレ、ずれかに記載のプラズマ発生電極。
[0014] [8] 前記 [1]一 [7]のいずれかに記載されたプラズマ発生電極を備えたプラズマ発 生装置 (以下、「第二の発明」ということがある)。
[0015] [9] 前記 [8]に記載のプラズマ発生装置と、触媒とを備え、前記プラズマ発生装置 と前記触媒とが、内燃機関の排気系の内部に配設された排気ガス浄化装置 (以下、「 第三の発明」ということがある)。
図面の簡単な説明
[0016] [図 1]図 1は、本発明(第一の発明)のプラズマ発生電極の一の実施の形態を模式的 に示す斜視図である。 [図 2]図 2は、本発明(第一の発明)のプラズマ発生電極の一の実施の形態における 、一方の電極を構成するセラミック成形体と導電膜との一例を模式的に示す平面図 である。
[図 3]図 3は、本発明(第一の発明)のプラズマ発生電極の他の実施の形態を模式的 に示す斜視図である。
[図 4]図 4は、本発明(第一の発明)のプラズマ発生電極の一の実施の形態における 、一方の電極を構成するセラミック成形体と導電膜との他の例を模式的に示す平面 図である。
[図 5(a)]図 5 (a)は、本発明(第二の発明)のプラズマ発生装置の一の実施の形態を、 被処理流体の流れ方向を含む平面で切断した断面図である。
[図 5(b)]図 5 (b)は、図 5 (a)の A— A線における断面図である。
[図 6]図 6は、本発明(第三の発明)の排気ガス浄化装置の一の実施の形態を模式的 に示す説明図である。
発明を実施するための最良の形態
[0017] 以下、図面を参照して、本発明のプラズマ発生電極及びプラズマ発生装置、並び に排気ガス浄化装置の実施の形態について詳細に説明する。
[0018] 図 1は、本発明(第一の発明)のプラズマ発生電極の一の実施の形態を模式的に 示す斜視図であり、図 2は、プラズマ発生電極の一方の電極を構成するセラミック体と 導電膜とを模式的に示す平面図である。図 1及び図 2に示すように、本実施の形態の プラズマ発生電極 1は、対向配置された少なくとも一対の電極 5を備え、これらの間に 電圧を印加することによってプラズマを発生させることが可能なプラズマ発生電極 1で あって、一対の電極 5のうちの少なくとも一方の電極 5aが、誘電体となる板状のセラミ ック体 2と、セラミック体 2の内部に配設された、その膜厚方向に貫通した膜厚方向に 垂直な方向の平面で切断した断面の形状 (以下、「貫通孔の断面形状」ということが ある)がー部に円弧を含む形状の貫通孔 4が複数形成された導電膜 3とを有するもの である。なお、本実施の形態においては、他方の電極の構成については特に限定さ れることはなく、図 1に示すように、従来公知の金属電極を用いてもよいが、図 3に示 すように、プラズマ発生電極 1を構成する他方の電極 5bについても、その膜厚方向 に貫通した膜厚方向に垂直な方向の平面で切断した断面の形状が一部に円弧を含 む形状の貫通孔が複数形成された導電膜を有するものであることが好ましレ、。このよ うに構成する場合には、一の電極 5aと他の電極 5bとのそれぞれに電流を通過させる ための接続部分が、互いに逆方向になるように形成されてレ、ることが好ましレ、。
[0019] また、図 1に示したプラズマ発生電極 1においては、二枚の電極 5が対向配置され た状態を示しているが、電極 5の枚数はこれに限定されることはなぐ例えば、図示は 省略するが、三枚以上の電極を平行に対向配置させて、 P 接する相互の電極が、そ れぞれ一対の電極となるように構成してもよレ、。
[0020] なお、図 1及び図 2においては、膜厚方向に垂直な方向の平面で切断した断面の 形状が円形である貫通孔 4を示しているが、これに限定されることはなぐ楕円形や、 多角形の頂点が円弧状に丸められた形状等であってもよい。
[0021] 本実施の形態のプラズマ発生電極 1は、誘電体となるセラミック体 2と、セラミック体 2 の内部に配設された導電膜 3とを有するバリア放電型のプラズマ発生電極 1である。 このプラズマ発生電極 1は、例えば、一対の電極 5間に生じたプラズマ内に排気ガス 等の被処理流体を通過させて処理する排気ガス処理装置や浄化装置、また、空気 等に含まれる酸素を反応させてオゾンを精製するォゾナイザ等に好適に用いることが できる。
[0022] 従来、このバリア放電型の電極は、誘電体の全面から放電が生じるために比較的 に均等なプラズマが発生するように思われていた力 S、実際には、誘電体の全面に均 等な電位を持つような放電が生じることはなぐ導電体 (導電膜)が板状の場合には、 誘電体の不特定箇所に点を起点とする局所的な放電が起こり、均一なプラズマを発 生させることができなかった。また、導電体(導電膜)がメッシュ状の場合には、メッシ ュの交点に相当する位置に放電が集中して、均一なプラズマを発生させることができ なかった。本実施の形態においては、プラズマ発生電極 1を構成する導電膜 3に、膜 厚方向に垂直な方向の平面で切断した断面の形状が一部に円弧を含む形状の複 数の貫通孔 4が形成されてレ、ること力、ら、この貫通孔 4の導電膜の境界部分が放電の 起点となり、貫通孔 4の外周上に、均等に放電を起こさせることができるとともに、複数 の貫通孔 4が導電膜 3全体に形成されていることから、一対の電極 5間に安定かつ均 一なプラズマを発生させることができる。また、貫通孔 4の膜厚方向に垂直な方向の 平面で切断した断面の形状が多角形等であると、その頂点に相当する部分に放電 が集中して、均一なプラズマを発生させることができない。
[0023] 上述した貫通孔 4の大きさについては、特に限定されることはないが、例えば、それ ぞれの貫通孔 4の直径が 1一 1 Ommであることが好ましレ、。このように構成することに よって、貫通孔 4の外周上での電界集中が、放電に適した条件となり、一対の電極 5 間に印加する電圧がさほど高くなくとも放電を良好に開始させることができる。貫通孔 4の直径が lmm未満であると、貫通孔 4の大きさが小さくなり過ぎて、貫通孔 4の外周 上に生ずる放電が、上述した点を起点とした局所的な放電と似た状態となり、不均一 なプラズマが発生する恐れがある。また、貫通孔 4の直径が 10mmを超えると、貫通 孔 4の内部には放電が生じにくいため、一対の電極 5間に生じるプラズマの密度が低 下する恐れがある。
[0024] また、本実施の形態においては、貫通孔 4の、隣接するそれぞれの中心間の距離 は、貫通孔 4の直径に応じて、均一かつ高密度なプラズマを発生させることができる ような長さとなるように適宜決定されていることが好ましぐ例えば、特に限定させるこ とはないが、隣接するそれぞれの中心間の距離力 1. 5— 20mmであることが好まし レ、。
[0025] また、この貫通孔 4は、単位面積当りの貫通孔 4の外周の長さが長くなるように形成 されていることが好ましい。このように構成することによって、単位面積当たりに電界不 均一な領域の長さ、即ち、プラズマの発生起点となる外周の長さを長くすることができ 、単位面積当たりに多くの放電を起こさせて高密度のプラズマを発生させることがで きる。具体的な単位面積当りの貫通孔 4の外周の長さ(mm/ (mm) 2)としては、発生 させるプラズマの強度等によって適宜設定することができるが、例えば、 自動車の排 気ガスを処理する場合には、 0. 05-1. 7mmZ (mm) 2であることが好ましレ、。単位 面積当りの貫通孔 4の外周の長さが 0. 05mm/ (mm) 2より小さいと局所的な放電が 起こり、安定な放電空間が得難くなることがある。 1. 7より大きいと、導電膜の抵抗値 が高くなり放電効率が低下することがある。
[0026] また、本実施の形態においては、単位面積当たりの導電膜 3の面積は 0. 1-0. 98 (mm) 2/ (mm) 2であること力、好ましい。 0. 1より小さいと誘電体電極の静電容量が 小さすぎて、排ガス浄化に必要な放電を得ることが難しくなることがある。 0. 98より大 きいと、貫通孔による均一な放電効果が得にくくなり、局所的な放電が起こりやすくな ること力 sある。
[0027] より具体的に、貫通孔 4の単位面積当りの外周の長さと導電膜 3の面積とを規定す るには、 自動車の排気ガスに含まれる煤を処理する場合には、単位面積当りの貫通 孔 4の外周の長さは 1. OmmZ (mm) 2以下で単位面積当りの導電膜 3の面積は 0. 2 (mm) 2/ (mm) 2以上であることが好ましぐまた、排気ガスに含まれる窒素酸化物( N〇)を処理する場合には、単位面積当りの貫通孔 4の外周の長さは 0. 2mm/ (m m) 2以上で単位面積当りの導電膜 3の面積は 0. 9 (mm) V (mm) 2以下であることが 好ましい。
[0028] 導電膜 3は、セラミック体 2の厚さの 0. 1 10。/oに相当する厚さであることが好まし レ、。このように構成することによって、誘電体となるセラミック体 2の表面に均一な放電 を起こすこと力 Sできる。具体的な導電膜 3の厚さとしては、プラズマ発生電極 1の小型 化及び一対の電極 5間を通過させる排気ガス等の被処理流体の抵抗を低減させる 等の理由から、 5— 50 /i m程度であることが好ましい。導電膜 3の厚さが 5 μ ΐη未満 であると、導電膜 3を印刷等によって形成する場合に信頼性が劣ることがあり、また、 形成された導電膜 3の抵抗が高くなることがあるために、プラズマ発生効率が低下す る恐れがある。導電膜 3の厚さが 50 μ ΐηを超えると、導電膜 3の抵抗は小さくなるが、 セラミック体 2の表面の凹凸に影響を及ぼし、その表面が平坦となるように加工しなけ ればならないことがある。
[0029] また、本実施の形態においては、一の電極 5aを構成する導電膜 3が、セラミック体 2 の両表面からの距離が、ほぼ等しくなるように、セラミック体 2の内部に配設されてい ることが好ましい。このように構成することによって、複数枚の電極を連続的に対向配 置させてプラズマを発生させたとしても、 P 接する電極間に等しレ、強度のプラズマを 発生させることができる。導電膜 3が、セラミック体 2の両表面からの距離が異なるよう に配設された場合には、一の電極 5aの互いの表面における静電容量が変わり、互い の表面での放電特性が異なる恐れがある。 [0030] また、本実施の形態に用いられる導電膜 3は、導電性に優れた金属を主成分とする ことが好ましぐ例えば、導電膜 3の主成分としては、タングステン、モリブデン、マン ガン、クロム、チタン、ジルコニウム、ニッケル、鉄、銀、銅、白金、及びパラジウムから なる群から選ばれる少なくとも一種の金属を好適例として挙げることができる。なお、 本実施の形態において、主成分とは、成分の 60質量%以上を占めるものをいう。な お、導電膜 3が、上述した群のうち二種類以上の金属を主成分として含む場合には、 それら金属の総和力 成分の 60質量%以上を占めるものとする。
[0031] この導電膜 3をセラミック体 2の内部に配設する方法としては、例えば、粉末プレス 成形したプレス成形体に、金属板や金属箔等の導電膜 3を埋設して配設する方法等 を挙げることができる。具体的には、粉末プレスによってセラミック体となるプレス成形 体を成形する際に、そのプレス成形体の互いの表面からの距離 (厚さ方向の距離)が 等しくなるように、上述した金属を主成分とする金属板や金属箔等を埋設する。埋設 した金属箔等がセラミックスの焼成収縮で変形したり、切断する恐れがあるために、 平面方向の物質移動を抑制するように焼成することが好ましい。このように構成するこ とによって、プレス成形体の厚さ方向にプレス圧力を負荷して焼成することができる。
[0032] また、この導電膜 3は、セラミック体 2に塗工されて配設されたものであってもよい。
具体的な塗工の方法としては、例えば、スクリーン印刷、カレンダーロール、化学蒸 着、及び物理蒸着等を好適例として挙げることができる。このような方法によれば、塗 ェ後の表面の平滑性に優れ、かつ厚さの薄い導電膜 3を容易に形成することができ る。前述した塗工の方法うち、化学蒸着及び物理蒸着は、多少コスト高になる場合が あるが、より厚さの薄い導電膜を容易に配設することができるとともに、より小さな直径 で、かつ隣接する中心間の距離がより小さい貫通孔を容易に形成することができる。
[0033] 導電膜 3をセラミック体 2に塗工する際には、導電膜 3の主成分として挙げた金属の 粉末と、有機バインダーと、テルピネオール等の溶剤とを混合して導体ペーストを形 成し、上述した方法でセラミック体 2に塗工することで形成することができる。また、セ ラミック体 2との密着性及び焼結性を向上させるベぐ必要に応じて上述した導体ぺ 一ストに添加剤を加えてもよい。
[0034] 導電膜 3の金属成分にセラミック体 2と同じ成分を添加することにより、導電膜 3とセ ラミック体 2との密着性を良くすることが可能となる。また、金属成分に添加するセラミ ック体成分にガラス成分をカ卩えることもできる。ガラス成分の添加により、導電膜 3の焼 結性を向上し、密着性に加え緻密性が向上する。金属成分以外のセラミック体 2の成 分及び/又はガラス成分の総和は、 30質量%以下が好ましい。 30質量%を超えると 、抵抗値が下がり、導電膜 3としての機能が得られないことがある。
[0035] また、本実施の形態におけるセラミック体 2は、上述したように誘電体としての機能を 有するものであり、導電膜 3がセラミック体 2に挟持された状態で用いられることにより 、導電膜 3単独で放電を行う場合と比較して、スパーク等の片寄った放電を減少させ 、小さな放電を複数の箇所で生じさせることが可能となる。このような複数の小さな放 電は、スパーク等の放電に比して流れる電流が少ないために、消費電力を削減する ことができ、さらに、誘電体が存在することにより、一対の電極 5間に流れる電流が制 限されて、温度上昇を伴わない消費エネルギーの少ないノンサーマルプラズマを発 生させることができる。
[0036] 上述したセラミック体 2は、誘電率の高い材料を主成分とすることが好ましぐ例えば 、酸化アルミニウム、酸化ジノレコニゥム、酸化珪素、チタン-バリウム系酸化物、マグネ シゥム一カルシウム一チタン系酸化物、ノくリウムーチタン一亜鉛系酸化物、窒化珪素、 窒化アルミニウム等を好適に用いることができる。耐熱衝撃性に優れた材料を主成分 とすることによって、プラズマ発生電極 1を高温条件下においても運用することが可能 となる。
[0037] また、セラミック体 2の厚さについては、特に限定されることはなレ、が、 0. 1一 3mm であることが好ましレ、。セラミック体 2の厚さが 0. 1mm未満であると、電極 5の電気絶 縁性を確保することができないことがある。また、セラミック体 2の厚さが 3mmを超える と、排気ガス浄化システムとして省スペース化の妨げになるとともに、電極間距離が長 くなることによる負荷電圧の増大につながり効率が低下することがある。
[0038] 本実施の形態に用いられるセラミック体 2は、セラミック基板用のセラミックグリーンシ ートを好適に用いることができる。このセラミックグリーンシートは、グリーンシート用の スラリー又はペーストを、ドクターブレード法、カレンダ一法、印刷法、リバースロール コータ法等の従来公知の手法に従って、所定の厚さとなるように成形して形成するこ とができる。このようにして形成されたセラミックグリーンシートは、切断、切肖 iJ、打ち抜 き、連通孔の形成等の加工を施したり、複数枚のグリーンシートを積層した状態で熱 圧着等によって一体的な積層物として用いてもよい。
[0039] 上述したグリーンシート用のスラリー又はペーストは、所定のセラミック粉末に適当な バインダ、焼結助剤、可塑剤、分散剤、有機溶媒等を配合して調製したものを好適に 用いることができ、例えば、このセラミック粉末としては、アルミナ、ムライト、セラミック ガラス、ジルコユア、コージヱライト、窒化珪素、窒化アルミニウム及びガラス等の粉末 を好適例として挙げることができる。また、焼結助剤としては、酸化ケィ素、酸化マグ ネシゥム、酸化カルシウム、酸化チタン、酸化ジルコニウム等を好適例として挙げるこ とができる。なお、焼結助剤は、セラミック粉末 100質量部に対して、 3 10質量部加 えることが好ましい。可塑剤、分散剤及び有機溶媒については、従来公知の方法に 用レ、られている可塑剤、分散剤及び有機溶媒を好適に用いることができる。
[0040] 本実施の形態に用いられるセラミック体 2は、押出成形で作製したセラミックシートを 好適に用いることもできる。例えば、前述したセラミック粉末とメチルセルロース等の成 形助剤や界面活性剤等を添加して調製した混練物を、所定の金型を通して押出され た板状セラミック成形体を用いることもできる。
[0041] また、本実施の形態においては、セラミック体 2の気孔率力 0. 1一 35%であること が好ましぐさらに 0. 1— 10%であることが好ましい。このように構成することによって 、セラミック体 2を有する電極 5aと、対向配置された他方の電極 5bとの間に効率よく プラズマを発生させることが可能となり、省エネルギー化を実現することができる。
[0042] なお、一対の電極 5間の距離は、その間に有効にプラズマを発生させることが可能 な距離とすることが好ましぐ電極に印加する電圧等によっても異なる力 例えば、 0. 1一 5mmとすることが好ましレ、。
[0043] また、図 2に示した電極 5aにおいては、導電膜 3に形成された貫通孔 4が、隣接す るそれぞれの中心を結ぶ直線が正三角形となるように形成されているが、例えば、図 4に示すように、隣接するそれぞれの中心を結ぶ直線が正方形となるようにされてレ、 てもよい。
[0044] 以下、本実施の形態のプラズマ発生電極の製造方法について具体的に説明する。 [0045] まず、上述したセラミック体となるセラミックグリーンシートを成形する。例えば、アル ミナ、ムライト、セラミックガラス、ジルコニァ、コージエライト、窒化珪素、窒化アルミ二 ゥム、及びガラス群から選ばれる少なくとも一種の材料に、焼結助剤や、プチラーノレ 系樹脂やセルロース系樹脂等のバインダ、 DOPや DBP等の可塑斉 lj、トルエンゃブタ ジェン等の有機溶媒等をカ卩え、アルミナ製ポット及びアルミナ玉石を用いて十分に混 合してグリーンシート用のスラリーを作製する。また、これらの材料を、モノボールによ りボールミル混合して作製してもよレ、。
[0046] 次に、得られたグリーンシート用のスラリーを、減圧下で攪拌して脱泡し、さらに所 定の粘度となるように調整する。このように調整したグリーンシート用のスラリーをドク ターブレード法等のテープ成形法によってテープ状に成形して未焼成セラミック体を 形成する。
[0047] 一方、得られた未焼成セラミック体の一方の表面に配設する導電膜を形成するため の導体ペーストを形成する。この導体ペーストは、例えば、銀粉末にバインダ及びテ ルピネオール等の溶剤をカ卩え、トリロールミルを用いて十分に混鍊して形成すること ができる。
[0048] このようにして形成した導体ペーストを、未焼成セラミック体の表面にスクリーン印刷 等を用いて印刷して、所定の形状の導電膜を形成する。その際、導電膜に、断面形 状が円形の複数の貫通孔を形成するように印刷を行う。また、導電膜をセラミック体で 挟持した後に、外部から導電膜に電気を供給することができるように、導電膜を未焼 成セラミック体の外周部まで延設するように印刷して外部からの通電部分を確保して おく。
[0049] 次に、導電膜を印刷した未焼成セラミック体と、他の未焼成セラミック体とを、印刷し た導電膜を覆うようにして積層する。未焼成セラミック体を積層する際には、温度 100 °C、圧力 lOMPaで押圧しながら積層することが好ましい。
[0050] 次に、導電膜を挟持した状態で積層した未焼成セラミック体を焼成して、誘電体と なる板状のセラミック体と、このセラミック体の内部に配設された、その膜厚方向に貫 通した膜厚方向に垂直な方向の平面で切断した断面の形状が一部に円弧を含む形 状の貫通孔が複数形成された導電膜とを有する電極を形成する。 [0051] このようにして得られた電極に、対向電極となる電極を配置し、本実施の形態のプ ラズマ発生電極を形成する。この対向電極となる電極は、上述した製造方法によって 得られた電極を用いてもよぐまた、従来公知の他の構成の電極を用いてもよい。
[0052] 次に、本発明(第二の発明)のプラズマ発生装置の一の実施の形態について説明 する。図 5 (a)及び図 5 (b)に示すように、本実施の形態のプラズマ発生装置 10は、 第一の発明のプラズマ発生電極 1を備えたものである。具体的には、このプラズマ発 生装置 10は、プラズマ発生電極 1と、プラズマ発生電極 1を構成する一対の電極 5間 を排気ガス等の被処理流体が通過可能な状態で収納したケース体 11とを備えてい る。このケース体は、被処理流体が流入する流入口 12と、流入した被処理流体が電 極 5間を通過して処理された処理流体を流出する流出口 13とを有している。
[0053] 本実施の形態のプラズマ発生装置 10は、第一の発明のプラズマ発生電極 1を備え ていることから、均一かつ安定なプラズマを低電力で発生させることができる。
[0054] 図 5 (a)及び図 5 (b)に示すように、本実施の形態のプラズマ発生装置 10において は、一対の電極 5を備えたプラズマ発生電極 1が複数積層された状態でケース体 11 の内部に設置されていることが好ましい。なお、図 5 (a)及び図 5 (b)においては、説 明上、一対の電極 5から構成されたプラズマ発生電極 1が五個積層された状態を示 しているが、プラズマ発生電極 1を積層する数はこれに限定されることはない。なお、 プラズマ発生電極 1を構成する一対の電極 5間と、各プラズマ発生電極 1間とには、 所定の隙間を形成するためのスぺーサー 14が配設されている。
[0055] このように構成されたプラズマ発生装置 10は、例えば、 自動車の排気系中に設置 して用いることができ、エンジン等から排出された排気ガスを、一対の電極 5間に発生 させたプラズマの中を通過させることにより、排気ガスに含まれる煤や窒素酸化物等 の有害物質を反応させて無害な気体として外部に排出することができる。
[0056] 複数のプラズマ発生電極 1を積層する際には、積層したプラズマ発生電極 1の相互 間にも、プラズマを発生させることができるように構成することが好ましい。具体的には 、例えば、一のプラズマ発生電極 laを構成する電極 5の一方の電極 5aが、対向配置 された電極 5bとの間に放電を生ずるだけでなぐ隣接する他のプラズマ発生電極 lb を構成する電極 5bとの間にも放電を起こすことが可能な構成とし、積層したプラズマ 発生電極 1の相互間にもプラズマを発生させることができるような構成とすることが好 ましい。
[0057] また、図示は省略するが、本実施の形態のプラズマ発生装置においては、プラズマ 発生電極に電圧を印加するための電源をさらに備えていてもよい。この電源につい ては、プラズマを有効に発生させることができるような電流を供給することができるもの であれば従来公知の電源を用いることができ、例えば、サイリスタを利用したパルス 電源、サイリスタ以外の他のトランジスタを用いたパルス電源、又は一般的な交流電 源等を好適に用いることができる。
[0058] また、本実施の形態のプラズマ発生装置においては、上述したように電源を備えた 構成とせずに、外部の電源から電流を供給するような構成としてもょレ、。
[0059] 本実施の形態に用いられるプラズマ発生電極に供給する電流については、発生さ せるプラズマの強度によって適宜選択して決定することができる。例えば、プラズマ発 生装置を自動車の排気系中に設置する場合には、プラズマ発生電極に供給する電 流力 電圧が lkV以上の直流電流、ピーク電圧が lkV以上かつ 1秒あたりのパルス 数が 100以上(100Hz以上)であるノ レス電流、ピーク電圧が lkV以上かつ周波数 力 SlOOHz以上である交流電流、又はこれらのいずれか二つを重畳してなる電流であ ることが好ましい。このように構成することによって、効率よくプラズマを発生させること ができる。
[0060] 次に、本発明(第三の発明)の排気ガス浄化装置の一の実施の形態について具体 的に説明する。図 6は、本実施の形態の排気ガス浄化装置を模式的に示す説明図 である。図 6に示すように、本実施の形態の排気ガス浄化装置 41は、上述した第二 の発明の実施の形態であるプラズマ発生装置 10と、触媒 44とを備え、このプラズマ 発生装置 10と触媒 44とが、内燃機関の排気系の内部に配設された排気ガス浄化装 置 41である。なお、プラズマ発生装置 10は、排気系の排気ガス発生側(上流側)に 配設され、触媒 44は、その排気側(下流側)に配設されており、プラズマ発生装置 10 と触媒 44とは配管 42を介して接続されている。
[0061] 本実施の形態の排気ガス浄化装置 41は、例えば、酸素過剰雰囲気下における排 気ガス中の N〇を浄化する装置である。即ち、プラズマ発生装置で発生したプラズマ によって、 NOを下流側の触媒 44で浄化しやすいように改質、又は NOと反応しや すいように排気ガス中の HC (ハイド口カーボン)等を改質して、触媒 44によって NO を浄化する。
[0062] 本実施の形態の排気ガス浄化装置 41に用いられるプラズマ発生装置 10は、ブラ ズマにより、リーンバーン、ガソリン直噴エンジン又はディーゼルエンジン等の酸素過 剰雰囲気下での燃焼による排気ガス中の NOを NOに変換するものである。また、プ
2
ラズマ発生装置 10は、排気ガス中の HC等から活性種を生成するものであり、図 5 (a )に示したプラズマ発生装置 10と同様に構成されたものを好適に用いることができる
[0063] 触媒 44は、その内部に排気ガスが流通する複数の細孔が形成された支持体を含 む触媒部材を備えた触媒ユニット 45として、排気系におけるプラズマ発生装置 10の 下流側に配設されている。触媒部材は、支持体と、支持体の複数の細孔を取り囲む 内壁面を覆うように形成された触媒層を有してレ、る。
[0064] 触媒層は、一般に、後記するように支持体をスラリー状の触媒 (触媒スラリー)に含 浸して製造されるため、「ゥォッシュコー卜 (層)」と呼ばれることもある。
[0065] 支持体の形状は、排気ガスが流通する空間を有していれば本発明では特に制限さ れず、本実施の形態では、複数の細孔が形成されたハニカム状のものを使用してい る。
[0066] 支持体は、耐熱性を有する材料から形成されることが好ましい。このような材料とし ては、例えば、コージヱライト、ムライト、シリコンカーバイド(SiC)、シリコンナイトライド (Si N )等の多孔質 (セラミック)や、メタル (例えば、ステンレス)等が挙げられる。
3 4
[0067] 触媒層は、多孔質担体と、多孔質担体の表面に担持した Pt、 Pd、 Rh、 Au、 Ag、 C u、 Fe、 Ni、 Ir、 Ga等から選択される一種又は二種以上の組合せを主要部として形 成されている。触媒層の内部には支持体の細孔に連続する複数の連続細孔が形成 されている。
[0068] 多孔質担体は、例えば、ァノレミナ、ゼォライト、シリカ、チタニア、ジルコユア、シリカ アルミナ、セリア等から適宜選択して使用し、形成することができる。なお、触媒 44は 、 NOの分解反応を促進する触媒を用いる。 [0069] 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定 されるものではない。
[0070] (実施例 1)
図 1に示したようなプラズマ発生電極 1を備えたプラズマ発生装置を製造した。この プラズマ発生電極は、アルミナテープから構成された誘電体となる板状のセラミック体 と、このセラミック体の内部に配設された、その膜厚方向に貫通した膜厚方向に垂直 な方向の平面で切断した断面の形状が円形の複数の貫通孔が形成された導電膜と を有する二枚の電極を、その相互の間隔力 Slmmとなるように対向配置させて作製し た。なお、プラズマ発生電極を構成する一対の電極は、一方を電圧負荷側とし、もう 一方を接地側とした。
[0071] 上述したセラミック体の大きさは、縦 50mm、横 90mm、厚さ lmmとし、導電膜の大 きさは、縦 40mm、横 80mm、厚さ 20 z mとした。また、貫通孔の大きさは直径 3mm とし、それぞれの中心間の距離が 5mmとなるように均等に形成した。この導電膜は、 タングステン 95質量%の金属ペーストをセラミック体の表面に印刷して配設し、セラミ ック体とともに焼成して作製した。
[0072] このようにして得られたプラズマ発生電極を、一対の電極の電圧負荷側と接地側と が交互に配置されるように五個重ね合わせて、プラズマ発生装置を製造した。なお、 各プラズマ発生電極は、相互の間隔が lmmとなるように重ね合わせた。
[0073] プラズマ発生電極を構成する電極のうち電圧負荷側とした電極にはサイリスタを利 用したパルス電源を接続し、また、接地側とした電極はアースと接続した。
[0074] 本実施例(実施例 1)のプラズマ発生装置に、電圧 5kVで 500Hzの条件で通電し たところ、均一かつ安定なプラズマを発生させることができた。
[0075] また、本実施例のプラズマ発生装置によって発生したプラズマ内に、 Nと Oとを空
2 2 気と同様の割合となるように調整したガスに、 N〇ガスを混合して作製した混合ガスを 通過させて、混合ガスに含まれる N〇の NOへの変換効率を評価した。
2
[0076] 具体的な方法としては、室温で、 50NLZ分のガス流れの中に NOを添加して、 N O濃度が 200ppmの混合ガスを作製し、本実施例のプラズマ発生装置を用いて発生 させたプラズマ内に、得られた混合ガスを通過させた。プラズマを発生させる条件とし ては、電圧 6kV、 500Hzとした。
[0077] プラズマ内を通過した後の混合ガスの NO濃度は、 85ppmとなっていた。また、 NO 濃度が 200ppmの混合ガスを、電圧 7kV (消費電力 25W)にして発生させたプラズ マ内を通過させたところ、 NO濃度が 2ppmになり、ほとんど全量が NOに変換された
。排気ガスに含まれる N〇は、排気ガス処理用の触媒で室温近傍の低温では Nと O とに変換することは困難である力 このようにプラズマ内を通過させて N〇を N〇に変 換させることにより、その処理が容易になり、クリーンなガスを容易に得ることができる [0078] (比較例 1)
貫通孔を形成しなかったこと以外は、実施例 1のプラズマ発生装置と同様に構成さ れたプラズマ発生装置を製造した。
[0079] 実施例 1と同様に、サイリスタを用いたパルス電源で、電圧 7kVで 500Hzの条件で 通電し、発生したプラズマに、 NO濃度が 200ppmの混合ガスを通過させたところ、 N O濃度は 50ppmまでしか低下していな力 た。なお、プラズマを発生させた際に、電 極の表面の任意の箇所で放電を生じ、空間全体が放電すること無ぐ不均一なブラ ズマが発生していた。さらに、電圧を 8kVまで上げて、高いエネルギー注入を行うと 空間全体で放電が起きたが、貫通孔を設けた電極に比べ、高い電圧、電力が必要 であった。
[0080] (実施例 2)
貫通孔を、直径 5mmの円形で、それぞれの中心の間隔が 6mmとなるように配置し た以外は、実施例 1のプラズマ発生装置と同様に構成されたプラズマ発生装置を製 造した。
[0081] 本実施例(実施例 2)のプラズマ発生装置に、同様の混合ガスを通過させたところ、 18Wの消費電力で NO濃度が 3ppmとなった。このプラズマ発生装置は、実施例 1の プラズマ発生装置と比較して、より低電力で NOを変換させることができ、エネルギー 効率の高いものであった。このことから、貫通孔の直径と、それぞれの中心間の距離 と力 プラズマ電力に影響を及ぼすことが明確になった。
[0082] (実施例 3) プラズマ発生電極を構成する一対の電極のうちの一方を、ステンレス製の電極とす る以外は、実施例 1のプラズマ発生装置と同様に構成されたプラズマ発生装置を作 製した。
[0083] 本実施例(実施例 3)のプラズマ発生装置に、同様の混合ガスを通過させたところ、 電圧 6kVで 500Hzの条件で通電し、発生したプラズマに NO濃度が 200ppmの混 合ガスを通過させたところ、 N〇濃度は 5ppmとなっていた。この際、プラズマ発生装 置に投入された電力は 40Wで、実施例 1と比較すると電力の消費量は多くなつてい た力 高い効率で N〇を変換させることができた。
[0084] (実施例 4)
実施例 1のプラズマ発生装置と同様に構成されたプラズマ発生装置に交流電源を 接続して、 NO変換効率試験を行った。正弦波 500Hzで ± 7kVの条件で通電してプ ラズマを発生させたところ、 N〇濃度が lOOppmとなり、さらに、正弦波 1kHzで ± 7k Vの条件で通電したところ、 NO濃度が lOppmとなった。このように交流電源を用い たとしても有効にプラズマを発生させることができた。
[0085] (実施例 5)
対向する電極間距離を 0. 5mmにした以外は、実施例 1のプラズマ発生装置と同 様に構成されたプラズマ発生装置を製造した。
[0086] 排気ガス中のカーボン粒子の浄化性能を評価するために、 5g/hrの煤を流して、 プラズマ発生装置の流出口で、カーボン粒子の捕集量を評価した。
[0087] SIサイリスタを用いたパルス電源で、 250Hz、 5kVの条件で通電してプラズマを発 生させたところ、カーボン粒子の捕集量から算出される浄化率は 60%であり、 500H z、 5kVとしたところ、カーボン粒子の浄化率は、 90%に向上した。本実施例(実施例 5)のプラズマ発生装置が、カーボン粒子の除去に効果があることが確認された。
[0088] (実施例 6)
実施例 1のプラズマ発生装置の下流側に触媒を配置して排気ガス浄化装置を製造 し、その NO浄化性能を評価した。触媒は、市販の Ί -A1 Οに Ptを 5質量%含浸し た触媒粉末をコージヱライト製セラミックスハニカムに担持したものである。ハニカム触 媒のサイズは、直径 1インチ(約 2. 54cm)、長さ 60mmの筒状で、 400セノレ、セルを 区画する隔壁の厚さ(リブ厚)が 4ミル (約 0. 1mm)である。プラズマの発生条件及び ガス条件は、実施例 1 (7kV)と同じである。
[0089] その結果、 200ppmの NOがプラズマ発生装置及び触媒を通過した後には NOと して 80ppmまで低減してレ、た。
[0090] (比較例 2)
比較例 1のプラズマ発生装置の下流側に実施例 6に用レ、た触媒と同様の触媒を配 置して排気ガス浄化装置を製造し、その NO浄化性能を評価した。プラズマ発生条 件及びガス条件は、比較例 1と同じである。
[0091] その結果、 200ppmの N〇がプラズマ発生装置及び触媒を通過した後には NOと して 1 lOppmまでしか低減してレ、なかった。
産業上の利用可能性
[0092] 本発明のプラズマ発生電極及びプラズマ発生装置は、均一かつ安定なプラズマを 低電力で発生させることができる。また、本発明の排気ガス浄化装置は、上述したプ ラズマ発生装置と、触媒とを備えていることから、例えば、 自動車のエンジン等から排 出される排気ガスを浄化する浄化装置として好適に用いることができる。

Claims

請求の範囲
[1] 対向配置された少なくとも一対の電極を備え、これらの間に電圧を印加することによ つてプラズマを発生させることが可能なプラズマ発生電極であって、
前記一対の電極のうちの少なくとも一方が、誘電体となる板状のセラミック体と、前 記セラミック体の内部に配設された、その膜厚方向に貫通した前記膜厚方向に垂直 な方向の平面で切断した断面の形状が一部に円弧を含む形状の貫通孔が複数形 成された導電膜とを有するプラズマ発生電極。
[2] 前記貫通孔の前記膜厚方向に垂直な方向の平面で切断した断面の形状が円形で ある請求項 1に記載のプラズマ発生電極。
[3] 複数の前記貫通孔が、前記導電膜に規則的に配列するように形成されたものであ る請求項 1又は 2に記載のプラズマ発生電極。
[4] 前記導電膜が、前記セラミック成形体にスクリーン印刷、カレンダーロール、スプレ 一、化学蒸着、又は物理蒸着されて配設されたものである請求項 1一 3のいずれかに
[5] 複数の前記貫通孔の、それぞれの直径が 1一 1 Ommである請求項 1一 4のレ、ずれ かに記載のプラズマ発生電極。
[6] 複数の前記貫通孔の、隣接するそれぞれの中心間の距離が 1. 5— 20mmである 請求項 1一 5のいずれかに記載のプラズマ発生電極。
[7] 前記導電膜の主成分が、タングステン、モリブデン、マンガン、クロム、チタン、ジノレ コニゥム、ニッケル、鉄、銀、銅、白金、及びパラジウムからなる群から選ばれる少なく とも一種の金属である請求項 1一 6のいずれかに記載のプラズマ発生電極。
[8] 請求項 1一 7のいずれかに記載されたプラズマ発生電極を備えたプラズマ発生装 置。
[9] 請求項 8に記載のプラズマ発生装置と、触媒とを備え、前記プラズマ発生装置と前 記触媒とが、内燃機関の排気系の内部に配設された排気ガス浄化装置。
PCT/JP2004/008617 2003-06-20 2004-06-18 プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置 WO2004114728A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04746119A EP1638376A4 (en) 2003-06-20 2004-06-18 PLASMA GENERATING ELECTRODE, PLASMA GENERATING DEVICE, AND EXHAUST GAS PURIFICATION APPARATUS
JP2005507239A JP4746986B2 (ja) 2003-06-20 2004-06-18 プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置
US10/560,805 US7635824B2 (en) 2003-06-20 2004-06-18 Plasma generating electrode, plasma generation device, and exhaust gas purifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003177232 2003-06-20
JP2003-177232 2003-06-20

Publications (1)

Publication Number Publication Date
WO2004114728A1 true WO2004114728A1 (ja) 2004-12-29

Family

ID=33534927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008617 WO2004114728A1 (ja) 2003-06-20 2004-06-18 プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置

Country Status (4)

Country Link
US (1) US7635824B2 (ja)
EP (1) EP1638376A4 (ja)
JP (1) JP4746986B2 (ja)
WO (1) WO2004114728A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261040A (ja) * 2005-03-18 2006-09-28 Ngk Insulators Ltd プラズマ反応器
JP2006278236A (ja) * 2005-03-30 2006-10-12 Ngk Insulators Ltd プラズマ発生電極及びプラズマ反応器
JP2006305194A (ja) * 2005-04-28 2006-11-09 Midori Anzen Co Ltd 触媒保持装置及びガス除去装置
EP2081417A2 (en) 2008-01-16 2009-07-22 Ngk Insulator, Ltd. Ceramic plasma reactor and reaction apparatus
JP2016195960A (ja) * 2015-04-02 2016-11-24 日産自動車株式会社 排ガス浄化装置及びプラズマ処理装置
WO2017090677A1 (ja) 2015-11-24 2017-06-01 日本特殊陶業株式会社 プラズマリアクタ
JP2017107717A (ja) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 プラズマ反応器及びプラズマ電極板
KR102072129B1 (ko) * 2019-07-16 2020-01-31 이혁기 복합 에어로졸 필터 및 이를 이용한 필터 조립체

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094009A1 (en) * 2007-02-02 2008-08-07 Bang Kwon Kang Apparatus for uniformly generating atmospheric pressure plasma
US8268116B2 (en) * 2007-06-14 2012-09-18 Lam Research Corporation Methods of and apparatus for protecting a region of process exclusion adjacent to a region of process performance in a process chamber
KR100844121B1 (ko) 2007-07-20 2008-07-07 (주)에스엔텍 대기압 플라즈마 장치, 이를 구비한 카메라 모듈의적외선필터 인라인 조립 장치, 이를 이용한 세정 방법 및이를 이용한 휴대폰 카메라 모듈의 적외선필터인라인 조립방법
TWI386987B (zh) * 2008-03-25 2013-02-21 Advanced Semiconductor Eng 電漿清洗裝置、用於電漿清洗裝置之載具及電漿清洗之方法
KR100938782B1 (ko) 2009-07-06 2010-01-27 주식회사 테스 플라즈마 발생용 전극 및 플라즈마 발생장치
US8987643B2 (en) * 2009-07-20 2015-03-24 Sundereswar Rao Vempati Venkata Ceramic monolith and an electric heating device incorporating the said monolith
DE102011078942A1 (de) * 2011-07-11 2013-01-17 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Silane mit verbesserter Ausbeute
JP5638678B1 (ja) * 2013-09-10 2014-12-10 Pmディメンションズ株式会社 液中誘電体バリア放電プラズマ装置および液体浄化システム
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US10370539B2 (en) * 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
FI3100597T3 (fi) 2014-01-31 2023-09-07 Monolith Mat Inc Plasmapolttimen rakenne
US10217614B2 (en) * 2015-01-12 2019-02-26 Lam Research Corporation Ceramic gas distribution plate with embedded electrode
DE102015101315B3 (de) * 2015-01-29 2016-04-21 Inp Greifswald E.V. Plasmabehandlungsgerät und Verfahren zur Plasmabehandlung
EP3253827B1 (en) 2015-02-03 2024-04-03 Monolith Materials, Inc. Carbon black generating system
JP6542053B2 (ja) * 2015-07-15 2019-07-10 株式会社東芝 プラズマ電極構造、およびプラズマ誘起流発生装置
CA3032246C (en) 2015-07-29 2023-12-12 Monolith Materials, Inc. Dc plasma torch electrical power design method and apparatus
CA3211318A1 (en) 2016-04-29 2017-11-02 Monolith Materials, Inc. Torch stinger method and apparatus
MX2019010619A (es) 2017-03-08 2019-12-19 Monolith Mat Inc Sistemas y metodos para fabricar particulas de carbono con gas de transferencia termica.
CN110799602A (zh) 2017-04-20 2020-02-14 巨石材料公司 颗粒系统和方法
US10262836B2 (en) * 2017-04-28 2019-04-16 Seongsik Chang Energy-efficient plasma processes of generating free charges, ozone, and light
US20190032211A1 (en) * 2017-07-28 2019-01-31 Lam Research Corporation Monolithic ceramic gas distribution plate
CN109429419A (zh) * 2017-08-19 2019-03-05 周奇琪 一种新型介质阻挡等离子体发生装置
TWI718966B (zh) * 2020-06-15 2021-02-11 明志科技大學 電漿空氣清淨裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849525A (ja) * 1994-08-08 1996-02-20 Aqueous Res:Kk 排ガス浄化処理装置
JPH09245993A (ja) * 1996-03-04 1997-09-19 Anelva Corp プラズマ処理装置及びアンテナの製造方法
JP2001274103A (ja) * 2000-01-20 2001-10-05 Sumitomo Electric Ind Ltd 半導体製造装置用ガスシャワー体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164925A (ja) 1999-12-10 2001-06-19 Mitsubishi Motors Corp プラズマ排気ガス処理システム
JP2001193441A (ja) * 2000-01-11 2001-07-17 Denso Corp 内燃機関の排ガス浄化装置
JP2002129947A (ja) * 2000-10-19 2002-05-09 Denso Corp 内燃機関の排気浄化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849525A (ja) * 1994-08-08 1996-02-20 Aqueous Res:Kk 排ガス浄化処理装置
JPH09245993A (ja) * 1996-03-04 1997-09-19 Anelva Corp プラズマ処理装置及びアンテナの製造方法
JP2001274103A (ja) * 2000-01-20 2001-10-05 Sumitomo Electric Ind Ltd 半導体製造装置用ガスシャワー体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1638376A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261040A (ja) * 2005-03-18 2006-09-28 Ngk Insulators Ltd プラズマ反応器
JP2006278236A (ja) * 2005-03-30 2006-10-12 Ngk Insulators Ltd プラズマ発生電極及びプラズマ反応器
JP2006305194A (ja) * 2005-04-28 2006-11-09 Midori Anzen Co Ltd 触媒保持装置及びガス除去装置
JP4636930B2 (ja) * 2005-04-28 2011-02-23 ミドリ安全株式会社 触媒保持装置及びガス除去装置
EP2081417A2 (en) 2008-01-16 2009-07-22 Ngk Insulator, Ltd. Ceramic plasma reactor and reaction apparatus
US8367966B2 (en) 2008-01-16 2013-02-05 Ngk Insulators, Ltd. Ceramic plasma reactor and reaction apparatus
JP2016195960A (ja) * 2015-04-02 2016-11-24 日産自動車株式会社 排ガス浄化装置及びプラズマ処理装置
WO2017090677A1 (ja) 2015-11-24 2017-06-01 日本特殊陶業株式会社 プラズマリアクタ
JP2017107717A (ja) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 プラズマ反応器及びプラズマ電極板
KR102072129B1 (ko) * 2019-07-16 2020-01-31 이혁기 복합 에어로졸 필터 및 이를 이용한 필터 조립체

Also Published As

Publication number Publication date
JPWO2004114728A1 (ja) 2006-08-03
JP4746986B2 (ja) 2011-08-10
US20060152163A1 (en) 2006-07-13
EP1638376A4 (en) 2008-04-02
US7635824B2 (en) 2009-12-22
EP1638376A1 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
WO2004114728A1 (ja) プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置
JP4863743B2 (ja) プラズマ発生電極、プラズマ反応器及び排ガス浄化装置
EP1638377B1 (en) Plasma generating electrode, plasma generation device, and exhaust gas purifying apparatus
JP4448094B2 (ja) プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置
US7771673B2 (en) Plasma generating electrode and plasma reactor
EP1701597B1 (en) Plasma generating electrode, its manufacturing method, and plasma reactor
JP4494955B2 (ja) プラズマ発生電極及びプラズマ反応器
JP5150482B2 (ja) 排気ガス浄化装置
JP2005123034A (ja) プラズマ発生電極及びプラズマ反応器
US7589296B2 (en) Plasma generating electrode and plasma reactor
JP2005093423A (ja) プラズマ発生電極及びプラズマ反応器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006152163

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10560805

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004746119

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005507239

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004746119

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560805

Country of ref document: US