WO2004112131A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2004112131A1
WO2004112131A1 PCT/JP2004/005948 JP2004005948W WO2004112131A1 WO 2004112131 A1 WO2004112131 A1 WO 2004112131A1 JP 2004005948 W JP2004005948 W JP 2004005948W WO 2004112131 A1 WO2004112131 A1 WO 2004112131A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
heat
carbon fiber
semiconductor element
fiber composite
Prior art date
Application number
PCT/JP2004/005948
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinari Tsukada
Tsugio Masuda
Shinya Watanabe
Fumitomo Takano
Yasuro Yamanaka
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Publication of WO2004112131A1 publication Critical patent/WO2004112131A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device that efficiently radiates heat from a semiconductor element using a carbon fiber composite material.
  • This semiconductor device includes a bipolar transistor, an IGBT (Insulated Gate Bipolar Transistor), a power IC, and a MOSFET, all of which have the advantage of high conversion and control efficiency and small size.
  • IGBT Insulated Gate Bipolar Transistor
  • FIG. 7 shows a conventional semiconductor device having a cooling structure.
  • the semiconductor device 100 is formed by providing an insulating plate 103 and a metal plate 104 between the semiconductor element 101 and the heat sink 102.
  • the semiconductor element 101 is a power device such as a power transistor, power FET, or IGBT, and is formed of a silicon semiconductor or the like.
  • heat is generated by Joule heat and the temperature rises.
  • the temperature of the semiconductor element 101 rises, the on-resistance increases, and when performing feedback control or the like, a voltage is applied in an attempt to allow current to flow further, causing a current to flow, thereby increasing the regenerative heat. , The temperature will rise further. As a result, the semiconductor element 101 is damaged. To prevent this, a heat sink 102 is provided in the semiconductor device 100.
  • the heat sink 102 is made of copper or aluminum with good thermal conductivity. And dissipates the heat generated from the semiconductor element # 1. Therefore, it is possible to prevent the temperature of the semiconductor element 101 from rising. Therefore, it is formed so as to increase the heat radiation area.
  • the insulating plate 103 electrically insulates the semiconductor element 101 from the heat sink 102. Therefore, a material having good thermal conductivity, such as SiN, but having electrical insulation properties is used.
  • the metal plate 104 is for supporting the semiconductor element 101 and the insulating plate 103, and for conducting heat from the semiconductor element 101 to the heat sink 102. .
  • a copper plate or the like which has good thermal conductivity and is a strong material, is used.
  • the heat sink 102 is for dissipating the heat generated in the semiconductor element 101 and transmitted through the insulating plate 103 and the metal plate 104, thereby increasing the contact area with air. It is made of aluminum, copper, aluminum, etc. These semi-conductor elements 1 0 1 and the insulating plate 1 0 3 and the metal plate 1 0 4 and the heat sink 1 0 2, the solder or are by re joined to like brazing material.
  • a technology of inserting a layer of a unidirectional carbon fiber composite material between a semiconductor element and a heat sink is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-107190. Have been.
  • This unidirectional carbon fiber composite material has the advantage that it has a large thermal conductivity in the thickness direction, has a smaller thermal expansion coefficient in the plane direction than copper or aluminum, and is close to the thermal expansion coefficient of semiconductor elements. Having.
  • the conventional semiconductor device shown in FIG. 7 has a difference in thermal expansion coefficient between metal and other materials.
  • a drawback that such a phenomenon occurs.
  • the semiconductor element cannot exert its original performance without being subjected to a high load, and a forced air cooling device such as a water cooling device or a fan is required, and the size of the device is increased. was there.
  • the heat generated by the semiconductor element is diffused in the plane direction by the heat transfer metal plate provided between the semiconductor element and the carbon fiber composite material layer. Heat is conducted to the entire material layer, and the semiconductor element can be cooled well.
  • an intermediate heat sink for a heat buffer is further provided between the carbon fiber composite material layer and the heat sink. Therefore, the transient thermal resistance of the semiconductor device can be reduced, and the temperature rise of the semiconductor element can be reduced.
  • the carbon fiber composite material is preferably made of a carbon-copper composite material
  • the intermediate heat sink is made of a copper plate. Therefore, heat is conducted to the entire carbon fiber composite material layer, and the semiconductor element can be cooled well. Further, by using a copper plate for the intermediate heat sink, the transient thermal resistance of the semiconductor device can be reduced, and the temperature rise of the semiconductor element can be reduced.
  • a semiconductor element a heat sink, and the semiconductor element And a laminate provided between the heat sink and the heat sink, the laminate including a carbon fiber composite material layer.
  • the heat generated in the semiconductor element is transmitted to the entire carbon fiber composite material, and is transmitted to the heat sink via the laminate. Good conduction and heat dissipation.
  • the laminated plate is: an upper metal plate that conducts heat generated in the semiconductor element to the entire surface of the carbon fiber composite material layer; and the carbon fiber composite material layer that transmits heat of the upper metal plate in a plate thickness direction.
  • a lower metal plate joined on the opposite side to the joint surface of the insulator with the intermediate heat sink. Therefore, the heat generated by the semiconductor element is also diffused in the plane direction by the metal plate between the semiconductor element and the carbon fiber composite material, and the heat is conducted to the entire carbon fiber composite material to cool the semiconductor element well.
  • the laminated plate includes a metal plate, it has good thermal conductivity, and the heat generated by the semiconductor element can be well conducted to the heat sink, so that the heat can be efficiently dissipated.
  • FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a heat flow image of the semiconductor device shown in FIG.
  • Fig. 3 shows the speed change during acceleration / deceleration in an electric vehicle by (a), the time change of the current flowing through the semiconductor element by (b), and the temperature change of the semiconductor element by (c). It is the graph shown.
  • FIGS. 4A and 4B are diagrams showing the temperature and the amount of heat transport in a conventional semiconductor device in a steady state, wherein FIG. 4A shows the thermal resistance of the semiconductor device, and FIG. It is a figure showing the temperature of each part.
  • FIG. 5 is a diagram for explaining the temperature and the amount of heat transport in a transient state.
  • FIG. 5 (a) shows the shape of a substance
  • FIG. 5 (b) shows an equivalent circuit.
  • FIG. 6 is a diagram showing a time change of the energy and the temperature difference.
  • FIG. 7 is a cross-sectional view of a conventional semiconductor device.
  • the semiconductor device 10 of the present embodiment shown in FIG. 1 includes a carbon fiber composite material layer 13 provided between the semiconductor element 11 and the heat sink 12, a semiconductor element 11 and the carbon fiber composite material layer 13.
  • a heat transfer metal plate (upper metal plate) 14 that conducts the heat generated by the semiconductor element 11 to the entire surface of the carbon fiber composite material layer 13, and heats the carbon fiber composite material layer 13.
  • a heat buffer intermediate heat sink 15 provided between the sinks 12.
  • it is formed by providing a laminate 16 including the carbon fiber composite material layer 13 between the semiconductor element 11 and the heat sink 12.
  • the semiconductor element 11 is a power device such as a power transistor, a power FET, or an IGBT, and is formed of a silicon semiconductor or the like.
  • a power device such as a power transistor, a power FET, or an IGBT
  • heat is generated by Joule heat and the temperature rises.
  • the temperature of the semiconductor element 11 rises, the on-resistance increases, and when performing feedback control or the like, if a voltage is applied in order to allow more current to flow, Joule heat increases and the temperature further rises. As a result, the semiconductor element 11 is damaged. To prevent this, the semiconductor device 10 is provided with a heat sink 12.
  • the heat sink 12 is formed of copper, aluminum, or the like having good thermal conductivity, and radiates heat generated from the semiconductor element 11. Thereby, the temperature of semiconductor element 11 can be prevented from rising. Therefore, it is formed to increase the heat radiation area.
  • the laminated plate 16 is where the heat generated in the semiconductor element 11 is conducted to the heat sink 12 and radiated.
  • the laminated plate 16 is composed of an upper metal plate 14 that conducts heat generated by the semiconductor element 11 to the entire surface of the carbon fiber composite material layer 13 and a carbon plate that transfers heat of the upper metal plate 14 in the thickness direction. Bonding of the fiber composite material layer 13, the heat buffer intermediate heat sink 15 for storing and conducting heat from the carbon fiber composite material layer 13, and the carbon fiber composite material layer 13 of the intermediate heat sink 15 An insulator 18 joined to the opposite side of the surface, and a lower metal plate 19 joined to the opposite side of the joint between the insulator 18 and the intermediate heat sink 15 ing.
  • Ni plating 20 is applied to the surface.
  • the Ni plating 20 is for securing the brazing property and the wire pounding property of the semiconductor element.
  • the metal plate 14 is for ensuring the brazing property and the bonding property of the semiconductor element 11 and for diffusing heat in the plane direction. For this purpose, a relatively thin copper plate with high thermal conductivity is used.
  • the carbon fiber composite material layer 13 quickly transmits heat generated in the semiconductor element 11 and diffused in the surface direction of the upper metal plate 14 to the heat sink direction. Further, the carbon fiber composite material layer 13 reduces the thermal stress caused by the difference between the thermal expansion of the semiconductor element 11, the thermal expansion of each layer of the laminated plate, and the thermal expansion of the heat sink due to heat generated in the semiconductor element 11. ease.
  • a material having a small elastic constant in the laminating plane direction is used, for example, a carbon fiber composite material such as a carbon-copper composite material is used.
  • a carbon fiber composite material such as a carbon-copper composite material is used.
  • individual carbon fibers are arranged in the thickness direction, and a metal material such as copper or aluminum is contained between the fibers. This carbon fiber composite material has the property that the thermal conductivity in the thickness direction (longitudinal direction) is higher than the thermal conductivity in the plane direction (lateral direction).
  • the intermediate heat sink 15 temporarily stores heat generated in the semiconductor element 11 and conducted through the upper metal plate 14 and the carbon fiber composite material layer 13, and the insulator 18 bonded to the lower surface and the lower metal plate 1 Conduct heat to the heat sink 1 through 9. For this reason, a relatively thick copper plate with high thermal conductivity is used.
  • the insulating plate 18 is for electrically insulating the semiconductor element 11 and the heat sink 12. Therefore, a substance having good thermal conductivity and electrical insulation such as SiN is used.
  • the lower metal plate 19 is for supporting the laminated structure on the upper side, and is for conducting heat from the semiconductor element 11 to the heat sink 12.
  • a copper plate that has good thermal conductivity and is strong.
  • the heat sink 12 is for dissipating the heat generated by the semiconductor element 11 and conducted through the upper laminated structure, and has a structure that increases the contact area with air, and is formed of copper, aluminum, or the like. Have been.
  • these plate members are sandwiched T i one C u foil dusted powder M g, of N 2 Kiri Bonding may be performed by applying pressure and annealing in an atmosphere.
  • the heat generated during the operation of the semiconductor element 11 of the semiconductor device 10 is conducted to the upper metal plate 14, and the upper metal plate 14 has good thermal conductivity. It also spreads in the direction and conducts. Further, the temperature of the upper metal plate 14 also increases. Thereby, thermal expansion occurs before the temperature is generated.
  • the heat conducted in the upper metal plate 14 is conducted to the carbon fiber composite material layer 13 and the temperature of the carbon fiber composite material layer 13 also rises.
  • the heat conducted to the carbon fiber composite material layer 13 is conducted to the intermediate heat sink 15, the temperature of the intermediate heat sink 15 rises, and the intermediate heat sink 15 expands.
  • the heat conducted to the intermediate heat sink 15 is conducted to the insulator 18 and the lower metal plate 19, conducted to the heat sink 12, and dissipated by the heat sink 12, so that the heat of the semiconductor element 11 is Dissipates and reduces the amount of temperature rise.
  • FIG. 2 shows heat transmission of the semiconductor device 10.
  • the temperatures of the semiconductor element 11, the upper metal plate 14, the carbon fiber composite material layer 13, the intermediate heat sink 15, the insulating plate 18, the lower metal plate 19, and the heat sink 12 are as follows. Is hotter than before it generates heat. This causes each layer to expand thermally with the thermal expansion coefficient of the respective material. At that time, thermal stress occurs.
  • the carbon fiber composite material layer 13 made of a carbon-copper composite material or the like having a small elastic coefficient in the plane direction alleviates the thermal stress, reduces the thermal stress generated in the semiconductor device 10 and reduces warpage. be able to.
  • the intermediate heat sink 15 By disposing the intermediate heat sink 15 below the semiconductor element 11, the transient thermal resistance of the semiconductor apparatus 10 can be reduced, and the temperature rise of the semiconductor element 11 can be reduced. Further, when an electric vehicle using the semiconductor device 10 travels, the reliability of a power module using the semiconductor device 11 can be improved. Also, by reducing the chip size with reliability and tradeoff, miniaturization and cost reduction can be achieved.
  • FIG. 3 (a) shows the horizontal axis of time, the vertical axis represents speed, and acceleration and deceleration are repeated. Let's hang.
  • FIG. 3 (b) shows the time change of the current flowing through the semiconductor element at that time. During acceleration, current flows rapidly, and during deceleration, current flows rapidly in the opposite direction.
  • FIG. 3 (c) shows the temperature change of the semiconductor element at that time.
  • a curve C 10 is a temperature change of the semiconductor element 101 in the conventional semiconductor device 100 shown in FIG. 7
  • a curve C 11 is a temperature change of the semiconductor element 11 in the semiconductor device 10 according to the present invention. Indicates a change.
  • the temperature rise of the semiconductor element 11 in the semiconductor device 10 according to the present invention is smaller than that of the conventional device, and it can be seen that the temperature stress is reduced. . Therefore, when the reliability is improved and the temperature does not exceed 150 ° C when using a normal semiconductor device, the IGBT is typically 1.5 to 2 times faster than the conventional one if the temperature does not exceed 150 ° C. A current can flow. As a result, the chip size can be reduced, and the cost can be reduced.
  • FIG. 4 is a diagram showing a temperature and a heat transport amount in a steady state in the conventional semiconductor device 100 shown in FIG. 7, and shows the temperature at each part.
  • FIG. 4A shows the thermal resistance of the semiconductor device 100.
  • R1 is the thermal resistance at the junction between the semiconductor element 101 and the insulating substrate 103.
  • R 12 is the thermal resistance of the insulating substrate 103.
  • R2 is the thermal resistance at the junction between the insulating substrate (insulated plate) 103 and the copper base (metal plate) 104.
  • R23 is the thermal resistance of the copper base 104.
  • R3 is the thermal resistance at the junction between the copper base 104 and the heat sink 102.
  • R 3 G is the thermal resistance of the heat sink 102.
  • R4G is the thermal resistance at the contact between the heat sink 102 and the air.
  • FIG. 4B shows the temperature of each part in the semiconductor device 100 in a steady state.
  • the thermal resistance R 1 causes the temperature T 12 on the upper surface of the insulating substrate 103 and the thermal resistance R 12 causes the insulating substrate 103
  • the temperature difference between the lower surface and the upper surface is large, and the temperature becomes T2.
  • the temperature becomes T 23 on the upper surface of the copper base 104 and the temperature T 3 on the lower surface of the copper base 104.
  • the temperature is determined from the thermal resistance and the heat transport rate as shown in equation (1).
  • the amount of heat transport can be obtained from the temperature difference and thermal resistance, or the thermal conductivity, cross-sectional area and temperature difference, and the length or thickness, as shown in equation (2).
  • Fig. 5 (a) shows the shape of the substance
  • Fig. 5 (b) shows its equivalent circuit.
  • the thermal conductivity of the material is ⁇ (WZm-K)
  • the density is p (g / m 3 )
  • the specific heat at constant pressure is C p (JZg'K)
  • the width b (m) is expressed by equation (3)
  • the heat capacity C (J / K) is expressed by equation (4)
  • the thermal diffusivity a is expressed by equation (5).
  • the amount of heat transport and the temperature are expressed by equations (6) and (f), respectively.
  • Figure 6 shows the change over time in energy and temperature difference.
  • W i R in equation (6) increases over time, and W i. Decreases over time.
  • the temperature difference ⁇ shown in equation (7) increases with time.
  • Wic is accumulated as the kinetic energy of the crystal lattice and free electrons and the transition energy of electrons.
  • the use of the intermediate heat sink reduces the rate of temperature rise.
  • the semiconductor device according to the present invention can efficiently transmit heat generated in a semiconductor element to a heat sink to effectively cool the semiconductor element, and is useful for industries requiring a power device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A semiconductor device is disclosed wherein a semiconductor element can be cooled well by conducting the heat generated in the semiconductor element to the whole of a carbon fiber composite material. A semiconductor device (10) comprises a laminate (16) arranged between a semiconductor element (11) and a heatsink (12). The laminate (16) is composed of a heat transfer metal sheet (14), a carbon fiber composite material layer (13), an intermediate heatsink (15) for heat buffering, an insulator (18), and a lower metal sheet (19). Preferably, the carbon fiber composite material layer (13) is composed of a carbon-copper composite material and the intermediate heatsink (15) is composed of a copper sheet.

Description

明 細 書 半導体装置 技術分野  Description Semiconductor device technology
本発明は、 半導体装置に関し、 特に、 炭素繊維複合材料を利用して効率的に 半導体素子の放熱を行う半導体装置に関する。 背景技術  The present invention relates to a semiconductor device, and more particularly to a semiconductor device that efficiently radiates heat from a semiconductor element using a carbon fiber composite material. Background art
近年、 電力変換や電力制御、 または、 大電力の増幅■発振等の目的でパワー デバイスと呼ばれる半導体素子を用いることが多い。 この半導体素子には、 バイ ポーラトランジスタ、 I G B T (Insulated Gate Bipolar Transistor) , パワー I C、 M O S F E T等があリ、 いずれも変換や制御の効率が高く小型であるという利点 を備える。  In recent years, semiconductor devices called power devices are often used for the purpose of power conversion, power control, or high-power amplification / oscillation. This semiconductor device includes a bipolar transistor, an IGBT (Insulated Gate Bipolar Transistor), a power IC, and a MOSFET, all of which have the advantage of high conversion and control efficiency and small size.
しかし、 上記半導体素子は、 大電流が流れるゆえに発熱量が高く、 自身の発 する熱により破壊や特性の変化が起こるおそれがあり、 効率的に冷却する必要が ある。このため、これまで様々な冷却構造が提案されてきたが、その一例として、 図 7に冷却構造を備えた従来の半導体装置を示す。  However, the semiconductor element generates a large amount of heat due to the flow of a large current, and the heat generated by the semiconductor element may cause destruction or change in characteristics. Therefore, it is necessary to efficiently cool the semiconductor element. For this reason, various cooling structures have been proposed so far. As an example, FIG. 7 shows a conventional semiconductor device having a cooling structure.
図 7を参照するに、 半導体装置 1 0 0は、 半導体素子 1 0 1 とヒートシンク 1 0 2の間に絶縁板 1 0 3と金属板 1 0 4を設けて形成される。 半導体素子 1 0 1は、 パワートランジスタ、 パワー F E T、 I G B Tなどのパワーデバイスであ リ、 シリコン半導体などで形成されている。 半導体素子 1 0 1が動作するときに は、 ジュール熱により熱が発生し温度が上昇する。 半導体素子 1 0 1の温度が上 昇するとオン抵抗が増加し、 フィードバック制御などを行っているときには、 さ らに電流を流そうとして電圧がかけられ、 電流が流れ、 それによリジュール熱が 増大し、 温度がさらに上昇する。 それにより、 半導体素子 1 0 1の損傷が発生し てしまう。 それを防ぐために、 半導体装置 1 0 0には、 ヒートシンク 1 0 2が設 けられている。  Referring to FIG. 7, the semiconductor device 100 is formed by providing an insulating plate 103 and a metal plate 104 between the semiconductor element 101 and the heat sink 102. The semiconductor element 101 is a power device such as a power transistor, power FET, or IGBT, and is formed of a silicon semiconductor or the like. When the semiconductor element 101 operates, heat is generated by Joule heat and the temperature rises. When the temperature of the semiconductor element 101 rises, the on-resistance increases, and when performing feedback control or the like, a voltage is applied in an attempt to allow current to flow further, causing a current to flow, thereby increasing the regenerative heat. , The temperature will rise further. As a result, the semiconductor element 101 is damaged. To prevent this, a heat sink 102 is provided in the semiconductor device 100.
ヒートシンク 1 0 2は、 熱伝導度の良い銅やアルミニウムなどにより形成さ れており、 半導体素子 Ί 0 1から発生する熱を放熱する。 このため、 半導体素子 1 0 1の温度の上昇を防ぐことができる。 それゆえ、 放熱面積を大きくするよう に形成している。 The heat sink 102 is made of copper or aluminum with good thermal conductivity. And dissipates the heat generated from the semiconductor element # 1. Therefore, it is possible to prevent the temperature of the semiconductor element 101 from rising. Therefore, it is formed so as to increase the heat radiation area.
絶縁板 1 0 3は、 半導体素子 1 0 1とヒートシンク 1 0 2との間を電気的に 絶縁する。 そのため、 S i Nなどの熱伝導性は良いが、 電気的絶縁性を有する物 質を用いる。  The insulating plate 103 electrically insulates the semiconductor element 101 from the heat sink 102. Therefore, a material having good thermal conductivity, such as SiN, but having electrical insulation properties is used.
金属板 1 0 4は、 半導体素子 1 0 1と絶縁板 1 0 3を支持するためのもので あり、 また、 ヒートシンク 1 0 2に半導体素子 1 0 1からの熱を伝導するための ものである。 そのために、 熱伝導性が良く、 また、 強固な材質である銅板などを 用いる。  The metal plate 104 is for supporting the semiconductor element 101 and the insulating plate 103, and for conducting heat from the semiconductor element 101 to the heat sink 102. . For this purpose, a copper plate or the like, which has good thermal conductivity and is a strong material, is used.
ヒー卜シンク 1 0 2は、 半導体素子 1 0 1で発生し、 絶縁板 1 0 3と金属板 1 0 4を伝導してきた熱を放散するためのものであり、 空気との接触面積を大き くする構造としておリ、 銅、 アルミニウムなどから形成されている。 これらの半 導体素子 1 0 1 と絶縁板 1 0 3と金属板 1 0 4とヒートシンク 1 0 2は、 半田又 はろう材などによリ接合されている。 The heat sink 102 is for dissipating the heat generated in the semiconductor element 101 and transmitted through the insulating plate 103 and the metal plate 104, thereby increasing the contact area with air. It is made of aluminum, copper, aluminum, etc. These semi-conductor elements 1 0 1 and the insulating plate 1 0 3 and the metal plate 1 0 4 and the heat sink 1 0 2, the solder or are by re joined to like brazing material.
上記従来の半導体装置では、 半導体素子の熱膨張係数に比べて、 銅又はアル ミニゥム等の金属の熱膨張係数が大きいため、 半導体素子の発熱に伴い膨張した 金属により熱応力が発生し、 装置自体が湾曲し、 剥がれ及び Z又はクラック等が 生じるという欠点があった。  In the above-described conventional semiconductor device, since the coefficient of thermal expansion of a metal such as copper or aluminum is larger than the coefficient of thermal expansion of the semiconductor element, the metal expanded due to the heat generated by the semiconductor element generates thermal stress, and the device itself However, there is a disadvantage that the steel sheet is curved, and peeling, Z or cracks are generated.
上記欠点を解決するため、 半導体素子とヒートシンクとの間に、 一方向性炭 素繊維複合材料の層を挿入する技術が、 例えば、 特開平 1 0— 1 0 7 1 9 0号公 報に開示されている。 この一方向性炭素繊維複合材料は、 その厚さ方向には大き な熱伝導率を有し、さらに面方向の熱膨張係数が銅やアルミニウムよりも小さく、 半導体素子の熱膨張係数に近いという利点を有する。  In order to solve the above-mentioned drawbacks, a technology of inserting a layer of a unidirectional carbon fiber composite material between a semiconductor element and a heat sink is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-107190. Have been. This unidirectional carbon fiber composite material has the advantage that it has a large thermal conductivity in the thickness direction, has a smaller thermal expansion coefficient in the plane direction than copper or aluminum, and is close to the thermal expansion coefficient of semiconductor elements. Having.
上述したように、 図 7に示した従来の半導体装置においては、 金属とその他 の素材により熱膨張係数の違いがあるため、 半導体素子が発熱した場合に装置に 反りが生じ、 結果として剥がれやクラック等が生じるという欠点があった。 した がって、半導体素子に高負荷をかけられずに、本来の性能を発揮できなかったり、 水冷装置やファン等の強制空冷装置が必要になリ、 機器が大型化したりする問題 があった。 As described above, the conventional semiconductor device shown in FIG. 7 has a difference in thermal expansion coefficient between metal and other materials. However, there is a drawback that such a phenomenon occurs. As a result, the semiconductor element cannot exert its original performance without being subjected to a high load, and a forced air cooling device such as a water cooling device or a fan is required, and the size of the device is increased. was there.
また、 特開平 1 0— 1 0 7 1 9 0号公報に開示された技術を用いた場合、 熱 膨張係数の違いによる問題は解消されるが、 横方向に熱が拡散しにくいという炭 素繊維複合材料の特性によリ、 半導体素子の熱が炭素繊維複合材料の全体を伝わ らず、 効率的にヒートシンクに熱を伝えることができなかった。  In addition, when the technology disclosed in Japanese Patent Application Laid-Open No. H10-107190 is used, the problem due to the difference in the coefficient of thermal expansion is solved, but the carbon fiber is difficult to diffuse heat in the lateral direction. Due to the characteristics of the composite material, the heat of the semiconductor element did not propagate through the entire carbon fiber composite material, and the heat could not be efficiently transmitted to the heat sink.
そこで、 半導体素子とヒートシンクの間に炭素繊維複合材料層を設けた半導 体装置において、 半導体素子で発生した熱を炭素繊維複合材料層の全体に伝導さ せ、 半導体素子の冷却を良好に行うことができる技術が求められている。 発明の開示  Therefore, in a semiconductor device in which a carbon fiber composite material layer is provided between a semiconductor element and a heat sink, heat generated in the semiconductor element is conducted to the entire carbon fiber composite material layer, and the semiconductor element is cooled well. There is a need for technology that can do that. Disclosure of the invention
本発明においては、 半導体素子と、 ヒートシンクと、 前記半導体素子と前記 ヒートシークとの間に設けられた炭素繊維複合材料層と、 前記半導体素子と前記 炭素繊維複合材料層との間に設けられ、 前記半導体素子で生じた熱を前記炭素繊 維複合材料層の全面に伝導する伝熱金属板と、 を備えている半導体装置が提供さ れる。  In the present invention, a semiconductor element, a heat sink, a carbon fiber composite material layer provided between the semiconductor element and the heat seek, and provided between the semiconductor element and the carbon fiber composite material layer, A heat transfer metal plate that conducts heat generated by the semiconductor element to the entire surface of the carbon fiber composite material layer is provided.
従って、 本発明の半導体装置よれば、 半導体素子によって発生した熱は、 該 半導体素子と炭素繊維複合材料層との間に設けられた伝熱金属板で面方向にも拡 散され、 炭素繊維複合材料層全体に熱が伝導され、 半導体素子を良好に冷却する ことができる。  Therefore, according to the semiconductor device of the present invention, the heat generated by the semiconductor element is diffused in the plane direction by the heat transfer metal plate provided between the semiconductor element and the carbon fiber composite material layer. Heat is conducted to the entire material layer, and the semiconductor element can be cooled well.
本発明の半導体装置においては、 好適には、 炭素繊維複合材料層とヒートシ ンクとの間に熱バッファ用中間ヒー卜シンクが更に設けられる。 従って、 半導体 装置の過渡熱抵抗を下げることができ、 半導体素子の温度上昇を小さくすること ができる。  In the semiconductor device of the present invention, preferably, an intermediate heat sink for a heat buffer is further provided between the carbon fiber composite material layer and the heat sink. Therefore, the transient thermal resistance of the semiconductor device can be reduced, and the temperature rise of the semiconductor element can be reduced.
上記炭素繊維複合材料は、 好ましくはカーボン '銅複合材料からなり、 中間 ヒー卜シンクは銅板からなる。従って、炭素繊維複合材料層全体に熱が伝導され、 半導体素子を良好に冷却することができる。 更に、 中間ヒートシンクを銅板とす ることにより、 半導体装置の過渡熱抵抗を下げることができ、 半導体素子の温度 上昇を小さくすることができる。  The carbon fiber composite material is preferably made of a carbon-copper composite material, and the intermediate heat sink is made of a copper plate. Therefore, heat is conducted to the entire carbon fiber composite material layer, and the semiconductor element can be cooled well. Further, by using a copper plate for the intermediate heat sink, the transient thermal resistance of the semiconductor device can be reduced, and the temperature rise of the semiconductor element can be reduced.
更に、 本発明においては、 半導体素子と、 ヒートシンクと、 前記半導体素子 と前記ヒートシンクとの間に設けられ、 炭素繊維複合材料層を含む積層板と、 を 備えている半導体装置が提供される。 Further, in the present invention, a semiconductor element, a heat sink, and the semiconductor element And a laminate provided between the heat sink and the heat sink, the laminate including a carbon fiber composite material layer.
このように、 積層板に炭素繊維複合材料層を含むようにすれば、 半導体素子 で生じた熱は、 該炭素繊維複合材料全体に熱が伝導され、 かつ積層板を介してヒ 一卜シンクに良好に伝導されて放熱される。  As described above, when the laminate includes the carbon fiber composite material layer, the heat generated in the semiconductor element is transmitted to the entire carbon fiber composite material, and is transmitted to the heat sink via the laminate. Good conduction and heat dissipation.
前記積層板は、 好ましくは、 前記半導体素子で生じた熱を前記炭素繊維複合 材料層の全面に伝導する上部金属板と、 前記上部金属板の熱を板厚方向へ伝える 前記炭素繊維複合材料層と、 前記炭素繊維複合材料層からの熱を蓄積■伝導する 熱バッファ用中間ヒートシンクと、 前記中間ヒー卜シンクの前記炭素繊維複合材 料層との接合面に対して反対側に接合する絶縁体と、 前記絶縁体の前記中間ヒー トシンクとの接合面に対して反対側に接合する下部金属板とから構成される。 従 つて、 半導体素子によって発生した熱は、 半導体素子と炭素繊維複合材料の間の 金属板で面方向にも拡散し、 炭素繊維複合材料全体に熱が伝導され、 半導体素子 を良好に冷却することができる。 また、 積層板には金属板を含むので熱伝導性が 良く、半導体素子により生じた熱は、良好にヒートシンクに伝導することができ、 効率良く放熱される。 図面の簡単な説明  Preferably, the laminated plate is: an upper metal plate that conducts heat generated in the semiconductor element to the entire surface of the carbon fiber composite material layer; and the carbon fiber composite material layer that transmits heat of the upper metal plate in a plate thickness direction. An intermediate heat sink for a heat buffer that accumulates and conducts heat from the carbon fiber composite material layer; and an insulator that is bonded to the intermediate heat sink on a side opposite to a bonding surface with the carbon fiber composite material layer. And a lower metal plate joined on the opposite side to the joint surface of the insulator with the intermediate heat sink. Therefore, the heat generated by the semiconductor element is also diffused in the plane direction by the metal plate between the semiconductor element and the carbon fiber composite material, and the heat is conducted to the entire carbon fiber composite material to cool the semiconductor element well. Can be. Also, since the laminated plate includes a metal plate, it has good thermal conductivity, and the heat generated by the semiconductor element can be well conducted to the heat sink, so that the heat can be efficiently dissipated. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施例に係る半導体装置の断面図である。  FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention.
図 2は、 図 1に示した半導体装置の熱流イメージを示した図である。  FIG. 2 is a diagram showing a heat flow image of the semiconductor device shown in FIG.
図 3は、 電気自動車での加減速を行ったときの速度変化を (a ) で示し、 半 導体素子に流れる電流の時間変化を (b )で示し、半導体素子の温度変化を(c ) で示したグラフである。  Fig. 3 shows the speed change during acceleration / deceleration in an electric vehicle by (a), the time change of the current flowing through the semiconductor element by (b), and the temperature change of the semiconductor element by (c). It is the graph shown.
図 4は、 従来における半導体装置での定常状態における温度と熱輸送量を示 した図であり、 (a ) は半導体装置の熱抵抗を示し、 (b ) は上記半導体装置で の定常状態での各部位の温度を示した図である。  FIGS. 4A and 4B are diagrams showing the temperature and the amount of heat transport in a conventional semiconductor device in a steady state, wherein FIG. 4A shows the thermal resistance of the semiconductor device, and FIG. It is a figure showing the temperature of each part.
図 5は、過渡状態の温度と熱輸送量について説明するための図であり、 (a ) は物質の形状を示し、 (b ) は等価回路を示した図である。  FIG. 5 is a diagram for explaining the temperature and the amount of heat transport in a transient state. FIG. 5 (a) shows the shape of a substance, and FIG. 5 (b) shows an equivalent circuit.
図 6は、 エネルギーと温度差の時間変化を示した図である。 図 7は、 従来における半導体装置の断面図である。 FIG. 6 is a diagram showing a time change of the energy and the temperature difference. FIG. 7 is a cross-sectional view of a conventional semiconductor device.
•発明を実施するための最良の形態 Best mode for carrying out the invention
図 1に示す本実施例の半導体装置 1 0は、 半導体素子 1 1とヒートシンク 1 2の間に設けられた炭素繊維複合材料層 1 3と、 半導体素子 1 1 と炭素繊維複合 材料層 1 3との間に設けられ、 半導体素子 1 1で生じた熱を炭素繊維複合材料層 1 3の全面に伝導する伝熱金属板 (上部金属板) 1 4と、 炭素繊維複合材料層 1 3とヒー卜シンク 1 2の間に設けられた熱バッファ用中間ヒートシンク 1 5とを 含んでいる。 好ましくは、 半導体素子 1 1 とヒー卜シンク 1 2の間に炭素繊維複 合材料層 1 3を含む積層板 1 6を設けて形成される。  The semiconductor device 10 of the present embodiment shown in FIG. 1 includes a carbon fiber composite material layer 13 provided between the semiconductor element 11 and the heat sink 12, a semiconductor element 11 and the carbon fiber composite material layer 13. A heat transfer metal plate (upper metal plate) 14 that conducts the heat generated by the semiconductor element 11 to the entire surface of the carbon fiber composite material layer 13, and heats the carbon fiber composite material layer 13. And a heat buffer intermediate heat sink 15 provided between the sinks 12. Preferably, it is formed by providing a laminate 16 including the carbon fiber composite material layer 13 between the semiconductor element 11 and the heat sink 12.
半導体素子 1 1は、 パワートランジスタ、 パワー F E T、 I G Β Τなどのパ ヮーデバイスであり、 シリコン半導体などで形成されている。 半導体素子 1 1が 動作するときには、 ジュール熱により熱が発生し温度が上昇する。 半導体素子 1 1の温度が上昇するとオン抵抗が増加し、 フィードバック制御などを行っている ときには、 さらに電流を流そうとして電圧をかけると、 ジュール熱が増大し、 温 度がさらに上昇する。 それにより、 半導体素子 1 1の損傷が発生してしまう。 そ れを防ぐために、 半導体装置 1 0には、 ヒートシンク 1 2が設けられている。  The semiconductor element 11 is a power device such as a power transistor, a power FET, or an IGBT, and is formed of a silicon semiconductor or the like. When the semiconductor element 11 operates, heat is generated by Joule heat and the temperature rises. When the temperature of the semiconductor element 11 rises, the on-resistance increases, and when performing feedback control or the like, if a voltage is applied in order to allow more current to flow, Joule heat increases and the temperature further rises. As a result, the semiconductor element 11 is damaged. To prevent this, the semiconductor device 10 is provided with a heat sink 12.
ヒートシンク 1 2は、 熱伝導度の良い銅やアルミニウムなどにより形成され ており、 半導体素子 1 1から発生する熱を放熱するものである。 それにより、 半 導体素子 1 1の温度の上昇を防ぐことができる。 それゆえ、 放熱面積を大きくす るように形成している。  The heat sink 12 is formed of copper, aluminum, or the like having good thermal conductivity, and radiates heat generated from the semiconductor element 11. Thereby, the temperature of semiconductor element 11 can be prevented from rising. Therefore, it is formed to increase the heat radiation area.
積層板 1 6は、 半導体素子 1 1で発生した熱をヒートシンク 1 2まで伝導さ せ放熱するところである。  The laminated plate 16 is where the heat generated in the semiconductor element 11 is conducted to the heat sink 12 and radiated.
この積層板 1 6は、 半導体素子 1 1で生じた熱を炭素繊維複合材料層 1 3の 全面に伝導する上部金属板 1 4と、 その上部金属板 1 4の熱を板厚方向へ伝える 炭素繊維複合材料層 1 3と、 その炭素繊維複合材料層 1 3からの熱を蓄積,伝導 する熱バッファ用中間ヒートシンク 1 5と、 その中間ヒートシンク 1 5の炭素繊 維複合材料層 1 3との接合面の反対側に接合した絶縁体 1 8と、 その絶縁体 1 8 の中間ヒートシンク 1 5との接合面の反対側に接合する下部金属板 1 9からなつ ている。 The laminated plate 16 is composed of an upper metal plate 14 that conducts heat generated by the semiconductor element 11 to the entire surface of the carbon fiber composite material layer 13 and a carbon plate that transfers heat of the upper metal plate 14 in the thickness direction. Bonding of the fiber composite material layer 13, the heat buffer intermediate heat sink 15 for storing and conducting heat from the carbon fiber composite material layer 13, and the carbon fiber composite material layer 13 of the intermediate heat sink 15 An insulator 18 joined to the opposite side of the surface, and a lower metal plate 19 joined to the opposite side of the joint between the insulator 18 and the intermediate heat sink 15 ing.
上部金属板 1 4の半導体素子 1 1を接合する側の面には表面に N iメツキ 2 0を施してある。 N i メツキ 2 0は、 半導体素子のろう付け性やワイヤポンド性 を確保するためのものである。 金属板 1 4は、 半導体素子 1 1のろう付け性ゃヮ ィャボンド性を確保し、 また、 熱を面方向へ拡散するためのものである。 そのた めに、 比較的薄いが熱伝導度の高い銅板などを用いる。  On the surface of the upper metal plate 14 on the side where the semiconductor element 11 is bonded, Ni plating 20 is applied to the surface. The Ni plating 20 is for securing the brazing property and the wire pounding property of the semiconductor element. The metal plate 14 is for ensuring the brazing property and the bonding property of the semiconductor element 11 and for diffusing heat in the plane direction. For this purpose, a relatively thin copper plate with high thermal conductivity is used.
炭素繊維複合材料層 1 3は、 半導体素子 1 1で発生し、 上部金属板 1 4の面 方向に拡散した熱をヒー卜シンク方向に迅速に伝達する。 更に、 炭素繊維複合材 料層 1 3は、 半導体素子 1 1で発生する熱による、 半導体素子 1 1の熱膨張と積 層板の各層の熱膨張と、 ヒートシンクの熱膨張の差による熱応力を緩和する。 そ のために、 積層面方向の弾性定数が小さい材料を用い、 例えば、 カーボン '銅複 合材料等の炭素繊維複合材料を用いる。 炭素繊維複合材料は、 個々の炭素繊維が 厚さ方向に配列され、 その繊維間には、 銅やアルミニウムなどの金属材料が含有 されている。 この炭素繊維複合材料は、 厚さ方向 (縦方向) の熱伝導率が面方向 (横方向) の熱伝導率よりも高いという特性を持つ。  The carbon fiber composite material layer 13 quickly transmits heat generated in the semiconductor element 11 and diffused in the surface direction of the upper metal plate 14 to the heat sink direction. Further, the carbon fiber composite material layer 13 reduces the thermal stress caused by the difference between the thermal expansion of the semiconductor element 11, the thermal expansion of each layer of the laminated plate, and the thermal expansion of the heat sink due to heat generated in the semiconductor element 11. ease. For this purpose, a material having a small elastic constant in the laminating plane direction is used, for example, a carbon fiber composite material such as a carbon-copper composite material is used. In the carbon fiber composite material, individual carbon fibers are arranged in the thickness direction, and a metal material such as copper or aluminum is contained between the fibers. This carbon fiber composite material has the property that the thermal conductivity in the thickness direction (longitudinal direction) is higher than the thermal conductivity in the plane direction (lateral direction).
中間ヒートシンク 1 5は、 半導体素子 1 1で発生し、 上部金属板 1 4と炭素 繊維複合材料層 1 3を通して伝導する熱を一時的に溜め、 下面に接合した絶縁体 1 8と下部金属板 1 9を介してヒートシンク 1 2に熱を伝導する。 このため、 比 較的厚く、 熱伝導度の高い銅板などを用いる。  The intermediate heat sink 15 temporarily stores heat generated in the semiconductor element 11 and conducted through the upper metal plate 14 and the carbon fiber composite material layer 13, and the insulator 18 bonded to the lower surface and the lower metal plate 1 Conduct heat to the heat sink 1 through 9. For this reason, a relatively thick copper plate with high thermal conductivity is used.
絶縁板 1 8は、 半導体素子 1 1 とヒートシンク 1 2の電気的絶縁をとるため のものである。 そのため、 S i Nなどの熱伝導性が良く、 電気的絶縁性を有する 物質を用いる。  The insulating plate 18 is for electrically insulating the semiconductor element 11 and the heat sink 12. Therefore, a substance having good thermal conductivity and electrical insulation such as SiN is used.
下部金属板 1 9は、 上部の積層構造を支持するためのものであり、 また、 ヒ ートシンク 1 2に半導体素子 1 1からの熱を伝導するためのものである。 そのた めに、 熱伝導性が良く、 また、 強固のものである銅板などを用いる。  The lower metal plate 19 is for supporting the laminated structure on the upper side, and is for conducting heat from the semiconductor element 11 to the heat sink 12. For this purpose, use a copper plate that has good thermal conductivity and is strong.
ヒートシンク 1 2は、 半導体素子 1 1で発生し、 上部の積層構造を伝導して きた熱を放散するためのものであり、 空気との接触面積を大きくする構造として おり、 銅やアルミニウムなどから形成されている。  The heat sink 12 is for dissipating the heat generated by the semiconductor element 11 and conducted through the upper laminated structure, and has a structure that increases the contact area with air, and is formed of copper, aluminum, or the like. Have been.
なお、 これらの板材は、 M gの粉をまぶした T i一 C u箔を挟み、 N 2の雰 囲気中で加圧の上、 ァニールすることによって接合してもよい。 Incidentally, these plate members are sandwiched T i one C u foil dusted powder M g, of N 2 Kiri Bonding may be performed by applying pressure and annealing in an atmosphere.
次に、 本実施例に係る半導体装置 1 0の作用を説明する。  Next, the operation of the semiconductor device 10 according to the present embodiment will be described.
半導体装置 1 0の半導体素子 1 1の動作中に発生する熱は、 上部金属板 1 4 に伝導し、 また、 上部金属板 1 4は熱伝導性が良いので、 上部金属板 1 4の面方 向にも広がり伝導する。 また、 上部金属板 1 4の温度も上昇する。 それにより、 温度発生前より熱膨張する。  The heat generated during the operation of the semiconductor element 11 of the semiconductor device 10 is conducted to the upper metal plate 14, and the upper metal plate 14 has good thermal conductivity. It also spreads in the direction and conducts. Further, the temperature of the upper metal plate 14 also increases. Thereby, thermal expansion occurs before the temperature is generated.
上部金属板 1 4内に伝導した熱は、 炭素繊維複合材料層 1 3に伝導し、 炭素 繊維複合材料層 1 3も温度上昇する。 炭素繊維複合材料層 1 3に伝導した熱は、 中間ヒートシンク 1 5に伝導し、 中間ヒートシンク 1 5の温度が上昇し、 熱膨張 する。  The heat conducted in the upper metal plate 14 is conducted to the carbon fiber composite material layer 13 and the temperature of the carbon fiber composite material layer 13 also rises. The heat conducted to the carbon fiber composite material layer 13 is conducted to the intermediate heat sink 15, the temperature of the intermediate heat sink 15 rises, and the intermediate heat sink 15 expands.
中間ヒートシンク 1 5に伝導した熱は、 絶縁体 1 8と下部金属板 1 9を伝導 し、 ヒートシンク 1 2まで伝導し、 ヒートシンク 1 2により、 放散し、 それによ リ、 半導体素子 1 1の熱は、 放散し、 温度上昇の量を少なくすることができる。  The heat conducted to the intermediate heat sink 15 is conducted to the insulator 18 and the lower metal plate 19, conducted to the heat sink 12, and dissipated by the heat sink 12, so that the heat of the semiconductor element 11 is Dissipates and reduces the amount of temperature rise.
図 2は、 半導体装置 1 0の熱の伝動を示している。  FIG. 2 shows heat transmission of the semiconductor device 10.
このとき、 半導体素子 1 1、 上部金属板 1 4、 炭素繊維複合材料層 1 3、 中 間ヒートシンク 1 5、絶縁板 1 8、下部金属板 1 9、 ヒートシンク 1 2の温度は、 半導体素子 1 1が発熱する前よりも高温になる。 これにより、 各層はそれぞれの 物質の熱膨張係数で熱膨張しょうとする。 そのとき、 熱応力が発生する。 面方向 で弾性係数が小さいカーボン■銅複合材料等からなる炭素繊維複合材料層 1 3に より、 その熱応力が緩和され、 半導体装置 1 0に発生する熱応力が低減され、 反 リを低減することができる。  At this time, the temperatures of the semiconductor element 11, the upper metal plate 14, the carbon fiber composite material layer 13, the intermediate heat sink 15, the insulating plate 18, the lower metal plate 19, and the heat sink 12 are as follows. Is hotter than before it generates heat. This causes each layer to expand thermally with the thermal expansion coefficient of the respective material. At that time, thermal stress occurs. The carbon fiber composite material layer 13 made of a carbon-copper composite material or the like having a small elastic coefficient in the plane direction alleviates the thermal stress, reduces the thermal stress generated in the semiconductor device 10 and reduces warpage. be able to.
半導体素子 1 1の下方に中間ヒートシンク 1 5を配置することで、 半導体装 置 1 0の過渡熱抵抗を下げて半導体素子 1 1の温度上昇を小さくすることができ る。 さらに、 この半導体装置 1 0を用いた電気自動車が走行する際、 該半導体素 子 1 1を用いたパワーモジュールの信頼性を向上することができる。 また、 信頼 性と卜レードォフでチップサイズを下げることにより小型化とコストダウン化が 図れる。  By disposing the intermediate heat sink 15 below the semiconductor element 11, the transient thermal resistance of the semiconductor apparatus 10 can be reduced, and the temperature rise of the semiconductor element 11 can be reduced. Further, when an electric vehicle using the semiconductor device 10 travels, the reliability of a power module using the semiconductor device 11 can be improved. Also, by reducing the chip size with reliability and tradeoff, miniaturization and cost reduction can be achieved.
例えば、 図 3で示すような電気自動車での加減速を行った場合を考える。 図 3 ( a ) において横軸は時間を示し、 縦軸は速度を示し、 加速減速を繰り返し行 つたとする。 図 3 (b) は、 そのときの半導体素子に流れる電流の時間変化を示 す。 加速時に急激に電流が流れ、 減速時には、 逆方向に急激に電流が流れる。 図 3 (c) は、 そのときの半導体素子の温度変化を示す。 曲線 C 1 0は図 7で示し た従来の半導体装置 1 00での半導体素子 1 01の温度変化であり、 曲線 C 1 1 は、 本発明に係る半導体装置 1 0での半導体素子 1 1の温度変化を示す。 For example, consider the case where acceleration and deceleration are performed in an electric vehicle as shown in FIG. In Fig. 3 (a), the horizontal axis represents time, the vertical axis represents speed, and acceleration and deceleration are repeated. Let's hang. FIG. 3 (b) shows the time change of the current flowing through the semiconductor element at that time. During acceleration, current flows rapidly, and during deceleration, current flows rapidly in the opposite direction. FIG. 3 (c) shows the temperature change of the semiconductor element at that time. A curve C 10 is a temperature change of the semiconductor element 101 in the conventional semiconductor device 100 shown in FIG. 7, and a curve C 11 is a temperature change of the semiconductor element 11 in the semiconductor device 10 according to the present invention. Indicates a change.
図 3 (c) に示すように、 本発明での半導体装置 1 0での半導体素子 1 1の 温度上昇は、 従来のものに比べて低減しており、 温度ストレスが少なくなつてい ることが分かる。 それゆえ、 信頼性が向上し、 通常の半導体素子を用いた場合、 温度が 1 50°Cを越えなければ、 通常 I GBTは瞬間的に従来のものに比べて、 1. 5〜2倍の電流を流すことができる。 これにより、 チップサイズを小さくす ることができ、 コストダウン化を図ることができる。  As shown in FIG. 3 (c), the temperature rise of the semiconductor element 11 in the semiconductor device 10 according to the present invention is smaller than that of the conventional device, and it can be seen that the temperature stress is reduced. . Therefore, when the reliability is improved and the temperature does not exceed 150 ° C when using a normal semiconductor device, the IGBT is typically 1.5 to 2 times faster than the conventional one if the temperature does not exceed 150 ° C. A current can flow. As a result, the chip size can be reduced, and the cost can be reduced.
次に、 本発明に係る半導体装置の動作原理に代えて、 図 4において、 図 7に 示した従来の半導体装置での動作原理について説明する。  Next, instead of the operation principle of the semiconductor device according to the present invention, the operation principle of the conventional semiconductor device shown in FIG. 7 will be described with reference to FIG.
図 4は、 図 7で示した従来の半導体装置 1 00での定常状態における温度と 熱輸送量を示す図であり、 各部位での温度を示す。 図 4 (a) は半導体装置 1 0 0の熱抵抗を示している。 R 1は半導体素子 1 01 と絶縁基板 1 03の接合部で の熱抵抗である。 R 1 2は絶縁基板 1 03での熱抵抗である。 R 2は絶縁基板(絶 縁板) 1 03と銅ベース (金属板) 1 04の接合部での熱抵抗である。 R23は 銅ベース 1 04の熱抵抗である。 R 3は銅ベース 1 04とヒートシンク 1 02の 接合部での熱抵抗である。 R 3 Gはヒートシンク 1 02の熱抵抗である。 R4G はヒートシンク 1 02と空気との接触部での熱抵抗である。  FIG. 4 is a diagram showing a temperature and a heat transport amount in a steady state in the conventional semiconductor device 100 shown in FIG. 7, and shows the temperature at each part. FIG. 4A shows the thermal resistance of the semiconductor device 100. R1 is the thermal resistance at the junction between the semiconductor element 101 and the insulating substrate 103. R 12 is the thermal resistance of the insulating substrate 103. R2 is the thermal resistance at the junction between the insulating substrate (insulated plate) 103 and the copper base (metal plate) 104. R23 is the thermal resistance of the copper base 104. R3 is the thermal resistance at the junction between the copper base 104 and the heat sink 102. R 3 G is the thermal resistance of the heat sink 102. R4G is the thermal resistance at the contact between the heat sink 102 and the air.
図 4 (b) は、 上記半導体装置 1 00での定常状態での各部位の温度を示し ている。 半導体素子 1 01が動作し、 温度 T 1 = 1 50°Cのとき、 熱抵抗 R 1に より、 絶縁基板 1 03の上面では温度 T 1 2となり、 熱抵抗 R 1 2により、 絶縁 基板 1 03の下面では上面との温度差が大きくなリ、 温度 T 2となる。  FIG. 4B shows the temperature of each part in the semiconductor device 100 in a steady state. When the semiconductor element 101 operates and the temperature T 1 = 150 ° C, the thermal resistance R 1 causes the temperature T 12 on the upper surface of the insulating substrate 103 and the thermal resistance R 12 causes the insulating substrate 103 The temperature difference between the lower surface and the upper surface is large, and the temperature becomes T2.
熱抵抗 R 2により、 銅ベース 1 04の上面では、 温度 T 23となり、 銅べ一 ス 1 04の下面では温度 T 3となる。  Due to the thermal resistance R 2, the temperature becomes T 23 on the upper surface of the copper base 104 and the temperature T 3 on the lower surface of the copper base 104.
熱抵抗 R 3により、 ヒートシンク 1 02の上面では、 温度 T 34になり、 熱 抵抗 R 3 Gによりヒートシンク 1 02の下面では温度 T 4になる。 熱抵抗 R 4 Gにより、 ヒートシンク 1 02の直下の空気は温度 T 4 G = T G となる。 Due to the thermal resistance R 3, the temperature becomes T 34 on the upper surface of the heat sink 102, and the thermal resistance R 3 G becomes the temperature T 4 on the lower surface of the heat sink 102. Due to the thermal resistance R 4 G, the temperature immediately below the heat sink 102 becomes T 4 G = TG.
温度は、 式 (1 ) に示すように熱抵抗と熱輸送量とにより求められる。  The temperature is determined from the thermal resistance and the heat transport rate as shown in equation (1).
熱輸送量は、式 (2) に示すように、温度差と熱抵抗、 あるいは、熱伝導率、 断面積及び温度差、 並びに長さ又は厚みによリ求められる。  The amount of heat transport can be obtained from the temperature difference and thermal resistance, or the thermal conductivity, cross-sectional area and temperature difference, and the length or thickness, as shown in equation (2).
[温度(°C) ] = [熱抵抗(°C/W) ] X [熱輸送量(W) ] ■■■' ( 1 ) [Temperature (° C)] = [Thermal resistance (° C / W)] X [Heat transport (W)] ■■■ '(1)
[温度差 (°0 ] [Temperature difference (° 0)
[熱輸送 J  [Heat transport J
[熱抵抗 (°c/w) ]  [Thermal resistance (° c / w)]
[熱伝導率 (W/m°C) ] X [断面積 (m2 ) ] X [温度差 (°C) ] [Thermal conductivity (W / m ° C)] X [Cross-sectional area (m 2 )] X [Temperature difference (° C)]
2) [長さまたは厚み (m)] このように、 定常状態で半導体素子の温度上昇を小さくするためには、 熱伝 導率を高める。 熱伝達の面積を増やし、 かつ薄くする。 温度差を大きくする。 熱 輸送量を少なくする必要があることが分かる。  2) [Length or thickness (m)] As described above, in order to reduce the temperature rise of the semiconductor element in a steady state, the thermal conductivity is increased. Increase and reduce heat transfer area. Increase the temperature difference. It is clear that it is necessary to reduce the amount of heat transport.
次に、 過渡状態の温度と熱輸送量について説明する。 図 5 (a) は、 物質の 形状を示し、 図 5 (b) は、 その等価回路を示す。 物質の熱伝導率を λ (WZm - K)、 密度を p (g/m3)、 定圧比熱を C p (JZg ' K)、 幅 b (m)、 高さ h (m)、 厚さ t (m) とすると、 熱抵抗 R (KZW) は式 (3) で表され、 熱 容量 C ( J/K) は式 (4) で表され、 熱拡散率 aは式 (5) で表される。 この とき、 熱輸送量と温度は、 それぞれ、 式 (6)、 及び (フ) で表される。 Next, the transient temperature and the heat transport amount will be described. Fig. 5 (a) shows the shape of the substance, and Fig. 5 (b) shows its equivalent circuit. The thermal conductivity of the material is λ (WZm-K), the density is p (g / m 3 ), the specific heat at constant pressure is C p (JZg'K), the width b (m), the height h (m), and the thickness t (m), the thermal resistance R (KZW) is expressed by equation (3), the heat capacity C (J / K) is expressed by equation (4), and the thermal diffusivity a is expressed by equation (5). You. At this time, the amount of heat transport and the temperature are expressed by equations (6) and (f), respectively.
C = Cp- 'b'h't ( 4
Figure imgf000012_0001
C = Cp- 'b'h't (4
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0002
Δ Τ二 Wi。 - R (1—e GR Δ Τ 二 Wi. -R (1—e GR
図 6は、 エネルギーと温度差の時間変化を示す。 式 (6 ) 中の W i Rは、 時間 が経つにつれて増加し、 W i。は、 時間が経つにつれて減少する。 式 (7 ) で示す 温度差 Δ Τは時間が経つにつれて増加する。 W i cは、 結晶格子と自由電子の運 動エネルギーや電子の遷移エネルギーとして蓄積される。 本発明では、 中間ヒー 卜シンクを用いたことで、 温度上昇速度が小さくなる。 Figure 6 shows the change over time in energy and temperature difference. W i R in equation (6) increases over time, and W i. Decreases over time. The temperature difference ΔΤ shown in equation (7) increases with time. Wic is accumulated as the kinetic energy of the crystal lattice and free electrons and the transition energy of electrons. In the present invention, the use of the intermediate heat sink reduces the rate of temperature rise.
式 (7 ) から、 過渡状態で温度上昇を遅らせるためには、 熱抵抗を大きくす る。 更に、 式 (5 ) により密度、 比熱、 体積を高める。 特に厚みを増やす必要が あることが分かる。  From Eq. (7), to delay the temperature rise in the transient state, increase the thermal resistance. Further, the density, specific heat and volume are increased by the equation (5). In particular, it is necessary to increase the thickness.
温度上昇を小さくするには、 熱伝導率及び熱伝達面積を大きくし、 熱伝達部 を薄くすることによリ熱抵抗を小さくし、 また、 冷却能力を高めることによリ温 度差を大きくすることができる。  To reduce the temperature rise, increase the thermal conductivity and heat transfer area, reduce the heat resistance by reducing the heat transfer section, and increase the temperature difference by increasing the cooling capacity. can do.
温度上昇を遅らせるには、 熱伝導率及び熱伝達面積を小さくすることにより 熱抵抗を大きくし、 密度■比熱を大きくし、 熱伝達部を厚くすることによリ熱容 量を大きくすれば'よい。 これらの条件により材料選定、 材料 '組み合わせ、 構造 設計、 最適設計を行った。  To delay the temperature rise, increase the thermal resistance by reducing the thermal conductivity and heat transfer area, increase the density / specific heat, and increase the heat capacity by increasing the thickness of the heat transfer section. Good. Under these conditions, material selection, material combination, structural design, and optimal design were performed.
上記の考察に従って、 構造の理論的検討と適正な材料と厚みについて、 実験 計画法により決定した。  Based on the above considerations, a theoretical study of the structure and an appropriate material and thickness were determined by experimental design.
その結果、適当な厚さのカーボン■銅複合材料を中間層として設けることで、 積層板は、 上部金属板 1 4の厚さと中間ヒートシンク 1 5の厚さと下部金属板 1 9の厚さを調整することで反りを少なくすることができることが分かった。 この ように、 炭素繊維複合材料層を熱応力を緩和する中間層として半導体素子とヒー トシンクの間に設けたことで、 半導体装置の熱による反りを低減することができ る。 As a result, by providing a carbon-copper composite material of appropriate thickness as an intermediate layer, It has been found that warpage can be reduced by adjusting the thickness of the upper metal plate 14, the thickness of the intermediate heat sink 15 and the thickness of the lower metal plate 19 in the laminate. By providing the carbon fiber composite material layer as an intermediate layer for relaxing thermal stress between the semiconductor element and the heat sink, warpage of the semiconductor device due to heat can be reduced.
産業上の利用可能性  Industrial applicability
本発明に係る半導体装置は、 半導体素子で発生した熱を効率良くヒー卜シン クに伝えて半導体素子を効果的に冷却することができ、 パワーデバイスを必要と する産業界に有用である。  INDUSTRIAL APPLICABILITY The semiconductor device according to the present invention can efficiently transmit heat generated in a semiconductor element to a heat sink to effectively cool the semiconductor element, and is useful for industries requiring a power device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体素子と ; 1. a semiconductor device;
ヒートシンクと ;  Heat sink;
前記半導体素子と前記ヒートシークとの間に設けられた炭素繊維複合材料層 前記半導体素子と前記炭素繊維複合材料層との間に設けられ、 前記半導体素 子で生じた熱を前記炭素繊維複合材料層の全面に伝導する伝熱金属板と ; を備えている半導体装置。  A carbon fiber composite material layer provided between the semiconductor element and the heat seek; a carbon fiber composite material layer provided between the semiconductor element and the carbon fiber composite material layer; A heat transfer metal plate that conducts over the entire surface of the layer.
2 . 前記炭素繊維複合材料層と前記ヒー卜シンクとの間に熱バッファ用中間ヒー トシンクを更に設けたことを特徴とする請求項 1に記載の半導体装置。 2. The semiconductor device according to claim 1, further comprising an intermediate heat sink for heat buffer provided between the carbon fiber composite material layer and the heat sink.
3 . 前記炭素繊維複合材料層はカーボン■銅複合材料からなり、 前記中間ヒート シンクは銅板からなることを特徴とする請求項 2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the carbon fiber composite material layer is made of a carbon-copper composite material, and the intermediate heat sink is made of a copper plate.
4 . 半導体素子と ; 4. semiconductor devices;
ヒートシンクと ;  Heat sink;
前記半導体素子と前記ヒートシンクとの間に設けられ、 炭素繊維複合材料層 を含む積層板と ;  A laminate provided between the semiconductor element and the heat sink, the laminate including a carbon fiber composite material layer;
を備えている半導体装置。 A semiconductor device comprising:
5 . 前記積層板は、 5. The laminate is
前記半導体素子で生じた熱を前記炭素繊維複合材料層の全面に伝導する上部 金属板と ;  An upper metal plate that conducts heat generated by the semiconductor element to the entire surface of the carbon fiber composite material layer;
前記上部金属板の熱を板厚方向へ伝える前記炭素繊維複合材料層と ; 前記炭素繊維複合材料層からの熱を蓄積■伝導する熱バッファ用中間ヒート シンクと ;  The carbon fiber composite material layer for transmitting the heat of the upper metal plate in the thickness direction; an intermediate heat sink for a heat buffer for accumulating and conducting heat from the carbon fiber composite material layer;
前記中間ヒートシンクの前記炭素繊維複合材料層との接合面に対して反対側 に接合する絶縁体と ; Opposite to the bonding surface of the intermediate heat sink with the carbon fiber composite material layer An insulator to be bonded to;
前記絶縁体の前記中間ヒートシンクとの接合面に対して反対側に接合する下 部金属板と :  A lower metal plate joined to a side opposite to a joining surface of the insulator with the intermediate heat sink;
から成ることを特徴とする請求項 4に記載の半導体装置。 5. The semiconductor device according to claim 4, comprising:
6 . 前記炭素繊維複合材料は力一ボン '銅複合材料からなり、 前記中間ヒートシ ンクは銅板からなることを特徴とする請求項 5に記載の半導体装置。 6. The semiconductor device according to claim 5, wherein the carbon fiber composite material is made of a copper composite material, and the intermediate heat sink is made of a copper plate.
PCT/JP2004/005948 2003-06-10 2004-04-23 Semiconductor device WO2004112131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-165605 2003-06-10
JP2003165605A JP2005005400A (en) 2003-06-10 2003-06-10 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2004112131A1 true WO2004112131A1 (en) 2004-12-23

Family

ID=33549219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005948 WO2004112131A1 (en) 2003-06-10 2004-04-23 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2005005400A (en)
WO (1) WO2004112131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012104593A1 (en) 2012-05-29 2013-12-05 Sma Solar Technology Ag Semiconductor device has heat distribution plate which is comprised of solder layer comprising material with smaller modulus of elasticity than material of copper layer
US9390999B2 (en) 2005-03-23 2016-07-12 Noriaki Kawamura Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042124A (en) * 2006-08-10 2008-02-21 Fuji Electric Holdings Co Ltd Semiconductor power module
JP2009004666A (en) * 2007-06-25 2009-01-08 Hitachi Ltd Power semiconductor module, and manufacturing method thereof
JP2010267663A (en) * 2009-05-12 2010-11-25 Toyota Motor Corp Method of manufacturing power module, power module manufactured by the method, and power module manufacturing device
JP5759191B2 (en) * 2010-01-29 2015-08-05 日東電工株式会社 Power module
JP5699442B2 (en) * 2010-04-07 2015-04-08 三菱マテリアル株式会社 Power module substrate and power module
JP5659542B2 (en) * 2010-04-07 2015-01-28 三菱マテリアル株式会社 Insulating substrate and power module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175378A (en) * 1991-12-26 1993-07-13 Hitachi Ltd Semiconductor device
JPH09298260A (en) * 1996-05-01 1997-11-18 Tonen Corp Heat radiation plate
JP2002222887A (en) * 2001-01-26 2002-08-09 Kyocera Corp Package for storing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175378A (en) * 1991-12-26 1993-07-13 Hitachi Ltd Semiconductor device
JPH09298260A (en) * 1996-05-01 1997-11-18 Tonen Corp Heat radiation plate
JP2002222887A (en) * 2001-01-26 2002-08-09 Kyocera Corp Package for storing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390999B2 (en) 2005-03-23 2016-07-12 Noriaki Kawamura Metal substrate/metal impregnated carbon composite material structure and method for manufacturing said structure
DE102012104593A1 (en) 2012-05-29 2013-12-05 Sma Solar Technology Ag Semiconductor device has heat distribution plate which is comprised of solder layer comprising material with smaller modulus of elasticity than material of copper layer

Also Published As

Publication number Publication date
JP2005005400A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4617209B2 (en) Heat dissipation device
EP2139036B1 (en) Semiconductor device
TWI305064B (en) Thermoelectric module
US20100187680A1 (en) Heat radiator
WO2007145303A1 (en) Semiconductor module and method for manufacturing same
JP2004079883A (en) Thermoelement
JP2008060172A (en) Semiconductor device
JP2006294971A (en) Substrate for power module and its production process
US20160316589A1 (en) Semiconductor assembly
JP2007081200A (en) Insulated circuit board with cooling sink section
JP4180980B2 (en) Semiconductor device
WO2008075409A1 (en) Base for power module, method for producing base for power module and power module
CN110098153B (en) Power electronic module and method of manufacturing a power electronic module
WO2004112131A1 (en) Semiconductor device
CN111615746A (en) Power electronic module and method of manufacturing a power electronic module
JP2002064168A (en) Cooling device, manufacturing method of cooling device, and semiconductor device
JP2019021864A (en) Power module
JP2009266983A (en) Heat dissipation structure and manufacturing method therefor, and heat radiator using heat-dissipating structure
JP2016134601A (en) Semiconductor device
JP4747284B2 (en) Insulated circuit board with cooling sink
JP4158648B2 (en) Semiconductor cooling unit
JP7261602B2 (en) Semiconductor device and power conversion device
JP7205214B2 (en) Insulated circuit board with heat sink
JP5320354B2 (en) Heat dissipation device
JP4786302B2 (en) Power module base manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase