JP4786302B2 - Power module base manufacturing method - Google Patents
Power module base manufacturing method Download PDFInfo
- Publication number
- JP4786302B2 JP4786302B2 JP2005317950A JP2005317950A JP4786302B2 JP 4786302 B2 JP4786302 B2 JP 4786302B2 JP 2005317950 A JP2005317950 A JP 2005317950A JP 2005317950 A JP2005317950 A JP 2005317950A JP 4786302 B2 JP4786302 B2 JP 4786302B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- substrate
- power module
- heat dissipating
- forming member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
この発明は、パワーモジュールを構成するパワーモジュール用ベースの製造方法に関する。 The present invention relates to a method for manufacturing a power module base constituting a power module.
この明細書および特許請求の範囲において、「アルミニウム」という用語には、「窒化アルミニウム」、「酸化アルミニウム」および「純アルミニウム」と表現する場合を除いて、純アルミニウムの他にアルミニウム合金を含むものとする。 In this specification and claims, the term “aluminum” includes aluminum alloys in addition to pure aluminum, except where expressed as “aluminum nitride”, “aluminum oxide” and “pure aluminum”. .
たとえばIGBT(Insulated Gate Bipolar Transistor)などの半導体素子からなるパワーデバイスを備えたパワーモジュールにおいては、半導体素子から発せられる熱を効率良く放熱して、半導体素子の温度を所定温度以下に保つ必要がある。 For example, in a power module equipped with a power device composed of a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor), it is necessary to efficiently dissipate heat generated from the semiconductor element to keep the temperature of the semiconductor element below a predetermined temperature. .
そこで、従来、一面に配線層が形成されるとともに、他面に伝熱層が形成されたセラミックス製絶縁基板と、絶縁基板の伝熱層に接合されたアルミニウム製放熱基板と、放熱基板における絶縁基板に接合された側と反対側の面にろう付されたアルミニウム製放熱フィンとを備えたパワーモジュール用ベースが用いられていた。このようなパワーモジュール用ベースは、絶縁基板、放熱基板および放熱フィンを一括してろう付することにより製造される。 Therefore, conventionally, a ceramic insulating substrate having a wiring layer formed on one surface and a heat transfer layer formed on the other surface, an aluminum heat dissipation substrate bonded to the heat transfer layer of the insulating substrate, and insulation in the heat dissipation substrate There has been used a power module base including an aluminum heat dissipating fin brazed to a surface opposite to the side bonded to the substrate. Such a power module base is manufactured by brazing together an insulating substrate, a heat dissipation substrate and a heat dissipation fin.
しかしながら、上述した方法でパワーモジュール用ベースを製造するにあたっては、ろう付の際の加熱時に絶縁基板、放熱基板および放熱フィンが熱膨張するとともに熱膨張した状態でろう付され、加熱終了後絶縁基板、放熱基板および放熱フィンが熱収縮する。ところが、放熱基板および放熱フィンの線膨張係数が、絶縁基板の線膨張係数よりも大きいので、放熱基板および放熱フィンの熱膨張の度合は絶縁基板よりも大きく、その結果放熱基板および放熱フィンの熱収縮の度合も絶縁基板よりも大きくなる。このため、何も対策を講じなければ、ろう付終了後常温まで冷却された際に絶縁基板、放熱基板および放熱フィンが熱収縮した場合、収縮の度合が絶縁基板よりも放熱基板および放熱フィンの方が大きくなって、放熱基板における絶縁基板にろう付された面が絶縁基板により拘束され、これにより放熱基板が反る。 However, when the power module base is manufactured by the above-described method, the insulating substrate, the heat radiating substrate, and the heat radiating fins are thermally expanded and brazed in the state of thermal expansion during heating at the time of brazing. The heat radiating substrate and the heat radiating fins are thermally contracted. However, since the linear expansion coefficient of the heat radiating board and the heat radiating fin is larger than that of the insulating board, the degree of thermal expansion of the heat radiating board and the radiating fin is larger than that of the insulating board. The degree of shrinkage is also larger than that of the insulating substrate. Therefore, if no measures are taken, when the insulation substrate, heat dissipation substrate and heat dissipation fins are thermally contracted when cooled to room temperature after brazing is completed, the degree of contraction is less than that of the insulation substrate. The surface of the heat radiating substrate brazed to the insulating substrate is restrained by the insulating substrate, which causes the heat radiating substrate to warp.
そこで、放熱基板が、アルミニウム、銅などの高熱伝導性材料からなる1対の板状基板本体と、両基板体本体間に介在させられたインバー合金などの低熱膨張材とよりなるパワーモジュール用ベースが提案されている(特許文献1参照)。 Therefore, the power module base is composed of a pair of plate-like substrate bodies made of a highly thermally conductive material such as aluminum or copper, and a low thermal expansion material such as an invar alloy interposed between both substrate body bodies. Has been proposed (see Patent Document 1).
特許文献1記載のパワーモジュール用ベースによれば、放熱基板の線膨張係数が比較的小さくなり、その結果製造時に、上述した放熱基板の反りが発生することが抑制されるようになっている。
According to the power module base described in
しかしながら、特許文献1記載の放熱装置においては、高熱伝導性材料と低熱膨張材とからなる放熱基板を用いる必要があるので、材料コストが高くなるという問題がある。
この発明の目的は、上記問題を解決し、放熱基板に反りが発生することなく、しかも簡単かつ安価にパワーモジュール用ベースを製造しうる方法を提供することにある。 An object of the present invention is to solve the above problems and provide a method capable of manufacturing a power module base easily and inexpensively without causing warpage of a heat dissipation substrate.
本発明は、上記目的を達成するために以下の態様からなる。 In order to achieve the above object, the present invention comprises the following aspects.
1)高熱伝導性材料からなる放熱基板と、放熱基板の一面に接合された絶縁基板と、絶縁基板における放熱基板に接合された側と反対側の面に設けられた配線層と、高熱伝導性材料からなりかつ放熱基板の他面に接合された放熱フィンとを備えたパワーモジュール用ベースを製造する方法であって、
高熱伝導性材料からなる放熱フィン形成部材を挟んで2枚の放熱基板を配置し、放熱基板における放熱フィン形成部材側を向いた面とは反対側の面に、絶縁基板を、配線層が放熱基板とは反対側を向くように積層し、さらに放熱フィン形成部材よりも外側の部分において、両放熱基板間に補助反り防止部材を配置しておき、この状態で、放熱基板と補助反り防止部材とがろう付されないように、放熱フィン形成部材と両放熱基板、および両放熱基板と両絶縁基板とをそれぞれ同時にろう付することを含むパワーモジュール用ベースの製造方法。
1) A heat dissipation substrate made of a highly heat conductive material, an insulating substrate bonded to one surface of the heat dissipation substrate, a wiring layer provided on a surface of the insulating substrate opposite to the side bonded to the heat dissipation substrate, and a high heat conductivity A method for manufacturing a power module base comprising a material and a heat dissipation fin joined to the other surface of the heat dissipation substrate,
Two heat dissipating boards are arranged with a heat dissipating fin forming member made of a highly heat conductive material in between. The insulating substrate is disposed on the surface of the heat dissipating substrate opposite to the surface facing the heat dissipating fin forming member, and the wiring layer dissipates heat. Laminate so as to face the opposite side of the substrate, and further arrange an auxiliary warp preventing member between the heat radiating substrates in the portion outside the heat radiating fin forming member, and in this state, the heat radiating substrate and the auxiliary warp preventing member A method for manufacturing a base for a power module, which includes brazing the heat dissipating fin forming member and both heat dissipating substrates, and both the heat dissipating substrates and both insulating substrates at the same time so as not to be brazed.
2)放熱フィン形成部材が、波頂部、波底部および波頂部と波底部とを連結する連結部とからなるコルゲート状である上記1)記載のパワーモジュール用ベースの製造方法。 2) The method for producing a power module base according to 1) above, wherein the radiating fin forming member has a corrugated shape including a wave crest part, a wave bottom part, and a connecting part that connects the wave crest part and the wave bottom part.
3)2枚の放熱基板の材質、大きさおよび厚みが同じである上記1)または2)記載のパワーモジュール用ベースの製造方法。 3) The method for producing a base for a power module as described in 1) or 2) above, wherein the material, size and thickness of the two heat dissipation substrates are the same.
4)2枚の絶縁基板の材質、大きさおよび厚みが同じである上記1)〜3)のうちのいずれかに記載のパワーモジュール用ベースの製造方法。 4) The method for manufacturing a base for a power module according to any one of 1) to 3) above, wherein the materials, sizes, and thicknesses of the two insulating substrates are the same.
5)絶縁基板が、セラミックスにより形成されており、当該セラミックスが窒化アルミニウム、酸化アルミニウムまたは窒化ケイ素からなる上記1)〜4)のうちのいずれかに記載のパワーモジュール用ベースの製造方法。 5) The method for producing a power module base according to any one of 1) to 4), wherein the insulating substrate is made of ceramics, and the ceramics is made of aluminum nitride, aluminum oxide, or silicon nitride.
6)絶縁基板における配線層が設けられた面とは反対側の面に、高熱伝導性材料からなる伝熱層を設けておき、当該伝熱層と放熱基板とをろう付する上記1)〜5)のうちのいずれかに記載のパワーモジュール用ベースの製造方法。 6) A heat transfer layer made of a highly heat conductive material is provided on the surface of the insulating substrate opposite to the surface provided with the wiring layer, and the heat transfer layer and the heat dissipation substrate are brazed to the above 1) to 5. A method for producing a power module base according to any one of 5).
7)放熱フィン形成部材、放熱基板および絶縁基板を積層した際に、放熱フィン形成部材の高さ方向の中心を対称中心として、両放熱基板および両絶縁基板を対称に配置する上記1)〜6)のうちのいずれかに記載のパワーモジュール用ベースの製造方法。 7) The above 1) to 6) in which both the heat radiating substrate and the two insulating substrates are symmetrically arranged with the center in the height direction of the heat radiating fin forming member as the center of symmetry when the heat radiating fin forming member, the heat radiating substrate and the insulating substrate are laminated. The manufacturing method of the base for power modules in any one of.
8)放熱フィン形成部材、放熱基板および補助反り防止部材がアルミニウム製であり、補助反り防止部材の表面に離型剤を塗布しておくことにより、放熱基板と補助反り防止部材とのろう付を防ぐ上記1)〜7)のうちのいずれかに記載のパワーモジュール用ベースの製造方法。 8) The radiating fin forming member, the radiating substrate and the auxiliary warpage preventing member are made of aluminum, and the release agent is applied to the surface of the auxiliary warping preventing member to braze the radiating substrate and the auxiliary warpage preventing member. The manufacturing method of the base for power modules in any one of said 1) -7 which prevents.
9)放熱フィン形成部材および放熱基板がアルミニウム製であり、補助反り防止部材がステンレス鋼製である上記1)〜7)のうちのいずれかに記載のパワーモジュール用ベースの製造方法。 9) The method for manufacturing a power module base according to any one of 1) to 7) above, wherein the radiating fin forming member and the radiating substrate are made of aluminum and the auxiliary warpage preventing member is made of stainless steel.
10)放熱フィン形成部材と両放熱基板、および両放熱基板と両絶縁基板とをそれぞれろう付した後、放熱フィン形成部材をその高さ方向の中間部で切断することにより、放熱基板と、放熱基板の一面に接合された絶縁基板と、絶縁基板における放熱基板に接合された側と反対側の面に設けられた配線層と、放熱基板の他面に接合された放熱フィンとからなる2つのパワーモジュール用ベースを同時に製造する上記1)〜9)のうちのいずれかに記載のパワーモジュール用ベースの製造方法。 10) After brazing the radiating fin forming member and both radiating substrates, and both the radiating substrate and both insulating substrates, respectively, by cutting the radiating fin forming member at the middle part in the height direction, Two layers comprising an insulating substrate bonded to one surface of the substrate, a wiring layer provided on the surface of the insulating substrate opposite to the surface bonded to the heat radiating substrate, and heat radiating fins bonded to the other surface of the heat radiating substrate. 10. The method for producing a power module base according to any one of 1) to 9) , wherein the power module base is produced simultaneously.
11)上記1)〜9)のうちのいずれかに記載された方法により製造されており、互いに間隔をおいて配置された2枚の放熱基板と、放熱フィン形成部材の全体からなり、かつ両放熱基板間に配置されて両放熱基板にろう付された放熱フィンと、放熱基板における放熱フィンとは反対側の面にろう付された絶縁基板と、絶縁基板における放熱基板に接合された側と反対側の面に設けられた配線層とを備えており、放熱フィンの高さ方向の中心を中心として両放熱基板および両絶縁基板が対称となっているパワーモジュール用ベース。 11) Manufactured by the method described in any one of 1) to 9 ) above, which is composed of two heat dissipating boards and a heat dissipating fin forming member which are spaced apart from each other, A heat dissipating fin disposed between the heat dissipating substrates and brazed to both heat dissipating substrates; an insulating substrate brazed to a surface of the heat dissipating substrate opposite to the heat dissipating fin; and a side of the insulating substrate bonded to the heat dissipating substrate; A power module base including a wiring layer provided on the opposite surface, wherein both the heat radiating board and the two insulating boards are symmetrical about the center in the height direction of the heat radiating fins.
12)上記10)記載の方法により製造されており、放熱基板と、放熱基板の一面にろう付された絶縁基板と、絶縁基板における放熱基板に接合された側と反対側の面に設けられた配線層と、放熱フィン形成部材を高さ方向の中間部で分断したような形状であり、かつ放熱基板の他面に並列状に配置されて放熱基板にろう付された複数の放熱フィンとを備えたパワーモジュール用ベース。 12) Manufactured by the method described in 10 ) above, provided on the surface of the insulating substrate opposite to the side bonded to the heat dissipation substrate, the insulating substrate brazed to one surface of the heat dissipation substrate, and A wiring layer and a plurality of heat dissipating fins that are shaped like the heat dissipating fin forming member divided at the intermediate portion in the height direction and that are arranged in parallel on the other surface of the heat dissipating substrate and brazed to the heat dissipating substrate. Power module base equipped.
13)上記11)または12)記載のパワーモジュール用ベースと、パワーモジュール用ベースの絶縁基板の配線層上に装着されたパワーデバイスとを備えているパワーモジュール。 13) A power module comprising the power module base according to 11) or 12 ) above and a power device mounted on a wiring layer of an insulating substrate of the power module base.
上記1)〜7)の製造方法によれば、ろう付の際の加熱時に放熱フィン形成部材、両放熱基板および両絶縁基板が熱膨張するとともに熱膨張した状態でろう付され、加熱終了後放熱フィン形成部材、放熱基板および絶縁基板が熱収縮する。ここで、放熱フィン形成部材および放熱基板の線膨張係数が、絶縁基板の線膨張係数よりも大きいので、放熱フィン形成部材および放熱基板の熱膨張の度合は絶縁基板よりも大きく、その結果放熱フィン形成部材および放熱基板の熱収縮の度合も絶縁基板よりも大きくなる。したがって、ろう付終了後常温まで冷却された際に絶縁基板、放熱フィン形成部材および放熱基板が熱収縮すると、収縮の度合が絶縁基板よりも放熱フィン形成部材および放熱基板の方が大きくなって、各放熱基板における絶縁基板の両側部分が、他の放熱基板側に反ろうとする。しかしながら、両放熱基板間に放熱フィン形成部材を配置しているので、両放熱基板が、それぞれ放熱フィン形成部材を介して他方の放熱基板を反らそうとする力を受けることになり、製造されたパワーモジュール用ベースにおいて、放熱基板に反りが発生することが防止される。また、特許文献1記載のパワーモジュール用ベースのように特殊な材料を使用する必要がないから安価に実施することができ、しかも放熱フィン形成部材、2枚の放熱基板および2枚の絶縁基板を上述したように配置してろう付するだけであるから簡単に実施することができる。したがって、放熱基板に反りが発生することなく、しかも簡単かつ安価にパワーモジュール用ベースを製造することができる。
According to the manufacturing methods of 1) to 7) above, the heat dissipating fin forming member, both heat dissipating substrates and both insulating substrates are thermally expanded and brazed in a thermally expanded state during heating during brazing, and heat is dissipated after heating is completed. The fin forming member, the heat dissipation substrate, and the insulating substrate are thermally contracted. Here, since the linear expansion coefficient of the radiating fin forming member and the radiating board is larger than the linear expansion coefficient of the insulating board, the degree of thermal expansion of the radiating fin forming member and the radiating board is larger than that of the insulating board. The degree of thermal contraction of the forming member and the heat dissipation substrate is also larger than that of the insulating substrate. Therefore, when the insulating substrate, the heat dissipating fin forming member and the heat dissipating substrate are thermally contracted when cooled to room temperature after the brazing is completed, the degree of contraction is greater in the heat dissipating fin forming member and the heat dissipating substrate than the insulating substrate, Both side portions of the insulating substrate in each heat radiating substrate tend to warp toward the other heat radiating substrate. However, since the heat radiating fin forming member is arranged between the two heat radiating substrates, both the heat radiating substrates are subjected to a force to warp the other heat radiating substrate via the heat radiating fin forming members, respectively. In the power module base, it is possible to prevent the heat dissipation substrate from warping. Further, since it is not necessary to use a special material as in the power module base described in
上記1)、8)および9)の製造方法によれば、放熱基板への反りの発生を確実に防止することができる。しかも、補助反り防止部材が放熱基板にろう付されないので、ろう付終了後には補助反り防止部材を簡単に取り除くことができる。 According to the manufacturing methods of 1), 8) and 9) above , it is possible to reliably prevent warping of the heat dissipation substrate. Moreover, since the auxiliary warpage preventing member is not brazed to the heat dissipation substrate, the auxiliary warpage preventing member can be easily removed after the brazing is completed.
上記10)の製造方法によれば、同時に2つのパワーモジュール用ベースを製造することができるので、生産性が向上する。 According to the manufacturing method of the above 10) , two power module bases can be manufactured at the same time, so that productivity is improved.
上記11)のパワーモジュール用ベースによれば、両絶縁基板の配線層上にパワーデバイスを実装することができるので、パワーモジュールの小型化を実現することができる。 According to the power module base of the above 11) , since the power device can be mounted on the wiring layers of both insulating substrates, the power module can be downsized.
以下、この発明の実施形態を、図面を参照して説明する。なお、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。 Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.
また、以下の説明において、各図面の上下、左右を上下、左右というものとする。 In the following description, the upper and lower sides and the left and right sides of each drawing are referred to as the upper and lower sides and the left and right sides.
実施形態1
この実施形態は図1および図2に示すものである。
This embodiment is shown in FIG. 1 and FIG.
図1はこの発明の方法により製造されたパワーモジュール用ベースを備えたパワーモジュールを示し、図2はその製造方法を示す。 FIG. 1 shows a power module having a base for a power module manufactured by the method of the present invention, and FIG. 2 shows the manufacturing method thereof.
図1において、パワーモジュール用ベース(1)は、放熱基板(2)と、放熱基板(2)の上面に接合された絶縁基板(3)と、放熱基板(2)の下面に接合された放熱フィン(4)とを備えている。 In FIG. 1, a power module base (1) includes a heat dissipation substrate (2), an insulating substrate (3) bonded to the upper surface of the heat dissipation substrate (2), and a heat dissipation bonded to the lower surface of the heat dissipation substrate (2). And fins (4).
放熱基板(2)は、アルミニウム、銅(銅合金も含む。以下、同様)などの高熱伝導性材料、ここではアルミニウムで形成されている。 The heat dissipating substrate (2) is made of a highly heat conductive material such as aluminum or copper (including a copper alloy; hereinafter the same), here aluminum.
絶縁基板(3)は、必要とされる絶縁特性、熱伝導率および機械的強度を満たしていれば、どのような絶縁材料から形成されていてもよいが、たとえばセラミックから形成される場合、酸化アルミニウム、窒化アルミニウム、窒化ケイ素などが用いられる。絶縁基板(3)の肉厚は0.1〜1mmであることが好ましい。絶縁基板(3)上面に配線層(5)が設けられるとともに下面に伝熱層(6)が設けられている。配線層(5)は、導電性に優れたアルミニウム、銅などの金属により形成されるが、電気伝導率が高く、変形能が高く、しかも半導体素子とのはんだ付け性に優れた純度の高い純アルミニウムにより形成されていることが好ましい。伝熱層(6)は、熱伝導性に優れたアルミニウム、銅などの金属により形成されるが、熱伝導率が高く、変形能が高く、しかも溶融したろう材との濡れ性に優れた純度の高い純アルミニウムにより形成されていることが好ましい。また、配線層(5)および伝熱層(6)は同一材料で形成されていることが好ましい。そして、伝熱層(6)が放熱基板(2)にろう付されている。なお、配線層(5)および伝熱層(6)が予め設けられた絶縁基板(3)としては、DBA(Direct Brazed Alminum、登録商標)基板や、DBC(Direct Bonded Copper、登録商標)基板などを用いることができる。 The insulating substrate (3) may be formed of any insulating material as long as it satisfies the required insulating properties, thermal conductivity, and mechanical strength. Aluminum, aluminum nitride, silicon nitride or the like is used. The thickness of the insulating substrate (3) is preferably 0.1 to 1 mm. A wiring layer (5) is provided on the upper surface of the insulating substrate (3), and a heat transfer layer (6) is provided on the lower surface. The wiring layer (5) is made of a metal such as aluminum or copper having excellent conductivity, but it has high electrical conductivity, high deformability, and excellent solderability with semiconductor elements. It is preferable that it is formed of aluminum. The heat transfer layer (6) is made of a metal such as aluminum or copper having excellent thermal conductivity, but has high thermal conductivity, high deformability, and purity excellent in wettability with molten brazing material. It is preferable that it is made of pure aluminum having a high thickness. The wiring layer (5) and the heat transfer layer (6) are preferably formed of the same material. The heat transfer layer (6) is brazed to the heat dissipation substrate (2). As the insulating substrate (3) provided with the wiring layer (5) and the heat transfer layer (6) in advance, a DBA (Direct Brazed Aluminum, registered trademark) substrate, a DBC (Direct Bonded Copper, registered trademark) substrate, etc. Can be used.
放熱フィン(4)は、アルミニウム、銅などの高熱伝導性材料、ここではアルミニウムで形成された複数のフィン構成部材(7)からなる。フィン構成部材(7)は、1対の対向壁および対向壁の上端どうしを一体に連結する連結部とからなる横断面逆U字状であり、左右方向に間隔をおいて配置され、連結部が放熱基板(1)にろう付されている。 The radiating fin (4) is composed of a plurality of fin components (7) made of a high thermal conductivity material such as aluminum or copper, here aluminum. The fin component member (7) has a reverse U-shaped cross section composed of a pair of opposing walls and a connecting portion that integrally connects the upper ends of the opposing walls, and is arranged at intervals in the left-right direction. Is brazed to the heat dissipation substrate (1).
上述したパワーモジュール用ベース(1)においては、絶縁基板(3)の配線層(5)上にパワーデバイス(P)が、たとえばはんだ付で接合されることにより装着され、パワーモジュールが構成される。 In the power module base (1) described above, the power device (P) is mounted on the wiring layer (5) of the insulating substrate (3) by, for example, soldering, and the power module is configured. .
以下、パワーモジュール用ベース(1)の製造方法を、図2を参照して説明する。 Hereinafter, a method of manufacturing the power module base (1) will be described with reference to FIG.
すなわち、2枚の放熱基板(2)を、アルミニウム製放熱フィン形成部材(8)を間に挟んで配置し、各放熱基板(2)と放熱フィン形成部材(8)との間に、Al−Si系合金、Al−Si−Mg系合金などからなるシート状アルミニウムろう材(図示略)を介在させておく。2枚の放熱基板(2)の材質、大きさおよび厚みは同一である。放熱フィン形成部材(8)は、高熱伝導性材料、ここではアルミニウムにより形成されたものであり、波頂部(8a)、波底部(8b)および波頂部(8a)と波底部(8b)とを連結する連結部(8c)とからなるコルゲート状である。 That is, two heat dissipating substrates (2) are arranged with an aluminum heat dissipating fin forming member (8) sandwiched therebetween, and between each heat dissipating substrate (2) and the heat dissipating fin forming member (8), Al- A sheet-like aluminum brazing material (not shown) made of Si-based alloy, Al-Si-Mg-based alloy, or the like is interposed. The material, size and thickness of the two heat dissipating substrates (2) are the same. The radiating fin forming member (8) is formed of a high thermal conductivity material, here aluminum, and includes a wave crest (8a), a wave bottom (8b), a wave crest (8a), and a wave bottom (8b). It has a corrugated shape composed of connecting portions (8c) to be connected.
ついで、各放熱基板(2)における放熱フィン形成部材(8)側を向いた面とは反対側の面に、絶縁基板(3)を、配線層(5)が放熱基板(2)とは反対側を向くように積層し(図2参照)、各絶縁基板(3)の伝熱層(6)と各放熱基板(2)との間に、Al−Si系合金、Al−Si−Mg系合金などからなるシート状アルミニウムろう材(図示略)を介在させておく。2枚の放熱基板(2)の材質、大きさおよび厚みと、2枚の絶縁基板(3)の材質、大きさおよび厚みと、2枚の絶縁基板(3)の配線層(5)および伝熱層(6)の材質、大きさおよび厚みとは、それぞれ同一である。 Next, the insulating substrate (3) is placed on the surface opposite to the surface facing the heat radiating fin forming member (8) side of each heat radiating substrate (2), and the wiring layer (5) is opposite to the heat radiating substrate (2). Laminated so as to face the side (see Fig. 2), between the heat transfer layer (6) of each insulating substrate (3) and each heat dissipation substrate (2), Al-Si alloy, Al-Si-Mg system A sheet-like aluminum brazing material (not shown) made of an alloy or the like is interposed. The material, size and thickness of the two heat dissipating substrates (2), the material, size and thickness of the two insulating substrates (3), the wiring layer (5) and the transmission of the two insulating substrates (3) The material, size, and thickness of the thermal layer (6) are the same.
ここで、放熱フィン形成部材(8)の高さ方向の中心(O)に位置する水平面を対称中心として、両放熱基板(2)および両絶縁基板(3)を上下対称としておく。 Here, the two heat radiating substrates (2) and the two insulating substrates (3) are vertically symmetric with respect to a horizontal plane located at the center (O) in the height direction of the radiating fin forming member (8).
また、図2に示すように、放熱フィン形成部材(8)の左右両側において、両放熱基板(2)の左右両側縁部間に、それぞれ補助反り防止部材(9)を配置する。ここで、補助反り防止部材(9)をアルミニウムで形成し、その表面に離型剤を塗布しておくことにより、放熱基板(2)と補助反り防止部材(9)とのろう付を防ぐようにする。また、これに代えて、補助反り防止部材(9)をステンレス鋼で形成することにより、放熱基板(2)と補助反り防止部材(9)とのろう付を防ぐようにしてもよい。 Further, as shown in FIG. 2, auxiliary warp preventing members (9) are disposed between the left and right side edges of both heat dissipating substrates (2) on both left and right sides of the heat dissipating fin forming member (8). Here, the auxiliary warpage prevention member (9) is formed of aluminum, and a release agent is applied to the surface thereof to prevent brazing between the heat dissipation substrate (2) and the auxiliary warpage prevention member (9). To. Alternatively, the auxiliary warpage preventing member (9) may be formed of stainless steel to prevent brazing between the heat dissipation substrate (2) and the auxiliary warpage preventing member (9).
ついで、両放熱基板(2)、放熱フィン形成部材(8)、両絶縁基板(3)および両補助反り防止部材(9)を適当な治具で仮止めし、接合面に適当な荷重を加えながら、真空雰囲気中または不活性ガス雰囲気中において、570〜600℃に加熱することによって、両放熱基板(2)と放熱フィン形成部材(8)、および両絶縁基板(3)の伝熱層(6)と両放熱基板(2)とをそれぞれ同時にろう付する。 Next, temporarily fix both heat dissipating substrates (2), heat dissipating fin forming members (8), both insulating substrates (3), and both auxiliary warp preventing members (9) with an appropriate jig, and apply an appropriate load to the joint surface. However, by heating to 570 to 600 ° C. in a vacuum atmosphere or an inert gas atmosphere, the heat transfer layers (2), the heat dissipating fin forming member (8), and the heat transfer layers (2) of both insulating substrates (3) ( 6) and both heat dissipation substrates (2) are brazed at the same time.
上述したろう付の際の加熱時には、絶縁基板(3)、配線層(5)、伝熱層(6)および放熱基板(2)が熱膨張するとともに、熱膨張した状態でろう付され、加熱終了後これらは熱収縮する。ここで、放熱フィン形成部材(8)および放熱基板(2)の線膨張係数が、絶縁基板(3)の線膨張係数よりも大きいので、放熱フィン形成部材(8)および放熱基板(2)の熱膨張の度合は絶縁基板(3)よりも大きく、その結果放熱フィン形成部材(8)および放熱基板(2)の熱収縮の度合も絶縁基板(3)よりも大きくなる。したがって、ろう付終了後常温まで冷却された際に絶縁基板(3)、放熱フィン形成部材(8)および放熱基板(2)が熱収縮すると、収縮の度合が絶縁基板(3)よりも放熱フィン形成部材(8)および放熱基板(2)の方が大きくなって、各放熱基板(2)における絶縁基板(3)の両側部分が、他の放熱基板(2)側に反ろうとする(図2鎖線参照)。しかしながら、両放熱基板(2)間に放熱フィン形成部材(8)および補助反り防止部材(9)を配置しているので、両放熱基板(2)が、それぞれ放熱フィン形成部材(8)および補助反り防止部材(9)を介して他方の放熱基板(2)を反らそうとする力を受けることになり、その結果各放熱基板(2)における反りの発生が防止される。 At the time of heating in the above-described brazing, the insulating substrate (3), the wiring layer (5), the heat transfer layer (6), and the heat dissipation substrate (2) are thermally expanded and brazed in a thermally expanded state. After completion, they heat shrink. Here, since the linear expansion coefficient of the radiating fin forming member (8) and the radiating substrate (2) is larger than the linear expansion coefficient of the insulating substrate (3), the radiating fin forming member (8) and the radiating substrate (2) The degree of thermal expansion is greater than that of the insulating substrate (3). As a result, the degree of thermal contraction of the heat dissipating fin forming member (8) and the heat dissipating substrate (2) is also greater than that of the insulating substrate (3). Therefore, when the insulating substrate (3), the heat dissipating fin forming member (8), and the heat dissipating substrate (2) are thermally contracted when cooled to room temperature after brazing is completed, the degree of contraction is greater than that of the insulating substrate (3). The forming member (8) and the heat radiating board (2) are larger, and both side portions of the insulating board (3) in each heat radiating board (2) tend to warp toward the other heat radiating board (2) (FIG. 2). (See chain line). However, since the heat radiating fin forming member (8) and the auxiliary warpage preventing member (9) are arranged between the two heat radiating substrates (2), both the heat radiating substrates (2) are respectively connected to the heat radiating fin forming member (8) and the auxiliary heat radiating member (8). A force to warp the other heat radiating board (2) via the warp preventing member (9) is received, and as a result, the occurrence of warping in each heat radiating board (2) is prevented.
最後に、補助反り防止部材(9)を取り除くとともに、放熱フィン形成部材(8)を上下の中央部において切断する。こうして、パワーモジュール用ベース(1)が製造される。 Finally, the auxiliary warpage preventing member (9) is removed, and the radiating fin forming member (8) is cut at the upper and lower central portions. Thus, the power module base (1) is manufactured.
図3および図4はこの発明の方法により製造されるパワーモジュール用ベースの変形例を示す。 3 and 4 show modifications of the power module base manufactured by the method of the present invention.
図3に示すパワーモジュール用ベース(10)の場合、絶縁基板(3)の下面には伝熱層(6)は形成されておらず、絶縁基板(3)が直接放熱基板(2)にろう付されている。 In the case of the power module base (10) shown in FIG. 3, the heat transfer layer (6) is not formed on the lower surface of the insulating substrate (3), and the insulating substrate (3) is directly connected to the heat radiating substrate (2). It is attached.
このパワーモジュール用ベース(10)は、図1に示すパワーモジュール用ベース(1)と同様な方法で製造される。 The power module base (10) is manufactured by the same method as the power module base (1) shown in FIG.
図4に示すパワーモジュール用ベース(20)は、互いに間隔をおいて配置された2枚の放熱基板(2)と、放熱フィン形成部材(8)の全体からなり、かつ両放熱基板(2)間に配置されて両放熱基板(2)にろう付された放熱フィン(21)と、放熱基板(2)における放熱フィン(21)とは反対側の面にろう付された絶縁基板(3)と、絶縁基板(3)における放熱基板(2)に接合された側と反対側の面に設けられた配線層(5)とを備えており、放熱フィンの高さ方向の中心を中心として両放熱基板(2)および両絶縁基板(3)が対称となっている。 The power module base (20) shown in FIG. 4 is composed of two heat dissipating boards (2) and a heat dissipating fin forming member (8) arranged at a distance from each other, and includes both heat dissipating boards (2). The heat dissipating fin (21) brazed to both heat dissipating boards (2), and the insulating substrate (3) brazed to the opposite side of the heat dissipating fin (21) in the heat dissipating board (2) And a wiring layer (5) provided on the surface of the insulating substrate (3) opposite to the side bonded to the heat dissipation substrate (2). The heat dissipation substrate (2) and both insulating substrates (3) are symmetrical.
このパワーモジュール用ベース(20)は、図1に示すパワーモジュール用ベース(1)を製造する方法における、放熱フィン形成部材(8)を切断することを除いた方法で製造される。 This power module base (20) is manufactured by a method of cutting the heat dissipating fin forming member (8) in the method of manufacturing the power module base (1) shown in FIG.
なお、図4に示すパワーモジュール用ベース(20)において、図3に示すパワーモジュール用ベース(10)の場合と同様に、少なくともいずれか一方の絶縁基板(3)の下面には伝熱層(6)は形成されておらず、絶縁基板(3)が直接放熱基板(2)にろう付されていてもよい。 In the power module base (20) shown in FIG. 4, as in the case of the power module base (10) shown in FIG. 3, at least one of the insulating substrates (3) has a heat transfer layer ( 6) is not formed, and the insulating substrate (3) may be brazed directly to the heat dissipation substrate (2).
(1)(10)(20):パワーモジュール用ベース
(2):放熱基板
(3):絶縁基板
(4):放熱フィン
(5):配線層
(6):伝熱層
(7):フィン構成部材
(8):放熱フィン形成部材
(8a):波頂部
(8b):波底部
(8c):連結部
(9):補助反り防止部材
(1) (10) (20): Base for power module
(2): Heat dissipation board
(3): Insulating substrate
(4): Radiation fin
(5): Wiring layer
(6): Heat transfer layer
(7): Fin component
(8): Radiation fin forming member
(8a): Wave peak
(8b): Wave bottom
(8c): Connection part
(9): Auxiliary warpage prevention member
Claims (13)
高熱伝導性材料からなる放熱フィン形成部材を挟んで2枚の放熱基板を配置し、放熱基板における放熱フィン形成部材側を向いた面とは反対側の面に、絶縁基板を、配線層が放熱基板とは反対側を向くように積層し、さらに放熱フィン形成部材よりも外側の部分において、両放熱基板間に補助反り防止部材を配置しておき、この状態で、放熱基板と補助反り防止部材とがろう付されないように、放熱フィン形成部材と両放熱基板、および両放熱基板と両絶縁基板とをそれぞれ同時にろう付することを含むパワーモジュール用ベースの製造方法。 A heat dissipation substrate made of a highly heat conductive material, an insulating substrate bonded to one surface of the heat dissipation substrate, a wiring layer provided on the surface of the insulating substrate opposite to the side bonded to the heat dissipation substrate, and a high heat conductive material And a method of manufacturing a power module base comprising a heat dissipation fin joined to the other surface of the heat dissipation substrate,
Two heat dissipating boards are arranged with a heat dissipating fin forming member made of a highly heat conductive material in between. The insulating substrate is disposed on the surface of the heat dissipating substrate opposite to the surface facing the heat dissipating fin forming member, and the wiring layer dissipates heat. Laminate so as to face the opposite side of the substrate, and further arrange an auxiliary warp preventing member between the heat radiating substrates in the portion outside the heat radiating fin forming member, and in this state, the heat radiating substrate and the auxiliary warp preventing member A method for manufacturing a base for a power module, comprising brazing the heat dissipating fin forming member and both heat dissipating substrates, and both the heat dissipating substrates and both insulating substrates at the same time so as not to be brazed.
た側と反対側の面に設けられた配線層と、放熱フィン形成部材を高さ方向の中間部で分断したような形状であり、かつ放熱基板の他面に並列状に配置されて放熱基板にろう付された複数の放熱フィンとを備えたパワーモジュール用ベース。 It is manufactured by the method according to claim 10, and is bonded to the heat dissipation substrate, the insulating substrate brazed to one surface of the heat dissipation substrate, and the heat dissipation substrate in the insulating substrate.
The wiring layer provided on the opposite surface and the heat dissipating fin forming member are divided in the middle in the height direction, and the heat dissipating substrate is arranged in parallel on the other surface of the heat dissipating substrate. A base for a power module having a plurality of heat radiation fins brazed to each other .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005317950A JP4786302B2 (en) | 2005-11-01 | 2005-11-01 | Power module base manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005317950A JP4786302B2 (en) | 2005-11-01 | 2005-11-01 | Power module base manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007128935A JP2007128935A (en) | 2007-05-24 |
JP4786302B2 true JP4786302B2 (en) | 2011-10-05 |
Family
ID=38151352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005317950A Expired - Fee Related JP4786302B2 (en) | 2005-11-01 | 2005-11-01 | Power module base manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4786302B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015153869A (en) * | 2014-02-13 | 2015-08-24 | 三菱マテリアル株式会社 | Cooler with insulating layer, manufacturing method of the same, and power module with cooler |
KR102709151B1 (en) * | 2016-11-10 | 2024-09-25 | 주식회사 아모센스 | Manufacturing method of ceramic board |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63235031A (en) * | 1987-03-20 | 1988-09-30 | Nippon Alum Mfg Co Ltd:The | Manufacture of heat sink |
JPH0272595A (en) * | 1988-09-06 | 1990-03-12 | Matsushita Electric Ind Co Ltd | Illumination level setting device |
JP2912732B2 (en) * | 1991-06-27 | 1999-06-28 | 京セラ株式会社 | Manufacturing method of ceramic radiator |
JPH07245362A (en) * | 1994-03-07 | 1995-09-19 | Fujitsu Ltd | Multi-chip semiconductor device |
JP3317608B2 (en) * | 1995-04-13 | 2002-08-26 | 昭和飛行機工業株式会社 | heatsink |
JP2834708B2 (en) * | 1996-04-11 | 1998-12-14 | 株式会社日本アルミ | Method of manufacturing pin fin type heat sink and method of manufacturing pin fin type heat sink with axial fan |
JPH1167989A (en) * | 1997-08-22 | 1999-03-09 | Furukawa Electric Co Ltd:The | Cooling structure |
JP2003324173A (en) * | 2002-05-02 | 2003-11-14 | Nissan Motor Co Ltd | Cooling device for semiconductor element |
-
2005
- 2005-11-01 JP JP2005317950A patent/JP4786302B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007128935A (en) | 2007-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4617209B2 (en) | Heat dissipation device | |
JP4621531B2 (en) | Heat dissipation device | |
KR102300972B1 (en) | Substrate unit for power modules, and power module | |
JP4558012B2 (en) | Semiconductor package heat dissipation plate and semiconductor device | |
KR101188150B1 (en) | Cooling device | |
KR101384426B1 (en) | Base for power module | |
KR102387210B1 (en) | Board and power module for power module with heat sink | |
JP2006294971A (en) | Substrate for power module and its production process | |
US11322424B2 (en) | Insulation circuit board with heat sink | |
JP6361532B2 (en) | Manufacturing method of power module substrate with heat sink | |
JP2007141932A (en) | Power module base | |
JP4786302B2 (en) | Power module base manufacturing method | |
JP2016167503A (en) | Power module substrate with heat sink and power module | |
JP2008124187A6 (en) | Power module base | |
JP2008124187A (en) | Base for power module | |
JP5282075B2 (en) | Heat dissipation device | |
JP2012169319A (en) | Insulation laminate material, insulation circuit board, base for power module, and power module | |
JP6738193B2 (en) | Heat transfer structure, insulating laminated material, insulating circuit board and power module base | |
JP6139331B2 (en) | Power module | |
JP2004343035A (en) | Heat radiating component, circuit board, and semiconductor device | |
JP5320354B2 (en) | Heat dissipation device | |
JP7205214B2 (en) | Insulated circuit board with heat sink | |
JP2008277317A (en) | Power module and inverter for vehicle | |
JP5939113B2 (en) | Power module substrate with heat sink | |
JP2023132550A (en) | insulated circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070605 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070605 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081024 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110614 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4786302 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |