WO2004110662A1 - Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate - Google Patents

Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate Download PDF

Info

Publication number
WO2004110662A1
WO2004110662A1 PCT/JP2004/008294 JP2004008294W WO2004110662A1 WO 2004110662 A1 WO2004110662 A1 WO 2004110662A1 JP 2004008294 W JP2004008294 W JP 2004008294W WO 2004110662 A1 WO2004110662 A1 WO 2004110662A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
steel plate
thick steel
width direction
cooling device
Prior art date
Application number
PCT/JP2004/008294
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Ueoka
Kenji Ihara
Yoshinori Yuge
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP04745851A priority Critical patent/EP1634657B1/en
Publication of WO2004110662A1 publication Critical patent/WO2004110662A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Definitions

  • the present invention relates to a controlled cooling method for a thick steel plate, a thick steel plate manufactured by the controlled cooling method, and a cooling device therefor.
  • the present invention relates to an accelerated control cooling system for a steel plate that has been hot-rolled, a steel plate manufactured by the controlled cooling method, and a cooling device for the steel plate.
  • controlled cooling with a high cooling rate may be performed on the rolled steel sheets in order to secure the mechanical properties required for the steel sheets, especially strength and toughness.
  • Controlled cooling means that after hot rolling, the transformation structure is controlled by rapidly cooling the transformation temperature range (transformation range) from austenite to ferrite (ferrite). This is a technique for adjusting the crystal structure of steel to obtain the desired material such as mechanical properties.
  • the four periphery zones of the thick steel plate after cooling are in a supercooling state compared to the central part of the steel plate, and the surface of the steel plate is cooled. The fact is that the whole is not cooled uniformly.
  • Japanese Patent Application Laid-Open No. H10-58026 discloses that cooling water is formed at a predetermined angle with respect to the conveying direction of the steel sheet and at a predetermined angle with respect to the width direction of the steel sheet.
  • Several parallel, spaced There is disclosed a technology in which a high water film collides with the steel sheet surface, and the cooling water after the collision divides equally into the left and right sides of the collision area and flows along the steel sheet surface along the steel sheet surface. The ends of the collision zone are formed so as not to overlap with each other when viewed in the transport direction of the steel sheet.
  • Cooling method for high-temperature steel sheets has been proposed, which is arranged and cooled in a horizontal direction.
  • Japanese Patent Application Laid-Open No. 6-184623 Japanese Patent No. 2698305
  • a means has been proposed in which a high pressure water flow is injected obliquely from a cooling nozzle into a thick steel plate to block the water flow to both ends in the width direction of the steel plate.
  • JP-A-61-219412 discloses ⁇ ; :: is to measure a plate width distribution in a width direction of a rolled hot steel sheet before cooling the steel sheet, and from the measurement results, The water in the width direction is removed. Next, the calculated water flow distribution is corrected using the temperature data after cooling of the preceding hot steel sheet cooled immediately before the hot steel sheet, and the water injection amount in the width direction of the hot steel sheet is calculated based on the corrected calculation cooling water distribution. O A method for uniform cooling of hot steel sheets has been proposed.
  • Japanese Patent Application Laid-Open No. 58-32511 discloses that cooling water impinges on the upper and lower surfaces of a hot-rolled thick steel plate to shield the end of the W1 steel plate.
  • JP-A-10 58 026 discloses the above, JP-A 6 184 623 No. Gazette (Patent No. 269830 5 JP), JP 61- 219412 discloses Contact Yopi Sho 58- 32511 No. disclosed in Japanese
  • These measures are intended to prevent the phenomenon of overcooling at the end in the width direction of the thick steel plate during cooling in any case, and it is possible to anticipate the effect.
  • the technical idea of these inventions is that the supercooling that occurs at the widthwise end of the steel plate during cooling and / or cooling is performed by slowing down the cooling rate only at the widthwise end of the steel plate during cooling.
  • Japanese Patent Application Laid-Open No. 61926/1986 discloses a method of cooling a hot steel sheet by water flow cooling while pressing the steel sheet from above and below with multiple rolls.
  • Heh Japanese Patent Application Laid-Open No. H11-139,086 discloses a technique in which a shutoff valve capable of arbitrarily controlling the opening and closing time is provided. Further, a means for detecting a passing position of the hot steel sheet, a means for detecting a temperature profile in a longitudinal direction of the hot steel sheet before the start of cooling, and a cooling operation control means are provided, and a tip of the hot steel sheet during movement is provided.
  • a method for cooling a hot steel plate characterized by controlling the opening and closing of a header shut-off valve corresponding to the position where the part and / or the rear end is about to pass, has been proposed.
  • Japanese Patent Application Laid-Open No. 61-15926 it is intended to prevent a phenomenon in which a steel plate is overcooled at the end portion in the longitudinal direction during cooling.However, in these proposals, the width of the rolled material is reduced. I in the center The uniformity of clothing cannot be ensured, and there is no means for avoiding distortion after cooling and residual stress at the end of the steel sheet.
  • Japanese Patent Application Laid-Open No. 11-267737 discloses a method of manufacturing a steel sheet by manufacturing a steel sheet by controlling and cooling a hot-rolled high-temperature steel sheet. Roughing mill and finishing mill
  • the cooling equipment provided in the (finishing mill) 1 will reduce the temperature drop near the end of the thick steel plate from the heating furnace to the end of rough rolling, and that it will occur during finish rolling.
  • cooling with a temperature distribution in the width direction of the steel plate is performed, and after finish rolling, the cooling condition is uniform in the width direction of the steel plate.
  • a method of manufacturing a thick steel plate characterized by performing controlled cooling has been proposed.
  • Japanese Unexamined Patent Publication No. Hei 11-267737 discloses that, at the end of the plate in the width direction, compensation is performed at an early stage before finish rolling. It is difficult to predict the temperature distribution before finish rolling so that the temperature distribution in the direction becomes uniform 1 / ⁇ .
  • JP 2001-137943 A discloses that after hot rolling is completed
  • an object of the present invention is to solve the problems of the conventional technique described above, and when controlling and cooling a rolled steel plate,
  • the present invention proposes a controlled cooling method for a thick steel plate that can be made uniform and has a large cooling rate as a whole, and a thick steel plate and an apparatus manufactured by the controlled cooling method.
  • a method of cooling a thick steel plate which has a uniform residual stress distribution in the width direction of the steel plate and in the longitudinal direction of the steel plate, and does not cause a processing shape defect such as a stripping camber, A steel plate and an apparatus manufactured by the controlled cooling method are provided.
  • the present invention provides a method of controlling and cooling a steel plate after hot rolling, comprising: a first cooling step (step) for cooling while making the temperature distribution in the width direction of the steel plate uniform; After the uniformization of the temperature distribution in the width direction of the steel sheet, the second cooling step that controls and cools the entire width direction of the steel sheet at the same cooling rate and cooling of the steel sheet that has been hot-rolled is completed. Is the way.
  • the first cooling step may include a step of forming a thick steel plate by one or more inlet-side cooling zones in a pass-type control cooling device having a plurality of independent cooling zones.
  • the cooling is performed while limiting the amount of cooling water at both ends in the width direction, and the second cooling step is performed in the width direction of the steel plate by the cooling zone subsequent to the one or more inlet cooling zones.
  • This is a controlled cooling method for thick steel plates that have been hot-rolled, in which the whole is controlled and cooled at the same cooling rate.
  • the first cooling step preferably performs cooling while restricting the amount of cooling water at both ends in the width direction of the thick steel plate by a pre-cooling device, and further comprises the second cooling step.
  • the hot-roller which controls and cools the entire steel plate in the width direction at the same cooling rate, by a pass-type control cooling device having a plurality of independent cooling zones installed at the subsequent stage of the preliminary cooling device This is a controlled cooling method for steel plates that have been rolled.
  • the present invention provides the method according to the above method, wherein: This is a method for controlling cooling of thick steel plates by limiting the amount of cooling water at both ends of the steel plate with a shielding member (ma skingmember) installed at the end in the width direction of the steel plate.
  • the present invention is the method for controlling cooling of a thick steel plate in the above-mentioned method, wherein a cooling water amount at a front end portion in a longitudinal direction of the thick steel plate is limited in cooling in a preceding stage of the control cooling device.
  • the cooling of the pre-cooling device or the pre-cooling device or the IU control cooling device may include limiting a cooling water amount at a leading end portion in a longitudinal direction of the steel plate. Controlled cooling method for thick steel plate. .
  • the present invention provides the above method, wherein the restriction of the amount of cooling water at the tail end in the longitudinal direction of the thick steel plate is controlled by a water passage operated for a predetermined time based on a passage signal of the tail end in the longitudinal direction of the steel plate.
  • the front part of the control cooling device may be provided at an end in a width direction of the thick steel plate in which a water amount of the end in the width direction of the steel plate can be limited between the zones.
  • This is a controlled cooling method for a thick steel plate that can independently shield the cooling water at the widthwise end of the thick steel plate on each zone and on the upper and lower surfaces.
  • the present invention provides a method for measuring the temperature distribution in the width direction of a thick steel plate before the controlled cooling in the above method and the temperature drop amount and temperature drop at the end in the width direction of the steel plate from the measured temperature distribution. Analyze the distance from the end in the width direction of the generated steel plate, and based on the results, implement the shielding amount and shielding by the shielding members installed in each cooling zone in front of the control cooling device. This is a controlled cooling method for thick steel plates that calculates the number of cooling zones and controls the shielding member based on the calculated result.
  • the present invention provides the method according to the above method, wherein the temperature distribution in the width direction of the thick steel plate is measured before the pre-cooling, and the temperature drop amount and the temperature drop at the end in the width direction of the thick steel plate are determined from the measured temperature distribution. The distance from the end of the steel plate in the width direction is generated, and the shielding amount and cooling time of the shielding member in the pre-cooling device are calculated based on the result, and the standby time is calculated based on the calculated result.
  • This is a controlled cooling method for thick steel plates that is cooled by a cooling device.
  • the present invention provides a method for controlling the above-mentioned controlled cooling after hot rolling.
  • the present invention is a passage type control cooling device having a plurality of independent cooling zones, wherein each cooling zone has a cooling water volume density.
  • the present invention is a cooling device in which a pre-cooling device and a control cooling device are sequentially arranged on a rear surface of a rolling mill, wherein the pre-cooling device has an input water density force of S500L (abbreviation of a liter) / min. and m 2 or less, the width direction of the steel plate is installed shielding member to limit the amount of cooling water both side ends in contact is, and said controlled cooling apparatus for pass type having a plurality of independent cooling zone one down shall apply in the apparatus, controlled cooling apparatus der cooling Shueili density force S 1200 L / min. m 2 or more water flow possible is the steel plate of the cooling zone
  • the present invention provides the above-described apparatus, wherein the thick steel sheet is controlled and cooled by controlling the operation of the shielding member so that the temperature distribution in the width direction of the thick steel sheet is made uniform.
  • the present invention provides the above-mentioned apparatus, wherein the water amount control means which operates for a predetermined time in response to a passage signal of the longitudinal end of the thick steel plate is provided. It is a control cooling device for a thick steel plate.
  • the present invention also provides the above apparatus, wherein the control cooling device is
  • the present invention also provides the above-mentioned apparatus, wherein the preliminary cooling device uses a laminar flow cooling nozzle, and the control cooling device uses a slit jet cooling nozzle. It is a controlled cooling device for thick steel plates.
  • the shielding member placed between the cooling zones at the stepped portions of the control cooling device in the position Px above is arranged independently for each cooling zone and each of the upper and lower surfaces in the width direction of the thick steel plate.
  • This is a control cooling device for thick steel plates with a structure ⁇ that can block the cooling water at the end of the plate.
  • the present invention provides means for measuring the temperature distribution in the width direction of a thick steel plate before controlled cooling in a garment, and the temperature drop amount and temperature at the end in the width direction of the steel plate from the measured temperature distribution. It has a means to analyze the distance from the widthwise end of the thick steel plate where the descent has occurred, and based on the results, a shielding member installed in each cooling zone in front of the control cooling device.
  • the present invention relates to a control cooling device for a thick steel plate having means for calculating the amount of shielding to be performed and the number of cooling zones for performing shielding, and having a mechanism for controlling the shielding member based on the calculated result. Before pre-cooling,
  • the amount of temperature drop at the end in the width direction of the thick steel plate and the distance from the end in the width direction of the thick steel plate where the temperature drop occurs are analyzed.
  • the present invention is the above-mentioned apparatus, wherein the control cooling device for the thick steel plate has a straightening machine between the control cooling device or the preliminary cooling device and the control cooling device.
  • Fig. 1 A diagram illustrating the relationship between the surface temperature of the steel plate and the heat release (valueofheatflux) when the high-temperature steel plate is cooled.
  • Fig. 2 Flow of water on the top surface of the steel plate when the steel plate is cooled. O o
  • Fig. 3 This is a diagram for explaining the 11 plate at the end of the thick steel plate in the width direction and the center of the thick steel plate when cooling the width of the thick steel plate by the conventional method.
  • Fig. 4 shows the first embodiment of the present invention, and is a diagram for explaining the temperature history of the widthwise end of the thick steel plate and the center of the thick steel plate when cooling control of the widthwise end of the thick steel plate is performed. is there.
  • Fig. 5 A diagram illustrating the second embodiment of the present invention and illustrating the temperature history of the widthwise end of the thick steel plate and the center of the thick steel plate when cooling control of the widthwise end of the thick steel plate is performed. Yes 0
  • FIG. 6 is a conceptual diagram of a control cooling device for a thick steel plate that implements the first embodiment of the present invention.
  • Fig. 8 is a conceptual diagram of the installation of the cooling water shielding member used in the control cooling device according to the present invention.
  • Figure 9 A diagram that defines supercooling at the widthwise end of a thick steel plate.
  • FIG. 4 is a diagram illustrating a control method.
  • FIG. 11 A diagram showing the temperature distribution in the width direction of the thick steel plate after cooling in the case where the first embodiment of the present invention is carried out and in the case where it is not carried out.
  • FIG. 2 is a configuration diagram of a control cooling device that performs control
  • FIG. 13 is a configuration diagram of a control cooling device that performs water level control at the longitudinal end of a thick steel plate in the embodiment of the present invention i .
  • Fig. 14 is a diagram that defines supercooling at the tail end of the thick steel plate in the longitudinal direction.
  • Fig. 15A5 15B It is an explanatory view showing the operation procedure of the cooling water at the time of passing the tip end in the longitudinal direction of the thick steel plate according to the first embodiment of the present invention.
  • Fig. 16A16B It is an explanatory view showing the operation procedure of the cooling water at the time of passing the tail end in the longitudinal direction of the thick steel plate according to the first embodiment of the present invention o
  • Fig. 18 • Schematic diagram of the installation of the cooling water shielding member used in the controlled cooling device for thick steel plates according to the present invention.
  • Fig. 20 is an explanatory view showing the operation procedure of the laminar fin cooling device of the passing plate B3 ⁇ 4F at the tail end in the longitudinal direction of the thick steel plate.
  • FIG. 21 is an equipment layout diagram (1 a yout) when a straightening machine 30 is installed in the present invention.
  • FIG. 22 is a view for explaining a steel sheet cutting position after cooling according to the embodiment of the present invention.
  • FIG. 23 shows a method for measuring a stripped camper when the steel sheet 52 after cooling in the embodiment of the present invention is cut.
  • Fig. 24 shows a method for measuring the stripping cannon when the steel sheet 55 after cooling in the embodiment of the present invention is stripped.
  • Fig. 25, Fig. 26 • Shows the dimensions and arrangement of the shield plate in the control cooling device in the embodiment of the present invention.
  • FIG. 27 shows the structure of the shielding member provided in the pre-cooling device in the embodiment of the present invention.
  • Fig. 28 • The layout of the shielding member in the pre-cooling device in the embodiment of the present invention ⁇
  • Fig. 3 shows the temperature history of a thick steel plate in the conventional method of preventing overcooling of the end of the steel plate in the width direction of the steel plate.
  • the lower part of the clothing is lower than the central part of the thick steel plate.
  • a shielding member is placed at the end of the thick steel plate in the width direction, or the amount of cooling water is adjusted.
  • the amount of cooling water that is applied to the ends of the thick steel plate in the width direction is reduced, and the cooling rate is lower than that of the central part of the thick steel plate.
  • This technology equalizes the temperature at the plate edge in the width direction and the center of the plate at the end of cooling. As described below, the problem of Since the cooling rate at the end of the steel plate is lower than that at the center of the steel plate, it is not possible to obtain the same material as that at the center of the steel plate at the end of the steel plate in the width direction. .
  • the four sides of the steel plate are cooled by cooling from the upper and lower surfaces of the steel plate (air cooling) in the rolling process, and the side surface of the steel plate is rolled. Since it is cooled by air (air cooling), the temperature is lower than that of the central part of the thick steel plate.
  • air cooling air cooling
  • the cooling is performed with a uniform cooling capacity over the entire surface of the thick steel plate, even before cooling, the four peripheral portions of the thick steel plate are already in the center of the steel plate. This temperature distribution is maintained even after cooling because it is supercooled
  • FIG. Figure 1 shows the relationship between the surface temperature of the steel plate and the heat flux when cooling the steel plate at a high temperature of 700 ° C or higher (extraction per unit area and unit time). (Transition of heat flux)). Film boiling occurs when the surface temperature of the steel plate is high, nucleate boiling occurs when the surface temperature of the steel plate is low, and transition boiling occurs in the intermediate temperature range. Has become. In the case of film boiling that occurs when the surface temperature of a steel plate is high, a vapor film is generated between the surface of the steel plate and the cooling water.
  • the cooling rate is faster in the hotter part of the steel plate, the cooling rate is lower in the colder part of the steel plate, and the deviation of the plate distribution before cooling is reduced.
  • the surface temperature of a thick steel plate with thermal properties is 0- , but film boiling occurs in the middle temperature range
  • the transition boiling state is a state in which nucleate boiling is mixed.
  • the heat flux cooling capacity
  • the higher the heat flux (cooling capacity) the higher the temperature distribution deviation in the thick steel plate before cooling.
  • the lower the temperature of the thick steel plate the better the temperature ⁇ cooling, and the greater the deviation in the temperature distribution after cooling.
  • the surface temperature Ttf at which film boiling shifts to transition boiling increases, and transition boiling starts in the initial stage of cooling. I do.
  • the cooling water flows in the outer peripheral direction at the upper part of the steel plate and falls from the end of the steel plate, as shown in Fig. 2. Therefore, at the edge portion A on the upper surface of the steel plate, in addition to the cooling water injected from the nozzle installed on the upper portion of the steel plate, the cooling water discharged to the end of the steel plate As the cooling water is cooled by cooling, the amount of water covered by the upper surface of the steel plate increases, and the cooling rate increases. This phenomenon does not occur because it falls.
  • the temperature of the four peripheral parts of the steel plate after cooling is lower than that of the central part of the steel plate.
  • the heat shrinkage (value of heat shrinkage) is large at the center of the high-temperature steel plate, and the heat shrinkage is small at the four rims of the steel plate. ⁇ stress) force is generated and the steel plate is distorted.o Even if the distortion is not generated, stress remains at the end of the steel plate and the steel plate is cut at the customer's edge.
  • the present invention includes the following two technical ideas.
  • FIGS. Fig. 4 shows that the temperature distribution in the width direction of the thick steel plate is made uniform at the beginning of the controlled cooling, and the controlled cooling thereafter uniformly cools the end of the steel plate and the center of the steel plate at the same cooling rate.
  • the amount of water is controlled by the shield at the end in the width direction of the thick steel plate in the initial stage of the controlled cooling, and the controlled cooling is normally performed in the center of the thick steel plate.
  • nucleate boiling cooling is performed in order to cool the thick steel plate at a cooling rate of ⁇ in the width direction. From Fig. 1, it can be seen that the deviation of the temperature distribution after cooling increases when the surface temperature of the steel plate during cooling is in the transition boiling region, but the temperature in the nucleate boiling region increases. The higher the temperature, the higher the cooling capacity (the higher the heat flux), so even if there is a deviation in the temperature distribution before cooling, the difference is reduced, and the widthwise end of the steel plate and the center of the steel plate are reduced. If the ijm. Degree distribution in the thick steel sheet before cooling is uniform as in the present application, there is no deviation in the temperature distribution in the thick steel sheet from the beginning. After cooling, cooling without deviation of temperature distribution is possible in principle.
  • cooling is performed in the nucleate boiling region.Cooling in this state is governed by the cooling water radiated from the nozzle, so the effect of cooling by water discharged from the end face force in the width direction of the steel sheet Is small.
  • a method of increasing the cooling pressure of the cooling water or increasing the cooling water mass density to reduce the momentum of the water by 13 ⁇ 4S is used.
  • a cooling nozzle with high water momentum such as a V-jet cooling nozzle
  • the slit jet cooling refers to cooling by injecting a high-speed water flow from a slit jet cooling nozzle having a slit-shaped cooling water injection port.
  • the momentum and cooling rate of the water are relatively high.
  • a cooling device that uses this slit jet cooling nozzle is called a slit jet cooling device.
  • the temperature distribution in the width direction of the steel plate after the controlled cooling becomes uniform.
  • FIG. 6 is a conceptual diagram of the control cooling device for a thick steel plate according to the first embodiment of the present invention.
  • a through-pass type control cooling device is used as the control cooling device 20 .
  • a pass-type control cooling device is a device that cools a plate while passing a thick steel plate through the control cooling device. And excellent controllability of temperature control. For example, in the case of a stop-type control cooling device, the injection of cooling water is stopped when the temperature of the steel sheet reaches a predetermined temperature.
  • the slab of the thick steel plate is rolled to a predetermined thickness by the plate rolling mill 1 and Then, it is transported on the roller table 3 and is cooled to a cooling stop temperature at a predetermined cooling rate by cooling passing through the control cooling device 20.
  • the control cooling device 20 is provided with an upper header 21 and a lower header 22 sandwiching the pass line of the thick steel plate 2 up and down, and a slit jet cooling nozzle for jetting high-pressure water to this.
  • the nozzles 23 and 24 are attached, and have a function of rapidly cooling the steel plate by extremely high pressure water that collides with the surface of the steel plate 2.
  • the inlet and outlet sides of the control cooling device 20 There are three sets of clothing, 31 and 32, so that the temperature of thick steel plates can be measured before and after controlled cooling.
  • FIG. 7 shows a detailed view of the control cooling device 20.
  • the control cooling device 20 is composed of a plurality of cooling zones. Each cooling zone is separated by a draining roll 27, and the cooling water can be adjusted individually. . These cooling zones are referred to as one zone and two zones ' ⁇ ' in order from the position close to the rolling mill.
  • the water density of the V-Site jet cooling nozzle was set to 1200 L / min so that the heat transfer state could be set to nucleate boiling and cooling could be performed at the same cooling rate over the end of the thick steel plate. m 2 or more is One Do the water flow can Ru equipment ⁇
  • the control cooling device 20 is divided into a front part 25 and a rear part 26.
  • the front part 25 of the control cooling unit is provided with a shielding member in each cooling zone, and a plate end in the width direction of the thick steel plate.
  • Fig. 8 which is a cross-sectional view of AA in Fig. 7, the lower part of the upper slit jet cooling nozzle 23, the width direction of the thick steel plate
  • a pair of left and right upper surface shielding members 28 are provided at locations corresponding to both ends, and
  • a pair of left and right lower surface shielding members 29 are provided at a position corresponding to both ends in the width direction of the thick steel plate at an upper portion of the slit-tonet cooling nozzle 24, and this is mounted on the thick steel plate 2 by the reverse mechanism 16. This is done by moving the product in and out in the width direction.
  • the upper and lower shielding members 28 and 29 are configured so that they can be moved in and out of the upper surface alone, the lower surface alone, and the upper and lower surfaces simultaneously.
  • the shielding members 28 and 29 installed in front of the control cooling device 20 can be independently moved in and out of each water cooling zone. For example, only one cooling zone is provided with the shielding member, Shielding members can be inserted in all cooling zones of ⁇
  • the first cooling step is After cooling with the cooling zone in the preceding stage restricting the amount of cooling water at the side edges in the width direction of the thick steel plate, and after matching the temperature in the width direction end of the thick steel plate with the temperature in the center of the steel plate
  • the cooling zone at the subsequent stage performs controlled cooling at the cooling rate of
  • the widthwise end of the steel plate before cooling is used.
  • the definition of the temperature drop distance is defined as the temperature drop distance from the position where the slope of 1 in the width direction of the steel plate becomes zero, in the width direction of the steel plate.
  • the amount of drop is defined as the temperature at the position where the temperature gradient of the steel plate in the width direction of the steel plate becomes zero, and the temperature at the end of the steel plate in the width direction.
  • the temperature drop amount and temperature drop distance defined by the difference vary depending on the thickness of the material before rolling, its heating conditions, the width and thickness of the steel plate after rolling, the product thickness, and the rolling completion temperature.
  • the ⁇ 1 drop at the end in the width direction of the thick steel plate is about 40 to 50 ° C
  • 'S ⁇ descent distance of the end portion is about 1 00 ⁇ 30 0 mm.
  • Separation may be measured by rolling-measurement (measurement value by parameter (.parameter) such as J material thickness, etc.), and may be made into a table in advance.
  • a scanning thermometer or the like may be installed so that the temperature distribution can be measured, and the value may be calculated using a computer.
  • the amount of movement of the shielding member can be determined by shielding the steel plate by the temperature drop distance at the end in the width direction of the thick steel plate as shown in Fig. 9.o Also, the number of cooling zones using the shielding member is 1210. "Showa, however, decides on the following 5.
  • the total cooling zone number ⁇ ⁇ which is the sum of the number of cooling zones before and after the control cooling device, and the target cooling start temperature and cooling end temperature ⁇
  • the calculated number of cooling zones is not necessarily an integer, but with this equipment, the upper surface shielding member or the lower surface shielding member can be shielded independently, so It is considered that control is possible in 5-zone units. For example, if the number of cooling zones is calculated as 1.4, it is sufficient to use 1.5 zones. Specifically, 1 zone is used.
  • the cooling water is almost cut off by the shielding member. It is better to set the condition near the air cooling at the end in the direction. This is because, as the temperature at the end of the steel plate in the width direction approaches the temperature at the center of the steel plate, the time required to equalize the temperature distribution between the center of the steel plate and the end of the steel plate in the width direction is increased. And the number of zones in which the shielding member is used increases. As a result, the amount of cooling on the downstream side of the control cooling device is reduced, and the advantage of the present invention is that the cooling rate at the end in the width direction of the thick steel plate coincides with the cooling rate at the center of the thick steel plate. These forces are difficult to obtain.
  • Fig. 11 shows the temperature distribution in the width direction of a thick steel plate before and after cooling when cooling was performed by the method described above in the example of the present invention.
  • the conditions were as follows: plate thickness 30 mm, plate width 3200 Controlled cooling was started at 750 ° C at the center of the width of
  • Cooling was completed at ° C. Before cooling, the temperature drop at the end in the width direction of the thick steel plate was 30 ° C, and the temperature drop distance at the end in the width direction of the steel plate was 200 mm.
  • the cooling device used in the embodiment of the present invention has the above-described configuration, the number of cooling zones is 10 and the cooling water density is 1800 L / min. m 2 was sprayed.
  • the number of zones used for the shielding member was calculated using the method described above, the number of zones used was 1.5.Therefore, the shielding member was used for both upper and lower surfaces in one zone, and the lower surface was used in two zones. A shielding member was used only for the part. The amount of movement of the shielding member depends on the temperature drop distance at the end in the width direction of the steel plate.
  • the shielding member was moved by 200 mm to a position where the end in the width direction of the thick steel plate was shielded.
  • the temperature drop at the end in the width direction of the thick steel plate which was 30 ° C before cooling, could almost disappear.
  • the test was also performed for the case where the shielding member was not used, but after cooling, the temperature drop at the end in the width direction of the thick steel plate was 60 ° C, and the temperature drop in the width direction of the thick steel plate was 60 ° C.
  • the same method as described above for the end of the thick steel plate in the width direction can be applied.
  • the control cooling device shown in Figs. 6 and 7 must be equipped with a thick steel plate with a controlled cooling zone as shown in Fig. 12. For example, when the passage of the tip of the steel plate 2 is detected by the photocell 17, and the timing for entering the divided cooling zone based on the detection time of the passage of the tip of the thick steel plate by the photocell 17 is used as a reference.
  • a timer (timer) T is set so that the flow control device 41 composed of a flow meter and a flow control valve starts to operate.
  • a three-way valve 42 is installed at the front of the control cooling device as shown in Fig. 13 to allow the cooling water to escape to the outside at the tip end of the steel plate.
  • a structure that can stop the cooling water injected from the nozzle may be used.o
  • the temperature drop at the leading end of the thick steel plate is about 40 to 50 ° C, and the temperature drop at the leading end of the thick steel plate is about 300 to 500 mm.oo
  • the leading end of the thick steel plate Part temperature
  • the amount of drop and the temperature drop distance at the end of the tip end of the thick steel plate are measured by parameters such as the plate thickness of the rolled material and the values are analyzed.
  • a running thermometer ⁇ a surface thermometer with a spot temperature of 10 ⁇ I ⁇ so that the longitudinal temperature distribution of the thick steel plate can be measured, and the value is calculated by a computer. I don't care
  • the steel plate is cooled normally at the center in the longitudinal direction of the steel plate, and at the tail end in the longitudinal direction of the steel plate, the cooling water amount is By limiting the temperature, the temperature at the central part in the longitudinal direction of the thick steel plate and the temperature at the tail end in the longitudinal direction of the heavy steel plate are made to match each other so that the temperature becomes as low as possible.
  • the same concept as the use of the shielding member in the width direction of the thick steel plate can be applied. For example, in order to compensate for the temperature at the temperature drop at the longitudinal end of a thick steel plate, as shown in Fig. 15, a controlled cooling device is used.
  • the number of timers should be 3 so that the village control device 41 operates to stop the cooling water (the state shown in Fig. 16B). In the same way as the control method in the width direction of the board, it is determined as follows.
  • One zone equals the number of zones nL that can cool the central part of the longitudinal direction of the thick steel plate by the temperature drop EDL at the tip of the thick steel plate or at the tail end of the thick steel plate before cooling. From the amount of cooling.
  • the calculated number of cooling zones is not always an integer.
  • the number of cooling zones is calculated as 1.4, for example, one zone that is a close integer is used. This is different from the control of the width direction of a steel plate.For example, when cooling water is applied only to the upper surface of the steel plate, the steel plate warps due to the temperature difference generated between the upper and lower surfaces of the steel plate. Although there is a risk of occurrence, such a warp of the longitudinal end of the thick steel plate is preferable because it is difficult to correct it in a correction process such as a roller leveler performed later. Absent.
  • the equipment length of each cooling zone is made as short as possible, and the longer the number of cooling zones, the longer the length of the thick steel plate becomes.
  • the temperature controllability at the tail end in the direction is improved.
  • This is the same as controlling the thickness of a steel plate in the width direction.
  • the time required to equalize the length of the central part of the thick steel plate in the longitudinal direction and the longitudinal end of the thick steel plate becomes longer, and the number of water cooling zones where flow control is performed also increases. More. As a result, the amount of cooling on the downstream side of the control cooling device is reduced.
  • the effect of the present invention is that it is difficult to obtain a measure in which the cooling speed at the longitudinal end portion of the thick steel plate and the central portion of the thick steel plate in the longitudinal direction are difficult to obtain.
  • the same temperature control as that at the end of the thick steel plate in the width direction can be applied to the temperature drop portion at the end of the thick steel plate in the longitudinal direction. Cool to the right temperature
  • the number of zones used by the shielding member is controlled, and the length of the thick steel plate is controlled.
  • the number of cooling zones that control the flow rate of water at the longitudinal end of the thick steel plate is controlled to eliminate the downward descent at the tail end in the hand direction. It is possible to control the tail end of the steel plate in the longitudinal direction independently. For this reason, for example, the
  • FIG. 17 is a conceptual diagram of a control cooling device for a thick steel plate according to a second embodiment of the present invention.
  • the hot-rolled steel plate 2 is transported on the roller table 3 and is sequentially conveyed to the pre-cooling device 10 and the control cooling device 20, where it is cooled to a cooling stop temperature at a predetermined cooling rate.
  • the pre-cooling device 10 is a cooling device of the control cooling device HX [S.S.] in order to achieve the first cooling step of the present invention.
  • Laminar flow cooling is a method in which a laminar flow (laminar flow) generated when the water flow is slow is used to form a water film on the surface of a thick steel plate and cool it. The cooling rate is relatively small.
  • a cooling device that uses laminar flow cooling is called a laminar flow cooling device.
  • the control cooling device 20 includes an upper header 21 and a lower header 122 sandwiching the pass line of the thick steel plate 2 above and below.
  • Slit jet cooling nozzles 23 and 24 that eject water are installed, and have the function of rapidly cooling steel plates by extremely high pressure water that collides with the surface of the steel plates.
  • the control cooling device 20 is composed of a plurality of cooling zones as shown in FIG. 7, and each cooling zone is separated by a draining roll 27 (not shown).
  • the cooling water density can be adjusted individually. These cooling zones are referred to as one zone and two zones in order from near the rolling mill.
  • the water flow rate is in the nucleate boiling state, Ni Let 's that can cooled with Wataru connexion uniform cooling rate in the end portion of the steel plate, and has a 1 200 L / min. M 2 or more water flow can Ru facilities.
  • thermometers 30, 31, 32 are installed on the inlet side of the pre-cooling device and the inlet and outlet sides of the control cooling device, so that the temperature of thick steel plate can be measured before and after cooling. .
  • the pre-cooling device 10 having these laminar-flow cooling devices and the slit jet cooling nozzle cooling device are provided.
  • Control cooling device 20 with cooling device is also used.
  • the pre-cooling device having a runner cooling device the cooling water amount at both ends in the width direction of the thick steel plate 2 and the leading end of the thick steel plate is controlled. The adjustment of the cooling water amount is shown in Fig. 18 as A in Fig. 17
  • the case of the first stage of the control cooling device in the first embodiment is replaced with a spare 10 to replace 7 L.
  • the temperature distribution in the width direction of the thick steel is made uniform, and the control cooling device 20 is used.
  • the control cooling device 20 is used.
  • it is a technique of cooling at the same cooling rate from the widthwise end of the thick steel plate to the center in the widthwise direction of the thick steel plate.
  • the temperature drop at the end of the thick steel plate in the width direction is 40 to 50.
  • the control method is As in the case of the first embodiment Hp described above, the use zone of the shielding member may be implemented before the preliminary cooling device. The number of zones used by the shielding member is determined by using the entire length of the cooling device. Also good,
  • the measured values may be analyzed and tabulated in advance, or a surface thermometer such as a traveling thermometer may be installed before the control cooling device so that the temperature distribution over the entire surface of the steel plate can be measured.
  • the value may be calculated by a calculator.
  • the central part of the thick steel plate in the width direction is cooled at all times.
  • the center of the steel plate in the width direction and the ends of the steel plate in the width direction should be restricted so that the air-cooling state is as close as possible.
  • the amount of movement of the shielding member should be limited by the temperature drop distance at the end of the plate in the width direction of the thick steel plate in Fig. 9.
  • the cooling time required for cooling by the pre-cooling device 10 is calculated only for the temperature drop at the end in the width direction of the thick steel plate before cooling, and the passing speed is calculated from the BX length and the cooling time. I'll decide In addition, the calculation can be performed more easily than in the first embodiment. Also, unlike the first embodiment, since the cooling time can be controlled continuously instead of controlling the number of cooling zones in 0.5 zone units, the temperature distribution in the width direction of the thick steel plate can be controlled. This makes it possible to increase the uniformity of the image.
  • the cooling water density is, 1 00 L / min. M on 2 or more, 500 L / min. M 2 or less of favored arbitrary to keep in range.
  • a cooling system with a high momentum specifically, use a cooling nozzle with a slit jet type of 1,200 L / min.m 2 or more).
  • this pre-cooling device cannot achieve the same cooling rate from the end in the width direction of the steel plate to the center in the width direction of the steel plate, but in the first place, the end in the width direction of the steel plate
  • the temperature drop of the part is very small, 40 to 50 ° C, and the temperature in the width direction of the thick steel plate before control cooling in the high temperature range where the material is not determined may be equalized. Therefore, the heat transfer characteristics in the film boiling region in FIG. 1 where the amount of water is low and the surface temperature is high are applied.
  • the cooling capacity heat flux
  • the cooling capacity heat flux
  • the higher the temperature in the film boiling region the higher the cooling capacity (heat flux).
  • the deviation of the temperature distribution in the width direction of the steel plate before cooling does not increase. Therefore, if the pre-cooling device is controlled so that it can be cooled by film boiling, it is possible to prevent overcooling of the plate end of the thick steel plate due to the change in the boiling state. It is. Therefore, it is only necessary to consider the supercooling caused by the increase in the water volume due to the drainage at the end of the steel plate, and the temperature distribution in the width direction of the steel plate can be relatively easily made uniform.
  • cooling capacity (heat flux) of film boiling is low in the first place, it is possible to control the cooling at a temperature drop of 20 to 30 ° C at the end of the thick steel plate with good control.
  • cooling water density of the pre-cooling device 10 100L / min. M 2 or more, if 500L / min. M 2 or less, Ru can realize a stable film boiling.
  • water cooling such as spray cooling, mist cooling, laminar flow cooling, etc. It is preferable to use one with low momentum.
  • the adjustment of the amount of cooling water at the leading end of the steel plate is the same as that described in the first embodiment, and the water flow is cut off when passing through the leading end of the steel plate in the longitudinal direction.
  • Cut off Specifically, it is as shown in Figure 19. That is, the upper header 11 of the laminar flow cooling device 10 is divided (in the example of FIG. 19, 11a to lid are divided into four parts). For example, the tip passage in the longitudinal direction is detected by the photocell 17, for example. Then, the timers T1 to T4 are set so that the divided upper header starts operating based on the detection time of the passage of the longitudinal end of the thick steel plate by the photocell 17 as a reference. set.
  • the upper header 11 operates according to the progression stage of the thick steel plate shown in FIG. 19, so that the water cooling at the distal end in the longitudinal direction of the thick steel plate is eased.
  • the cooling water injection timing by the timer is the same as in the first embodiment, based on the temperature drop length at the longitudinal end of the steel plate measured beforehand or before pre-cooling.
  • the same control as described in the first embodiment Just do it.
  • the adjustment of the amount of cooling water at the tail part in the longitudinal direction of the thick steel plate may be performed as shown in FIG. 20 in the same manner as described above. Can be realized by the same method as the first embodiment of the present invention.
  • cooling water is cut off at the longitudinal end of the thick steel plate as described in _t ID.
  • a shielding member is placed at the end of the steel plate in the width direction. Cooling water
  • the area is limited, and only the center in the width direction is cooled and
  • the cooling water at the end in the width direction of the thick steel plate extends over the entire length of the pre-cooling device, although it is possible to make the cooling water uniform.
  • a plurality of cooling zones are provided even in the pre-cooling device.
  • a method of controlling the amount of cooling water at the plate edge in the width direction of the thick steel plate before the pre-cooling device, and equalizing the temperature distribution in the width direction of steel and & In the following control cooling system
  • the former method it is impossible to continuously adjust the cooling time by controlling the number of cooling zones of the pre-cooling device, and the uniformity of the high-precision wording distribution in the width direction of the thick steel plate is completely achieved. Defects that cannot be enjoyed ⁇ 3; up to uniform temperature distribution in the longitudinal direction of steel plate If the temperature drop at the leading and trailing ends of the thick steel plate is larger than the temperature drop at the end in the width direction of the thick steel plate, the width of the thick steel plate At the center in the direction and in the longitudinal direction, cooling must be performed in accordance with the end of the tip where the temperature drop is large. For this reason, one plate is lower than when the temperature distribution in the width direction of the thick steel plate is made uniform.
  • control cooling must be performed from nos. However, from the viewpoint of material quality, control cooling must be started. When controlled cooling from iS ⁇ , ferrite transformation occurs before controlled cooling.
  • Either or both may be implemented according to the features of (1).
  • the first embodiment can be adopted.
  • the second embodiment should be used.
  • the straightening machine 30 can be installed in front of the control cooling device 20. Further, in the second embodiment, a straightening machine 30 can be installed between the pre-cooling 3. la. 10 and the control cooling device 20 as shown in FIG. 21. . Before cooling If the flatness of the steel plate is poor, the distance between the nozzle and the steel plate changes depending on the position of the steel plate, and the temperature uniformity may be slightly worse. If the shape of the steel sheet is corrected, controlled cooling can be performed more uniformly, and uniformity of the material and flatness of the product steel sheet can be easily ensured. Note that, if the 3 ⁇ 4 ⁇ main machine 30 is further provided on the rear side of the control cooling device 20, the force s can be obtained.
  • the shielding member used in the present invention is a block-type plate; fx gutter-shaped plate as long as it shields the widthwise end of the thick steel plate from water from nozzles and the like. Any shape such as (cana li cu ated type) may be used, but since it always receives high-pressure water, a highly rigid structure composed of corrosion-resistant material is desirable. In addition, if a shielding plate is used, which is most preferable because of the convenience of preparation and handling of the shielding member, the size should be slightly longer than the maximum temperature drop distance at the edge of the shielding plate. .
  • the length should be about 400 mm from 0 mm force.
  • the cooling water used in the production line often contains corrosive substances such as elemental steel, so that corrosion of stainless steel or the like can be prevented by using steel materials or steel sheets. It is more preferable to use anti-corrosion coating or carbon steel sheet coated with zinc chrome, etc.
  • Table 1 shows the operating conditions in the case of controlled cooling by), and Table 2 shows a comparison of the effects.
  • the conditions for the treated steel sheet were a steel sheet with a thickness of 25 mm, a width of 3800 mm, and a length of 25 m.
  • Control cooling was started at 750 ° C at the center of the width of the thick steel sheet, and cooling was performed at 550 ° C. finished.
  • the strength level of the steel plate is 490MPa class, and the allowable range is 490 to 610MPa.
  • the temperature drop at the end in the width direction of the steel plate in Fig. 9 is 30 ° C
  • the temperature drop distance at the end in the width direction of the steel plate is 200mm
  • the temperature drop at the leading end in the direction is 50 ° C, and the temperature drop at the leading end in the longitudinal direction of the thick steel plate is 500 mm.
  • the shielding members hereinafter, referred to as shielding plates
  • the shielding plates used for the control cooling device were, as shown in FIGS. 25 and 26, four upper and lower members for each cooling zone.
  • a Zn-Ni steel plate with a length of 300 ⁇ ⁇ ⁇ ⁇ 350 mm and a thickness of 7 ixL m was used.
  • the cooling water cut off by this shielding plate is set at an angle of 15 ° with respect to the horizon so that the cooling water does not fall again toward the steel plate.
  • the shielding member used for the pre-cooling device was aruru.
  • ⁇ ⁇ -Ni plated steel sheet is processed into an L-shaped shielding member (length 10m x width 350m mx thickness 7m m X i3 ⁇ 4 50mm) Installed.
  • the length of the shielding member is extremely long, and there is a risk that the shielding member may cause 7 buckling due to its own weight.
  • m 27 should be used to secure the rigidity of the shielding member.
  • the L-shape was machined and the ribs were attached at intervals of 500 mm, and the vertical plate came inward in the width direction. This The purpose of this is to shield the end of the thick steel plate so that the cooling water blocked by the shielding member does not fall toward the thick steel plate.
  • Inventive Example 1 is an example corresponding to Embodiment 1, and cooling was performed using the apparatus described with reference to FIGS. Detailed control conditions will be described with reference to FIG.
  • the number of cooling zones is 15 zones, the equipment length per zone is 1. ⁇ , and the total length of the control cooling device is 15m. Further to 1500L / min. M 2 injects cooling water density in each zone, this's and Kino cooling rate is about 30 ° C / s.
  • the amount of movement of the shielding member is such that the cooling water can be shielded by 200 mm from the end in the width direction of the steel plate because the temperature drop distance at the end in the width direction of the steel plate is 200 mni.
  • the flow control in the longitudinal direction of the thick steel plate was performed by the flow control device as shown in Fig.12.
  • the cooling water is injected in the state shown in Fig. 15B after entering the cooling device by a distance.
  • Invention Example 2 is another example corresponding to Embodiment 1, and the cooling water flow density was 1200 L / min. M 2 .
  • the conditions other than the cooling water density are the same as in Invention Example 1.
  • Inventive Example 3 is an example corresponding to Embodiment 2, in which the apparatus described with reference to FIG. 17 is first cooled by the pre-cooling device 10 to obtain the temperature distribution of the thick steel plate in the width direction. After making the deviation uniform, cooling was performed by the control cooling device 20 to make the deviation of the temperature distribution at the end of the thick steel plate in the longitudinal direction uniform.
  • the pre-cooling device 10 in FIG. 17 has a facility length of 10 m and a cooling water volume density of 100 L / min. M 2 , and the cooling rate at this time is about 4 ° C / s.
  • the longitudinal end of the thick steel plate enters the length of the longitudinal end of the thick steel plate by the temperature drop distance (500mm) and then cools down sequentially. We sprayed water.
  • the amount of movement of the shielding member is such that the cooling water can be shielded by 200 mm from the widthwise end of the thick steel plate since the temperature drop distance at the end of the thick steel plate in the width direction is 200 ⁇ .
  • the required number of zones was 1.8 zones at 20 ° C / 11.3, so we implemented from 1 to 2 zones.
  • the tip of the plate in the longitudinal direction As shown in Fig. 15A, it waits at first without cooling water injection as shown in Fig. 15A, and the temperature at the tip of the plate in the longitudinal direction is shown in Fig. 15A.
  • the cooling water After entering the cooling device for a descent distance (500 mm), the cooling water is injected at the state shown in Figure 15B.
  • Inventive Example 4 is an example in which a straightening machine is installed between the preliminary cooling device and the control cooling device in Embodiment 2, and the cooling conditions are the same as those of Invention Example 3.
  • Comparative Example 2 uses the same equipment as Invention Example 2 to cool at the same passing speed in the pre-cooling device and the control cooling device, but to control the temperature at the end in the width direction of the thick steel plate. This is an example in which the flow rate control for controlling the temperature at the end of the longitudinal end of the shield member and the thick steel plate is not performed.
  • Comparative Example 3 the same equipment as in Invention Example 2 was used, and only the pre-cooling device was used.However, the amount of water at the end of the plate in the width direction and the end of the plate in the longitudinal direction was measured. This is an example when control is not performed.
  • pre-cooling device 10 in FIG. 1 7 is cooled water density in equipment length 1 0 m is 500 L / min.
  • the cooling rate at this time is 14.
  • the cooling time required to pass and cool the steel plate from 750 ° C to 550 ° C is 14.3 sec. Therefore, the pre-cooling device was passed at a passing speed of 42 mpm. This is the reason why the cooling rate is increased by increasing the amount of water compared with the pre-cooling device of Invention Example 3, but since the material is produced only by the pre-cooling device, the cooling speed is high. Was set higher. At this time, no water flow control was performed at the end of the thick steel plate in the longitudinal direction, and no shielding member was used in the width direction of the thick steel plate.
  • Comparative Example 4 uses the same equipment as Invention Example 3 and is the same as Comparative Example 3.Cooled only by the pre-cooling garment, but the widthwise end of the thick steel plate and the longitudinal end of the thick steel plate An example of the case where the water amount control of the section is performed will be described. In this example, cooling is performed at the same passing speed and cooling water density as in Comparative Example 3. Also, the amount of movement of the shielding member
  • the s-ru was set so that the cooling water was shielded by 200 mm from the end of the thick steel plate in the width direction.
  • the longitudinal end of the thick steel plate enters the longitudinal end of the thick steel plate by the temperature drop distance (500mm), and then in order. Cooling water was sprayed.
  • Comparative Example 5 uses the same arrangement as that of Invention Example 1, except that the end portion in the width direction of the thick steel plate and the end portion in the longitudinal direction of the thick steel plate over all the cooling zones of the control cooling equipment.
  • An example in the case where the water amount control is performed will be described. In this example, the same threading speed and Cooling is performed at the cooling water density, but the water content of the shielding member and the tail end of the thick steel plate in the longitudinal direction was adjusted for all cooling zones. The amount of movement of the shielding member was the temperature of the plate edge in the width direction of the thick steel plate.
  • the descent distance is 200 mm, it is set so that the cooling water at the end of the plate in the width direction of the steel plate can be blocked for all cooling zones 200 mm from the end of the plate in the width direction of the plate. did.
  • the cooling steel plate is kept on standby without cooling water, as shown in Fig. 15A.
  • the cooling water has entered the cooling device by the temperature drop distance (500 mm) of Fig. 15 B. Cooling water is injected in Fig. 15B.
  • the control shown in Fig. 16 was performed on the tail end of the steel plate in the longitudinal direction.
  • the end in the width direction of the steel plate is defined as shown in Fig. 9.
  • the temperature drop distance is defined as the distance from the position where the temperature gradient of the steel plate in the width direction of the steel plate becomes zero to the edge of the steel plate in the width direction
  • the temperature drop amount is the thickness It is defined as the difference between the temperature at the position where the steel sheet temperature gradient in the width direction of the steel sheet becomes zero and the temperature at the end of the steel sheet in the width direction. Therefore, if the temperature at the end of the steel plate in the width direction is lower than the temperature at the center of the steel plate, the temperature becomes a positive value, and the temperature at the end of the steel plate in the width direction becomes the center of the steel plate.
  • the end in the longitudinal direction of the thick steel plate is defined as shown in Fig. 14 and is the same as that defined by the temperature drop in the width direction and the temperature drop distance in the width direction of the thick steel plate.
  • FIG. 22 is a diagram for explaining the removal of a thick steel plate after cooling.
  • Specimen 51 of the thick steel plate cut at a position of 150 mm from the longitudinal end and tail end of the steel plate 51, and the tail material 54 of the thick steel plate and the width and thickness of the thick steel plate From sample 53 at the center in the longitudinal direction of the steel sheet, Cut out the pull and measure the tensile strength.
  • the strength of the end of the thick steel plate is determined by the tensile strength of a test piece cut out from the end of the sample at a distance of 100 mm from the end of the sample at the center in the width direction and the longitudinal direction of the thick steel plate. was measured.
  • FIG. 23 shows the stripping position in the width direction of the thick steel plate and the measuring position for the camber measurement specimen.
  • the strip was cut at a position 300 mm from the end of the thick steel plate, and the maximum bending of the strip that was cut into strips at that time was set to • 9 as the width-direction crossover member.
  • Fig. 24 shows the cutting position of the test piece for measuring the camber in the longitudinal direction of the thick steel plate and the measuring position of the camper.
  • the strip is cut at a position 300 mm from the tail end in the longitudinal direction of the thick steel plate, and the maximum bending amount of the thick steel plate cut into a book at that time is determined by the longitudinal bend member.
  • the tensile strength of the thick steel plate is also approximately equal to the longitudinal end of the thick steel plate, the widthwise end of the thick steel plate, and the center of the thick steel plate in the longitudinal and width directions.
  • the end of the thick steel plate in the width direction and the end of the thick steel plate in the longitudinal direction are different from each other.
  • the temperature distribution in the plate surface of the thick steel plate is changed in the width direction and the thickness of the steel plate. It is possible to make the steel plate uniform over the entire area in the longitudinal direction of the steel plate, and to perform controlled cooling of a thick steel plate having a large cooling rate as a whole. As a result, it has become possible to ensure uniformity of the material in the width direction and the longitudinal direction of the steel plate, and to reduce distortion and residual stress during cooling.
  • Use zone (mpm) (width ⁇ center of length) center)

Abstract

A controllable cooling method for a hot rolled thick steel plate, a thick steel plate manufactured by the controllable cooling method, and a cooling device for the thick steel plate. Specifically, the controllable cooling method for the thick steel plate, the method wherein the temperature distribution of the thick steel plate in the lateral direction is uniformized before or at the beginning of the controllable cooling, and the entire part of the thick steel plate in the lateral direction is cooled by the controllable cooling device at a same cooling rate.

Description

明細書  Specification
厚鋼板の制御冷却方法、 その制御冷却方法で製造された厚鋼 板及びその冷却装置 技術分野 TECHNICAL FIELD The present invention relates to a controlled cooling method for a thick steel plate, a thick steel plate manufactured by the controlled cooling method, and a cooling device therefor.
本発明は熱間圧延を完了 した厚鋼板(steel plate)の制御冷 却方法 (accelerated control cooling system)、 その制御冷 却方法で製造された厚鋼板及びその冷却装置に関する も ので め 。 背景技術  The present invention relates to an accelerated control cooling system for a steel plate that has been hot-rolled, a steel plate manufactured by the controlled cooling method, and a cooling device for the steel plate. Background art
厚鋼板の製造において、 鋼板に要求される機械的性質、 特 に強度と靭性を確保する ため、 圧延後の厚鋼板には冷却速度 が大き い制御冷却が行われる場合がある。 制御冷却と は、 熱 間 圧延 後 、 オ ー ス テ ナ イ ト (austenite) か ら フ ェ ラ イ ト (ferrite)への変態温度領 ^transformation range)を急速に 冷却 して変態組織を制御 して、 鋼の結晶組織を調整し、 目 的 と する機械的性質等の材質を得る技術である。 また、 同時に 厚鋼板全体の材質の均一性を確保し、 冷却後の厚鋼板の歪み (strain)の発生を抑制するために冷却が厚鋼板面全体にわた つて均一に行われる こ と が必要である。 一方、 現状の制御冷 却 技術 で は 、 冷却 後 の 厚 鋼 板 の 四 周 部 (four periphery zones)が厚鋼板の中央部 と 比較 して過冷却 (supercooling)の 状態 と な り 、 厚鋼板面全体が、 均一に冷却がな されていない のが実態である。  In the production of thick steel sheets, controlled cooling with a high cooling rate may be performed on the rolled steel sheets in order to secure the mechanical properties required for the steel sheets, especially strength and toughness. Controlled cooling means that after hot rolling, the transformation structure is controlled by rapidly cooling the transformation temperature range (transformation range) from austenite to ferrite (ferrite). This is a technique for adjusting the crystal structure of steel to obtain the desired material such as mechanical properties. At the same time, it is necessary that the cooling be performed uniformly over the entire surface of the steel plate in order to ensure the uniformity of the material properties of the entire steel plate and to suppress the occurrence of strain of the steel plate after cooling. is there. On the other hand, in the current controlled cooling technology, the four periphery zones of the thick steel plate after cooling are in a supercooling state compared to the central part of the steel plate, and the surface of the steel plate is cooled. The fact is that the whole is not cooled uniformly.
こ の よ う な要求に応えるために、 特開平 10- 58026号公報に は、 冷却水を、,鋼板の搬送方向に対して所定の角度をな し、 鋼板の幅方向に対しては所定の間隔をもった平行な複数個の 高 の水膜と して鋼板表面に衝突させた技術が開示されてい る そ して 、 衝突後の冷却水は衝突域を境に して均等に左右 に分かれて鋼板表面に沿つた流水域を形成し、 かつ、 衝突域 の端部は 、 鋼板の搬送方向から見て互いに重ならずに連続す · In order to meet such demands, Japanese Patent Application Laid-Open No. H10-58026 discloses that cooling water is formed at a predetermined angle with respect to the conveying direction of the steel sheet and at a predetermined angle with respect to the width direction of the steel sheet. Several parallel, spaced There is disclosed a technology in which a high water film collides with the steel sheet surface, and the cooling water after the collision divides equally into the left and right sides of the collision area and flows along the steel sheet surface along the steel sheet surface. The ends of the collision zone are formed so as not to overlap with each other when viewed in the transport direction of the steel sheet.
る よ フ に配置して冷却する、 高温鋼板の冷却方法が提案され てレ、 る ο Cooling method for high-temperature steel sheets has been proposed, which is arranged and cooled in a horizontal direction.
また 、 特開平 6 - 1 84623号公報 (特許第 2698 305号公報) 1こ ίま Japanese Patent Application Laid-Open No. 6-184623 (Japanese Patent No. 2698305)
、 仕上圧延され 、 圧延波を矯正された厚鋼板を冷却する方法 と して 、 制御冷却装置の入側に設けた高い冷却能力を有する As a method of cooling a thick steel plate that has been finish-rolled and the rolling wave has been corrected, it has a high cooling capacity provided on the entry side of the control cooling device.
ヽ、、  ヽ ,,
ス ク 卜ンェ ク 卜 ( s l i t j e t )冷却ノ ズルから高圧水流を厚鋼 板に対して斜めに噴射し、 厚鋼板の幅方向の両端部への水流 を遮蔽する手段が提案されている o A means has been proposed in which a high pressure water flow is injected obliquely from a cooling nozzle into a thick steel plate to block the water flow to both ends in the width direction of the steel plate.o
また 、 特開昭 6 1 - 2 1 94 1 2号公報 ί; ::は、 圧延熱鋼板の冷却前の 鋼板の幅方向の 皿曰度分布を測定し 、 この測定結果から該熱鋼 板 の幅方向の水 i ^分 ¾をィ梟异する。 ついで該熱鋼板の直前 に冷却した先行熱鋼板の冷却後の温度データ を用いて前記演 算水量分布を捕正し、 該補正演算冷却水量分布に基づいて熱 鋼板の幅方向注水量分 •rfj する こ と を特長とする熱鋼板 の均 冷却方法が提案されている o  In addition, JP-A-61-219412 discloses 曰; :: is to measure a plate width distribution in a width direction of a rolled hot steel sheet before cooling the steel sheet, and from the measurement results, The water in the width direction is removed. Next, the calculated water flow distribution is corrected using the temperature data after cooling of the preceding hot steel sheet cooled immediately before the hot steel sheet, and the water injection amount in the width direction of the hot steel sheet is calculated based on the corrected calculation cooling water distribution. O A method for uniform cooling of hot steel sheets has been proposed.
また、 特開昭 5 8 - 325 1 1号公報には 、 熱間圧延後の厚鋼板の 上面及ぴ下面に冷却水を衝突させ 、 W1 Η己厚鋼板の端部を遮蔽  Also, Japanese Patent Application Laid-Open No. 58-32511 discloses that cooling water impinges on the upper and lower surfaces of a hot-rolled thick steel plate to shield the end of the W1 steel plate.
e.~  e. ~
樋によ り遮蔽して 、 Wi記厚鋼板の端部に上面冷却水流が直接 衝突する こ と を防ぎなが ら、 刖記厚鋼板を冷却する技術が、 開示されている そして 、 刖記厚鋼板の板幅、 上下面冷却水 且 A technique for cooling the thick steel plate while shielding it with a gutter to prevent the upper surface cooling water stream from directly colliding with the end of the thick steel plate has been disclosed. Steel width, upper and lower cooling water and
虽、 及び冷却開始時の目' 曰 目, and eyes at the start of cooling
j Bし 鋼板の板幅方向の ^ 度分布に基 づレ、て冷却終了時に目 U記厚鋼板の幅方向に均一な温度分布が 得られる よ う なヽ BU記遮蔽樋によ る刖 己 J 鋼 feの端部の遮蔽 幅を演算する ο かく して れた演算結杲に基づいて前記遮 蔽幅が得られる よ う に前記遮蔽樋の位置を制御する こ と を特 長とする厚鋼板の冷却方法が提案されている。 j At the end of cooling, a uniform temperature distribution can be obtained in the width direction of the thick steel plate based on the distribution of the degrees in the width direction of the steel plate. Calculate the shielding width at the end of J steel fe ο Based on the calculated result There has been proposed a method of cooling a thick steel plate characterized by controlling the position of the shielding gutter so as to obtain a shielding width.
上述の 4つの特開平 10- 58026号公報、 特開平 6- 184623号公 報 (特許第 2698305号公報) 、 特開昭 61- 219412号公報およぴ 特開昭 58- 32511号公報に開示された手段は、 いずれにおいて も冷却の際、 厚鋼板の板幅方向の端部で過冷却される現象を 防止する ものである あ 禾王度その効果を見込むこ と がでぎ る ものであるが、 なお厚鋼板全体を均一に冷却する点に い て問題が残されている。 これらの発明の技街思想は冷却 又/ 及ぴ冷却中に厚鋼板の幅方向の端部に発生する過冷却を 冷 却中において厚鋼板の幅方向の端部のみ冷却速度を遅く して4 of JP-A-10 58 026 discloses the above, JP-A 6 184 623 No. Gazette (Patent No. 269830 5 JP), JP 61- 219412 discloses Contact Yopi Sho 58- 32511 No. disclosed in Japanese These measures are intended to prevent the phenomenon of overcooling at the end in the width direction of the thick steel plate during cooling in any case, and it is possible to anticipate the effect. However, there still remains a problem in cooling the entire steel plate uniformly. The technical idea of these inventions is that the supercooling that occurs at the widthwise end of the steel plate during cooling and / or cooling is performed by slowing down the cooling rate only at the widthwise end of the steel plate during cooling.
、 冷却後の厚鋼板の幅方向の 度分布を均一化する技術であ る。 そのため、 これらの提案によ る と きには、 厚鋼板の板面 内の温度分布を均一にするためにある程度冷却速度を犠牲に する必要があ り 、 材質の向上の隙路(bottle neck) tこなって ヽ る。 さ らに、 これらの提案では 、 圧延途中の中間圧延材の先 尾端部 (top and t ail end)に至る温度の均一性を確保する とができず、 冷却後に歪みを発生するおそれもある。 また 後述する よ う に膜沸騰 (film bo iling)や遷移沸騰(trans it ion boiling)など冷却中の伝熱形 の変化について考慮していな いため、 厚鋼板の板端部の冷却速度を制御する こ と が難し <This is a technology to equalize the degree distribution in the width direction of a cooled steel plate. Therefore, according to these proposals, it is necessary to sacrifice the cooling rate to some extent in order to make the temperature distribution in the plate surface of the thick steel plate uniform, and to improve the material quality (bottle neck). t this. Furthermore, these proposals cannot ensure uniformity of the temperature at the top and tail ends of the intermediate rolled material during rolling, and may cause distortion after cooling. . In addition, as described later, changes in the heat transfer type during cooling, such as film boiling and transition boiling, are not taken into account, so the cooling rate at the end of the thick steel plate is controlled. Difficult to do this <
、 板厚や冷却開始温度、 冷却終了温度、 冷却水量等がある特 定条件では調整できたと してあ 、 冷却条件が変化した場 に 調整できない場合も多く 、 これに関する具体的な記述も ^jjj*-レヽ ため、 実際の操業は困難である It is assumed that the plate thickness, the cooling start temperature, the cooling end temperature, the cooling water amount, etc. could be adjusted under certain conditions.However, in many cases, it was not possible to adjust when the cooling conditions were changed. * -Ray, actual operation is difficult
また、 特開昭 61 — 15926には 熱鋼板を複数のロ ールで上下 面から押しなが ら注液冷却 (water flow cooling) する方法 において、 ロール間毎の上方及び/又は、 下方に配置したへッ ダ一に、 任意に開閉時間を制御でき る遮断弁を設けた技術が 開示されている。 更に該熱鋼板の通過位置の検出手段と冷却 開始前の該熱鋼板の長手方向の温度プロ フ ィ ールを検出する 手段な らびに冷却演算制御手段を設け、 移動中の該熱鋼板の 先端部及び/又は後端部が通過しよ う とする位置に相当するへ ッダ一の遮断弁を開閉制御する こ と を特長とする熱鋼板の冷 却方法が提案されてレヽる,。 しかし、 特開昭 61 - 15926公報では 冷却の際、 厚鋼板が長手方向の先尾端部で過冷却される現象 を防止する ちのであるが、 これらの提案では、 圧延材の幅方 向の中央部で i?服度の均一性を確保する こ と ができず 、 冷却 後の歪みや鋼板の端部における応力の残 を回避する手段が ない。 Japanese Patent Application Laid-Open No. 61926/1986 discloses a method of cooling a hot steel sheet by water flow cooling while pressing the steel sheet from above and below with multiple rolls. Heh Japanese Patent Application Laid-Open No. H11-139,086 discloses a technique in which a shutoff valve capable of arbitrarily controlling the opening and closing time is provided. Further, a means for detecting a passing position of the hot steel sheet, a means for detecting a temperature profile in a longitudinal direction of the hot steel sheet before the start of cooling, and a cooling operation control means are provided, and a tip of the hot steel sheet during movement is provided. A method for cooling a hot steel plate, characterized by controlling the opening and closing of a header shut-off valve corresponding to the position where the part and / or the rear end is about to pass, has been proposed. However, in Japanese Patent Application Laid-Open No. 61-15926, it is intended to prevent a phenomenon in which a steel plate is overcooled at the end portion in the longitudinal direction during cooling.However, in these proposals, the width of the rolled material is reduced. I in the center The uniformity of clothing cannot be ensured, and there is no means for avoiding distortion after cooling and residual stress at the end of the steel sheet.
また、 特開平 11-267737号公報には、 熱間圧延された高温の 鋼板を制御冷却して鋼ネ を製造する鋼板の製造方法が開示さ れている。 そ してゝ 粗圧延機 (roughing mill)と仕上圧延機 Further, Japanese Patent Application Laid-Open No. 11-267737 discloses a method of manufacturing a steel sheet by manufacturing a steel sheet by controlling and cooling a hot-rolled high-temperature steel sheet. Roughing mill and finishing mill
(fin i shing mill)の 1曰コ ^設け られた冷却装置によ り 、 加熱炉 から粗圧延終了までに生じた厚鋼板の板端部付近の温度降下 量及ぴ仕上圧延時に生じる と推定される板端部付近の温度降 下量を補償する よ Ό に、 厚鋼板の板幅方向に温度分布を持つ た冷却を行い,仕上圧延後は、 厚鋼板の幅方向に均一な冷却条 件で制御冷却を行う こ と を特長とする厚鋼板の製造方法が提 案されている。 しかし、 特開平 11 - 267737号公報は、 厚鋼板の 幅方向の端部の ΐ皿曰度補償を仕上圧延前の早い段階で実施する が、 そもそあ 、 仕上圧延元了時に厚鋼板の幅方向の温度分布 が均一と なる よ 仕上圧延前の温 分布を予測する こ と が難 し 1/ヽ。 これは 、 圧延中に いて厚鋼板の板端部が 、 厚鋼板の 上下面方向 よぴ厚鋼板の側面から放射及び自然対流による 冷却がなされるのに加え 、 圧延中は厚鋼板の形状や表面状態 を制御するためにウォータージエ ツ ト (water jet)によるデス ケ一リ ング(descaling)による冷却がなされ、 厚鋼板の幅方向 端部や厚鋼板の先尾端に温度分布の偏差が発生しやすく なる o 特に 、 デスケ リ ングはオペレーター(operator)が厚鋼板 の状態を見なが ら使用 · 不使用を判断する こ と が多く 、 粗圧 延完了段階の "ί服曰度分布制御によ り 、 再現良く 仕上圧延完了時 の温度分布を均一化する こ とが困難である。 It is estimated that the cooling equipment provided in the (finishing mill) 1 will reduce the temperature drop near the end of the thick steel plate from the heating furnace to the end of rough rolling, and that it will occur during finish rolling. In order to compensate for the temperature drop near the edge of the steel plate, cooling with a temperature distribution in the width direction of the steel plate is performed, and after finish rolling, the cooling condition is uniform in the width direction of the steel plate. A method of manufacturing a thick steel plate characterized by performing controlled cooling has been proposed. However, Japanese Unexamined Patent Publication No. Hei 11-267737 discloses that, at the end of the plate in the width direction, compensation is performed at an early stage before finish rolling. It is difficult to predict the temperature distribution before finish rolling so that the temperature distribution in the direction becomes uniform 1 / ヽ. This is because, during rolling, the ends of the steel plate are cooled by radiation and natural convection from the sides of the steel plate from the upper and lower surfaces of the steel plate, and in addition to the shape and surface of the steel plate during rolling. Status In order to control the temperature, cooling is performed by descaling with a water jet, and the deviation of the temperature distribution is likely to occur at the width direction end of the thick steel plate and the tail end of the thick steel plate. O In particular, in descaling, operators often judge whether to use or not to use steel plates while checking the condition of the steel plates. With good reproducibility, it is difficult to equalize the temperature distribution at the completion of finish rolling.
また、 制御冷却において厚鋼板の幅方向に均一な温度分布と する具体的手法が提示されてお らず、 実現は困難で.ある。 In addition, no specific method has been proposed to achieve a uniform temperature distribution in the width direction of the thick steel plate in controlled cooling, and it is difficult to achieve this.
また 、 特開 2001 -137943号公報には、 熱間圧延が完了 した後 Also, JP 2001-137943 A discloses that after hot rolling is completed,
、 金属板の幅ェクジ部を加熱し、 その後、 .水冷却及び/又は熱 間矯正を行な こ と を特長とする金属板の平坦度制御方法が 提案されている 0 しかし、 特開 2001- 137943号公報では、 バー ナ一 (b urner)によ る加熱の場合、 加熱効率が悪いため大容量 バ一ナ一を使用せざる を得ず加熱コス ト (cost)が高く な り 、 更に厚鋼板の加熱部が酸化され表面性状が損なわれる問題が ある。 誘導加熱の場合は非常に設備コ ス ト及ぴ加熱コ ス トが 高く なるため現実的ではない。 また、 何らかの手段で厚鋼板 の板幅方向の 曰 There has been proposed a flatness control method for a metal plate characterized by heating a width edge portion of the metal plate and then performing water cooling and / or hot straightening. According to Japanese Patent Publication No. 137943, in the case of heating by a burner, a large-capacity burner must be used due to poor heating efficiency. There is a problem that the heated part of the steel sheet is oxidized and the surface properties are impaired. In the case of induction heating, equipment costs and heating costs are very high, which is not practical. In addition, by some means,
■ί服度分布が冷却前に均一化されても、 その後、 厚鋼板の板幅方向の温度分布が均一になる よ う に冷却する手 法が提示されていないため、 冷却装置によっては先に述べた よ う に沸騰現象や鋼板上面の滞留水が端部から落下こ と によ る厚鋼板の端部の被水量増加に起因 した過冷却が発生する。 発明の開 Even if the uniformity distribution is uniform before cooling, there is no method to cool the steel plate so that the temperature distribution in the plate width direction becomes uniform. As mentioned above, the supercooling occurs due to the boiling phenomenon and the increase in water coverage at the end of the thick steel plate due to the water remaining on the top surface of the steel plate falling from the end. Invention opening
- 本発明は 、 上記従来技 の問題点を解決する と を課題と し 圧延を 了 した厚鋼板を制御冷却するに際して 、 板面内 のタ曰  -An object of the present invention is to solve the problems of the conventional technique described above, and when controlling and cooling a rolled steel plate,
1肌度分布を厚鋼板の幅方向、 厚鋼板の長手方向全域にわた つて均一にする こ とができ、 かつ、 全体と して冷却速度が大 きい厚鋼板の制御冷却方法、 その制御冷却方法で製造された 厚鋼板及び装置を提案する ものである。 また、 厚鋼板の板幅 方向や厚鋼板の長手方向の残留応力 (residual stress)分布が 均一であ り 、 条切 り キャ ンパー(camber)等の加工形状不良を 生じない厚鋼板の冷却方法、 その制御冷却方法で製造された 厚鋼板及び装置を提供する も のである。 (1) Distribution of skin texture is spread across the width direction of the steel plate and the entire longitudinal direction of the steel plate The present invention proposes a controlled cooling method for a thick steel plate that can be made uniform and has a large cooling rate as a whole, and a thick steel plate and an apparatus manufactured by the controlled cooling method. In addition, a method of cooling a thick steel plate, which has a uniform residual stress distribution in the width direction of the steel plate and in the longitudinal direction of the steel plate, and does not cause a processing shape defect such as a stripping camber, A steel plate and an apparatus manufactured by the controlled cooling method are provided.
すなわち、 本発明は、 熱間圧延を完了 した厚鋼板の制御冷 却方法において、 厚鋼板の幅方向の温度分布を均一化させつ つ冷却する第 1 の冷却ステ ップ(step)と、 厚鋼板の幅方向の 温度分布の均一化終了後に、 厚鋼板の幅方向全体を同一の冷 却速度で制御冷却する第 2 の冷却ステ ップと を有する熱間圧 延を完了 した厚鋼板の冷却方法である。  That is, the present invention provides a method of controlling and cooling a steel plate after hot rolling, comprising: a first cooling step (step) for cooling while making the temperature distribution in the width direction of the steel plate uniform; After the uniformization of the temperature distribution in the width direction of the steel sheet, the second cooling step that controls and cools the entire width direction of the steel sheet at the same cooling rate and cooling of the steel sheet that has been hot-rolled is completed. Is the way.
また、 本発明は、 前記第 1 の冷却ステ ップは、 複数の独立 した冷却ゾーン(zone)を有する通過型の制御冷却装置におけ る一以上の入側の冷却ゾーンによ り 厚鋼板の幅方向の両側端 部の冷却水量を制限しなが ら冷却し、 前記第 2 の冷却ステ ツ プは、 前記一以上の入側の冷却ゾーンの後続の冷却ゾーンに よ り 厚鋼板の幅方向全体を同一の冷却速度で制御冷却する熱 間圧延を完了 した厚鋼板の制御冷却方法である。  Also, in the present invention, the first cooling step may include a step of forming a thick steel plate by one or more inlet-side cooling zones in a pass-type control cooling device having a plurality of independent cooling zones. The cooling is performed while limiting the amount of cooling water at both ends in the width direction, and the second cooling step is performed in the width direction of the steel plate by the cooling zone subsequent to the one or more inlet cooling zones. This is a controlled cooling method for thick steel plates that have been hot-rolled, in which the whole is controlled and cooled at the same cooling rate.
また、 本発明は、 前記第 1 の冷却ステ ップは、 予備冷却装 置によ り 厚鋼板の幅方向の両側端部の冷却水量を制限しなが ら冷却し、 前記第 2 の冷却ステ ップは、 前記予備冷却装置の 後段に設置された複数の独立した冷却ゾーンを有する通過型 の制御冷却装置によ り 、 厚鋼板の幅方向全体を同一の冷却速 度で制御冷却する熱間圧延を完了 した厚鋼板の制御冷却方法 である。  Further, in the present invention, the first cooling step preferably performs cooling while restricting the amount of cooling water at both ends in the width direction of the thick steel plate by a pre-cooling device, and further comprises the second cooling step. The hot-roller, which controls and cools the entire steel plate in the width direction at the same cooling rate, by a pass-type control cooling device having a plurality of independent cooling zones installed at the subsequent stage of the preliminary cooling device This is a controlled cooling method for steel plates that have been rolled.
また、 本発明は、 上記方法において、 前記厚鋼板の幅方向 の両側端部の冷却水量の制限を、 厚鋼板の幅方向の端部に設 置した遮蔽部材(ma s k i n g m e mb e r )にて行な う厚鋼板の制御冷 却方法である。 Further, the present invention provides the method according to the above method, wherein: This is a method for controlling cooling of thick steel plates by limiting the amount of cooling water at both ends of the steel plate with a shielding member (ma skingmember) installed at the end in the width direction of the steel plate.
また、 本発明は、 上記方法において 前記制御冷却装置の 前段の冷却において 、 厚鋼板の長手方向の先尾端部の冷却水 量を制限する厚鋼板の制御冷却方法であ Ό 。  Further, the present invention is the method for controlling cooling of a thick steel plate in the above-mentioned method, wherein a cooling water amount at a front end portion in a longitudinal direction of the thick steel plate is limited in cooling in a preceding stage of the control cooling device.
また、 本発明は、 上記方法において 、 前記予備冷却装置若 しく は前記予備冷却装置おょぴ IU記制御冷却装置の冷却にお いて、 厚鋼板の長手方向の先尾端部の冷却水量を制限する厚 鋼板の制御冷却方法でめ 。。  Further, in the above method, the cooling of the pre-cooling device or the pre-cooling device or the IU control cooling device may include limiting a cooling water amount at a leading end portion in a longitudinal direction of the steel plate. Controlled cooling method for thick steel plate. .
また、 本発明は、 上記方法において 、 厚鋼板の長手方向の 先尾端部の冷却水量の制限を、 厚鋼板の長手方向の先尾端部 の通過信号によ り 所定時間作動する水且  Further, the present invention provides the above method, wherein the restriction of the amount of cooling water at the tail end in the longitudinal direction of the thick steel plate is controlled by a water passage operated for a predetermined time based on a passage signal of the tail end in the longitudinal direction of the steel plate.
里制御手段にて行な う 厚鋼板の制御冷却方法である。  This is a controlled cooling method for thick steel plates performed by village control means.
また、 本発明は、 上記方法におレヽてヽ 前記制御冷却装置の 前段部は、 各ゾー ン間に厚鋼板の幅方向の端部の水量制限が 可能な厚鋼板の幅方向の端部に した遮蔽部材を設置し、 遮蔽部材は各ゾー ン及ぴ上下面において 、 それぞれ独立して 厚鋼板の幅方向の端部の冷却水を遮蔽でき る厚鋼板の制御冷 却方法である。  Further, in the above method, the front part of the control cooling device may be provided at an end in a width direction of the thick steel plate in which a water amount of the end in the width direction of the steel plate can be limited between the zones. This is a controlled cooling method for a thick steel plate that can independently shield the cooling water at the widthwise end of the thick steel plate on each zone and on the upper and lower surfaces.
また、 本発明は、 上記方法において 制御冷却前に厚鋼板 の幅方向の温度分布を測定する手段と測定された温度分布か ら、 厚鋼板の幅方向の端部の温度降下量及び温度降下が発生 している厚鋼板の幅方向の端部からの距離を解析し、 その結 果に基づき制御冷却装置前段の各冷却ゾー ンに設置されてい る遮蔽部材によ る遮蔽量と遮蔽を実施する冷却ゾー ン数を演 算'して、 演算された 果に基づき遮蔽部材を制御する厚鋼板 の制御冷却方法である また、 本発明は、 上記方法において、 予備冷却前に厚鋼板 の幅方向の温 分布を測定し、 測定された温度分布から、 厚 鋼板の幅方向の端部の温度降下量及ぴ温度降下が発生してい る厚鋼板の幅方向の端部からの距離を解祈し、 その結果に基 づき予備冷却装置における遮蔽部材によ る遮蔽量と冷却時間 を演算し、 演算された結果に基づき予備冷却装置によ る冷却 を実施する厚鋼板の制御冷却方法である In addition, the present invention provides a method for measuring the temperature distribution in the width direction of a thick steel plate before the controlled cooling in the above method and the temperature drop amount and temperature drop at the end in the width direction of the steel plate from the measured temperature distribution. Analyze the distance from the end in the width direction of the generated steel plate, and based on the results, implement the shielding amount and shielding by the shielding members installed in each cooling zone in front of the control cooling device This is a controlled cooling method for thick steel plates that calculates the number of cooling zones and controls the shielding member based on the calculated result. Further, the present invention provides the method according to the above method, wherein the temperature distribution in the width direction of the thick steel plate is measured before the pre-cooling, and the temperature drop amount and the temperature drop at the end in the width direction of the thick steel plate are determined from the measured temperature distribution. The distance from the end of the steel plate in the width direction is generated, and the shielding amount and cooling time of the shielding member in the pre-cooling device are calculated based on the result, and the standby time is calculated based on the calculated result. This is a controlled cooling method for thick steel plates that is cooled by a cooling device.
また、 本発明は 、 熱間圧延後、 上記の制御冷却方法によ り Further, the present invention provides a method for controlling the above-mentioned controlled cooling after hot rolling.
、 制御冷却されて製造された厚鋼板である。 It is a thick steel plate manufactured by controlled cooling.
また、 本発明は 、 複数の独立した冷却ゾーンを有する通過 型の制御冷却装 であって、 各冷却ゾ一ンは冷却水量密度が Further, the present invention is a passage type control cooling device having a plurality of independent cooling zones, wherein each cooling zone has a cooling water volume density.
1200 l i t er (以降、 と略す)/ m i n. m2以上通水可能であ り 、 か つ目 'J段の冷却ゾーンに厚鋼板の幅方向の両側端部の冷却水里 を制限する遮蔽部材が設置されている厚鋼板の制御冷却装置 であ 1200 liter (hereinafter abbreviated) / min.m 2 or more water can be passed through, and the shield that limits the cooling water at both ends in the width direction of the thick steel plate in the cooling zone of the J-th stage This is a controlled cooling device for steel plates where the members are installed.
また、 本発明は、 圧延機の後面に予備冷却装置、 制御冷却 装置が順に配列された冷却装置であって、 前記予備冷却装置 は投入水量密度力 S 500 L ( l i t erの略)/ m i n . m2以下でかつ、 厚鋼板 の幅方向の両側端部の冷却水量を制限する遮蔽部材が設置さ れてお り 、 かつ前記制御冷却装置は複数の独立した冷却ゾ一 ンを有する通過型の装置であつて、 各冷却ゾーンの冷却水里 密度力 S 1200 L/m i n . m2以上通水可能である厚鋼板の制御冷却装置 であ Further, the present invention is a cooling device in which a pre-cooling device and a control cooling device are sequentially arranged on a rear surface of a rolling mill, wherein the pre-cooling device has an input water density force of S500L (abbreviation of a liter) / min. and m 2 or less, the width direction of the steel plate is installed shielding member to limit the amount of cooling water both side ends in contact is, and said controlled cooling apparatus for pass type having a plurality of independent cooling zone one down shall apply in the apparatus, controlled cooling apparatus der cooling Shueili density force S 1200 L / min. m 2 or more water flow possible is the steel plate of the cooling zone
また、 本発明は、 上記装置において、 前記厚鋼板の幅方向 の温度分布が均一化される よ う に、 前記遮蔽部材の動作を制 御する厚鋼板の制御冷却装置でめる。  In addition, the present invention provides the above-described apparatus, wherein the thick steel sheet is controlled and cooled by controlling the operation of the shielding member so that the temperature distribution in the width direction of the thick steel sheet is made uniform.
また、 本発明は、 上記装置において、 厚鋼板の長手方向の 先尾端部の通過信号によ り 所定時間作動する水量制御手段を 有する厚鋼板の制御冷却装置である。 Further, the present invention provides the above-mentioned apparatus, wherein the water amount control means which operates for a predetermined time in response to a passage signal of the longitudinal end of the thick steel plate is provided. It is a control cooling device for a thick steel plate.
また、 本発明は、 上記装置において、 前記制御冷却装置は The present invention also provides the above apparatus, wherein the control cooling device is
、 ス リ ッ ト ジェ ッ ト (slit jet)冷却ノ ズル (nozzle)を使用す る厚鋼板の制御冷却装置である。 It is a controlled cooling device for thick steel plates that uses a slit jet cooling nozzle.
また、 本発明は、 上記装置において、 前記予備冷却装置は ラ ミ ナ フ ロ ー (laminar flow)冷却ノ ズルを使用 し、 前記制 御冷却装置はス リ ッ トジエ ツ ト冷却ノ ズルを使用する厚鋼板 の制御冷却装置である。  The present invention also provides the above-mentioned apparatus, wherein the preliminary cooling device uses a laminar flow cooling nozzle, and the control cooling device uses a slit jet cooling nozzle. It is a controlled cooling device for thick steel plates.
また、 本発明は 上き P ¾ 3¾置において 前記制御冷却装置の 段部の冷却ゾ ン間 HX置された遮蔽部材は、 各冷却ゾー ン及び上下面毎に それぞれ独 して厚鋼板の幅方向の端部 の冷却水を遮蔽でき る よ う な構 λ である厚鋼板の制御冷却装 置である。  Further, in the present invention, the shielding member placed between the cooling zones at the stepped portions of the control cooling device in the position Px above is arranged independently for each cooling zone and each of the upper and lower surfaces in the width direction of the thick steel plate. This is a control cooling device for thick steel plates with a structure λ that can block the cooling water at the end of the plate.
また、 本発明は 上卩し 衣置において 制御冷却前に厚鋼板 の幅方向の温度分布を測定する手段と測定された温度分布か ら 、 厚鋼板の幅方向の端部の温度降下量及び温度降下が発生 している厚鋼板の幅方向の端部からの距離を解析する手段を 持ち、 その結果に基づさ、 制御冷却装置前段の各冷却ゾー ン に設置されてレ、る遮蔽部材によ る遮蔽量と遮蔽を実施する冷 却ゾー ン数を演算する手段をもち 演算された結果に基づき 蔽部材を制御する機構をもつ厚鋼板の制御冷却装置である また、 本発明は 、 上記装置において 予備冷却前に子鋼板 の幅方向の 曰  In addition, the present invention provides means for measuring the temperature distribution in the width direction of a thick steel plate before controlled cooling in a garment, and the temperature drop amount and temperature at the end in the width direction of the steel plate from the measured temperature distribution. It has a means to analyze the distance from the widthwise end of the thick steel plate where the descent has occurred, and based on the results, a shielding member installed in each cooling zone in front of the control cooling device The present invention relates to a control cooling device for a thick steel plate having means for calculating the amount of shielding to be performed and the number of cooling zones for performing shielding, and having a mechanism for controlling the shielding member based on the calculated result. Before pre-cooling,
iSBL度分布を測定する手段と 測定された温度分布 から 、 厚鋼板の幅方向の端部'の温度降下量及び温度降下が発 生している厚鋼板の幅方向の端部からの距離を解析する手段 を持ち、 その結果に基づき予備冷却装置の遮蔽部材による遮 蔽量と冷却時間を演算する手段を持ち /こ ロ果に基 づき予備冷却装置における遮蔽部材及ぴ通板速度を制御可能 な機構をもつ厚鋼板の制御冷却装置である o From the means for measuring the iSBL degree distribution and the measured temperature distribution, the amount of temperature drop at the end in the width direction of the thick steel plate and the distance from the end in the width direction of the thick steel plate where the temperature drop occurs are analyzed. Means to calculate the amount of shielding by the shielding member of the pre-cooling device and the cooling time based on the results. It is a controlled cooling device for thick steel plates with a mechanism that can control the shielding member and the passing speed in the pre-cooling device o
また 、 本発明は 上記装置に いて、 前記制御冷却装置の 目 U 、 あるいは、 前記予備冷却装置と 目 U記制御冷却装置の間に 矯正機が している厚鋼板の制御冷却装置である。 図面の簡単な説明  In addition, the present invention is the above-mentioned apparatus, wherein the control cooling device for the thick steel plate has a straightening machine between the control cooling device or the preliminary cooling device and the control cooling device. BRIEF DESCRIPTION OF THE FIGURES
図 1 : .高温の厚鋼板を冷却した場合における鋼板の表面温度 と抜熱量 (v a l u e o f h e a t f l u x )の関係を説明 した図である 0 図 2 : 厚鋼板を冷却した場合における鋼板上面の水の流れに ついて説明 した図でめ O o Fig. 1: A diagram illustrating the relationship between the surface temperature of the steel plate and the heat release (valueofheatflux) when the high-temperature steel plate is cooled. 0 Fig. 2: Flow of water on the top surface of the steel plate when the steel plate is cooled. O o
図 3 : 従来法によ り 厚鋼板の幅方向の端部の冷却制御を した 時における厚鋼板の幅方向の端部と厚鋼板の中央部の ^ 1皿曰度履 を説明 した図であ Fig. 3: This is a diagram for explaining the 11 plate at the end of the thick steel plate in the width direction and the center of the thick steel plate when cooling the width of the thick steel plate by the conventional method.
図 4 : 本発明第 1 の実施形態を示し、 厚鋼板の幅方向の端部 の冷却制御を した時における厚鋼板の幅方向の端部と厚鋼板 の中央部の温度履歴を説明 した図である。 Fig. 4 shows the first embodiment of the present invention, and is a diagram for explaining the temperature history of the widthwise end of the thick steel plate and the center of the thick steel plate when cooling control of the widthwise end of the thick steel plate is performed. is there.
図 5 : 本発明第 2 の実施形態を示し、 厚鋼板の幅方向の端部 の冷却制御を した時における厚鋼板の幅方向の端部と厚鋼板 の中央部の温度履歴を説明 した図である 0 Fig. 5: A diagram illustrating the second embodiment of the present invention and illustrating the temperature history of the widthwise end of the thick steel plate and the center of the thick steel plate when cooling control of the widthwise end of the thick steel plate is performed. Yes 0
図 6 : 本発明第 1 の実施形態を実施する厚鋼板の制御冷却装 置の概念図である。 FIG. 6 is a conceptual diagram of a control cooling device for a thick steel plate that implements the first embodiment of the present invention.
図 7 : 本発明における制御冷却 置の概念図である o Figure 7: Conceptual diagram of the control cooling device in the present invention o
図 8 : 本発明に係る制御冷却装置で使用する冷却水の遮蔽部 材の取り 付け概念図である。 Fig. 8 is a conceptual diagram of the installation of the cooling water shielding member used in the control cooling device according to the present invention.
図 9 : 厚鋼板の幅方向の端部における過冷却を定義した図で ある 0 Figure 9: A diagram that defines supercooling at the widthwise end of a thick steel plate.
図 1 0 : 本発明第 1 の実施形態を具体的に実施する と ぎの制 御方法を説明 した図である。 Fig. 10: Control of the first embodiment of the present invention FIG. 4 is a diagram illustrating a control method.
図 1 1 : 本発明第 1 の実施形態を実施した場合と実施しなか つた場合の冷却後の厚鋼板の幅方向の温度分布を示した図で ある。 FIG. 11: A diagram showing the temperature distribution in the width direction of the thick steel plate after cooling in the case where the first embodiment of the present invention is carried out and in the case where it is not carried out.
図 1 2 本発明第 1 の実施形態における厚鋼板の長手方向の 先 部に水旦 Fig. 12 In the first embodiment of the present invention, the steel plate
虽制御を実施する制御冷却装置の構成図である FIG. 2 is a configuration diagram of a control cooling device that performs control
0 0
1 3 • 本発明 i の実施形態における厚鋼板の長手方向の 先尾 部に水虽制御を実施する制御冷却装置の構成図である13 is a configuration diagram of a control cooling device that performs water level control at the longitudinal end of a thick steel plate in the embodiment of the present invention i .
0 0
図 1 4 厚鋼板の長手方向の先尾端部における過冷却を定義 した図である 0 Fig. 14 is a diagram that defines supercooling at the tail end of the thick steel plate in the longitudinal direction.
図 1 5 A 5 1 5 B : 本発明第 1 の実施形態に ける厚鋼板の 長手方向の先端部の通板時の冷却水の作動要領を示す説明図 である o Fig. 15A5 15B: It is an explanatory view showing the operation procedure of the cooling water at the time of passing the tip end in the longitudinal direction of the thick steel plate according to the first embodiment of the present invention.
図 1 6 A 1 6 B : 本発明第 1 の実施形態に ける厚鋼板の 長手方向の尾端部の通板時の冷却水の作動要領を示す説明図 である o Fig. 16A16B: It is an explanatory view showing the operation procedure of the cooling water at the time of passing the tail end in the longitudinal direction of the thick steel plate according to the first embodiment of the present invention o
図 1 7 本発明第 2 の実施形態を実施する厚鋼板の制御冷却 装置の概 j (4、図である o Fig. 17 Outline of the control cooling device for thick steel plates implementing the second embodiment of the present invention j (4, Fig.
図 1 8 • 本発明に係る厚鋼板の制御冷却装置で使用する冷却 水遮蔽部材の取り付け概念図である。 Fig. 18 • Schematic diagram of the installation of the cooling water shielding member used in the controlled cooling device for thick steel plates according to the present invention.
図 1 9 • 厚鋼板の長手方向の先端部の通板 B¾=のラ ミ ナーフ口 一冷却装置の作動要領を示す説明図である。 Fig. 19 • This is an explanatory diagram showing the operation of the laminar fin cooling device for the threaded plate B¾ = at the longitudinal end of the thick steel plate.
図 2 0 厚鋼板の長手方向の尾端部の通板 B¾Fのラ ミ ナーフ 口 一冷却装置の作動要領を示す説明図である。 Fig. 20 is an explanatory view showing the operation procedure of the laminar fin cooling device of the passing plate B¾F at the tail end in the longitudinal direction of the thick steel plate.
図 2 1 本発明において矯正機 3 0 を設置した場合の設備レ ィ ァ ゥ 卜 ( 1 a you t )図である。 図 2 2 - 本発明の実施例における冷却後の鋼板切断位置につ いて説明 した図であ FIG. 21 is an equipment layout diagram (1 a yout) when a straightening machine 30 is installed in the present invention. FIG. 22 is a view for explaining a steel sheet cutting position after cooling according to the embodiment of the present invention.
図 2 3 - 本発明の実施例における冷却後の鋼板 5 2 を条切 り した場合の条切 り キャンパ一の測定方法について示す。 FIG. 23 shows a method for measuring a stripped camper when the steel sheet 52 after cooling in the embodiment of the present invention is cut.
図 2 4 本発明の実施例における冷却後の鋼板 5 5 を条切 り した場合の条切 り キヤ ンノ 一の測定方法について示す。 Fig. 24 shows a method for measuring the stripping cannon when the steel sheet 55 after cooling in the embodiment of the present invention is stripped.
図 2 5 、 図 2 6 • 本発明の実施例における制御冷却装置内の 遮蔽板の寸法とその配置を示す。 Fig. 25, Fig. 26 • Shows the dimensions and arrangement of the shield plate in the control cooling device in the embodiment of the present invention.
図 2 7 ··本発明の実施例における予備冷却装置内に付け られ た遮蔽部材の構 を示す。 FIG. 27 shows the structure of the shielding member provided in the pre-cooling device in the embodiment of the present invention.
図 2 8 • 本発明の実施例における予備冷却装置内の遮蔽部材 の配置を示す ο Fig. 28 • The layout of the shielding member in the pre-cooling device in the embodiment of the present invention ο
符号の説明  Explanation of reference numerals
1 : 厚鋼板圧延機  1: Plate rolling mill
2: 厚鋼板  2: Steel plate
3 : ロ ー ラ ーテーブル (rol 1 er table)  3: Roller table (rol 1 er table)
10 : フ ミ ナ フ ロ ー冷却装置  10: Funa flow cooling device
11 : 上へシダ一 supper header)  11: Upward fern supper header)
12 : 下へクダ一 、丄 ower header)  12: Downward, 丄 ower header)
13、 14: 水流  13, 14: Water flow
15 : M敞 材  15: M Chang Lu
16 : (遮蔽部材の) 前後進機構  16: Forward / backward movement mechanism (of the shielding member)
17 : フ ォ 卜セル (.photo ceil)  17: Photocell (.photo ceil)
20 : ス リ 卜ンエ ツ ト冷却装置  20: Slit-on cooling system
21 : 上へクダ一  21: Up one
22 : Vダ一  22: V
23 : 上ス y ク 卜 ジエ ツ ト冷却ノ ズル  23: Top-jet cooling nozzle
24: 下ス V ク ジエ ツ ト冷却ノ ズル 25 : 制御冷却装置前段 24: Bottom V jet cooling nozzle 25: Pre-control cooling unit
26 : 制御冷却装置後段  26: After the control cooling device
2 7 : 水き り ロール  2 7: Water roll
28 : 上部遮蔽部材  28: Upper shielding member
29 : 下部遮蔽部材  29: Lower shielding member
3 0 : 予備冷却装置入側温度計  30: Pre-cooling device inlet thermometer
3 1 : 制御冷却装置入側温度計  3 1: Control cooling device inlet thermometer
32 : 制御冷却装置出側温度計  32: Control cooling device outlet thermometer
41 : 流量制御装置  41: Flow control device
42 : 三方弁  42: Three-way valve
5 1:鋼板先端試材  5 1: Steel plate tip test material
5 2:幅方向の条切 り キャ ンバー測定用試材  5 2: Specimen for measuring the width of the camber
5 3:幅方向及ぴ長手方向中央部の試材  5 3: Sample material in width direction and longitudinal center
54:鋼板尾端^;材  54: Steel plate tail end; material
55:長手方向の条切 り キャ ンパ一測定用試材 発明を実施するための最良の形態  55: Longitudinal strip camber measuring material Best mode for carrying out the invention
本発明の技術思想について従来方法と対比して説明する。 図 3は従来方法である厚鋼板の板幅方向の板端部の過冷却を防 止する方法における厚鋼板の温度履歴 示す 従来方法では 制御冷却 に いて 、 すでに厚鋼板の板幅方向の板端部が厚 鋼板の中央部と比較して 服曰度が低く なっている その後の制 御冷却中において厚鋼板の板幅方向の板端部に遮蔽部材を置 いた り 、 冷却水量を調整した り する こ と によ り 、 厚鋼板の板 幅方向の板端部に被水する冷却水量を減ら し厚鋼板の中央部 と比較して冷却速度を低 < している 。 冷却終了時に厚鋼板の 板幅方向の板端部と厚鋼板の中央部の温度を均一化する技術 である。 の問題は下記に述べる よ う に、 厚鋼板の板幅方向 の板端部における冷却速度が厚鋼板の中央部と比較して低く なるため、 厚鋼板の板幅方向の板端部では、 厚鋼板の中央部 と 同等の材質を得る こ とができなく なる。 The technical concept of the present invention will be described in comparison with a conventional method. Fig. 3 shows the temperature history of a thick steel plate in the conventional method of preventing overcooling of the end of the steel plate in the width direction of the steel plate. The lower part of the clothing is lower than the central part of the thick steel plate.During subsequent control cooling, a shielding member is placed at the end of the thick steel plate in the width direction, or the amount of cooling water is adjusted. As a result, the amount of cooling water that is applied to the ends of the thick steel plate in the width direction is reduced, and the cooling rate is lower than that of the central part of the thick steel plate. This technology equalizes the temperature at the plate edge in the width direction and the center of the plate at the end of cooling. As described below, the problem of Since the cooling rate at the end of the steel plate is lower than that at the center of the steel plate, it is not possible to obtain the same material as that at the center of the steel plate at the end of the steel plate in the width direction. .
こ こで、 厚鋼板の四周部(four periphery zones)の過冷却 現象は、 以下に示す 3つのメ カニズムによ り 発生している と考 え られている。  Here, it is considered that the supercooling phenomenon in the four peripheral zones of the steel plate is caused by the following three mechanisms.
(1)圧延中の放冷に起因 したもの  (1) Due to cooling during rolling
一般的な圧延プロ セスで厚鋼板を製造する と 、 圧延してい る段階において厚鋼板の四周部では厚鋼板の上下面からの放 冷冷却(空冷(air cooling))に加え、 厚鋼板の側面から も放冷 冷却(空冷)されるため、 厚鋼板の中央部と比較して温度が低 く なる。 また、 そのよ う な厚鋼板を制御冷却した場合、 冷却 で厚鋼板の全面に亘つて均一な冷却能力で冷却したと しても 、 冷却前にすでに厚鋼板の四周部が厚鋼板の中央に比べて過 冷却と なっているため、 冷却後も こ の温度分布は保持される  When a steel plate is manufactured by the general rolling process, the four sides of the steel plate are cooled by cooling from the upper and lower surfaces of the steel plate (air cooling) in the rolling process, and the side surface of the steel plate is rolled. Since it is cooled by air (air cooling), the temperature is lower than that of the central part of the thick steel plate. In addition, when such a thick steel plate is controlled and cooled, even if the cooling is performed with a uniform cooling capacity over the entire surface of the thick steel plate, even before cooling, the four peripheral portions of the thick steel plate are already in the center of the steel plate. This temperature distribution is maintained even after cooling because it is supercooled
(2)水冷中の沸騰現象に起因 したもの (2) Due to boiling phenomenon during water cooling
厚鋼板を冷却前に鋼板内に温度分布の偏差のある状態で冷 却を行った場合、 温度分布の偏差は拡大する こ と がある。 こ れについて図 1を用いて詳細に説明する。 図 1に厚鋼板の表面 温度が、 7 0 0 °C以上の高温の厚鋼板を冷却する際の厚鋼板 の表面温度と熱流束(heat flux)の関係(単位面積、 単位時間 当 り の抜熱量(transition of heat flux) )を示す。 厚鋼板の 表面温度が高い状態では膜沸騰(film boiling) , 厚鋼板の表 面温度が低い状態では核沸騰(nucleate boiling) , こ の中間 の温度領域では遷移沸騰(transition bo i 1 ing)と なっている。 厚鋼板の表面温度が高い状態で存在する膜沸騰では厚鋼板の 表面と冷却水の間に蒸気膜(vapor film)が発生し、 この蒸気 膜内の熱伝導によ り伝熱がなされる状態と な り 、 熱流束 (冷 却能力) は低い。 一方、 厚鋼板の表面温度が低い状態で存在 する核沸騰では、 厚鋼板の表面と冷却水は直接接触し且つ厚 鋼板の表面から冷却水の一部が蒸発して出来た蒸気泡(v a p o r b u b b l e )が発生し直ぐ回り の冷却水によ り 凝縮され消滅する と いった複雑な現象が起こる。 こ のため、 蒸気泡の生成 · 消滅 に伴う冷却水の攪拌が発生する こ とから、 極めて高い熱流束If a steel plate is cooled before cooling in a state where there is a deviation in the temperature distribution in the steel plate, the deviation in the temperature distribution may increase. This will be described in detail with reference to FIG. Figure 1 shows the relationship between the surface temperature of the steel plate and the heat flux when cooling the steel plate at a high temperature of 700 ° C or higher (extraction per unit area and unit time). (Transition of heat flux)). Film boiling occurs when the surface temperature of the steel plate is high, nucleate boiling occurs when the surface temperature of the steel plate is low, and transition boiling occurs in the intermediate temperature range. Has become. In the case of film boiling that occurs when the surface temperature of a steel plate is high, a vapor film is generated between the surface of the steel plate and the cooling water. Heat is transferred by heat conduction in the membrane, and the heat flux (cooling capacity) is low. On the other hand, in the case of nucleate boiling, in which the surface temperature of the steel plate is low, the surface of the steel plate and the cooling water come into direct contact with each other, and a part of the cooling water evaporates from the surface of the steel plate. Complex phenomena occur when water is condensed and extinguished by the surrounding cooling water. As a result, the cooling water is agitated due to the generation and extinction of the vapor bubbles, resulting in an extremely high heat flux.
(冷却能力 ) を有する。こ の核沸騰、 膜沸縢の領域では、 図 1 に示すよ う に.、 厚鋼板の温度 'が高いほど熱流束 (冷却能力) が高く 、 厚鋼板の温度が低いほど熱流束 (冷却能力) が低く なる といつた伝熱特性を有している。 このため 、 冷却前に厚 鋼板内に 曰 (Cooling capacity). In this nucleate boiling and film boiling region, as shown in Fig. 1, the higher the temperature of the steel plate, the higher the heat flux (cooling capacity), and the lower the temperature of the steel sheet, the higher the heat flux (cooling capacity). ) Has a lower heat transfer characteristic. Therefore, before cooling,
慨度分布の偏差があった場合、 厚鋼板の高温部ほど 冷却速度が速く 、 厚鋼板の低温部ほど冷却速度が低く な り 、 冷却前の■ί皿曰度分布の偏差は縮小する といった伝熱特性を有す 、0 ―方 、 厚鋼板の表面温度が、 中間の温度領域では膜沸騰If there is a deviation in the power distribution, the cooling rate is faster in the hotter part of the steel plate, the cooling rate is lower in the colder part of the steel plate, and the deviation of the plate distribution before cooling is reduced. The surface temperature of a thick steel plate with thermal properties is 0- , but film boiling occurs in the middle temperature range
': ) ':)
ど'核沸騰が混在した状態である遷移沸騰状態と なる。遷移沸騰 状態では 、 核沸縢や膜沸騰と異な り 、 厚鋼板の温度が低く な るにつれ熱流束 (冷却能力) が大き く なる現象が起こ り 、 厚 鋼板の•ί皿曰度が低レ、ほど熱流束 (冷却能力) が高く なるため、 冷却前に厚鋼板内に温度分布の偏差が有る と厚鋼板の低温部 ほど良 < 冷えるため、 冷却後の温度分布の偏差は拡大する。 また、 冷却水量密度を高めていく と、 図 1 の点線の曲線に示 すよ う に、 膜沸騰から遷移沸騰に移行する表面温度 T t fは高く な り 、 冷却の初期段階で遷移沸騰が開始する。 さ らに、 冷却 水量密度を高く した場合は、 冷却の初期から核沸騰による冷 却が可能と なる。 一方、 冷却水量密度を少なく していく と、 膜沸騰から遷移沸騰に移行する表面温度 T t fは低く な り ,冷却 中全て膜沸騰にする こ と ができ る。 一般的な制御冷却では、 この点をあま り 考慮しておらず、 遷移沸騰が発生する冷却水量密度で冷却する こ と が多いため 、 冷却後の厚鋼板内の温度分布の偏差を拡大させている場合 が多い。 The transition boiling state is a state in which nucleate boiling is mixed. In the transition boiling state, unlike nucleate boiling and film boiling, a phenomenon occurs in which the heat flux (cooling capacity) increases as the temperature of the steel plate decreases, and the plate thickness of the steel plate is low. The higher the heat flux (cooling capacity), the higher the temperature distribution deviation in the thick steel plate before cooling. The lower the temperature of the thick steel plate, the better the temperature <cooling, and the greater the deviation in the temperature distribution after cooling. Also, as the cooling water density is increased, as shown by the dotted curve in Fig. 1, the surface temperature Ttf at which film boiling shifts to transition boiling increases, and transition boiling starts in the initial stage of cooling. I do. In addition, when the cooling water density is increased, cooling by nucleate boiling becomes possible from the beginning of cooling. On the other hand, when the cooling water mass density is reduced, the surface temperature Ttf at which the transition from film boiling to transition boiling decreases, and film boiling can be achieved during cooling. In general controlled cooling, this point is not considered at all, and cooling is often performed with the cooling water mass density at which transition boiling occurs.Therefore, the deviation of the temperature distribution in the steel plate after cooling is enlarged. There are many cases.
(3) 厚鋼板の上面における排水に起因 したもの  (3) Due to drainage on the upper surface of steel plate
厚鋼板を水平状態に して、 冷却した場合、 厚鋼板の上部で は図 2に示すよ う に、 冷却水は外周方向に流れて板端部よ り 落 下する 。 そのため 、 厚鋼板の上面のエッジ部分 Aでは、 厚鋼 板の上部に設置さ'れてレ、る ノ ズルから噴射される冷却水に加 えてヽ 厚鋼板の板端部に排水される冷却水によ る冷却がなさ れるため、 厚鋼板の上面のェクジ部分の被水量が多く な り 冷 却速度が大き く なる o なお 、 厚鋼板の下面側では厚鋼板に衝 突した冷却水は速やかに落下するため、 こ の よ ラ な現象は発 生しない。  When the steel plate is cooled in a horizontal state, the cooling water flows in the outer peripheral direction at the upper part of the steel plate and falls from the end of the steel plate, as shown in Fig. 2. Therefore, at the edge portion A on the upper surface of the steel plate, in addition to the cooling water injected from the nozzle installed on the upper portion of the steel plate, the cooling water discharged to the end of the steel plate As the cooling water is cooled by cooling, the amount of water covered by the upper surface of the steel plate increases, and the cooling rate increases. This phenomenon does not occur because it falls.
以上で述べたよ つ な 3 つのメ 力ニズム (.me cnan 1 sm)力 ら制 冷却後の厚鋼板の四周部は厚鋼板の中央部に比ベて温度が低 下する 0  Controlled by the three mechanical mechanisms (.me cnan 1 sm) described above, the temperature of the four peripheral parts of the steel plate after cooling is lower than that of the central part of the steel plate.
そのため、 冷却直後に いて鋼板の形状が均一だつたと して も、 ご の厚鋼板内の 曰 Therefore, even if the shape of the steel sheet is uniform immediately after cooling,
服度分布の偏差によ り 、 その後の空冷 Air cooling after that due to the deviation of clothing distribution
(air cooling)の過程で高温の厚鋼板の中央部では熱収縮量 (value of heat shrinkage)が大き く 、 厚鋼板の四周部では熱 収縮量が少ないため、 厚鋼板に 留応力 ^res 1 dua丄 stress)力 発生し 、 厚鋼板に歪が発生する o また歪が発生しなかつた と しても 、 厚鋼板の端部には応力が残留し 、 客先で条切 り加ェIn the process of (air cooling), the heat shrinkage (value of heat shrinkage) is large at the center of the high-temperature steel plate, and the heat shrinkage is small at the four rims of the steel plate.丄 stress) force is generated and the steel plate is distorted.o Even if the distortion is not generated, stress remains at the end of the steel plate and the steel plate is cut at the customer's edge.
·  ·
等をおこな フ とヽ 厚鋼板の四周部でいわゆる条切 り キャ ンバ 一と呼ばれる反 り が発生する といつた問題が る o また、 こ の厚鋼板の四周部では 、 予期した以上に低温度まで冷却がな されるためゝ 厚鋼板の材質も変化して強度が高 < なつて しま う等の問題も生 じる。 そこで、 本発明では、 次の二つの技術 思想から構成される。 When a warp called a so-called stripping camber occurs around the periphery of the thick steel plate, a problem may occur.o In addition, the periphery of the thick steel plate may be lower than expected. Because the steel is cooled down to the temperature, the material of the steel plate also changes, resulting in high strength. Problems also arise. Therefore, the present invention includes the following two technical ideas.
( 1 ) 制御冷却直前若しく は制御冷却初期に厚鋼板の幅方向 の温度分布を均一化させる。  (1) Equalize the temperature distribution in the width direction of the thick steel plate immediately before or at the beginning of controlled cooling.
( 2 ) 制御冷却において、 厚鋼板の幅方向の端部から厚鋼板 の中央部に亘つて同一の冷却速度で冷却する。  (2) In controlled cooling, cooling is performed at the same cooling rate from the end in the width direction of the steel plate to the center of the steel plate.
こ の具体的説明を図 4と図 5を用いて説明する。 図 4は制御冷 却初期に厚鋼板の幅方向の温度分布を均一化しておき、 その 後の制御冷却で厚鋼板の端部と厚鋼板の中央部に亘つて同一 の冷却速度で均一に冷却した場合の 皿曰度履歴を示す 本発明 では、 制御冷却初期に厚鋼板の幅方向の端部に遮蔽物による 水量制御を行い、 厚鋼板の中央部では通常に制御冷却を実施 する。 その後 、 厚鋼板の中央部と厚鋼板の幅方向の端部とで じ温度になつた時点で 、 厚鋼板の幅方向の端部から厚鋼板 の中央部に亘つて ―の冷却速度で冷却する も.のである の様なプロ セス (pr o c e s s )にする と、 厚鋼板の幅方向の端部と 子鋼板の中央部とで冷却速度及び冷却 ί¥止 度が一致するた め 、 厚鋼板の幅方向の材質が均一化する ο 図 5は制御冷却前に 予備冷却装置で厚鋼板の幅方向の温度分 を均一化しておき ヽ その後の制御冷却で厚鋼板の幅方向の端部と厚鋼板の中央 部に亘つて同一の冷却速度で冷却した場合の温度履歴を示す · の場合においても、 制御冷却中は厚鋼板の幅方向の端部 と厚鋼板の中央部の冷却速度が一致するので 、 先ほ どの図 4 と 同等の効杲を得る こ と ができ る  This will be specifically described with reference to FIGS. Fig. 4 shows that the temperature distribution in the width direction of the thick steel plate is made uniform at the beginning of the controlled cooling, and the controlled cooling thereafter uniformly cools the end of the steel plate and the center of the steel plate at the same cooling rate. In the present invention, which shows the history of the dish in the case of performing the control, the amount of water is controlled by the shield at the end in the width direction of the thick steel plate in the initial stage of the controlled cooling, and the controlled cooling is normally performed in the center of the thick steel plate. Thereafter, when the temperature reaches the same temperature at the central portion of the steel plate and the end portion in the width direction of the steel plate, cooling is performed at a cooling rate of-from the widthwise end portion of the steel plate to the central portion of the steel plate. When a process like the one shown in Fig. 1 is used, the cooling speed and cooling resistance at the end in the width direction of the thick steel plate and the center of the sub-steel plate match. The material in the width direction is homogenized. Ο Fig. 5 shows that the temperature in the width direction of the thick steel plate is equalized by the pre-cooling device before the controlled cooling. The temperature history when cooling at the same cooling rate over the center of the steel plate is shown.In the case of, the cooling speed at the end in the width direction of the steel plate and the center of the steel plate during controlled cooling also match. Can obtain the same effect as Fig. 4.
つぎに、 制御冷却装置において 、 厚鋼板の板幅方向に亘っ て ―の冷却速度で冷却するために、 核沸騰冷却を行う。 図 1 から 、 冷却中の厚鋼板の表面温度が遷移沸騰領域になる と冷 却後の温度分布の偏差は拡大するが、 核沸騰領域では温度が 高いほど冷却能力が髙い (熱流束が高い) ため、 冷却前に温 度分布の偏差が有つたと してもその差は縮小し、 厚鋼板の幅 方向の板端部と厚鋼板の中央部にねける冷却能力差を少なく する こ と がでさ る rf プし 本願のよ に冷却前の厚鋼板内の ijm.度分布が均 であれば 元々厚鋼板内の温度分布の偏差が いため冷却後 温度分布の偏差の い冷却が原理的に'可能 と なる Next, in the control cooling device, nucleate boiling cooling is performed in order to cool the thick steel plate at a cooling rate of − in the width direction. From Fig. 1, it can be seen that the deviation of the temperature distribution after cooling increases when the surface temperature of the steel plate during cooling is in the transition boiling region, but the temperature in the nucleate boiling region increases. The higher the temperature, the higher the cooling capacity (the higher the heat flux), so even if there is a deviation in the temperature distribution before cooling, the difference is reduced, and the widthwise end of the steel plate and the center of the steel plate are reduced. If the ijm. Degree distribution in the thick steel sheet before cooling is uniform as in the present application, there is no deviation in the temperature distribution in the thick steel sheet from the beginning. After cooling, cooling without deviation of temperature distribution is possible in principle.
図 2で厚鋼板の上面の板端部では、 厚鋼板の上部に設 置されてレヽる ノ ズルから嘖射される冷却水に加えて、 厚鋼板 の端部に排水される冷却水による冷却がなされるため 被水 量が多く な り 冷却速度が速く なる と説明 した れに対して In Fig. 2, at the plate edge on the upper surface of the steel plate, in addition to the cooling water that is installed from the top of the steel plate and radiates from the nozzle, the cooling water that is drained to the end of the steel plate It is explained that the amount of water is increased and the cooling rate is increased because
、 冷却水の運動量の高い核沸騰冷却を行う こ とでこの問題を 回避でき る い運動量をもつた冷却水をノ ズルから嘖射す る と 、 噴射された冷却水は排水される液膜を貫通して鋼板表 まで届き 、 さ らに蒸気膜を破壌する こ と が可能と なるためHowever, this problem can be avoided by performing nucleate boiling cooling with high momentum of cooling water.When cooling water with high momentum is projected from the nozzle, the injected cooling water penetrates the drained liquid film. To reach the steel sheet table and break the steam film further.
、 核沸騰領域で冷却が行われる こ の状態での冷却はノ ズル から嘖射された冷却水によ り 支配されるため 鋼板の幅方向 の端面力 ら排水される水によ る冷却の影響は小さい。 この冷 却水の高レヽ運動量によ り核沸騰冷却を行つためには、 冷却水 の嘖射圧力を高く した り 、 冷却水量密度を多 < した り して水 の運動量を 1¾ S する方法や、 ス V ッ トジェ 卜冷却ノ ズル等 水の運動量が高い冷却ノ ズルを採用すればよい However, cooling is performed in the nucleate boiling region.Cooling in this state is governed by the cooling water radiated from the nozzle, so the effect of cooling by water discharged from the end face force in the width direction of the steel sheet Is small. In order to perform nucleate boiling cooling by the high-ray momentum of the cooling water, a method of increasing the cooling pressure of the cooling water or increasing the cooling water mass density to reduce the momentum of the water by 1¾S is used. Or a cooling nozzle with high water momentum such as a V-jet cooling nozzle
本発明に使用 される冷却ノ ズルと しては スプレ ノ ズル ス 卜 ノ ズル 、 円管若しく はス リ ツ 卜 ラ ナ ノ ズル 、 円 管若しく はス リ ッ ト シヱ ッ ト冷却ノ ズル等で かまわないが Examples of the cooling nozzle used in the present invention include a spray nozzle nozzle, a circular tube or a slit-lane nozzle, a circular tube or a slit nozzle cooling nozzle. It ’s okay with chives
、 水量や水の嘖射圧力を少なく する場合は 水の運動量が高 い円管若しく はス リ ッ トジエ ツ 卜冷却ノ ズルを採用するのが 好ま しい。 一方、 のよ に水の運動量の高いノ ズノレ ^使 フ も う 一つ のメ リ ッ 卜 と して 、 厚鋼板の幅方向の板端部を遮蔽部材など で遮蔽した時に 、 厚鋼板の中央部と厚鋼板の幅方向の端部と で冷却能力を大き く 変化させる こ と が可能と な り 、 極めて短 い時間で、 厚鋼板の幅方向の端部と厚鋼板の中央部の温度差 を縮小する と が可能と なる。 これは、 厚鋼板の幅方向の端 部から排水される水は、 厚鋼板の垂直方向に; ii動里を持って いないので蒸ス 膜を打ち破る こ と ができず膜沸騰で冷却がな される つて 、 厚鋼板の幅方向の端部のみ厚鋼板の上方や 下方から噴射される運動量の高い冷却水の注水を遮蔽部材に よ り遮断する と 、 厚鋼板の幅方向の端部では冷却能力の低い 膜沸騰 、 厚鋼板の中央部では冷却能力の高い核沸騰にする こ とが可能と なる このため 、 厚鋼板の幅方向の端部と厚鋼板 の中央部とで冷却能力の差を大き く する こ と ができ、 厚鋼板 内の温度分布の偏差を縮小する こ とができ る。 さ らに、 温度 分布の偏差を拡大させる遷移沸騰領域での冷却も無く な り 、 厚鋼板の板幅方向に均一な冷却が可能と なる。 To reduce the amount of water and the injection pressure of water, it is preferable to use a circular pipe or a slit jet cooling nozzle with high water momentum. On the other hand, as another advantage of the nozzle with high momentum of water, when the end of the plate in the width direction is shielded by a shielding member, the center of the plate It is possible to greatly change the cooling capacity between the part and the widthwise end of the steel plate, and the temperature difference between the widthwise end of the steel plate and the center of the steel plate in a very short time. It becomes possible to reduce by. This is because the water drained from the widthwise end of the plate is in the vertical direction of the plate; ii Since it has no movement, it cannot break down the steam film and is cooled by film boiling. In other words, if the injection of high-momentum cooling water injected from above and below the thick steel plate is blocked by the shielding member only at the widthwise end of the thick steel plate, the cooling capacity is reduced at the widthwise end of the thick steel plate. It is possible to make nucleate boiling with a high cooling capacity in the center of a thick steel plate with low film boiling.Therefore, the difference in cooling capacity between the end in the width direction of the thick steel plate and the center of the thick steel plate is large. Therefore, the deviation of the temperature distribution in the steel plate can be reduced. Furthermore, there is no cooling in the transition boiling region which enlarges the deviation of the temperature distribution, and uniform cooling of the thick steel plate in the width direction becomes possible.
このよ う な核沸縢域での制御冷却を実現するためには、 例 えばス リ ッ トジェ ッ ト冷却を採用 した場合、 水量密度を  In order to achieve such controlled cooling in the nucleate boiling region, for example, when the slit jet cooling is adopted, the water density must be reduced.
1200L/min. m2以上噴射すればよい。 さ らに好適には、 It is sufficient to spray 1200 L / min. M 2 or more. More preferably,
1500L/min. m2以上にする と、 よ り 安定して核沸騰冷却を実現で き るため望ま しい。 なお、 設備コス トやラ ンニングコス ト (running cost)の観点力 ら、 水量密度は 3000L/min. m2以下とす る こ と が望ま しい。 こ こで、 ス リ ッ トジェ ッ ト冷却と は、 ス リ ッ ト状の冷却水噴射口 を有するス リ ッ ト ジエ ツ ト冷却ノ ズ ルから高速の水流を噴射し、 冷却する も のであ り 、 その水の 運動量及び冷却速度は比較的高い。 こ のス リ ッ トジェ ッ ト冷 却ノ ズルを利用 した冷却装置をス リ ッ ト ジエ ツ ト冷却装置と 、 It is desirable to use 1500 L / min. M 2 or more because nucleate boiling cooling can be realized more stably. In addition, from the viewpoint of facility costs and running costs, it is desirable that the water density be 3000 L / min. M 2 or less. Here, the slit jet cooling refers to cooling by injecting a high-speed water flow from a slit jet cooling nozzle having a slit-shaped cooling water injection port. However, the momentum and cooling rate of the water are relatively high. A cooling device that uses this slit jet cooling nozzle is called a slit jet cooling device. ,
以上で述べたこ と をま と める と、 まず制御冷却 miあるいは To summarize the above, first, control cooling mi or
、 制御冷却の初期において、 厚鋼板の幅方向につレ、て温度分 布を均一化しておけば、 制御冷却後の厚鋼板の幅方向の温度 分布も均一になる 0 さ らに、 制御冷却における冷却ノ ズルと して水の運動量の いものを採用する こ と によ り 、 核沸騰領 域で冷却すれば同一の冷却速度で冷却が可能と なる o If the temperature distribution is uniform in the width direction of the steel plate at the beginning of the controlled cooling, the temperature distribution in the width direction of the steel plate after the controlled cooling becomes uniform. By adopting a cooling water nozzle with a low momentum as the cooling nozzle, cooling at the same cooling rate is possible if cooling is performed in the nucleate boiling region o
また、 以上で述ベた考え方は、 厚鋼板の幅方向の端部のみ な らず厚鋼板の長手方向の先尾端部にち適用が可能でめる。  In addition, the concept described above can be applied not only to the end of the thick steel plate in the width direction but also to the end of the thick steel plate in the longitudinal direction.
以下、 具体的に図を用いて、 本発明を説明する o  Hereinafter, the present invention will be specifically described with reference to the drawings.
図. 6 は、 本発明の第 1 の実施形態である厚鋼板の制御冷却 装置の概念図である 。 制御冷却装置 20と してはヽ 通過型の制 御冷却装置を用いる 。 通過型制御冷却装置は、 制御冷却装置 内に厚鋼板を通過させなが ら冷却する装置であ り ヽ 後述する ゾ一ン制御が可能である こ と カ ら停止型の制御冷却装置に比 ベて温度制御の制御性に優れている。 たと えばゝ 停止型制御 冷却装置の場合、 鋼板が所定の温度と なつた時点で冷却水 の注水を停止するが 、 停止時の遮断弁の応答遅れなどがあ り FIG. 6 is a conceptual diagram of the control cooling device for a thick steel plate according to the first embodiment of the present invention. As the control cooling device 20, a through-pass type control cooling device is used. A pass-type control cooling device is a device that cools a plate while passing a thick steel plate through the control cooling device. And excellent controllability of temperature control. For example, in the case of a stop-type control cooling device, the injection of cooling water is stopped when the temperature of the steel sheet reaches a predetermined temperature.
、 正確に水冷時間を制御する こ と が難しレ、ためでめる G に示すよ う に厚鋼板の素材スラブは厚板圧延機 1によ り 所定の 板厚に圧延され、 厚鋼板 2となってローラーテーブル 3上を移 送されて、 制御冷却装置 20内を通過させる冷却によ り 所定の 冷却速度で冷却停止温度まで冷却される。 制御冷却装置 20は 厚鋼板 2のパスライ ンを上下に挟んで上ヘッダー 2 1及ぴ下へッ ダー 22が配置されてお り 、 これに高圧水を噴出するス リ ッ ト ジエ ツ ト冷却ノ ズル 23、 24が取 り 付けられてお り 、 厚鋼板 2の 表面に衝突する極めて高圧の嘖出水によ り厚鋼板を急速冷却 する機能を有する。 また、 制御冷却装置 20の入側と 出側には Ϊ服度曰十 3 1 、 32が設置されてお り 制御冷却の前後で厚鋼板の温 度測定ができ る よ う になつている。 However, it is difficult to control the water cooling time accurately, and as shown by G , the slab of the thick steel plate is rolled to a predetermined thickness by the plate rolling mill 1 and Then, it is transported on the roller table 3 and is cooled to a cooling stop temperature at a predetermined cooling rate by cooling passing through the control cooling device 20. The control cooling device 20 is provided with an upper header 21 and a lower header 22 sandwiching the pass line of the thick steel plate 2 up and down, and a slit jet cooling nozzle for jetting high-pressure water to this. The nozzles 23 and 24 are attached, and have a function of rapidly cooling the steel plate by extremely high pressure water that collides with the surface of the steel plate 2. Also, the inlet and outlet sides of the control cooling device 20 ΪThere are three sets of clothing, 31 and 32, so that the temperature of thick steel plates can be measured before and after controlled cooling.
また 制御冷却装置 20の詳細図を図 7 に示す。 制御冷却装 置 20は複数の冷却ゾーンから構成されてお り 、 それぞれの冷 却ゾ一 ンでは水切 り ロール 2 7で仕切 られてお り 、 且つ個別に 冷却水虽が調整可能と なっている。 こ の冷却ゾー ンは圧延機 に近いほ う から順に 1 ゾー ン、 2 ゾー ン ' · ' と呼称する。 またス V シ トジエ ツ ト冷却ノ ズルの水量密度は伝熱状態を核 沸騰にして厚鋼板の端部に亘つて同一の冷却速度で冷却でき る よ う に 、 水量密度を 1200 L/m i n . m2以上通水でき る設備と な つている ο FIG. 7 shows a detailed view of the control cooling device 20. The control cooling device 20 is composed of a plurality of cooling zones. Each cooling zone is separated by a draining roll 27, and the cooling water can be adjusted individually. . These cooling zones are referred to as one zone and two zones '·' in order from the position close to the rolling mill. The water density of the V-Site jet cooling nozzle was set to 1200 L / min so that the heat transfer state could be set to nucleate boiling and cooling could be performed at the same cooling rate over the end of the thick steel plate. m 2 or more is One Do the water flow can Ru equipment ο
制御冷却装置 20は前段部 25と後段部 26に分かれてお り 、 制 御冷却 置前段部 25は、 各冷却ゾー ンに遮蔽部材が設置され てお り 、 厚鋼板の幅方向の板端部の冷却水量調整が可能と な つてレヽる 0 図 7の A Aの断面図である図 8 に示すよ う に、 上ス リ ツ 卜ジェ ッ ト冷却ノ ズル 23の下部、 厚鋼板の幅方向の両側 端部に相当する箇所に左右一対の上面遮蔽部材 28を設け、 下 The control cooling device 20 is divided into a front part 25 and a rear part 26.The front part 25 of the control cooling unit is provided with a shielding member in each cooling zone, and a plate end in the width direction of the thick steel plate. As shown in Fig. 8, which is a cross-sectional view of AA in Fig. 7, the lower part of the upper slit jet cooling nozzle 23, the width direction of the thick steel plate A pair of left and right upper surface shielding members 28 are provided at locations corresponding to both ends, and
■*、、 ■ * ,,
ス リ ツ 卜ンエ ツ ト冷却ノ ズル 24の上部、 厚鋼板の幅方向の両 側端部に相当する箇所に左右一対の下面遮蔽部材 29を設け、 これを刖後進機構 16によって厚鋼板 2の板幅方向に出し入れさ せる こ と によ り 行な う。 上面及び下面の遮蔽部材 28, 29は上面 部単独 、 下面部単独、 上面部下面部同時などで出 し入れでき る構 is.と なつ ている。 また、 制御冷却装置 20の前段に設置さ れてレヽる遮蔽部材 28、 29は水冷ゾーン毎に独立して出 し入れ 可能であ 、 例えば 1 つの冷却ゾー ンのみ遮蔽部材を入れた り 、 前段の冷却ゾー ン全てで遮蔽部材を入れた り する こ と が 可能である ο A pair of left and right lower surface shielding members 29 are provided at a position corresponding to both ends in the width direction of the thick steel plate at an upper portion of the slit-tonet cooling nozzle 24, and this is mounted on the thick steel plate 2 by the reverse mechanism 16. This is done by moving the product in and out in the width direction. The upper and lower shielding members 28 and 29 are configured so that they can be moved in and out of the upper surface alone, the lower surface alone, and the upper and lower surfaces simultaneously. The shielding members 28 and 29 installed in front of the control cooling device 20 can be independently moved in and out of each water cooling zone. For example, only one cooling zone is provided with the shielding member, Shielding members can be inserted in all cooling zones of ο
本発明の第 1 の実施形態では、 第 1 の冷却ステ ップと して 、 前段の冷却ゾ ンで厚鋼板の幅方向の 側端部の冷却水量 を制限しなが ら冷却し 、 厚鋼板の幅方向の端部と厚鋼板の中 央部の温度が一致させた後、 第 2 の冷却ステ Vプと して 、 後 段の冷却ゾ一ンで 、 厚鋼板の幅方向全体を |pj一の冷却速度で 制御冷却を行な o In the first embodiment of the present invention, the first cooling step is After cooling with the cooling zone in the preceding stage restricting the amount of cooling water at the side edges in the width direction of the thick steel plate, and after matching the temperature in the width direction end of the thick steel plate with the temperature in the center of the steel plate As the second cooling step, the cooling zone at the subsequent stage performs controlled cooling at the cooling rate of |
こ こで 、 厚鋼板の幅方向の端部の水量を制限するに当たつ ては、 その遮蔽ゾ一ン数と遮蔽距離を決定する観点 ら 、 冷 却前の厚鋼板の幅方向の端部の情報について 、 図 9 のよ う な 定義を行な う o こ で 、 温度降下距離と は 、 厚鋼板の幅方向 における厚鋼板の 1 の勾配がゼ口 になる位置から厚鋼板の 幅方向の端部までの距離で定義され 曰度降下量と は厚鋼板 の幅方向に ける厚鋼板の温度の勾配がゼ Π になる位置に ける温度と、 厚鋼板の幅方向の端部の温度と の差で定義され この温度降下量や温度降下距離は 、 圧延前素材の板厚やそ の加熱条件 、 圧延完了後の厚鋼板の板幅や製品板厚、 圧延完 了温度等によ り 変化するが、 一般的な圧延材では、 厚鋼板の 幅方向の端部の ί 1曰度降下量は 40〜 50 °C程度 、 厚鋼板の幅方向 の端部の 曰度降下距離は 1 00〜 30 0mm程度である。 厚鋼板の幅 方向の端部の 曰 且  Here, in limiting the amount of water at the widthwise end of the steel plate, from the viewpoint of determining the number of shielding zones and the shielding distance, the widthwise end of the steel plate before cooling is used. The definition of the temperature drop distance is defined as the temperature drop distance from the position where the slope of 1 in the width direction of the steel plate becomes zero, in the width direction of the steel plate. Defined as the distance to the end, the amount of drop is defined as the temperature at the position where the temperature gradient of the steel plate in the width direction of the steel plate becomes zero, and the temperature at the end of the steel plate in the width direction. The temperature drop amount and temperature drop distance defined by the difference vary depending on the thickness of the material before rolling, its heating conditions, the width and thickness of the steel plate after rolling, the product thickness, and the rolling completion temperature. However, in the case of general rolled material, the 度 1 drop at the end in the width direction of the thick steel plate is about 40 to 50 ° C, 'S 曰度 descent distance of the end portion is about 1 00~ 30 0 mm. At the end in the width direction of the steel plate
1JDL度降下里や厚鋼板の幅方向の端部の温度降下 距 —  1JDL degree drop or temperature drop at the end in the width direction of steel plate —
離は、 圧延 —目ヽ (J 材板厚等のパラメ一ター (. p a r a m e t e r )で実測 値を解析し 、 予めテ一ブル化に しても よいし、 制御冷却装置 刖'に厚鋼板の全面の温度分布が測定可能なよ う に走査型温度 計等を設置して 、 その値を計算機で演算して求めてもかまわ なレ、  Separation may be measured by rolling-measurement (measurement value by parameter (.parameter) such as J material thickness, etc.), and may be made into a table in advance. A scanning thermometer or the like may be installed so that the temperature distribution can be measured, and the value may be calculated using a computer.
の情報を兀に制御冷却 の刖段に レ、て 厚鋼板の幅 方向の中央部で通常に冷却し 厚鋼板の幅方向の端部は遮蔽 部材によ 冷却水量を制限して 厚鋼板の幅方向の端部をな るべく 空冷に近い状態と なる Ό に して、 子鋼板の中央部と 厚鋼板の幅方向の端部の温度を一致させる 0 こ の第 1 の冷却 ステ ツプでは、 厚鋼板の幅方向の 曰 At the center of the width of the steel plate, the cooling is performed normally, and the widthwise end of the steel plate is restricted by the shielding member to limit the amount of cooling water and the width of the steel plate Direction end At this point, the temperature at the center of the steel sheet and that at the end in the width direction of the thick steel plate are made to match as much as possible to the air cooling state. べ く In the first cooling step, Saying
■ijm.度分布の均一化の 画標を ■ ijm.
20 °C以下、 好ま しく は 10。C以下とする o Below 20 ° C, preferably 10. C or less o
遮蔽部材の移動量は 、 図 9 にねける厚鋼板の幅方向の端部 の温度降下距離分だけ遮蔽すればよレ、 o またゝ 蔽部材を使 用する冷却ゾーン数は 、 12 1 0 を "昭、 しながら次のよ 5 に決 定する。  The amount of movement of the shielding member can be determined by shielding the steel plate by the temperature drop distance at the end in the width direction of the thick steel plate as shown in Fig. 9.o Also, the number of cooling zones using the shielding member is 1210. "Showa, however, decides on the following 5.
制御冷却装置の前段及び後段の冷却ゾー ン数を合計した 全冷却ゾー ン数 Νと、 目標の冷却開始温度、 冷却終了温 度と の Λ曰  The total cooling zone number し た, which is the sum of the number of cooling zones before and after the control cooling device, and the target cooling start temperature and cooling end temperature Λ
1皿度差 D Τ (冷却量)から、 以下の式によ り 1 ゾ一 ンあた り の冷却量 Δ Τを計算する。  Using the following formula, calculate the cooling rate per zone Δ か ら from the dish difference D Τ (cooling rate).
Δ Τ = D T / N  Δ Τ = D T / N
(2 ) 冷却目リの厚鋼板の幅方向の端部の温度降下量 EDだけ厚鋼 板の中央部の冷却が可能と なる冷却ゾーン数 nを 1ゾ ― ン 当た X) の冷却量 Δ T力 ら求める。 n = E D / Δ T  (2) The amount of temperature drop at the end of the thick steel plate in the width direction at the cooling point ED, the number of cooling zones where cooling of the center part of the thick steel plate is possible by ED is equal to X). Obtain from T force. n = E D / Δ T
(3 ) 制御冷却装置前段の最初のゾー ンである 1 ゾーンから (3) From zone 1, which is the first zone before the control cooling device
(2 )で求めた冷却ゾー ン数分の遮蔽部材を使用する。 こ の と き 、 算出される冷却ゾー ン数は、 必ずしも整数と は な らないが、 本設備では、 上面部遮蔽部材を単独若しく は下 面部遮蔽部材を単独で遮蔽でき るため、 0. 5ゾー ン単位で制御 が可能である と考える。 例えば冷却ゾー ン数が 1. 4など算出さ れた場合は、 1. 5ゾー ン分使用すればよ く 、 具体的には、 1 ゾUse shielding members for the number of cooling zones determined in (2). At this time, the calculated number of cooling zones is not necessarily an integer, but with this equipment, the upper surface shielding member or the lower surface shielding member can be shielded independently, so It is considered that control is possible in 5-zone units. For example, if the number of cooling zones is calculated as 1.4, it is sufficient to use 1.5 zones. Specifically, 1 zone is used.
― ンで上下面部の両方の遮蔽部材使用、 2 ゾーンで上面部の み遮蔽部材使用 とすればよい。 - こで、 各冷却ゾー ンの設備 長をなるベく 短 < し、 冷却ゾーン数を多く するほど、 厚鋼板 の幅方向の端部の温度制御性は向上する 0 It is only necessary to use both upper and lower shielding members in the area, and only the upper surface in two zones. -Here, the shorter the equipment length of each cooling zone and the greater the number of cooling zones, the better the temperature controllability of the width direction end of the thick steel plate 0
また、 遮蔽部材によ り 冷却水をほぼ 断してヽ 厚鋼板の幅 方向の端部では空冷に近い条件にした方が良い。 これは、 厚 鋼板の幅方向の端部の温度が厚鋼板の中央部の温度に近づく につれ 、 厚鋼板の中央部と厚鋼板の幅方向の端部の温度分布 を均一化するために要する時間が長く な り 、 遮蔽部材の使用 ゾ ン数も多く なる。 その結果、 制御冷却装置の後段側にお ける冷却量が少なく なるため、 本発明の効果である厚鋼板の 幅方向の端部と厚鋼板の中央部の冷却速度が一致するメ リ ッ 卜が得られにく く なる力 らである。 Also, the cooling water is almost cut off by the shielding member. It is better to set the condition near the air cooling at the end in the direction. This is because, as the temperature at the end of the steel plate in the width direction approaches the temperature at the center of the steel plate, the time required to equalize the temperature distribution between the center of the steel plate and the end of the steel plate in the width direction is increased. And the number of zones in which the shielding member is used increases. As a result, the amount of cooling on the downstream side of the control cooling device is reduced, and the advantage of the present invention is that the cooling rate at the end in the width direction of the thick steel plate coincides with the cooling rate at the center of the thick steel plate. These forces are difficult to obtain.
図 1 1 には本発明例どして、 先に述べた手法によ り 冷却を 実施した場合の冷却前後の厚鋼板の幅方向の温度分布を示す o 条件は、 板厚 30mm、 板幅 3200 mm , 板長 25 mの厚鋼板を用い、 厚鋼板の幅中央部において 750 °Cから制御冷却を開始し、 550 Fig. 11 shows the temperature distribution in the width direction of a thick steel plate before and after cooling when cooling was performed by the method described above in the example of the present invention.The conditions were as follows: plate thickness 30 mm, plate width 3200 Controlled cooling was started at 750 ° C at the center of the width of
°Cで冷却を終了 した。 冷却前の厚鋼板は、 厚鋼板の幅方向の 端部の温度降下量は 30 °C、 厚鋼板の幅方向の端部の温度降下 距離は 200mmであった。 また、 本発明の実施例に用いた冷却装 置は先に述べた構成であるが、 冷却ゾー ン数は 1 0ゾ ンであ り 、 冷却水量密度は上下ノ ズルせ z に 1800L/m i n . m2噴射した。 先 に述べた手法で遮蔽部材の使用ゾ一ン数を求めた と ころ、 1 . 5 ゾー ン と なつたため、 1 ゾ一ンでは上下面部両方に遮蔽部材 を使用 し、 2 ゾ一ンでは下面部のみ遮蔽部材を使用 した。 遮 蔽部材の移動量は 、 厚鋼板の幅方向の端部の温 降下距離がCooling was completed at ° C. Before cooling, the temperature drop at the end in the width direction of the thick steel plate was 30 ° C, and the temperature drop distance at the end in the width direction of the steel plate was 200 mm. Although the cooling device used in the embodiment of the present invention has the above-described configuration, the number of cooling zones is 10 and the cooling water density is 1800 L / min. m 2 was sprayed. When the number of zones used for the shielding member was calculated using the method described above, the number of zones used was 1.5.Therefore, the shielding member was used for both upper and lower surfaces in one zone, and the lower surface was used in two zones. A shielding member was used only for the part. The amount of movement of the shielding member depends on the temperature drop distance at the end in the width direction of the steel plate.
200mmである こ : と t ら、 2 00 mmだけ厚鋼板の幅方向の端部が遮 蔽させる位置まで遮蔽部材を移動した。 本発明では 冷却前 に 30 °Cあった厚鋼板の幅方向の端部の温度降下はほぼ消失す る こ と が出来た。 一方 比較と して遮蔽部材を 用 しな力 つ た場合についても実施してみたが 冷却後は厚鋼板の幅方向 の端部の温度降下量は 60 °Cと な 厚鋼板の幅方向のタ曰 At 200 mm, the shielding member was moved by 200 mm to a position where the end in the width direction of the thick steel plate was shielded. In the present invention, the temperature drop at the end in the width direction of the thick steel plate, which was 30 ° C before cooling, could almost disappear. On the other hand, as a comparison, the test was also performed for the case where the shielding member was not used, but after cooling, the temperature drop at the end in the width direction of the thick steel plate was 60 ° C, and the temperature drop in the width direction of the thick steel plate was 60 ° C. Say
1 度分布 の偏差が拡大してレ、る とが分かる また、 前段の冷却ゾー ンで厚鋼板の長手方向の先尾端部の 冷却において冷却水量を制限しなが ら冷却し、 厚鋼板の長手 方向の先尾端部と厚鋼板の中央部の温度が一致させた後、 後 段の冷却ゾー ンで厚鋼板の長手方向全体を同一の冷却速度で 冷却を行な う。 It can be seen that the deviation of the distribution once expanded In the cooling zone at the preceding stage, cooling is performed while limiting the amount of cooling water in cooling the longitudinal end of the plate in the longitudinal direction, and the temperature at the longitudinal end of the plate and the central part of the plate is reduced. After matching, the cooling zone in the subsequent stage cools the entire length of the thick steel plate at the same cooling rate.
これについても、 先ほど厚鋼板の板幅方向の端部について 説明 したものと 同様の手法が適用可能である。 こ の厚鋼板の 長手方向の先尾端部の冷却制御を行な う ためには、 図 6 と 7 における制御冷却装置には、 図 1 2 のよ う に、 制御冷却ゾ一 ンの厚鋼板 2の先端通過を例えばフォ トセル 1 7によって検知し 、 フ ォ トセル 1 7による厚鋼板の先端通過の検知時間を基準と して上記分割された冷却ゾーンに進入するタイ ミ ング  In this case, the same method as described above for the end of the thick steel plate in the width direction can be applied. In order to control the cooling at the longitudinal end of this thick steel plate, the control cooling device shown in Figs. 6 and 7 must be equipped with a thick steel plate with a controlled cooling zone as shown in Fig. 12. For example, when the passage of the tip of the steel plate 2 is detected by the photocell 17, and the timing for entering the divided cooling zone based on the detection time of the passage of the tip of the thick steel plate by the photocell 17 is used as a reference.
( t i mi n g)で流量計及び流量調整弁から構成される流量制御装 置 41が作動し始める よ う タイマー(t i mer ) T をセ ッ トする。 まAt (timing), a timer (timer) T is set so that the flow control device 41 composed of a flow meter and a flow control valve starts to operate. Ma
·  ·
た 、 流里制御装置の他の方法と しては図 1 3 のよ つ に制御冷 却装置の前段部に三方弁 42を設置し 、 厚鋼板の先尾端におい て冷却水を外部に逃がすこ と によ り ノ ズノレから噴射する冷却 水を停止可能な構造と して も よい o As another method of the flow control device, a three-way valve 42 is installed at the front of the control cooling device as shown in Fig. 13 to allow the cooling water to escape to the outside at the tip end of the steel plate. Thus, a structure that can stop the cooling water injected from the nozzle may be used.o
まず、 厚鋼板の先尾端部の水量を制限するに当たつては、 その遮蔽ゾー ン数と遮蔽距離を決定する観点から 、 冷却前の 厚鋼板の先尾端部の情報について 、 図 1 4 のよ う な定義を行 な う。 厚鋼板の先尾端部の温 降下里や温度降下距離の疋 は 、 図 9 における厚鋼板の板幅方向の端部の定義と じであ る 。 この温度降下量や温度降下距離は 、 圧延目 'J素材の板厚や その加熱条件、 圧延完了後の板幅や製品板厚 、 圧延兀了温度 等によ り 変化するが、 一般的な圧延材ではヽ 厚鋼板の先尾端 部の温度降下量は 40〜 50 °C程度、 厚鋼板の先尾端部の ΐ 度降 下距離は 300力 ら 500mm程度でめ o o 厚鋼板の先尾端部の温度 降下量や厚鋼板の先尾端部の温度降下距離は、 £h延刖素材の 板厚等のパラメ 一ターで実測値を解析し 、 予めテーブル化に しても よレヽし、 制御冷却装置前に厚鋼板の長手方向の温度分 布が測定可能なよ う に走查型温度計ゃスポ 卜 度 十 の表 面温度計 ^ I ¾して、 その値を計算機で演算 して求めてもか まわないFirst, in limiting the amount of water at the tail end of the steel plate, from the viewpoint of determining the number of shielding zones and the shielding distance, information on the tail end of the steel plate before cooling is shown in FIG. Make a definition like 4. The temperature drop village and temperature drop distance at the end of the thick steel plate are the same as the definition of the end of the thick steel plate in the width direction in Fig. 9. The amount of temperature drop and the temperature drop distance vary depending on the thickness of the material to be rolled, the thickness of the material to be heated, the heating conditions, the width and thickness of the product after the completion of rolling, the rolling end temperature, and the like. For the material, the temperature drop at the leading end of the thick steel plate is about 40 to 50 ° C, and the temperature drop at the leading end of the thick steel plate is about 300 to 500 mm.oo The leading end of the thick steel plate Part temperature The amount of drop and the temperature drop distance at the end of the tip end of the thick steel plate are measured by parameters such as the plate thickness of the rolled material and the values are analyzed. In advance, a running thermometer ゃ a surface thermometer with a spot temperature of 10 ^ I よ so that the longitudinal temperature distribution of the thick steel plate can be measured, and the value is calculated by a computer. I don't care
- の情報を元に制御冷却装置の前段において、 厚鋼板の長 手方向の中央部で通常に冷却し、 厚鋼板の長手方向の先尾端 部は流里制御装置 41によ り 冷却水量を制限して、 なるベ < 冷に近レ、状態と なる よ う にして、 厚鋼板の長手方向の中央部 と厚鋼板の長手方向の先尾端部の温度を一致させる。 これあ 厚鋼板の幅方向での遮蔽部材の使用 と 同様の考え方が適用可 能である 。 例えば厚鋼板の長手方向の先端部の温度降下部の 温度を捕償するためには図 1 5 に示すよ に 、 制御冷却装置 -In front of the control cooling device based on the information of the above, the steel plate is cooled normally at the center in the longitudinal direction of the steel plate, and at the tail end in the longitudinal direction of the steel plate, the cooling water amount is By limiting the temperature, the temperature at the central part in the longitudinal direction of the thick steel plate and the temperature at the tail end in the longitudinal direction of the heavy steel plate are made to match each other so that the temperature becomes as low as possible. The same concept as the use of the shielding member in the width direction of the thick steel plate can be applied. For example, in order to compensate for the temperature at the temperature drop at the longitudinal end of a thick steel plate, as shown in Fig. 15, a controlled cooling device is used.
20の各冷却'へッダ 1 "~にねいて、 まず冷却水を停止した状 と して さ (図 1 5 Aの状態 ) 、 厚鋼板の先端部の温度降下部 と厚鋼板の中央部と の境界が各冷却ゾ一 ンに進入したタィ ヽ 、 、 ングで流量制御装置 41が動作させ冷却水を噴射する (図 1 5Neite the header 1 "to each cooling 'of 20, first, the cooling water Is in the stopped-like (the state in FIG. 1 5 A), the central portion of the temperature drop portion and the steel plate of the front end portion of the steel plate When the boundary between and enters each cooling zone, the flow control device 41 is activated by the 、, 、, and 冷却 to inject cooling water (Fig. 15
B の状態 ) よ う にタイマ一を設定すればよい B state)
また 、 Ι -鋼板の長手方向の尾端部の温 /ス降下部の温度を補 償するためには図 1 6 に示すよ う に、 制御冷却ゾー ン 20の各 冷却へシダーにおいて、 まず冷却水を通水した状態と して き (図 1 6 Aの状態) 、 厚鋼板の長手方向の尾端部の温度降 下部と厚鋼板の長手方向の中央部との境界が各冷却ゾーンに 進入したタイ ミ ングで流且  In order to compensate for the temperature at the tail end in the longitudinal direction of the Ι-steel plate and the temperature at the descent part, as shown in FIG. When water is allowed to pass through (as shown in Fig. 16A), the boundary between the temperature drop at the tail end of the steel plate in the longitudinal direction and the central part of the steel plate in the longitudinal direction enters each cooling zone. Flow at the timing
里制御装置 41が動作して冷却水を停 止する (図 1 6 B の状態 ) よ う にタイマ一を 疋— 3 ればよい ン数は、 厚鋼 板の幅方向における制御法と 同様に、 次のよ う に決定する。The number of timers should be 3 so that the village control device 41 operates to stop the cooling water (the state shown in Fig. 16B). In the same way as the control method in the width direction of the board, it is determined as follows.
(1) 制御冷却装置の前段及び後段の冷却ゾー ン数を合計し た全冷却ゾー ン数 Nと、 目標の冷却開始温度、 冷却終了温 度との温度差 D T (冷却量) から、 以下の式によ り 1 ゾー ンあた り の冷却量 Δ Τを計算する。 (1) From the total cooling zone number N, which is the sum of the number of cooling zones before and after the control cooling device, and the temperature difference DT (cooling amount) between the target cooling start temperature and target cooling end temperature, Calculate the amount of cooling per zone Δ に よ using the formula.
Δ T = D T /N  Δ T = D T / N
(2) 冷却前の厚鋼板の先端若しく は厚鋼板の尾端部温度降 下量 E D Lだけ、 厚鋼板.の長手方法の中央部が冷却でき る ゾー ン数 nLを 1ゾー ン当た り の冷却量から求める。  (2) One zone equals the number of zones nL that can cool the central part of the longitudinal direction of the thick steel plate by the temperature drop EDL at the tip of the thick steel plate or at the tail end of the thick steel plate before cooling. From the amount of cooling.
n L -E D L /Δ Τ  n L -E D L / Δ Τ
(3) 制御冷却装置の前段の最初のゾー ンである 1 ゾー ンか ら (2)で求めた冷却ゾー ン数分 n Lの流量制御装置を動作 させる。  (3) From the first zone, which is the first zone in the preceding stage of the control cooling device, operate the nL flow control device for the number of cooling zones determined in (2).
この と き、 算出される冷却ゾー ン数は、 必ずしも整数と は ならないが、 例えば冷却ゾー ン数が 1.4な ど算出された場合は 、 近い整数と なる 1ゾーン分使用する。 これは、 厚鋼板の幅方 向の制御と異な り 、 例えば厚鋼板の上面だけ冷却水を嘖射し た り する と厚鋼板の上下面で発生する温度差によ り厚鋼板に 反 り が発生する危険性があるが、 こ の よ う な厚鋼板の長手方 向の先尾端の反 り は、 後に実施する ローラーレべラー(roller leveler)などの矯正工程で矯正しにく いため好ま しく ない。 こ こ で、 厚鋼板の幅方向の場合と 同 じく 、 厚鋼板の長手方向 においても、 各冷却ゾー ンの設備長をなるベく 短く し、 冷却 ゾーン数を多く するほど、 厚鋼板の長手方向の先尾端部の温 度制御性は向上する。 また、 厚鋼板の長手方向の先尾端部に おいて冷却水はほぼ遮断して、 空冷に近い条件にした方が良 い。 これは、 厚鋼板の板幅方向の制御と 同 じく 、 厚鋼板の長 手方向の先尾端部の温度が厚鋼板の長手方向の中央部の温度 に近づく につれヽ 厚鋼板の長手方向の中央部と厚鋼板の長手 方向の先尾端部の 曰度を均一化するために要する時間が長く な り 、 流虽 ]整を実施する水冷ゾーン数も多ぐ なる。 その結 果、 制御冷却装置の後段側における冷却量が少なく なるためAt this time, the calculated number of cooling zones is not always an integer. For example, when the number of cooling zones is calculated as 1.4, for example, one zone that is a close integer is used. This is different from the control of the width direction of a steel plate.For example, when cooling water is applied only to the upper surface of the steel plate, the steel plate warps due to the temperature difference generated between the upper and lower surfaces of the steel plate. Although there is a risk of occurrence, such a warp of the longitudinal end of the thick steel plate is preferable because it is difficult to correct it in a correction process such as a roller leveler performed later. Absent. Here, as in the case of the width direction of the thick steel plate, in the longitudinal direction of the thick steel plate, the equipment length of each cooling zone is made as short as possible, and the longer the number of cooling zones, the longer the length of the thick steel plate becomes. The temperature controllability at the tail end in the direction is improved. In addition, it is better to shut off the cooling water at the end of the thick steel plate in the longitudinal direction, so that the condition is close to air cooling. This is the same as controlling the thickness of a steel plate in the width direction. The time required to equalize the length of the central part of the thick steel plate in the longitudinal direction and the longitudinal end of the thick steel plate becomes longer, and the number of water cooling zones where flow control is performed also increases. More. As a result, the amount of cooling on the downstream side of the control cooling device is reduced.
、 本発明の効果である厚鋼板の長手方向の先尾端部と厚鋼板 の長手方向の中央部の冷却速度が一致するメ y ッ トが得られ にく く なるからでめる。 However, the effect of the present invention is that it is difficult to obtain a measure in which the cooling speed at the longitudinal end portion of the thick steel plate and the central portion of the thick steel plate in the longitudinal direction are difficult to obtain.
以上述ベたよ う な厚鋼板の長手方向の先尾 の温度降下部 に関しても、 厚鋼板の幅方向の端部と 同様の冷却制御が可能 と なるため、 厚鋼板の長手方向全長に亘つて均一な温度に冷 As described above, the same temperature control as that at the end of the thick steel plate in the width direction can be applied to the temperature drop portion at the end of the thick steel plate in the longitudinal direction. Cool to the right temperature
- 却可能である と は曰 フ でも無い o  -It's not that it is rejectable o
また本方式のメ y ッ トは 、 厚鋼板の幅方向の温度降下を解 消するために 蔽部材の使用ゾーン数を制御し 、 厚鋼板の長  In addition, in order to eliminate the temperature drop in the width direction of the thick steel plate, the number of zones used by the shielding member is controlled, and the length of the thick steel plate is controlled.
 丄
手方向の先尾端の 度降下を解消するために厚鋼板の長手方 向の先尾端の水の流量制御を行な う冷却ゾ一 ン数を制御する ので、 厚鋼板の幅方向 と厚鋼板の長手方向の先尾端を独立し て制御する こ と が可能と なる。 そのため 、 例 ば厚鋼板の幅 方向の端部の 曰 The number of cooling zones that control the flow rate of water at the longitudinal end of the thick steel plate is controlled to eliminate the downward descent at the tail end in the hand direction. It is possible to control the tail end of the steel plate in the longitudinal direction independently. For this reason, for example, the
ism.度降下量が 30 °Cで、 厚鋼板の長手方向の先尾 端部の温度降下里が 70 °Cといったよ う に 、 異なる温度降下量 であっても温度分布の均一化が可能と なる o  Even if the temperature drop is 30 ° C and the temperature drop at the end of the thick steel plate in the longitudinal direction is 70 ° C, the temperature distribution can be made uniform even with different temperature drops. Become o
図 1 7 は本発明の第 2 の実施形態である厚鋼板の制御冷却 装置の概念図である 。 熱間圧延された厚鋼板 2は、 ローラーテ 一ブル 3上を移送されて順次、 予備冷却装置 1 0、 制御冷却装置 20へ搬送され、 所定の冷却速度で冷却停止温度まで冷却され る。 ·  FIG. 17 is a conceptual diagram of a control cooling device for a thick steel plate according to a second embodiment of the present invention. The hot-rolled steel plate 2 is transported on the roller table 3 and is sequentially conveyed to the pre-cooling device 10 and the control cooling device 20, where it is cooled to a cooling stop temperature at a predetermined cooling rate. ·
予備冷却装置 1 0と は 、 本発明の第 1 の冷却ステ クプを達成 するために 、 制御冷却装置の刖 HX [S.された冷却 置であ り The pre-cooling device 10 is a cooling device of the control cooling device HX [S.S.] in order to achieve the first cooling step of the present invention.
、 少な < と も厚鋼板の幅方向の端部の 曰 , A few <
1皿度降下量である 40〜 50 °C程度を冷却でき る能力があればよい。 こ こでは、 予備冷 却装置 10には、 厚鋼板 2のパス ライ ン(p a s s l i n e )を上下に挟 んで上ヘッダー 1 1及び下ヘッダー 12が配置されており 、 これ らヘッダーに設け られたノ ズル (図示せず) から水流 1 3、 14 が厚鋼板 2の表裏面に当 り ラ ミ ナ一フロー冷却ができ る よ う に なっている。 なお、 ラ ミ ナ一フロー冷却と は、 水流が遅いと きに生ずる層流 (ラ ミ ナ一フロー) を利用 して厚鋼板の表面 に水膜を生じさせて冷却する方法であ り 、 その冷却速度は比 較的小さい。 ラ ミ ナ一フロー冷却を利用 した冷却装置をラ ミ ナーフロー冷却装置と称す。 1 dish drop is 40 ~ It is only necessary to have the ability to cool about 50 ° C. Here, in the pre-cooling device 10, an upper header 11 and a lower header 12 are arranged with a pass line (thickness) of the steel plate 2 sandwiched above and below, and nozzles provided in these headers are provided. (Not shown), the water currents 13 and 14 hit the front and back surfaces of the steel plate 2 to enable laminar flow cooling. Laminar flow cooling is a method in which a laminar flow (laminar flow) generated when the water flow is slow is used to form a water film on the surface of a thick steel plate and cool it. The cooling rate is relatively small. A cooling device that uses laminar flow cooling is called a laminar flow cooling device.
制御冷却装置 20は、 本発明の第一の実施形態と 同 じく 、 厚 鋼板 2のパス ライ ンを上下に挟んで上ヘッダー 2 1及び下ヘッダ 一 22が配置されてお り 、 これに高圧水を噴出するス リ ッ トジ エ ツ ト冷却ノ ズル 23、 24が取り 付けられてお り 、 厚鋼板の表 面に衝突する極めて高圧の嘖出水によ り 厚鋼板を急速冷却す る機能を有する。 さ らに、 制御冷却装置 20は図 7 に示すよ う に複数の冷却ゾーンから構成されてお り 、 それぞれの冷却ゾ ーンでは水切 り ロール 27 (図示せず) で仕切られてお り 、 且 つ個別に冷却水量密度が調整可能と なっている。 この冷却ゾ ーンは圧延機に近いほ う から順に 1 ゾーン、 2 ゾーン ' · · と呼称する。 また水量密度は核沸騰状態に し、 厚鋼板の端部 に亘つて均一な冷却速度で冷却ができ る よ う に、 1 200 L/m i n . m2 以上通水でき る設備と なっている。 As in the first embodiment of the present invention, the control cooling device 20 includes an upper header 21 and a lower header 122 sandwiching the pass line of the thick steel plate 2 above and below. Slit jet cooling nozzles 23 and 24 that eject water are installed, and have the function of rapidly cooling steel plates by extremely high pressure water that collides with the surface of the steel plates. Have. In addition, the control cooling device 20 is composed of a plurality of cooling zones as shown in FIG. 7, and each cooling zone is separated by a draining roll 27 (not shown). In addition, the cooling water density can be adjusted individually. These cooling zones are referred to as one zone and two zones in order from near the rolling mill. The water flow rate is in the nucleate boiling state, Ni Let 's that can cooled with Wataru connexion uniform cooling rate in the end portion of the steel plate, and has a 1 200 L / min. M 2 or more water flow can Ru facilities.
また、 予備冷却装置の入側 及ぴ制御冷却装置の入側と 出 側には表面温度計 30、 3 1、 32が設置されてお り 冷却前後で厚 鋼板の温度測定が可能と なっている。  In addition, surface thermometers 30, 31, 32 are installed on the inlet side of the pre-cooling device and the inlet and outlet sides of the control cooling device, so that the temperature of thick steel plate can be measured before and after cooling. .
本発明第 2 の実施形態では、 これらラ ミナ一フロー冷却装 置を有した予備冷却装置 10とス リ ッ トジエ ツ ト冷却ノ ズル冷 却装置を有した制御冷却装置 20を併用する。 その 、 ラ ナ 一フ 一冷却装置を有した予備冷却装置におレヽて 、 厚鋼板 2の 幅方向両側端部及び厚鋼板の先尾端部の冷却水量制御を行な 厚鋼板の幅方 の冷却水量の調整は、 図 1 8 に図 1 7 の AIn the second embodiment of the present invention, the pre-cooling device 10 having these laminar-flow cooling devices and the slit jet cooling nozzle cooling device are provided. Control cooling device 20 with cooling device is also used. In the pre-cooling device having a runner cooling device, the cooling water amount at both ends in the width direction of the thick steel plate 2 and the leading end of the thick steel plate is controlled. The adjustment of the cooling water amount is shown in Fig. 18 as A in Fig. 17
A断面図 と して
Figure imgf000032_0001
すよ う に、 予備冷却装置 1 0において、 上へ ダー 1 1の下部 及ぴ下へッダー 12の上部に厚鋼板の幅方向 の両側端部に相 する箇所冷板でてに左右一対の遮蔽部材 1 5を設け、 これを刖後進機 16によつて厚鋼板 2の板幅方向に出し入れさ せる こ と によ り
Figure imgf000032_0002
な う。
A section view
Figure imgf000032_0001
Thus, in the pre-cooling device 10, at the lower part of the upper header 11 and at the upper part of the lower header 12, corresponding to the both ends in the width direction of the thick steel plate By providing the member 15 and moving it in and out in the width direction of the thick steel plate 2 by the reverse
Figure imgf000032_0002
No.
本発明第 2 の 施形態 は 1の実施形態における制御冷 却装置前段の 合 を予備 却 1 0に置き換 7Lる ものであ り In the second embodiment of the present invention, the case of the first stage of the control cooling device in the first embodiment is replaced with a spare 10 to replace 7 L.
、 予備冷却装 1 0におい 設備全長に亘って遮蔽部材を取 り 付ける と によ り厚鋼 の幅方向の温度分布の均一化を確 実に行な う ついで、 引き feeき制御冷却装置 20によ り 、 厚鋼 板の幅方向の端部から厚鋼板の幅方向の中央部に亘つて同一 の冷却速度で冷却する技術である。 本発明第 1の実施形態で説 明 した通 、 厚鋼板の板幅方向の端部の温度降下量は 40〜 50By installing a shielding member over the entire length of the equipment in the pre-cooling device 10, the temperature distribution in the width direction of the thick steel is made uniform, and the control cooling device 20 is used. In other words, it is a technique of cooling at the same cooling rate from the widthwise end of the thick steel plate to the center in the widthwise direction of the thick steel plate. As described in the first embodiment of the present invention, the temperature drop at the end of the thick steel plate in the width direction is 40 to 50.
°c程度であるため、 厚鋼板の板幅方向の温度分布を均一にす るためには厚鋼板の板幅方向の端部では冷却せずに、 厚鋼板 の幅方向の中央部のみ 40〜 50 °C冷却すればよい。 目標の冷却 する量が極めて少ないため、 冷却速度を遅く して 、 比較的長 い時間冷却するほ う が、 制御的にも容易であ ^ 、 度の冷 却が可能と なるため、 第 2の実施形態による手法は、 第 1の実 施形態による手法よ り も厚鋼板の板幅方向の温度分布の均一 性を高く する こ とができ る。 本手法では、 40〜 50 °C程度冷却 可能とするョ 備が制御冷却装置前にあればよいので、 極めて 安いコ ス 卜で も可能と なる。 また、 制御方法と しては先 ほど説明 した第 1 の実施形 Hp と 同 じよ う に遮蔽部材の使用ゾ ーンを予備冷却装置の前段で実施しても良いしゝ 遮蔽部材の 使用ゾーン数などは冷却装 全長使用 しても良いュ、、 ° C, so that in order to make the temperature distribution in the width direction of the thick steel plate uniform, cooling is not performed at the end in the width direction of the steel plate, but only at the center in the width direction of the steel plate. Cool at 50 ° C. Since the target cooling amount is extremely small, it is easier to control the cooling rate for a relatively long time by lowering the cooling rate, but it is easier to control ^ The method according to the embodiment can improve the uniformity of the temperature distribution in the width direction of the thick steel plate more than the method according to the first embodiment. In this method, equipment that can cool at about 40 to 50 ° C only needs to be provided in front of the control cooling device, so that extremely inexpensive cost is possible. The control method is As in the case of the first embodiment Hp described above, the use zone of the shielding member may be implemented before the preliminary cooling device.The number of zones used by the shielding member is determined by using the entire length of the cooling device. Also good,
力 、 刖者の よ う に予備冷却装置の前段で遮蔽部材を使用する と、 厚鋼板 の端部は予備冷却装置の後段で冷却がなされるこ と によ り そ の後の制御冷却を開始するタ皿曰度が、 後者と比較して低く なる When a shielding member is used in front of the pre-cooling device, as in the case of the user, the end of the steel plate is cooled in the post-stage of the pre-cooling device, so that controlled cooling starts after that. Is lower than the latter
。 そのため、 後者のよ う に遮蔽部材を冷却装 m.全長に亘つて 使用 して、 通板速度を変化させて冷却を実施する方が好ま し い . For this reason, it is preferable to use a shielding member over the entire length of the cooling device, as in the latter case, to perform cooling by changing the passing speed.
こ こで 、 板 m部の水量を制限するに当たっては、 その冷却 時間と遮蔽距離を決定する観点から、 予備冷却前の板端部の 情報につレ、てヽ 第 1 の実施形態において図 9 で説明 したよ う な定義を行な 5 。 これについても第 1の実施形態で説明 したの  Here, in limiting the amount of water in the plate m part, from the viewpoint of determining the cooling time and the shielding distance, information on the plate end before pre-cooling is shown in FIG. 9 in the first embodiment. Definitions as described in Section 5 are made. This was also explained in the first embodiment.
- と 同 じ < 、 の温度降下量や'温度降下距離は、 圧延前素材の 板厚やその加熱条件、 圧延完了後の板幅や製品板厚、 圧延 了温度等によ り 変化するため、 実測値を解析し予めテーブル 化に して よいし、 制御冷却装置前に厚鋼板の全面の温度分 布が測定可能なよ う に走查型温度計等の表面温度計を設置し て、 その値を計算機で演算して求めてもかまわない。  The temperature drop amount and the temperature drop distance of the same <and <vary depending on the thickness of the material before rolling, the heating conditions, the width of the material after rolling, the product thickness, and the temperature at the end of rolling. The measured values may be analyzed and tabulated in advance, or a surface thermometer such as a traveling thermometer may be installed before the control cooling device so that the temperature distribution over the entire surface of the steel plate can be measured. The value may be calculated by a calculator.
この情報を元に予備冷却装置において、 厚鋼板の幅方向の 中央部で - .常に冷却し、 厚鋼板の幅方向の板端部は遮蔽部材 によ 冷却水且  Based on this information, in the pre-cooling device, the central part of the thick steel plate in the width direction is cooled at all times.
里を制限して 、 なるベく 空冷に近い状態と なる よ う に して 厚鋼板の幅方向の中央部と厚鋼板の幅方向の端 部の 曰  The center of the steel plate in the width direction and the ends of the steel plate in the width direction should be restricted so that the air-cooling state is as close as possible.
1皿度を一致させる。 遮蔽部材の移動量は、 図 9 における 厚鋼板の幅方向の板端部の温度降下距離分だけ遮蔽すればよ い。 また 、 冷却前の厚鋼板の幅方向の端部の温度降下量分だ け予備冷却装置 10によつて冷却するために必要な冷却時 を 算出 し 、 BX備長とその冷却時間から通板速度を決定すればよ く 、 第 1 の実施形態よ り も簡単に演算可能である。 また、 第 1 の実施形態と異な り 、 0. 5ゾーン単位の冷却ゾーン数制御で はなく 、 冷却時間を連続的に制御する こ と が可能と なるため 、 厚鋼板の板幅方向の温度分布の均一性を高く する こ とが可 能と なる。 Match one dish degree. The amount of movement of the shielding member should be limited by the temperature drop distance at the end of the plate in the width direction of the thick steel plate in Fig. 9. In addition, the cooling time required for cooling by the pre-cooling device 10 is calculated only for the temperature drop at the end in the width direction of the thick steel plate before cooling, and the passing speed is calculated from the BX length and the cooling time. I'll decide In addition, the calculation can be performed more easily than in the first embodiment. Also, unlike the first embodiment, since the cooling time can be controlled continuously instead of controlling the number of cooling zones in 0.5 zone units, the temperature distribution in the width direction of the thick steel plate can be controlled. This makes it possible to increase the uniformity of the image.
また、 予備冷却装置では、 冷却水量密度は、 1 00 L/m i n . m2以 上、 500 L/m i n . m2以下の範囲に留めておく のが好ま しい。 課題 を解決する手段で説明 したよ う に、 厚鋼板の幅方向全面に均' 一冷却速度で冷却するためには、 厚鋼板の幅方向の端部から 排水による過冷却を防止すればよ く 、 このために、 運動量の 高い冷却形式を採用する のが良い(具体的には 1 200 L/m i n . m2以 上のス リ ッ ト ジエ ツ ト タイ プの冷却ノ ズルを使用する)と説明 した。 そのため、 こ の予備冷却装置では、 厚鋼板の幅方向の 端部から厚鋼板の幅方向の中央部に亘つて同一な冷却速度に する こ と が出来ないが、 そもそも厚鋼板の幅方向の端部の温 度降下量は、 40〜 50 °Cと非常に小さ く 、 且つ材質を決定しな い高温域で制御冷却前の厚鋼板の幅方向の幅方向の温度を均 一化すればよいため、 低水量で且つ表面高温が高い状態に存 在する、 図 1における膜沸騰領域における伝熱特性を応用する 。 冷却前に厚鋼板の幅方向に温度分布の偏差がある状態では 、 図 1における遷移沸騰領域では厚鋼板の表面温度が低いほど 冷却能力 (熱流束) が高く なるため、 例えば厚鋼板の幅方向 の端部のよ う に冷却前において温度が低い領域では、 加速度 的に冷却能力 (熱流束) か高く なるが、 膜沸騰領域で温度が 高い領域ほど冷却能力 (熱流束) が高く なるため、 冷却前の 厚鋼板の幅方向の温度分布の偏差は拡大しない。 そのため予 備冷却装置において膜沸騰で冷却が可能なよ う に制御すれば 、 沸騰状態の変化によ る厚鋼板の板端部の過冷却は防止可能 である。 そのため、 厚鋼板の板端部の排水によ る水量増加を 起因 と した過冷却のみ考えればよ く 、 比較的容易に厚鋼板の 幅方向の温度分布の均一化が可能と なる。 また、 そもそも膜 沸騰では冷却能力 (熱流束) が低いため、 厚鋼板の板端部の 温度降下量である 20〜 30°Cの冷却を制御良く コ ン ト ロール (control)でき るメ リ ッ ト もある。 これを実現する設備と して は、 予備冷却装置 10の冷却水量密度は、 100L/min. m2以上、 500L/min. m2以下とすれば、 安定した膜沸騰を実現でき る。 ま た、 膜沸騰を実現するためには、 厚鋼板と冷却水の間に安定 した蒸気膜を存在させる必要があ り 、 ス プ レー冷却やミ ス ト 冷却、 ラ ミ ナ一フロー冷却など水の運動量の低いものを採用 する こ とが好ま しい。 Further, in the pre-cooling device, the cooling water density is, 1 00 L / min. M on 2 or more, 500 L / min. M 2 or less of favored arbitrary to keep in range. As described in Means for Solving the Problems, in order to cool the entire steel plate in the width direction at a uniform cooling rate, it is only necessary to prevent overcooling due to drainage from the end in the width direction of the steel plate. For this reason, it is better to use a cooling system with a high momentum (specifically, use a cooling nozzle with a slit jet type of 1,200 L / min.m 2 or more). explained. For this reason, this pre-cooling device cannot achieve the same cooling rate from the end in the width direction of the steel plate to the center in the width direction of the steel plate, but in the first place, the end in the width direction of the steel plate The temperature drop of the part is very small, 40 to 50 ° C, and the temperature in the width direction of the thick steel plate before control cooling in the high temperature range where the material is not determined may be equalized. Therefore, the heat transfer characteristics in the film boiling region in FIG. 1 where the amount of water is low and the surface temperature is high are applied. In a state where there is a temperature distribution deviation in the width direction of the steel plate before cooling, the cooling capacity (heat flux) becomes higher as the surface temperature of the steel plate becomes lower in the transition boiling region in FIG. In the region where the temperature is low before cooling, such as at the end of the film, the cooling capacity (heat flux) increases at an accelerated rate, but the higher the temperature in the film boiling region, the higher the cooling capacity (heat flux). The deviation of the temperature distribution in the width direction of the steel plate before cooling does not increase. Therefore, if the pre-cooling device is controlled so that it can be cooled by film boiling, it is possible to prevent overcooling of the plate end of the thick steel plate due to the change in the boiling state. It is. Therefore, it is only necessary to consider the supercooling caused by the increase in the water volume due to the drainage at the end of the steel plate, and the temperature distribution in the width direction of the steel plate can be relatively easily made uniform. In addition, since the cooling capacity (heat flux) of film boiling is low in the first place, it is possible to control the cooling at a temperature drop of 20 to 30 ° C at the end of the thick steel plate with good control. There is also. Is a facility to achieve this, cooling water density of the pre-cooling device 10, 100L / min. M 2 or more, if 500L / min. M 2 or less, Ru can realize a stable film boiling. Also, in order to achieve film boiling, it is necessary to have a stable vapor film between the steel plate and the cooling water, and water cooling such as spray cooling, mist cooling, laminar flow cooling, etc. It is preferable to use one with low momentum.
一方、 厚鋼板の先尾端部での冷却水量の調整は、 第 1 の実 施形態で説明 したものと 同 じく 厚鋼板の長手方向の先尾端部 通過の際に水流をカ ツ トオフ (cut off)する こ と によって行な う。 具体的には図 1 9 に示すよ う にする。 すなわち、 ラ ミ ナ 一フロー冷却装置 10の上ヘッダー 11を分割し (図 1 9 の例で は 11a〜 lidの 4分割) 、 一方、 ラ ミ ナ一フ ロ ー冷却装置 10への 厚鋼板 2の長手方向の先端通過を、 たと えばフォ トセル 17によ つて検知する よ う にする。 そ して、 フ ォ ト セル 17によ る厚鋼 板の長手方向の先端部の通過の検知時間を基準と して上記分 割された上ヘッダーが作動し始める よ う タイマー T 1〜 T4をセ ッ トする。 これによ り 、 図 1 9 の厚鋼板の進行段階に応じて 上ヘッダー 11が作動し、 厚鋼板の長手方向の先端部の水冷が 緩和される こ と になる。 タイマーによる冷却水噴射タイ ミ ン グは第 1 の実施形態と 同じく 、 予め求め られた若しく は予備 冷却前に測定された、 厚鋼板の長手方向の先端部の温度降下 長さ を元に、 第 1 の実施形態で説明 したもの と 同一の制御を 行なえばよい。 厚鋼板の長手方向の尾 部での冷却水量の 整は上記と同様にして 、 図 2 0 に示すよ う に行なえばよい このよ う に 、 厚鋼板の長手方向の先尾端部の冷却制御は 、 本発明第 1 の実施形態と 同一手法によ り 可能でめ Ό ο On the other hand, the adjustment of the amount of cooling water at the leading end of the steel plate is the same as that described in the first embodiment, and the water flow is cut off when passing through the leading end of the steel plate in the longitudinal direction. (Cut off). Specifically, it is as shown in Figure 19. That is, the upper header 11 of the laminar flow cooling device 10 is divided (in the example of FIG. 19, 11a to lid are divided into four parts). For example, the tip passage in the longitudinal direction is detected by the photocell 17, for example. Then, the timers T1 to T4 are set so that the divided upper header starts operating based on the detection time of the passage of the longitudinal end of the thick steel plate by the photocell 17 as a reference. set. As a result, the upper header 11 operates according to the progression stage of the thick steel plate shown in FIG. 19, so that the water cooling at the distal end in the longitudinal direction of the thick steel plate is eased. The cooling water injection timing by the timer is the same as in the first embodiment, based on the temperature drop length at the longitudinal end of the steel plate measured beforehand or before pre-cooling. The same control as described in the first embodiment Just do it. The adjustment of the amount of cooling water at the tail part in the longitudinal direction of the thick steel plate may be performed as shown in FIG. 20 in the same manner as described above. Can be realized by the same method as the first embodiment of the present invention.
一お、 _t IDに述べたよ つ な厚鋼板の長手方向の先尾端部に おいて冷却水をカ ッ トォフするのは、 )子鋼板の扳幅方向に ける板端部に遮蔽部材を置いて冷却水且  The reason why the cooling water is cut off at the longitudinal end of the thick steel plate as described in _t ID is that a shielding member is placed at the end of the steel plate in the width direction. Cooling water
里を制限して、 板幅方 向の中央部のみ冷却する こ と と |pj し と を行つている。 その ため、 厚鋼板の板幅方向のタ曰度降下量と厚鋼板の長手方向の 先尾端部と 同し 1皿 B 降下里である場合は 、 厚鋼板の全面に亘 つて制御冷却 BUに;^一にする こ とが可能と なる ものの、 第 2 の実施形態では、 予備冷却装置の長手全長に亘つて厚鋼板の 板幅方向の端部の冷却水且  The area is limited, and only the center in the width direction is cooled and | pj is performed. For this reason, if the plate is in the same direction as the amount of descent in the plate width direction and the end of the plate in the longitudinal direction of the plate, and if it is 1 plate B, the control cooling BU is applied to the entire surface of the plate. In the second embodiment, the cooling water at the end in the width direction of the thick steel plate extends over the entire length of the pre-cooling device, although it is possible to make the cooling water uniform.
里を制限する と 、 厚鋼板の幅方向 と When limiting the village, the width direction of the steel plate and
}子鋼板の長手方向を独 1Lに制御する こ とが出来ない と カゝら} If it is not possible to control the longitudinal direction of the
、 厚鋼板の幅方向の ΐ曰 , Says in the width direction of steel plate
服度分布若しく は厚鋼板の先尾端部の温 度分布の どち らかのみしか均一化が出来なレ、 o  Only one of the clothing temperature distribution or the temperature distribution at the tip end of the thick steel plate can be homogenized, o
厚鋼板の幅方向の 曰度分布と長手方向の温度分布の両者を 均一化する方法と しては 、 第 1 の発明形態と じ < 、 予備冷 却装置においても複数の冷却ゾーンを設けて 、 予備 ΐΤΙ却装置 の前段において厚鋼板の幅方向の板端部の冷却水量制御を行 な つ 方法や、 予備冷却装 によ り 鋼や &の幅方向の温度分布 を均 —化しておき 、 引さ続いて行な う制御冷却装置において As a method for equalizing both the wording distribution in the width direction and the temperature distribution in the longitudinal direction of the thick steel plate, as in the first aspect of the invention, a plurality of cooling zones are provided even in the pre-cooling device. A method of controlling the amount of cooling water at the plate edge in the width direction of the thick steel plate before the pre-cooling device, and equalizing the temperature distribution in the width direction of steel and & In the following control cooling system
、 第 1 の実施形態で 明 したよ う な厚鋼板の長手方向の先尾 端部の制御冷却を実施する方法があるが 、 後者のほ 5 が好ま しい 。 前者の方法では 、 予備冷却装置の冷却ゾ一ン数制御に よつて、 冷却時間の連続的な調整ができなく な り 、 厚鋼板の 幅方向の高精度の 曰度分布の均一化を完全に享受でさない欠 点がめる ο 3;テこ 、 厚鋼板の長手方向の温度分布の均 ―化まで を予備冷却装置で行つた場 a 、 例えば厚鋼板の先尾端部の温 ノス降下量が 、 厚鋼 の幅方向の端部の温度降下量よ り も大き かつた場合 、 厚鋼板の板幅方向及ぴ長手方'向の中央部におレ、 ては 、 温度降下量の大きレヽ先尾端部にあわせて冷却しなけれ ばならない 。 こ の ため 、 厚鋼板の幅方向の温度分布を均一化 した場合よ り も、 低い 1皿曰 As described in the first embodiment, there is a method of performing controlled cooling of the leading end in the longitudinal direction of the thick steel plate, but the latter is preferred. In the former method, it is impossible to continuously adjust the cooling time by controlling the number of cooling zones of the pre-cooling device, and the uniformity of the high-precision wording distribution in the width direction of the thick steel plate is completely achieved. Defects that cannot be enjoyed ο 3; up to uniform temperature distribution in the longitudinal direction of steel plate If the temperature drop at the leading and trailing ends of the thick steel plate is larger than the temperature drop at the end in the width direction of the thick steel plate, the width of the thick steel plate At the center in the direction and in the longitudinal direction, cooling must be performed in accordance with the end of the tip where the temperature drop is large. For this reason, one plate is lower than when the temperature distribution in the width direction of the thick steel plate is made uniform.
ノスから制御冷却を しなければな らな い しかし 、 材質上の観点から制御冷却開始 1皿曰度は少しでも 高レ、温度から実施したほ つ が望ま しい場合が多く 、 低い 曰 1¾= um. iS^ から制御冷却をする と 、 制御冷却前にフェラィ ト変態が However, control cooling must be performed from nos. However, from the viewpoint of material quality, control cooling must be started. When controlled cooling from iS ^, ferrite transformation occurs before controlled cooling.
•9 、 焼入れ性が低下する懸念がある。 また厚鋼板の幅方向の 端部の温度分布の均 ―性を重視するケースが多い。 したがつ てヽ 後者の方法のよ に、 予備冷却でまず幅方向を均一化し• 9, There is a concern that hardenability will decrease. In many cases, emphasis is placed on the uniformity of the temperature distribution at the ends in the width direction of thick steel plates. Therefore, as in the latter method, the width direction is first made uniform by pre-cooling.
、 後の制御冷却で厚鋼板の長手方向の温度分 ¾を均一化する 方法が ま しい It is better to make the longitudinal temperature distribution of the thick steel plate uniform by controlled cooling.
以上において 、 本発明では第 1の実施形態によ る手法と第 2 の実施形態による手法を説明 したが、 これらの手法は採用す る製造ラィ ンゃ製 P  In the above, the method according to the first embodiment and the method according to the second embodiment have been described in the present invention.
ΡΠの特長に合わせていずれか若しく は両方 を実施でさ る にすればよい。 たと えば,材質の観点から冷 却初期に予備冷却でさなレヽ場合や、 予備冷却装置を導入する スぺ一スが無い場 Π は第 1の実施形態を採用すればよいし, 厚 鋼板の長手方向よ ち厚鋼板の幅方向の材質の均一性を高く したい場合や元 予備冷却装置と制御冷却装置が直線的に並 んだ配置で設備を持つている場合は、 第 2の実施形態を採用す ればよい  Either or both may be implemented according to the features of (1). For example, if precooling is not possible at the beginning of cooling from the viewpoint of material, or if there is no space to introduce a precooling device, the first embodiment can be adopted. If it is desired to increase the uniformity of the material in the width direction of the thick steel plate rather than in the longitudinal direction, or when the original pre-cooling device and the control cooling device have equipment arranged in a straight line, the second embodiment should be used. Just adopt
さ らに 、 実施 匕  In addition,
の形 1 においては、 制御冷却装置 20の前に 矯正機 30を設置する と ができ る。 また、 実施の形態 2 にお いては 、 目 U記予 冷却 3¾ la. 1 0と制御冷却装置 20と の間に図 2 1 に示すよ う に、 矯正機 30を設置する こ とができ る。 冷却前に 厚鋼板の平坦度が悪い場合は、 ノ ズルと厚鋼板の距離が厚鋼 板の各位置によつて変化するため、 温度均 ―が若干悪 < なる 場合があ そこで、 制御冷却刖に、 厚鋼板の形状矯正を し ておけば 、 更に均一に制御冷却を実施する こ と ができ 、 製品 鋼板の材質の均一性や平坦度の確保が容易になる。 な 、 ¾α 正機 30は 、 さ らに制御冷却装置 20の後面側にも設ける と力 s でき る。 なお、 本発明で用レヽる 蔽部材は、 厚鋼板の幅方向の端部 をノ ズル らの水から遮蔽する ものであれば 、 ブ口 ック状(bl ock type)ゝ 板; fx 樋状 (cana li cu 1 a t e d type )等、 どのよ う な 形状のも のでも良いが、 常に高圧水を受けるので、 耐腐食性 の素材力 ら構成された剛性の大きな構造が望ま しレヽ。 なね、 遮蔽部材の作成及び取扱の都合から板状が最あ好ま しい 遮 蔽板を採用する 合、 その大さ さ は板端部の最大温度降下距 離よ り もわずかに長い構造がよい。 これよ り い場合は 、 板 端部の温度降下距離が長い 合に力バ一できないし、 逆 め , ま り 長く しすぎる と遮蔽板の目 υ後進機構が大 く な り すぎて 例えば制御冷却装置内のよ フ な狭いスぺースに遮蔽板を取り 付けるこ と 自体が困難になつて く る。 先に述ベたよ う に一般 的な板端部の温度降下距離は最大で 300mm程度であるため.、 35In the form (1), the straightening machine 30 can be installed in front of the control cooling device 20. Further, in the second embodiment, a straightening machine 30 can be installed between the pre-cooling 3. la. 10 and the control cooling device 20 as shown in FIG. 21. . Before cooling If the flatness of the steel plate is poor, the distance between the nozzle and the steel plate changes depending on the position of the steel plate, and the temperature uniformity may be slightly worse. If the shape of the steel sheet is corrected, controlled cooling can be performed more uniformly, and uniformity of the material and flatness of the product steel sheet can be easily ensured. Note that, if the ¾α main machine 30 is further provided on the rear side of the control cooling device 20, the force s can be obtained. The shielding member used in the present invention is a block-type plate; fx gutter-shaped plate as long as it shields the widthwise end of the thick steel plate from water from nozzles and the like. Any shape such as (cana li cu ated type) may be used, but since it always receives high-pressure water, a highly rigid structure composed of corrosion-resistant material is desirable. In addition, if a shielding plate is used, which is most preferable because of the convenience of preparation and handling of the shielding member, the size should be slightly longer than the maximum temperature drop distance at the edge of the shielding plate. . In this case, if the temperature drop distance at the edge of the plate is long, the force cannot be applied.On the other hand, if the temperature is too long, the shield mechanism will be too large. Attachment of the shielding plate to a narrow space inside the device becomes difficult. As mentioned earlier, the general temperature drop distance at the edge of the plate is about 300 mm at the maximum.
0mm力 ら 400mm程度の長さにすればよい。 また 、 その材質と し ては、 製造ライ ンで使用 されている冷却水に 素など腐食物 質が含まれる場合が多く 、 ステン レス鋼等の腐食しに < レヽ材 料を使った り 、 鋼板の表面に防食塗装や亜鉛 • ク ロ ム等でメ ツキされた炭素鋼板な どを使つた り する こ とがよ り好ま しい 実施例 本発明に したがい制御冷却を行な う場合と従来法 (比較例The length should be about 400 mm from 0 mm force. In addition, as the material, the cooling water used in the production line often contains corrosive substances such as elemental steel, so that corrosion of stainless steel or the like can be prevented by using steel materials or steel sheets. It is more preferable to use anti-corrosion coating or carbon steel sheet coated with zinc chrome, etc. Example Controlled cooling according to the present invention and a conventional method (comparative example)
) によ り 制御冷却を行な う場合の操業条件を表 1に、 その効果 を対比したものを表 2 に示す。 処理鋼板の条件と しては、 板 厚 25mm、 板幅 3800mm、 板長 25mの鋼板を用い、 厚鋼板の板幅の 中央部において 750°Cから制御冷却を開始し、 550°Cで冷却を 終了 した。 厚鋼板の強度レベルは 490MPa級と し、 その許容範 囲は 490〜 610MPaである。 冷却前の厚鋼板は、 図 9 における厚 鋼板の幅方向の端部の温度降下量は 30°C、 厚鋼板の幅方向の 端部の温度降下距離は 200mm、 図 1 4 における厚鋼板の長手方 向の先尾端部の温度降下量は 50°C、 厚鋼板の長手方向の先尾 端の温度降下距離は 500mmである。 なお、 発明例 1 および 2 に おいて、 制御冷却装置に使用 された遮蔽部材(以下、 遮蔽板と 称す)は、 図 2 5 および図 2 6 に示すよ う に、 冷却ゾーン毎に 上下 4枚の、 長さ 300ιη πι χ φ畐 350m m X厚み 7 ixL mの Z n- Niメ ッキ鋼板を使用 した。 なお、 こ の遮蔽板で遮断した冷 却水が再び厚鋼板に向かって落下しないよ う にヽ 水平線に対 して傾斜を 15° 付けている。 また、 発明例 3 およぴ 4 におい て、 予備冷却装置に使用 された遮蔽部材は、 aru Table 1 shows the operating conditions in the case of controlled cooling by), and Table 2 shows a comparison of the effects. The conditions for the treated steel sheet were a steel sheet with a thickness of 25 mm, a width of 3800 mm, and a length of 25 m.Control cooling was started at 750 ° C at the center of the width of the thick steel sheet, and cooling was performed at 550 ° C. finished. The strength level of the steel plate is 490MPa class, and the allowable range is 490 to 610MPa. For the steel plate before cooling, the temperature drop at the end in the width direction of the steel plate in Fig. 9 is 30 ° C, the temperature drop distance at the end in the width direction of the steel plate is 200mm, and the length of the steel plate in Fig. 14 is The temperature drop at the leading end in the direction is 50 ° C, and the temperature drop at the leading end in the longitudinal direction of the thick steel plate is 500 mm. In addition, in Invention Examples 1 and 2, the shielding members (hereinafter, referred to as shielding plates) used for the control cooling device were, as shown in FIGS. 25 and 26, four upper and lower members for each cooling zone. A Zn-Ni steel plate with a length of 300ιη πιχ φ 畐 350 mm and a thickness of 7 ixL m was used. In addition, the cooling water cut off by this shielding plate is set at an angle of 15 ° with respect to the horizon so that the cooling water does not fall again toward the steel plate. Also, in Invention Examples 3 and 4, the shielding member used for the pre-cooling device was aruru.
HZ備全長 (長さ 1 HZ length (length 1
0m ) ί;こ亘つて冷却水を遮蔽でき る よ う に Ζη - Niメ クキ鋼板を L 型に加工された遮蔽部材 (長さ 10m x幅 350m m x厚み 7m m X i¾ 50mm) 上下 4枚が取り 付け られている。 なお、 予 備冷却装置においては遮蔽部材の長さが極めて長く 、 遮蔽部 材の 自重による 7こわみが発生する危険性があるため、 遮蔽部 材の剛性を確保するために m 2 7 のよ う に L型に加工を施し かつ 500mm間-隔で リ ブを取り 付けた構造と し、 図 2 8 のよ う に 幅方向内向きに垂直方向の板が来る よ う に取り 付けた。 これ は、 厚鋼板の端部を遮蔽して遮蔽部材によ り遮断した冷却水 が厚鋼板に向かって落下しないよ う にするためである。 0m) ί; In order to be able to shield the cooling water over this, 遮蔽 η-Ni plated steel sheet is processed into an L-shaped shielding member (length 10m x width 350m mx thickness 7m m X i¾ 50mm) Installed. In the pre-cooling device, the length of the shielding member is extremely long, and there is a risk that the shielding member may cause 7 buckling due to its own weight.Therefore, m 27 should be used to secure the rigidity of the shielding member. As shown in Fig. 28, the L-shape was machined and the ribs were attached at intervals of 500 mm, and the vertical plate came inward in the width direction. this The purpose of this is to shield the end of the thick steel plate so that the cooling water blocked by the shielding member does not fall toward the thick steel plate.
発明例 1 は、 実施形態 1 に対応する実施例であ り 、 図 6 力 ら図 8 で説明 した装置を用いて、 冷却を実施した。 図 7 を用 いて、 詳細な制御条件について説明する。 冷却ゾーン数は 15 ゾーン、 1ゾーン当た り の設備長は 1. Οπιと なってお り 、 制御冷 却装置の全長は 15mである。 また各ゾーンで冷却水量密度を 1500L/min. m2噴射し、 こ の と きの冷却速度は約 30°C /sである。 Inventive Example 1 is an example corresponding to Embodiment 1, and cooling was performed using the apparatus described with reference to FIGS. Detailed control conditions will be described with reference to FIG. The number of cooling zones is 15 zones, the equipment length per zone is 1.Οπι, and the total length of the control cooling device is 15m. Further to 1500L / min. M 2 injects cooling water density in each zone, this's and Kino cooling rate is about 30 ° C / s.
750°Cから冷却を開始して、 550°Cで冷却を終了するため、 1ゾ ーン当た り の冷却量は(750°C - 550°C ) /15ゾ一ン =13.3°Cと なる 。 よって、 厚鋼板の幅方向の端部で遮蔽部材を使用する必要 ゾーン数は 30°C /13.3°C =2.26ゾーンと なる。 そのため、 実際 に使用 したゾーン数は 2.5ゾーンと し、 1ゾーン力 ら 2ゾーンは 上下面、 3ゾーンでは下面のみ遮蔽部材を使用 した。 また、 遮 蔽部材移動量は、 厚鋼板の幅方向の端部の温度降下距離が 200mniである こ と力 ら、 厚鋼板の幅方向の端部から 200mmだけ 冷却水を遮蔽でき る よ う に設定した。 一方、 厚鋼板の長手方 向の先尾端方向での流量調整は、 図 1 2 のよ う に流量制御装 置によ り 実施した。 厚鋼板の長手方向の先尾端の温度降下量 が 50°Cである こ と ;^ら、 必要ゾーン数は 50°C/13.3°C=3.8ゾ一 ンと なるため、 1から 4ゾーンまで実施した。 また、 厚鋼板の 長手方向の先端でほ図 1 5 のよ う に始めは図 1 5 Aのよ う に 冷却水を噴射しない状態で待機しておき、 厚鋼板の長手方向 の先端の温度降下距離だけ冷却装置に進入した状態図 1 5 B で冷却水を噴射する。 厚鋼板の長手方向の尾端も同様に図 1 6 のよ う な制御を実施した。 なお、 制御冷却装置によ る冷却 速度は約 30°C /sであるため、 制御冷却に必要な冷却時間は (750°C -550°C ) /30°C /s =6.6secと な り 、 制御冷却装置の通板 速度は(15m/6.6sec) x60 = 134mpmと した。 Since cooling starts at 750 ° C and ends at 550 ° C, the cooling amount per zone is (750 ° C-550 ° C) / 15 zones = 13.3 ° C. Become . Therefore, the number of zones required to use the shielding member at the end in the width direction of the thick steel plate is 30 ° C / 13.3 ° C = 2.26 zones. For this reason, the actual number of zones used was set to 2.5, and from zone 1 the upper and lower surfaces were used for 2 zones, and only the lower surface was used for 3 zones. In addition, the amount of movement of the shielding member is such that the cooling water can be shielded by 200 mm from the end in the width direction of the steel plate because the temperature drop distance at the end in the width direction of the steel plate is 200 mni. Set. On the other hand, the flow control in the longitudinal direction of the thick steel plate was performed by the flow control device as shown in Fig.12. The temperature drop at the longitudinal end of the thick steel plate is 50 ° C; however, the required number of zones is 50 ° C / 13.3 ° C = 3.8 zones, so 1 to 4 zones Carried out. Also, as shown in Fig. 15A, wait at the tip of the plate in the longitudinal direction without cooling water, as shown in Fig. 15A. The cooling water is injected in the state shown in Fig. 15B after entering the cooling device by a distance. The same control as shown in Fig. 16 was performed on the tail end of the thick steel plate in the longitudinal direction. Since the cooling rate by the control cooling device is about 30 ° C / s, the cooling time required for control cooling is (750 ° C-550 ° C) / 30 ° C / s = 6.6 seconds. , Control cooling system threading The speed was (15m / 6.6sec) x60 = 134mpm.
発明例 2 は、 実施形態 1 に対応する も う ひとつの実施例で あ り 、 冷却水量密度を 1200L/min. m2と した。 冷却水量密度以外 の条件は発明例 1 と 同 じである。 Invention Example 2 is another example corresponding to Embodiment 1, and the cooling water flow density was 1200 L / min. M 2 . The conditions other than the cooling water density are the same as in Invention Example 1.
発明例 3 は、 実施形態 2 に対応する実施例であ り 、 図 1 7 で説明 した装置を用いて、 まず予備冷却装置 10によ り 冷却し て、 厚鋼板の板幅方向の温度分布の偏差を均一化した後、 制 御冷却装置 20で冷却を実施して、 厚鋼板の長手方向の先尾端 部の温度分布の偏差を均一化した。 図 1 7 における予備冷却 装置 10は、 設備長 10mで冷却水量密度は 100L/min. m2噴射可能で あ り 、 この と き の冷却速度は約 4°C/sと なる。 厚鋼板の幅方向 の板端部の温度は 720°Cであるため、 厚鋼板の幅方向の中央部 を 750°C力 ら 720°Cまで冷却する時間は、 (750。C一 720。C ) /4°C Is = 7.5secと なる。 そのため、 予備冷却装置 10の通板速度は Inventive Example 3 is an example corresponding to Embodiment 2, in which the apparatus described with reference to FIG. 17 is first cooled by the pre-cooling device 10 to obtain the temperature distribution of the thick steel plate in the width direction. After making the deviation uniform, cooling was performed by the control cooling device 20 to make the deviation of the temperature distribution at the end of the thick steel plate in the longitudinal direction uniform. The pre-cooling device 10 in FIG. 17 has a facility length of 10 m and a cooling water volume density of 100 L / min. M 2 , and the cooling rate at this time is about 4 ° C / s. Since the temperature at the end of the plate in the width direction is 720 ° C, the time required to cool the center of the plate in the width direction from 750 ° C to 720 ° C is (750.C-720.C). ) / 4 ° C Is = 7.5sec. Therefore, the threading speed of the pre-cooler 10
(10m/7.5sec) x60 = 80mpmとなる。 また、 厚鋼板の長手方向の先 尾端部は図 1 9 と、 図 2 0 のよ う に厚鋼板の長手方向の先尾 端部の温度降下距離(500mm)だけ進入してから、 順次冷却水を 噴射していった。 また、 遮蔽部材移動量は、 厚鋼板の幅方向 の板端部の温度降下距離が 200ιηπιである こ とから、 厚鋼板の幅 方向の板端部から 200mmだけ冷却水を遮蔽でき る よ う に設定し た。 (10m / 7.5sec) x60 = 80mpm. In addition, as shown in Fig. 19 and Fig. 20, the longitudinal end of the thick steel plate enters the length of the longitudinal end of the thick steel plate by the temperature drop distance (500mm) and then cools down sequentially. We sprayed water. In addition, the amount of movement of the shielding member is such that the cooling water can be shielded by 200 mm from the widthwise end of the thick steel plate since the temperature drop distance at the end of the thick steel plate in the width direction is 200ιηπι. Set.
また、 図 1 7 における制御冷却装置は、 発明例 1と 同じく 、 冷却ゾーン数は 15ゾーン、 1ゾーン当た り の設備長は 1.0mと な つてお り 、 制御冷却装置の全長は 15mである。 また各ゾーンで 冷却水量を 1500L/min. m2噴射し、 こ の と き の冷却速度は 30°C/s である。 制御冷却装置 20では、 720°Cから冷却を開始して、 550°Cで冷却を終了するため、 1ゾーン当た り の冷却量は(720 °C - 550°C )/15ゾーン =11.3°Cと なる。 厚鋼板の長手方向の先尾 端方向での流量調整は、 厚鋼板の長手方向の先尾端部の温度 降下量が 50°Cであるが、 予備冷却装置によ り 30°C分だけ温度 分布の偏差を解消するので 、 制御冷却装置では 20°C分の厚鋼 板の長手方向の先尾端部の 曰 Also, the control cooling device in FIG. 17 has the same number of cooling zones as in Invention Example 1, the number of cooling zones is 15, the equipment length per zone is 1.0 m, and the total length of the control cooling device is 15 m. . Further to 1500L / min. M 2 injects cooling water in each zone, preparative-out of the cooling rate of this is 30 ° C / s. In the control cooling device 20, cooling starts at 720 ° C and ends at 550 ° C, so the cooling amount per zone is (720 ° C-550 ° C) / 15 zones = 11.3 ° It becomes C. Longitudinal tail of steel plate In the flow control in the end direction, the temperature drop at the leading end in the longitudinal direction of the steel plate is 50 ° C, but the deviation of the temperature distribution is eliminated by 30 ° C by the pre-cooling device. In the controlled cooling device, the length of the longitudinal end of the thick steel plate for 20 ° C
1皿度降下量を制御する必要がある It is necessary to control the amount of dish drop
。 そのため、 必要ゾ ―ン数は 20°C/11.3で=1.8ゾーンとなるた め、 1力 ら 2ゾーンまで実施した。 また、 厚鋼板の長手方向の 先端部では図 1 5 のよ う に始めは図 1 5 Aのよ う に冷却水を 噴射しない状態で待機しておき、 厚鋼板の長手方向の先端部 の温度降下距離(500mm)だけ冷却装置に進入した状態図 1 5 B で冷却水を嘖射する。 厚鋼板の長手方向の尾端部も同様に図 1 6 のよ う な制御を実施した。 なお、 制御冷却装置による冷 却速度は約 30°C /sであるため、 冷却時間は(720°C- 550°C)/30 °C/s =5.7secと な り 、 制御冷却時の通板速度は . Therefore, the required number of zones was 1.8 zones at 20 ° C / 11.3, so we implemented from 1 to 2 zones. At the tip of the plate in the longitudinal direction, as shown in Fig. 15A, it waits at first without cooling water injection as shown in Fig. 15A, and the temperature at the tip of the plate in the longitudinal direction is shown in Fig. 15A. After entering the cooling device for a descent distance (500 mm), the cooling water is injected at the state shown in Figure 15B. Similarly, control as shown in Fig. 16 was performed on the tail end of the thick steel plate in the longitudinal direction. Since the cooling rate of the control cooling device is about 30 ° C / s, the cooling time is (720 ° C-550 ° C) / 30 ° C / s = 5.7 sec. Plate speed is
(15m/5.7sec) x60 = 158mpmと した。 尚、 厚鋼板の長手方向の先 尾端部の流量調整は図 1 2 のよ う な流量調整弁によ り 実施し た。 (15m / 5.7sec) x60 = 158mpm. The flow rate at the tail end in the longitudinal direction of the thick steel plate was adjusted using a flow rate control valve as shown in Fig. 12.
発明例 4 は、 実施形態 2 において予備冷却装置と制御冷却 装置の間に矯正機を設置した実施例であ り 、 冷却条件は発明 例 3 と 同 じである。  Inventive Example 4 is an example in which a straightening machine is installed between the preliminary cooling device and the control cooling device in Embodiment 2, and the cooling conditions are the same as those of Invention Example 3.
比較例 1 は、 発明例 1と 同一の設備によ り 、 同一の通板速度 で冷却するが、 厚鋼板の幅方向の端部の温度制御のための遮 蔽部材と厚鋼板の長手方向の先尾端部の温度制御のための流 量制御を実施しなかった例である。  In Comparative Example 1, cooling was performed at the same passing speed by the same equipment as that of Invention Example 1, but the shielding member for controlling the temperature in the widthwise end portion of the thick steel plate and the longitudinal direction of the thick steel plate were used. This is an example in which flow rate control for controlling the temperature at the tail end is not performed.
比較例 2 は、 発明例 2と 同一の設備によ り 、 予備冷却装置及 び制御冷却装置において同一の通板速度で冷却するが、 厚鋼 板の幅方向の端部の温度制御のための遮蔽部材と厚鋼板の長 手方向の先尾端部の温度制御のための流量制御を実施しなか つた例である。 比較例 3 は、 発明例 2と 同一の設備を用い、 この う ち予備冷 却装置のみによって冷却するが厚鋼板の幅方向の板端部及ぴ 厚鋼板の長手方向の先尾端部の水量制御を実施しなかった場 合の例である。 本例では、 図 1 7 における予備冷却装置 10は 、 設備長 1 0mで冷却水量密度は 500 L/m i n . mz噴射する。 こ の と き の冷却速度は 14。C / sとな り 、 この厚鋼板を 750 °Cから 550 °Cま で通過冷却するために必要な冷却時間は 14. 3 s e cと なる。 よつ て 、 通板速度は 42mpmで予備冷却装置を通板した。 こ こで、 本 発明例 3 の予備冷却装置よ り も水量を多く して冷却速度を高 めてレヽる理由であるが、 予備冷却装置のみで材質の作り こみ を行な う ため 、 冷却速度を高めに設定したのである。 こ の と さヽ 厚鋼板の長手方向の先尾端部の水量制御や厚鋼板の幅方 向の遮蔽部材は使用 しなかった。 Comparative Example 2 uses the same equipment as Invention Example 2 to cool at the same passing speed in the pre-cooling device and the control cooling device, but to control the temperature at the end in the width direction of the thick steel plate. This is an example in which the flow rate control for controlling the temperature at the end of the longitudinal end of the shield member and the thick steel plate is not performed. In Comparative Example 3, the same equipment as in Invention Example 2 was used, and only the pre-cooling device was used.However, the amount of water at the end of the plate in the width direction and the end of the plate in the longitudinal direction was measured. This is an example when control is not performed. In this example, pre-cooling device 10 in FIG. 1 7 is cooled water density in equipment length 1 0 m is 500 L / min. M to z injection. The cooling rate at this time is 14. The cooling time required to pass and cool the steel plate from 750 ° C to 550 ° C is 14.3 sec. Therefore, the pre-cooling device was passed at a passing speed of 42 mpm. This is the reason why the cooling rate is increased by increasing the amount of water compared with the pre-cooling device of Invention Example 3, but since the material is produced only by the pre-cooling device, the cooling speed is high. Was set higher. At this time, no water flow control was performed at the end of the thick steel plate in the longitudinal direction, and no shielding member was used in the width direction of the thick steel plate.
比較例 4は、 発明例 3 と 同一設備を用い、 比較例 3と 同 じく 予備冷却衣置のみによって冷却するが厚鋼板の幅方向の板端 部及ぴ厚鋼板の長手方向の先尾端部の水量制御を実施した場 α の例について説明する。 本例では、 比較例 3と 同 じ通板速度 冷却水虽密度で冷却を実施する。 また、 遮蔽部材移動量は Comparative Example 4 uses the same equipment as Invention Example 3 and is the same as Comparative Example 3.Cooled only by the pre-cooling garment, but the widthwise end of the thick steel plate and the longitudinal end of the thick steel plate An example of the case where the water amount control of the section is performed will be described. In this example, cooling is performed at the same passing speed and cooling water density as in Comparative Example 3. Also, the amount of movement of the shielding member
、 厚鋼板の幅方向の板端部の温度降下距離が 200mmである こ と から 、 厚鋼板の幅方向の板端部から 200mmだけ冷却水を遮蔽で さ る よ う に s-ru定した。 また、 厚鋼板の長手方向の先尾端部は 図 1 9 と 、 図 2 0 のよ う に厚鋼板の長手方向の先尾端部の温 度降下距離(500mm)だけ進入してから、 順次冷却水を噴射して いった。 However, since the temperature drop distance at the end of the thick steel plate in the width direction was 200 mm, the s-ru was set so that the cooling water was shielded by 200 mm from the end of the thick steel plate in the width direction. In addition, as shown in Fig. 19 and Fig. 20, the longitudinal end of the thick steel plate enters the longitudinal end of the thick steel plate by the temperature drop distance (500mm), and then in order. Cooling water was sprayed.
比較例 5は、 発明例 1と 同一の設 を用いるが、 制御冷却設 備の全ての冷却ゾーンに亘つて厚鋼板の幅方向の端部及ぴ厚 鋼板の長手方向の先尾端部に いて水量制御を実施した場合 の例について説明する。 本例では 、 実施例 1と 同 じ通板速度、 冷却水量密度で冷却するが、 全ての冷却ゾーンについて遮蔽 部材及ぴ厚鋼板の長手方向の先尾端部の水量調整を実施した 遮蔽部材の移動量は厚鋼板の幅方向の板端部の温度降下距 離が 200mmである こ と から、 厚鋼板の幅方向の板端部から 200 mmだけ全ての冷却ゾーンについて、 厚鋼板の幅方向の板端 部の冷却水を遮蔽でき る よ う に設定した。 一方、 厚鋼板の長 手方向の先端部では図 1 5 のよ う に始めは図 1 5 Aのよ う に 冷却水を嘖射しない状態で待機しておき、 厚鋼板の長手方向 の先端部の温度降下距離(500mm)だけ冷却装置に進入した状態 図 1 5 Bで冷却水を噴射する。 厚鋼板の長手方向の尾端部も 同様に図 1 6 のよ う な制御を実施した。 Comparative Example 5 uses the same arrangement as that of Invention Example 1, except that the end portion in the width direction of the thick steel plate and the end portion in the longitudinal direction of the thick steel plate over all the cooling zones of the control cooling equipment. An example in the case where the water amount control is performed will be described. In this example, the same threading speed and Cooling is performed at the cooling water density, but the water content of the shielding member and the tail end of the thick steel plate in the longitudinal direction was adjusted for all cooling zones.The amount of movement of the shielding member was the temperature of the plate edge in the width direction of the thick steel plate. Since the descent distance is 200 mm, it is set so that the cooling water at the end of the plate in the width direction of the steel plate can be blocked for all cooling zones 200 mm from the end of the plate in the width direction of the plate. did. On the other hand, as shown in Fig. 15A, at the beginning of the longitudinal direction of the thick steel plate, the cooling steel plate is kept on standby without cooling water, as shown in Fig. 15A. The cooling water has entered the cooling device by the temperature drop distance (500 mm) of Fig. 15 B. Cooling water is injected in Fig. 15B. Similarly, the control shown in Fig. 16 was performed on the tail end of the steel plate in the longitudinal direction.
こ こで、 厚鋼板の幅方向の端部について図 9 のよ う な定義 を行な う。 こ こで、 温度降下距離と は、 厚鋼板の板幅方向に おける鋼板温度の勾配がゼロ になる位置から厚鋼板の幅方向 の板端部までの距離で定義され、 温度降下量と は厚鋼板の板 幅方向における鋼板温度の勾配がゼロ になる位置における温 度と、 厚鋼板の幅方向の板端部の温度と の差で定義される。 そのため、 厚鋼板の幅方向の板端部の温度が鋼板の中央部の 温度よ り も低い場合は、 正の値と な り 、 厚鋼板の幅方向の板 端部の温度が厚鋼板の中央部の温度よ り も高い場合は、 負の 値と なる。 厚鋼板の長手方向の端部については図 1 4 のよ う な定義であ り 、 厚鋼板の幅方向の温度降下量や幅方向の温度 降下距離で定義されたもの と 同 じである。  Here, the end in the width direction of the steel plate is defined as shown in Fig. 9. Here, the temperature drop distance is defined as the distance from the position where the temperature gradient of the steel plate in the width direction of the steel plate becomes zero to the edge of the steel plate in the width direction, and the temperature drop amount is the thickness It is defined as the difference between the temperature at the position where the steel sheet temperature gradient in the width direction of the steel sheet becomes zero and the temperature at the end of the steel sheet in the width direction. Therefore, if the temperature at the end of the steel plate in the width direction is lower than the temperature at the center of the steel plate, the temperature becomes a positive value, and the temperature at the end of the steel plate in the width direction becomes the center of the steel plate. If the temperature is higher than the temperature of the section, the value will be negative. The end in the longitudinal direction of the thick steel plate is defined as shown in Fig. 14 and is the same as that defined by the temperature drop in the width direction and the temperature drop distance in the width direction of the thick steel plate.
図 2 2 は冷却後の厚鋼板の板取について説明 した図である 。 厚鋼板の長手方向の先端部及ぴ尾端部から 1 50 mmの位置で切 り 出 した厚鋼板の先端試材 5 1及び厚鋼板の尾端試材 54と厚鋼 板の幅方向と厚鋼板の長手方向の中央部の試材 53から、 サン プルを切 り 出して引張り 強度を測定する。 また、 厚鋼板の板 端部の強度は、 厚鋼板の幅方向 と厚鋼板の長手方向の中央部 の試材の板端部から 1 00mmの位置から切 り 出 した試験片によ り 引張り 強度を測定した。 FIG. 22 is a diagram for explaining the removal of a thick steel plate after cooling. Specimen 51 of the thick steel plate cut at a position of 150 mm from the longitudinal end and tail end of the steel plate 51, and the tail material 54 of the thick steel plate and the width and thickness of the thick steel plate From sample 53 at the center in the longitudinal direction of the steel sheet, Cut out the pull and measure the tensile strength. The strength of the end of the thick steel plate is determined by the tensile strength of a test piece cut out from the end of the sample at a distance of 100 mm from the end of the sample at the center in the width direction and the longitudinal direction of the thick steel plate. Was measured.
厚鋼板の幅方向の条切 り キヤ ンパー測定用試材 52、 厚鋼板 の長手方向の先尾端部の条切 り キャンパー測定用試材 55は、 それぞれ図 2 3 と 図 2 4 に示すよ う に、 短冊状に切断する。 図 2 3 には厚鋼板の幅方向の条切 り キャンパー測定用試材の 条切 り位置と キャ ンバー測定位置について示す。 条切 り は、 厚鋼板の板端部から 300mmの位置で切断し、 その時の短冊状に 切断された厚鋼板の最大曲が •9 量を幅方向の条切 り キャ ンバ 一と した。 図 2 4 には厚鋼板の長手方向の条切 り キャ ンパー 測定用試材の条切 り位置と キャ ンパ—測定位置について示す The specimen 52 for measuring the camber in the width direction of the thick steel plate and the specimen 55 for measuring the camper in the longitudinal end of the thick steel plate are shown in Fig. 23 and Fig. 24, respectively. Then, cut into strips. Figure 23 shows the stripping position in the width direction of the thick steel plate and the measuring position for the camber measurement specimen. The strip was cut at a position 300 mm from the end of the thick steel plate, and the maximum bending of the strip that was cut into strips at that time was set to • 9 as the width-direction crossover member. Fig. 24 shows the cutting position of the test piece for measuring the camber in the longitudinal direction of the thick steel plate and the measuring position of the camper.
。 条切 り は、 厚鋼板の長手方向の尾端部から 3 00 mmの位置で切 断し、 その時の 冊状に切断された厚鋼板の最大曲が り 量を 長手方向の条切 り キャ ンバーと した。 . The strip is cut at a position 300 mm from the tail end in the longitudinal direction of the thick steel plate, and the maximum bending amount of the thick steel plate cut into a book at that time is determined by the longitudinal bend member. And
· ·  · ·
表 2 力ゝら分かる よ つ に、 本発明を適用 した場合には、 全体 と して冷却速 が大さいにもかかわらず、 冷却後の厚鋼板の 幅方向の板端部の■ί曰度降下量は - 4°Cから 3 °Cと冷却前の温度 降下量(30 °C )よ り も小さ く なつて ヽる o た、 厚鋼板の長手 方向の先尾端部の 1J日HL度降下量について b同様に - 7 °C 1 0 °Cと As can be seen from Table 2, when the present invention is applied, despite the high cooling rate as a whole, the remarks on the widthwise end of the cooled steel plate in the width direction are obtained. The amount of drop is from -4 ° C to 3 ° C, which is smaller than the temperature drop before cooling (30 ° C). O The 1J-day HL degree at the end of the longitudinal end of the thick steel plate About the amount of descent b Same as-7 ° C 10 ° C
、 冷却前の温度降下量 ( 50 °C )よ り も小さ < なっている。 その 結果、 厚鋼板の板幅方向の残留応力も低減され、 条切 り 後の キャンバーも小さい。 また、 厚鋼板の引張り 強度についても 、 厚鋼板の長手方向の先尾端部及び厚鋼板の幅方向の板端部 、 厚鋼板の長手方向および幅方向の中央部に亘つておおよそHowever, it is smaller than the temperature drop before cooling (50 ° C). As a result, the residual stress in the width direction of the thick steel plate is reduced, and the camber after cutting is small. In addition, the tensile strength of the thick steel plate is also approximately equal to the longitudinal end of the thick steel plate, the widthwise end of the thick steel plate, and the center of the thick steel plate in the longitudinal and width directions.
550MP a程度となってお り 、 安定している。 また、 発明例 4 で は予備冷却後に矯正を実施した後、 制御冷却した例であるが 、 制御冷却前の厚鋼板の形状は矯正を しなかった発明例 1及び 2と比較して非常に平坦と なってお り 、 その結果、 制御冷却に よる冷却における 曰度分布の均一性が更によ く な り 、 冷却後 の厚鋼板の幅方向の板端部及ぴ厚鋼板の長手方向の先尾端部 の 曰度降下里が少なく 条切 後のキャ ンパ一も更に少なく な つた。 It is about 550MPa and stable. In addition, in Inventive Example 4, after the straightening was performed after the preliminary cooling, the controlled cooling was performed. However, the shape of the thick steel plate before controlled cooling was much flatter than in Invention Examples 1 and 2 in which no straightening was performed, and as a result, the uniformity of the wording distribution in cooling by controlled cooling was further improved. As a result, the lower end of the steel plate in the width direction after cooling and the end portion in the longitudinal direction of the steel plate after cooling had less drop, and the amount of camber after cutting was further reduced.
これに対し、 厚鋼板の幅方向の端部及ぴ厚鋼板の長手方向 の先尾端部の水且  On the other hand, the end of the thick steel plate in the width direction and the end of the thick steel plate in the longitudinal direction are different from each other.
里制御を行なわなかつた比較例 1 〜 3 では 、 冷却後の厚鋼板の幅方向及ぴ厚鋼板の長手方向の先尾端部の 降 Γ 虽は、 冷却前のそれと比較して大き く な り 、 その小口 果条切 り加ェ後大きなキャ ンノ 一が発生した。 また、 引張 強度に関しても厚鋼板の幅方向の板端部や厚鋼板の長手方向 の先尾端部では 、 厚鋼板の中央部と比較して大き く なつてお り 、 一部許容範囲上限をォ一 ノ ' ~している。  In Comparative Examples 1 to 3 in which village control was not performed, the drop in the width direction of the thick steel plate after cooling and in the longitudinal end portion of the thick steel plate became larger than that before cooling. However, a large canopy occurred after the cut of the small fruit. In addition, the tensile strength of the thick steel plate at the end in the width direction and at the longitudinal end of the thick steel plate is larger than that at the center of the steel plate. I'm doing it.
3d 7 J ^鋼板の幅方向の端部及ぴ厚鋼板の長手方向の先尾 端部の水量制御を行な が 、 本発明の方法に従わなかつた比 較例 4 〜 5 では 、 冷却後の厚鋼板の長手方向の先尾端部及び 厚鋼板の幅方向の端部の狐曰度は厚鋼板の長手方向および幅方 向の中央部の温度と比較して温度が高く なってし ったため 3d 7 J ^ The water amount at the end in the width direction of the steel sheet and the end in the longitudinal direction of the thick steel sheet was controlled, but in Comparative Examples 4 to 5, which did not follow the method of the present invention, The fox said at the tail end in the longitudinal direction of the steel plate and at the end in the width direction of the steel plate was because the temperature was higher than the temperature at the center in the longitudinal direction and the width direction of the steel plate.
、 引張り 強度に関してち厚鋼板の幅方向の板端部や厚鋼板の 長手方向の先尾端部では 、 厚鋼板の長手方向おょぴ幅方向の 中央部と比較して小さ < なつてお り 、 一部許容範囲下限値を 割れている よた 、 条切 キャ ンパーは、 比較例 1〜 3と比較 して抑制されたあのの 、 本発明例 1 〜 3よ り も大きい。 産業上の利用可能性 However, regarding the tensile strength, the widthwise end of the thick steel plate and the longitudinal end of the thick steel plate are smaller than the center of the thick steel plate in the width direction. Although the lower limit of the allowable range was partially broken, the stripping camper was suppressed as compared with Comparative Examples 1 to 3, but was larger than Examples 1 to 3 of the present invention. Industrial applicability
本発明によ り 、 圧延を完了 した厚鋼板の制御冷却するに際 して、 厚鋼板の板面内の温度分布を鋼板の幅方向おょぴ、 厚 鋼板の長手方向全域にわたって均一にする こ と ができ、 かつ 、 全体と して冷却速度が大きい厚鋼板の制御冷却が可能にな る。 その結果、 厚鋼板の幅方向や長手方向の材質の均一性を 確保し、 さ らに、 冷却時の歪み及び残留応力を低減する こ と が可能と なった。 According to the present invention, when controlled cooling of a rolled thick steel plate is performed, the temperature distribution in the plate surface of the thick steel plate is changed in the width direction and the thickness of the steel plate. It is possible to make the steel plate uniform over the entire area in the longitudinal direction of the steel plate, and to perform controlled cooling of a thick steel plate having a large cooling rate as a whole. As a result, it has become possible to ensure uniformity of the material in the width direction and the longitudinal direction of the steel plate, and to reduce distortion and residual stress during cooling.
表 1 table 1
冷却速度 矯正  Cooling rate straightening
先尾端流量制御 通板速度 温度計測値 (幅 ·長手中 冷却装置 遮蔽部材使用ゾーン  Trailing end flow rate control Passing speed Temperature measurement value (width / longitudinal cooling device
使用ゾーン (mpm) (幅 ·長手中央部) 央部)  Use zone (mpm) (width · center of length) center)
(°C) (°C/s) 予備 制御 予備 予備 制御 予備 制御冷却入 制御 予備 制御 制御冷却 予備冷却 制御冷却  (° C) (° C / s) Preliminary control Preliminary preliminary control Preliminary control Cooling-in control Preliminary control Control cooling Preliminary cooling Control cooling
冷却 冷却 冷却 冷却 冷却 冷却入 (予備冷却出) 冷却出 冷却 冷却 発明例 1不使用 不使用 使用 不使用 1 - 2z上下 不使用 l〜4z 一 134 - 751 543 一 31. 0  Cooling Cooling Cooling Cooling Cooling Cooling In (Preliminary cooling out) Cooling out Cooling Cooling Invention example 1 Not used Not used Used Not used 1-2z Top and bottom Not used l ~ 4z One 134-751 543 One 31.0
3z下のみ  Only 3z below
2- 2z上下  2- 2z top and bottom
発明例 2不使用 不使用 使用 不使用 〜4z - 133 - 755 553 - 30. 0 Invention Example 2 Not used Not used Not used 44z-133-755 553-30.0
3z下のみ 不使用 l 発明例 3不使用 使用 使用 全ゾーン 不使用 全ゾーン l〜2z 80 158 750 719 551 4. 1 29. 5 発明例 4 使用 使用 使用 全ゾーン 不使用 全ゾーン l〜2z 80 158 753 723 552 4. 0 30. 1 比較例 1不使用 不使用 使用 不使用 不使用 不使用 不使用 ― 134 - 752 552 ― 29. 8 比較例 2不 1¾用 使用 使用 不使用 不 1¾用 不使用 不使用 80 158 746 714 545 4. 3 29. 7 比較例 3不使用 使用 不使用 不使用 不使用 不使用 不使用 42 ― 751 550 - 14. 1 - 比較例 4不使用 使用 不使用 全ゾーン 不使用 全ゾーン 不使用 42 一 748 549 ― 13. 9 ― 比較例 5不使用 不使用 使用 不使用 全ゾーン 不使用 全ゾーン ― 134 - 753 550 ― 30. 2 Only under 3z Not used l Inventive example 3 Not used Used All zones Not used All zones l ~ 2z 80 158 750 719 551 4.1 1 29.5 Inventive example 4 Used Used All zones Not used All zones l ~ 2z 80 158 753 723 552 4. 0 30.1 Comparative Example 1 Not used Not used Not used Not used Not used Not used ― 134-752 552 ― 29.8 Comparison Example 2 Not used 1 Not used Not used Not used Not used Not used Use 80 158 746 714 545 4.3 29.7 Comparative example 3 Not used Not used Not used Not used Not used Not used 42 ― 751 550-14.1-Comparative example 4 Not used Not used Not used All zones Not used All Zone not used 42 1 748 549 ― 13.9 ― Comparative Example 5 Not used Not used Not used All zones Not used All zones ― 134-753 550 ― 30.2
表 2 温度降下量 条切りキャン Table 2 Temperature drop amount
( °C) ノ ー (mm; 引張り強さ (MPa) 長手方 長手方 幅 ·長  (° C) No (mm; Tensile strength (MPa)
幅方向 向の先 幅方向向の先 手中央幅方向 長手方向の の端部 尾端部 の端部尾端部 部 の端部 先尾端部 発明例 1 -4 10 9 5 553 551 547 発明例 2 - 5 9 10 4 556 550 547 発明例 3 3 - 7 7 4 551 549 553 発明例 4 -1 5 3 2 549 555 546 比較例 1 31 49 90 21 549 620 650 比較例 2 52 74 157 32 548 630 610 比較例 3 67 83 202 36 551 650 599 比較例 4 - 30 -30 91 13 551 490 501 比較例 5 - 40 -18 121 8 550 485 499  End in the width direction End in the center in the width direction End in the longitudinal direction End of the tail end of the tail end of the tail end of the tail end of the tail Inventive example 1 -4 10 9 5 553 551 547 Inventive example 2-5 9 10 4 556 550 547 Invention example 3 3-7 7 4 551 549 553 Invention example 4 -1 5 3 2 549 555 546 Comparative example 1 31 49 90 21 549 620 650 Comparative example 2 52 74 157 32 548 630 610 Comparative Example 3 67 83 202 36 551 650 599 Comparative Example 4-30 -30 91 13 551 490 501 Comparative Example 5-40 -18 121 8 550 485 499

Claims

請求の範囲 The scope of the claims
1 . 厚鋼板の幅方向の温度分布を均一化させつつ冷却する第 1の冷却ステップと1. The first cooling step of cooling while making the temperature distribution in the width direction of the steel plate uniform
、 厚鋼板の幅方向温度分布の均一化の終了後に、 厚鋼板の幅方向全体を同一の冷 却速度で制御冷却する第 2の冷却ステップとを有する熱間圧延を完了した厚鋼板 の冷却方法。 A second cooling step of controlling the entire width of the steel sheet in the width direction at the same cooling rate after the uniformization of the temperature distribution in the width direction of the steel sheet is completed. .
2 . 請求項 1において、 前記第 1の冷却ステップは、 複数の独立した冷却ゾーン を有する通過型の制御冷却装置における一以上の入側の冷却ゾーンにより厚鋼板 の幅方向の両側端部の冷却水量を制限しながら冷却し、 前記第 2の冷却ステツプ は、 前記一以上の入側の冷却ゾーンの後続の冷却ゾーンにより厚鋼板の幅方向全 体を同一の冷却速度で制御冷却する熱間圧延を完了した厚鋼板の制御冷却方法。 2. The first cooling step according to claim 1, wherein the first and second cooling steps include cooling at both ends in the width direction of the thick steel plate by one or more inlet cooling zones in a pass-type control cooling device having a plurality of independent cooling zones. Cooling while limiting the amount of water, the second cooling step is a hot rolling in which the entire width direction of the thick steel plate is controlled and cooled at the same cooling rate by a cooling zone subsequent to the one or more inlet-side cooling zones. Completed control cooling method of thick steel plate.
3 . 請求項 1において、 前記第 1の冷却ステップは、 予備冷却装置により厚鋼板 の幅方向の両側端部の冷却水量を制限しながら冷却し、 3. The method according to claim 1, wherein the first cooling step is performed by using a pre-cooling device to cool the steel plate while limiting the amount of cooling water at both lateral ends in the width direction,
前記第 2の冷却ステップは、 前記予備冷却装置の後段に設置された複数の独 立した冷却ゾーンを有する通過型の制御冷却装置により、 厚鋼板の幅方向全体を 同一の冷却速度で制御冷却する熱間圧延を完了した厚鋼板の制御冷却方法。  In the second cooling step, the whole thickness direction of the thick steel plate is controlled and cooled at the same cooling rate by a pass-type control cooling device having a plurality of independent cooling zones installed at a stage subsequent to the preliminary cooling device. Controlled cooling method for thick steel plate after hot rolling.
4. 請求項 1〜 3の任意の請求項において、 前記厚鋼板の幅方向の両側端部の冷 却水量の制限を、 厚鋼板の幅方向の端部に設置した遮蔽部材にて行なう厚鋼板の 制御冷却方法。 4. The thick steel plate according to any one of claims 1 to 3, wherein the cooling water amount at both ends in the width direction of the thick steel plate is limited by a shielding member installed at an end in the width direction of the thick steel plate. Control cooling method.
5 . 請求項 2または 4の任意の請求項において、 前記制御冷却装置の前段の冷却 において、 厚鋼板の長手方向の先尾端部の冷却水量を制限する厚鋼板の制御冷却 方法 5. The method for controlling cooling of a thick steel plate according to any one of claims 2 and 4, wherein in the cooling of the control cooling device, the amount of cooling water at a longitudinal end of the thick steel plate is limited.
6 . 請求項 3または 4の任意の請求項において、 前記予備冷却装置若しくは前記 予備冷却装置およぴ前記制御冷却装置の冷却において、 .厚鋼板の長手方向の先尾 端部の冷却水量を制限する厚鋼板の制御冷却方法。 6. In any claim of claim 3 or 4, the pre-cooling device or the In the cooling of the pre-cooling device and the control cooling device, a controlled cooling method for a thick steel plate in which the amount of cooling water at a longitudinal end portion of the thick steel plate is limited.
7 . 請求項 5または 6の任意の請求項において、 厚鋼板の長手方向の先尾端部の 冷却水量の制限を、 厚鋼板の長手方向の先尾端部の通過信号により所定時間作動 する水量制御手段にて行なう厚鋼板の制御冷却方法。 7. In any claim of claim 5 or 6, the restriction of the amount of cooling water at the longitudinal end of the thick steel plate is limited by the amount of water that is activated for a predetermined time by the passing signal of the longitudinal end of the thick steel plate. A method for controlling and cooling a thick steel plate by a control means.
8 . 請求項 2、 4、 5および 7の任意の請求項において、 前記制御冷却装置の前 段部は、 各ゾーン間に厚鋼板の幅方向の端部の水量制限が可能な厚鋼板の幅方向 端部に設置した遮蔽部材を設置し、 遮蔽部材は各ゾーン及び上下面において、 そ れぞれ独立して厚鋼板の幅方向の端部の冷却水を遮蔽する厚鋼板の制御冷却方法 8. In any one of claims 2, 4, 5, and 7, the front part of the control cooling device has a width of a thick steel plate capable of limiting a water amount at an end in a width direction of the steel plate between each zone. The shielding member installed at the end is installed, and the shielding member controls the cooling water at the end in the width direction of the steel plate independently in each zone and the upper and lower surfaces.
9 . 請求項 8において、 制御冷却前に厚鋼板の幅方向の温度分布を測定する手段 と測定された温度分布から、 厚鋼板の幅方向の板端部の温度降下量及び温度降下 が発生している厚鋼板の幅方向の板端部からの距離を解析し、 その結果に基づき 制御冷却装置前段の各冷却ゾーンに設置されている遮蔽部材による遮蔽量と遮蔽 を実施する冷却ゾーン数を演算し、 演算された結果に基づき遮蔽部材を制御する 厚鋼板の制御冷却方法。 9. In claim 8, the amount of temperature drop and the temperature drop at the plate edge in the width direction of the thick steel plate occur from the means for measuring the temperature distribution in the width direction of the thick steel plate before the controlled cooling and the measured temperature distribution. The distance from the end of the thick steel plate in the width direction is analyzed, and based on the results, the amount of shielding by the shielding members installed in each cooling zone in front of the control cooling device and the number of cooling zones to be shielded are calculated. And controlling the shielding member based on the calculated result.
1 0 . 請求項 3、 4、 6および 7の任意の請求項において、 予備冷却前に幅方 向の温度分布を測定し、 測定された温度分布から、 厚鋼板の幅方向の板端部の温 度降下量及び温度降下が発生している幅方向の板端部からの距離を解析し、 その 結果に基づき予備冷却装置における遮蔽部材による遮蔽量と冷却時間を演算し、 演算された結果に基づき予備冷却装置の遮蔽部材及ぴ通板速度を制御する厚鋼板 の制御冷却方法。 10. In any of claims 3, 4, 6 and 7, the temperature distribution in the width direction is measured before pre-cooling, and from the measured temperature distribution, the end of the plate in the width direction of the thick steel plate is measured. The amount of temperature drop and the distance from the edge of the plate in the width direction where the temperature drop occurs are analyzed, and based on the results, the amount of shielding by the shielding member in the pre-cooling device and the cooling time are calculated. A controlled cooling method for thick steel plates that controls the shielding member and the passing speed of the pre-cooling device based on this.
1 1 . 熱間圧延後、 請求項 1〜1 0の制御冷却方法により、 制御冷却されて製造 された厚鋼板。 11. A steel plate manufactured by controlled cooling according to the controlled cooling method according to claim 1 after hot rolling.
1 2 . 複数の独立した冷却ゾーンを有する通過型の制御冷却装置であって、 各 冷却ゾーンは冷却水量密度が 1200L/min. m2以上通水可能であり、 かつ前段の冷却 ゾーンに厚鋼板の幅方向の両側端部の冷却水量を制限する遮蔽部材が設置されて いる厚鋼板の制御冷却装置。 1 2. More independent a pass control cooling device having a cooling zone, the cooling zone is capable Rohm cooling water density is 1200L / min. M 2 or more and steel plate in front of the cooling zone A controlled cooling device for thick steel plates, which is provided with shielding members that limit the amount of cooling water at both ends in the width direction.
1 3 . 圧延機の後面に予備冷却装置、 制御冷却装置が順に配列された冷却装置 であって、 前記予備冷却装置は投入水量密度が 500L/min. m2以下でかつ、 厚鋼板の 幅方向の両側端部の冷却水量を制限する遮蔽部材が設置されており、 かつ前記制 御冷却装置は複数の独立した冷却ゾーンを有する通過型の装置であって、 各冷却 ゾーンの冷却水量密度が 1200L/min. ni2以上通水可能である厚鋼板の制御冷却装置 13. A cooling device in which a pre-cooling device and a control cooling device are sequentially arranged on the rear surface of a rolling mill, wherein the pre-cooling device has an input water density of 500 L / min.m 2 or less and a width direction of a thick steel plate. A shielding member for limiting the amount of cooling water at both side ends of the cooling zone is installed, and the control cooling device is a passage type device having a plurality of independent cooling zones, and the cooling water volume density of each cooling zone is 1200 L. /min.ni Controlled cooling system for thick steel plate that can pass water of 2 or more
1 4 . 請求項 1 2または 1 3の任意の請求項において、 前記厚鋼板の幅方向の温 度分布が均一化されるように、 前記遮蔽部材の動作を制御する厚鋼板の制御冷却 装置。 14. The controlled cooling device for a thick steel plate according to claim 12, wherein the operation of the shielding member is controlled so that a temperature distribution in a width direction of the thick steel plate is uniformed.
1 5 . 請求項 1 2〜 1 4の任意の請求項において、 厚鋼板の長手方向の先端部 および尾端部の通過信号により所定時間作動する水量制御手段を有する厚鋼板の 制御冷却装置。 15. The controlled cooling device for a thick steel plate according to any one of claims 12 to 14, further comprising a water quantity control means that operates for a predetermined time in response to a passage signal at a longitudinal end portion and a tail end portion of the thick steel plate.
1 6 . 請求項 1 2、 1 4または 1 5の任意の請求項において、 前記制御冷却装 置は、 スリットジェット冷却ノズルを使用する厚鋼板の制御冷却装置。 16. The control cooling device for a thick steel plate according to any one of claims 12, 14, and 15, wherein the control cooling device uses a slit jet cooling nozzle.
1 7 . 請求項 1 3、 1 4または 1 5の任意の請求項において、 前記予備冷却装 置はラミナーフロ一冷却ノズル、 前記制御冷却装置はスリットジェット冷却ノズ ルを使用する厚鋼板の制御冷却装置。 17. The control cooling device for a thick steel plate according to any one of claims 13, 14, and 15, wherein the preliminary cooling device is a laminar flow cooling nozzle, and the control cooling device is a slit jet cooling nozzle. .
1 8 . 請求項 1 2、 1 4、 1 5および 1 6の任意の請求項において、 前記制御 冷却装置の前段部の冷却ゾーン間に設置された遮蔽部材は、 各冷却ゾーン毎に及 ぴ前記冷却ゾーンの上面部おょぴ下面部毎に、 それぞれ独立して厚鋼板の幅方向 の端部の冷却水を遮蔽できるような構造である厚鋼板の制御冷却装置。 18. In any one of claims 12, 14, 15, and 16, the shielding member provided between the cooling zones at the front stage of the control cooling device is provided for each cooling zone. [4] A thick steel plate controlled cooling device having a structure capable of blocking cooling water at an end portion in the width direction of the thick steel plate independently for each of an upper surface portion and a lower surface portion of the cooling zone.
1 9 . 請求項 1 8において、 制御冷却前に厚鋼板の幅方向の温度分布を測定す る手段と測定された温度分布から、 厚鋼板の幅方向の板端部の温度降下量及び温 度降下が発生している厚鋼板の幅方向の板端部からの距離を解析する手段を持ち 、 その結果に基づき、 制御冷却装置前段の各冷却ゾーンに設置されている遮蔽部 材による遮蔽量と遮蔽を実施する冷却ゾーン数を演算する手段をもち、 演算され た結果に基づき遮蔽部材を制御する機構をもつ厚鋼板の制御冷却装置。 19. In Claim 18, the temperature drop amount and temperature at the plate edge in the width direction of the thick steel sheet are obtained from the means for measuring the temperature distribution in the width direction of the thick steel sheet before controlled cooling and the measured temperature distribution. It has a means to analyze the distance from the plate edge in the width direction of the thick steel plate in which the descent occurs, and based on the result, the amount of shielding by the shielding members installed in each cooling zone in front of the control cooling device A controlled cooling device for a thick steel plate, having means for calculating the number of cooling zones for performing shielding, and having a mechanism for controlling the shielding member based on the calculated result.
2 0 . 請求項 1 3、 1 4、 1 5および 1 7の任意の請求項において、 前記予備 冷却装置による冷却前に厚鋼板の幅方向の温度分布を測定する手段と、 測定され た温度分布から、 厚鋼板の幅方向の板端部の温度降下量及び温度降下が発生して いる厚鋼板の幅方向の板端部からの距離を解析する手段を持ち、 その結果に基づ き予備冷却装置の遮蔽部材による遮蔽量と冷却時間を演算する手段を持ち、 演算 された結果に基づき予備冷却装置における遮蔽部材及ぴ通板速度を制御可能な機 構をもつ厚鋼板の制御冷却装置 20. The method according to any one of claims 13, 14, 15, and 17, wherein a means for measuring a temperature distribution in a width direction of the thick steel plate before cooling by the pre-cooling device is provided. Has a means to analyze the temperature drop at the plate edge in the width direction of the steel plate and the distance from the plate edge in the width direction of the steel plate where the temperature drop occurs, and based on the results, precooling Control cooling device for thick steel plate with means for calculating the amount of shielding by the shielding member of the device and the cooling time, and having a mechanism that can control the shielding member and the passing speed in the pre-cooling device based on the calculated results
2 1 . 請求項 1 2、 1 4, 1 5, 1 6、 1 8および 1 9の任意の請求項において 、 前記制御冷却装置の前に矯正機が設置されている厚鋼板の制御冷却装置。 21. The control cooling device for a thick steel plate according to any one of claims 12, 14, 15, 15, 16, 18, and 19, wherein a straightening machine is installed before the control cooling device.
2 2 . 請求項 1 3、 1 4, 1 5、 1 7および 2 0の任意の請求項において、 前記 予備冷却装置と前記制御冷却装置の間に矯正機が設置されている厚鋼板の制御冷 却装置。 22. In any one of claims 13, 14, 15, 15, 17 and 20, the controlled cooling of a thick steel plate in which a straightening machine is installed between the preliminary cooling device and the control cooling device. Device.
PCT/JP2004/008294 2003-06-13 2004-06-08 Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate WO2004110662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04745851A EP1634657B1 (en) 2003-06-13 2004-06-08 Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003170006 2003-06-13
JP2003-170006 2003-06-13

Publications (1)

Publication Number Publication Date
WO2004110662A1 true WO2004110662A1 (en) 2004-12-23

Family

ID=33549399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008294 WO2004110662A1 (en) 2003-06-13 2004-06-08 Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate

Country Status (6)

Country Link
EP (1) EP1634657B1 (en)
JP (1) JP5218435B2 (en)
KR (1) KR100780503B1 (en)
CN (1) CN100404154C (en)
TW (1) TWI286089B (en)
WO (1) WO2004110662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617854A (en) * 2021-08-26 2021-11-09 宝钢湛江钢铁有限公司 Method for controlling tail shape of TMCP steel plate
CN114606367A (en) * 2022-01-26 2022-06-10 南京钢铁股份有限公司 Ultrafast cooling plate type control method suitable for medium plate production

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586791B2 (en) * 2006-10-30 2010-11-24 Jfeスチール株式会社 Cooling method for hot-rolled steel strip
KR100778680B1 (en) * 2006-12-07 2007-11-22 주식회사 포스코 Apparatus for hot rolling and a method of the same
DE102008049537A1 (en) * 2008-09-30 2010-04-01 Sms Siemag Aktiengesellschaft Method and apparatus for cooling a sliver or strip of a metal strand in a hot rolling mill
JP4674646B2 (en) * 2009-06-30 2011-04-20 住友金属工業株式会社 Steel plate cooling device, hot-rolled steel plate manufacturing device, and steel plate manufacturing method
CN102639262B (en) * 2009-11-24 2014-08-20 新日铁住金株式会社 Hot-rolled steel sheet manufacturing device, and hot-rolled steel sheet manufacturing method
CN102121063B (en) * 2010-07-29 2012-09-05 边新孝 Square or flat material production line jet cooling system
JP5741165B2 (en) * 2011-04-12 2015-07-01 Jfeスチール株式会社 Thermal steel sheet bottom surface cooling device
CN102759935A (en) * 2011-04-25 2012-10-31 蔺桃 Novel cooling control method
KR101498890B1 (en) * 2012-06-28 2015-03-05 현대제철 주식회사 Method for controlling edge mask of cooling apparatus
EP2969279B2 (en) 2013-03-11 2024-04-03 Novelis Inc. Improving the flatness of a rolled strip
CN103272847A (en) * 2013-06-05 2013-09-04 浙江兆隆合金股份有限公司 Intelligent refrigeration type metal composite rolling roller system
DE102015112293A1 (en) 2015-07-28 2017-02-02 Hydro Aluminium Rolled Products Gmbh Method and apparatus for the adaption of temperature-adapting metal bands
CN105234191B (en) * 2015-10-30 2017-03-22 华中科技大学 Laminar cooling temperature control method
MX368253B (en) 2016-01-28 2019-09-26 Jfe Steel Corp Steel sheet temperature control device and temperature control method.
CN110050077A (en) * 2016-12-07 2019-07-23 艾伯纳工业筑炉有限公司 For carrying out the register of temperature adjustment to component
FR3060021B1 (en) * 2016-12-14 2018-11-16 Fives Stein METHOD AND RAPID COOLING SECTION OF A CONTINUOUS LINE OF TREATMENT OF METAL STRIP
KR102310881B1 (en) 2017-03-31 2021-10-08 닛폰세이테츠 가부시키가이샤 A cooling device for a hot-rolled steel sheet, and a cooling method for a hot-rolled steel sheet
TWI690375B (en) * 2017-04-17 2020-04-11 日商日本製鐵股份有限公司 Cooling device for hot-rolled steel sheet, and method of cooling hot-rolled steel sheet
CN110527809B (en) * 2019-08-26 2020-12-22 武汉科技大学 Preparation method of hot-rolled high-strength strip steel capable of reducing residual stress
CN112570450B (en) * 2019-09-30 2022-03-01 宝钢湛江钢铁有限公司 Thick plate rolling line and production method thereof
CN114472548A (en) * 2020-10-23 2022-05-13 宝山钢铁股份有限公司 System and method for reducing head-tail temperature difference in rolling process of super-long plate
CN113732083B (en) * 2021-08-31 2023-12-01 日钢营口中板有限公司 Ultra-fast cooling method for improving buckling performance of hot rolled steel plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036625A (en) * 1983-08-08 1985-02-25 Kawasaki Steel Corp Uniform cooling method of high-temperature steel plate
JPS6115926A (en) * 1984-07-02 1986-01-24 Nippon Steel Corp Cooling method of hot steel sheet
JPS61264137A (en) * 1985-05-17 1986-11-22 Kobe Steel Ltd Cooling method for steel plate by slit jet nozzle
JPS62112733A (en) * 1985-11-09 1987-05-23 Nippon Steel Corp Cooling method for hot rolled steel sheet
JPH0663636A (en) * 1992-08-18 1994-03-08 Kawasaki Steel Corp Preliminary cooling device for hot rolled steel plate
JPH06254616A (en) * 1993-03-05 1994-09-13 Nippon Steel Corp Manufacture of thick steel plate excellent in shape and device therefor
JPH07150229A (en) * 1993-11-26 1995-06-13 Kawasaki Steel Corp Apparatus for control-cooling hot rolled thick steel plate
JPH0871630A (en) * 1994-09-09 1996-03-19 Kawasaki Steel Corp Cooling method of high temperature metallic plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832511A (en) * 1981-08-21 1983-02-25 Nippon Kokan Kk <Nkk> Method and device for cooling thick steel plate
JPS61219412A (en) * 1985-03-26 1986-09-29 Kawasaki Steel Corp Uniform cooling method of hot steel plate and its apparatus
JPS61238920A (en) * 1985-04-16 1986-10-24 Kawasaki Steel Corp Production of hot rolled steel sheet having excellent material quality uniformity and shape characteristic in transverse direction
CN1016043B (en) * 1986-02-04 1992-04-01 川崎制铁有限公司 Method and apparatus for cooling metal strip
JPS6363520A (en) * 1986-09-04 1988-03-19 Kawasaki Steel Corp Cooling control method for strip
JP2698305B2 (en) * 1992-12-18 1998-01-19 新日本製鐵株式会社 Cooling method of steel plate
JP3171326B2 (en) * 1998-03-18 2001-05-28 日本鋼管株式会社 Thick steel plate manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036625A (en) * 1983-08-08 1985-02-25 Kawasaki Steel Corp Uniform cooling method of high-temperature steel plate
JPS6115926A (en) * 1984-07-02 1986-01-24 Nippon Steel Corp Cooling method of hot steel sheet
JPS61264137A (en) * 1985-05-17 1986-11-22 Kobe Steel Ltd Cooling method for steel plate by slit jet nozzle
JPS62112733A (en) * 1985-11-09 1987-05-23 Nippon Steel Corp Cooling method for hot rolled steel sheet
JPH0663636A (en) * 1992-08-18 1994-03-08 Kawasaki Steel Corp Preliminary cooling device for hot rolled steel plate
JPH06254616A (en) * 1993-03-05 1994-09-13 Nippon Steel Corp Manufacture of thick steel plate excellent in shape and device therefor
JPH07150229A (en) * 1993-11-26 1995-06-13 Kawasaki Steel Corp Apparatus for control-cooling hot rolled thick steel plate
JPH0871630A (en) * 1994-09-09 1996-03-19 Kawasaki Steel Corp Cooling method of high temperature metallic plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1634657A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113617854A (en) * 2021-08-26 2021-11-09 宝钢湛江钢铁有限公司 Method for controlling tail shape of TMCP steel plate
CN114606367A (en) * 2022-01-26 2022-06-10 南京钢铁股份有限公司 Ultrafast cooling plate type control method suitable for medium plate production
CN114606367B (en) * 2022-01-26 2023-06-16 南京钢铁股份有限公司 Ultrafast cooling plate type control method suitable for middle plate production

Also Published As

Publication number Publication date
EP1634657B1 (en) 2012-02-22
JP2010110823A (en) 2010-05-20
EP1634657A1 (en) 2006-03-15
TW200523046A (en) 2005-07-16
KR20060018254A (en) 2006-02-28
CN100404154C (en) 2008-07-23
EP1634657A4 (en) 2007-04-18
CN1805803A (en) 2006-07-19
TWI286089B (en) 2007-09-01
JP5218435B2 (en) 2013-06-26
KR100780503B1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
WO2004110662A1 (en) Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
KR100882931B1 (en) Method of cooling steel sheet
JP6283617B2 (en) Method for producing hot rolled silicon steel
KR101185597B1 (en) Method of continuous annealing for steel strip with curie point and continuous annealing apparatus therefor
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP2016193446A (en) Method for cooling hot rolled steel sheet and cooling device
JP2019119905A (en) Manufacturing facility for thick steel plate and manufacturing method thereof
JP4029865B2 (en) Hot rolled steel sheet manufacturing equipment and hot rolled steel sheet manufacturing method
JP4360250B2 (en) Steel plate manufacturing method and manufacturing equipment
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JPH1034226A (en) Method for cooling high-temperature metallic sheet and device therefor
JP4661226B2 (en) Steel plate cooling method and cooling device
JP2002178004A (en) Equipment and method for hot-rolling for hot-rolled steel strip
JP3287254B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
JPH11267755A (en) Manufacture of thick steel plate and straightening device used in it
JP3277985B2 (en) High temperature steel plate cooling system
JP3783396B2 (en) Cooling method for high temperature steel sheet
JP7128163B2 (en) Thick steel plate cooling method
JP7060164B2 (en) Secondary cooling method and equipment for continuously cast slabs
JP4525133B2 (en) Manufacturing method of hot-rolled steel strip
JP2018001211A (en) Method and equipment for production of hot-rolled steel belt
JPH024373B2 (en)
JP5741634B2 (en) Method and apparatus for cooling control of hot-rolled steel sheet
JPH0450368B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004745851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057023637

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004816509X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057023637

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004745851

Country of ref document: EP