JP3171326B2 - Thick steel plate manufacturing method - Google Patents

Thick steel plate manufacturing method

Info

Publication number
JP3171326B2
JP3171326B2 JP08830598A JP8830598A JP3171326B2 JP 3171326 B2 JP3171326 B2 JP 3171326B2 JP 08830598 A JP08830598 A JP 08830598A JP 8830598 A JP8830598 A JP 8830598A JP 3171326 B2 JP3171326 B2 JP 3171326B2
Authority
JP
Japan
Prior art keywords
cooling
plate
temperature
steel sheet
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08830598A
Other languages
Japanese (ja)
Other versions
JPH11267737A (en
Inventor
晃夫 藤林
洋 木部
悟史 上岡
省吾 冨田
政久 藤掛
峻一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP08830598A priority Critical patent/JP3171326B2/en
Publication of JPH11267737A publication Critical patent/JPH11267737A/en
Application granted granted Critical
Publication of JP3171326B2 publication Critical patent/JP3171326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、厚鋼板の製造方法
に関するものであり、さらに詳しくは、熱間圧延された
高温鋼板を冷却後、条切りを行った際に発生する条切り
歪みの少ない厚鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thick steel plate, and more particularly, to a method for producing a hot rolled high-temperature steel plate, which is cooled and then cut to a small amount. The present invention relates to a method for manufacturing a thick steel plate.

【0002】[0002]

【従来の技術】一般に、熱間圧延された高温の鋼板に
は、製造途中で発生した温度の不均一や残留応力によっ
て、鋼板を条切りした際に板が面内に歪むキャンバーや
上下に歪む反りを発生する、いわゆる条切り歪みが生じ
やすい。
2. Description of the Related Art Generally, a hot-rolled high-temperature steel sheet has a camber or an up-and-down warp in a plane when the steel sheet is cut due to uneven temperature and residual stress generated during manufacturing. Warpage occurs, that is, so-called straining distortion is likely to occur.

【0003】近年、高強度、高靭性の厚鋼板を製造する
方法として、特定の温度域で圧下を加える、いわゆる制
御圧延と、圧延後の高温の鋼板を強冷却する加速冷却が
一般的に行われている。加速冷却の方法としては、オン
ラインで水平の状態で鋼板を通過させながら、その上下
から冷却水を注水して冷却を施す方法が一般的である。
この加速冷却前の鋼板の板幅方向の温度分布は、スラブ
の加熱炉抽出から圧延終了までに熱が板の端部から2次
元的に放熱するため、板端部の温度が板幅中央部の温度
より下がった分布となっている。
In recent years, as a method for producing a high-strength, high-toughness thick steel plate, so-called controlled rolling, in which rolling is performed in a specific temperature range, and accelerated cooling, in which a hot steel plate after rolling is strongly cooled, are generally performed. Have been done. As a method of accelerated cooling, a method is generally used in which cooling is performed by injecting cooling water from above and below while passing a steel sheet in a horizontal state online.
The temperature distribution in the sheet width direction of the steel sheet before the accelerated cooling is such that the heat is two-dimensionally radiated from the end of the sheet from the extraction of the slab in the heating furnace to the end of the rolling. Is lower than the temperature.

【0004】よって、この状態で加速冷却を施すと、幅
方向に一様な冷却を行っても、冷却前の温度分布はその
まま相似な形で引き継がれ、冷却終了時においても板端
部の温度が板幅中央部の温度より下がった分布となって
いる。この状態でレベリング(熱間矯正)を行うと、レ
ベリング終了時に板形状は平坦であったとしても、幅方
向に存在するこの温度分布に応じて板端部と板中央部と
の熱収縮量に違いが生じ、常温に至った段階で、板中央
部に圧縮、板端部に引張りの残留応力が生じる。この板
をそのまま条切りすると残留応力が解放されて、図5に
示すような条切り歪みが生じてしまう。
Therefore, when accelerated cooling is performed in this state, even if uniform cooling is performed in the width direction, the temperature distribution before cooling is inherited in a similar manner as it is, and the temperature at the end of the plate is maintained even after the cooling is completed. Is lower than the temperature at the center of the sheet width. When leveling (hot straightening) is performed in this state, even if the plate shape is flat at the end of leveling, the amount of heat shrinkage between the plate edge and the plate center is determined according to the temperature distribution existing in the width direction. A difference occurs, and when the temperature reaches room temperature, a compressive stress is generated at the center of the plate and a tensile stress is generated at the end of the plate. If this plate is cut as it is, the residual stress is released, and a cut distortion as shown in FIG. 5 occurs.

【0005】この条切り歪みをなくす手段としては (1)圧延過程において鋼板の中央部に対する四周囲の
温度降下量と温度降下範囲を認識し、それぞれを定量化
して中央部の上下面を水冷する方法(特開昭62−93
010号公報) (2)加速冷却前に幅方向の温度分布をフラットにする
ために部分的な高温部を水冷することで温度ムラを解消
する方法(特開昭60−36625号公報) (3)加速冷却前に幅方向の温度分布をフラットにする
ために冷却を行う方法(特開昭60−36625号公
報) (4)加速冷却装置内にレベリングロールを設けて、冷
却しながら矯正を施す方法(特開昭61−231124
号公報) (5)加速冷却後に鋼板幅方向の温度分布がフラットと
なるように加速冷却中に板端部の冷却を少なくする方法
(特開昭62ー289315号公報、特開昭55ー15
3616号公報、実用新案登録2549694号公報、
特開昭58ー32511号公報、特開平6ー28553
1号公報、特開平6ー184623号公報)が提案され
ている。また、加速冷却後に内部に残留する応力を除去
する目的で歪取りの熱処理を施す、いわゆるテンパ処理
が行われてきた。
Means for eliminating the stripping distortion are as follows: (1) Recognizing the temperature drop amount and the temperature drop range around the central portion of the steel sheet in the rolling process, quantifying each, and water-cooling the upper and lower surfaces of the central portion. Method (JP-A-62-93)
(No. 010) (2) A method of eliminating temperature unevenness by cooling a high temperature part with water in order to flatten the temperature distribution in the width direction before accelerated cooling (Japanese Patent Application Laid-Open No. 60-36625). ) Method of performing cooling to flatten the temperature distribution in the width direction before accelerated cooling (Japanese Patent Laid-Open No. 60-36625) (4) A leveling roll is provided in an accelerated cooling device, and straightening is performed while cooling. Method (JP-A-61-231124)
(5) A method of reducing cooling at the end of a sheet during accelerated cooling so that the temperature distribution in the width direction of the steel sheet becomes flat after accelerated cooling (Japanese Patent Application Laid-Open Nos. 62-289315 and 55-15)
No. 3616, Utility Model Registration No. 2549694,
JP-A-58-32511, JP-A-6-28553
No. 1, JP-A-6-184623) has been proposed. Further, a so-called tempering treatment has been performed in which a heat treatment for removing strain is performed for the purpose of removing the stress remaining inside after accelerated cooling.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
62−93010号公報に見られる、圧延過程において
鋼板の中央部に対する四周囲の温度降下量と温度降下範
囲を認識し、それぞれを定量化して中央部の上下面を水
冷する方法には、同明細書記載の板中央部と板端部の温
度差が加速冷却中および矯正後の空冷過程で、鋼板の座
屈が生じる臨界温度差以下となるように板中央部を冷却
しても、座屈が生じる臨界温度差が大きい場合、例えば
鋼板板厚が厚い場合には、座屈が発生しなくても板中央
部と板端部の材質差が生じることが避けられないという
問題点がある。
However, in the rolling process disclosed in Japanese Patent Application Laid-Open No. 62-93010, the amount of temperature drop and the range of temperature drop around the center of the steel sheet are recognized, and each of them is quantified. In the method of water cooling the upper and lower surfaces of the central part, the temperature difference between the plate central part and the plate end part described in the same specification is accelerated cooling and in the air cooling process after straightening, and the critical temperature difference at which buckling of the steel sheet occurs below. If the critical temperature difference at which buckling occurs even if the center of the plate is cooled is large, for example, if the steel plate is thick, the material of the plate center and the plate end can be formed without buckling. There is a problem that a difference is inevitable.

【0007】また、特開昭60−36625号公報に見
られる、加速冷却前に幅方向の温度分布をフラットにす
るため部分的な高温部を解消するように冷却する方法で
は、部分的な冷却を行う途中で冷却歪みが発生し、この
歪みが次の加速冷却装置における冷却において幅方向の
冷却水流れを不均一にしたり、冷却水が局所的に滞留し
て別の温度ムラを引き起こすという問題がある。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 60-36625, in which cooling is performed so as to eliminate a high temperature portion in order to flatten the temperature distribution in the width direction before accelerated cooling, partial cooling is performed. Distortion occurs during the cooling process, and this distortion causes the cooling water flow in the width direction to be uneven in the next cooling in the accelerated cooling device, or the cooling water locally stays and causes another temperature unevenness. There is.

【0008】また、この加速冷却前に幅方向の温度分布
をフラットにするために冷却を行う方法において、その
冷却の前後に矯正を行う方法、幅方向の温度分布をフラ
ットにするための冷却の直後に矯正を行う方法が考えら
れるが、この方法では、矯正中にさらに鋼板端部の温度
が時間の経過とともに降下し、加速冷却前に再び、板幅
方向の温度分布がついた状態となって、加速冷却開始時
には板端部の温度が板中央部に比べて下がった状態とな
り、温度分布をフラットにする冷却の効果が十分に得ら
れないという問題点がある。
Further, in the method of cooling to flatten the temperature distribution in the width direction before the accelerated cooling, the method of straightening before and after the cooling, and the method of cooling to flatten the temperature distribution in the width direction are described. It is conceivable to perform straightening immediately, but in this method, the temperature at the end of the steel sheet further decreases with time during straightening, and before the accelerated cooling, the temperature distribution in the width direction of the steel sheet is again obtained. Thus, at the start of accelerated cooling, the temperature at the end of the plate is lower than that at the center of the plate, and there is a problem that the cooling effect of flattening the temperature distribution cannot be sufficiently obtained.

【0009】また、特開昭61−231124号公報に
見られる、速冷却装置内にレベリングロールを設けて、
冷却しながら矯正を施す方法では、加速冷却装置内で矯
正を行うと、レベリングロールの存在が冷却水の流れを
妨げたり、局所的な冷却ムラを助長させたりするという
問題点がある。さらに冷却終了時には鋼板表面温度が下
がった状態であるが、冷却装置を出てしばらくしてから
鋼板表面温度が復熱により上昇する。復熱段階で鋼板の
上面と下面の温度が異なった場合(例えば、加速冷却中
の微少な上下面の冷却のアンバランスによる)には、非
常に大きな反りの歪みが発生するという問題点がある。
Further, a leveling roll is provided in a rapid cooling device as disclosed in JP-A-61-231124,
In the method of performing the correction while cooling, when the correction is performed in the accelerated cooling device, there is a problem that the presence of the leveling rolls obstructs the flow of the cooling water and promotes local cooling unevenness. Further, at the end of cooling, the steel sheet surface temperature is in a state of being lowered, but a short time after leaving the cooling device, the steel sheet surface temperature rises due to reheating. When the temperature of the upper surface and the lower surface of the steel sheet are different in the recuperation stage (for example, due to a minute imbalance in cooling of the upper and lower surfaces during accelerated cooling), there is a problem that a very large warpage distortion occurs. .

【0010】加速冷却後に鋼板幅方向の温度分布がフラ
ットとなるように加速冷却中に板端部の冷却を少なくす
る方法、すなわち、ラミナー冷却水のうち板中央部に供
給される冷却水量に対して板端部に供給される冷却水量
を絞ることによって、板端部の冷却を小さくしようとす
る方法(特開昭62ー289315号公報、特開昭55
ー153616号公報)、冷却水を遮蔽板によって端部
に落下する冷却水を切る方法(実用新案登録25496
94号公報、特開昭58ー32511号公報)、板に沿
ったスリットノズルから冷却水を注水するスリットノズ
ルにおいて、スリットノズルの先端のスリット部分にス
リットを遮蔽する幅方向に移動可能な遮蔽体を設けて板
端部に冷却水がかからないようにする方法(特開平6ー
285531号公報、特開平6ー184623号公報)
については、これらのいずれの方法も、加速冷却時に、
板端部の冷却開始温度が板中央部の冷却開始温度に比べ
て低くなっており、これに起因して、板端部の強度や靭
性が板中央部と異なって製品品質のバラツキを生じるの
で、厳しい温度管理が求められる近年の制御圧延や制御
冷却の条件に合わないという問題点がある。
[0010] A method of reducing the cooling at the end of the plate during accelerated cooling so that the temperature distribution in the width direction of the steel sheet becomes flat after the accelerated cooling, that is, the amount of cooling water supplied to the center of the laminar cooling water is reduced. A method of reducing the cooling of the plate edge by reducing the amount of cooling water supplied to the plate edge (Japanese Patent Application Laid-Open Nos. 62-289315 and 55
No. 153616), a method of cutting off cooling water that falls to the end by a shielding plate (utility model registration 25496)
No. 94, JP-A-58-32511), in a slit nozzle for injecting cooling water from a slit nozzle along a plate, a shield movable in the width direction for shielding a slit at a slit portion at a tip end of the slit nozzle. To prevent cooling water from splashing on the edge of the plate (JP-A-6-285531, JP-A-6-184623)
For both of these methods, during accelerated cooling,
The cooling start temperature at the end of the plate is lower than the cooling start temperature at the center of the plate, and as a result, the strength and toughness of the end of the plate differ from those in the center of the plate, causing variations in product quality. However, there is a problem that it does not meet the conditions of recent controlled rolling and controlled cooling which require strict temperature control.

【0011】さらに、板端部への冷却水量が板中央部の
冷却水量に比べて少ないために板端部の冷却速度が板中
央部の冷却速度に比べて小さくなり、板端部は所要の冷
却速度が得られなくなるという問題があり、これは冷却
開始温度の幅方向のバラツキと同様に製品品質のバラツ
キを生じる原因となっている。
Further, since the amount of cooling water to the plate end is smaller than the amount of cooling water at the center of the plate, the cooling speed at the plate end becomes smaller than the cooling speed at the center of the plate. There is a problem that a cooling rate cannot be obtained, which causes a variation in product quality as well as a variation in a cooling start temperature in a width direction.

【0012】また、加速冷却後に、残留応力が残った場
合には、その応力を除去するために応力除去焼鈍処理を
行うことが一般に行われているが、これは再加熱に膨大
なエネルギと時間を費やすことになり、コスト的に不利
である。
When residual stress remains after accelerated cooling, a stress relief annealing process is generally performed to remove the stress. However, this requires enormous energy and time for reheating. , Which is disadvantageous in terms of cost.

【0013】本発明は、このような事情に鑑みてなされ
たもので、冷却したままで条切りを行っても条切り歪み
が小さく、かつ鋼板全体のにわたって均質な材質の鋼板
をオンラインで安定に製造可能な方法を提供することを
課題とする。
[0013] The present invention has been made in view of such circumstances, and even if the cutting is performed while cooling, the stripping distortion is small, and a steel sheet of a uniform material can be stably online on the entire steel sheet. An object is to provide a method that can be manufactured.

【0014】[0014]

【課題を解決するための手段】前記課題は、熱間圧延さ
れた高温鋼板を加速冷却して鋼板を製造する鋼板の製造
方法において、粗圧延機と仕上圧延機の間に設けられた
冷却装置により、加熱炉から粗圧延終了までに生じた板
端部付近の温度降下量、及び仕上圧延時に生じると推定
される板端部付近の温度の降下量を補償するように、板
幅方向に温度分布を持った冷却を行い、仕上圧延後は、
幅方向に均一な冷却条件で加速冷却を行うことを特徴と
する厚鋼板の製造方法により解決される。
An object of the present invention is to provide a method of manufacturing a steel sheet by manufacturing a steel sheet by accelerating and cooling a hot-rolled high-temperature steel sheet, wherein a cooling device provided between a rough rolling mill and a finishing mill is provided. In order to compensate for the temperature drop near the plate edge generated from the heating furnace to the end of rough rolling, and the temperature drop near the plate edge estimated to occur during finish rolling, the temperature in the sheet width direction is compensated. Cooling with distribution, after finish rolling,
The problem is solved by a method for manufacturing a thick steel plate, wherein accelerated cooling is performed under uniform cooling conditions in the width direction.

【0015】粗圧延終了時に、板幅方向に温度分布を持
った冷却を施すことによって、それまでに蓄積された板
端部の温度の降下量と、その後仕上圧延時に生じると推
定される板端部の温度降下量を補償することで、加速冷
却前における鋼板の幅方向の温度分布がフラットにな
る。また、この冷却によって粗厚鋼板に変形が生じて
も、仕上圧延で平坦にすることができる。
At the end of the rough rolling, by performing cooling with a temperature distribution in the width direction of the sheet, the amount of temperature drop at the sheet edge accumulated up to that point and the sheet edge estimated to be generated during finish rolling after that. By compensating for the temperature drop of the portion, the temperature distribution in the width direction of the steel sheet before the accelerated cooling becomes flat. Further, even if the coarse steel plate is deformed by this cooling, it can be flattened by finish rolling.

【0016】その後に、加速冷却装置において幅方向に
均一な冷却を施すと、鋼板各部の冷却速度、温度履歴
(冷却開始温度、冷却停止温度)が鋼板各部で一定とな
り、均質な材質が得られる。その後、熱間矯正を施した
時点でも板幅方向に温度がほぼ均一であるために、自然
放冷した後に鋼板内に残留応力が残存せず、従って条切
りを施しても歪みが生じない。
Thereafter, when uniform cooling is performed in the width direction in the accelerated cooling device, the cooling speed and temperature history (cooling start temperature, cooling stop temperature) of each part of the steel sheet become constant in each part of the steel sheet, and a uniform material can be obtained. . Thereafter, even when hot straightening is performed, since the temperature is substantially uniform in the width direction of the sheet, no residual stress remains in the steel sheet after natural cooling, and thus no distortion occurs even when the strip is cut.

【0017】また、本発明を実施するためには、従来よ
り制御圧延で用いられている粗圧延と仕上げ圧延の間の
温度調節用の冷却装置をそのまま使用することが可能で
あり、新たな冷却設備の設置が不要である。
Further, in order to carry out the present invention, it is possible to use a cooling device for adjusting the temperature between the rough rolling and the finish rolling, which has been conventionally used in the controlled rolling, as it is, and a new cooling system can be used. No installation of equipment is required.

【0018】[0018]

【実施例】(実施例1)次に本発明を実施例により詳細
に説明する。第一の実施例は、厚み250mm、幅2000mm、
長さ3500mmのスラブから、幅4000mm、厚み25mm、製品長
さ約20mの厚鋼板を制御圧延によって製造するものであ
る。
(Embodiment 1) Next, the present invention will be described in detail with reference to embodiments. The first embodiment has a thickness of 250 mm, a width of 2000 mm,
A steel plate with a width of 4000 mm, a thickness of 25 mm and a product length of about 20 m is manufactured from a 3500 mm long slab by controlled rolling.

【0019】本実施例に使用する設備の構成を図1に示
す。図1において、1は粗圧延機、2はシャワー冷却装
置、3は仕上圧延機、4は第1の熱間矯正機、5は加速
冷却装置、6は第2の熱間矯正機、7は冷却床、8は粗
圧延機後の表面温度計、9は冷却開始温度を計測する表
面温度計、10は冷却終了温度を計測する表面温度計、
11は矯正後の鋼板温度を計測する表面温度計である。
第1の熱間矯正機4は、冷却中の不均一な冷却を防止す
るために、圧延で生じた形状不良を矯正するものであ
り、第2の熱間矯正機6は、加速冷却によって生じた歪
みを除去するものである。
FIG. 1 shows the configuration of the equipment used in this embodiment. In FIG. 1, 1 is a rough rolling mill, 2 is a shower cooling device, 3 is a finishing rolling machine, 4 is a first hot straightening machine, 5 is an accelerated cooling device, 6 is a second hot straightening machine, and 7 is A cooling floor, 8 a surface thermometer after the rough rolling mill, 9 a surface thermometer for measuring a cooling start temperature, 10 a surface thermometer for measuring a cooling end temperature,
A surface thermometer 11 measures the temperature of the steel sheet after the correction.
The first hot straightening machine 4 corrects a shape defect caused by rolling in order to prevent uneven cooling during cooling, and the second hot straightening machine 6 is formed by accelerated cooling. This is to remove the distortion.

【0020】この鋼板製造設備において、加熱炉で約12
50℃に加熱したスラブをデスケーリング後、粗圧延機1
で幅4000mm、厚み65mmまで圧延した。この時、粗圧延の
パス数は14パスで粗圧延終了時の鋼板9の表面温度を
放射温度計8で測定した結果、図2(1)に示すように
板端部の温度が約970℃、板中央部付近の温度が1045℃
であった。すなわち、この段階で板端部の温度は板中央
部に比べて約75℃低くなっており、その温度が降下した
部分は板端部から約150mmの範囲に及んでいた。
In this steel plate manufacturing facility, about 12
After descaling the slab heated to 50 ° C, the rough rolling mill 1
At a width of 4000 mm and a thickness of 65 mm. At this time, the number of passes of the rough rolling was 14 and the surface temperature of the steel sheet 9 at the end of the rough rolling was measured by the radiation thermometer 8. As a result, as shown in FIG. , The temperature near the center of the board is 1045 ℃
Met. That is, at this stage, the temperature at the plate edge was about 75 ° C. lower than that at the center of the plate, and the portion at which the temperature dropped reached a range of about 150 mm from the plate edge.

【0021】シャワー冷却装置2は、長さ40mに渡って
多数のスプレー冷却ノズルを鋼板上下面に配置した冷却
装置で、幅方向に100mmピッチ、長手方向に150mmピッチ
で市販のスプレーノズルを千鳥配置しており、上面ノズ
ルは搬送テーブルから1.5m上に、下面ノズルは搬送テ
ーブルから300mm下に、それぞれ配置されている。
The shower cooling device 2 is a cooling device in which a number of spray cooling nozzles are arranged on the upper and lower surfaces of a steel plate over a length of 40 m. Commercial spray nozzles are staggered at a pitch of 100 mm in the width direction and 150 mm in the longitudinal direction. The upper nozzle is disposed 1.5 m above the transfer table, and the lower nozzle is disposed 300 mm below the transfer table.

【0022】板端部の冷却能力を制御するために、下面
においては、板端部において、ノズルと鋼板との間にマ
スキングのための板を挿入している。本実施例では板端
部から100mmまでマスキング板を挿入した。また上面に
おいては、板端部に冷却水がかからないように、板端部
にラインのサイドから空気を板端部約100mmの範囲に噴
射して、鋼板上面の板端部付近に噴射および落下した冷
却水が板端部に接触しないような工夫が施されている。
In order to control the cooling capacity of the plate end, a plate for masking is inserted between the nozzle and the steel plate at the plate end on the lower surface. In this example, a masking plate was inserted from the end of the plate to 100 mm. In addition, on the upper surface, air was sprayed from the side of the line to the plate edge in a range of about 100 mm from the side of the line so that the cooling water did not splash on the plate edge, and was sprayed and dropped near the plate edge on the upper surface of the steel plate. The device is designed so that the cooling water does not touch the edge of the plate.

【0023】このシャワー冷却装置では、以上の装置構
成によって、板幅方向の冷却能力、特に板端部付近の冷
却能力を変更することが可能である。冷却能力調整は、
下面については、マスキング板を挿入する鋼板長さ方向
の長さおよびその挿入深さ(幅)によって、温度調整量
とその幅を、上面については、空気を噴射するノズルの
鋼板長さ方向の数とその幅方向の位置によって、温度調
整量とその幅を変更することが可能である。
In this shower cooling device, the cooling capacity in the plate width direction, particularly the cooling capacity near the plate edge, can be changed by the above-described device configuration. Cooling capacity adjustment
For the lower surface, the amount of temperature adjustment and its width are determined by the length in the length direction of the steel plate into which the masking plate is inserted and the insertion depth (width), and for the upper surface, the number of nozzles in the length direction of the air jet nozzle. It is possible to change the temperature adjustment amount and its width depending on the position in the width direction.

【0024】板端部の温度調整量は次のように決定し
た。この板の制御圧延条件は板厚65mmから25mmまでの仕
上げ圧延を850℃から900℃以下の温度領域で施す必要が
あった。従って板中央部付近は1045℃から900℃以下ま
で、板端部は970℃から900℃以下まで、すなわち、少な
くともそれぞれ145℃と70℃温度を下げる必要がある。
The amount of temperature adjustment at the edge of the plate was determined as follows. The controlled rolling conditions for this sheet required that the finish rolling of a sheet thickness of 65 mm to 25 mm be performed in a temperature range of 850 ° C. to 900 ° C. or less. Therefore, it is necessary to lower the temperature around the center of the plate from 1045 ° C to 900 ° C or less, and the temperature at the plate edge from 970 ° C to 900 ° C or less, that is, at least 145 ° C and 70 ° C respectively.

【0025】板中央部については、このシャワー冷却装
置の最大冷却能力である冷却水量を用いることにより、
約30秒で145℃温度降下させることができる。この時板
端部については加熱炉抽出から粗圧延終了時までに板端
部が板中央部に比べて75℃過冷され、さらに今後仕上げ
圧延において、板端部から50mm前後は15℃程度過冷され
るので、合計で板端部を約90℃冷却調整する必要があっ
た。
For the central part of the plate, by using the cooling water amount which is the maximum cooling capacity of the shower cooling device,
The temperature can be lowered by 145 ° C in about 30 seconds. At this time, from the heating furnace extraction to the end of rough rolling, the sheet edge was cooled by 75 ° C compared to the center of the sheet. Since it was cooled, it was necessary to cool and adjust the plate edge in total at about 90 ° C.

【0026】そこで、このような冷却調整が可能なよう
に、下面のマスキング長さと深さ、上面に噴射する空気
の鋼板長さ方向のノズル数とその噴射位置をを決定し
た。なお、この時仕上げ圧延時の板端部の温度降下量
は、2次元の鋼板内部の伝熱計算によって推定し、決定
することができる。
Therefore, the masking length and depth of the lower surface, the number of nozzles of the air to be injected on the upper surface in the length direction of the steel plate, and the injection position thereof are determined so that such cooling adjustment is possible. At this time, the amount of temperature drop at the end of the plate during the finish rolling can be estimated and determined by a two-dimensional heat transfer calculation inside the steel plate.

【0027】シャワー冷却装置2で温度調整を行った後
の段階の温度分布を図2(2)に示す。この冷却におけ
る板端部の冷却調整幅は、加熱炉から仕上圧延終了まで
に生じた板端部付近の温度の降下部分に相当するので、
板端部からおおよそ最大でスラブ厚みの1.5倍、通常は
スラブ厚み程度の幅であって、本実施例でも多くても25
0mm程度である。実際には圧延条件(パス数や幅出し圧
延(スラブを90度回転させて圧延する)回数))によっ
て異なる。
FIG. 2B shows a temperature distribution in a stage after the temperature is adjusted by the shower cooling device 2. Since the cooling adjustment width of the plate edge in this cooling is equivalent to the temperature drop near the plate edge generated from the heating furnace to the end of finish rolling,
Approximately 1.5 times the slab thickness at the maximum from the plate edge, usually about the width of the slab thickness, even in this embodiment at most 25
It is about 0 mm. Actually, it differs depending on the rolling conditions (the number of passes and the number of tentative rolling (the number of times the slab is rotated by 90 degrees and rolled)).

【0028】本実施例ではスラブから圧延し、この板厚
(65mm)になるまでのパス数が比較的少なかったため、
実質温度調整幅は板端部から150mmであった。なお、こ
の冷却では鋼板各部が過冷却によって変態を起こさない
ように、すなわち仕上げ圧延における温度がAr3変態点
以下にならないようにその冷却条件を決定している。
In this embodiment, since the number of passes from the slab to the plate thickness (65 mm) is relatively small,
The actual temperature adjustment width was 150 mm from the edge of the plate. In this cooling, cooling conditions are determined so that each part of the steel sheet does not undergo transformation due to overcooling, that is, so that the temperature in finish rolling does not become lower than the Ar 3 transformation point.

【0029】引き続きこの鋼板を仕上圧延機3で25mmま
で圧延した。仕上げ圧延機3出側の温度分布を表面温度
計8で計測したところ図2(3)に示すように、板内の
温度偏差は10℃程度であった。
Subsequently, this steel sheet was rolled by a finishing mill 3 to 25 mm. When the temperature distribution on the exit side of the finishing mill 3 was measured by the surface thermometer 8, the temperature deviation in the plate was about 10 ° C. as shown in FIG.

【0030】この鋼板を直ちに第1の熱間矯正機4に搬
送してレベリングを施した。この第1の熱間矯正機4は
ロール径450mmの5本のロールで構成される矯正機で、
最終3本のロールにおいて上ロールの押し込み量を調整
することで板幅方向のC反り量を意図的に発生させてい
る。なお、この板幅方向のC反り量は押し込み量によっ
て変化し、押し込み量によっては下に凸や上に凸のC反
りが発生するが、ここでは矯正後の鋼板の急峻度が0.5
%以下となるように設定し、その押し込み量でレベリン
グを行った。
The steel sheet was immediately conveyed to the first hot straightening machine 4 and subjected to leveling. This first hot straightening machine 4 is a straightening machine composed of five rolls having a roll diameter of 450 mm.
In the last three rolls, the amount of C warpage in the plate width direction is intentionally generated by adjusting the pushing amount of the upper roll. Note that the amount of C warpage in the sheet width direction changes depending on the amount of indentation, and depending on the amount of indentation, a downwardly convex or upwardly convex C-warp is generated.
%, And leveling was performed with the amount of depression.

【0031】第1の熱間矯正機4でレベリングされた鋼
板は加速冷却装置5に送られて冷却される。この加速冷
却装置の概要図を図3に示す。以下の図において前出の
図に示されたものと同じ要素には同じ符号を付してその
説明を省略する。図3において、12は上ロール、13
は下ロール、14はスリットノズル、15は円管ノズル
である。
The steel sheet leveled by the first hot straightening machine 4 is sent to an acceleration cooling device 5 where it is cooled. FIG. 3 shows a schematic diagram of this accelerated cooling device. In the following figures, the same elements as those shown in the preceding figures are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 3, 12 is an upper roll, 13
Is a lower roll, 14 is a slit nozzle, and 15 is a circular nozzle.

【0032】この加速冷却装置5は、圧延直後の厚鋼板
を20組の上ロール12、下ロール13間に挟んで搬送
しながらオンラインで冷却するものであって(図には1
0組を示す)、各ロール間のピッチは1000mmである。こ
の20組の拘束ロールにおいて、下ロール13は搬送ロ
ールをかねており、固定式であるが、上ロール12は直
径0.25mで、上下に昇降が可能であり、その隙間は0.5
mmピッチで制御可能である。さらにこの上ロール12
は、鋼板が通過した際にそのセットされたギャップ以上
の厚みの鋼板が通過するときは、上ロール両端部から油
圧シリンダーを介して鋼板に拘束力がかかる構造となっ
ている。
The accelerated cooling device 5 cools the steel plate immediately after rolling online while transporting the steel plate between 20 pairs of upper rolls 12 and lower rolls 13 (see FIG. 1).
0 sets), and the pitch between the rolls is 1000 mm. In these 20 sets of restraining rolls, the lower roll 13 also serves as a transport roll and is of a fixed type, but the upper roll 12 has a diameter of 0.25 m and can be moved up and down with a gap of 0.5.
It can be controlled at mm pitch. Further roll 12 on this
When a steel sheet having a thickness greater than the set gap passes when the steel sheet passes, a restraining force is applied to the steel sheet via hydraulic cylinders from both ends of the upper roll.

【0033】各上ロール12間の上面側では、板搬送方
向の上流側の上ロール12から下流側の上ロール12に
向かって、スリットノズル14から、板の進行方向に板
幅方向1m当たり2m3/minの水を板に沿って流してい
る。一方下面側においては、100mmピッチで設けられ、
水中に没した円管ノズル15から水を噴射し、その随伴
流で生じた液流で冷却を施している。ここでは幅方向に
一様な冷却を行った。
On the upper surface side between the upper rolls 12, from the upper roll 12 on the upstream side in the sheet transport direction to the upper roll 12 on the downstream side, the slit nozzle 14 sends 2 m per 1 m in the sheet width direction in the sheet traveling direction. 3 / min of water is flowing along the plate. On the other hand, on the lower surface side, it is provided at a pitch of 100 mm,
Water is jetted from a circular tube nozzle 15 submerged in water, and cooling is performed by a liquid flow generated by the accompanying flow. Here, uniform cooling was performed in the width direction.

【0034】この時鋼板の温度分布を表面温度計9、1
0で計測したところ、冷却開始時には板中央部で785
℃、板端部で775℃であり、冷却終了時には板中央部で5
00℃、板端部で485℃であって、冷却速度はほぼ30℃/s
で板全体でほぼ一様であった。
At this time, the temperature distribution of the steel sheet was
When measured at 0, at the start of cooling, 785
° C, 775 ° C at the edge of the plate, 5% at the center of the plate at the end of cooling
00 ° C, 485 ° C at plate edge, cooling rate is almost 30 ° C / s
Was almost uniform throughout the plate.

【0035】冷却装置で冷却された鋼板は、続いて第2
の熱間矯正機6へ送られ、冷却中に生じた反りを矯正さ
れた。第2の熱間矯正機6はロールが9本の熱間矯正機
である。矯正後には鋼板に大きな反りや変形はなく、ま
た矯正後の温度分布を表面温度計15で計測したとこ
ろ、板内の温度偏差は10℃以内であった。
The steel plate cooled by the cooling device is then
Was sent to the hot straightening machine 6 to correct the warpage generated during cooling. The second hot straightening machine 6 is a hot straightening machine having nine rolls. After the straightening, the steel sheet did not have any significant warpage or deformation, and the temperature distribution after the straightening was measured by the surface thermometer 15, and the temperature deviation in the sheet was within 10 ° C.

【0036】さらに、この鋼板を冷却床7に搬送して自
然放冷した。冷却床7で冷却後も特に大きな変形はなか
ったので、特別な精整作業をすることなく製品が得られ
た。また、冷却後に得られた鋼板の材質を調査した結
果、幅方向に硬度や強度のバラツキが少なく、特に大き
な硬度分布差はなかった。強度のバラツキは降伏応力で
5MPa以下であり、極めて均質な鋼板が得られた。
Further, the steel sheet was conveyed to the cooling floor 7 and allowed to cool naturally. Since there was no particularly large deformation after cooling in the cooling floor 7, the product was obtained without any special refining work. Further, as a result of examining the material of the steel sheet obtained after cooling, there was little variation in hardness and strength in the width direction, and there was no particularly large difference in hardness distribution. The variation in strength was 5 MPa or less in yield stress, and an extremely homogeneous steel plate was obtained.

【0037】その後、幅方向に幅500mmで8条にガス切
断によって条切りを行った。条切り後に条切り材のキャ
ンバー量を計測したところ、10mあたり5mm以下であっ
て、ほとんど条切り変形することはなかった。よって、
応力除去焼鈍などの残留応力を除去する工程は不要であ
った。
Thereafter, gas cutting was performed in eight pieces with a width of 500 mm in the width direction. When the camber amount of the strip material was measured after the stripping, it was 5 mm or less per 10 m, and the stripping hardly deformed. Therefore,
A step of removing residual stress such as stress relief annealing was unnecessary.

【0038】なお、本実施例では粗圧延機における粗圧
延と仕上圧延機における仕上圧延との間での温度調整時
に板端部の温度補償を行っているが、単独の圧延機で粗
圧延、仕上圧延を行う場合にはその中間で温度調整をお
こなえば、本発明の効果が得られる。また、粗圧延、仕
上げ圧延が複数に分かれていてその途中で複数回温度調
整が行われる場合には、加速冷却前に、板幅方向の温度
分布がフラットとなるべく幅方向の温度調整を複数回に
分けて調整すればよい。
In this embodiment, the temperature compensation of the plate end is performed at the time of adjusting the temperature between the rough rolling in the rough rolling mill and the finish rolling in the finishing rolling mill. In the case of performing finish rolling, the effect of the present invention can be obtained by adjusting the temperature in the middle. Further, when the rough rolling and the finish rolling are divided into a plurality and the temperature adjustment is performed a plurality of times in the middle, the temperature adjustment in the width direction is performed a plurality of times before the accelerated cooling so that the temperature distribution in the sheet width direction becomes flat. The adjustment may be made separately.

【0039】本実施例では温度調整のための冷却装置は
圧延機と離れた冷却装置において行っているが、同様の
温度調整は圧延機に付属の冷却装置においてもある程度
は温度調整可能である。しかしながら、制御圧延の条件
を実現するため、例えば、ある温度以下において圧下率
を稼ぐような圧延を行う場合には、圧延機とは独立した
冷却装置によって行うのが温度の制御性が良く、望まし
い。
In this embodiment, the cooling device for adjusting the temperature is performed in a cooling device separate from the rolling mill. However, the same temperature adjustment can be performed to some extent by a cooling device attached to the rolling mill. However, in order to realize the conditions of the controlled rolling, for example, when performing rolling such that the rolling reduction is obtained at a certain temperature or less, it is preferable to perform the temperature control with a cooling device independent of the rolling mill, because the temperature controllability is good. .

【0040】(実施例2)次に本発明の第2の実施例を
説明する。この実施例は、熱間圧延によって厚み250m
m、幅1400mm、長さ3000mmのスラブを幅3000mm、厚み18m
m製品長さ約20mの厚鋼板を制御圧延によって製造した
ものであるが、用いた設備は実施例1に用いたものと同
じであり、図1、図3に示すようなものである。ただ
し、本実施例においては、第1の熱間矯正機4は使用し
ていない。
(Embodiment 2) Next, a second embodiment of the present invention will be described. In this example, the thickness is 250 m by hot rolling.
m, width 1400mm, length 3000mm slab width 3000mm, thickness 18m
A thick steel plate having a product length of about 20 m was manufactured by controlled rolling, and the equipment used was the same as that used in Example 1, as shown in FIGS. 1 and 3. However, in this embodiment, the first hot straightening machine 4 is not used.

【0041】この鋼板製造設備において、加熱炉で約12
50℃に加熱したスラブをデスケーリング後、粗圧延機1
で幅3000mm、厚み50mmまで圧延した。この時、粗圧延の
パス数は16パスで、粗圧延終了時の鋼板の表面温度を
放射温度計8で測定した結果、図4(1)に示すよう
に、板端部の温度が約930℃、板中央部付近の温度が約1
025℃であった。すなわち、この段階で板端部の温度は
板中央部に比べて約95℃低くなっており、その温度が降
下した部分は板端部から約140mmの範囲に及んでいた。
In this steel plate manufacturing facility, about 12
After descaling the slab heated to 50 ° C, the rough rolling mill 1
At a width of 3000 mm and a thickness of 50 mm. At this time, the number of passes of the rough rolling was 16 passes, and the surface temperature of the steel sheet at the end of the rough rolling was measured by the radiation thermometer 8, and as shown in FIG. ℃, the temperature near the center of the plate is about 1
025 ° C. That is, at this stage, the temperature of the plate edge was lower by about 95 ° C. than that of the center of the plate, and the portion where the temperature dropped reached a range of about 140 mm from the plate edge.

【0042】シャワー冷却装置2においては、板端部の
冷却能力を制御するために、下面では、板端部から110m
mまでマスキング板をノズルと鋼板の間に挿入した。ま
た上面では、板端部に冷却水がかからないように板端部
にラインのサイドから空気を板端部110mmの範囲に噴射
して、鋼板上面の板端部付近に噴射および落下した冷却
水が板端部に接触しないようにした。
In the shower cooling device 2, in order to control the cooling capacity of the plate edge, the lower surface is 110 m from the plate edge.
A masking plate was inserted between the nozzle and the steel plate up to m. On the upper surface, air is sprayed from the side of the line to the plate edge in a range of 110 mm from the side of the line so that the cooling water does not splash on the plate edge. The edge of the plate was not touched.

【0043】板端部の温度調整量は加熱炉抽出から粗圧
延終了時までに板端部が板中央部に比べて95℃過冷さ
れ、さらに、今後仕上圧延において板端部から40mm前後
が15℃程度過冷されると推定された。よって、合計で板
端部は約110℃冷却調整する必要があった。そこで、こ
れに基づいて、下面のマスキング長さと深さ、上面に噴
射する空気のノズル数とその噴射位置を決定した。シャ
ワー冷却装置2で温度調整を行った後の段階の温度分布
を図4(2)に示す。
The temperature adjustment amount at the end of the plate was set such that the end of the plate was supercooled by 95 ° C. compared to the center of the plate from the extraction of the heating furnace to the end of the rough rolling. It was presumed to be overcooled by about 15 ° C. Therefore, it was necessary to adjust the cooling of the plate edge by about 110 ° C. in total. Therefore, based on this, the masking length and depth of the lower surface, the number of nozzles of air to be injected on the upper surface, and the injection position thereof were determined. FIG. 4B shows a temperature distribution in a stage after the temperature adjustment is performed by the shower cooling device 2.

【0044】引き続きこの鋼板を仕上圧延機3で18mmま
で圧延した。仕上圧延機3出側の温度分布は図4(3)
に示すように、板内全体で10℃程度に収まっていた。
Subsequently, this steel sheet was rolled to 18 mm by a finishing mill 3. The temperature distribution on the exit side of the finishing mill 3 is shown in FIG.
As shown in the figure, the temperature was kept at about 10 ° C. in the whole plate.

【0045】この鋼板は加速冷却装置5に送られて冷却
された。このとき、鋼板の冷却開始温度を表面温度計1
3で計測したところ板中央部で785℃、板端部で775℃で
あり、また冷却終了温度を表面温度計10で計測したと
ころ板中央部で500℃、板端部で485℃であって、冷却速
度はほぼ30℃/sで板内部にほぼ一様であった。
This steel sheet was sent to the accelerating cooling device 5 and cooled. At this time, the cooling start temperature of the steel
When measured at 3, it was 785 ° C at the center of the plate and 775 ° C at the end of the plate, and when the cooling end temperature was measured by the surface thermometer 10, it was 500 ° C at the center of the plate and 485 ° C at the end of the plate. The cooling rate was almost uniform at 30 ° C./s inside the plate.

【0046】加速冷却装置5で冷却された鋼板は続いて
第2の熱間矯正機6へ送られ、冷却中に生じた反りを矯
正された。矯正後には鋼板に大きな反りや変形はなく、
また、表面温度計11で計測したところ、矯正後板内の
温度偏差は10℃以内であった。
The steel sheet cooled by the accelerated cooling device 5 was subsequently sent to a second hot straightening machine 6, where the warpage generated during cooling was corrected. After straightening, there is no significant warpage or deformation of the steel sheet,
Further, as measured by the surface thermometer 11, the temperature deviation in the plate after the correction was within 10 ° C.

【0047】さらにこの鋼板を冷却床7に搬送して自然
放冷した。冷却床7で冷却後も特に大きな変形はなく、
従って特別な精整作業をすることなく製品が得られた。
また、冷却後に得られた鋼板の材質を調査した結果、幅
方向に硬度や強度のバラツキが少なく、特に大きな硬度
分布差はなかった。強度のバラツキは降伏応力で5MPa
以下ときわめて均質な鋼板が得られた。
Further, the steel sheet was conveyed to the cooling floor 7 and allowed to cool naturally. Even after cooling with the cooling floor 7, there is no particularly large deformation,
Therefore, the product was obtained without any special refining work.
Further, as a result of examining the material of the steel sheet obtained after cooling, there was little variation in hardness and strength in the width direction, and there was no particularly large difference in hardness distribution. The variation in strength is 5MPa in yield stress
A very homogeneous steel plate with the following was obtained.

【0048】その後、幅方向に幅500mmで8条にガス切
断によって条切りを行った。条切り後に条切り材のキャ
ンバー量を計測したところ、10mあたり5mm以下であ
り、ほとんど条切り変形することはなかった。よって、
応力除去焼鈍などの残留応力を除去する工程は不要であ
った。
Thereafter, the strip was cut by gas cutting into eight strips with a width of 500 mm in the width direction. When the camber amount of the strip material was measured after the stripping, it was 5 mm or less per 10 m, and the stripping was hardly deformed. Therefore,
A step of removing residual stress such as stress relief annealing was unnecessary.

【0049】(比較例)比較例として、4種類の変わっ
た操業条件で、実施例1と同じサイズの鋼板を製造し
た。すなわち、厚み250mm、幅1600mm、長さ3500mmのス
ラブから幅4000mm、厚み25mm、製品長さ約14mの厚鋼板
を製造した。いずれの比較例においても、シャワー冷却
装置2で幅方向の温度調整をせず、一様冷却(冷却水量
を幅方向で一定とする)を行っている。
Comparative Example As a comparative example, a steel sheet having the same size as that of Example 1 was manufactured under four kinds of unusual operating conditions. That is, a thick steel plate having a width of 4000 mm, a thickness of 25 mm and a product length of about 14 m was manufactured from a slab having a thickness of 250 mm, a width of 1600 mm and a length of 3500 mm. In each of the comparative examples, the cooling in the width direction is not performed by the shower cooling device 2 and uniform cooling (cooling water amount is constant in the width direction) is performed.

【0050】(比較例1)シャワー冷却装置2では、幅
方向に一様な冷却を行い、加速冷却装置5による加速冷
却前に幅方向の温度分布をフラットにするために冷却を
行う方法である。すなわち、粗圧延→シャワー冷却(幅
方向一様冷却)→仕上圧延→板端部調整冷却→加速冷却
(幅方向一様冷却)→第2の熱間矯正機による矯正→冷
却床での冷却、の工程により鋼板を製造した。
(Comparative Example 1) The shower cooling device 2 is a method in which uniform cooling is performed in the width direction and cooling is performed in order to flatten the temperature distribution in the width direction before accelerated cooling by the accelerated cooling device 5. . That is, rough rolling → shower cooling (widthwise uniform cooling) → finishing rolling → plate edge adjustment cooling → accelerated cooling (widthwise uniform cooling) → straightening by the second hot straightening machine → cooling on the cooling floor, The steel plate was manufactured by the process described above.

【0051】この方法では、圧延後の高温鋼板に対し
て、幅方向の温度分布をフラットにするために冷却を行
った結果、冷却後に板端部が板中央部に比べて30mm上に
反った、いわれるC反りといわれる下に凸の冷却歪みが
発生した。
In this method, the hot steel sheet after rolling was cooled in order to flatten the temperature distribution in the width direction. As a result, the edge of the sheet was warped 30 mm higher than the center of the sheet after cooling. In this case, a convex cooling distortion occurred under the so-called C warpage.

【0052】この段階では幅方向の温度分布はほぼフラ
ットで温度偏差は±10℃であったが、仕上圧延段階では
幅方向に温度分布がついた状態(板端部が板中央部に比
べて50℃程度温度が低い)でフラットな形状に仕上げた
ためにその段階から蓄積された歪みが顕在化したと考え
られる。
At this stage, the temperature distribution in the width direction was almost flat and the temperature deviation was ± 10 ° C., but in the finish rolling stage, the temperature distribution was provided in the width direction (the plate edge portion was compared to the plate center portion compared to the center portion). It is considered that the strain accumulated from that stage became apparent due to the flat shape finished at a temperature of about 50 ° C is low).

【0053】加速冷却装置5では幅方向一様冷却を狙っ
たが、この歪みが加速冷却装置5における冷却において
幅方向の冷却水流れを不均一にし、加速冷却装置5を抜
けた段階でいた中央部付近に冷却水が局所的に滞留して
不均一な冷却を引き起こした。加速冷却終了後の鋼板の
幅方向の温度差は約70℃となっていた。
The acceleration cooling device 5 aimed at uniform cooling in the width direction, but this distortion caused the cooling water flow in the width direction to be non-uniform in the cooling in the acceleration cooling device 5, and the center at the stage when the cooling water passed through the acceleration cooling device 5. Cooling water stayed locally near the part, causing uneven cooling. The temperature difference in the width direction of the steel sheet after the completion of the accelerated cooling was about 70 ° C.

【0054】その後熱間矯正機でこの反りを矯正した
が、放冷後、条切り材のキャンバー量は、10mあたり90
mmと大きく変形した。したがってこの材料は応力除去焼
鈍などの残留歪みを除去する工程でもそのキャンバーを
なくすことが不可能であった。また板内の引っ張り強度
のバラツキは、板の加速冷却停止温度がばらついたため
に40MPaであった。
After that, the warpage was corrected by a hot straightening machine. After cooling, the camber amount of the strip was 90% per 10 m.
It was greatly deformed to mm. Therefore, this material cannot eliminate the camber even in a process of removing residual strain such as stress relief annealing. The variation in the tensile strength in the plate was 40 MPa because of the variation in the temperature at which the plate was accelerated to stop cooling.

【0055】(比較例2)シャワー冷却装置2では、幅
方向に一様な冷却を行い、加速冷却装置5内にレベリン
グロールを設けて、加速冷却しながら矯正を施す方法で
ある。すなわち、粗圧延→シャワー冷却(幅方向一様冷
却)→仕上圧延→加速冷却中の矯正(幅方向一様冷却)
→第2の熱間矯正機による矯正→冷却床での冷却、の工
程により鋼板を製造した。
(Comparative Example 2) The shower cooling device 2 is a method in which uniform cooling is performed in the width direction, a leveling roll is provided in the acceleration cooling device 5, and correction is performed while accelerating cooling. In other words, rough rolling → shower cooling (widthwise uniform cooling) → finishing rolling → straightening during accelerated cooling (widthwise uniform cooling)
A steel sheet was manufactured through the steps of: → straightening by a second hot straightening machine → cooling on a cooling floor.

【0056】この方法では、加速冷却終了時には板はフ
ラットであったが、その後、加速冷却装置5を出てしば
らくたってから、鋼板表面温度が復熱するのに対応して
板の端部が中央部に比べて50mm高くなる下に凸の大きな
C反りが発生した。
In this method, the plate was flat at the end of the accelerated cooling, but after leaving the accelerated cooling device 5 for a while, the end of the plate was moved to the center in response to the steel plate surface temperature recovering. A large C-warp, which is 50 mm higher than the part and convex downward, occurred.

【0057】その後熱間矯正機でこの反りを矯正した
が、放冷後、条切り材のキャンバー量は、10m当たり80
mmと大きく変形した。したがって、この材料は応力除去
焼鈍などの残留歪みを除去する工程でもそのキャンバー
をなくすことが不可能であった。また板内の引っ張り強
度のバラツキは、10MPaであった。
After that, the warpage was corrected by a hot straightening machine. After cooling, the camber amount of the strip was 80% per 10 m.
It was greatly deformed to mm. Therefore, this material could not eliminate the camber even in the step of removing residual strain such as stress relief annealing. The variation in the tensile strength in the plate was 10 MPa.

【0058】(比較例3)シャワー冷却装置2で幅方向
に一様な冷却を行っている点のみが、実施例1と異なっ
ている方法である。すなわち、粗圧延→シャワー冷却
(幅方向一様冷却)→仕上圧延→第1の熱間矯正機によ
る矯正→板端部調整冷却→加速冷却(幅方向一様冷却)
→第2の熱間矯正機による矯正→冷却床での冷却の工程
により鋼板を製造する。
(Comparative Example 3) A method different from Example 1 only in that uniform cooling in the width direction is performed by the shower cooling device 2. In other words, rough rolling → shower cooling (uniform cooling in the width direction) → finishing rolling → straightening by the first hot straightening machine → plate edge adjustment cooling → accelerated cooling (uniform cooling in the width direction)
→ Steel plate is manufactured by a process of straightening by a second hot straightening machine → cooling in a cooling floor.

【0059】この方法では、加速冷却前および終了後の
鋼板の幅方向の温度差は約80℃となっていた。その熱間
矯正機で矯正し、フラットな板に矯正したが、冷却床で
冷却中に上に凸のC反りが発生し、その後条切りを行っ
てその条切り材のキャンバー量を調べたところ、10mあ
たり65mmと大きく変形した。したがって、この材料は応
力除去焼鈍などの残留歪みを除去する工程を必要とし
た。また板内の引っ張り強度のバラツキは30MPaであっ
た。これは加速冷却の開始時において、板内の温度のば
らつきが大きく、70℃程度あったためと考えられる。
In this method, the temperature difference in the width direction of the steel sheet before and after the accelerated cooling was about 80 ° C. The sheet was straightened by the hot straightening machine and straightened into a flat plate, but a convex C warpage occurred during cooling on the cooling floor. After that, stripping was performed and the camber amount of the stripped material was examined. It was greatly deformed to 65mm per 10m. Therefore, this material required a step of removing residual strain such as stress relief annealing. The variation in the tensile strength in the plate was 30 MPa. This is presumably because at the start of the accelerated cooling, the temperature in the plate varied greatly, and was about 70 ° C.

【0060】(比較例4)実施例と同じ設備構成におい
て同じ製造工程とし、ただし、シャワー冷却装置2では
幅方向に均一に冷却を行い、仕上げ圧延後は、加速冷却
装置5内で、板端部への冷却水の供給を、上面について
はノズル出口に遮蔽体を挿入することで、下面について
は、マスキング板を挿入することで板端部の冷却能力を
調整する方法である。すなわち、板端部の温度低下を加
速冷却装置内で補償しようとする方法であり、粗圧延→
シャワー冷却(幅方向一様冷却)→仕上圧延→第1の熱
間矯正機による矯正→加速冷却(板端部冷却制御)→第
2の熱間矯正機による矯正→冷却床での冷却の工程によ
り鋼板を製造した。
(Comparative Example 4) The same manufacturing process was performed in the same equipment configuration as in the example, except that the shower cooling device 2 uniformly cooled in the width direction. In this method, the cooling capacity of the cooling water at the plate edge is adjusted by inserting a shielding body at the nozzle outlet for the upper surface and inserting a masking plate for the lower surface. That is, it is a method of compensating for the temperature drop at the end of the plate in the accelerated cooling device.
Shower cooling (uniform cooling in the width direction) → finishing rolling → straightening by the first hot straightening machine → accelerated cooling (plate edge cooling control) → straightening by the second hot straightening machine → cooling process on the cooling floor Produced a steel sheet.

【0061】この方法では、加速冷却前の鋼板の幅方向
の温度差は約75℃となっていが、加速冷却後の板幅方向
の温度分布は実施例とほぼ同じでその差は約15℃であっ
た。その結果条切り材のキャンバー量は、10mあたり10
mmであった。
In this method, the temperature difference in the width direction of the steel sheet before the accelerated cooling is about 75 ° C., but the temperature distribution in the sheet width direction after the accelerated cooling is almost the same as that of the embodiment, and the difference is about 15 ° C. Met. As a result, the camber amount of strips is 10 per 10m.
mm.

【0062】冷却後に得られた鋼板の材質を調査した結
果、幅方向に硬度や強度のバラツキが大きく、特に板端
部は強度、硬度のバラツキがあった。板全体で強度YS
の差は50MPaと大きくばらついた。これは、加速冷却装
置入り側での板端部の温度が板中央部に比べて低いた
め、板端部においては加速冷却の冷却開始温度が低す
ぎ、かつ板端部の冷却が弱く所要の冷却速度が得られな
かったためと考えられる。
As a result of examining the material of the steel sheet obtained after cooling, there was a large variation in hardness and strength in the width direction, and in particular, there was a variation in strength and hardness at the plate edge. Strength YS for the entire board
The difference greatly varied to 50 MPa. This is because the temperature at the edge of the plate on the entrance side of the accelerated cooling device is lower than that at the center of the plate. This is probably because the cooling rate could not be obtained.

【0063】各実施例と比較例の結果を表1に示す。Table 1 shows the results of the examples and the comparative examples.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【発明の効果】以上の説明から明らかなように、本発明
によれば次のような効果を得ることができる。 (1)本発明によって鋼板全体の強度のバラツキが少な
く、条切り歪みの少ない鋼板を製造することが可能であ
る。 (2)板端部の過冷却や冷却不足による端部の規格外れ
がなくなり製品の歩留まりが向上する。 (4)板の変形が少なくなり、レベラーやプレスによる
精製工程が省略でき、製造コストを下げることができ
る。 (5)冷却後の板は、応力除去焼鈍などによる歪み除去
をしなくても条切りが可能となる。よって、再加熱のた
めのエネルギーが省かれ、プロセス省力化がを図ること
ができる。
As is clear from the above description, according to the present invention, the following effects can be obtained. (1) According to the present invention, it is possible to manufacture a steel sheet with less variation in strength of the entire steel sheet and less stripping distortion. (2) The end of the plate is not out of specification due to overcooling or insufficient cooling of the end of the plate, and the product yield is improved. (4) The deformation of the plate is reduced, the refining process by a leveler or a press can be omitted, and the manufacturing cost can be reduced. (5) The plate after cooling can be cut without performing strain removal by stress relief annealing or the like. Therefore, energy for reheating is omitted, and the process can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に使用する設備の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of equipment used in an embodiment of the present invention.

【図2】本発明の1実施例における鋼板内温度分布を示
す図である。
FIG. 2 is a diagram showing a temperature distribution in a steel sheet in one example of the present invention.

【図3】本発明の実施例で使用する加速冷却装置の概要
を示す図である。
FIG. 3 is a diagram showing an outline of an accelerated cooling device used in an embodiment of the present invention.

【図4】本発明の他の実施例における鋼板内温度分布を
示す図である。
FIG. 4 is a diagram showing a temperature distribution in a steel sheet according to another embodiment of the present invention.

【図5】条切り時に発生する歪み(キャンバー)を模式
的に示した図である。
FIG. 5 is a diagram schematically showing distortion (camber) generated at the time of cutting.

【符号の説明】[Explanation of symbols]

1−粗圧延機 2−シャワー冷却装置 3−仕上げ圧延機 4−熱間矯正機 5−加速冷却装置 6−熱間矯正機 7−冷却床 8−粗圧延機後の表面温度計 9−冷却開始温度を計測する表面温度計 10−冷却終了温度を計測する表面温度計 11−矯正後の鋼板温度を計測する表面温度計 12−上ロール 13−下ロール 14−スリットノズル 15ー円管ノズル 1-Rough rolling mill 2-Shower cooling device 3-Finish rolling mill 4-Hot straightening machine 5-Accelerated cooling device 6-Hot straightening machine 7-Cooling floor 8-Surface thermometer after rough rolling mill 9-Cooling start Surface thermometer for measuring temperature 10-Surface thermometer for measuring cooling end temperature 11-Surface thermometer for measuring the temperature of steel sheet after straightening 12-Upper roll 13-Lower roll 14-Slit nozzle 15-Circular nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨田 省吾 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 藤掛 政久 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 杉山 峻一 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭63−63520(JP,A) 特開 昭60−36625(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 45/02 320 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shogo Tomita 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Masahisa Fujikake 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (72) Inventor Shunichi Sugiyama 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-63-63520 (JP, A) JP-A-60-36625 ( JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B21B 45/02 320

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱間圧延された高温鋼板を加速冷却して
鋼板を製造する鋼板の製造方法において、粗圧延機と仕
上圧延機の間に設けられた冷却装置により、加熱炉から
粗圧延終了までに生じた板端部付近の温度降下量、及び
仕上圧延時に生じると推定される板端部付近の温度の降
下量を補償するように、板幅方向に温度分布を持った冷
却を行い、仕上圧延後は、幅方向に均一な冷却条件で加
速冷却を行うことを特徴とする厚鋼板の製造方法。
1. A method for manufacturing a steel sheet by manufacturing a steel sheet by accelerating and cooling a hot-rolled high-temperature steel sheet, wherein a cooling device provided between a rough rolling mill and a finishing mill completes rough rolling from a heating furnace. Cooling with a temperature distribution in the sheet width direction is performed so as to compensate for the amount of temperature drop near the sheet edge that has occurred up to and the amount of temperature drop near the sheet end that is estimated to occur during finish rolling, A method for producing a thick steel plate, comprising: after finish rolling, performing accelerated cooling under uniform cooling conditions in the width direction.
JP08830598A 1998-03-18 1998-03-18 Thick steel plate manufacturing method Expired - Fee Related JP3171326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08830598A JP3171326B2 (en) 1998-03-18 1998-03-18 Thick steel plate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08830598A JP3171326B2 (en) 1998-03-18 1998-03-18 Thick steel plate manufacturing method

Publications (2)

Publication Number Publication Date
JPH11267737A JPH11267737A (en) 1999-10-05
JP3171326B2 true JP3171326B2 (en) 2001-05-28

Family

ID=13939230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08830598A Expired - Fee Related JP3171326B2 (en) 1998-03-18 1998-03-18 Thick steel plate manufacturing method

Country Status (1)

Country Link
JP (1) JP3171326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780503B1 (en) * 2003-06-13 2007-11-29 제이에프이 스틸 가부시키가이샤 Controllable cooling method for thick steel plate and cooling device for the thick steel plate
JP5532637B2 (en) * 2009-03-13 2014-06-25 Jfeスチール株式会社 Thick steel plate temperature guarantee system and thick steel plate manufacturing method

Also Published As

Publication number Publication date
JPH11267737A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3796133B2 (en) Thick steel plate cooling method and apparatus
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
KR20130027051A (en) Method and production line for producing a cold rolled flat steel product from a rustproof steel
JP2010247227A (en) Equipment and method for manufacturing thick steel plate
JP3171326B2 (en) Thick steel plate manufacturing method
JP3551129B2 (en) Manufacturing method and manufacturing equipment for hot rolled steel strip
JPH11267755A (en) Manufacture of thick steel plate and straightening device used in it
JP2000042621A (en) Cooling control method of hot rolled steel plate
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
JP4289480B2 (en) Straightening method to obtain steel plate with good shape with little variation in residual stress
JP5482365B2 (en) Steel sheet cooling method, manufacturing method and manufacturing equipment
CN104946872B (en) One kind prepares method of the steel plate thickness in 8 ~ 20mm low stress hot-rolling high-strength steel
JP2019010676A (en) Method of manufacturing hot rolled steel sheet
JP6702386B2 (en) Steel material manufacturing method and manufacturing equipment
JP2008264786A (en) Method of manufacturing steel plate
JP2003103304A (en) Method for manufacturing nickel bearing bar steel
JP6060927B2 (en) Steel plate manufacturing method
JP2001009520A (en) Steel plate descaling method
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JP5760613B2 (en) Thick steel plate descaling equipment and descaling method
JP6518948B2 (en) Method and equipment for manufacturing steel plate
JP7173377B2 (en) Steel plate manufacturing equipment and manufacturing method
JP3235784B2 (en) Steel plate manufacturing line and steel plate manufacturing method
JP5764935B2 (en) Thick steel plate descaling equipment and descaling method
JP2005296978A (en) Method and equipment for manufacturing thick steel plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees