JP2000042621A - Cooling control method of hot rolled steel plate - Google Patents

Cooling control method of hot rolled steel plate

Info

Publication number
JP2000042621A
JP2000042621A JP10212321A JP21232198A JP2000042621A JP 2000042621 A JP2000042621 A JP 2000042621A JP 10212321 A JP10212321 A JP 10212321A JP 21232198 A JP21232198 A JP 21232198A JP 2000042621 A JP2000042621 A JP 2000042621A
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel sheet
stage cooling
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10212321A
Other languages
Japanese (ja)
Other versions
JP3656707B2 (en
Inventor
Hiroshi Kibe
洋 木部
Teruo Fujibayashi
晃夫 藤林
Satoshi Kamioka
悟史 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP21232198A priority Critical patent/JP3656707B2/en
Publication of JP2000042621A publication Critical patent/JP2000042621A/en
Application granted granted Critical
Publication of JP3656707B2 publication Critical patent/JP3656707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce temperature nonuniformity of a steel plate by dividing cooling control into forward stage cooling and backward stage cooling, executing forward stage cooling with overall film boiling cooling and successively executing backward stage cooling with overall nucleate boiling cooling up to a prescribed cooling stopping temperature. SOLUTION: A steel plate 1 of high temperature is transported to a forward stage cooking zone and a backward stage cooling zone with a table roller 2. The upper surface of the steel plate 1 is cooled with cooling water from slit nozzles 4 and the rear surface of the same is cooled with cooling water from spray nozzles 5 in the forward stage cooling zone and the backward stage cooling zone. Cooling water is drained by draining roll 6. Water quantity density of cooling water in forward stage cooling is specified to 100-300 l/min.m3 and a surface temperature of the steel plate 1 when forward stage cooling is finished is specified to 550-600 deg.C. Water quantity density when backward stage cooling is started is specified to >=800 l/min.m3. The length of the forward stage cooling zone and the backward stage cooling zone is suitably changed based on a plate thickness, a cooling speed and a cooling stopping temperature or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱間圧延された
高温鋼板特に厚鋼板の制御冷却方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling and cooling a hot-rolled high-temperature steel sheet, particularly a thick steel sheet.

【0002】[0002]

【従来の技術】近年、厚鋼板の製造プロセスとして、圧
延直後の高温鋼板をオンラインで制御冷却するオンライ
ン制御冷却法の適用が拡大している。このような、オン
ライン制御冷却法によれば、鋼板に対し高強度、高靱性
を付与することができるほか、鋼中に含有されている合
金元素の低減を図ることができ、且つ、省熱処理が可能
になるなど、コストの削減効果が得られる。
2. Description of the Related Art In recent years, as a process for manufacturing a thick steel plate, the application of an online controlled cooling method for controlling and cooling a hot steel plate immediately after rolling online has been expanding. According to such an on-line controlled cooling method, high strength and high toughness can be imparted to a steel sheet, alloy elements contained in the steel can be reduced, and heat treatment can be reduced. For example, a cost reduction effect can be obtained.

【0003】しかしながら、一般に、熱間圧延された高
温の鋼板は、温度分布、板形状、表面性状等が必ずしも
均一ではないので、冷却中に鋼板に冷却むら即ち温度む
らが発生しやすく、その結果、冷却後の鋼板に、変形、
残留応力、材質不均一等が生ずる問題があり、製品の品
質不良や操業上のトラブルを招いていた。
However, in general, a hot-rolled high-temperature steel sheet is not necessarily uniform in temperature distribution, sheet shape, surface properties, and the like, so that uneven cooling, that is, temperature unevenness is easily generated in the steel sheet during cooling. Deformation on steel plate after cooling,
There is a problem that residual stress, material non-uniformity, and the like occur, resulting in poor product quality and operational trouble.

【0004】そこで、従来から、高温の鋼板を均一に冷
却して、温度むらの発生を抑制する手段が数多く提案さ
れており、例えば、次のような技術が開示されている。 (1)特開昭62−289316号公報:鋼板の冷却
を、前段冷却と後段冷却の2段階に分け、前段冷却で鋼
板の表面温度を100℃以上低下させるように急冷し、
次いで、後段冷却で鋼板を所定温度まで冷却することに
より、鋼板の板幅方向の温度差を減少させる(以下、先
行技術1という)。
In view of the above, conventionally, there have been proposed many means for uniformly cooling a high-temperature steel sheet to suppress the occurrence of temperature unevenness. For example, the following techniques have been disclosed. (1) Japanese Patent Application Laid-Open No. 62-289316: cooling of a steel sheet is divided into two stages of pre-stage cooling and post-stage cooling, and rapid cooling is performed so that the surface temperature of the steel plate is reduced by 100 ° C. or more by pre-stage cooling.
Next, by cooling the steel sheet to a predetermined temperature by post-stage cooling, the temperature difference in the width direction of the steel sheet is reduced (hereinafter referred to as Prior Art 1).

【0005】(2)特開平7−284836号公報:鋼
板の冷却を、前段冷却と後段冷却の2段階に分け、前段
冷却と後段冷却との間で一旦冷却を停止し、鋼板表面温
度が復熱して650〜750℃になるように前段冷却を
調整し、後段冷却において、所望の冷却水量で冷却を行
うことにより、鋼板温度の均一性を向上させる(以下、
先行技術2という)。
(2) JP-A-7-284836: Cooling of a steel sheet is divided into two stages of pre-stage cooling and post-stage cooling, and the cooling is temporarily stopped between the pre-stage cooling and the post-stage cooling to recover the steel plate surface temperature. The pre-stage cooling is adjusted so as to be heated to 650 to 750 ° C., and in the post-stage cooling, cooling is performed with a desired amount of cooling water to improve the uniformity of the steel sheet temperature (hereinafter, referred to as
Prior art 2).

【0006】図2は、先行技術2の方法を実施するため
の装置の概略側面図で、1次冷却ゾーンa、復熱ゾーン
b、2次冷却ゾーンcからなる冷却装置を使用し、テー
ブルローラ2によって移送される鋼板1に対し、1次冷
却ゾーンaにおいて冷却ノズル8から噴射される冷却水
により冷却した後、復熱ゾーンbにおいて復熱させ、復
熱後の鋼板の表面温度を750〜650℃となして鋼板
の変態を極力生じさせないようにし、次いで、2次冷却
ゾーンcにおいて、冷却ノズル9から噴射される冷却水
により冷却して膜沸騰持続時間を短縮し、速やかに核沸
騰に移行させている。10はエアノズルである。
FIG. 2 is a schematic side view of an apparatus for carrying out the method of the prior art 2, which uses a cooling device comprising a primary cooling zone a, a recuperating zone b, and a secondary cooling zone c, and uses a table roller. After the steel sheet 1 transferred by the cooling device 2 is cooled by the cooling water injected from the cooling nozzle 8 in the primary cooling zone a, the steel sheet 1 is reheated in the recuperation zone b. At 650 ° C., the transformation of the steel sheet is prevented from occurring as much as possible. Then, in the secondary cooling zone c, the steel sheet is cooled by cooling water injected from the cooling nozzle 9 to shorten the film boiling duration, and the nucleate boiling is promptly started. Has been migrated. 10 is an air nozzle.

【0007】(3)特開昭57−152430号公報:
鋼板の表面硬化を抑制するために、鋼板を前段で緩冷却
し、後段で強冷却する方法であって、前段冷却により鋼
板表面温度が450〜500℃に達するまで、0.3〜
0.7 m3/min.m2の水量密度で冷却し、それ以下の温度
域では、鋼板中心温度が500〜450℃以下になるま
で、1.0 m3/min.m2の水量密度で冷却する(以下、先
行技術3という)。
(3) JP-A-57-152430:
In order to suppress the surface hardening of the steel sheet, it is a method of slowly cooling the steel sheet in the first stage and strongly cooling it in the second stage.
Cool at a water mass density of 0.7 m 3 /min.m 2 , and in a temperature range below that, the water mass density of 1.0 m 3 /min.m 2 is maintained until the steel plate center temperature becomes 500 to 450 ° C or less. (Hereinafter referred to as prior art 3).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、先行技
術1の方法においては、前段冷却で鋼板に冷却むらや変
形が発生すると、引き続き行われる後段冷却において、
前段冷却時の冷却むらや変形が積算される結果、鋼板内
の温度差が更に拡大する問題が生ずる。
However, in the method of the prior art 1, when uneven cooling or deformation occurs in the steel sheet in the pre-stage cooling, in the subsequent post-stage cooling,
As a result of the accumulation of the uneven cooling and deformation during the pre-stage cooling, there arises a problem that the temperature difference in the steel sheet further increases.

【0009】先行技術2の方法によれば、後段冷却時に
全面的に均一な核沸騰状態になるので、鋼板の温度分布
の均一性が向上する。しかしながら、核沸騰によって鋼
板表面が急冷されるために、冷却後における鋼板表面の
硬度が上昇し、鋼板の板厚方向に好ましくない硬度分布
が生ずる。特に、前段冷却において変態が進んでいない
ために、鋼板の表層部は、急冷によってオーステナイト
組織からベイナイトまたはマルテンサイト組織になるた
め、表面硬度の著しい上昇が避けられない。
According to the method of the prior art 2, since a uniform nucleate boiling state is obtained over the entire surface during the post-stage cooling, the uniformity of the temperature distribution of the steel sheet is improved. However, since the surface of the steel sheet is rapidly cooled by nucleate boiling, the hardness of the steel sheet surface after cooling increases, and an undesirable hardness distribution occurs in the thickness direction of the steel sheet. In particular, since the transformation has not progressed in the pre-stage cooling, the surface layer portion of the steel sheet changes from austenitic structure to bainite or martensite structure by rapid cooling, so that a remarkable increase in surface hardness cannot be avoided.

【0010】先行技術3の表面硬化を抑制する方法によ
れば、前段冷却が遷移沸騰域の冷却となるために、局所
的に核沸騰が発生し、膜沸騰の部分との間で温度むらの
発生することが避けられなかった。また、前段冷却で核
沸騰が発生した部分は、急激に鋼板温度が低下するため
に、鋼板表面全体の平均温度が所望の温度範囲に入った
としても、核沸騰が発生した部分の表面温度は平均温度
よりも低下し、その部分の鋼板表面が硬化することは避
けられなかった。
According to the method of suppressing surface hardening of the prior art 3, since the pre-cooling is the cooling of the transition boiling region, nucleate boiling is locally generated, and the temperature unevenness between the portion and the film boiling is caused. That was inevitable to happen. In addition, since the temperature of the steel sheet rapidly decreases in the portion where nucleate boiling occurs in the pre-stage cooling, even if the average temperature of the entire steel sheet surface falls within a desired temperature range, the surface temperature of the portion where nucleate boiling occurs is not reduced. It was inevitable that the temperature dropped below the average temperature and the steel sheet surface in that portion hardened.

【0011】従って、この発明の目的は、上述した問題
を解決し、熱間圧延鋼板の制御冷却方法において、熱間
圧延された高温鋼板の冷却中における温度むらの発生を
低減し、冷却後における平坦度が良好で、且つ、全面に
わたって板厚方向の硬度差が少ない鋼板が得られる冷却
方法を提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems, and to reduce the occurrence of temperature unevenness during cooling of a hot-rolled high-temperature steel sheet in a method for controlling and cooling a hot-rolled steel sheet, An object of the present invention is to provide a cooling method capable of obtaining a steel sheet having good flatness and a small difference in hardness in the thickness direction over the entire surface.

【0012】[0012]

【課題を解決するための手段】一般に、高温の鋼板を水
冷すると、図3に示すように、まず、鋼板表面と冷却水
との間に蒸気膜が存在する膜沸騰状態になる。鋼板の表
面温度が低下するに従って、膜沸騰から遷移沸騰へと移
行し、更に鋼板の表面温度が低下すると、鋼板のほぼ全
表面が冷却水と接触し局所的に蒸気泡が発泡した状態す
なわち核沸騰になり、鋼板は、このような膜沸騰、遷移
沸騰および核沸騰を通過して低温に到達する。
In general, when a high-temperature steel sheet is water-cooled, first, as shown in FIG. 3, a film boiling state occurs in which a vapor film exists between the steel sheet surface and the cooling water. As the surface temperature of the steel sheet decreases, the film transitions from film boiling to transition boiling, and when the surface temperature of the steel sheet further decreases, almost the entire surface of the steel sheet comes into contact with the cooling water, and a state in which steam bubbles are locally foamed, that is, nuclei. Boiling, the steel sheet reaches a low temperature through such film boiling, transition boiling and nucleate boiling.

【0013】鋼板の表面温度が遷移沸騰領域の場合に
は、冷却開始時に温度の高い部分は温度の低い部分に比
べて熱流束が小さいために冷却が遅れるのに対し、温度
の低い部分は、逆に熱流束が大になるために冷却が促進
される。その結果、冷却開始時における温度の高い部分
と温度の低い部分との温度差は拡大することになる。冷
却が遷移沸騰領域において行われる限り、局所的な温度
むらは積算されて拡大し、冷却後の鋼板に平坦度不良、
残留応力のほか、硬度分布や強度分布などのむら即ち材
質むらが発生する。
When the surface temperature of the steel sheet is in the transition boiling region, the cooling portion is delayed at the start of cooling due to the lower heat flux of the high temperature portion compared with the low temperature portion, whereas the low temperature portion is Conversely, the cooling is promoted because the heat flux is large. As a result, the temperature difference between the high-temperature portion and the low-temperature portion at the start of cooling increases. As long as cooling is performed in the transition boiling region, local temperature unevenness is accumulated and expanded, and the flatness of the steel sheet after cooling is poor,
In addition to the residual stress, unevenness such as hardness distribution and strength distribution, that is, unevenness of material occurs.

【0014】これに対し、膜沸騰領域または核沸騰領域
においては、冷却開始時に温度の高い部分は、温度が低
い部分に比べて熱流束が大きいために、冷却が促進され
るのに対し、温度が低い部分は、逆に熱流速が小さいた
めに冷却が遅れ、その結果、両者の温度差は縮小し、温
度むらは減少する。従って、全冷却過程を膜沸騰のみま
たは核沸騰のみによって行えば、温度むらのない均一な
冷却が可能になる。
On the other hand, in the film boiling region or the nucleate boiling region, a portion having a high temperature at the start of cooling has a higher heat flux than a portion having a low temperature, and thus cooling is promoted. On the other hand, in the portion where the temperature is low, the cooling is delayed due to the low heat flow rate. As a result, the temperature difference between the two is reduced, and the temperature unevenness is reduced. Therefore, if the entire cooling process is performed only by film boiling or only nucleate boiling, uniform cooling without temperature unevenness can be achieved.

【0015】しかしながら、膜沸騰冷却においては冷却
能が低いので、膜沸騰のみで所望の冷却停止温度まで冷
却しようとすると、材質制御のために必要な冷却速度が
得られない。
However, in the case of film boiling cooling, the cooling capacity is low. Therefore, if an attempt is made to cool to a desired cooling stop temperature only by film boiling, a cooling rate required for material control cannot be obtained.

【0016】一方、核沸騰冷却においては、冷却能力が
高すぎるので、核沸騰のみで所望の停止温度まで冷却し
ようとすると、冷却中に鋼板の表面温度が100℃まで
低下し、ベイナイトやマルテンサイトが生じるために、
表面硬化が避けられない。
On the other hand, in nucleate boiling cooling, since the cooling capacity is too high, if an attempt is made to cool to a desired stop temperature only by nucleate boiling, the surface temperature of the steel sheet drops to 100 ° C. during cooling, and bainite or martensite To occur,
Surface hardening is inevitable.

【0017】そこで、本発明者等は、表面硬化を抑制
し、且つ、温度むらおよび材質むらの発生しない鋼板の
冷却条件について子細に検討した結果、冷却を2段階に
分け、前段冷却では、全面膜沸騰冷却によって温度むら
の発生を抑えつつ冷却し、表層のフェライト変態を促
し、予めフェライト分率を高め、後段冷却では、全面核
沸騰冷却で均一に強冷却し、所定の冷却停止温度まで冷
却すれば、温度むらおよび材質むらが発生しないことを
知見した。
The inventors of the present invention have carefully studied the cooling conditions of a steel sheet that suppresses surface hardening and does not cause temperature and material unevenness. As a result, the cooling is divided into two stages. Cooling while suppressing the occurrence of temperature unevenness by surface film boiling cooling, promotes ferrite transformation of the surface layer, raises the ferrite fraction in advance, and in the latter stage cooling, uniformly cools the whole surface by nuclear boiling cooling and cools to the predetermined cooling stop temperature Then, it was found that temperature unevenness and material unevenness did not occur.

【0018】この発明は、上記知見に基づいてなされた
ものであって、請求項1に記載の発明は、熱間圧延され
た高温の鋼板をオンラインで制御冷却する方法におい
て、前記制御冷却を前段冷却と後段冷却との2段階に分
け、前記前段冷却を全面膜沸騰冷却で行い、引き続いて
行われる前記後段冷却を、所定の冷却停止温度まで、全
面核沸騰冷却で行うことに特徴を有するものである。
The present invention has been made on the basis of the above findings. According to a first aspect of the present invention, there is provided a method for on-line controlled cooling of a hot-rolled high-temperature steel sheet, wherein the controlled cooling is performed in a first stage. Divided into two stages of cooling and post-stage cooling, wherein the pre-stage cooling is performed by whole-surface film boiling cooling, and the subsequent post-stage cooling is performed by full-surface nucleate boiling cooling to a predetermined cooling stop temperature. It is.

【0019】請求項2に記載の発明は、前記前段冷却に
おける冷却水の水量密度を100〜300 l/min.m2
範囲内とし、前段冷却終了時の鋼板の表面温度を550
〜600℃の範囲内とし、そして、後段冷却開始時にお
ける冷却水の水量密度を800 l/min.m2 以上とするこ
とに特徴を有するものである。
According to a second aspect of the present invention, the water density of the cooling water in the pre-stage cooling is set in the range of 100 to 300 l / min.m 2 , and the surface temperature of the steel sheet at the end of the pre-stage cooling is 550.
To 600 ° C., and the water density of the cooling water at the start of the post-stage cooling is set to 800 l / min.m 2 or more.

【0020】[0020]

【発明の実施の形態】この発明においては、上述したよ
うに、前段冷却を全面膜沸騰冷却で行うことによって、
温度むらの発生を抑えつつ表層のフェライト変態を促進
させる。このような前段冷却の終了温度について子細に
検討を行った結果、鋼板表面温度で550℃以上、60
0℃以下が望ましいことが判明した。前段冷却の終了温
度が550℃未満では、鋼板表層でベイナイト変態が始
まり表層が硬化する恐れが生ずる。一方、前段冷却の終
了温度が600℃を超えると、表層部のフェライト変態
が不十分になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as described above, the pre-stage cooling is performed by the whole-surface film boiling cooling.
Promotes ferrite transformation of the surface layer while suppressing the occurrence of temperature unevenness. As a result of a detailed study of the end temperature of such pre-stage cooling, the steel plate surface temperature was 550 ° C.
It has been found that 0 ° C. or less is desirable. If the end temperature of the pre-stage cooling is lower than 550 ° C., bainite transformation starts in the surface layer of the steel sheet, and the surface layer may be hardened. On the other hand, when the end temperature of the pre-cooling exceeds 600 ° C., the ferrite transformation of the surface layer becomes insufficient.

【0021】また、前段冷却における冷却水の水量密度
について子細に検討を行った結果、前段冷却時における
水量密度は、100〜300 l/min.m2 の範囲内が望ま
しいことが判明した。前段冷却時における水量密度が1
00 l/min.m2 未満では冷却速度が低く、前段冷却時間
が長くなり、生産性が低下するおそれが生ずる。一方、
水量密度が300 l/min.m2 を超えると、全面膜沸騰を
維持することが困難になり、部分的に核沸騰が生じて、
温度むらや表面硬度むらの原因になる問題が生ずる。
Further, as a result of a detailed study of the water density of the cooling water in the pre-stage cooling, it was found that the water density in the pre-stage cooling was desirably in the range of 100 to 300 l / min.m 2 . Water density during pre-stage cooling is 1
If it is less than 00 l / min.m 2 , the cooling rate will be low, the cooling time in the first stage will be long, and the productivity may decrease. on the other hand,
If the water density exceeds 300 l / min.m 2 , it becomes difficult to maintain film boiling over the entire surface, and nucleate boiling occurs partially,
There is a problem that causes uneven temperature and uneven surface hardness.

【0022】後段冷却開始時における冷却水の水量密度
を子細に検討した結果、鋼板表面温度によって、鋼板全
面にわたり安定した核沸騰状態を維持するのに必要な水
量密度は大きく異なることがわかった。スリットノズル
で種々の温度の鋼板を冷却したときの鋼板表面温度と、
鋼板全面にわたり安定して核沸騰を維持するのに必要な
冷却水の水量密度との関係を調べた結果を図4に示す。
図4から、鋼板表面温度を600℃以下とし、後段冷却
開始時の水量密度を800 l/min.m2 以上とすることに
より、安定して核沸騰を維持し得ることがわかる。
A close examination of the water density of the cooling water at the start of the post-stage cooling revealed that the water density required to maintain a stable nucleate boiling state over the entire surface of the steel sheet varies greatly depending on the steel sheet surface temperature. Steel sheet surface temperature when cooling steel sheets of various temperatures with slit nozzle,
FIG. 4 shows the result of examining the relationship between the cooling water required to maintain nucleate boiling stably over the entire surface of the steel sheet and the water density.
FIG. 4 shows that the nucleate boiling can be stably maintained by setting the steel sheet surface temperature to 600 ° C. or less and the water density at the start of the post-stage cooling to 800 l / min.m 2 or more.

【0023】冷却方式は、前段冷却が全面膜沸騰状態に
なり、後段冷却が全面核沸騰状態になる方式であれば、
特に限定されるものではないが、冷却の均一性の点か
ら、スプレー冷却やスリットノズルによる冷却を行うこ
とが好ましい。
If the cooling system is a system in which the pre-stage cooling is in a state of film boiling and the post-stage cooling is in a state of nucleate boiling,
Although not particularly limited, it is preferable to perform spray cooling or cooling with a slit nozzle from the viewpoint of cooling uniformity.

【0024】[0024]

【実施例】次に、この発明を実施例により説明する。図
1は、この発明の方法を実施するための装置の一例を示
す概略側面図である。図1に示すように、熱間圧延され
た高温の鋼板1は、一定ピッチで設けられたテーブルロ
ーラ2によって制御冷却装置に移送される。制御冷却装
置には、テーブルローラ2の上方に、テーブルローラ2
と対をなす水切りロール6が複数設けられており、水切
りロール6の相互間の上面側には、上流側ロールから下
流側ロールに向けたスリットノズル4が設けられ、その
下面側には、スプレーノズル5が設けられている。3は
冷却水供給用ヘッダ、7は流量調整弁である。
Next, the present invention will be described with reference to embodiments. FIG. 1 is a schematic side view showing an example of an apparatus for performing the method of the present invention. As shown in FIG. 1, a hot-rolled hot steel sheet 1 is transferred to a control cooling device by a table roller 2 provided at a constant pitch. The control cooling device includes a table roller 2 above the table roller 2.
A plurality of draining rolls 6 are provided in pairs, and a slit nozzle 4 from the upstream roll to the downstream roll is provided on the upper surface side between the draining rolls 6, and a spray nozzle is provided on the lower surface side. A nozzle 5 is provided. Reference numeral 3 denotes a cooling water supply header, and reference numeral 7 denotes a flow control valve.

【0025】このような制御冷却装置の全長は例えば約
20mであって、前段冷却ゾーンと後段冷却ゾーンとが
組み合わされた、テーブルロール単位の20ゾーンから
なっている。前段冷却ゾーンと後段冷却ゾーンとの組み
合わせは、板厚、冷却速度、冷却停止温度等によって、
自由に選択し得るようになっている。
The total length of such a control cooling device is, for example, about 20 m, and is composed of 20 table roll units in which a front cooling zone and a rear cooling zone are combined. The combination of the former cooling zone and the latter cooling zone depends on the sheet thickness, cooling rate, cooling stop temperature, etc.
You can choose freely.

【0026】鋼板1は、テーブルローラ2によって、前
段冷却ゾーンおよび後段冷却ゾーンを搬送される間に、
鋼板上面側はスリットノズル方式によって冷却され、鋼
板下面側はスプレー方式によって冷却される。各ゾーン
における冷却水の水量密度は、流量調整弁7によって小
水量から大水量まで調整される。
While the steel sheet 1 is conveyed by the table roller 2 through the pre-stage cooling zone and the post-stage cooling zone,
The steel plate upper surface is cooled by a slit nozzle method, and the steel plate lower surface is cooled by a spray method. The water flow density of the cooling water in each zone is adjusted by the flow control valve 7 from a small water flow to a large water flow.

【0027】C:0.12wt.%、Si:0.3wt.%、M
n:1.3wt.%を含有する化学成分組成の鋼片を、加熱
炉において1150℃の温度に加熱した後、熱間圧延機
によって、板厚30mm、板幅3000mm、長さ1200
0mmの鋼板に熱間圧延した。
C: 0.12 wt.%, Si: 0.3 wt.%, M
n: A steel slab having a chemical composition containing 1.3 wt.% is heated in a heating furnace to a temperature of 1150 ° C., and is then subjected to hot rolling at a thickness of 30 mm, a width of 3000 mm and a length of 1200 mm.
It was hot rolled into a 0 mm steel plate.

【0028】熱間圧延された高温鋼板を、図1に示した
制御冷却装置にテーブルローラ2によって移送し、前段
冷却ゾーンにおいて冷却した後、引き続き後段冷却ゾー
ンにおいて目標冷却停止温度まで冷却した。冷却速度お
よび冷却停止温度は、前段冷却装置の水量、使用ゾーン
数、鋼板の移送速度等によって制御した。前段冷却終了
時の鋼板表面温度を伝熱計算によって求め、最終冷却後
の鋼板の温度分布を走査型放射冷却温度計によって測定
した。
The hot-rolled high-temperature steel sheet was transferred to the control cooling device shown in FIG. 1 by the table roller 2, cooled in the first cooling zone, and subsequently cooled to the target cooling stop temperature in the second cooling zone. The cooling rate and cooling stop temperature were controlled by the amount of water in the pre-stage cooling device, the number of zones used, the transfer speed of the steel sheet, and the like. The steel sheet surface temperature at the end of the pre-cooling was determined by heat transfer calculation, and the temperature distribution of the steel sheet after the final cooling was measured by a scanning radiant cooling thermometer.

【0029】表1に、熱間圧延された高温鋼板を、上記
により約800℃から約500℃まで種々の条件で冷却
したときの、前段冷却ゾーン数、後段冷却ゾーン数、鋼
板の搬送速度、前段冷却水量密度、後段冷却開始温度、
後段冷却水量密度、冷却停止温度、冷却後の鋼板の温度
分布、鋼板の板厚方向硬度差および鋼板面内硬度分布を
示す。表1において、No. 1〜4は本発明例であり、N
o. 5〜10は比較例である。
Table 1 shows that the number of pre-cooling zones, the number of post-cooling zones, the conveying speed of the steel sheet, and the number of pre-cooling zones when the hot-rolled hot steel sheet was cooled from about 800 ° C. to about 500 ° C. under various conditions as described above. Pre-cooling water volume density, post-cooling start temperature,
The following shows the cooling water mass density, cooling stop temperature, temperature distribution of the steel sheet after cooling, hardness difference in the thickness direction of the steel sheet, and hardness distribution in the steel sheet plane. In Table 1, Nos. 1-4 are examples of the present invention,
o. 5 to 10 are comparative examples.

【0030】[0030]

【表1】 [Table 1]

【0031】表1において、冷却後の鋼板の温度分布
は、鋼板面内の最高温度と最低温度との差に基づいて、
下記により評価した。温度差が低いほど温度むらは少な
く、鋼板の温度均一性が良好であることを示している。
In Table 1, the temperature distribution of the steel sheet after cooling is based on the difference between the maximum temperature and the minimum temperature in the plane of the steel sheet.
The following was evaluated. The lower the temperature difference, the less the temperature unevenness, indicating that the temperature uniformity of the steel sheet is better.

【0032】 ○:鋼板面内の最高温度と最低温度との差が20℃以内
の場合 △:鋼板面内の最高温度と最低温度との差が20℃超〜
50℃の場合 ×:鋼板面内の最高温度と最低温度との差が50℃超の
場合 鋼板の硬度は、荷重10Kgのヴイッカース硬さによって
評価し、鋼板表面と板厚中心部との板厚方向硬度差およ
び鋼板面内硬度分布に基づいて、下記によって評価し
た。 (1)板厚方向硬度差: ○:表面硬度と板厚中心部硬度との差がHvで20以内
の場合 △:表面硬度と板厚中心部硬度との差がHvで20超〜
40の場合 ×:表面硬度と板厚中心部硬度との差がHvで40超の
場合 (2)鋼板面内硬度分布: ○:表面硬度の鋼板面内における最大と最小との差がH
vで20以内の場合 △:表面硬度の鋼板面内における最大と最小との差がH
vで20超〜40の場合 ×:表面硬度の鋼板面内における最大と最小との差がH
vで40超の場合 表1に示す如く、比較例5のように前段冷却水量密度が
500 l/min.m2 で高く、前段冷却を全面膜沸騰冷却で
行うことができなかった場合は、冷却後における鋼板の
温度分布の均一性が不良で且つ板厚方向の硬度差が多
く、特に、鋼板面内硬度分布が極めて悪かった。比較例
6のように、後段冷却水量密度が600 l/min.m2 で低
く、後段冷却を全面核沸騰冷却で行うことができなかっ
た場合は、冷却後の鋼板の温度分布の均一性が極めて悪
く、鋼板面内硬度分布も不良であった。
○: When the difference between the maximum temperature and the minimum temperature in the steel sheet is within 20 ° C. Δ: The difference between the maximum temperature and the minimum temperature in the steel sheet exceeds 20 ° C.
In the case of 50 ° C ×: The difference between the maximum temperature and the minimum temperature in the plane of the steel sheet is more than 50 ° C. The hardness of the steel sheet is evaluated by Vickers hardness under a load of 10 kg, and the thickness between the steel sheet surface and the center of the sheet thickness. Based on the hardness difference in the direction and the hardness distribution in the steel sheet surface, the following evaluation was made. (1) Hardness difference in the thickness direction: :: When the difference between the surface hardness and the hardness at the center of the thickness is within 20 in Hv Δ: The difference between the surface hardness and the hardness in the center of the thickness is more than 20 in Hv
In the case of 40: ×: The difference between the surface hardness and the center thickness of the sheet thickness is more than 40 in Hv. (2) In-plane hardness distribution of the steel sheet: ○: The difference between the maximum and the minimum in the surface hardness of the sheet is H.
v: within 20 Δ: The difference between the maximum and minimum surface hardness of the steel sheet is H
v: more than 20 to 40: ×: The difference between the maximum and the minimum in the steel sheet surface of the surface hardness is H
As shown in Table 1, when the pre-stage cooling water volume density was high at 500 l / min.m 2 and the pre-stage cooling could not be performed by full-surface film boiling cooling as shown in Table 1, The uniformity of the temperature distribution of the steel sheet after cooling was poor, and the hardness difference in the thickness direction was large. In particular, the hardness distribution in the steel sheet plane was extremely poor. As in Comparative Example 6, when the post-stage cooling water volume density was low at 600 l / min.m 2 and the post-stage cooling could not be performed by nucleate boiling cooling, the uniformity of the temperature distribution of the steel sheet after cooling was low. It was extremely poor, and the hardness distribution in the steel sheet was also poor.

【0033】比較例7のように、前段冷却終了時即ち後
段冷却開始時の鋼板表面温度が700℃で高く、前段冷
却を全面膜沸騰冷却で行うことができなかった場合は、
冷却後の鋼板の温度分布の均一性および鋼板面内硬度分
布が不良であり、特に、板厚方向の硬度差が極めて大で
あった。比較例8のように、前段冷却終了時即ち後段冷
却開始時の鋼板表面温度が510℃で低く、前段冷却を
全面膜沸騰冷却で行うことができなかった場合は、冷却
後の鋼板の温度分布の均一性、板厚方向の硬度差および
鋼板面内硬度分布が不良であった。
As in Comparative Example 7, when the steel plate surface temperature at the end of the pre-stage cooling, ie, at the start of the post-stage cooling, was high at 700 ° C., and the pre-stage cooling could not be performed by the film boiling cooling of the entire surface,
The uniformity of the temperature distribution and the hardness distribution in the plane of the steel sheet after cooling were poor, and the difference in hardness in the thickness direction was particularly large. As in Comparative Example 8, when the steel sheet surface temperature at the end of the pre-stage cooling, ie, at the start of the post-stage cooling, was low at 510 ° C. and the pre-stage cooling could not be performed by the film boiling cooling on the entire surface, the temperature distribution of the steel sheet after cooling , The hardness difference in the thickness direction, and the hardness distribution in the plane of the steel sheet were poor.

【0034】比較例9のように、全面核沸騰冷却からな
る後段冷却を行わなかった場合は、板厚方向の硬度差が
極めて大であった。そして、比較例10のように、前段
冷却と後段冷却との間において空冷を行い、且つ、前段
冷却の水量密度が2000 l/min.m2 で極めて高く、前
段冷却終了時即ち後段冷却開始時の鋼板表面温度が69
0℃で高く、前段冷却を全面膜沸騰冷却で行うことがで
きなかった場合は、冷却後の鋼板の温度分布および鋼板
面内硬度分布が不良であり、特に、板厚方向の硬度差が
極めて大であった。
As in Comparative Example 9, when post-stage cooling consisting of nucleate boiling cooling was not performed, the difference in hardness in the plate thickness direction was extremely large. Then, as in Comparative Example 10, air cooling was performed between the pre-stage cooling and the post-stage cooling, and the water volume density of the pre-stage cooling was extremely high at 2000 l / min.m 2 , and at the end of the pre-stage cooling, ie, at the start of the post-stage cooling. Steel plate surface temperature is 69
When the temperature is high at 0 ° C. and the pre-stage cooling cannot be performed by the film boiling cooling on the entire surface, the temperature distribution of the steel sheet after cooling and the hardness distribution within the steel sheet plane are poor. It was great.

【0035】これに対し、前段冷却を全面膜沸騰冷却で
行い、引き続き行われる後段冷却を全面核沸騰冷却で行
った本発明例No. 1〜4の場合は、冷却後の鋼板の温度
分布が均一で、板厚方向の硬度差および鋼板面内の硬度
差が少なく、材質の均一性に優れたいた。
On the other hand, in the case of Examples Nos. 1 to 4 of the present invention in which the pre-stage cooling was performed by the whole-surface film boiling cooling and the subsequent post-stage cooling was performed by the whole-surface nuclear boiling cooling, the temperature distribution of the steel sheet after cooling was low. The hardness was uniform, the difference in hardness in the thickness direction and the difference in hardness in the plane of the steel plate were small, and the uniformity of the material was excellent.

【0036】[0036]

【発明の効果】以上述べたように、この発明の方法によ
れば、熱間圧延された鋼板を制御冷却するに際し、冷却
中における温度むらの発生を低減し、冷却後における平
坦度が良好で、且つ、全面にわたって板厚方向の硬度差
が少ない鋼板が得られ、これによって、冷却後の鋼板の
再矯正や手入れが不必要になり、材質のばらつきが少な
く、製造歩留りを向上させることができ等、工業上有用
な効果がもたらされる。
As described above, according to the method of the present invention, when controlling and cooling a hot-rolled steel sheet, the occurrence of temperature unevenness during cooling is reduced, and the flatness after cooling is improved. In addition, a steel sheet having a small hardness difference in the thickness direction over the entire surface can be obtained, which eliminates the need for re-correction and maintenance of the steel sheet after cooling, reduces the variation in material, and improves the production yield. And other industrially useful effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法を実施するための装置の一例を
示す概略側面図である。
FIG. 1 is a schematic side view showing an example of an apparatus for performing the method of the present invention.

【図2】従来の冷却装置の一例を示す概略側面図であ
る。
FIG. 2 is a schematic side view showing an example of a conventional cooling device.

【図3】鋼板表面温度と熱流束との関係を示した図であ
る。
FIG. 3 is a diagram showing a relationship between a steel sheet surface temperature and a heat flux.

【図4】鋼板表面温度と水量密度との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a steel sheet surface temperature and a water density.

【符号の説明】[Explanation of symbols]

1 鋼板 2 テーブルローラ 3 冷却水ヘッダー 4 スリットノズル 5 スプレーノズル 6 水切りロール 7 流量調整弁 8 冷却ノズル 9 冷却ノズル 10 エアノズル DESCRIPTION OF SYMBOLS 1 Steel plate 2 Table roller 3 Cooling water header 4 Slit nozzle 5 Spray nozzle 6 Drain roll 7 Flow control valve 8 Cooling nozzle 9 Cooling nozzle 10 Air nozzle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延された高温の鋼板をオンライン
で制御冷却する方法において、前記制御冷却を前段冷却
と後段冷却との2段階に分け、前記前段冷却を全面膜沸
騰冷却で行い、引き続いて行われる前記後段冷却を、所
定の冷却停止温度まで全面核沸騰冷却で行うことを特徴
とする、熱間圧延鋼板の制御冷却方法。
1. A method for on-line controlled cooling of a hot-rolled high-temperature steel sheet, wherein said controlled cooling is divided into two stages of pre-stage cooling and post-stage cooling, and said pre-stage cooling is performed by whole-surface film-boiling cooling. Wherein the post-stage cooling is performed by nucleate boiling cooling to a predetermined cooling stop temperature.
【請求項2】 前記前段冷却における冷却水の水量密度
を100〜300 l/min.m2 の範囲内とし、前段冷却終
了時の鋼板の表面温度を550〜600℃の範囲内と
し、そして、後段冷却開始時における冷却水の水量密度
を800 l/min.m2 以上とする、請求項1記載の方法。
2. The water volume density of the cooling water in the pre-stage cooling is set in a range of 100 to 300 l / min.m 2 , the surface temperature of the steel sheet at the end of the pre-stage cooling is set in a range of 550 to 600 ° C., and a water flow rate of the cooling water at the start of post-cool and 800 l / min.m 2 or more, the method of claim 1, wherein.
JP21232198A 1998-07-28 1998-07-28 Controlled cooling method for hot rolled steel sheet Expired - Fee Related JP3656707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21232198A JP3656707B2 (en) 1998-07-28 1998-07-28 Controlled cooling method for hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21232198A JP3656707B2 (en) 1998-07-28 1998-07-28 Controlled cooling method for hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2000042621A true JP2000042621A (en) 2000-02-15
JP3656707B2 JP3656707B2 (en) 2005-06-08

Family

ID=16620616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21232198A Expired - Fee Related JP3656707B2 (en) 1998-07-28 1998-07-28 Controlled cooling method for hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3656707B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110353A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Method of cooling hot-rolled steel strip
WO2009028515A1 (en) 2007-08-24 2009-03-05 Jfe Steel Corporation Process for manufacturing high-strength hot-rolled steel sheet
JP2009078289A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Method of detecting defect of hot-rolled metallic strip using near infrared camera in hot rolling and method of manufacturing hot-rolled metallic strip using it
JP2009280900A (en) * 2008-04-21 2009-12-03 Jfe Steel Corp METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH
JP2016187822A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Method and apparatus for cooling thick steel plate
CN106363029A (en) * 2016-08-30 2017-02-01 南京钢铁股份有限公司 Super-thick plate accelerated-cooling method based on inclined jet flow
KR20220029743A (en) 2019-08-21 2022-03-08 제이에프이 스틸 가부시키가이샤 Steel plate manufacturing equipment and manufacturing method
CN114686757A (en) * 2022-03-16 2022-07-01 山东钢铁集团日照有限公司 Cooling method for producing X80M pipeline steel by adopting multi-stage cooling process
CN114729411A (en) * 2019-10-14 2022-07-08 法孚斯坦因公司 Rapid cooling of high yield strength steel plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371283B (en) * 2011-10-14 2013-08-28 东北大学 Method for improving ultra-fast cooling uniformity of medium and heavy plate after rolling

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008110353A (en) * 2006-10-30 2008-05-15 Jfe Steel Kk Method of cooling hot-rolled steel strip
JP4586791B2 (en) * 2006-10-30 2010-11-24 Jfeスチール株式会社 Cooling method for hot-rolled steel strip
US8051695B2 (en) 2006-10-30 2011-11-08 Jfe Steel Corporation Method for cooling hot strip
WO2009028515A1 (en) 2007-08-24 2009-03-05 Jfe Steel Corporation Process for manufacturing high-strength hot-rolled steel sheet
US8646301B2 (en) 2007-08-24 2014-02-11 Jfe Steel Corporation Method for manufacturing high strength hot rolled steel sheet
JP2009078289A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Method of detecting defect of hot-rolled metallic strip using near infrared camera in hot rolling and method of manufacturing hot-rolled metallic strip using it
JP2009280900A (en) * 2008-04-21 2009-12-03 Jfe Steel Corp METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH
JP2016187822A (en) * 2015-03-30 2016-11-04 株式会社神戸製鋼所 Method and apparatus for cooling thick steel plate
CN106363029A (en) * 2016-08-30 2017-02-01 南京钢铁股份有限公司 Super-thick plate accelerated-cooling method based on inclined jet flow
KR20220029743A (en) 2019-08-21 2022-03-08 제이에프이 스틸 가부시키가이샤 Steel plate manufacturing equipment and manufacturing method
CN114729411A (en) * 2019-10-14 2022-07-08 法孚斯坦因公司 Rapid cooling of high yield strength steel plate
CN114686757A (en) * 2022-03-16 2022-07-01 山东钢铁集团日照有限公司 Cooling method for producing X80M pipeline steel by adopting multi-stage cooling process

Also Published As

Publication number Publication date
JP3656707B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP3796133B2 (en) Thick steel plate cooling method and apparatus
JP2000042621A (en) Cooling control method of hot rolled steel plate
JP3460583B2 (en) Thick steel plate manufacturing apparatus and thick steel plate manufacturing method
JP4360250B2 (en) Steel plate manufacturing method and manufacturing equipment
JP3551129B2 (en) Manufacturing method and manufacturing equipment for hot rolled steel strip
JP2019010676A (en) Method of manufacturing hot rolled steel sheet
JP5482365B2 (en) Steel sheet cooling method, manufacturing method and manufacturing equipment
JP2006021246A (en) Equipment for manufacturing high-strength hot-rolled steel sheet
JP3287254B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JP3800722B2 (en) Cooling method for high temperature steel sheet
JP3341612B2 (en) Controlled cooling method and apparatus for hot rolled steel sheet
JPH07284836A (en) Method for cooling steel plate at high temperature
JP2003191005A (en) Method for cooling hot-rolled steel strip and its production method
JP4714628B2 (en) Thick steel plate cooling equipment row and cooling method
JP3978141B2 (en) Thick steel plate cooling method and cooling device
JP2015174134A (en) Production method of steel plate
JP5673370B2 (en) Method for cooling hot-rolled steel sheet
JP2001164323A (en) Cleaning method for thick steel plate
JPS5944367B2 (en) Water quenching continuous annealing method
JP3173574B2 (en) High temperature steel plate cooling system
JP3171326B2 (en) Thick steel plate manufacturing method
JP3282714B2 (en) Cooling method for hot steel sheet
JP3669233B2 (en) Manufacturing method of ultra-thick H-section steel with excellent strength and toughness
JP4648804B2 (en) Cooling method for high temperature steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees