JP3282714B2 - Cooling method for hot steel sheet - Google Patents

Cooling method for hot steel sheet

Info

Publication number
JP3282714B2
JP3282714B2 JP27335797A JP27335797A JP3282714B2 JP 3282714 B2 JP3282714 B2 JP 3282714B2 JP 27335797 A JP27335797 A JP 27335797A JP 27335797 A JP27335797 A JP 27335797A JP 3282714 B2 JP3282714 B2 JP 3282714B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel sheet
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27335797A
Other languages
Japanese (ja)
Other versions
JPH1190521A (en
Inventor
晃夫 藤林
洋 木部
悟史 上岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP27335797A priority Critical patent/JP3282714B2/en
Publication of JPH1190521A publication Critical patent/JPH1190521A/en
Application granted granted Critical
Publication of JP3282714B2 publication Critical patent/JP3282714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱間圧延された
高温鋼板の冷却方法に関し、特に厚鋼板の冷却方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a hot-rolled hot steel sheet, and more particularly to a method for cooling a thick steel sheet.

【0002】[0002]

【従来の技術】一般に、熱間圧延された高温の鋼板は、
圧延直後の温度分布や板形状、表面状態の違いから冷却
中に冷却ムラが生じやすい。特に厚鋼板の冷却では、冷
却ムラが発生すると、鋼板変形による通板障害など操業
上のトラブルが起きやすく、冷却後には鋼板の変形や残
留応力、材質のバラツキが発生しやすい。さらに、鋼板
が変形すると、後にプレスや矯正機による精整工程を要
するため製造コストを高騰させる。そこで、これらの問
題点を避けるため、従来から、いわゆる均一な冷却法が
種々提案されてきた。
2. Description of the Related Art Generally, hot-rolled hot steel sheets are
Cooling unevenness tends to occur during cooling due to differences in temperature distribution, plate shape, and surface state immediately after rolling. In particular, in the cooling of a thick steel plate, if cooling unevenness occurs, an operation trouble such as a failure in passing the plate due to deformation of the steel plate is likely to occur, and after cooling, deformation of the steel plate, residual stress, and variation in the material are likely to occur. Further, when the steel sheet is deformed, a refining step by a press or a straightening machine is required later, so that the production cost is increased. Therefore, in order to avoid these problems, various so-called uniform cooling methods have been conventionally proposed.

【0003】厚鋼板の冷却では、鋼板を搬送するテーブ
ルローラを兼ねた搬送ロールと搬送ロールと対をなす拘
束ロールとで鋼板を拘束して通板させながら、鋼板の上
下から連続的に冷却水を注水するオンライン冷却法が、
一般的に用いられている。鋼板の冷却においては、生産
性を上げる観点からは冷却装置を長くして、例えば熱延
鋼板の冷却設備であるランアウト冷却装置のように高速
で搬送させながら冷却することが望ましいが、厚鋼板の
冷却の場合は、大量の冷却水を使用すること、および板
厚が厚いので長時間にわたって冷却を施す必要があるこ
とからこのような方法を採用することはできない。
[0003] In cooling a thick steel plate, while the steel plate is constrained and passed by a conveying roll also serving as a table roller for conveying the steel plate and a constraining roll forming a pair with the conveying roll, cooling water is continuously supplied from above and below the steel plate. The online cooling method to inject water
Commonly used. In the cooling of the steel sheet, from the viewpoint of increasing productivity, it is desirable to lengthen the cooling device and cool it while transporting it at a high speed, for example, as in a run-out cooling device that is a cooling device for hot-rolled steel sheets. In the case of cooling, such a method cannot be adopted because a large amount of cooling water is used and since the plate is thick, it is necessary to perform cooling for a long time.

【0004】厚鋼板の冷却方法として、たとえば特開昭
61−153235号公報には、厚鋼板を2つの冷却装
置にオンラインで通過させて冷却する装置において、そ
の第1の冷却装置では、スリットジェットノズルから2
3/min-m以上の水量で表面温度が600℃以下となる
まで冷却し、その後、水切りロールで仕切った第2の冷
却装置で、スプレーノズルから0.7m3/min-m以上の冷
却水を噴射して冷却を施す冷却方法が提案されている。
[0004] As a method for cooling a thick steel plate, for example, Japanese Patent Application Laid-Open No. 61-153235 discloses a device for cooling a thick steel plate by passing it through two cooling devices online. 2 from nozzle
Cool with a water amount of at least m 3 / min-m until the surface temperature becomes 600 ° C. or less, and then, with a second cooling device partitioned by a draining roll, use a spray nozzle to supply 0.7 m 3 / min-m or more of cooling water. There has been proposed a cooling method for performing cooling by injecting a gas.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
特開昭61−153235号公報に記載されている方法
においても均一でムラのない冷却を施すことが難しかっ
た。さらに、この方法では、膨大な冷却水の供給設備と
配管設備が必要で、さらに運転にかかるコストも膨大な
ものとなる。しかも冷却設備が大きくなるため、冷却ゾ
ーンを長くすることができずに生産性にも限界がある。
However, even in the method described in JP-A-61-153235, it is difficult to provide uniform and uniform cooling. Furthermore, this method requires enormous amounts of cooling water supply equipment and piping equipment, and the operation costs are enormous. In addition, since the cooling equipment becomes large, the cooling zone cannot be lengthened, and there is a limit in productivity.

【0006】本発明は、このような事情に鑑みてなされ
たもので、少ない冷却水でムラのない冷却が可能である
厚鋼板の冷却方法を提供することを課題とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a method for cooling a thick steel plate that can perform uniform cooling with a small amount of cooling water.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の手段は、複数対の拘束ロールの間に高温鋼板を通過さ
せながら、高温鋼板に冷却水を注水してオンラインで冷
却を施す高温鋼板の冷却方法であって、高温鋼板に注水
する冷却水の最高到達温度が60℃以下となるような量
の冷却水を高温鋼板に注水して冷却を施すことを特徴と
する高温鋼板の冷却方法(請求項1)である。
Means for solving the above-mentioned problems are as follows. A high-temperature steel sheet is cooled on-line by injecting cooling water into the high-temperature steel sheet while passing the high-temperature steel sheet between a plurality of pairs of restraining rolls. A method for cooling a high-temperature steel sheet, characterized by injecting cooling water into the high-temperature steel sheet in such an amount that the maximum temperature of the cooling water injected into the high-temperature steel sheet is 60 ° C. or less, and performing cooling. (Claim 1).

【0008】(発明に至る経緯)発明者らは、少ない冷
却水でムラのない冷却を施すために、種々の冷却条件で
鋼板の冷却試験を繰り返し、その冷却過程を検討した。
そして、冷却水量:0.2〜3.5m3/min-m、冷却開始時の
鋼板温度:400〜900℃(冷却終了時の鋼板温度は30〜
800℃)、冷却ゾーンの長さ:0.5〜3m、供給した冷却
水の温度:5〜40℃の範囲で冷却試験を実施した結
果、ノズルから供給され鋼板に接触している冷却水の水
温が60℃を越えると冷却ムラが発生することを見いだ
した。
(Circumstances leading to the invention) In order to provide uniform cooling with a small amount of cooling water, the inventors repeated cooling tests of steel sheets under various cooling conditions, and examined the cooling process.
Cooling water amount: 0.2 to 3.5 m 3 / min-m, steel sheet temperature at the start of cooling: 400 to 900 ° C. (steel sheet temperature at the end of cooling is 30 to
800 ° C.), the length of the cooling zone: 0.5 to 3 m, and the temperature of the supplied cooling water: 5 to 40 ° C. As a result of performing a cooling test, the temperature of the cooling water supplied from the nozzle and in contact with the steel plate becomes lower. It has been found that when the temperature exceeds 60 ° C., uneven cooling occurs.

【0009】この関係は、スリットジェットノズル以外
のラミナーノズル、スプレーノズルにも、上記冷却条件
の範囲では当てはまる。たとえば、スリットノズルから
1.0m3/min-mの20℃の冷却水を鋼板表面温度800℃の
鋼板の長手方向に注水した場合は、ノズル出口から約1
mの所で冷却水温度が60℃を越え、その結果これより
下流側では不均一冷却による冷却ムラが発生した。
This relationship also applies to laminar nozzles and spray nozzles other than the slit jet nozzle within the range of the above cooling conditions. For example, from the slit nozzle
When cooling water of 20 ° C of 1.0m 3 / min-m is injected in the longitudinal direction of the steel sheet having a steel sheet surface temperature of 800 ° C, about 1
m, the cooling water temperature exceeded 60 ° C., and as a result, cooling unevenness occurred due to uneven cooling on the downstream side.

【0010】図1は、冷却中の冷却水の最高到達温度
と、冷却後の鋼板内の最高温度と最低温度の差の関係を
示した図である。図1から分かるように、冷却水の最高
到達温度が60℃以下のときは、鋼板内の最高温度と最
低温度との差は30℃以内に留まっているが、冷却水の
最高到達温度が60℃を超えると、鋼板内の最高温度と
最低温度との差が急激に増大する。
FIG. 1 is a diagram showing the relationship between the maximum temperature of the cooling water during cooling and the difference between the maximum temperature and the minimum temperature in the steel sheet after cooling. As can be seen from FIG. 1, when the maximum temperature of the cooling water is 60 ° C. or less, the difference between the maximum temperature and the minimum temperature in the steel sheet remains within 30 ° C., but the maximum temperature of the cooling water is 60 ° C. When the temperature exceeds ℃, the difference between the maximum temperature and the minimum temperature in the steel sheet sharply increases.

【0011】この現象は次のように理解される。すなわ
ち、冷却水が鋼板上下の長手方向に流れていく間に、鋼
板から奪った熱を受けて冷却水温度が上昇する。そし
て、冷却水温度がある温度をこえると、途端に冷却様式
が核沸騰冷却から部分的な膜沸騰冷却に変化し、それと
ともに冷却のムラ、不均一冷却が発生する。図1より、
鋼板の材質を左右する鋼板強度のばらつきを製品スペッ
ク内に納めるために鋼板内最高・最低温度差を30℃以
内とするには、鋼板を冷却中の冷却水の許容最高到達温
度を60℃以内とする必要があることが理解される。以
上のことから、本発明においては、冷却水の許容最高温
度を60℃以下に限定する。
This phenomenon is understood as follows. That is, while the cooling water flows in the longitudinal direction above and below the steel sheet, the temperature of the cooling water increases due to the heat taken from the steel sheet. When the temperature of the cooling water exceeds a certain temperature, the cooling mode is changed from nucleate boiling cooling to partial film boiling cooling immediately, resulting in uneven cooling and uneven cooling. From FIG.
To keep the maximum / minimum temperature difference within the steel sheet within 30 ° C in order to keep the variation of the steel sheet strength which affects the material of the steel sheet within the product specification, the allowable maximum temperature of the cooling water during cooling the steel sheet is within 60 ° C. It is understood that it is necessary to From the above, in the present invention, the allowable maximum temperature of the cooling water is limited to 60 ° C. or less.

【0012】図1にも示されるように、冷却水の最高到
達温度が80℃を越えると、冷却様式が膜沸騰冷却に完
全に移行するので鋼板内温度差が小さくなる傾向がある
が、この領域においては鋼板の冷却が不足しているの
で、厚鋼板の冷却には不向きである。
As shown in FIG. 1, when the maximum temperature of the cooling water exceeds 80 ° C., the cooling mode completely shifts to film boiling cooling, so that the temperature difference in the steel sheet tends to be small. Since the cooling of the steel plate is insufficient in the region, it is not suitable for cooling the thick steel plate.

【0013】[0013]

【実施例】以下、本発明の実施例を図を参照しながら説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0014】(実施例1)図2に本実施例に用いた冷却
装置の概要図を示す。この冷却装置は、21組の上拘束
ロール2、下拘束ロール3間に圧延直後の鋼板1を搬送
しながらオンラインで冷却する冷却装置であって、各ロ
ール間のピッチは1.0m、冷却装置の全長は20mであ
る。下拘束ロール3は搬送ロールをかねており固定式で
あるが、上拘束ロール2は上下に昇降が可能でその隙間
は0.5mmピッチで制御可能である。
(Embodiment 1) FIG. 2 is a schematic diagram of a cooling device used in this embodiment. This cooling device is a cooling device that cools the steel sheet 1 immediately after rolling between 21 sets of the upper constraining rolls 2 and the lower constraining rolls 3 while online, and the pitch between the rolls is 1.0 m. The total length is 20 m. The lower constraining roll 3 also serves as a transport roll and is of a fixed type, while the upper constraining roll 2 can be moved up and down and the gap can be controlled at a pitch of 0.5 mm.

【0015】さらにこの上拘束ロール2は、そのセット
されたギャップ以上の厚みの鋼板1が通過するときは、
油圧シリンダー7により鋼板1に拘束力を加える構造と
なっている。この拘束力は、冷却中に発生する冷却反り
を押さえ込むために加えるもので、各ロールに1〜5t
まで付加可能である。
Further, when the steel sheet 1 having a thickness equal to or larger than the set gap passes through the upper constraining roll 2,
The structure is such that a restraining force is applied to the steel plate 1 by the hydraulic cylinder 7. This restraining force is applied to suppress the cooling warpage generated during cooling, and 1 to 5 t is applied to each roll.
Up to can be added.

【0016】冷却装置の入側および出側の鋼板上方およ
び下方には板幅方向の表面温度を計測可能な非接触式の
放射温度計8が設置され連続的に鋼板温度をモニターし
ている。
Above and below the steel sheet on the inlet and outlet sides of the cooling device, a non-contact radiation thermometer 8 capable of measuring the surface temperature in the width direction of the steel plate is installed, and continuously monitors the temperature of the steel sheet.

【0017】各ロール間の上面側では、板搬送方向の上
流側の上拘束ロールから下流側の上拘束ロールに向かっ
て、板の進行方向にスリットノズル4から1.8m3/min-
mの水を板に沿って流している。一方、下面側では100m
mピッチで水中に没して設けた円管ノズル5から水を噴
射し、その随伴流で生じた液流で冷却を施している。そ
の冷却水量は1.8m3/min-mであった。(本実施例で
は、スリットノズル1本がカバーする冷却ゾーンの長さ
は、拘束ロールピッチと等しく1mであるので、水量密
度は、1.8m3/min-m2である。)また供給した冷却水温
は20℃であった。
On the upper surface side between the rolls, the slit nozzle 4 moves 1.8 m 3 / min.
m of water is flowing along the plate. On the other hand, 100m on the lower side
Water is injected from a circular nozzle 5 provided submerged in water at m pitches, and cooling is performed by a liquid flow generated by the accompanying flow. The cooling water amount was 1.8 m 3 / min-m. (In this embodiment, since the length of the cooling zone covered by one slit nozzle is 1 m, which is equal to the constrained roll pitch, the water volume density is 1.8 m 3 / min-m 2. ) The water temperature was 20 ° C.

【0018】各ゾーンの上面のスリットノズル4および
下面の円管ノズル5へは流量制御可能な流量調節弁6を
通して冷却水が供給されている。
Cooling water is supplied to a slit nozzle 4 on the upper surface and a circular nozzle 5 on the lower surface of each zone through a flow control valve 6 capable of controlling the flow.

【0019】冷却水の温度測定は次のような方法で行っ
た。上面冷却水については、各上拘束ロール2の下流側
に上面の冷却水温度を計測する熱電対を設置して温度測
定を行った。下面冷却水については、下面冷却水の水槽
内に下面冷却水の温度を計測する熱電対を設置して温度
測定を行った。
The temperature of the cooling water was measured by the following method. With respect to the upper surface cooling water, a thermocouple for measuring the temperature of the upper surface cooling water was installed downstream of each upper constraining roll 2, and the temperature was measured. As for the lower surface cooling water, a thermocouple for measuring the temperature of the lower surface cooling water was installed in a water tank of the lower surface cooling water, and the temperature was measured.

【0020】以上のような構成の冷却装置に、板幅3
m、長さ20m、厚み40mmの圧延後の高温鋼板を搬送
速度50mpmで通過させて冷却をおこなった。ロール
間のギャップは板厚−1.5mm、すなわち38.5mmに設定し
た。
The cooling device having the above-described structure has a plate width of 3
The rolled high-temperature steel plate having a length of 20 m, a length of 20 m and a thickness of 40 mm was cooled at a conveying speed of 50 mpm. The gap between the rolls was set to a thickness of -1.5 mm, that is, 38.5 mm.

【0021】このとき、各上ロール下流に設けた熱電対
で上面冷却の冷却水水温を計測したところ、冷却水温度
は最高52℃であった。また下面冷却についても、水槽
内の温度は最高52℃であった。
At this time, when the temperature of the cooling water for cooling the upper surface was measured with a thermocouple provided downstream of each upper roll, the cooling water temperature was 52 ° C. at the maximum. Also, the temperature in the water tank was 52 ° C. at the maximum for the lower surface cooling.

【0022】冷却直前および冷却後20秒後の温度の面
分布を表面温度計で計測しところ板内の板幅方向と板長
手方向の温度は、冷却前で835℃〜850℃であったのに対
して、冷却後では505℃〜520℃であり、冷却による温度
のムラは拡大することなくほぼ全面均一な冷却が施され
た。板幅方向のC反りはなかった。
The surface distribution of the temperature immediately before the cooling and 20 seconds after the cooling was measured with a surface thermometer. The temperature in the width direction and the length direction in the plate was 835 ° C. to 850 ° C. before the cooling. On the other hand, after cooling, the temperature was 505 ° C. to 520 ° C., and the entire surface was uniformly cooled without expanding the temperature unevenness due to the cooling. There was no C warpage in the sheet width direction.

【0023】(実施例2)本実施例は、実施例1で説明
した冷却装置において上面のスリットノズル4および下
面の円管ノズル5から噴射する冷却水の流量を、冷却水
の温度が60℃を越えないように調整しながら冷却を行
った例である。冷却水の温度は、実施例1と同様、上面
側については、各上拘束ロール2の下流側に設けた熱電
対で、下面側については、下面冷却水の水槽内に設けた
熱電対でそれぞれ測定し、これらの温度が60℃を超え
ないように、流量調節弁6を用いて流量調整を行った。
(Embodiment 2) In this embodiment, in the cooling device described in Embodiment 1, the flow rate of the cooling water jetted from the slit nozzle 4 on the upper surface and the circular tube nozzle 5 on the lower surface is set to 60 ° C. This is an example in which cooling is performed while adjusting so as not to exceed. As in the first embodiment, the temperature of the cooling water is a thermocouple provided on the downstream side of each upper constraining roll 2 on the upper surface side, and a thermocouple provided in a water tank of the lower surface cooling water on the lower surface side. The flow rate was adjusted using the flow rate control valve 6 so that these temperatures did not exceed 60 ° C.

【0024】この冷却装置において板幅4.5m、長さ2
5m、厚み60mmの圧延後の高温鋼板を速さ15mpm
で通過させて冷却を施した。冷却直前および冷却後20
秒後の温度の面分布を表面温度計で計測した。この状態
で板内の板幅方向と板長手方向の温度は、790℃〜820℃
であったのに対して、冷却後では490℃〜520℃と冷却に
よる温度のムラは拡大することなくほぼ全面均一な冷却
が施された。なおこの時の冷却水量は、第1段のノズル
から最終段のノズルに進むに従って、上面下面とも1.6
3/min-mから0.4m3/min-mまで減少している。すな
わち、冷却が進み鋼板温度が下がるにつれて所要冷却水
量が減少している。また、この板について板幅方向にC
反りはなかった。
In this cooling device, a plate width of 4.5 m and a length of 2 m
5m, 60mm thick hot rolled steel plate at a speed of 15mpm
And cooled. Immediately before and after cooling 20
The surface distribution of the temperature after seconds was measured with a surface thermometer. In this state, the temperature in the plate width direction and the plate longitudinal direction in the plate is 790 ° C to 820 ° C.
On the other hand, after cooling, the temperature was 490 ° C. to 520 ° C., and the temperature unevenness due to the cooling did not increase, and substantially uniform cooling was performed over the entire surface. At this time, the amount of cooling water is 1.6
It has decreased from m 3 / min-m to 0.4 m 3 / min-m. That is, the required cooling water amount decreases as the cooling proceeds and the steel sheet temperature decreases. In addition, for this plate, C
There was no warpage.

【0025】(実施例3)本実施例に用いた冷却装置
は、実施例1に用いた冷却装置と同じロール配置の冷却
装置である。すなわち、21組の上部・下部の拘束ロー
ル2、3間に圧延後の鋼板1を搬送しながらオンライン
で冷却を施す冷却装置であって、各ロール間のピッチは
1.0mである。各ロール間の上面側および下面側には幅
方向300mm長手方向300mmピッチでスプレーノズルが設け
られ、これらのスプレーノズルから冷却水を噴射して冷
却を行う。
(Embodiment 3) The cooling device used in this embodiment is a cooling device having the same roll arrangement as the cooling device used in Embodiment 1. That is, this is a cooling device that performs on-line cooling while conveying the rolled steel sheet 1 between the 21 sets of upper and lower constraining rolls 2 and 3, and the pitch between the rolls is
1.0 m. Spray nozzles are provided on the upper surface side and the lower surface side between each roll at a pitch of 300 mm in the width direction and 300 mm in the longitudinal direction, and cooling is performed by injecting cooling water from these spray nozzles.

【0026】上下のスプレーノズルの流量の調整は以下
の手順でおこなった。スプレー冷却時のある水量密度に
おける鋼板からの抜熱流束は日本鉄鋼協会編「鋼材の強
制冷却」p.16の(1)表中(3)式を用いて logα=2.358+0.663logW−0.00147θS …(1) ここで α:熱伝達率 Kcal/m2-hr-℃ W:水量密度 L/min-m2 θS:表面温度 ℃
The adjustment of the flow rate of the upper and lower spray nozzles was performed in the following procedure. The heat flux from a steel sheet at a certain water density during spray cooling can be calculated using the equation (3) in Table (1) of “Forced Cooling of Steel” edited by the Iron and Steel Institute of Japan, logα = 2.358 + 0.663logW−0.00147θ. S … (1) where α: heat transfer coefficient Kcal / m 2 -hr- ℃ W: water density L / min-m 2 θ S : surface temperature ℃

【0027】この時鋼板から冷却水に伝わる熱流束qは q=α(θS−θW) …(2) ここで q:熱流束 Kcal/m2-hrAt this time, the heat flux q transmitted from the steel sheet to the cooling water is: q = α (θ S −θ W ) (2) where q: heat flux Kcal / m 2 -hr

【0028】水温の上昇Δθwは Δθw=q/(60WρCp) …(3) ここで Cp:冷却水の比熱=1.0 Kcal/Kg-℃ ρ :冷却水の密度=1.0Kg/LThe rise in temperature [Delta] [theta] w is Δθ w = q / (60WρC p ) ... (3) where C p: specific heat of the coolant = 1.0 Kcal / Kg- ℃ ρ: Density of coolant = 1.0 Kg / L

【0029】従って冷却水温度は以下のθwout まで上
昇する。 θwout=θwin+Δθw (4) ここで θwin:供給した冷却水温度 ℃
Accordingly, the cooling water temperature rises to θ wout below. θ wout = θ win + Δθ w (4) where θ win : supplied cooling water temperature ℃

【0030】図3に表面温度が600℃と700℃の場合につ
いて、水量密度Wを100〜1400 L/min-m2まで変化させ
たときの(4)式から求めた冷却水到達温度θwoutを示
す。なお供給する冷却水温度θwinは30℃で一定とす
る。これより、表面温度が600℃、700℃において、Wを
それぞれ500、800 L/min-m2とすれば冷却水温度が60
℃以下の状態で冷却が可能であると容易に求めることが
できる。
FIG. 3 shows the case where the surface temperature is 600 ° C. and 700 ° C., and the cooling water arrival temperature θ wout obtained from the equation (4) when the water density W is changed from 100 to 1400 L / min-m 2. Is shown. The supplied cooling water temperature θ win is constant at 30 ° C. Thus, if the surface temperature is 600 ° C. and 700 ° C., and the W is 500 and 800 L / min-m 2 respectively, the cooling water temperature becomes 60
It can be easily determined that cooling is possible in a state of not more than ° C.

【0031】図4は同様にして決定した冷却水到達温度
θwoutが60℃となる最低水量密度と鋼板表面温度との
関係を示す図である。図4に基づいて各ゾーンの冷却水
量を決定し、その冷却条件のもとで冷却をおこなった。
すなわち、各ゾーンの鋼板表面温度は、冷却中の鋼板表
面の温度履歴を計算することによって求め、その表面温
度に対して必要となる水量密度を図4から決定した。
FIG. 4 is a diagram showing the relationship between the minimum water density at which the cooling water arrival temperature θ wout is 60 ° C. and the steel sheet surface temperature determined in the same manner. The cooling water amount of each zone was determined based on FIG. 4, and cooling was performed under the cooling conditions.
That is, the steel sheet surface temperature in each zone was obtained by calculating the temperature history of the steel sheet surface during cooling, and the water density required for the surface temperature was determined from FIG.

【0032】この冷却装置に板幅4.5m、長さ25m、
厚み20mmの圧延後の高温鋼板を速さ75mpmで通過
させて冷却を施した。冷却直前および冷却後20秒後の
温度の面分布を表面温度計で計測した。この状態で板内
の板幅方向と板長手方向の温度は、最高温度と最低温度
の差が冷却前で790℃〜820℃であったのに対して、冷却
後では490℃〜520℃と冷却による温度のムラは拡大する
ことなくほぼ全面均一な冷却が施された。また、この板
について板幅方向にC反りはなかった。
This cooling device has a plate width of 4.5 m, a length of 25 m,
The rolled high-temperature steel sheet having a thickness of 20 mm was cooled at a speed of 75 mpm. The surface distribution of the temperature immediately before cooling and 20 seconds after cooling was measured with a surface thermometer. In this state, the temperature in the sheet width direction and the sheet longitudinal direction in the sheet was 490 ° C to 520 ° C after cooling, whereas the difference between the highest temperature and the lowest temperature was 790 ° C to 820 ° C before cooling. Almost the entire surface was uniformly cooled without increasing the temperature unevenness due to cooling. Also, there was no C warpage in the plate width direction for this plate.

【0033】なお、本実施例ではスプレーノズルについ
て水量密度を決定する方法を述べたが、同様の手順を用
いて他の冷却方式例えばミスト冷却、円管ラミナー冷
却、フラットラミナー冷却、ジェット冷却、円管噴水冷
却等についての所要水量密度を決定することが可能であ
る。なお、それらの冷却方式について(1)〜(4)のような
冷却特性が得られていない場合が多いが、別途実験によ
って冷却特性を把握しておけば、冷却水の最高到達温度
を60℃に抑えるために必要な水量密度を予め決定する
ことが可能である。
In this embodiment, the method of determining the water density of the spray nozzle has been described. However, other cooling methods such as mist cooling, circular pipe laminar cooling, flat laminar cooling, jet cooling, It is possible to determine the required water density for pipe fountain cooling and the like. In many cases, cooling characteristics such as (1) to (4) are not obtained for those cooling methods. However, if the cooling characteristics are grasped by separate experiments, the maximum temperature of the cooling water can be reduced to 60 ° C. It is possible to determine in advance the water density required to suppress the water content.

【0034】また、この実施例では供給した冷却水温は
30℃であったが、水温が低い冬場ではこの温度が5〜
20℃となることがあるので、その場合にはさらに少な
い冷却水量密度で均一冷却が可能である。逆に夏場のよ
うに冷却水の温度が40℃程度となる場合には、冷却水
水量密度を増やす必要がある。このように本発明の冷却
方法によれば周囲の状況(冷却水温度の季節変化や昼夜
の水温変化)に応じて、冷却水水量密度を適切に、かつ
経済的に調整することが可能となる。
Further, in this embodiment, the temperature of the supplied cooling water was 30 ° C.
Since the temperature may be 20 ° C., in this case, uniform cooling is possible with a smaller cooling water density. Conversely, when the temperature of the cooling water is about 40 ° C. as in summer, it is necessary to increase the density of the cooling water. As described above, according to the cooling method of the present invention, it is possible to appropriately and economically adjust the water density of the cooling water in accordance with the surrounding conditions (seasonal changes in the cooling water temperature and water temperature changes during the day and night). .

【0035】[0035]

【発明の効果】以上の説明から明らかなように、本発明
は、複数対の拘束ロールの間に高温鋼板を通過させなが
ら、高温鋼板に冷却水を注水してオンラインで冷却を施
す高温鋼板の冷却方法であって、高温鋼板に注水する冷
却水の最高到達温度が60℃以下となるような量の冷却
水を高温鋼板に注水して冷却を施すことを特徴とする高
温鋼板の冷却方法であるので、以下のような効果を有す
る。 (1)均一な冷却が可能となって、冷却ムラによる材質
の不均一や冷却後の熱による歪みの発生を防止すること
が可能となる。 (2)材料の形状不良が皆無となり後の精整コストの削
減が可能となる。 (3)冷却装置を通板中の板の形状不良による通板トラ
ブルが減って、設備の稼働率がアップする。 (4)材料の冷却不足や過冷却による鋼板の材質のバラ
ツキが減って均質な製品が得られる。また、材質はずれ
による歩留まりロスが減ってクズ発生率が低減する。 (5)冷却水量を、冷却水温度の季節変化や昼夜変化に
応じて、鋼板冷却温度の均一冷却を損なうことなく調整
することが可能となるので経済的である。
As is apparent from the above description, the present invention relates to a hot steel sheet which is cooled on-line by injecting cooling water into the hot steel sheet while passing the hot steel sheet between a plurality of pairs of restraining rolls. A method for cooling a high-temperature steel sheet, characterized in that cooling is performed by injecting cooling water into the high-temperature steel sheet in such an amount that the maximum temperature of cooling water injected into the high-temperature steel sheet is 60 ° C. or less. Therefore, the following effects are obtained. (1) Uniform cooling becomes possible, and it is possible to prevent non-uniformity of material due to cooling unevenness and generation of distortion due to heat after cooling. (2) There is no defect in the shape of the material, and the cost for refining can be reduced. (3) Passing trouble due to defective shape of the plate during passage of the cooling device is reduced, and the operation rate of the equipment is increased. (4) Variations in the material of the steel sheet due to insufficient cooling of the material or overcooling are reduced, and a homogeneous product is obtained. Further, the yield loss due to the material slippage is reduced, and the generation rate of scraps is reduced. (5) The amount of cooling water can be adjusted according to the seasonal change of the cooling water temperature and the change of day and night without impairing the uniform cooling of the steel plate cooling temperature, which is economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷却後の冷却水の温度と、冷却後の鋼板内の最
高温度と最低温度の差の関係を示した図である。
FIG. 1 is a diagram showing a relationship between a temperature of cooling water after cooling and a difference between a maximum temperature and a minimum temperature in a steel sheet after cooling.

【図2】第1の実施例に用いた冷却装置の概要図であ
る。
FIG. 2 is a schematic diagram of a cooling device used in the first embodiment.

【図3】鋼板表面温度が600℃と700℃の場合について水
量密度Wを100〜1400 L/minm2まで変化させたときの
(4)式から求めた冷却水到達温度θwoutを示す図であ
る。
Fig. 3 When the water density W was changed from 100 to 1400 L / minm 2 when the steel sheet surface temperature was 600 ° C and 700 ° C.
It is a figure which shows the cooling water arrival temperature (theta) wout calculated | required from Formula (4).

【図4】スプレー冷却における冷却水到達温度θwout
60℃となる、鋼板表面温度と最低水量密度の関係を示
した図である。
FIG. 4 is a diagram showing the relationship between the steel sheet surface temperature and the minimum water density when the cooling water arrival temperature θ wout in spray cooling is 60 ° C.

【符号の説明】[Explanation of symbols]

1−上拘束ロール 2−下拘束ロール 3−鋼板 4−スリットノズル 5−円管ノズル 6−流量調節弁 7−シリンダー 8−放射温度計 1-Upper constraining roll 2-Lower constraining roll 3-Steel plate 4-Slit nozzle 5-Circular nozzle 6-Flow control valve 7-Cylinder 8-Radiation thermometer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−153235(JP,A) (58)調査した分野(Int.Cl.7,DB名) B21B 45/02 320 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-153235 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B21B 45/02 320

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数対の拘束ロールの間に高温鋼板を通
過させながら、高温鋼板に冷却水を注水してオンライン
で冷却を施す高温鋼板の冷却方法であって、高温鋼板に
注水する冷却水の最高到達温度が60℃以下となるよう
な量の冷却水を高温鋼板に注水して冷却を施すことを特
徴とする高温鋼板の冷却方法。
1. A method for cooling a hot steel sheet by injecting cooling water into the hot steel sheet while cooling the hot steel sheet while passing the hot steel sheet between a plurality of pairs of constraining rolls. Cooling the high-temperature steel sheet by injecting cooling water into the high-temperature steel sheet in such an amount that the maximum temperature of the steel sheet is 60 ° C. or less.
JP27335797A 1997-09-22 1997-09-22 Cooling method for hot steel sheet Expired - Fee Related JP3282714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27335797A JP3282714B2 (en) 1997-09-22 1997-09-22 Cooling method for hot steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27335797A JP3282714B2 (en) 1997-09-22 1997-09-22 Cooling method for hot steel sheet

Publications (2)

Publication Number Publication Date
JPH1190521A JPH1190521A (en) 1999-04-06
JP3282714B2 true JP3282714B2 (en) 2002-05-20

Family

ID=17526781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27335797A Expired - Fee Related JP3282714B2 (en) 1997-09-22 1997-09-22 Cooling method for hot steel sheet

Country Status (1)

Country Link
JP (1) JP3282714B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940978B1 (en) * 2009-01-09 2011-11-11 Fives Stein METHOD AND COOLING SECTION OF A METAL BAND THROUGH A PROJECTION OF A LIQUID
CN108774293B (en) 2013-10-31 2021-06-04 日本瑞翁株式会社 Compound, method for producing polymerizable compound, and hydrazine compound

Also Published As

Publication number Publication date
JPH1190521A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
JPH11347629A (en) Straightening and cooling device for high temperature steel plate and its straightening and cooling method
EP2929949A1 (en) Device for cooling hot-rolled steel sheet
JP3282714B2 (en) Cooling method for hot steel sheet
JP2000001719A (en) Device for cooling high temperature steel plate
JP2000042621A (en) Cooling control method of hot rolled steel plate
JP3458758B2 (en) Method and apparatus for cooling steel sheet
JP2000192146A (en) Method for cooling steel plate and device therefor
JP3287254B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP2019010676A (en) Method of manufacturing hot rolled steel sheet
JP3287253B2 (en) Cooling method for hot steel sheet
JP3800722B2 (en) Cooling method for high temperature steel sheet
JP3345774B2 (en) Method and apparatus for cooling high-temperature steel sheet
JP3633539B2 (en) Steel plate cooling method
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
JP3282713B2 (en) Cooling method for hot steel sheet
JP3277985B2 (en) High temperature steel plate cooling system
JP3304816B2 (en) Cooling method for hot steel sheet and cooling device for hot steel sheet
JP3173574B2 (en) High temperature steel plate cooling system
EP4052815B1 (en) Secondary cooling method for continuous cast strand
JP3978141B2 (en) Thick steel plate cooling method and cooling device
JP3284915B2 (en) High temperature steel plate cooling system
JPS5944367B2 (en) Water quenching continuous annealing method
JP3284911B2 (en) High temperature steel plate cooling system
JP7356016B2 (en) Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees