JP2001164323A - Cleaning method for thick steel plate - Google Patents

Cleaning method for thick steel plate

Info

Publication number
JP2001164323A
JP2001164323A JP34928199A JP34928199A JP2001164323A JP 2001164323 A JP2001164323 A JP 2001164323A JP 34928199 A JP34928199 A JP 34928199A JP 34928199 A JP34928199 A JP 34928199A JP 2001164323 A JP2001164323 A JP 2001164323A
Authority
JP
Japan
Prior art keywords
cooling
temperature
plate
steel plate
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34928199A
Other languages
Japanese (ja)
Other versions
JP3777076B2 (en
Inventor
Takayuki Honda
貴之 本田
Tetsuya Nakano
鉄也 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34928199A priority Critical patent/JP3777076B2/en
Publication of JP2001164323A publication Critical patent/JP2001164323A/en
Application granted granted Critical
Publication of JP3777076B2 publication Critical patent/JP3777076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method for a thick steel plate by which stable cooling informing the material in the plate thickness direction and also preventing the increase of the deviation of the temperature in the plate after the completion of the cooling compared to the deviation of the temperature in the plate at the start of the cooling is executed, and its good shape is secured. SOLUTION: At the time of water-cooling a thick steel plate of high temperature subjected to hot rolling and having a temperature deviation in the plate, the thick steel plate is cooled at a cooling rate of 5 to 15 deg.C/sec till the surface temperature in the low temperature part reaches 630 to 530 deg.C and is successively cooled at a cooling rate of >=25 deg.C/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延された高
温厚鋼板のオンライン冷却方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-line cooling method for hot-rolled hot steel plates.

【0002】[0002]

【従来の技術】熱間圧延後の高温の鋼板をオンラインで
連続的に冷却し、高強度、高靭性の厚鋼板を製造するプ
ロセスが広く用いられている。この製造プロセスでは、
連続的な冷却により鋼材の組織制御を行なうため、合金
元素の低減や熱処理工程の省略が可能であり、製造コス
トの低減効果が大きい。また合金元素の低減は溶接性を
向上させ、予熱の低減や大入熱溶接の適用などを可能と
し、溶接作業効率が大幅に改善されている。
2. Description of the Related Art A process for continuously cooling a hot-rolled high-temperature steel sheet online to produce a high-strength, high-toughness thick steel sheet is widely used. In this manufacturing process,
Since the structure of the steel material is controlled by continuous cooling, it is possible to reduce the number of alloying elements and omit the heat treatment step, thereby greatly reducing the production cost. In addition, the reduction of alloy elements improves weldability, enables reduction of preheating, application of large heat input welding, and the like, and greatly improves welding work efficiency.

【0003】しかし、熱間圧延後の高温の鋼板をオンラ
インで冷却する際、特に板厚が大きく高強度の特性が要
求される場合、冷却開始から終了まで一定の冷却水量を
注水する方法では、板厚方向の表層部の冷却速度が大き
く、中心部の冷却速度が小さくなり、両者間で速度差が
生じるため板厚方向に強度分布、すなわち材質差が発生
する課題があった。
[0003] However, when cooling a hot steel plate after hot rolling online, especially when the thickness is large and high strength characteristics are required, a method of injecting a constant amount of cooling water from the start to the end of cooling is used. The cooling rate of the surface layer in the thickness direction is large, the cooling rate of the central part is small, and there is a speed difference between the two. Therefore, there is a problem that a strength distribution, that is, a material difference occurs in the thickness direction.

【0004】このような課題を解決するために、特開昭
63−20410号公報のように、0.05〜0.50
3 /m2 minの低水量密度で冷却を開始し、その後
0.30〜1.50m3 /m2 minの水量密度になる
まで徐々に注水量を増加させながら冷却を行い、板厚方
向の強度差の小さい厚鋼板を製造する方法が提案されて
いる。
In order to solve such a problem, as disclosed in JP-A-63-20410, 0.05 to 0.50
Cooling is started at a low water density of m 3 / m 2 min, and then cooling is performed while gradually increasing the amount of injected water until the water density reaches 0.30 to 1.50 m 3 / m 2 min. A method for producing a thick steel plate having a small difference in strength has been proposed.

【0005】しかしながら水冷時の鋼板は、図1に示す
ように熱伝達係数が表面温度600℃付近から200℃
付近にかけて急激にばらつきながら増加する冷却特性を
有しているため、冷却が進行し上記の温度域で冷却する
につれ板内での熱流束の偏差が増大し、板内温度偏差が
拡大する傾向の特性を有する。このため、前記公報の様
に、冷却の進行と共に徐々に水量密度を増加させる方法
では、上記600℃付近〜200℃の温度範囲での冷却
時間が長くなるため、鋼板全表面に亘って冷却速度を制
御し、抜熱量を増加させながら安定して冷却することは
非常に困難である。加えて、一般的に冷却開始の時点で
表面温度は板内でばらついているため、冷却開始以降、
板内で冷却速度及び冷却温度履歴の偏差が更に増大し、
その結果、熱応力による形状変化が生じ矯正作業が必要
となる場合が多い。
However, the water-cooled steel sheet has a heat transfer coefficient from a surface temperature of around 600 ° C. to 200 ° C. as shown in FIG.
Because it has a cooling characteristic that increases with a sudden variation over the vicinity, as the cooling progresses and the cooling in the above temperature range, the deviation of the heat flux in the plate increases, and the temperature deviation in the plate tends to increase. Has characteristics. For this reason, in the method of gradually increasing the water density with the progress of cooling as described in the above-mentioned publication, the cooling time in the temperature range of around 600 ° C. to 200 ° C. becomes longer, so that the cooling rate is increased over the entire surface of the steel sheet. And it is very difficult to stably cool while increasing the heat removal. In addition, since the surface temperature generally varies within the plate at the start of cooling, after the start of cooling,
The deviation of the cooling rate and cooling temperature history in the plate further increases,
As a result, a shape change due to thermal stress occurs and correction work is often required.

【0006】[0006]

【発明が解決しようとする課題】本発明は、板厚方向の
材質を均一にし、かつ、冷却終了後の板内温度偏差が冷
却開始時の板内温度偏差より増大しないような安定した
冷却を行い、良好な形状を確保するための厚鋼板の冷却
方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention provides stable cooling such that the material in the sheet thickness direction is made uniform and the temperature difference in the sheet after the completion of cooling does not increase more than the temperature difference in the sheet at the start of cooling. An object of the present invention is to provide a method for cooling a thick steel plate for ensuring a good shape.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであって、その手段は、熱間で
圧延され、板内に表面温度偏差を有した高温の厚鋼板を
水冷する方法において、前記厚鋼板を、低温部の表面温
度が630〜530℃になるまで5℃/sec以上15
℃/sec以下の冷却速度で冷却した後、25℃/se
c以上の冷却速度で冷却する方法である。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the means comprises a hot-rolled hot steel plate having a surface temperature deviation within the plate. In the method of water cooling, the thick steel plate is cooled at a temperature of 5 ° C./sec or more until the surface temperature of the low-temperature portion reaches 630 to 530 ° C.
After cooling at a cooling rate of not more than 25 ° C / sec,
This is a method of cooling at a cooling rate of c or more.

【0008】[0008]

【発明の実施の形態】高張力鋼板を製造するに当たり、
高温の厚鋼板をオンラインで水冷する場合、一般的に表
面温度は800℃前後から400℃〜常温の範囲迄冷却
するものである。図1は冷却温度域の鋼板表面温度と熱
伝達係数の関係を示した図であるが、熱伝達係数の増減
方向に応じて約200℃の表面温度を境に二つの温度領
域に分割できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In producing a high-strength steel sheet,
When a hot steel plate is water-cooled on-line, the surface temperature is generally cooled from around 800 ° C. to a range of 400 ° C. to normal temperature. FIG. 1 is a diagram showing the relationship between the steel sheet surface temperature and the heat transfer coefficient in the cooling temperature range. The temperature can be divided into two temperature ranges at a surface temperature of about 200 ° C. according to the direction of increase and decrease of the heat transfer coefficient.

【0009】表面温度800℃付近から200℃付近の
領域は、表面温度が低温であるほど熱伝達係数が増加す
る領域で、一般的に遷移沸騰域と呼ばれている。この遷
移沸騰域では表面温度が低温であるほど冷却能が高くな
るため、板内に温度偏差を有している場合、冷却が進行
するにつれ、温度偏差は拡大する。一方、表面温度が2
00℃付近から常温の低温領域は、表面温度が低温であ
るほど熱伝達係数が減少する領域で、一般的に核沸騰域
と呼ばれている。この核沸騰域では遷移沸騰域の現象と
は逆で、温度偏差は収束する。
The region where the surface temperature is around 800 ° C. to 200 ° C. is a region where the heat transfer coefficient increases as the surface temperature becomes lower, and is generally called a transition boiling region. In this transition boiling region, the lower the surface temperature is, the higher the cooling capacity is. Therefore, if the plate has a temperature deviation, the temperature deviation increases as the cooling proceeds. On the other hand, if the surface temperature is 2
The low temperature region from around 00 ° C. to room temperature is a region where the heat transfer coefficient decreases as the surface temperature decreases, and is generally called a nucleate boiling region. In the nucleate boiling region, the temperature deviation converges, contrary to the phenomenon in the transition boiling region.

【0010】このような冷却特性を考慮すると、冷却む
らの少ない安定した冷却を行なうためには、可能な限り
遷移沸騰域、その中でも特に熱伝達係数が急激に増大し
ばらつきが大きくなる600〜200℃付近の温度域を
短時間で通過、つまり大きな冷却速度で鋼板表面温度を
急降下させ、200℃以下の核沸騰域で冷却を行なうこ
とが望ましいことがわかる。
In consideration of such cooling characteristics, in order to perform stable cooling with less cooling unevenness, the transition boiling range, especially the heat transfer coefficient, among them, particularly rapidly increases, and the dispersion becomes large. It can be seen that it is desirable to pass through the temperature range around ℃ in a short time, that is, to rapidly lower the steel sheet surface temperature at a large cooling rate and perform cooling in the nucleate boiling range of 200 ° C. or less.

【0011】しかしながら、前記の様に、冷却開始から
終了までの全てにおいて冷却装置からの給水量を一律に
増加させ冷却する場合、板厚方向表層部のみ急速に冷却
され板厚方向に急峻な温度分布が形成され、遷移沸騰域
を短時間で通過して冷却むらが少なく比較的良好な形状
が確保できるものの、表層部における冷却開始から変態
完了までの冷却速度が過大であるため、中心部に比較し
て表層部が急速に焼入され強度が増大すると共に靱性が
劣化し、その結果、板厚方向の材質偏差が増大する。
However, as described above, when cooling is performed by uniformly increasing the amount of water supplied from the cooling device during the entire period from the start to the end of cooling, only the surface layer in the thickness direction is rapidly cooled, and the temperature is sharply increased in the thickness direction. Distribution is formed, and it passes through the transition boiling region in a short time and cooling unevenness is small and a relatively good shape can be secured, but since the cooling rate from the start of cooling to the completion of transformation in the surface layer is excessive, it is In comparison, the surface layer portion is rapidly quenched, the strength is increased, and the toughness is deteriorated. As a result, the material deviation in the thickness direction increases.

【0012】したがって、板厚方向の材質偏差を低減す
るには表層部の強度増大を防止することが必要であり、
そのためには表層部の変態完了までの冷却速度を小さく
する必要がある。
Therefore, in order to reduce the material deviation in the thickness direction, it is necessary to prevent the strength of the surface layer from increasing.
For that purpose, it is necessary to reduce the cooling rate until the transformation of the surface layer is completed.

【0013】そこで本発明者らは、冷却開始段階を緩冷
却し、その後、続いて急冷却する方法を発案し、種々の
実験、シミュレーションを実施した結果、この方法によ
って所望の特性、すなわち板厚方向の材質均一化と冷却
むら低減による鋼板平坦度確保の両立が可能であること
を確認した。本発明において冷却速度、及び冷却速度を
変更する鋼板表面温度を限定した理由を以下に説明す
る。
The inventors of the present invention devised a method of slowly cooling the cooling start stage and then rapidly cooling it, and conducted various experiments and simulations. It has been confirmed that it is possible to achieve both the uniformity of the material in the direction and the flatness of the steel sheet by reducing the cooling unevenness. The reason for limiting the cooling rate and the steel sheet surface temperature at which the cooling rate is changed in the present invention will be described below.

【0014】冷却開始時における冷却速度を15℃/s
ec以下とした理由は、15℃/secより大きい冷却
速度では鋼板表層部の強度が大きくなり、冷却後半で冷
却速度を大きくしても中心部の強度を表層部と同程度ま
で上昇させることが困難で、結果的に板厚方向に材質偏
差が発生するためである。また、5℃/sec以上とし
た理由は、5℃/secより小さい冷却速度では冷却時
間が長くなり、生産性が悪化すると共に高張力厚鋼板と
しての強度要求値490N/mm2 が得られないためで
ある。
The cooling rate at the start of cooling is 15 ° C./s
The reason for setting it to ec or less is that at a cooling rate higher than 15 ° C./sec, the strength of the surface layer of the steel sheet increases, and even if the cooling rate is increased in the latter half of cooling, the strength of the central part can be increased to the same level as the surface layer. This is because it is difficult and consequently a material deviation occurs in the thickness direction. The reason for setting the cooling rate to 5 ° C./sec or more is that a cooling rate longer than 5 ° C./sec increases the cooling time, lowers productivity, and does not provide the required strength value of 490 N / mm 2 as a high-tensile steel plate. That's why.

【0015】次に冷却後半において25℃/sec以上
の冷却速度で冷却するとした理由を説明する。一般的に
冷却前の鋼板の表面温度は板内でばらついている。これ
は、スラブの加熱段階で生じた温度偏差、熱間圧延中の
デスケーリングによる温度偏差、鋼板四周部の温度低下
などによるものである。図2は、このような板内温度偏
差を有した鋼板を冷却する際に、途中で冷却速度を一気
に増加させた場合の板内の高温部分と低温部分の熱流
束、つまり単位時間、単位面積あたりの抜熱量の推移を
表したものである。ここで熱流束は(1)式で表され
る。 q=α×(Ta−Tw) ・・・・・(1) ただし、q:熱流束〔W/m2 〕、α:熱伝達係数〔W
/(m2 K)〕、Ta:鋼板表面温度、Tw:水の飽和
温度である。また、図1に示したように鋼板表面温度に
応じて熱伝達係数の値は異なるため、板内の高温部分と
低温部分では熱流束が異なる。その結果、冷却前半の遷
移沸騰域では高温部分よりも低温部分の熱流束が大き
く、板内温度偏差は拡大に向かっている。
Next, the reason why cooling is performed at a cooling rate of 25 ° C./sec or more in the latter half of cooling will be described. Generally, the surface temperature of a steel sheet before cooling varies within the sheet. This is due to a temperature deviation generated in the heating stage of the slab, a temperature deviation due to descaling during hot rolling, a temperature drop in the four peripheral portions of the steel sheet, and the like. FIG. 2 shows the heat flux of the high temperature part and the low temperature part in the plate when the cooling rate is increased at a stretch when cooling the steel plate having such a plate temperature deviation, that is, the unit time and the unit area. It shows the transition of heat removal per area. Here, the heat flux is represented by equation (1). q = α × (Ta−Tw) (1) where q: heat flux [W / m 2 ], α: heat transfer coefficient [W
/ (M 2 K)], Ta: steel sheet surface temperature, Tw: water saturation temperature. Further, as shown in FIG. 1, since the value of the heat transfer coefficient differs according to the steel sheet surface temperature, the heat flux differs between a high temperature portion and a low temperature portion in the plate. As a result, in the transition boiling region in the first half of cooling, the heat flux in the low temperature portion is larger than that in the high temperature portion, and the temperature deviation in the plate is increasing.

【0016】冷却途中の冷却速度を増加させたタイミン
グで急激に熱流束が増加し、その後、熱流束はピークを
迎え、高温部分と低温部分の熱流束が逆転する。これは
表面温度がおおよそ200℃以下まで冷却され核沸騰域
に突入したことを示しており、低温部分よりも高温部分
の熱流束が大きく、板内温度偏差は収束に向かってい
る。
The heat flux rapidly increases at the timing when the cooling rate is increased during the cooling, and thereafter, the heat flux reaches a peak, and the heat flux in the high temperature portion and the low temperature portion is reversed. This indicates that the surface temperature has been cooled to about 200 ° C. or less and has entered the nucleate boiling region. The heat flux in the high temperature portion is larger than that in the low temperature portion, and the in-plate temperature deviation is converging.

【0017】図3に示すように、高温部分の熱流束と低
温部分の熱流束で囲まれた面積は両者間の抜熱量差を表
している。それぞれの面積をΔJ1 、ΔJ2 、ΔJ3
すると、ΔJ1 及びΔJ2 は温度偏差を拡大させる方向
の抜熱量差、ΔJ3 は温度偏差を収束させる方向の抜熱
量差であるから、冷却終了後の板内温度偏差を冷却開始
時の板内温度偏差より悪化させないためには、 ΔJ1 +ΔJ2 ≦ΔJ3 ・・・・・(2) の条件が必要となる。種々の条件でシミュレーションし
た結果、この(2)式を満足するためには、本発明のよ
うに冷却途中で急速に冷却速度を向上して、表面温度を
急降下させることにより短時間で熱流束をピークに到達
させ、ΔJ3 の面積を大きく確保する必要があり、冷却
後半で少なくとも25℃/sec以上の冷却速度で冷却
する必要があることが判明した。なお、上限は好ましく
は70℃/secである。
As shown in FIG. 3, the area surrounded by the heat flux of the high-temperature portion and the heat flux of the low-temperature portion represents a difference in heat removal between the two. Assuming that the respective areas are ΔJ 1 , ΔJ 2 , and ΔJ 3 , ΔJ 1 and ΔJ 2 are the heat removal amounts in the direction of increasing the temperature deviation, and ΔJ 3 is the heat removal amount in the direction of converging the temperature deviation. In order not to make the temperature difference in the plate after the completion worse than the temperature difference in the plate at the start of cooling, the condition of ΔJ 1 + ΔJ 2 ≦ ΔJ 3 (2) is required. As a result of a simulation under various conditions, in order to satisfy the expression (2), the heat flux is rapidly increased during the cooling as in the present invention, and the heat flux is reduced in a short time by rapidly decreasing the surface temperature. It was found that it was necessary to reach the peak, to secure a large area of ΔJ 3 , and to cool at a cooling rate of at least 25 ° C./sec in the latter half of cooling. The upper limit is preferably 70 ° C./sec.

【0018】前記従来法のように、冷却完了まで冷却速
度を一定のまま、あるいは徐々に増加させる方法では、
冷却中に板厚方向に急峻な温度分布を形成できず、なだ
らかな温度分布で鋼板全体が冷却されるため、表面温度
が核沸騰域に到達する前あるいは到達した付近で中心部
は既に要求される強度を十分確保可能なまで冷却されて
おり、それ以上冷却させて表面温度を低下させると強度
オーバーになるだけでなく靱性が劣化する。したがっ
て、核沸騰域で十分な冷却が行えず、図4に示すように
温度偏差を収束させる方向の抜熱量差ΔJ3 が存在しな
い、あるいは小さい結果となり、冷却完了後の板内温度
偏差は冷却開始の状態から拡大したままで、良好な形状
を確保するのは困難である。
In the conventional method, the cooling rate is kept constant or gradually increased until the cooling is completed.
A steep temperature distribution cannot be formed in the thickness direction during cooling, and the entire steel sheet is cooled with a gentle temperature distribution, so the center is already required before or near the surface temperature reaching the nucleate boiling region. It is cooled until a sufficient strength can be ensured, and if it is further cooled to lower the surface temperature, not only the strength is exceeded but also the toughness is deteriorated. Therefore, sufficient cooling cannot be performed in the nucleate boiling region, and as shown in FIG. 4, there is no or small heat removal amount difference ΔJ 3 in the direction of converging the temperature deviation. It is difficult to ensure a good shape while expanding from the starting state.

【0019】冷却速度を変更するタイミングを板内最低
表面温度が630℃から530℃の温度範囲とした理由
を以下に説明する。
The reason why the timing for changing the cooling rate is set so that the minimum surface temperature in the plate is in the temperature range of 630 ° C. to 530 ° C. will be described below.

【0020】冷却後の板内温度偏差を小さく抑えるため
には、温度偏差を拡大させる方向の抜熱量差ΔJ1 +Δ
2 が最小になるようなタイミングで冷却速度を変更す
ることが最も効果的である。例えば、変更タイミングが
遅く、表面温度が低温になった場合、図5に示すように
ΔJ1 の面積が増大する。これは、冷却初期の表面温度
が高温の時は表面温度に対する熱伝達係数の変化が小さ
く、高温部分と低温部分の熱流束差が小さいものの、比
較的小さい冷却速度で冷却するため冷却前半の経過時間
が長くなるためである。逆に変更タイミングが早く、表
面温度が高温であった場合、図6に示すようにΔJ2
面積が増大する。これは、冷却速度を大きくした場合、
表面温度に対する熱伝達係数の変化が大きくなるためで
ある。いずれの場合も、ΔJ1 +ΔJ2 を小さくするた
めには相応しくない。
In order to reduce the temperature deviation in the plate after cooling, the difference in heat removal ΔJ 1 + Δ in the direction of increasing the temperature deviation.
It is most effective to J 2 changes the cooling rate at a timing so as to minimize. For example, when the change timing is late and the surface temperature becomes low, the area of ΔJ 1 increases as shown in FIG. This is because when the surface temperature in the initial stage of cooling is high, the change in the heat transfer coefficient with respect to the surface temperature is small, and although the heat flux difference between the high-temperature portion and the low-temperature portion is small, the cooling is performed at a relatively low cooling rate. This is because the time becomes longer. Conversely, when the change timing is early and the surface temperature is high, the area of ΔJ 2 increases as shown in FIG. This means that if you increase the cooling rate,
This is because the change in the heat transfer coefficient with respect to the surface temperature increases. In any case, it is not appropriate to reduce ΔJ 1 + ΔJ 2 .

【0021】これらのことを考慮し、種々の条件でシミ
ュレーションを行なった結果、ΔJ1+ΔJ2 は図7に
示すように表面温度に対して変化し、板厚、冷却開始温
度、冷却開始時の冷却速度などの条件に大きく左右され
ず、580℃付近で最小となることが判明した。
In consideration of these facts, a simulation was conducted under various conditions. As a result, ΔJ 1 + ΔJ 2 changed with respect to the surface temperature as shown in FIG. It was found that the temperature became minimum around 580 ° C. without being largely influenced by conditions such as the cooling rate.

【0022】このシミュレーション結果に基づいて実験
を行い、効果の確認をしたところ、630℃から530
℃の温度範囲であれば冷却後の板内温度偏差に関して有
意差は見られず、良好な形状が得られた。このような結
果になったのは、シミュレーションで利用した熱伝達係
数は平均値としての熱伝達係数であり、実際にはスケー
ル厚や粗度など表面性状の影響で熱伝達係数が変化し、
ΔJ1 +ΔJ2 を最小にする表面温度が高温側及び低温
側にばらつくためと推定される。また、上記の温度範囲
内で変化する200kJ/m2 程度の抜熱量差が及ぼす
影響は、板内温度偏差としては5℃にも満たない程度で
あり、形状が大きく変化するほどの影響ではない。
An experiment was conducted based on the simulation results to confirm the effect.
In the temperature range of ° C., no significant difference was observed in the temperature deviation in the plate after cooling, and a good shape was obtained. The result is that the heat transfer coefficient used in the simulation is the average value of the heat transfer coefficient, and the heat transfer coefficient actually changes due to the surface properties such as scale thickness and roughness,
It is estimated that the surface temperature that minimizes ΔJ 1 + ΔJ 2 varies between the high temperature side and the low temperature side. In addition, the influence of the difference in the amount of heat removal of about 200 kJ / m 2 that changes within the above temperature range is less than 5 ° C. as the temperature deviation in the plate, and is not an effect that the shape changes greatly. .

【0023】ただし、表面温度が上記温度範囲の下限温
度530℃より低温側になると熱伝達係数が急激にばら
つきながら増大し始めるため、図7に示すように温度偏
差を拡大させる抜熱量ΔJ1 +ΔJ2 が急増する。この
ことから、板内温度偏差を拡大させないように冷却する
ためには、冷却速度変更温度は板内において、温度の低
い部位(低温部)、好ましくは最低温度部位の温度を基
準にして決定する必要がある。また、この板内温度の検
知方法としては、圧延完了後の板内温度分布をライン上
に設置されたサーモトレーサーにて測定するのがよい。
冷却中の温度履歴は、冷却前にサーモトレーサーにより
測定した板内温度分布をもとに伝熱計算により推定し、
その計算結果をもとに冷却速度の変更タイミングは決定
される。
[0023] However, since the surface temperature begins to increase while the variation abruptly heat transfer coefficient becomes a low temperature side than the lower limit temperature 530 ° C. of the temperature range, the heat removing amount .DELTA.J 1 + .DELTA.J to enlarge the temperature difference, as shown in FIG. 7 2 surges. From this, in order to perform cooling so as not to enlarge the temperature deviation in the plate, the cooling speed change temperature is determined based on the temperature of a low temperature portion (low temperature portion), preferably the lowest temperature portion in the plate. There is a need. As a method of detecting the temperature in the sheet, it is preferable to measure the temperature distribution in the sheet after the completion of rolling by using a thermo tracer installed on the line.
Temperature history during cooling is estimated by heat transfer calculation based on the temperature distribution in the plate measured by thermo tracer before cooling,
The timing of changing the cooling rate is determined based on the calculation result.

【0024】また、冷却速度の変更温度が630℃から
530℃の範囲内であれば、板厚方向に均一な材質分布
が得られた。これは、冷却速度変更タイミング付近で鋼
板表層部の変態はほぼ終了しているが、鋼板中心部まで
抜熱は十分に行なわれていないため中心部の変態は未だ
始まっておらず、その後、冷却速度を増加させ強冷却を
行なうと鋼板中心部での変態を促進させ、表層部と同様
な組織が得られるためである。
When the temperature at which the cooling rate was changed was in the range of 630 ° C. to 530 ° C., a uniform material distribution was obtained in the thickness direction. This is because the transformation of the surface layer of the steel sheet has been almost completed near the timing of changing the cooling rate, but since the heat has not been sufficiently extracted to the center of the steel sheet, the transformation of the central part has not yet begun. This is because, when the speed is increased and strong cooling is performed, transformation at the center of the steel sheet is promoted, and a structure similar to the surface layer is obtained.

【0025】[0025]

【実施例】本発明の実施例を図8、表1、2を参照して
以下に説明する。
An embodiment of the present invention will be described below with reference to FIG.

【0026】図8は本発明の一実施例に係る厚鋼板の冷
却方法を適用した設備の全体概念図である。この図に示
すように、加熱炉1にて加熱されたスラブ2は、熱間で
圧延機3によって圧延され、厚鋼板4となる。ライン上
に設置されたサーモトレーサー5で厚鋼板の温度分布を
測定し、その後、ホットレベラー6を経て、オンライン
冷却装置7で連続的に冷却される。
FIG. 8 is an overall conceptual diagram of equipment to which the method for cooling a thick steel plate according to one embodiment of the present invention is applied. As shown in this figure, a slab 2 heated in a heating furnace 1 is hot rolled by a rolling mill 3 to become a thick steel plate 4. The temperature distribution of the thick steel plate is measured by the thermotracer 5 installed on the line, and then the steel plate is cooled continuously by the online cooling device 7 via the hot leveler 6.

【0027】本実施例で使用した厚鋼板の化学成分を表
1に示す。また、表2に冷却条件、機械的性質、断面硬
度差、冷却後の坂内温度偏差を示す。冷却条件の中で示
した冷速変更表面温度は、板内での最低温度を表してお
り、冷却速度は冷却装置から注水される水量を変化させ
ることで変更した。また断面硬度差は、板厚方向の最高
硬度と最低硬度の差であり、板内温度偏差は板内におけ
る最高温度と最低温度の差である。
Table 1 shows the chemical components of the thick steel plate used in this example. Table 2 shows cooling conditions, mechanical properties, differences in cross-sectional hardness, and slope temperature deviations after cooling. The cooling speed change surface temperature shown in the cooling conditions represents the lowest temperature in the plate, and the cooling speed was changed by changing the amount of water injected from the cooling device. The difference in cross-sectional hardness is the difference between the maximum hardness and the minimum hardness in the thickness direction, and the temperature deviation in the plate is the difference between the maximum temperature and the minimum temperature in the plate.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】実施例1〜3は本発明で限定された冷却条
件を適用した例で、機械的性質、断面硬度差、板内温度
偏差、鋼板形状共に良好であり、従来技術では困難であ
った材質と形状を両立が実現できている。
Examples 1 to 3 are examples in which the cooling conditions limited by the present invention are applied, and the mechanical properties, the difference in cross-sectional hardness, the temperature deviation in the plate, and the shape of the steel plate are all good, which is difficult with the prior art. Both material and shape can be realized.

【0031】比較例1は冷却開始時の冷却速度が本発明
範囲の下限を外れた例で、機械的性質においてTS≧4
90N/mm2 の要求値を満足できなかった。比較例2
は冷却開始時の冷却速度が本発明範囲の上限を外れた例
で、断面硬度差が増加すると共に板内温度偏差も大き
く、鋼板に変形が生じた。比較例3は冷却後半の冷却速
度が本発明範囲の下限を外れた場合、比較例4は冷却前
半後半共に冷却速度の条件が本発明範囲より外れた例
で、両者共に板内温度偏差低減効果が不十分で良好な形
状が得られなかった。比較例5は冷却速度を変更する際
の鋼板表面温度が本発明範囲の上限を外れた例で、表層
部の硬度が増大し、板厚方向に均一な材質が得られなか
った。比較例6は比較例5とは逆に冷却速度を変更する
際の鋼板表面温度が本発明範囲の下限を外れた例で、板
内温度偏差が大きくなり、鋼板に変形が生じた。
Comparative Example 1 is an example in which the cooling rate at the start of cooling is out of the lower limit of the range of the present invention.
The required value of 90 N / mm 2 could not be satisfied. Comparative Example 2
In the example, the cooling rate at the start of cooling was out of the upper limit of the range of the present invention. The difference in cross-sectional hardness increased, the temperature deviation in the plate was large, and the steel plate was deformed. Comparative Example 3 is an example in which the cooling rate in the latter half of the cooling is below the lower limit of the range of the present invention, and Comparative Example 4 is an example in which the condition of the cooling rate is out of the range of the present invention in both the first and second half of the cooling. Was insufficient and a good shape could not be obtained. Comparative Example 5 was an example in which the surface temperature of the steel sheet when the cooling rate was changed was outside the upper limit of the range of the present invention. The hardness of the surface layer increased, and a uniform material could not be obtained in the thickness direction. In Comparative Example 6, contrary to Comparative Example 5, the steel sheet surface temperature at the time of changing the cooling rate was out of the lower limit of the range of the present invention, the temperature deviation in the steel sheet was large, and the steel sheet was deformed.

【0032】また、従来例1は冷却開始から終了まで徐
々に冷却速度を大きくした例で、断面硬度差は小さく材
質面では良好な結果が得られているものの、板内温度偏
差が増大し鋼板に著しい変形が生じた。
Conventional example 1 is an example in which the cooling rate is gradually increased from the start to the end of cooling. Although the difference in cross-sectional hardness is small and good results are obtained in terms of material, the temperature deviation in the plate increases and the steel plate Marked deformation.

【0033】[0033]

【発明の効果】以上に説明したように本発明を実施する
ことにより、高温鋼板全表面に亘って冷却むらの少ない
安定した冷却を行い、板厚方向の材質差が小さく、かつ
形状の良好な厚鋼板を製造することが可能となる。
As described above, by carrying out the present invention, stable cooling with less cooling unevenness over the entire surface of the high-temperature steel sheet is achieved, the material difference in the sheet thickness direction is small, and the shape is good. Thick steel plates can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板表面温度と熱伝達係数の関係を示したグラ
フである。
FIG. 1 is a graph showing a relationship between a steel sheet surface temperature and a heat transfer coefficient.

【図2】冷却過程の熱流束の変化を表したグラフであ
る。
FIG. 2 is a graph showing a change in heat flux during a cooling process.

【図3】高温部分と低温部分の抜熱量差を表したグラフ
である。
FIG. 3 is a graph showing a difference in heat removal between a high-temperature portion and a low-temperature portion.

【図4】一定の冷却速度で冷却した場合の熱流束の変化
を表したグラフである。
FIG. 4 is a graph showing a change in heat flux when cooling is performed at a constant cooling rate.

【図5】冷却速度変更温度が低温である場合の熱流束の
変化を表したグラフである。
FIG. 5 is a graph showing a change in heat flux when the cooling rate change temperature is low.

【図6】冷却速度変更温度が高温である場合の熱流束の
変化を表したグラフである。
FIG. 6 is a graph showing a change in heat flux when the cooling rate change temperature is high.

【図7】表面温度と温度偏差拡大方向の抜熱量差の関係
を表したグラフである。
FIG. 7 is a graph showing a relationship between a surface temperature and a difference in a heat removal amount in a direction in which a temperature deviation increases.

【図8】本発明の一実施例に係る厚鋼板の冷却方法を適
用した設備の全体概念図である。
FIG. 8 is an overall conceptual diagram of equipment to which the method for cooling a thick steel plate according to one embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

1:加熱炉、2:スラブ、3:圧延機、4:厚鋼板、
5:サーモトレーサー、6:ホットレベラー、7:オン
ライン冷却装置
1: heating furnace, 2: slab, 3: rolling mill, 4: steel plate,
5: Thermo tracer, 6: Hot leveler, 7: Online cooling device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K034 AA02 AA10 BA05 CA01 DA06 DB03 FA05 4K043 AA01 BA03 BA04 CB01 EA07 FA03 FA13 GA06 GA10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K034 AA02 AA10 BA05 CA01 DA06 DB03 FA05 4K043 AA01 BA03 BA04 CB01 EA07 FA03 FA13 GA06 GA10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間で圧延され、板内に表面温度偏差を
有した高温の厚鋼板を水冷する方法において、前記厚鋼
板を、低温部の表面温度が630〜530℃になるまで
5℃/sec以上15℃/sec以下の冷却速度で冷却
した後、25℃/sec以上の冷却速度で冷却すること
を特徴とする厚鋼板の冷却方法。
1. A method for water-cooling a high-temperature steel plate which is hot-rolled and has a surface temperature deviation in the plate, wherein the steel plate is cooled at 5 ° C. until the surface temperature of a low-temperature portion becomes 630-530 ° C. A cooling method for a thick steel plate, comprising: cooling at a cooling rate of 25 ° C./sec or more after cooling at a cooling rate of 15 ° C./sec or more.
JP34928199A 1999-12-08 1999-12-08 Thick steel plate cooling method Expired - Lifetime JP3777076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34928199A JP3777076B2 (en) 1999-12-08 1999-12-08 Thick steel plate cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34928199A JP3777076B2 (en) 1999-12-08 1999-12-08 Thick steel plate cooling method

Publications (2)

Publication Number Publication Date
JP2001164323A true JP2001164323A (en) 2001-06-19
JP3777076B2 JP3777076B2 (en) 2006-05-24

Family

ID=18402707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34928199A Expired - Lifetime JP3777076B2 (en) 1999-12-08 1999-12-08 Thick steel plate cooling method

Country Status (1)

Country Link
JP (1) JP3777076B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110661A1 (en) * 2003-06-13 2004-12-23 Jfe Steel Corporation Device and method for controllably cooling thick steel plate
JP2008068267A (en) * 2006-09-12 2008-03-27 Kobe Steel Ltd Method of cooling hot-rolled steel sheet
CN100464886C (en) * 2003-06-13 2009-03-04 杰富意钢铁株式会社 Device and method for controllably cooling thick steel plate
WO2010131467A1 (en) * 2009-05-13 2010-11-18 新日本製鐵株式会社 Cooling method and cooling device for hot-rolled steel sheets
CN108486341A (en) * 2018-04-16 2018-09-04 江苏省沙钢钢铁研究院有限公司 The manufacturing method of steel plate

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110661A1 (en) * 2003-06-13 2004-12-23 Jfe Steel Corporation Device and method for controllably cooling thick steel plate
KR100715264B1 (en) * 2003-06-13 2007-05-04 제이에프이 스틸 가부시키가이샤 Device and method for controllably cooling thick steel plate
CN100464886C (en) * 2003-06-13 2009-03-04 杰富意钢铁株式会社 Device and method for controllably cooling thick steel plate
JP2008068267A (en) * 2006-09-12 2008-03-27 Kobe Steel Ltd Method of cooling hot-rolled steel sheet
CN102421544A (en) * 2009-05-13 2012-04-18 新日本制铁株式会社 Cooling method and cooling device for hot-rolled steel sheets
JP4903913B2 (en) * 2009-05-13 2012-03-28 新日本製鐵株式会社 Method and apparatus for cooling hot-rolled steel sheet
WO2010131467A1 (en) * 2009-05-13 2010-11-18 新日本製鐵株式会社 Cooling method and cooling device for hot-rolled steel sheets
US8414716B2 (en) 2009-05-13 2013-04-09 Nippon Steel & Sumitomo Metal Corporation Cooling method of hot-rolled steel strip
TWI393598B (en) * 2009-05-13 2013-04-21 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel strip cooling method and hot-rolled steel strip cooling device
CN102421544B (en) * 2009-05-13 2013-06-05 新日铁住金株式会社 Cooling method and cooling device for hot-rolled steel sheets
US8920708B2 (en) 2009-05-13 2014-12-30 Nippon Steel & Sumitomo Metal Corporation Cooling device of hot-rolled steel strip
CN108486341A (en) * 2018-04-16 2018-09-04 江苏省沙钢钢铁研究院有限公司 The manufacturing method of steel plate
CN108486341B (en) * 2018-04-16 2019-12-03 江苏省沙钢钢铁研究院有限公司 The manufacturing method of steel plate

Also Published As

Publication number Publication date
JP3777076B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP2001164323A (en) Cleaning method for thick steel plate
JP3159372B2 (en) Mold and quenching method
JP3656707B2 (en) Controlled cooling method for hot rolled steel sheet
JP4289480B2 (en) Straightening method to obtain steel plate with good shape with little variation in residual stress
JP4066652B2 (en) Heat treatment method and apparatus for steel
JP5482539B2 (en) Determination of furnace temperature of continuous heat treatment furnace
CN110860558B (en) Rolling method of ultra-wide and ultra-thick steel containment nuclear power steel
JPH0576524B2 (en)
JP5609063B2 (en) Steel bar rolling method
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JPS5944367B2 (en) Water quenching continuous annealing method
JP2003326302A (en) Method and device for manufacturing thick steel plate
JP7141995B2 (en) Hot-rolled steel sheet manufacturing method and hot-rolled steel sheet manufacturing system
JPH11286722A (en) Manufacture of steel plate
JP2002361311A (en) Method for cooling thick steel plate
JP2011092984A (en) Method for rolling bar steel
JPH07241613A (en) Method for controlling camber shape in width direction of steel plate
RU2650651C1 (en) Method of austenitic anticorrosion steel section hot rolled plates production
JPH0348250B2 (en)
JP4213567B2 (en) Wire manufacturing method
JP4333299B2 (en) Manufacturing method of high carbon steel sheet
JP4089607B2 (en) Heat treatment method for steel sheet
JP2003027136A (en) High-strength steel plate manufacturing method
JPH07238322A (en) Method for preventing surface cracking in steel slab
JPH0369967B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R151 Written notification of patent or utility model registration

Ref document number: 3777076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

EXPY Cancellation because of completion of term