JPH0871630A - Cooling method of high temperature metallic plate - Google Patents

Cooling method of high temperature metallic plate

Info

Publication number
JPH0871630A
JPH0871630A JP21614894A JP21614894A JPH0871630A JP H0871630 A JPH0871630 A JP H0871630A JP 21614894 A JP21614894 A JP 21614894A JP 21614894 A JP21614894 A JP 21614894A JP H0871630 A JPH0871630 A JP H0871630A
Authority
JP
Japan
Prior art keywords
cooling
width direction
metal plate
cooling water
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21614894A
Other languages
Japanese (ja)
Inventor
Naoki Nakada
直樹 中田
Nobuhiro Ito
伸宏 伊藤
Ichiro Maeda
一郎 前田
Hidetaka Takemura
英孝 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21614894A priority Critical patent/JPH0871630A/en
Publication of JPH0871630A publication Critical patent/JPH0871630A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve uniformity in the width direction of a material and to obtain a high quality product by moving a shield plate that shields cooling water in the direction of the arrow and thereby stepwise varying the shielding area by the shielding plate in each cooling zone in accordance with cooling conditions and the transporting speed of a metallic plate. CONSTITUTION: In this method, cooling water 6 is supplied from plural nozzles 5 arranged in the width direction of a high temp. metallic plate 1 that travels on a run out table, cooling the upper face or the lower face of the metallic plate 1. The means 2, which shields the cooling water 6 supplied directly to the end part in the width direction of the high temp. metallic plate 1, is arranged in plural numbers in the travelling direction inside a cooling zone; the area for shielding the cooling water is individually expanded/contracted in the width direction of the plate; and the cooling capacity is controlled in the width direction. Thus, a masking ratio is fixed for each shielding width of masking which is set in plural stages, the coiling temp. distribution is thereby obtained which is uniform in the width direction of the plate, and uniformity is improved in the width direction of the material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走行する高温金属板の
冷却に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cooling a hot metal plate which is running.

【0002】[0002]

【従来の技術】高温金属板の幅方向端部では、上下面の
外に側面からの放熱があるため、中央部に比べて温度が
低い。金属板端部で著しい過冷が起きると幅方向に均質
な製品を製造することが困難となり、品質向上の妨げと
なる。また高張力鋼板等では冷却時の幅方向中央部と端
部との温度差(端部の方が低い場合をさし以下端部過冷
と呼ぶ)によって耳割れと呼ばれる端部破断が発生し製
品の歩留りが低下する等の問題もある。
2. Description of the Related Art At a widthwise end portion of a high temperature metal plate, heat is radiated from side surfaces in addition to upper and lower surfaces, so that the temperature is lower than that at a central portion. If significant overcooling occurs at the edge of the metal plate, it becomes difficult to manufacture a product that is uniform in the width direction, which hinders quality improvement. In high-strength steel sheets, edge rupture called edge cracking occurs due to the temperature difference between the widthwise center and the edge (when the edge is lower, it is called edge overcooling) during cooling. There are also problems such as reduced product yield.

【0003】これに対し、特開平3−248709号公
報に開示されているように仕上圧延前にエッジヒータで
シートバー端部を誘導加熱する方法がある。この技術を
用いると、端部過冷が比較的小さい状態で仕上圧延を開
始することができるが、仕上圧延の途中から再び端部過
冷が再現されるため、これ以降のプロセスにおいても金
属板端部過冷の防止手段が必要である。
On the other hand, as disclosed in Japanese Patent Laid-Open No. 3-248709, there is a method of induction-heating the end portion of the sheet bar with an edge heater before finish rolling. Using this technology, finish rolling can be started in a state where the end supercooling is comparatively small, but since the end supercooling is reproduced again during the course of finish rolling, the metal plate can be used in the subsequent processes. A means for preventing end overcooling is required.

【0004】[0004]

【発明が解決しようとする課題】一方ランアウトテーブ
ルでは、特開昭59−24511号公報に開示されてい
るように、金属板端部に直接供給される冷却水を遮蔽し
て端部過冷を防ぐマスキングの技術があった。しかし、
従来のマスキングは端部過冷を緩和させるために経験的
に行われていたにすぎず、金属板幅方向温度の均一化を
積極的にねらったものではなかった。したがって、冷却
水を供給するゾーン(以下単に冷却ゾーンと呼ぶ)内で
の遮蔽幅は特に細かく分けて設定していなかった。
On the other hand, in the runout table, as disclosed in Japanese Patent Laid-Open No. 59-24511, the cooling water directly supplied to the end of the metal plate is shielded to prevent the end supercooling. There was masking technology to prevent it. But,
Conventional masking has been performed empirically only to alleviate overcooling at the edges, and was not intended to make the temperature in the width direction of the metal plate uniform. Therefore, the shielding width in the zone for supplying the cooling water (hereinafter simply referred to as the cooling zone) has not been set by dividing it into fine parts.

【0005】図2に冷却開始前の金属板端部の温度分布
を示した。図は横軸に端部からの距離をとり、縦軸に温
度をとってある。冷却開始前の金属板端部の温度分布
は、一般に図2の曲線11に示すようになで肩状であ
る。これより、マスキングを行わずに冷却すると図2の
曲線12に示すような分布が得られる。これに対し、従
来のように遮蔽幅14を一定としてマスキングを行う
と、金属板の最端部ではある程度過冷を防ぐことができ
るが遮蔽部の最内側部分では必要以上に遮蔽され、曲線
13のように幅方向温度分布の均一性をかえって乱して
しまう。
FIG. 2 shows the temperature distribution at the edge of the metal plate before the start of cooling. In the figure, the horizontal axis is the distance from the end, and the vertical axis is the temperature. The temperature distribution at the end of the metal plate before the start of cooling is generally shoulder-shaped as shown by the curve 11 in FIG. From this, the distribution as shown by the curve 12 in FIG. 2 is obtained by cooling without masking. On the other hand, if masking is performed with the shield width 14 kept constant as in the conventional case, overcooling can be prevented to some extent at the outermost end of the metal plate, but the innermost portion of the shield is shielded more than necessary, and the curve 13 As described above, the uniformity of the temperature distribution in the width direction is rather disturbed.

【0006】ところで搬送中の金属板はばたついたり蛇
行したりすることがあるが、先端がコイラーに噛み込ん
だ後は比較的安定に走行するので、このタイミングから
圧延速度を上げて操業を行うことが多い。このような場
合は、所定の巻取り温度を得るために金属板の搬送速度
に応じて冷却ゾーンを増やし、搬送中の金属板を冷却す
る時間を一定に保たなくてはならない。
[0006] By the way, the metal plate which is being conveyed may flutter or meander, but since the metal plate travels relatively stably after the tip is caught in the coiler, the rolling speed is increased from this timing to start the operation. I often do it. In such a case, in order to obtain a predetermined winding temperature, it is necessary to increase the number of cooling zones according to the transport speed of the metal plate and keep the time for cooling the metal plate being transported constant.

【0007】本発明は、従来のマスキング技術の不備を
改善して幅方向温度の均一化を図ると共に、高温金属板
の搬送速度の変化等にも対応することができる高温金属
板の冷却方法を提供することを目的とする。
The present invention provides a method for cooling a high-temperature metal plate, which improves the deficiency of the conventional masking technique to make the temperature in the width direction uniform and can cope with changes in the transport speed of the high-temperature metal plate. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、前記の問題点
を解決するために、ランアウトテーブル上を走行する高
温金属板の板幅方向に配列した複数のノズルから冷却水
を供給し、該金属板の上面又は下面を冷却する高温金属
板の冷却方法において、高温金属板の板幅方向端部に直
接供給される冷却水を遮蔽する手段を冷却ゾーン内の走
行方向に複数配設し、冷却水を遮蔽する範囲を板幅方向
に個別に拡縮し、板幅方向の冷却能力を制御することを
特徴とする高温金属板の冷却方法である。この場合、冷
却水を遮蔽する板幅方向拡縮範囲を複数段階に設定する
と好ましく、また、冷却装置内を通過中の金属板の搬送
速度の変化に応じて、それぞれの段階の冷却ゾーンの長
さと冷却水供給ゾーンの長さとの比率を一定とするよう
に前記冷却水を遮蔽する手段の板幅方向範囲をプリセッ
トすると好適である。さらに、冷却水供給ゾーン長さの
変化に応じてそれぞれの段階の冷却ゾーンの長さと冷却
水供給ゾーンの長さとの比率を一定とするように、遮蔽
する手段の板幅方向範囲を変更するとすれば好適であ
る。
In order to solve the above problems, the present invention supplies cooling water from a plurality of nozzles arranged in the plate width direction of a high temperature metal plate traveling on a runout table, In a method of cooling a high temperature metal plate for cooling an upper surface or a lower surface of a metal plate, a plurality of means for shielding cooling water directly supplied to a plate width direction end portion of the high temperature metal plate are arranged in a running direction in a cooling zone, A high-temperature metal plate cooling method is characterized in that a range for shielding cooling water is individually expanded / contracted in the plate width direction to control the cooling capacity in the plate width direction. In this case, it is preferable to set the plate width direction expansion / contraction range that shields the cooling water in a plurality of stages, and according to the change in the transport speed of the metal plate passing through the inside of the cooling device, the length of the cooling zone in each stage and It is preferable to preset the range in the plate width direction of the means for shielding the cooling water so that the ratio with the length of the cooling water supply zone is constant. Furthermore, the plate width direction range of the shielding means may be changed so that the ratio of the length of the cooling zone and the length of the cooling water supply zone at each stage is made constant according to the change of the cooling water supply zone length. Is suitable.

【0009】[0009]

【作用】まず、図3において、曲線21に示すように冷
却開始時の金属板の端部過冷の状態を、曲線22に示す
ようなモデル化した幅方向温度分布で表わす。このモデ
ル化は、予め金属板の幅方向温度分布の測定を数多く行
うなどして決定すればよい。例えば曲線22の階段状の
ステップの幅は金属板端部から50mmごとに設定す
る。
First, in FIG. 3, the end supercooling state of the metal plate at the start of cooling is represented by a modeled widthwise temperature distribution as represented by curve 22 in FIG. This modeling may be determined in advance by performing many measurements of the widthwise temperature distribution of the metal plate. For example, the width of the step of the curved line 22 is set every 50 mm from the end of the metal plate.

【0010】冷却開始時の幅方向温度分布を曲線22の
ように与えた場合、曲線23のように巻取り温度を幅方
向で一定にするためには、図3中の斜線部分で示す分だ
けの冷却を行えばよい。このとき、マスキングは各装置
毎に遮蔽幅を複数の段階で変えて行うことが必要とな
る。遮蔽幅の設定値は、製品の鋼種や板厚毎に巻取り温
度の幅方向分布を測定しながら試行錯誤で決めてもよい
が、予め設定してある簡易式などから求めることも可能
である。
When the temperature distribution in the width direction at the start of cooling is given as the curve 22, in order to make the winding temperature constant in the width direction as shown by the curve 23, only the amount shown by the shaded portion in FIG. Cooling can be performed. At this time, the masking needs to be performed by changing the shielding width in each of the devices in a plurality of steps. The setting value of the shielding width may be determined by trial and error while measuring the widthwise distribution of the winding temperature for each steel type and plate thickness of the product, but it can also be obtained from a preset simple formula or the like. .

【0011】マスキングの遮蔽幅を装置毎に複数の段階
で変えて設定すると、金属板を幅方向に細かく分割した
温度制御が可能となる。これによって、巻取り温度の幅
方向均一性は飛躍的に向上し、金属板中央部と端部との
材質のばらつきが減少する。さらに、耳切り代を低下さ
せて、製品歩留りを向上させるなどの効果もある。とこ
ろで、一般に金属板端部での幅方向温度分布は長手方向
でほとんど変化しないから、マスキングによって修正す
べき端部過冷は、金属板長手方向で一定としてよい。
If the masking shield width is changed and set for each device in a plurality of steps, it becomes possible to control the temperature by finely dividing the metal plate in the width direction. As a result, the uniformity of the winding temperature in the width direction is dramatically improved, and the variation in the material between the central portion and the end portion of the metal plate is reduced. Further, it also has an effect of reducing the edge cutting margin and improving the product yield. By the way, generally, the temperature distribution in the width direction at the end of the metal plate hardly changes in the longitudinal direction. Therefore, the end supercooling to be corrected by masking may be constant in the longitudinal direction of the metal plate.

【0012】一方、金属板の搬送中には、冷却ゾーンの
長さが金属板速度と共に変化することがある。例えば、
熱間仕上圧延機において、搬送中の金属板は、先端がコ
イラーに噛み込んだ後は速度が大幅に増加する。その場
合、金属板の冷却時間を一定とするために金属板速度の
増加とともに冷却ゾーンもこれに比例して長くなる。こ
のような場合は、マスキングの遮蔽ゾーン長さの冷却ゾ
ーン長さに対する比率(以下、単にマスキング比率と呼
ぶ)を一定として、端部過冷の修正量も一定にしなけれ
ばならない。
On the other hand, during the transportation of the metal plate, the length of the cooling zone may change with the speed of the metal plate. For example,
In the hot finish rolling mill, the speed of the metal plate being conveyed increases significantly after the tip of the metal plate is caught in the coiler. In that case, in order to make the cooling time of the metal plate constant, the cooling zone becomes longer in proportion to the increase of the metal plate speed. In such a case, the ratio of the masking shield zone length to the cooling zone length (hereinafter, simply referred to as the masking rate) must be constant, and the correction amount of end supercooling must also be constant.

【0013】図4は、モデル計算によって求めたマスキ
ング比率とマスキングによって修正できる端部過冷との
関係を示す図の1例である。例えばある制御幅での過冷
が40℃である場合、冷却ゾーンの50%のゾーン長さ
でマスキングを行えば、その部分での巻取温度は、幅方
向中央部と同じになる。そのためには、例えば冷却ゾー
ンが4ゾーンであるときのマスキングは2ゾーンで、冷
却ゾーンが8ゾーンである時のマスキングは4ゾーンで
行えばよい。
FIG. 4 is an example of a diagram showing the relationship between the masking ratio obtained by model calculation and the end supercooling that can be corrected by masking. For example, when the supercooling at a certain control width is 40 ° C., if the masking is performed with a zone length of 50% of the cooling zone, the winding temperature at that portion becomes the same as the widthwise central portion. For that purpose, for example, when the cooling zone is 4 zones, masking may be performed in 2 zones, and when the cooling zone is 8 zones, masking may be performed in 4 zones.

【0014】各装置でのマスキング遮蔽幅は、冷却ゾー
ン長さが変化してもマスキング比率がほぼ一定となるよ
うに固定のパターンを決定して設定できる。また、冷却
ゾーン長さの変化に応じてパターンを変化させることに
よってマスキング比率を一定とすることも可能である。
The masking shield width in each device can be set by determining a fixed pattern so that the masking ratio remains substantially constant even if the cooling zone length changes. It is also possible to make the masking ratio constant by changing the pattern according to the change in the cooling zone length.

【0015】[0015]

【実施例】本発明の実施例を、金属板搬送中に冷却ゾー
ンが4ゾーンから8ゾーンに変化する場合のマスキング
遮蔽幅の設定について、従来の技術と比較して示す。図
1は、本発明の実施例を説明する遮蔽板の模式的平面図
である。マスキング装置は各冷却ゾーンNo.1〜N
o.8に1台ずつ設置してある。図5は図1のA−A矢
視図である。図5において、テーブルローラ10上を走
行する高温金属板1にはヘッダ4に設けたノズル5から
冷却水6が供給されている。この冷却水を遮蔽する遮蔽
板2はモータ7、ガイド軸8により矢印9に示すように
移動する。
EXAMPLE An example of the present invention will be shown in comparison with the conventional technique for setting the masking shield width in the case where the cooling zone changes from 4 zones to 8 zones during conveyance of a metal plate. FIG. 1 is a schematic plan view of a shield plate for explaining an embodiment of the present invention. The masking device is for each cooling zone No. 1 to N
o. One is installed in 8 each. FIG. 5 is a view on arrow AA of FIG. In FIG. 5, the cooling water 6 is supplied to the high temperature metal plate 1 running on the table roller 10 from the nozzle 5 provided in the header 4. The shield plate 2 that shields this cooling water is moved by the motor 7 and the guide shaft 8 as shown by an arrow 9.

【0016】まず、冷却開始時の金属板端部での温度分
布を図3の曲線22のようにモデル化した。このときの
端部過冷と、モデル計算によって求めたマスキング比率
の最適値を表1に示す。金属板の板幅端部から0〜50
mmの部分(エッジ0〜50mmという)と金属板の板
幅端部から50〜100mmの部分(エッジ50〜10
0mmという)では端部過冷が異なるので、マスキング
比率の適正値も50%、25%と異なる。
First, the temperature distribution at the edge of the metal plate at the start of cooling was modeled as a curve 22 in FIG. Table 1 shows the edge overcooling at this time and the optimum value of the masking ratio obtained by the model calculation. 0 to 50 from the width of the metal plate
mm part (edge 0 to 50 mm) and a part 50 to 100 mm from the plate width end of the metal plate (edge 50 to 10).
(0 mm), since the end supercooling is different, the appropriate values of the masking ratio also differ from 50% and 25%.

【0017】表2〜表4は、マスキング遮蔽幅の設定パ
ターンを従来例と本発明の実施例とで比較したものであ
る。また、表5は、巻取温度を550℃とした時の幅方
向各位置での温度を、各例毎に示したものである。表2
は、従来のマスキング遮蔽幅の設定パターンである。ケ
ース1は冷却ゾーンNo.1〜No.4を使用した場
合、ケース2は冷却ゾーンNo.1〜No.8を使用し
た場合である。表2(比較例)では、奇数番目のゾーン
全て遮蔽幅100mmのマスキングを行っている。この
とき、エッジ0〜50mmの部分では適正な比率でマス
キングが行われたため、巻取り温度は幅方向中央と同じ
になった。ところが、エッジ50〜100mmの部分で
はマスキング比率が適正値より高めすぎたため巻取り温
度は幅方向中央よりも20℃高かった。マスキングによ
って端部過冷は防止できたが、巻取り温度の幅方向分布
が均一とならなかったから、幅方向に均一な材質を得る
には限界があり、品質の高い製品は製造できなかった。
Tables 2 to 4 compare the masking shield width setting patterns between the conventional example and the embodiment of the present invention. Further, Table 5 shows the temperature at each position in the width direction when the winding temperature was 550 ° C., for each example. Table 2
Is a conventional masking masking width setting pattern. Case 1 is a cooling zone No. 1-No. When No. 4 is used, Case 2 has cooling zone No. 1-No. This is the case when 8 is used. In Table 2 (comparative example), masking with a shielding width of 100 mm is performed for all odd-numbered zones. At this time, the winding temperature was the same as that in the center in the width direction because the masking was performed at an appropriate ratio in the portion of the edge 0 to 50 mm. However, the winding temperature was higher than the center in the width direction by 20 ° C. because the masking ratio was too higher than the proper value in the edge portion of 50 to 100 mm. Although overcooling at the edges could be prevented by masking, the widthwise distribution of the winding temperature was not uniform, so there was a limit to obtaining a uniform material in the widthwise direction, and high quality products could not be manufactured.

【0018】表3は、本発明によるマスキング遮蔽幅の
設定パターンの第1例である。ケース1、ケース2は表
2と同様である。表3では、各装置でのマスキング遮蔽
幅を冷却ゾーン長さが変化してもマスキング比率はほぼ
一定となるように決定しており、金属板搬送中は遮蔽幅
を変更しない。冷却ゾーンが4ゾーンの時(ケース1)
のマスキング比率は、エッジ0〜50mmの部分で50
%、エッジ50〜100mmの部分で25%であり、い
ずれも表1に示すように適正値と等しくすることができ
た。また、冷却ゾーンが8ゾーンの時(ケース2)のマ
スキング比率も同様に、適正値と等しくすることができ
た。これによって、単に金属板の端部過冷を防止できた
だけでなく、従来の技術に比べて巻取り温度、ひいては
材質の幅方向均一性を従来の技術に比べて飛躍的に向上
させ、品質の高い製品を製造することができた。なお、
冷却ゾーンが4ゾーンから8ゾーンに変化する途中、つ
まり冷却ゾーンが5〜7ゾーンの時も、マスキング比率
は適正値に近い値で若干増減するだけなので、巻取り温
度の幅方向分布はコイル全体にわたってほぼ均一とする
ことができた。
Table 3 is a first example of a masking shield width setting pattern according to the present invention. Case 1 and case 2 are the same as in Table 2. In Table 3, the masking shield width in each device is determined so that the masking ratio remains substantially constant even if the cooling zone length changes, and the shield width is not changed during the transportation of the metal plate. When there are 4 cooling zones (Case 1)
The masking ratio is 50 at the edge of 0 to 50 mm.
%, And 25% at the edges of 50 to 100 mm, and as shown in Table 1, they could all be made equal to the proper values. Further, the masking ratio when the number of cooling zones was 8 (case 2) was also able to be made equal to the appropriate value. As a result, not only was it possible to prevent overcooling of the edges of the metal plate, but it was also possible to dramatically improve the winding temperature, and thus the width-wise uniformity of the material, compared with the conventional technology, and to improve the quality. It was possible to manufacture high quality products. In addition,
Even when the cooling zone is changing from 4 zones to 8 zones, that is, when the cooling zones are 5 to 7 zones, the masking ratio only slightly increases or decreases to a value close to an appropriate value, so the widthwise distribution of the winding temperature is the entire coil. It was possible to make it almost uniform over the entire length.

【0019】表4は、本発明によるマスキング遮蔽幅の
設定パターンの第2例であり、ケース1とケース2は表
2と同様である。図1はその設定パターンの変化を模式
的に示した図である。このパターンでは、エッジ0〜5
0mmとエッジ50〜100mmでのマスキング比率が
常に適正値に近い値になるようにするため、各装置での
マスキング遮蔽幅を冷却ゾーン長さの変化に応じて変化
させている。例えばケース1ではNo.3〜No.4ゾ
ーンの遮蔽板2は2aの位置とし、ケース2ではそれぞ
れ2bの位置とし、マスキング比率を一定に保つように
している。
Table 4 shows a second example of the masking shield width setting pattern according to the present invention, and Case 1 and Case 2 are the same as Table 2. FIG. 1 is a diagram schematically showing changes in the setting pattern. In this pattern, edges 0-5
In order to keep the masking ratio at 0 mm and the edge 50 to 100 mm always close to an appropriate value, the masking shield width in each device is changed according to the change in the cooling zone length. For example, in case 1, No. 3 to No. The shielding plates 2 in the four zones are located at the position 2a, and in the case 2 are located at the positions 2b, respectively, so that the masking ratio is kept constant.

【0020】冷却ゾーンが4ゾーンの時(ケース1)及
び8ゾーンの時(ケース2)のマスキング比率は、本発
明の第1例と同様にエッジ0〜50mmの部分で50
%、エッジ50〜100mmの部分で25%となった。
いずれも表1に示す適正値と等しくすることができ、本
発明の第1例と同じ効果を得ることができた。冷却ゾー
ンが4ゾーンから8ゾーンに変化するのに合わせてマス
キング遮蔽幅を表4のパターンA(ケース1)からパタ
ーンB(ケース2)に変化させる。したがって、冷却ゾ
ーンが5〜7ゾーンの時でもマスキング比率は適正値に
近い値で保持することができ、巻取り温度の幅方向分布
はコイル全体にわたってほぼ均一とすることができた。
The masking ratio when the cooling zone is 4 zones (case 1) and when it is 8 zones (case 2) is 50 at the edge 0 to 50 mm portion as in the first embodiment of the present invention.
%, And 25% at the edges of 50 to 100 mm.
In each case, the values can be made equal to the appropriate values shown in Table 1, and the same effects as the first example of the present invention could be obtained. As the cooling zone changes from 4 zones to 8 zones, the masking shield width is changed from pattern A (case 1) to pattern B (case 2) in Table 4. Therefore, even when the cooling zone is 5 to 7 zones, the masking ratio can be maintained at a value close to an appropriate value, and the widthwise distribution of the winding temperature can be made substantially uniform over the entire coil.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【発明の効果】以上のように、本発明によると、複数の
段階で設定するマスキングの遮蔽幅のそれぞれについて
マスキング比率を一定とすることによって、金属板幅方
向に均一な巻取り温度分布を得ることができた。これに
よって、材質の幅方向均一性を従来の技術に比べて飛躍
的に向上させ、品質の高い製品を製造することができ
た。なお、本実施例ではマスキング遮蔽幅の設定を2段
階とした設定パターンを示したが、本発明はこれに限る
ものではなく、遮蔽幅を3段階以上に分けて設定しても
よい。
As described above, according to the present invention, a uniform winding temperature distribution is obtained in the width direction of the metal plate by keeping the masking ratio constant for each of the masking shielding widths set in a plurality of stages. I was able to. As a result, the uniformity of the material in the width direction was dramatically improved as compared with the conventional technique, and a high quality product could be manufactured. Although the masking masking width is set in two steps in this embodiment, the present invention is not limited to this, and the masking width may be set in three or more steps.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の遮蔽板の作動を示す模式平面図であ
る。
FIG. 1 is a schematic plan view showing the operation of a shielding plate according to an embodiment.

【図2】高温金属板の端部の温度分布を説明する模式的
グラフである。
FIG. 2 is a schematic graph illustrating a temperature distribution at an end portion of a high temperature metal plate.

【図3】実施例を説明する金属板端部の温度分布のグラ
フである。
FIG. 3 is a graph showing a temperature distribution at an end portion of a metal plate illustrating an example.

【図4】端部過冷修正量とマスキング比率との関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between an end supercooling correction amount and a masking ratio.

【図5】図1のA−A矢視図である。5 is a view on arrow AA in FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1 金属板 2 遮蔽板 3 進行方向 4 ヘッダ 5 ノズル 6 冷却水 7 モータ 8 ガイド軸 9 矢印 10 テーブルローラ 11、12、13 曲線 21、22、23 曲線 1 Metal Plate 2 Shielding Plate 3 Moving Direction 4 Header 5 Nozzle 6 Cooling Water 7 Motor 8 Guide Shaft 9 Arrow 10 Table Roller 11, 12, 13 Curve 21, 22, 23 Curve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 一郎 千葉市中央区川崎町1番地 川崎製鉄株式 会社鉄鋼開発・生産本部千葉製鉄所内 (72)発明者 竹村 英孝 千葉市中央区川崎町1番地 川崎製鉄株式 会社鉄鋼開発・生産本部千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Ichiro Maeda 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Co., Ltd. Steel Development & Production Division Chiba Steel Works (72) Inventor Hidetaka Takemura 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steelmaking Co., Ltd. Steel Development & Production Division Chiba Steel Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ランアウトテーブル上を走行する高温金
属板の板幅方向に配列した複数のノズルから冷却水を供
給し、該金属板の上面又は下面を冷却する高温金属板の
冷却方法において、高温金属板の板幅方向端部に直接供
給される冷却水を遮蔽する手段を冷却ゾーン内の走行方
向に複数配設し、冷却水を遮蔽する範囲を板幅方向に個
別に拡縮し、板幅方向の冷却能力を制御することを特徴
とする高温金属板の冷却方法。
1. A high-temperature metal plate cooling method, wherein cooling water is supplied from a plurality of nozzles arranged in the plate width direction of a high-temperature metal plate traveling on a runout table to cool the upper surface or the lower surface of the metal plate. A plurality of means for shielding the cooling water directly supplied to the end of the metal plate in the plate width direction are arranged in the running direction in the cooling zone, and the range for shielding the cooling water is individually expanded / contracted in the plate width direction. A method for cooling a high-temperature metal plate, which comprises controlling the cooling capacity in a direction.
【請求項2】 冷却水を遮蔽する手段の板幅方向拡縮範
囲が複数段階に設定することを特徴とする請求項1記載
の高温金属板の冷却方法。
2. The method for cooling a high temperature metal plate according to claim 1, wherein the expansion / contraction range in the plate width direction of the means for shielding the cooling water is set in a plurality of stages.
【請求項3】 冷却装置内を通過中の金属板の搬送速度
の変化に応じて、それぞれの段階の冷却ゾーンの長さと
冷却水供給ゾーンの長さとの比率を一定とするように前
記冷却水を遮蔽する手段の板幅方向範囲をプリセットす
ることを特徴とする請求項2記載の高温金属板の冷却方
法。
3. The cooling water so that the ratio of the length of the cooling zone and the length of the cooling water supply zone at each stage is made constant according to the change of the transport speed of the metal plate passing through the inside of the cooling device. The method for cooling a high temperature metal plate according to claim 2, wherein the range of the plate width direction of the means for shielding is preset.
【請求項4】 冷却水供給ゾーン長さの変化に応じて、
それぞれの段階の冷却ゾーンの長さと冷却水供給ゾーン
の長さとの比率を一定とするように、遮蔽する手段の板
幅方向範囲を変更することを特徴とする請求項2記載の
高温金属板の冷却方法。
4. According to the change of the cooling water supply zone length,
3. The high temperature metal plate according to claim 2, wherein the range of the shielding means in the plate width direction is changed so that the ratio of the length of the cooling zone and the length of the cooling water supply zone at each stage is kept constant. Cooling method.
JP21614894A 1994-09-09 1994-09-09 Cooling method of high temperature metallic plate Pending JPH0871630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21614894A JPH0871630A (en) 1994-09-09 1994-09-09 Cooling method of high temperature metallic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21614894A JPH0871630A (en) 1994-09-09 1994-09-09 Cooling method of high temperature metallic plate

Publications (1)

Publication Number Publication Date
JPH0871630A true JPH0871630A (en) 1996-03-19

Family

ID=16684038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21614894A Pending JPH0871630A (en) 1994-09-09 1994-09-09 Cooling method of high temperature metallic plate

Country Status (1)

Country Link
JP (1) JPH0871630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110662A1 (en) * 2003-06-13 2004-12-23 Jfe Steel Corporation Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
KR101316233B1 (en) * 2011-09-08 2013-10-08 주식회사 포스코 Hot steel strip cooling apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110662A1 (en) * 2003-06-13 2004-12-23 Jfe Steel Corporation Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
EP1634657A1 (en) * 2003-06-13 2006-03-15 JFE Steel Corporation Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
EP1634657A4 (en) * 2003-06-13 2007-04-18 Jfe Steel Corp Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
KR100780503B1 (en) * 2003-06-13 2007-11-29 제이에프이 스틸 가부시키가이샤 Controllable cooling method for thick steel plate and cooling device for the thick steel plate
CN100404154C (en) * 2003-06-13 2008-07-23 杰富意钢铁株式会社 Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
KR101316233B1 (en) * 2011-09-08 2013-10-08 주식회사 포스코 Hot steel strip cooling apparatus

Similar Documents

Publication Publication Date Title
JP5137842B2 (en) Method and hot rolling line for hot rolling of introduced material
KR101138725B1 (en) Device for influencing the temperature distribution over a width
BG60451B1 (en) Method and an installation for producing steel strip reels
WO2004000476A1 (en) Hot rolling method and apparatus for hot steel sheet
JP5327140B2 (en) Method for cooling hot rolled steel sheet
JP2003094106A (en) Method and device for cooling steel plate
JPH0871630A (en) Cooling method of high temperature metallic plate
KR101819303B1 (en) Apparatus for induction heating material and endless rolling method of thesame
JP3329186B2 (en) Hot-rolled steel strip rolling method and apparatus
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
KR19980052525A (en) Uniform Cooling Method of Hot Rolled Wire
JP2988330B2 (en) Control method of winding temperature of hot rolled steel sheet
JPH0671328A (en) Controller for cooling hot rolled steel plate
JP2001353564A (en) Method for producing steel plate
JPS6293010A (en) Production of hot rolled steel plate
JP2006239777A (en) Method for manufacturing hot-rolled steel sheet
JP2005288463A (en) Cooling device and cooling method for steel strip
JP2003290812A (en) Induction heating device and hot rolling equipment
JP2003025009A (en) Equipment for cooling hot-rolled steel sheet
JPH1133601A (en) Rolling equipment
JP2008114230A (en) Method for controlling temperature of rolling material in hot rolling, and hot rolling method using the same
JPS6314821A (en) Annealing furnace for steel strip in continuous annealing and pickling line
JP2003073746A (en) Heat treatment method for steel sheet and apparatus therefor
JPH08323404A (en) Hot rough rolling method and hot rough rolling equipment
JPH07241602A (en) Hot rolling device

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040420

Free format text: JAPANESE INTERMEDIATE CODE: A02