JPS6036625A - Uniform cooling method of high-temperature steel plate - Google Patents

Uniform cooling method of high-temperature steel plate

Info

Publication number
JPS6036625A
JPS6036625A JP14368383A JP14368383A JPS6036625A JP S6036625 A JPS6036625 A JP S6036625A JP 14368383 A JP14368383 A JP 14368383A JP 14368383 A JP14368383 A JP 14368383A JP S6036625 A JPS6036625 A JP S6036625A
Authority
JP
Japan
Prior art keywords
steel plate
cooling
temp
plate
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14368383A
Other languages
Japanese (ja)
Inventor
Seiji Bando
板東 清次
Sadao Ebata
江端 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14368383A priority Critical patent/JPS6036625A/en
Publication of JPS6036625A publication Critical patent/JPS6036625A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Abstract

PURPOSE:To produce a steel plate having excellent mechanical properties and weldability without variance by measuring the temp. distribution of the high- temp. steel plate right after hot rolling and eliminating the uneven temp. in the steel plate by partial cooling in accordance with the measured temp. distribution then cooling the steel plate with water to a specific temp. CONSTITUTION:The temp. distribution on the front and rear surfaces of a steel plate 3 of 700-900 deg.C right after hot rolling is measured by using scanning type radiation thermometers 10, 11 while the plate 3 is conveyed by conveying rollers 2. The measured value thereof is inputted to a control device 30, by which the value is processed. The partially high-temp. part of the plate 3 is cooled by a cooler 2 having many cooling water nozzles so that the entire part of the steel plate 3 is cooled to have the uniform temp. distribution. The plate 3 cooled to the same temp. over the entire part is fed further to temp. measuring devices 12, 13 where the cooling effect by the cooler 20 is monitored and further the information thereon is fed to a control cooler 4 to cool the plate 3 with water to 300-500 deg.C. The entire part of the plate 3 is uniformly cooled and the steel plate having excellent mechanical properties, weldability, etc. and having no variance in quality is obtd.

Description

【発明の詳細な説明】 本発明は高温鋼板の冷却方法に係り、特に圧延直後に圧
延ライン上で直接熱鋼板を連続冷却する場合の均一冷却
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a high-temperature steel plate, and more particularly to a uniform cooling method for continuously cooling a hot steel plate directly on a rolling line immediately after rolling.

近年、圧延直後の鋼板を板厚に応じた冷却速度で800
°〜600℃まで水冷し、機械的性質および溶接性の向
上などを行う新しい熱処理方法が開発され、高級調質鋼
板の製造プロセスに一大変革をもたらしつつある。これ
によれば、圧延直後の。
In recent years, steel plates immediately after rolling have been cooled to 800℃ at a cooling rate according to the plate thickness.
A new heat treatment method has been developed that uses water cooling to 600°C to improve mechanical properties and weldability, and is bringing about a major revolution in the manufacturing process of high-grade tempered steel sheets. According to this, immediately after rolling.

鋼板は700°〜900℃の高温状態であるので、 □
従来の熱処理方法のように再加熱する必要がな(、省力
、省エネを図ることができ、また、加工熱処理効果の有
効利用による材質特性向上に伴う合金成分の節減も可能
である。
Since the steel plate is at a high temperature of 700° to 900°C, □
There is no need for reheating as in conventional heat treatment methods (labor and energy savings can be achieved), and it is also possible to reduce alloy components due to improved material properties through effective use of processing heat treatment effects.

このように、圧延IK後の高温鋼板を直接水冷する方法
は材質改善、製造コスト低減などに極めて有効ではある
が、冷却ムラによる材質バラツキおよび冷却歪の発生と
いう点で極めて重大な問題を擁している。即ち、圧延後
の鋼板が板肉全域に亘)・・り均一な温度分布を呈して
いないために、部分的に存在する低温部が水冷時に過冷
却現象を生じ、冷却ムラおよび冷却歪を発生する原因と
なる。この圧延後の鋼板にみられる部分的な温度低下は
、圧延中のデスグーリング水噴射あるいは搬送ロー12
−への伝熱によるものと考えられ、事実、板肉平均温度
に比べて10°〜60℃の温度低下が一般に観察されて
いる。
As described above, the method of directly water-cooling high-temperature steel sheets after IK rolling is extremely effective in improving material quality and reducing manufacturing costs, but it has extremely serious problems in terms of material variation and cooling distortion caused by uneven cooling. There is. In other words, because the steel plate after rolling does not exhibit a uniform temperature distribution over the entire plate thickness, the partially existing low-temperature areas cause supercooling during water cooling, resulting in uneven cooling and cooling distortion. cause This partial temperature drop observed in the steel plate after rolling may be caused by the desguring water injection during rolling or by the transfer roller 12.
This is thought to be due to heat transfer to -, and in fact, a temperature decrease of 10° to 60°C compared to the average temperature of the plate is generally observed.

したがって、鋼板を板肉全域に亘り均一に冷却し、かつ
、冷却歪を発生させないためには、冷却装。
Therefore, in order to uniformly cool the steel plate over the entire plate thickness and to prevent cooling distortion, a cooling system is required.

置の均一冷却性能を維持することが第1ではある・が、
被冷却鋼板の板肉温度分布も極めて重要であることは言
うまでもない。しかしながら、従来の制御冷却方法では
、制御冷却装置の均一冷却性能確保にのみ着目して冷却
歪および冷却ムラ防止の検討が行なわれており、完全な
均一冷却および冷却歪の防止が達成できていなかった。
The first priority is to maintain uniform cooling performance of the equipment.
It goes without saying that the temperature distribution of the steel plate to be cooled is also extremely important. However, in conventional controlled cooling methods, studies have been conducted to prevent cooling distortion and cooling unevenness by focusing only on ensuring uniform cooling performance of the controlled cooling device, and it has not been possible to achieve complete uniform cooling and prevention of cooling distortion. Ta.

本発明は、かかる間順点に鑑み、被冷却鋼板の制御冷却
前の板肉温度分布に着目し、これを板肉全域に亘り一様
な温度分布にすることにより、以、。
In view of this problem, the present invention focuses on the temperature distribution of the plate thickness before controlled cooling of the steel plate to be cooled, and by making this a uniform temperature distribution over the entire plate thickness.

後の制御冷却装置内における均一冷却および冷却歪防止
を達成することを目的として、圧延直後の鋼板温度分布
を均一にする方法を提供するものであって、その要旨と
するところは、高温鋼板に対して該鋼板全長に亘る制御
冷却を施して連続的に。
This paper provides a method for uniformizing the temperature distribution of a steel plate immediately after rolling, with the aim of achieving uniform cooling and prevention of cooling distortion in a subsequent control cooling device. On the other hand, controlled cooling is applied continuously over the entire length of the steel plate.

冷却するに際し、前記制御冷却に先立って、まず、予め
該鋼板の板肉温度分布を測定し、これに基づいて該鋼板
の部分的な高温部を水冷することにより該鋼板の板肉温
度ムラを解消し、しかる後に前記制御冷却を施して均一
な冷却処理を行うことを、。
When cooling, prior to the controlled cooling, first, the plate wall temperature distribution of the steel plate is measured in advance, and based on this, partial high temperature parts of the steel plate are cooled with water to reduce plate wall temperature unevenness of the steel plate. and then performing the controlled cooling to perform a uniform cooling process.

特徴とする高温鋼板の均一冷却方法、にある。 1以下
に本発明の詳細を図示の一実施例に従って説明する。
It is characterized by a uniform cooling method for high-temperature steel sheets. 1 The details of the present invention will be explained below according to an illustrated embodiment.

第1図は圧延ラインにおける本発明方法を実施する装置
例の構成を示しており、1は圧延機、2は搬送ローラ、
8は圧延後の被冷却鋼板、4は制御冷却装置、10〜1
Bは鋼板温度検出器、zOは冷却装置を示している。圧
延機1による圧延後の被冷却鋼板8は、搬送ローラ2に
よって図中矢印方向に移動し、温度検出器10.11に
より連1・続的に鋼板表裏面の温度が測定される。温度
検出器10.11としては走査型放射温度泪を使用して
おり、鋼板8の移動に伴って板肉全域の温度分布が測定
される。温度検出器10.11の検出信号は電気信号と
して制御装置f80に伝達され、こ1の信号を制御装置
80で処理し、冷却装置20内の所望のノズルを選択し
、同時に噴出水量、噴出時間を決定する。
FIG. 1 shows the configuration of an example of an apparatus for carrying out the method of the present invention in a rolling line, in which 1 is a rolling machine, 2 is a conveying roller,
8 is a steel plate to be cooled after rolling, 4 is a control cooling device, 10 to 1
B indicates a steel plate temperature detector, and zO indicates a cooling device. The steel plate 8 to be cooled after being rolled by the rolling mill 1 is moved in the direction of the arrow in the figure by the conveyance roller 2, and the temperatures of the front and back surfaces of the steel plate are continuously measured by temperature detectors 10 and 11. A scanning radiation temperature sensor is used as the temperature detector 10.11, and as the steel plate 8 moves, the temperature distribution over the entire plate thickness is measured. The detection signal of the temperature detector 10.11 is transmitted as an electric signal to the control device f80, and this signal is processed by the control device 80 to select a desired nozzle in the cooling device 20, and at the same time control the amount of water to be ejected and the time of ejection. Determine.

本実施例における冷却装置20内のノズル配置は、第2
図(イ)K示すように、幅方向に15列、鋼−1゜板進
行方向に8列をなす計45個のノズル40が”上下に対
向して設置しである。各ノズル40には、同図(ロ)に
示すように、それぞれ独立して噴射水量を制御できる流
量調節弁41と糸路の開閉を行なう制水弁4gを組み込
んだ冷却水供給配管4Bが接続されており、これらの弁
41.42は制御器[800指令により自動的に作動さ
れる。
The nozzle arrangement in the cooling device 20 in this embodiment is
As shown in FIG. As shown in the same figure (b), a cooling water supply pipe 4B incorporating a flow control valve 41 that can independently control the amount of water to be injected and a water control valve 4g that opens and closes the yarn path is connected to these pipes. The valves 41, 42 are automatically operated by the controller [800 command.

冷却装置20の前方には従来と同様の制御冷却装置4が
設置されており、鋼板8の全長に亘り連続的圧制御冷却
される。なお、図示の温度検出器1・・la、1Bは前
記温度検出器10.Llと同様の構成を有するが、冷却
装置20による冷却効果を監視しまたは制御冷却装置内
に必要な情報を提供する等のために利用される。
A control cooling device 4 similar to the conventional one is installed in front of the cooling device 20, and continuous pressure control cooling is performed over the entire length of the steel plate 8. Note that the illustrated temperature detectors 1...la, 1B are the temperature detectors 10. Although it has the same configuration as Ll, it is used for monitoring the cooling effect of the cooling device 20 or providing necessary information within the control cooling device.

次に、前記装置を用いた本発明の具体的な実施1方法の
一例について説明する。
Next, an example of a specific method of implementing the present invention using the above-mentioned apparatus will be described.

なお、理解を容易にするため、温度検出器10゜11に
よる被冷却鋼板8の温度分布測定結果が第8図(イ)に
示す温度分布になったものとし、この時の被冷却鋼板8
0表裏面の温度分布は同じとする。
For ease of understanding, it is assumed that the temperature distribution measurement result of the steel plate 8 to be cooled by the temperature detector 10°11 is the temperature distribution shown in FIG.
0 The temperature distribution on the front and back surfaces is the same.

また、被冷却鋼板8の先端が冷却装置20に入つまた時
間をt。とし、この時の鋼板8の通板速度はv(VI3
o。)とする。
Also, the time it takes for the tip of the steel plate 8 to be cooled to enter the cooling device 20 is t. The threading speed of the steel plate 8 at this time is v(VI3
o. ).

温度検出器10.IIKより鋼板8の板肉温度分布を測
定1〜、これを制御器80で処理した結果。
Temperature detector 10. Measurement 1~ of the plate wall temperature distribution of the steel plate 8 using IIK, and the results of processing this with the controller 80.

に基づいて、まず、鋼板8が冷却装置20内を速度Vで
X□(m)進んだ所でA列の痛5〜/1610のノズル
から所定流量の冷却水が噴出する。さらに該鋼板Bがe
□進んだ所でB列の/165〜410のノズルから所定
流量の冷却水が噴出する。これにより、。
Based on this, first, when the steel plate 8 moves through the cooling device 20 at a speed of V by X□(m), a predetermined flow rate of cooling water is ejected from the nozzle numbered 5~/1610 in the A row. Furthermore, the steel plate B is
□ At the advanced point, a predetermined flow rate of cooling water is ejected from the nozzles /165 to 410 in the B row. With this.

銅板80840℃部分が冷却される。次に、該鋼板8の
先端が冷却装置20のa位置(to時の位fl)からさ
らK (Xs 十ex + es )だけ進んだ所で0
列のA6.47のノズルから所定水量の冷却水が噴出し
、該鋼板8がこの位置から(xa Xs )だ。
The 80,840°C portion of the copper plate is cooled. Next, when the tip of the steel plate 8 has advanced by K (Xs + ex + es) from the a position of the cooling device 20 (position fl at the time of to), the temperature reaches 0.
A predetermined amount of cooling water is spouted from the nozzle in row A6.47, and the steel plate 8 is (xa Xs ) from this position.

け進んだ所で0列の46.7のノズルからの冷却水噴出
が停止する。これにより、鋼板80860℃部分の冷却
は終了し、しかし840℃部分の冷却は継続されている
。さらに鋼板8の先端がa位置からx4だげ進んだ所で
A列のAllのノズルが−1゜所定水量の冷却水噴出を
開始し、ここから該鋼板18が(x5−x、)だけ進ん
だ所でA列の全ノズルの冷却水噴出を停止する。これに
より、鋼板808 Z O’C部分の冷却が終了し、ま
たA列ノズルによる840℃部分の冷却も終了する。さ
らにこれ ・からσ□進んだ位置でB列の全ノズルの冷
却水噴出を停止する。これにより、B列ノズルによる鋼
板80840℃部分の冷却が終了する。このようにして
、冷却装置20内を通過した被冷却鋼板8は部分的な冷
却を受け、板肉温度分布が均一になI・・る。
At the point where it has advanced, the cooling water jetting from the 46.7 nozzle in the 0th row stops. As a result, cooling of the 80860°C portion of the steel plate is completed, but cooling of the 840°C portion is continued. Furthermore, when the tip of the steel plate 8 has advanced by x4 from position a, the All nozzles in row A start spouting cooling water at a predetermined amount of -1°, and from this point the steel plate 18 advances by (x5 - x,). At this point, stop jetting cooling water from all nozzles in row A. As a result, the cooling of the steel plate 808 Z O'C portion is completed, and the cooling of the 840° C. portion by the A-row nozzles is also completed. Furthermore, cooling water jetting from all nozzles in row B is stopped at a position σ□ advanced from this point. This completes the cooling of the 80,840° C. portion of the steel plate by the B row nozzles. In this way, the steel plate 8 to be cooled that has passed through the cooling device 20 is partially cooled, and the temperature distribution of the plate becomes uniform.

以上の冷却過程における第8図(イ)の各ノズルの冷却
水噴出タイミングを同図(ロ)に経時的に図示する。な
お、図中、小円はその8等分した各頭部が図示のとおり
の各ノズル列A、B、Cを表わし、1円内の斜線部はA
列の該当ノズルが冷却水噴出を行っていることを示し、
同様に円内のドツト部はB列の該当ノズルが、また黒色
部は0列の該当ノズルが各々冷却水噴出を行っているこ
とを示している。但し、円内の白色部は冷却水噴出を行
って、。
The cooling water ejection timing of each nozzle in FIG. 8(A) during the above cooling process is illustrated over time in FIG. 8(B). In addition, in the figure, each small circle is divided into eight equal parts, and each head represents each nozzle row A, B, and C as shown in the figure, and the shaded part within one circle is A.
Indicates that the corresponding nozzle in the row is spouting cooling water,
Similarly, the dots in the circle indicate that the corresponding nozzles in the B row are spraying cooling water, and the black parts indicate that the corresponding nozzles in the 0 row are spraying cooling water. However, the white part inside the circle is where cooling water is spouted.

いないことを示している。同図より、鋼板8の各1高温
部(860℃、840℃、820°G)が鋼板進行時間
にマツチングして該当ノズル列のノズルの冷却水噴出に
よって冷却されてい(状況が明瞭にわかる。
It shows that there is no. From the figure, each high temperature part (860° C., 840° C., 820° G) of the steel plate 8 is cooled by the cooling water jet from the nozzle of the corresponding nozzle row, matching the steel plate advancing time (the situation can be clearly seen).

なお、各ノズルからの噴出水量は被冷却鋼板8の板厚、
入側温度、材質、通板速度などによって異なり、これら
の情報を前取て制御装置80にインプットしておくこと
Kより、自動的に適正水量が決定される。また、ノズル
番号の選択、即ち、1.。
Note that the amount of water ejected from each nozzle depends on the thickness of the steel plate 8 to be cooled,
It varies depending on the inlet temperature, material, threading speed, etc., and by inputting this information into the advance control device 80, the appropriate amount of water is automatically determined. Also, selection of nozzle number, ie, 1. .

冷却部分の決定は、第8図(イ)に示すように、温度検
出器10.11の信号を制御装置80内で2次元平面の
X−Y座標におきかえ、これを基にして鋼板幅方向(Y
方向)のノズル番号を決定し、さらに、鋼板長手方向(
X方向)の温度分布を基に1して通板速度と対応する噴
射時間が決定される。
The cooling portion is determined by converting the signals from the temperature detectors 10 and 11 into X-Y coordinates on a two-dimensional plane in the control device 80, and determining the cooling portion in the width direction of the steel plate, as shown in FIG. 8(a). (Y
Determine the nozzle number in the longitudinal direction of the steel plate (
The sheet passing speed and the corresponding injection time are determined based on the temperature distribution in the X direction).

以上の操作により板肉温度分布が一様になった被冷却鋼
板は、次工程の制御冷却装置4に搬送され従来と同様の
所定の冷却が施されて、冷却ムラや冷却歪のない均一な
温度分布を呈する。
The steel plate to be cooled, whose thickness distribution has been made uniform through the above operations, is transported to the next process, the control cooling device 4, where it is cooled in the same manner as in the past, and is uniformly cooled without uneven cooling or cooling distortion. Exhibits a temperature distribution.

なお、本発明を実施する装置に使用するノズル1は、ス
プレーノズル、ジェットノズル、ラミナーフローノズル
などいずれを用いても差し仕えないが、鋼板上面への冷
却水滞留による適冷および不均一冷却などを考慮した場
合、水と空気を同時K。
The nozzle 1 used in the apparatus for carrying out the present invention may be a spray nozzle, a jet nozzle, a laminar flow nozzle, or the like, but suitable cooling methods such as proper cooling by cooling water retention on the upper surface of the steel plate, non-uniform cooling, etc. When considering water and air at the same time, K.

噴出して冷却を行なう2流体ノズルを使用することが望
ましい。
It is desirable to use a two-fluid nozzle that provides jet cooling.

また、本実施例では、冷却装置200Å側に鋼板表裏面
の温度をそれぞれ別に測定する温度計を設け、ノズルも
鋼板表裏面に対向して冷却水を噴1,1射するよう圧し
ているが、いずれか片面の温度を測定し、表裏面のいず
れか一方を冷却して被冷却鋼板8の板肉温度分布を均一
にすることも可能である。
In addition, in this embodiment, thermometers are installed on the 200 Å side of the cooling device to measure the temperature of the front and back surfaces of the steel plate separately, and the nozzles are also pressurized so as to spray cooling water one by one, facing the front and back surfaces of the steel plate. It is also possible to measure the temperature of one of the surfaces and cool either the front or back surface to make the temperature distribution of the steel plate 8 uniform.

以上詳述したところからも明らかなように、従1゜来は
制御冷却装置4内で均一な冷却を行なっても、被冷却鋼
板8の板肉温度分布が一様でなく、冷却ムラおよび冷却
歪を生じ、大きな問題となっていたが、本発明によれば
、制御冷却装置会に入る前の鋼板80板内温度分布が完
全に均一になってい、。
As is clear from the detailed explanation above, even if uniform cooling was performed in the control cooling device 4 in the past, the temperature distribution of the steel plate 8 to be cooled was not uniform, resulting in uneven cooling and cooling. However, according to the present invention, the temperature distribution within the steel plate 80 before entering the control cooling system is completely uniform, which has caused distortion, which has been a big problem.

るため、冷却ムラあるいはこれに伴う冷却歪を発1生ず
ることがなく、均一な冷却処理を行なうことができ、特
に高級調質鋼板の製造に貢献するところ大である。
Therefore, uniform cooling treatment can be performed without uneven cooling or accompanying cooling distortion, which greatly contributes to the production of high-grade tempered steel sheets in particular.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用する装置例を概略的に示す
説明図、 第2図は第1図に示した冷却装置の配置状況を延時的に
示し、第8図(イ)は平面図、同(ロ)は(イ)のA−
入線に清う側面図、 第8図は本発明の一実施例に基づき被冷却鋼板を冷却す
る状況を説明する図であって、同図(イ)は一様でない
板肉温度分布を有する該鋼板と冷却装置のノズル列との
関係を示し、同(ロ)は各ノズルの冷却水噴出タイミン
グを示す。 l・・・圧延機 2・・・搬送ローラ 8・・・被冷却鋼板 舎・・・制御冷却装置10〜18
・・・温度検出器 zO・・・冷却装置80・・・制御
装置 40・・・2流体ノズル41・・・流鎗調節弁 
42・・・利水弁4B・・・冷却水供給配管 44・・
・空気供給配管。 ・特許用願人 川崎製鉄株式会社 ○ 第 (イ) 2図 \口)
FIG. 1 is an explanatory diagram schematically showing an example of a device used to carry out the present invention, FIG. 2 is a chronological diagram showing the arrangement of the cooling device shown in FIG. 1, and FIG. 8 (A) is a plan view. Figure, (b) is A- of (b)
FIG. 8 is a diagram illustrating a situation in which a steel plate to be cooled is cooled based on an embodiment of the present invention, and FIG. The relationship between the steel plate and the nozzle array of the cooling device is shown, and (b) shows the cooling water spout timing of each nozzle. l...Rolling mill 2...Transport roller 8...Steel plate to be cooled Sheet...Control cooling device 10-18
...Temperature detector zO...Cooling device 80...Control device 40...2 fluid nozzle 41...Ryuyari control valve
42...Water use valve 4B...Cooling water supply pipe 44...
・Air supply piping.・Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] L 高温鋼板に対して該鋼板全長に亘る制御冷却を施し
て連続的に冷却するに際し、前記制御冷却に先立って、
まず、予め該鋼板の板肉温度分布を測定し、これに基づ
いて該鋼板の部分的な高温部を水冷することにより該鋼
板の板肉温度ムラを解消し、しかる後に前記制御冷却を
施して均一な冷却処理を行うことを1・・特徴とする高
温鋼板の均一冷却方法。
L When performing controlled cooling over the entire length of a high-temperature steel plate to continuously cool it, prior to the controlled cooling,
First, the plate wall temperature distribution of the steel plate is measured in advance, and based on this, the uneven temperature of the plate wall of the steel plate is eliminated by water-cooling the partially high-temperature parts of the steel plate, and then the controlled cooling is performed. A method for uniformly cooling high-temperature steel sheets characterized by: 1. uniform cooling treatment;
JP14368383A 1983-08-08 1983-08-08 Uniform cooling method of high-temperature steel plate Pending JPS6036625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14368383A JPS6036625A (en) 1983-08-08 1983-08-08 Uniform cooling method of high-temperature steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14368383A JPS6036625A (en) 1983-08-08 1983-08-08 Uniform cooling method of high-temperature steel plate

Publications (1)

Publication Number Publication Date
JPS6036625A true JPS6036625A (en) 1985-02-25

Family

ID=15344515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14368383A Pending JPS6036625A (en) 1983-08-08 1983-08-08 Uniform cooling method of high-temperature steel plate

Country Status (1)

Country Link
JP (1) JPS6036625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110662A1 (en) * 2003-06-13 2004-12-23 Jfe Steel Corporation Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110662A1 (en) * 2003-06-13 2004-12-23 Jfe Steel Corporation Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
EP1634657A1 (en) * 2003-06-13 2006-03-15 JFE Steel Corporation Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
EP1634657A4 (en) * 2003-06-13 2007-04-18 Jfe Steel Corp Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate
CN100404154C (en) * 2003-06-13 2008-07-23 杰富意钢铁株式会社 Controllable cooling method for thick steel plate, thick steel plate manufactured by the controllable cooling method, and cooling device for the thick steel plate

Similar Documents

Publication Publication Date Title
US8282747B2 (en) Cooling method of steel plate
JP5218435B2 (en) Controlled cooling method for thick steel plate
CA2668000A1 (en) Method for cooling hot strip
CN202224453U (en) Complete device of after-rolling ultrafast cooling system for hot-rolled strip steel production line
US3629015A (en) Method for cooling thick steel plates
WO2024066741A1 (en) Device and method for ameliorating roller marks formed on surface of thin strip steel by pinch rollers
JPH01205810A (en) Method for preventing generation of scale after descaling
JPS6036625A (en) Uniform cooling method of high-temperature steel plate
JP3562423B2 (en) Cooling apparatus for hot-rolled steel strip and cooling method
KR900002504B1 (en) Method of correcting warping of two-layer clad metal plate
JPS611420A (en) Forced cooling method of hot-rolled thick steel plate and its device
JPS61253112A (en) Control method for cooling steel plate
JPS5926371B2 (en) Cooling equipment for hot rolled steel sheets
JP3206533B2 (en) Controlled cooling method and apparatus for thick steel plate
JP2000280017A (en) Steel plate cooling method and equipment
JP3633539B2 (en) Steel plate cooling method
JPH0671328A (en) Controller for cooling hot rolled steel plate
CN102366763A (en) Method for controlling rolling temperature of strip materials
JPH0216372B2 (en)
JPS61219412A (en) Uniform cooling method of hot steel plate and its apparatus
JP3282714B2 (en) Cooling method for hot steel sheet
CN216937726U (en) Cooling device with plate-shaped adjusting and controlling function
JP3304816B2 (en) Cooling method for hot steel sheet and cooling device for hot steel sheet
JP3284911B2 (en) High temperature steel plate cooling system
JPH024373B2 (en)